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Abstract. Steady State Visually Evoked Potential (SSVEP) is a successful
strategy in electroencephalographic (EEG) processing applied to spellers,
games, rehabilitation, prosthesis, etc. There are many algorithms proposed in
literature to detect the SSVEP frequency, however, most of them must to be
implemented in high processing computers because SSVEP methods require
many EEG input channels and the algorithms are computationally complex.
Then, this paper proposes a low computational cost method for SSVEP
embedded processing (EP-SSVEP) whose input is one EEG channel and is
based on Canonical Correlation and a Feedforward Neural Network. Addi-
tionally, this paper also proposes an embedded system to implement EP-SSVEP
and a dataset composed with the EEG signals from eight subjects. According to
the results, EP-SSVEP is one of the best methods in literature to SSVEP
embedded processing because it reports an accuracy of 96.09% with the pro-
posed dataset and the EEG input is acquired with one channel.

Keywords: SSVEP � Brain Computer Interface � Canonical Correlation �
Feedforward Neural Network

1 Introduction

Steady state visually evoked potential is a strategy that increase the energy in brain
activity after the presentation of a visual stimulus modulated at a fixed frequency that
can be measure in EEG signal as a magnitude rise at the stimulation frequency. The
stimulus is presented as message that a subject must select from a group of stimuli with
other messages. This stimuli selection has made SSVEP a successful processing
strategy in spellers [1–3], games [4], rehabilitation with robot [5], prosthesis control [6]
or any application for communication and control purposes.

The research to develop new processing methods for SSVEP has been generated a
wide variety of algorithms reported in literature for feature extraction and classification.
The most common models for feature extraction are Discrete Fourier Transform
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(DFT) [7, 8], Canonic Correlation Analysis (CCA) [9–13], Spectral Power Density
(SPD) [14], Discrete Wavelet transform (DWT) [15] and Principal Component Anal-
ysis (PCA) [16, 17]. For classification, the most used methods are based on Artificial
Neural Networks (ANN) [18–20] and Support Vector Machine [4, 15, 21].

However, most of the SSVEP methods reported in literature needs many EEG input
channels and are computationally complex. Consequently, the Brain Computer Inter-
faces (BCI) that acquire and process SSVEP signal, require computer systems with
high processing capabilities and these BCI may cause discomfort to the users due to
electrodes positioned in the scalp. Hence, in order to develop a ubiquitous BCI
embedded systems, this paper proposes a low computational cost method for SSVEP
processing (EP-SSVEP) that use a single EEG channel and is based on Canonical
Correlation Analysis and a Feedforward Neural Network (FFNN). To the experiments,
we also propose a ubiquitous and comfortable-to-use BCI embedded system with one
EEG channel, a portable acquisition device and a small size embedded processor.

The rest of the paper is organized as follows: Sect. 2 presents the BCI embedded
system and the dataset acquired for experiments. Section 3 reports the graphical
interface that generates the stimuli to evoke the SSVEP. Section 4 describes the pro-
posed method EP-SSVEP. Section 5 presents the results and finally, Sect. 6 reports the
conclusions.

2 BCI Embedded System and Dataset

The design of BCI embedded system for experiments was based on three aspects:
acquisition device, number of electrodes and method for SSVEP processing.

The acquisition device for the system is the Cyton board of OpenBCI® and it was
selected because of its low cost, portability and its SDK is compatible with commercial
embedded boards.

The criterion for the number of electrodes is based on the fact that as the number of
channels to acquire EEG signal decreases, the comfort of the system increases, and the
complexity of the algorithms falls significantly. Then, we develop an experiment to
find the best EEG channels to acquire the SSVEP frequency. In this experiment, we
read the EEG signals from eight subjects using electrodes connected to the EEG
channels O1, O2, Oz, the ground A1 and the reference Fpz, which are standard
positions of 10–20 international system. These channels were selected because
according to Lee et al. [22], the occipital lobule is the best part of the brain to detect the
SSVEP frequencies when a subject stares a stimulus. Results of our experiments show
that the EEG channel Oz generates an SSVEP with the necessary properties to design a
system that detects the stimulus that the subject stares.

