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Abstract. A fully automatic brain tissue segmentation framework is
introduced in current paper, it is based on a parallel architecture of
a specialized convolutional deep neuronal network designed to develop
binary segmentation. The main contributions of this proposal imply its
ability to segment brain RMI images of different acquisition modes, it
does not require the initialization of any parameter; apart from the fore-
going, it does not require any preprocessing stage to improve the quality
of each slice. Experimental tests were developed considering BrainWeb
and BraTS 2017 databases. The robustness and effectiveness of this pro-
posal is verified by quantitative and qualitative results.

Keywords: Brain RMI segmentation · Parallel architecture ·
Convolutional deep neuronal network

1 Introduction

Magnetic resonance imaging is a medical modality used to guide the diagnosis
process and the treatment planning. To do so, it needs to develop the images
or slices segmentation, in order to detect and characterize the lesions, as well as
to visualize and quantify the pathology severity. Based on their experiences and
knowledge, medical specialists make a subjective interpretation of this type of
images; in other words, a manual segmentation is performed. This task is long,
painstaking and subject to human variability.

Brain MRIs in most cases do not have well-defined limits between the ele-
ments that compose them; in addition, they include non-soft tissues, as well as
artifacts that can hinder segmentation. Despite all these inherent conditions,
numerous automatic algorithms or techniques have been developed and intro-
duced in state-of-the-art. Among approaches exclusively designed to segment the
brain tissues stand out those that are based on the paradigm of fuzzy clustering
as well as all its variants [3,4,6,11]. With the same purpose, hybrid methods
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based on combinations of different paradigms of machine learning and opti-
mization algorithms have also been presented, e.g. [7,8,10]. On the other hand,
methods designed to segment brain tumors or other abnormalities have also been
introduced, among which one can refer to [1,2]. For this task it is possible to
affirm that in the state-of-the-art the proposals based on Deep Learning are the
most novel and have the best results. The majority of these proposals yielded
a high performance in the image processing task, specifically when these were
brain magnetic resonance images. Nevertheless, after the pertinent analysis it
was noted that most methods of them suffer from one or more challenges such
as: training need, special handcrafted features (local or global), sensitive to ini-
tializations, many parameters that require a tuning, various processing stages,
designed to segment just T1 -weighted brain MRI images, among others. In this
research paper, we concentrate on brain tissue image segmentation, the intro-
duced proposal has the following special features in contrast with those above-
mentioned: (1) it is able to segment RMIs with different relaxation times such as
T1, T2, T1ce and Flair, (2) it does not require the initialization of any param-
eter, such as the number of regions in which the slice will be segmented, (3) it
does not require any preprocessing stage to improve the segmentation quality
of each slice and (4) it does not need various processing stages to increase its
performance.

The rest of this paper is organized as follow. In Sect. 2, a brief theoretical
explanation about Deep Learning and the layers required is given. The parallel
architecture of Convolutional Neural Networks is introduced in detail in Sect. 3.
Experimental results and a comparative analysis with other current methods in
the literature are presented in Sect. 4. In the final section the Conclusions are
drawn and future work is outlined.

2 Background

2.1 Convolutional Deep Neural Networks

Deep architectures are conventional neural networks, which share the same com-
mon basic property. They process de information by means of hierarchical layers
in order to understand representations and features from data in increasing lev-
els of complexity. Among them, there exists different variants that have found
success in specific domains. In this regard, Convolutional Deep Neural Networks
(CNNs) highlight in most computer vision tasks. A CNN is a feedforward neural
network with several types of special layers; typically, it has convolutional layers
interspersed with spatial pooling layers, as well as fully connected layers such
as a standard multi-layer neural network. Lead role is developed by convolution
layers, since they can detect local features at different positions in the input
feature maps by means of learnable kernels.

An explicit mathematical formulation of layers used in most conventional
models is given in [12]. Let x ∈ R

H×W×D to be the imput map, K a bank of
multi-dimensional filters, f ∈ R

H′×W ′×D×D′′
, b the biases and y ∈ R

H′′×W ′′×D′′

the output, last one is given as:
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yi′′j′′d′′ = bd′′ +
H′∑

i′=1

W ′∑

j′=1

D∑

d′=1

ki′j′d′ × xSh(i′′−1)+i′−P−
h ,Sw(j′′−1)+j′−P−

w ,d′,d′′ , (1)

where yi′′j′′d is the feature map result after the convolution operation, bd′′ is the
bias value added to convolution result between the ki′j′d′ filter and the input
neurons x. By other hand,

