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Abstract. An new method to obtain polygonal approximation for
object contours is presented. The method consists of coding the contour
with the Angle Freeman chain code (AF8), obtaining strings of eight sym-
bols, and looking for patterns of substrings that represent slope changes
along the contour. Our strategy for detecting dominant points is to look
for the ends of discrete straight lines through patterns of AF8 symbols,
which can be produced by a context-free grammar. With a multiresolu-
tion method, we present the polygonal approximation for noisy contours.
A set of N dominant points is obtained, the integral square error (ISE)
is calculated and, finally, based on lost pixels (LP) in decoding process a
new error criterion, that we call lost ratio (LR), is proposed. We found
that our method produces the lowest ISE, LP and LR regarding the
state-of-the-art.

Keywords: Dominant points · Polygonal approximation ·
Angle Freeman chain code · Contour shapes · Context-free grammar

1 Introduction

The search for optimal methods to find descriptors is a constant task in computer
vision and pattern recognition. Particularly regarding the search of methods with
polygonal approximation to represent the shape of binary objects, in which the
data of the vertices, significantly reduce the memory storage and facilitate the
handling of the original shape information. In this work, each vertex is also called
dominant point (DP, for short). Of course, it is inevitable to lose data, but this
loss is bearable as long as the information of both the main shape features and
its original topology are not affected in the least.

Attneave [2] already had noticed that a shape could be recognized when
its contour was simplified by means of a set of straight lines. However, many
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papers have been written to quantify the error between such straight lines and
the original contour.

Given a contour of n cells 8-connected and listed in the clockwise direction,
C = {(xi, yi), i = 1, ..., n}, the problem of finding the best polygon of m vertices
(i.e., one that allows a tolerable error) is considering the Cn

m = n!/[m!(n − m)!]
different possible polygons.

Teh and Chin [13] use Freeman chain code of eight directions [5], that we
call F8, to represent contour shapes and proposed a non-parametric method for
dominant point detection. In [12], Sarkar used F8 chain code seeking significant
vertices by differentiating the code symbols, instead of taking any coordinate into
account. Cronin [4] developed a symbolic algorithm using, also, F8 chain code
to assign special symbols to detect DPs. Arrebola and Sandoval [1] proposed a
hierarchical computation of a multiresolution structure on chain-coded contours
allowing detection of shape details at different scales.

Some authors base their method on the iterative elimination of candidates,
called break points, until final DPs are obtained [3,9,10].

An alternative way to obtain polygonal approximations is presented in this
work, which is based on the recognition of chains that are part of a context-
free grammar. Also, our method relies on not only to significantly decrease the
number of vertices, i.e., the dominant points, but to look for an error criterion
that not only implies the integral square error or the compression ratio, but also,
on the amount of information that is lost from the original contour, since there
are pixels that can not be recovered in a decoding process.

This paper is organized as follows. In Sect. 2 we explain our proposed method
by using a context-free garmmar and a multiresolution method to find DPs,
whereas in Sect. 3 the proposal for a new error criterion is detailed. The appli-
cation of our method is presented in Sect. 4. Finally, in Sect. 5 we give some
conclusions and further work.

2 Method

Following definitions are used throughout the paper to understand our method.

Definition 1. A 2D grid, is a regular orthogonal array, denoted by G, com-
posed of r rows and c columns of resolution cells. A resolution cell is called a
pixel denoted by p, if the following two properties are considered: its Cartesian
coordinates (x, y) and its intensity value Ip ∈ {0, 1}. If Ip = 0, we say that the
resolution cell is a 0-pixel; on the contrary, if Ip = 1, the resolution cell is a
1-pixel. Unless otherwise stated, and without causing confusion, in this work we
often consider 1-pixel simply as pixel.

Definition 2. AF8 is a two-based vector code [6]: a reference and change vector,
whose direction changes are labeled by the symbols of the alphabet ΣAF8 =
{a, b, c, d, e, f, g, h}. See Fig. 1.
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Fig. 1. AF8 symbols

We rely on the search for breakpoints where some others can be added carry-
ing out another iteration, such that error criteria are the minimum as possible.

