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Abstract. The auditory dysfunction is one of the most frequent disabilities, this
condition can be diagnosed with an electroencephalogram modality called
auditory evoked potentials (AEP). In this paper, we present a machine learning
implementation to automatically detect and classify hearing loss conditions
based on features extracted from synthetically generated brainstem auditory
evoked potentials, a necessity given the scarcity of full-fledged datasets. The
approach is based on a multi-player perceptron, which has demonstrated to be a
useful and powerful tool in this domain. Preliminary results show very
encouraging results, with accuracy results above 90% for a variety of hearing
loss conditions; this system is to be deployed as hardware implementation for
creating an affordable and portable medical device, as reported in previous work.

Keywords: Hearing loss � Diagnostic � BAEP � Latency � Neural Networks

1 Introduction

The auditory dysfunction is one of the most frequent disabilities and it’s usually caused
either by genetic characteristics or prenatal factors or by infections that cause damage
to the auditory pathways. According to data in the national survey of the demographic
dynamics of 2014 (INEGI), 6% of the population (7.2 million) have a disability, of
which 33.5% has auditory issues. Therefore, detecting this condition in the early stages,
can mitigate the consequences. Several of these problems can be diagnosed using an
electroencephalogram modality called auditory evoked potentials (AEP), a study which
is usually performed on non-cooperative and/or on pediatric patients. The use of
Artificial Neural Networks (ANNs) has shown to be effective in the field of medicine
where they have been used to detect various diseases [1, 2]. Given that such systems
can help in the diagnosis of diseases such as hearing loss, a great deal of research has
been carried in this domain, which have aimed at investigating the use of ANNs to
detect hearing loss in neonatal patients [6]. The ANN extracts features in the frequency
domain to determine whether or not a hearing condition is present.

Such tools are increasingly necessary for estimating auditory levels in order to
assess the degree of hearing loss in pediatric and handicapped patients.
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Current technologies could exploit reliable measurement techniques such as EEG,
developing an intelligent model for estimation auditory levels. In this paper, we
undertake such an approach for proposing a system for automatically detecting a
classifying various hearing loss conditions. Several related works have been proposed
the automatic or semi-automatic evaluation of hearing loss conditions [13]. Some of
these include the Raleigh test, the Watson’s U2 test, the Kuiper’s test, the Hodges–
Ajne’s test, the Cochran’s Q-test, and the Friedman test. For a more detailed study, the
reader is directed an excellent survey in the topic [14].

The present work is not based on the frequency domain, but we use a multilayer
perceptron (MLP) trained with time-domain measurements of BAEP signals, since it
makes our architecture simpler to implement. For instance, we take into account the
absolute values of BAEP features such as the amplitudes and latencies. These are the
features used by doctors to assess the severity of various hearing loss conditions and
makes the results more intuitive. This article presents a diagnostic model based on a
multilayer perceptron (MLP), with synthetic data simulating patients of 6, 12 and 24
months of age, as it will be described later in the article.

This paper is organized as follows: in Sect. 2, we describe the use and character-
istics of the BAEP signals. In Sect. 3 we explain the proposed system based on the
MLP architecture. In Sect. 4, we delve into the obtained results and in Sect. 5 we
conclude the article, pointing at future extensions and other possible directions.

2 Neurophysiological Signal Present in BAEP

The electroencephalography is a non-invasive technique widely used in the diagnosis
of many neurological diseases and problems associated with brain dynamics [16].
These signals are indicators of the cerebral electrical activity that can help to interpret
several brain conditions. Therefore, understanding the characteristics of the BAEP
signals, used as the foundation of this work, is vital. The next section will be devoted to
this purpose and to provide more context to their use in hearing loss conditions.

2.1 Auditory Evoked Potential

When an auditory stimulus is provided to the human brain, there is a potential peak
referred to as auditory evoked potential (AEP) in the auditory cortex, from which on
can assess the auditory capacity of a patient, through the analysis of these evoked
responses. Thus, AEP is a modality of electroencephalography that represents varia-
tions of voltage in a sensitive nerve pathway after or during extrinsic acoustic stimu-
lation, which captures and the neuroelectric activity generated as responses to a
stimulus.