(
P−
h , P+

h , P−
w , P+

w

)
stand for top-bottom-left-right

paddings and (Sh, Sw) are subsampling strides of the output array. In order to
obtain features with the attribute of being non-linear transformations of the
input, an elementwise non-linearity is applied to the kernel convolution result
by means of activation functions. There exist modern such as Rectified Linear
Unit (ReLU), Leaky ReLU, Exponential Linear Units (ELU), among others; as
well as classical ones e.g. step, sigmoid and tanh, that let to develop this process.
To obtain a baseline accuracy it is convenient to use the standard ReLU (or its
Leaky ReLU variant), which is defined simply as:

yijd = max {0, xijd} , (2)

Most of the time a convolution layer is followed by a spatial pooling layer. In
detail, a pooling layer takes the feature map that occurred in the convolution
layer and performs a condensate of the feature map, by taking small regions
of this and performing an operation on it, usually proceeding by obtaining the
maximum value (Max-Pooling) of each of these regions. This operator computes
the maximum response of each feature channel in a H ′ ×W ′ patch in next way:

yi′′j′′d′′ = max
1≤i′≤H′,1≤j′≤W ′

xi′′+i′−1,j′′+j′−1,d, (3)

resulting in an output of size y ∈ R
H′′×W ′′×D′′

similar to the convolution oper-
ator. For the segmentation process, the so-called deconvolution layer is used. It
aims at the reconstruction of the entrance maintaining a pattern of connectivity
compatible with the convolution, mathematically it is given as:

yi′′j′′d′′ =
D∑

d′=1

q(H′,Sh)∑

i′=0

q(W ′,Sw)∑

j′=0

f1+Shi′+m(i′′+P−
h ,Sh),1+Swj′+m(j′′+P−

w ,Sw),d′′,d′×

x1−i′+q(i′′+P−
h ,Sh),1−j′+q(j′′+P−

w ,Sw),d′ , (4)

where m(k, S) = (k − 1)modS, q(k, n) =
⌊
k−1
S

⌋
, (Sh, Sw) are the vertical and

horizontal input upsampling factors,
(
P−
h , P+

h , P−
w , P+

w

)
are the output crops, x

and f are zero-padded as needed in the calculation.

2.2 U-Net

U-Net is a fully convolutional neuronal network model originally designed to
develop a binary segmentation [9]; that is, the main object and the background
of the image. This network is divided into two parts, in the first part, the images
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are subjected to a downward sampling, by means of convolution operations with
a kernel of 3× 3 each followed by a rectified linear unit (ReLU) and a maximum
grouping layer of 2 × 2. The next part of the model consists of layers of decon-
volution and convolution with 2× 2 kernel, finally the output will correspond to
a specific class of objects to be segmented, in Fig. 1 the U-Net model is shown
graphically.

Fig. 1. U-Net model.

3 Parallel Architecture of CNNs for RMIs Segmentation

3.1 Proposed Scheme

Conventionally, it may be assumed that next five different regions can be found
in a MRI slice: (1) White Matter (WM), (2) Gray Matter (GM), (3) Cerebral
Spinal Fluid (CSF), (4) Abnormalities (ABN) and (5) Background. Nevertheless,
it should be clarified that depending on the slice, not all regions may be present
or the magnitude of their presence will be variant. Given the complexity that
this consideration brings with it, most methods proposed in the state-of-the-
art work only with the central slices of medical studies, mainly because they
facilitate their segmentation by having a better delimitation in the regions.

To address this issue, a parallel architecture of CNNs is introduced in order
to develop an automatic soft tissues recognition and their segmentation, for
each slice of the whole medical study. The proposal is depicted in Fig. 2; it is
basically comprised by four U-Nets models trained to work on a specific soft
tissue. The operation of proposed scheme is quite intuitive, in the first instance
any slice of a study must be entered into the system, then a binary segmentation
is developed by each U-Net model. That is, all of them have to identify the pixels
that correspond to the tissue for which it was trained, and therefore must be
able to segment it. After that, the binary segmented images are merged in order
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to obtain the final segmentation. Two remarks must be stated: (1) Depending
on the slice number, the different tissues should appear; in this situation, if
the input image does not contain certain specific tissue, the U-Net in charge
of segmenting it will return the corresponding label to the background of the
image as a result. (2) If the study corresponds to a healthy patient, then there
will be no abnormality or tumor, in the same way as in the previous remark,
the result should be the label of the image background. This adaptive capacity
of the proposed scheme allows it to be able to segment all slices of a complete
medical study, automatically and without human assistance.