Thus, the proposed method was designed considering a single EEG channel as
input and the method must allow online applications in commercial embedded boards.

These aspects were considered in the design of the BCI embedded system whose
components are showed in Fig. 1. The system is composed of a visual interface to
evoke the SSVEP, gold cup electrodes placed on the channel Oz, A1 and Fpz, the
Cyton acquisition device and the embedded bard. The electrodes were connected to the
Cyton board to transform the EEG signals to digital data at a sample frequency (Fs) of
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250 Hz. Also, Cyton board sends the EEG data by Bluetooth to an embedded board.
The board is a Raspberry Pi that analyzes the EEG data with EP-SSVEP to find the
stimulus that subject stares. Finally, the board sends by WiFi the message of the
selected stimulus to an Internet of Things network (IoT) for any control or commu-
nication purposes.

For the experiments, a dataset was designed considering the regular organization of
SSVEP datasets reported in literature [23–25]. Our dataset consists of eight healthy
subjects that were selected from a group of male and female persons with an age from
21 to 25 years. All of them have normal or corrected-to-normal vision. None of them
were taking medication. The total of EEG dataset signals is 384 (48 signals per
subject).

3 Graphical Interface for Visual Stimuli Presentation

The common technology for the stimuli presentation to evoke the SSVEP is a digital
monitor because the stimulation methodology can be designed with software, while
other technologies would require hardware design.

To design the stimuli, there are two aspects to consider: figure and stimulation
frequency.

The common figures are graphics (box, arrow, star, circle) and checkerboard
inversion patterns [26]. However, according to the literature, a checkerboard inversion
generates better amplitude response in SSVEP than figures because inversion causes
the optical illusion that the checkerboard moves [23].

The stimulation frequency is calculated with the monitor refresh rate [3] and com-
mercial monitors have 60 Hz of refresh rate, so the stimulus frequency fe is given as:

fe ¼ 60=Z ð1Þ

Fig. 1. BCI embedded system scheme.
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where Z is an entire number. Another aspect to be considered in frequency stimulation
is that fe greater than 10 Hz can generate secondary effects in photosensitive subjects
[26]. Hence, fe selection includes frequencies less than 10 Hz in Eq. (1).

Then, the interface for visual stimuli presentation is a graphical user interface with
four black/white checkerboard patterns distributed as Fig. 2 shows. The fe of checker-
board are 6, 6.6, 7.5 and 8.5 Hz and they are distributed as Table 1 shows. The red points
in the checkboard are used by the subject to stare the center of the selected checkerboard.

4 EP-SSVEP Method

This section presents the proposed method EP-SSVEP whose input is an EEG data
recorded during 12 s from Oz EEG channel at 250 Hz. This signal is given by s(n),
n = 0,…,2999, where n is the time index.

EP-SSVEP was developed with a machine learning approach because the SSVEP
signals have noise and the amplitude frequencies may change in each session and
subject. The modules of EP-SSVEP are preprocessing, feature extraction with DFT and
CCA and classification with a FFNN as Fig. 3 shows. The output is the SSVEP
frequency related with the fe that a subject stares.

4.1 Preprocessing Module

The preprocessing module removes the unnecessary frequencies from the EEG signal
using a fifth order bandpass Butterworth filter with cut frequencies of 5.5 Hz and 9 Hz.
The filter is expressed as H(x): s ! sf2, where H(x) is the filter transfer function and
sf2 is the output of the filter.

Fig. 2. Graphical interface for visual stimuli presentation. (Color figure online)

Table 1. Frequencies distribution for checkerboards

Checkerboard Right Left Down Up

Frequency (Hz) 6 6.6 7.5 8.5

Fig. 3. EP-SSVEP modules.
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4.2 Feature Extraction

This module generates a feature vector to develop an efficient SSVEP detection by
reducing the dimension of the frequency components of EEG signal. The first step of
this module is the Discrete Fourier Transform given by:

