
Convolutional Genetic Programming

Lino Rodriguez-Coayahuitl(B) , Alicia Morales-Reyes ,
and Hugo Jair Escalante

Instituto Nacional de Astrof́ısica, Óptica y Electrónica,
Sta. Ma. Tonantzintla, 72840 Puebla, Mexico
{linobi,a.morales,hugojair}@inaoep.mx

Abstract. In recent years Convolutional Neural Networks (CNN) have
come to dominate many machine learning tasks, specially those related
to image analysis, such as object recognition. Herein we explore the pos-
sibility of developing image denoising filters by stacking multiple Genetic
Programming (GP) syntax trees, in a similar fashion to how CNNs are
designed. We test the evolved filters performance in removing additive
Gaussian noise. Results show that GP is able to generate a diverse
set of feature maps at the ’hidden’ layers of the proposed architecture.
Although more research is required to validate the suitability of GP for
image denoising, our work set the basis for bridging the gap between
deep learning and evolutionary computation.

Keywords: Deep Genetic Programming ·
Evolutionary machine learning · Genetic Programming ·
Image filtering · Deep Learning

1 Introduction

Convolutional Neural Networks (CNN) are a type of connectionist machine
learning (ML) algorithms particularly adept at image processing tasks [9]. This
is thanks to a clever architectural design that allows them to scale well to
high dimensionality problems. In recent years, CNN and Deep Neural Networks
(DNN) in general have achieved record performance in typical ML tasks such
as classification and regression, outclassing both systems handcrafted by human
experts of the problem’s domain and ML systems based on techniques other
than CNN [8]. DNN have achieved this performance thanks to an ever increas-
ing number of stacked convolutional layers [7,13].

Herein we explore the possibility to implement the fundamental architec-
ture of CNN through a different algorithmic paradigm, Genetic Programming
(GP) [6]. GP is an evolutionary algorithm typically used for ML tasks. In GP
a population of solutions (often encoding models) is evolved by using mutation
and crossover operators. GP is known to be suitable for modeling highly complex
functions, hence we think it is appealing to mimic tasks approached by CNN.

The motivation to follow CNNs’ architectural design through GP is twofold:
first, we wish to explore the idea of replacing neurons in CNNs with GP syntax
c© Springer Nature Switzerland AG 2019
J. A. Carrasco-Ochoa et al. (Eds.): MCPR 2019, LNCS 11524, pp. 47–57, 2019.
https://doi.org/10.1007/978-3-030-21077-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21077-9_5&domain=pdf
http://orcid.org/0000-0002-7541-4772
http://orcid.org/0000-0001-5052-7554
http://orcid.org/0000-0003-4603-3513
https://doi.org/10.1007/978-3-030-21077-9_5

48 L. Rodriguez-Coayahuitl et al.

trees, as we believe they have the same, or even higher, computational power
than that of CNN’s neurons; and secondly due to the fact that GP does not
scale well to high dimensionality problems [3], and we suspect it might benefit
from CNNs’ architectural design.

In order to test the proposed approach, we tackle the problem of image
denoising. The purpose of image denoising is to recover a clean image from a
contaminated one. The contamination model may be of different kinds. In this
work we attempt to clean images from additive Gaussian noise, which is a fairly
standard problem targeted by CNN models.

The main contributions of this work are as follows:

– We introduce a novel GP-based method for image denoising filters that oper-
ates at pixel level.

– We propose a multi-layer convolutional GP architecture.
– We propose different training/evolution mechanisms to suit the proposed

multi-layer convolutional GP architecture.
– We compare the performance of the evolved GP filters to that of recent DNN.

The implicit relevance of this work lies in the fact that for the first time,
to the best of the authors’ knowledge, we establish in a quantitative manner,
the performance gap between evolutionary algorithms/GP and Deep Learning.
Many other works related to this subject have avoided such direct comparison.