The steps of our multiresolution method are:

1. Consider two superimposed grids, G and G
′, so that G

′ can be scaled by a
parameter α ≥ 1, with α ∈ Z. This scaling is done through the origin given
by the centroid of the binary object. Start with α as a power of 2.

2. Obtain another contour in G
′ with the help of the original in G by visiting

each cell of both grids, and follow the next steps.
(a) From leftmost and upmost, find the first cell of G′ that contains 1-pixels

of the contour in G and mark it. Cover the set of marked cells in clockwise.
(b) The next cell to mark in the 8-vicinity of G

′ is the one that has the
greatest number of 1-pixels of G.

(c) Repeat last step until all 1-pixels of G have been covered.
(d) Given the AF8 chain code of the contour, find strings from the set.

L = {xap(bhaq)r, xap(hbaq)r |x ∈ {a, b, c, d, e, f, g, h}}, (1)

where p, q, r indicate the number of times the symbol or substring in
parentheses is concatenated, x is the label for the breakpoints and
a, b, ..., h are symbols of the alphabet AF8.

(e) Once a cell of G
′ has been defined as breakpoint, find the 1-pixel of G

closest to the center of the cell of G′ and define it as a breakpoint.
3. Given two breakpoints (xk, yk) and (xk+1, yk+1), a continuous-line segment

is defined. The distance between this segment and the points of the contour
cells is given by Eq. (2).

d2(pi, pkpk+1) =
((xi − xk)(yk+1 − yk) − (yi − yk)(xk+1 − xk))2

(xi − xk+1)2 + (yk − yk+1)2
. (2)

If α ≥ 1 and, also, the error between line segments given by breakpoints and
the contour is greater than a certain tolerable error, make α → α/2 and go
to step 2. Otherwise, consider all breakpoints as DPs and stop.

The main idea of our method is to capture what visually seems to us a
digital straight segment (DSS). Of course, there is an error if we consider the
continuous straight segment. For contours with high noise, it is not convenient
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Fig. 2. Left: a discrete straight line coded with AF8 chain code. Right: a continuous
straight line is adapted.

to adapt DSS for each pair of abrupt changes, that is why we proceed to expand
G

′ doing α > 1, with this we apply the algorithm on G
′ cells, ignoring the details

of the noise. Figure 2 presents an example of a visual DSS. As can be observed,
the AF8 chain code is CAF8 = xaaabhbhbhaabhabhbh, which can also be written
as CAF8 = xa3 bha0

︸︷︷︸

bha0
︸︷︷︸

bha2
︸︷︷︸

bha1
︸︷︷︸

bha0
︸︷︷︸

bha0
︸︷︷︸

. Notice that it is on the form given

by L in Eq. (1), where p = 3, 0 ≤ q ≤ 2, and r = 6.
Figure 3 exemplifies our method. In Fig. 3(a) the contour is immersed in

the grid G
′ scaled by α = 4. The red cells represent the breakpoints. On the

other hand, in Fig. 3(b), an approximating polygon was obtained in the first
iteration, obtained by applying the CFG. The circumscribed regions are not
under a tolerable error. Once our procedure has been carried out iteratively, a
final set of DPs is obtained, as shown in Fig. 3(c).

Fig. 3. Example of the method: (a) the grid G
′, (b) first iteration, (c) final DPs.

Theorem 1. L is a subset of a language generated by a context-free grammar,
CFG.

Proof. Let a 4-tuple G = (V,ΣAF8, S, P ), where the variables V and terminal
symbols ΣAF8 are disjoint sets, S ∈ V and P is the set of productions given by
the formulas below.

S → xAB|xAC

B → bhAB| ε

C → hbAC | ε
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A → aA | ε

where ε is the empty string. As can be noticed this 4-tuple defines a CFG and
produces each of the strings given by L in Eq. (1).

3 Trade Off Between Common Error Criteria

A considerable number of papers have been written to find the best polygonal
approximation, proposing a series of error criteria to evaluate the different meth-
ods. Some parameters commonly used for assessing the methods are given by
the compression ratio (CR, Eq. (3)) and the integral square error (ISE, Eq. (4)).