S kð Þ ¼ PN�1

n¼0
sf 2 nð Þe�i2pkn=N k ¼ 0; . . .;N � 1 ð2Þ

where S(k) contains the frequency components of sf2(n), N = 1500. DFT is computed
with the radix 2 fast Fourier transform algorithm. There are other methods to find the
frequency components like SPD and DWT, but the DFT was selected because it finds a
correct definition of SSVEP frequencies, the input is defined in one dimension and
DFT reports the least processing time in feature extraction. The next step is a nor-
malization defined by:

x kð Þ ¼ S kð Þ � lsð Þ=rs ð3Þ

where µs is the mean of S(k) and rs the standard deviation. This normalization reduces
the uncertainty generated by the amplitude levels of SSVEP signals. The final step is
the Canonical Correlation Analysis, which was used because is one of the most popular
methods to reduce the data dimension in SSVEP. CCA finds four Pearson correlation
coefficients that represent similarity between x(k) and four SSVEP signals kj(k), j = 1,
…4 at frequencies of 6, 6.5, 7.5 and 8.5 Hz. Signals of kj(k) are showed in Fig. 4, and
they are the average of signals per subject obtained from training signals of dataset.
Table 2 shows the distribution of SSVEP frequencies in each kj(k) signal. The CCA is
defined as follows:

qj ¼ rxkj
�
rxrkj ð4Þ

where rxkj is the covariance between x(k) and each kj(k) signal, rx is the standard
deviation of x(k) and rkj is the standard deviation of kj(k). Thus, the result is a cor-
relation vector qj = {q1, q2, q3, q4}, where each coefficient is the Pearson correlation
between x(k) and each kj(k) signal. According to the definition of (4), if SSVEP is not
presented in x(k), then, the values of qj are close to zero, but if SSVEP is presented, the
values of qj have results in the interval from 0 to 1, and they vary according to the
SSVEP frequency in x(k) and its quality. The frequency of SSVEP generates a value
close to one in the component of qj related to the kj(k) signal with the most similar
frequency to the SSVEP frequency of x(k). However, the quality of the signal causes
uncertainty in the results of qj and that quality depends of the conditions of the subject
during the BCI sessions. Therefore, the best option in classification module is a
supervised algorithm.
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4.3 Classification

According to experiments and the literature, classifiers with the best results in SSVEP
analysis are artificial neural networks. Then, the classification module in this method is
a Feedforward Neural Network (FFNN) trained with scaled conjugate gradient back-
propagation algorithm. Figure 5 shows the architecture of the network, which includes
three layers: input, hidden and output.

The input is the vector qj. The second layer has five neurons defined as follows:

om ¼ f1
P

wjmqj þ b1m
� �

m ¼ 1; . . .; 5 ð5Þ

where m is the neuron index in the hidden layer, wjm are the weights of the neurons, b1m
is the neuron bias and f1(u) is the softsign activation function f1 (u) = u/(1 + |u|),

Fig. 4. Frequency signals kj(k).

Table 2. SSVEP frequency distribution in kj(k).

Signal k1(k) k2(k) k3(k) k4(k)

SSVEP frequency (Hz) 6 6.6 7.5 8.5

Fig. 5. FFNN architecture.
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where u is the input of the function. The number of neurons and f1(u) were defined by
experimentation. The output layer has four neurons fully connected to om. This layer
finds the stimulus frequency selected by the subject and the neurons are given by:

yr ¼ f2
X

wmrOm þ b2r
� �

r ¼ 1; . . .; 4 ð6Þ

where r is the neuron index in the output layer, wmr are the weights of the neurons, b2r
is the neuron bias and f2(.) is a softmax activation function that generates the best
results in the experiments. The output layer has four neurons because each neuron
represents each frequency fe.

4.4 Frequency Stimulation

After propagation of qj in the network, EP-SSVEP determines the selected fe with:

e ¼ argmax
r

yr ð7Þ

where e is the index value of r, which is the stimulus that the subject stares during the
SSVEP session.

5 Results

This section presents the performance of EP-SSVEP and a comparison of this method
with others reported in the state of the art.

EP-SSVEP and its training were implemented in a Raspberry Pi 3B model using
Python 3.4 and the machine learning library TensorFlow™. The processing velocity
average of EP-SSVEP is one frame per second. The Raspberry stores in the EEPROM
the coefficients of H(x), the trained weights per subject of the FFNN, the signals kj(k)
and rkj. The total data stored in EEPROM is 171 Mb, which corresponds to 1.06% of
total capability. During the processing of SSVEP, RAM memory stores s(n), sf2(n), x
(k), sf2(n) signals, rx, qj and the propagation of the network. The total data stored in
RAM is 41 Mb, which corresponds to 4.7% of total capability.