The AEP test consists of the stimulation of the auditory path through a beep signal
that stimulates most of the cochlea, i.e. the areas with frequency higher than 1,500 Hz.
This mechanical stimulus is transformed by the organ of Corti into an electrical
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stimulus that travels the auditory path to reach the cerebral cortex. From the moment
the organ of Corti is stimulated until the arrival of the information to the cortex,
approximately 300 ms pass, and this period known as latency.

The auditory pathway consists of a series of nerve stations as depicted in Fig. 1.
Typically, the applied stimulus in BAEP tests goes through to nervous system, pro-
ducing a signal that can be observed on top of the figure.

The signal is composed of a series of waves, with distinct peaks and valleys. The
waves are of clinical interest and can be classified as follows:

• Wave I: electrical activity of the spiral ganglion.
• Wave II: posterior part of the anteroventral cochlear nucleus and behind zone of the

posteroventral cochlear nucleus.
• Wave III: anterior part of the anteroventral cochlear nucleus ipsilateral and medial

nucleus of the contralateral trapezoid body.
• Wave IV: isolateral and contralateral cells of the olive superior medial.
• Wave V: cells of the lateral lemniscus and/or inferior colliculus.

The latencies of each wave are measured and categorized as I-III, I-V and III-V.
The normal latencies at 80 dB for healthy adult individuals in a normal environment
are [16, 17]: Wave I (1.5 ms), Wave III (3.75 ms) and Wave V (5.5 ms).

The information contained in those 5 waves are of clinical interest. The waves are
presented in time limits clinically known as latencies, as we have described previously
and is depicted on Fig. 1. The wave patterns formed by the acoustic stimulus are shown
in Fig. 1 as well, whereas Tables 1 and 2 summarize the most important aspects of the
latencies and the amplitudes, respectively.

Fig. 1. The wave pattern obtained by AEP and the associated latencies (see Table 1).
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Two typical patterns of the BAEP (Brain-stem auditory evoked potentials) signal
are shown in Fig. 2. The recorded signals were classified as normal (a) and abnormal
(b) by the physician, based on the information contained of peaks and encoded in the
tables.

The statistical differences between the age groups is important, since the amplitude
of the waves change as the patient gets older. Tables 1 and 2 clearly show those

Table 1. Mean latencies of 165 normal patients of different ages [3, 4].

Age in months Time difference in the waves
down shown in milliseconds

Y1: Y2: Y3: Y4:
I V-I I-III III-V

0 Mean 1.58 5.18 2.77 2.43
N 14 14.00 10.00 11.00

6 Mean 1.49 4.87 2.59 2.35
N 17 16.00 13.00 12.00

12 Mean 1.47 4.58 2.41 2.32
N 18 16.00 16.00 11.00

18 Mean 1.41 4.49 2.34 2.15
N 11 11.00 10.00 7.00

Table 2. Amplitude of peaks in AEP of 50 normal patients [3, 4]

Age in months AEP components
I II III IV-V

1 0.54 ± 0.08 0.45 ± 0.09 0.59 ± 0.08 0.48 ± 0.06
10 0.51 ± 0.04 0.75 ± 0.15 0.86 ± 0.10 0.82 ± 0.07
30 0.35 ± 0.03 0.59 ± 0.10 0.72 ± 0.08 0.68 ± 0.07
50 0.17 ± 0.02 0.35 ± 0.07 0.40 ± 0.07 0.50 ± 0.06

Fig. 2. Typical waveform BAEP: (A) normal patient and (B) subnormal patient [15].
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statistical differences. The mean amplitudes and the values of the BAEP components
for the 5 age groups are given for stimulation with hearing levels of 80 and 60 dB in
the tables.