Fig. 2. Proposed parallel architecture of CNNs.

4 Experimental Setup

4.1 Data

In this research paper, two databases specialized in brain magnetic resonance
imaging were considered. From BrainWeb [13] a normal anatomical model and
one with abnormalities were used for training, while another normal model was
used in the validation stage; each of them has 101 images with a size of 256×256
pixels with 8−bits depth. For a real and objective evaluation of our proposal,
tests were done with BraTS 2017 [5], it consists of 210 medical studies with
existing Glioblastoma and 75 with Glioma and 47 more without classification.
On the other hand, each study has RMIs in modalities T1, T1ce, T2, Flair, as
well as their respective ground truth images. For each modality there are 155
images of 8−bits with a size of 240 × 240 pixels.
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4.2 Tuning

In order to accelerate the training of the four neural networks required to segment
the different tissues, all characteristic maps of low and medium level of the
original trained U-Net were transferred to each network, and only the high level
ones were trained. By other hand, it is a well-known fact that data augmentation
is essential to teach the network the desired invariance and robustness properties,
when only few training samples are available. In our particular case, BrainWeb
was used as a training information source. This repository has only one study
with 101 soft tissue images, for which it was required to increase the process of
information. In Table 1 all operations carried out to increase the information are
summarized. Scale stands out for 3 different image sizes, rotation implies 120
possible images if an angle of 3◦ is taken into account; besides, 4 quadrants where
considered for translating, as well as without translation. In addition to 181, 800
images to train each neural network, their respective ground-truth images were
required. During the training phase, several preliminary tests were developed to
make the meta parameter tuning for each network. In order to obtain the best
results in the test phase it is suggested: (a) color depth of 8−bits, (b) TIFF
image format, (c) Adaptive Moment Estimation (ADAM) optimization method,
(d) 1000 epochs and (e) learning rate of 0.001.

Table 1. Data augmentation summary.

Scale Rotation Translation (quadrants) No. images

100% 0◦, 3◦, · · · , 360◦ Non-translation 101 × 120 = 12, 120

75% 0◦, 3◦, · · · , 360◦ Non-translation 101 × 120 = 12, 120

50% 0◦, 3◦, · · · , 360◦ Non-translation 101 × 120 = 12, 120

100% 0◦, 3◦, · · · , 360◦ I, II, III, IV 101 × 120 × 4 = 48, 480

75% 0◦, 3◦, · · · , 360◦ I, II, III, IV 101 × 120 × 4 = 48, 480

50% 0◦, 3◦, · · · , 360◦ I, II, III, IV 101 × 120 × 4 = 48, 480

Total = 181, 800

4.3 Evaluation

In order to evaluate quantitative and objectively the image segmentation perfor-
mance as well as the robustness three metrics were considered in this study. To
measure the segmentation accuracy, we used the Misclassification Ratio (MCR),
which is given by:

MCR =
misclassified pixels

overall number of pixels
× 100 (5)

where, the values can ranges from 0 to 100, a minimum value means better
segmentation. Dice Similarity Coefficient is used to quantify the overlap between
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segmented results with ground-truth; it is expressed in terms of true positives
(TP ), false positives (FP ), and false negatives (FN) as:

Dice =
2 · TP

2 · TP + FP + FN
(6)

where TP + FP + TN + FN = number of brain tissue pixels in a brain MR
image. In this metric a higher value means better agreement with respect to
ground-truth. In addition to stated metrics, the Intersection-Over-Union (IOU)
metric was also considered. This is defined by:

IOU =
TP

TP + FP + FN
(7)

The IOU metric takes values in [0, 1] with a value of 1 indicating a perfect
segmentation.

5 Results and Discussion

The performance of the proposed scheme (for convenience it will be identi-
fied as PA-CNNs) was compared with other methods mentioned previously
in the introductory section, such as the Chaotic Firefly Integrated Fuzzy C-
Means (C-FAFCM) [4], Discrete Cosine Transform Based Local and Nonlocal
FCM (DCT-LNLFCM) [11], Generalized Rough Intutionistic Fuzzy C-Means
(GRIFCM) [6], Particle Swarm Optimization - Kernelized Fuzzy Entropy Clus-
tering with Spatial Information and Bias Correction (PSO-KFECSB) [10]. All
of them were implemented in the MATLAB R2018a environment, while for ours
we used CUDA+CuDNN+TensorFlow+Keras, that is, conventional frameworks
and libraries for Deep Learning, as well as a GPU Nvidia Titan X.