Dataset described on Sect. 2 was divided in a training set that has 28 signals from 8
subjects, and a test set that has 20 signals from 8 subjects. The signals for training and
test was randomly separated by cross-validation with five k-fold iterations. Figure 6
shows the confusion matrix of both sets and the reported performance in these matrices
are 98.23% for training set and 96.09% for test set. Additionally, stimulus of 7.5 and
8.5 Hz (up and down) reports the best performance than stimulus 6 and 6.6 Hz (right
and left) due vertical checkerboards were placed closer of central area of subject vision
than horizontal stimulus.
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5.1 Comparison with Other SSVEP BCI Systems

To evaluate the performance of EP-SSVEP BCI system, this section presents a com-
parison with other popular SSVEP BCI focused to embedded applications reported in
literature. We do not found a database or methodology for comparisons of BCI
embedded systems, thus we design a criterion considering the mainly aspects of BCI
operation, which are:

Number of Subjects in the dataset (NS). EEG signals are noisy and they have a
response that can be different in each subject. Then, in order to find a better statistical
description of the method, it is important to increase as much as possible the number of
subjects used for dataset and experiments.

Number of EEG channels (NE). The number of EEG channels is related to the
computational cost of the processing methods, i.e., as the number of electrodes reduces,
the complexity of the proposed method decreases. Additionally, a large number of
electrodes can cause discomfort in the subjects, which affects the performance of the
SSVEP sessions. Then, is important to reduce as much as possible the number of EEG
channels without compromising the signal quality.

Accuracy (Acc). There are many metrics to compare SSVEP processing methods like
Information Transfer Rate (ITR) [24], Accuracy (Acc) [2], etc. Among them, Acc is the
most used and it refers to the number of SSVEP samples correctly detected divided by
the total number of samples.

Table 3 shows the comparison of EP-SSVEP with two state of the art methods for
specific purposes [22, 27] and other popular methods implemented in embedded sys-
tems [4, 28]. According to the results showed in Table 3, EP-SSVEP has better Acc
than the other methods in spite of EP-SSVEP uses a single EEG channel and that
method was tested with eight subjects. This Acc is because of the next reasons:

• Subjects reports better concentration during the SSVEP sessions in our BCI system
than other systems because our system is comfortable for subjects due to two
reasons: the use of just one EEG channel and the card processor allows an ubiq-
uitous embedded system.

• The gold cup electrodes acquire the EEG signal with less noise than other com-
mercial BCI.

• EP-SSVEP needs data from one EEG channel and uses a classifier that is trained
considering the natural uncertainty in SSVEP signals.

Fig. 6. Matrix confusion generated with 5 k-fold cross validation for (a) training set. (b) Test
set.
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6 Conclusions

This paper proposes EP-SSVEP, a novel method designed for ubiquitous BCI
embedded systems that process SSVEP signals from a single EEG channel. The pro-
posed method is implemented in an embedded board that sends the information of
stimulus that the subject stares to an IoT network. A dataset was designed for exper-
imentations and it consists of the EEG signals obtained from eight subjects. EP-SSVEP
is composed of three modules: preprocessing to eliminate noise of EEG signal, feature
extraction that uses DFT and CCA and a classification with a FFNN. EP-SSVEP
reports the best performance in vertical stimulus than horizontal because of the colo-
cation of the checkerboards respect to the user vision. In the comparisons, EP-SSVEP
is a method that generates a BCI embedded system that uses the least number of EEG
channels and reports the best Acc. Then, based on these results, we conclude that EP-
SSVEP is one of the best methods proposed in the literature. Additionally, EP-SSVEP
allows the design of ubiquitous BCI embedded systems because this method can be
processed in one second in embedded processors, includes the best accuracy in com-
parisons of Table 3 and uses as input one EEG data channel.

Acknowledgements. This research was funded by TecNM under grant 6418.18-P. The authors
thank the volunteer that participate in the dataset elaboration.
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