3 Implementation of the Proposed MLP-Based Architecture

In order to implement a classification system for BAEP signals based on an MLP
approach, a data set for training and testing is necessary. Unfortunately, the data
collection involves certain obstacles such as the availability of samples of interest or
legal restrictions in the collection and handling of patient information.

Our solution to this problem has been to generate synthetic data for training and
testing [14], based on characteristics extracted from real samples as shown in Fig. 3.

As it can be seen, the generated signals are very similar to the real signals depicted
in Fig. 2, as the values of these signals are filtered to obtain the maximum amplitude
peaks in the waves I, II, III and V. Once these amplitudes are obtained, the latencies are
extracted, using the temporal differences between the different peaks or waves (IV,
I-III, III-V) which are subsequently used by our machine learning application.

The proposed solution is divided into two stages, the first part deals with the
generation of synthetic data. The generated dataset simulates a BAEP sampled in the
time domain with the objective for training and testing our MLP algorithm. The second
stage deals with feature extraction (Tables 1 and 2), which are used as inputs to the
MLP.

The MLP classifies the extracted data and as output provides a four-bit code
according to a condition as shown in Table 3. The block diagram of the proposed
solution is shown in Fig. 4, where we have a block that includes three main compo-
nents. The first block retrieves the synthetically generated BAEP signal. The second
block performs some preprocessing on the signal (i.e., since the sampled signal has
different values it is necessary to take the values of interest from the BAEP). Once these
values have been extracted, we add them to our training dataset. This dataset is then

Fig. 3. A synthetically generated signal of a 6-month-old patient at 80 dB
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passed to the MLP classifier, which categorizes the hearing condition and codifies its
into 4 output bits, where each encoded binary value represents an ailment, as sum-
marized in Table 3.

The proposed MLP architecture is depicted in Fig. 5. The number of neurons in the
input layer is 5, in order to encode a vector that includes values for age, latencies and

Table 3. Global patterns of brain stem auditory evoked potential abnormalities [4]

Diagnosis Hearing loss condition Binary
coding

Normal values Healthy ear 0000
Prolonged latency in wave I Distal segment of the cranial nerve VIII 0001
Prolonged latency between
peaks I-III

Between cranial nerve VIII and brainstem bridge 0010

Prolonged latency between
peaks III-V

Injury between the caudal portion of the brainstem
and mesencephalon bridge (attack, tumor, multiple
sclerosis, intracranial hemorrhage, malformation,
etc.)

0011

Prolonged latency between
peaks IV-V and III-V

Rostral section of the brainstem or mesencephalon
bridge and vestibulocochlear nerve or brainstem
bridge

0100

Wave III absent with presence
of I and V

Hearing loss at mild and moderate levels 0101

Wave V absent with presence
of I and III

Normal variation 0110

Wave V absent with normal of
I and III

Probably auditory radiations to the primary
auditory cortex

0111

Absence of waves Severe hearing loss 1000
Excess in amplitude radius V/I Possible hearing impairment 1001
Absence of waves except I
(and possibly II)

Brain death 1010

Fig. 4. Block diagram of the proposed solution.
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amplitudes of wavelengths that go from wave I to wave IV-V. The number of neurons
in the intermediate layer was chosen based on an experimental test that consisted on
varying the neurons of this hidden layer with 5 neurons per iteration until reaching 25
neurons within a single hidden layer. The output layer consists of are 4 neurons. The
results of these experimental iterations will be discussed later in the paper.

The pathologies tackled by our approach are summarized in Table 3, which con-
tains a description of each of the most important pathologies associated with the
average variances described in Tables 1 and 2. The last column shows the associated
coding that we have chosen as outputs of MLP algorithm, as will be explained in
Sect. 4.

According to Cybenko’s theorem, the sigmoid function [10–12] is used in the
intermediate hidden layer and relu or linear regression [9] in the output layer used for
convolutional networks [8] and is used in this classifier for the smallest error generated
with the logistic function [7]. In order to validate the designed classifier, cross-
validation is usually employed to assess the performance of machine learning models
[5]. However, in our particular case, as we counted with limited dataset of synthetically
generated feature vectors, we made use of use k-fold cross-validation, as is typical in
such scenarios. Figure 6 shows the accuracy and loss plots in the training set; the
model could probably be trained a little longer, since the trend of precision continues to
increase with more iterations.