2 Background

2.1 Genetic Programming

GP is an evolutionary algorithm that iteratively modifies a population of can-
didate solutions to the problem at hand. These candidate solutions are called
individuals. Each individual’s performance is tested against a training dataset;
the best individuals are selected to reproduce through the use of genetic opera-
tions, i.e. generate slightly modified versions of themselves; these new solutions
are also evaluated and the best performing replace the worst from current ones,
leading to a new generation of individuals. This process repeats until a stop
criterion is met. Canonical individuals in GP are syntax trees that represent
a mathematical function or simple computer programs [6,10]. Internal nodes
in these trees are basic functions called primitives, while leaf nodes are con-
stants or feature variables from the instance being processed. In this way, data
flows from bottom nodes to the top root node where the final output is gener-
ated. Figure 1 shows an example of a tree structure that represents the function
f(x, y) = (2.2 − (x

11)) + (7 ∗ cos(y)) [2].
Problems with high dimensionality inputs, such as in the case of image pro-

cessing tasks, are challenging for ML algorithms for several reasons, such as
time complexity issues, the curse of dimensionality [1], and the large number
of parameters that need to be tuned within algorithms to work properly when
faced with such high dimensionality problems.

Convolutional Genetic Programming 49

 7

Fig. 1. Typical tree structures used in GP to represent candidate solutions.

In the case of GP, high dimensionality issues arise due the nature canonical
individual representation itself. Notice how trees depth has to increase in order
to accommodate more input features at leaf nodes. Larger trees means an expo-
nentially growing search space of candidate solutions, that eventually becomes
intractable.

2.2 Image Denoising

The problem of image denoising is defined as follows: extract a clean image x
from a noisy observation y such that y = x + v, where v is a contamination
process; a typical example is when v follows a Gaussian distribution with some
given σ, which case is known as Additive Gaussian Noise (AWGN). Figure 2
shows a noisy image contaminated with AWGN, as well as a clean version of it
we wish to recover through image denoising.

Fig. 2. (a) Image contaminated with AWGN; (b) clean image.

3 Related Work

GP has been successfully used in the past to synthesize image filters. Examples
of those works can be found in [5,16]. However, they rely on a modified version of
the canonical GP individual such that primitive functions may include already
specialized image filters or at least well known image processing functions. This

50 L. Rodriguez-Coayahuitl et al.

is undesirable if we wish to build ML systems that relies as little as possible on
domain human expert’s knowledge, i.e. highly automated learning systems. A
more agnostic approach has been proposed in [4], where terminals of the syntax
trees consist of simple statistics taken over pixels regions.

It is relevant to contrast such specialized GP approaches with recent devel-
opments in the area of Deep Learning (DL). DNN are artificial neural networks
composed by several stacked processing layers. CNN are a type of DNN where
these processing layers perform convolutional operations. Each convolutional
layer is made of linear approximators coupled with a non-linear transformation.
There is really nothing specialized regarding image processing in the architec-
ture of DNN other than the use of convolution to efficiently process images.
DnCNN [17] is a recent DNN designed to tackle image denoising; its flexibil-
ity is such that, by just switching the dataset with which is trained, the same
network can learn to remove vastly different types of noises such as Gaussian
noises with different or unknown levels of deviation, deblocking artifacts, and can
even perform super resolution. DnCNN is competitive with fully and partially
handcrafted image filters designed by human experts.

In more general terms, high dimensionality issues have been long acknowl-
edged in the GP community [3]. Standard approaches to tackle such issues gen-
erally involve grouping input features in one way or another, process each cluster
separately, and then attempt to assemble a joint global solution [11,15]. In [11],
authors proposed a GP autoencoder that generated a compact representation
of an input image and could decode the original image from the compact rep-
resentation. The proposed autoencoder relied on the canonical GP individual
representation. In order to use the proposed GP autoencoder on images, it was
required to partition the input images in small groups of neighboring pixels that
are processed independently in isolated GPs. Even though this approach allowed
GP to process a large enough input such as images, it is still not the most effi-
cient approach, since isolated GPs did not share information with neighboring
GP processes and such many independent GP required vast amounts of memory
and processing power.

Our work draws inspiration from CNN and propose a single sliding GP win-
dow that swipes an input image for processing, instead of many multiple inde-
pendent GP processes.

4 A Convolutional GP for Image Denoising

Our approach to evolve image denoising filters through GP is to leverage from
the CNN architecture, where we replace neurons with GP syntax trees. Initially
we propose to evolve a single syntax tree that acts as image filter by sliding over
a noisy input image and cleaning it pixel by pixel. Thereafter, we propose to
stack multiple layers of these GP filters. We explain the theoretical advantages
of stacking filters in this manner further below in this section.