5.1 Segmentation of a Simulated BrainWeb Study

In this experiment, a fully study was simulated was simulated using the Brain-
Web database (consisting in 181 images). The parameters were established as:
T1 modality, normal phantom, 3% of noise level and a non-uniform intensity
level of 20%. A quantitative comparison in terms of MCR, Dice and IOU is
summarized in Table 2. The results reveal that proposed clustering algorithm
has a superior performance in terms of segmentation quality than all compared
methods. This is mainly due to the fact that the parallel architecture is robust
in the presence of a noise level like the pre-established one. To visually exemplify
the results obtained, the slice 071 was taken as sample. As can be seen in Fig. 3,
in the presence of Gaussian noise, all comparative methods were affected with
loss and gain information phenomenons, which directly impacts their quantita-
tive results. On the other hand, the proposed scheme obtained the result with
greater similarity to the ground-truth, which confirms its balance in the quanti-
tative and qualitative results.
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Table 2. Average performance on BrainWeb study.

Modality Metric C-FAFCM DCT-LNLFCM GRIFCM PSO-KFECSB PA-CNNs

T1 MCR 8.450 10.681 8.923 9.038 7.667

Dice 0.912 0.755 0.858 0.836 0.931

IOU 0.909 0.743 0.884 0.815 0.924

Fig. 3. BrainWeb segmentation results.

5.2 Segmentation of a Real BraTs-2017 Study

A convincing way to know the true performance of the proposed method is to
subject it to the task of tissues segmentation of real brain magnetic resonance
images. In this regard, the second experiment is related with the segmentation
of images with modalities T1, T1ce, T2 and Flair taken from the BraTS-2017

Table 3. Average performance on BraTS-2017 study.

Modality Metric C-FAFCM DCT-LNLFCM GRIFCM PSO-KFECSB PA-CNNs

T1 MCR 8.450 10.681 9.338 9.423 7.705

Dice 0.912 0.755 0.863 0.815 0.931

IOU 0.909 0.743 0.856 0.786 0.924

T1ce MCR 9.141 11.925 10.434 11.026 7.191

Dice 0.884 0.705 0.877 0.729 0.948

IOU 0.905 0.760 0.873 0.848 0.951

T2 MCR 9.743 10.986 9.708 10.003 7.939

Dice 0.873 0.688 0.812 0.760 0.918

IOU 0.872 0.667 0.752 0.717 0.911

Flair MCR 9.743 11.593 9.005 10.986 7.939

Dice 0.873 0.688 0.760 0.722 0.920

IOU 0.872 0.667 0.752 0.717 0.909
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Fig. 4. BraTS17 2013 10 1 segmentation results.
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database; specifically, the Glioblastoma Brats17 2013 10 1 study. The quantita-
tive evaluation was done considering the metrics established above, a summary
of these is presented in Table 3. The numerical results reveal a superior perfor-
mance of the segmentation method proposed in all the metrics considered, as
well as all exposition modalities.

A sample image and the segmentation provided by all algorithms evaluated
in this experiment are depicted in Fig. 4, it is possible to see that just the pro-
posed algorithm was able to segment images with different modalities. On the
other hand, all the other methods presented problems of loss of information in
the segmented regions, and in some cases they were not even able to segment
the images in the 4 established regions. In the BraTS challenge, primary task is
the Multimodal Brain Tumor Segmentation, in this regard a good segmentation
of the images in these modalities can guarantee the identification and segmen-
tation of brain tumors. With the results obtained by the proposed algorithm
and depicted in Figs. 4.26 to 4.30, it is possible to affirm its ability to detect
abnormalities in the brain, unlike the comparative methods.

6 Conclusions and Future Improvements

In this research paper, a parallel architecture of Convolutional Neural Networks
was stated. The experimentation carried out on simulated and real images allow
us to sustain the following qualities: (1) It has the capacity to identify and
segment the regions of an MRI without prior specification of the regions, that
is, it carries out identification and segmentation autonomously, (2) It has the
ability to segment images without prior processing and in different modalities or
exposure times such as T1, T1ce, T2 and Flair, (3) It is robust to most artifacts
in this type of magnetic resonance imaging of the brain, (4) It has the ability
to generalize, that is, although it has been trained with a simulated database, it
is capable of segmenting real images. As future work will be done the training
using the BraTS database, which is expected to increase the performance of the
proposed architecture, as well as to specifically target brain tumors.
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