Fig. 5. Implemented MLP algorithm and its relationship with the BAEP signals
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The tests on the validation set are depicted in the Fig. 7. We can see that the model
has not yet over-learned the training data set. The comparison between the graphs
shows that increased performance in the validation set, as we avoided overfitting.

4 Results and Discussion

The final MLP implementation through the modification of the number of neurons in
the hidden layer, and then comparing the results, gradually increasing the number of
training epochs. In Table 4, we go into detail of these variations in the hidden layer of
the MLP, showing the associated impact the in the model accuracy.

Fig. 6. Accuracy with training data and model losses with training data.

Fig. 7. Accuracy with validation data and model losses with validation data.

Table 4. Model selection method through the modification of the MLP architecture.

Neurons in the
input layer

Neurons in the
hidden layer

Neurons in the
output layer

Epochs Validation
accuracy

Test
accuracy

5 5 4 60 96.19% 96.38%
5 10 4 60 96.39% 96.91%
5 15 4 60 96.59% 97.19%
5 20 4 60 96.99% 97.79%
5 25 4 60 97.39% 98.19%
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After the performance training and validation tests, synthetic signals are generated
from patients of 6, 12 and 20 months of age, simulating a healthy patient. As mentioned
earlier, the signals are processed in the time domain, although the signs are generated
using a combination of Fourier and Wavelet transforms. The data filtered and used by
our MPL algorithm, called “experimental values” are the following:

The similarity of the filtered data shown in Table 5 with respect to real data [3], can
be readily observed. Therefore, this signal generation process is an important contri-
bution of our work, but it has not been explored in detail in this paper due to space
limitations.

Once the experimental values are entered into our MLP based algorithm, and the
training values are compared with the experimental values.

After the validation of the model, the perceptron makes the prediction with the
experimental values, these values represent a patient without any handicaps or hearing
loss conditions, therefore we show the results in Table 6 as expected from those in
Table 3.

5 Conclusion

Neural network models have been used in a variety of other clinical medicine settings,
but to our knowledge this is the first time it has been used to help diagnose hearing loss.
The preliminary results presented in this seem rather promising, as we have obtained
very good accuracies using only temporal features. It must be noted that we have
undertaken such an approach due to the lack of readily available datasets containing

Table 5. Filtered data of the synthetic wave fed to our MLP algorithm

Age (months) Latency wave I Latency wave I-V Latency wave I-II Latency wave III-V

6 1.51 4.87 2.52 2.35
12 1.4 4.6 2.4 2.2
20 1.4 4.5 2.4 2.1

Table 6. Output matrix, expected response by the network zeroes indicate that there are not
ailments.

Y0 Y1 Y2 Y3
0 0 0 0
0 0 0 0
0 0 0 0
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BAEP signals, although some works like ours are exploring the same feature gener-
ation avenue and such datasets should me made public for improving the research in
this domain.

As future work, we plan to strength the signal generation process, making a more
thorough study as well, to include a validation against noisy measurements. Also, we
would like to carry out a comparative study using other machine learning algorithms as
KNN or SVM and see how they fare in comparison with the proposed approach.

However, as explained at the beginning of this article, the rationale for this initial
research is to use the proposed MLP system as a validation stage, upon which more
complex feature combinations can be explored. Furthermore, we plan to integrate the
MLP into an SoC FPGA for implementing a full-fledged low-cost diagnosis device and
other modules are expected to produce the synthetically generation signals or in the
future, to pre-process actual BAEP signals from real patients using an electronic
acquisition system and the FPGA for filtering the BAEP signals and extracting the
corresponding features. In this sense, the highly parallel architecture and regular
architecture of the MLP or other ANNs is especially suited for implementation in
reconfigurable devices and for its integration into a signal processing pipeline, which is
intended as the next stage of this project.
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