Convolutional Genetic Programming 51

4.1 Single Layer Convolutional GP Filter

We propose to use a standard GP individual representation, i.e. a syntax tree,
to act as an image filter. This filter operates over a small window region of d×d
pixels, with d an odd number, receiving as input pixels within such region, and
returning as output a single value that is the level of noise of the central pixel in
the operating window. In order to filter a whole image, the window is slid over
the entire image, generating a residual image with the same size of the input
image that we want to clean of noise. Figure 3a shows a depiction of the proposed
GP filter. This residual image represents the (estimated) level of noise of each
pixel that composes the input image. In order to retrieve an approximation of
the clean image, we subtract the residual image from the noisy input.

The leaf nodes of the GP individual should be the individual pixels in the
region being processed, or constants values within some range. The primitives
can be any function that can operate at this individual pixel level. This is done
in this way to avoid the use of any image filtering expert’s knowledge.

4.2 Multi-layer Convolutional GP

Additionally, we also propose to stack multiple of these sliding GP filters, both in
parallel and in series, since DNN are actually designed this way. That is, instead
of using a single GP syntax tree that filters the image, we can slide multiple,
different, GP syntax trees that generate as output several feature maps, which
are intermediate transformations of the input that may be useful for generating
the desired output. All these feature maps form a volume of codified information
that is further processed by another GP tree that generates the final output, i.e.
the residual image. Figure 3b shows a GP filter architecture composed of two
stacked filter in series, while Fig. 3c depicts an architecture with multiple GP
filters both in series and in parallel.

Stacking these convolutional filters in series carries the advantage of increas-
ing the receptive field. This means that if we use two sliding filter with windows
of 3 × 3 in series, when we reconstruct the central pixel at the output of the
second filter, we are actually using information of a 5 × 5 window size around
it (this is as along as the first filter did manage to codify information at feature
map it outputs). On the other hand, stacking filters in parallel per layer allows
to generate more than one feature map at each layer. Each feature map might
codify different information useful for the next layer of processing.

The canonical form of GP contemplates individuals that are composed of
a single syntax tree. In our proposed method, in the case of multiple stacked
filters, we would need to evolve more than a single GP tree. Although there do
exists GP individual representations based on forests (multiple trees), in this
type of representations the trees are loosely dependent on each other, whereas
in the multilayer architecture we are proposing here, the filter trees series rely
completely on the output generated by the previous trees in the structure.

52 L. Rodriguez-Coayahuitl et al.

Fig. 3. Multilayer GP architecture. (a) Single layer, single filter; (b) Two layer, one
filter per layer; (c) Three layer, first and second layers with n filters, third layer with
only 1, output, filter.

4.3 Evolving Multiple Layers of Convolutional GP Filters

In order to train this complex architecture, we propose three different
approaches: (straightforward) define the GP individual as the entire set of
trees across all layers, evolve individuals by applying genetic operations layer-
wise; (sequential) evolve the multi-layer structure sequentially, i.e. evolve the
first layer for fixed number of generations; once this first evolution is finished,
the second layer of filters are evolved, which take as input a cleaner version of
the noisy image generated by the first layer, and so on; (ensamble) the third
approach is based on the idea that the multiple feature maps at the penultimate
layer might actually act as ensamble learner, with the last layer only performing
the mean function, so in this architecture we enforce this behavior by taking
as output the mean over the feature maps of the last layer. Figure 4 illustrates
these three variants.

Fig. 4. Different possible GP individual representations for multilayer GP filters.

Convolutional Genetic Programming 53

5 Experimental Results and Analysis

In this section we present and discuss experimental results of different variants
of the proposed method.

5.1 Training and Testing Datasets

We generated the training data following the work of [17]. From the Berkeley
Segmentation Dataset [12] we extracted 19,200 unique 40×40 image patches for
training purposes. For testing, we use the same classic image processing set used
in [5,16,17], composed of well-known pictures such as “Lena” and “Boats”. A
total of 12 (seven 256×256 and five 512×512) pictures were used for testing. We
contaminated both training patches and testing images by adding them noise
masks generated with a Gaussian distribution of σ = 25. All training and testing
was performed on grayscale images.