CR =
n

N
. (3)

ISE =
n

∑

i=1

d2i . (4)

where n is the number of pixels of the contour shape and N the number of DPs.
As noted by Masood and Haq in [10], the quality of the polygonal approxi-

mation should be measured in terms of the data reduction and in the similarity
with the original contour, as well. Of course, another primary criterion is the
number of DPs. However, sometimes this number is sacrified to obtain minor
error distance. In this work we also propose to consider the number of pixels
that are lost (LP) when a decoding is carried out to recover the shape. The
reasons are given below. Once the DPs are found, if a decoding is performed,
the lost pixels can be counted. The approximated polygon is obtained by con-
sidering the pixels that contain part of the continuous straight segments given
by pairs of DPs. Starting with the first DP, the next pixel to decode is chosen
when it contains the longest segment length. If the neighbor cell with the largest
segment matches the 1-pixel of the original contour, then the pixel is not lost,
otherwise it is a lost pixel.

Figure 4 shows an example of lost pixels when decoding a segment between
two DPs, which make a side of a polygonal approximation. Traversing the cells
from top to bottom and from left to right, note that the 1-pixels labeled from
1 to 4 contain less length, of the continuous segment, than one of the neighbors
(0-pixels) of the previous visited pixel, therefore they are pixels that are lost in
decoding, that are mark in yellow. The gray pixels in the right of Fig. 4 are the
final decoded approximating polygon. Note, also, that there is an error between
the recovered pixels and the continuous segment, given by the coordinates in
black dots.

Consider the case in which N DPs are found. Suppose the shape is recov-
ered, and the exact original contour is obtained. In this case there is no loss of
information and the method can be considered lossless. Something important to
note (as depicted to the right of Fig. 4) is that this can happen even if ISE �= 0!
If, on the other hand, those N DPs are found in such places where the recovered
contour loses pixels, then the method is lossy.
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Fig. 4. Lost pixels in a decoding process. Red continous segment is a side of the approx-
imating polygon. Left: some 1-pixels of the original contour in gray cells; right: lost
pixels in yellow cells. (Color figure online)

Suppose two solution models (losy and lossles models) that give the same
number of DPs, however distributed in different places. Of course, the value of
CR is the same!

Once we have analyzed these ambiguities, we propose to consider the impor-
tance of N and ISE as a summation in a lost ratio (LR), but weighted by lost
pixels (LP), fairly in a single equation, given by Eq. (5).

LR =
LP ∗ (N + ISE)

n
, (5)

where LP is the number of pixels lost in the decoding and n the number of pixels
of the original contour. Thus, we propose to consider the number of lost pixels
as part of the effectiveness of the method: the fewer pixels lose the method, the
better. The same is valid for ISE and N , as expressed in Eq. (5).

4 Experiments

We applied our method to a set of samples that commonly appear in the liter-
ature. To select the values of the parameters p and q of our proposed L, each
string of the AF8 chain code is read, and the maximum number of concatenated
a’s is obtained, while r is the result of finding repetitions of the form bhaq or
hbaq.

4.1 First Set

In this first part, the parameter α = 1, i.e. no scale is performed due to the very
low resolution of sample test. The chain codes of each sample are as presented
in Table 1.

Our proposed method was compared and implemented, taking our tolerable
errors from those found by Naser et al. [11], Masood [8] and Madrid-Cuevas et al.
[7] methods, using parameters (p, q, r) = (4, 4, 2) for Chromosoma and Leaf and
(6,6,1) for Semicircle polygonal approximations, respectively.
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Table 1. Chain codes of the sample shapes.

Shape Chain code

Chromosome cacabhbahgahbhbbbbaabhaaaaaaaabbcahbhafabhbbbchabhaaaahbahbh

Semicircle baaaaaaabhabaaaaabahbaaaaaaabgbhbabhchbabhbfaaabhbabhbaaab
hbbabhbaaafbhbabhchbabhbgbaaaaaaabhabaaaaabah

Leaf daabhabafaahbadhabhbafahabcabhbhbaaaahaahbaaaaaaaaccaaaaaaaa
aahbagabhbaaaaabhdbhaaafabhbhdbhaaafabhbaaehaafaabhdbaafaaaa

(a) Proposed (b) Nasser et al. (c) Masood (d) Madrid-Cuevas et al.