5.2 Evolutionary Algorithm Setup

For all experiments we used a multi-population, island based, model [14]. We
used a population of 500 individuals split across 5 islands each with 100 indi-
viduals. We used an heterogeneous and asynchronous [14] model where each
island had different crossover/mutation probabilities, and every 10 generations
send their top 10 performing individuals to another, randomly selected, island
(migration). Crossover/mutation probabilities were set as follow for each island:
[0.9/0.1, 0.7/0.3, 0.5/0.5, 0.3/0.7, 0.1/0.9]. The set of primitives used consist on
binary arithmetic operators, [+,−,×,÷], binary functions max, min, mean, and
unary functions x2, x3, and Rectifier Linear Units (ReLUs).

We used an on-line form of learning defined in [11]. We partitioned the entire
training dataset into mini-batches of 60 samples, and use one mini-batch per
evolutionary cycle for evaluating both individuals and offspring generated. We
used a steady state population replacement policy. As fitness function we used
the minimization of the mean square error (MSE) between the predicted noise
level and the actual noise level to drive the evolution of all systems proposed.

5.3 Results

We tested two Single Layer Convolutional GP, one consisting in a sliding win-
dow of 3 × 3 pixels, and another with a window of 5 × 5 pixels. We tested three
different Multi-layer Convolutional GP, each under one of the three different
proposed methods for evolving multi-layer GPs. All Multi-layer architectures
consisted in only 2 layers (2 layers + mean, for the ensemble method). Both
straightforward and sequential architectures were composed of 3 filters at the
first layer, and 1 filter in the second layer (3 filters in both layers for the ensem-
ble method). All filters were 3 × 3 windows. Table 1 shows results obtained by
different tested approaches. We include in Table 1 unfiltered noisy images values

54 L. Rodriguez-Coayahuitl et al.

(to understand how much the proposed approaches actually denoise images),
as well as DnCNN network performance [17], to fully appreciate how far GP is
from modern DNN. These results were obtained on the same testing dataset for
all approaches (including DnCNN), and using the same training dataset (also
applies for DnCNN). All GP approaches were given the same computational
time1. Therefore these results are based on a comparison as fair as possible.
For completion, Fig. 5 shows the performance of a 2-Layer, sequentially evolved
variant GP, on ten training patches. We found no visually appreciable difference
between this output and the one from a single layer GP.

Table 1. Average performance of all convolutional GP architectures tested. Values
expressed in decibels. Higher is better.

Noisy
Image

Single
GP,
3× 3

Single
GP,
5× 5

Strfwd-GP
(2 Layers)

Sequential GP
(2 Layers)

Ensamble
(2L + Mean)

DnCnn

20.32 25.96 25.07 25.22 25.93 23.60 30.43

5.4 Additional Results and Discussion

We also performed experiment using 10 filters per layer for the Multi-layer GP
architectures. Although we found them to be consistently inferior in perfor-
mance to the 3 filters per layer reported above, we found that these GP variants
generated interesting patterns in the hidden layer. Figure 6 shows feature maps
generated by ten filters for ten different training patches. Some feature maps
appear to be signaling borders or other points of interest.

Fig. 5. Visual results of the output generated by a 2-Layer convolutional, sequentially
evolved, GP. From top to bottom: original images, noisy samples, filtered images.

Results shows that GP can successfully synthesize image denoising filters,
even though none of the proposed methods allows GP to benefit from a multi-
layer convolutional architecture, thus positioning a single layer GP filter as the
1 DnCNN runs in less time than GP, due to being accelerated in GPU and implemented

in highly optimized DL software libraries.

Convolutional Genetic Programming 55

reference method-to-beat in future works based on GP. Results also confirm
that GP struggles with high dimensionality problems. In this case, a single layer
5 × 5 window GP filter does not performs any better, if not worse, than a 3 × 3
window one, even though the first one has more than twice context information
that theoretically should allow it to perform a better filtering.

Fig. 6. Feature maps generated by a 2-layer GP in the hidden layer given 10 different
input patches and 10 evolved GP filters in the hidden layer. From top to bottom: first
row, 10 different noisy patches; rows 2 to 10, feature maps generated; last row, filtered
final output.

6 Conclusions

We introduced a method to evolve image denoising filters with GP, through an
architecture inspired by CNN. Our results have confirmed that:

56 L. Rodriguez-Coayahuitl et al.

– GP is a viable method to synthesize image denoising filters, even when pro-
cessing images at individual pixel level.

– GP struggles with high dimensionality problems, since it cannot make use of
input samples with as low as 25 features.

– GP cannot directly benefit from a stacked convolutional architecture. More
research is necessary in this direction.

We have also draw a clear, quantitative, performance gap between GP and DL
based methods, by using the same exact training and testing datasets, and mak-
ing head-to-head direct comparison with modern DNN architectures. We believe
this work should serve as a reference for future works that attempt to attack
problems with GP in which DL excels at.

References

1. Alpaydin, E.: Introduction to Machine Learning. MIT Press, Cambridge (2009)
2. Axelrod, B.: Genetic programming (2007). Accessed 5 May 2017
3. Gathercole, C., Ross, P.: Tackling the boolean even N parity problem with genetic

programming and limited-error fitness. Genet. Program. 97, 119–127 (1997)
4. Hernández-Beltrán, J.E., Dı́az-Ramı́rez, V.H., Trujillo, L., Legrand, P.: Restora-

tion of degraded images using genetic programming. In: Optics and Photonics for
Information Processing X, vol. 9970 (2016)

5. Khmag, A., Ramli, A.R., Al-haddad, S., Yusoff, S., Kamarudin, N.: Denoising of
natural images through robust wavelet thresholding and genetic programming. Vis.
Comput. 33(9), 1141–1154 (2017)

6. Koza, J.R.: Genetic Programming: On the Programming of Computers by means
of Natural Selection, vol. 1. MIT Press, Cambridge (1992)

7. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep con-
volutional neural networks. In: NIPS (2012)

8. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)
9. LeCun, Y., Bengio, Y., et al.: Convolutional networks for images, speech, and time

series. In: The Handbook of Brain Theory and Neural Networks, vol. 3361, no. 10
(1995)

10. Poli, R., Langdon, W.B., McPhee, N.F., Koza, J.R.: A field guide to genetic pro-
gramming (2008). http://www.lulu.com

11. Rodriguez-Coayahuitl, L., Morales-Reyes, A., Escalante, H.J.: Structurally lay-
ered representation learning: towards deep learning through genetic programming.
In: Castelli, M., Sekanina, L., Zhang, M., Cagnoni, S., Garćıa-Sánchez, P. (eds.)
EuroGP 2018. LNCS, vol. 10781, pp. 271–288. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-77553-1 17

12. Roth, S., Black, M.J.: Fields of experts: a framework for learning image priors. In:
Null, pp. 860–867. IEEE (2005)

13. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of CVPR, pp.
1–9 (2015)

14. Tomassini, M.: Spatially Structured Evolutionary Algorithms: Artificial Evolution
in Space and Time. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-
29938-6

http://www.lulu.com
https://doi.org/10.1007/978-3-319-77553-1_17
https://doi.org/10.1007/978-3-319-77553-1_17
https://doi.org/10.1007/3-540-29938-6
https://doi.org/10.1007/3-540-29938-6

Convolutional Genetic Programming 57

15. Tran, B., Xue, B., Zhang, M.: Using feature clustering for GP-based feature con-
struction on high-dimensional data. In: McDermott, J., Castelli, M., Sekanina,
L., Haasdijk, E., Garćıa-Sánchez, P. (eds.) EuroGP 2017. LNCS, vol. 10196, pp.
210–226. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55696-3 14

16. Yan, R., Shao, L., Liu, L., Liu, Y.: Natural image denoising using evolved local
adaptive filters. Sig. Process. 103, 36–44 (2014)

17. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a gaussian denoiser:
residual learning of deep CNN for image denoising. TIP 26(7), 3142–3155 (2017)

https://doi.org/10.1007/978-3-319-55696-3_14

	Convolutional Genetic Programming
	1 Introduction
	2 Background
	2.1 Genetic Programming
	2.2 Image Denoising

	3 Related Work
	4 A Convolutional GP for Image Denoising
	4.1 Single Layer Convolutional GP Filter
	4.2 Multi-layer Convolutional GP
	4.3 Evolving Multiple Layers of Convolutional GP Filters

	5 Experimental Results and Analysis
	5.1 Training and Testing Datasets
	5.2 Evolutionary Algorithm Setup
	5.3 Results
	5.4 Additional Results and Discussion

	6 Conclusions
	References