Chromosome

(a) Proposed (b) Nasser et al. (c) Masood (d) Madrid-Cuevas et al.

Leaf

(a) Proposed (b) Nasser et al. (c) Masood (d) Madrid-C. et al.

Semicircle

Fig. 5. Dominant points of three shapes.
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In our experiments, we found an interesting result: the number of pixels that
are lost when decoding the shape is lower with our method than with those of
the literature. Table 2 shows the results of applying our method comparing with
the above mentioned other recent polygonal approximation methods, whereas in
Fig. 5 a visual comparison of the different methods is presented.

Table 2. Quantitative comparisons with other polygonal approximation methods.

Shape Method N CR ISE LP LR

Chromosome Proposed 22 2.73 3.78 8 3.44

n = 60 Nasser et al. (2018) 14 4.28 4.97 10 3.16

Masood (2008) 12 5 7.76 15 4.94

Madrid-Cuevas (2016) 12 0.2 5.82 13 3.86

Leaf Proposed 31 3.87 8.42 11 3.61

n = 120 Nasser 24 4.95 9.96 15 4.25

Masood 23 5.22 10.61 18 5.04

Madrid-Cuevas 22 5.45 11.16 18 4.97

Semicircle Proposed 25 4.08 6.32 6 1.84

n = 102 Nasser 23 4.43 7.63 11 3.30

Masood 22 4.64 8.61 17 5.10

Madrid-Cuevas 10 10.2 40.79 47 23.40

4.2 Second Set

In this subsection, we show the application of our method, for objects with
greater length in contour shapes. We compare our proposed method with Algo-
rithm 1, APS (applying automatic simplification process) and FDP (fixing the
desired number of dominant points) reported recently by Nasser et al. [11].

Using Eq. (1), parameters were found. For Shark: (p, q, r) = (20, 20, 7) for
Cup: (p, q, r) = (19, 19, 1) and for Stingray: (p, q, r) = (4, 4, 1). Table 3 shows
the results in error criteria defined. Cup and Stingray are highly noisy shapes,
and a multiresolution process was applied, by using the method iteratively from
α = 4, to α = 1.

Figure 6(a) shows the regions where multiresolution was used, while Fig. 6(b)
shows a comparison of our method with those of Nasser et al.



Polygonal Approximation Using a Multiresolution Method 269

Table 3. Quantitative comparisons of second set with other polygonal approximation
methods.

Shape Method N ISE CR LP LR

Shark Proposed 37 45.46 7.92 73 20.54

n = 293 Algo 1 23 79.41 12.73 137 47.89

α = 1 APS 21 75.52 13.95 133 43.81

FDP 19 105.09 15.42 135 57.18

Cup Proposed 20 93.22 20.25 105 29.35

n = 405 Algo 1 21 160.70 19.29 167 74.92

α = 4, 2 APS 11 238.45 36.82 220 135.50

FDP 17 159.56 23.82 180 78.47

Stingray Proposed 37 84.36 8.86 122 45.14

n = 328 Algo 1 25 118.66 13.12 180 78.84

α = 4, 2, 1 APS 23 121.38 14.26 160 70.43

FDP 20 165.75 16.40 180 101.94

Fig. 6. (a) Mutirresolution method applied to Cup and Stringray shapes; (b) polygo-
nal approximation in red is from our proposed method, whereas in green is given by
Algorithm 1 from Nasser et al.. (Color figure online)
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5 Conclusions and Further Work

Without any explicit analysis of curvature changes, we have proposed a new
method for detecting dominant points and consequently a polygonal approxi-
mation, with an error that improves current models. Although the chain codes
already implicitly contain the information of the angles and curvature changes,
our method is based on the syntactic search of strings well established by a
context-free grammar. In addition, a new evaluation criterion was proposed for
the polygonal approach, based on lost pixels in decoding.

As a future work, it is suggested to apply our method to higher resolution
shapes, and with greater amount of noise. On the other hand, we decided to find
the closest pixel to the center of a G

′ cell, however it may not be the optimal.
A study through metaheuristic techniques may be appropriate.
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