Chapter 12 Analysis, Occurrence, and Fate of Cyclophosphamide and Ifosfamide in Aqueous Environment

Marjeta Česen, Tina Kosjek, and Ester Heath

Abstract Among numerous active pharmaceutical ingredients registered for chemotherapy, two of the oldest, cyclophosphamide (CP) and ifosfamide (IF), are still widely prescribed. Their administration can result in side effects such as cytotoxicity, genotoxicity, mutagenicity, and teratogenicity, which might affect aqueous biota once introduced into the environment. These compounds, which are excreted from the human body as parent compounds and metabolites, find their way into the environment via the sewerage system from hospitals and from homes, where cancer outpatients live. Concentrations of CP and IF in hospital wastewaters (WW), wastewater treatment plant (WWTP) influents and effluents, and surface waters (SW) range from ng L^{-1} to μ g L^{-1} . To reduce the burden of CP and IF residues in wastewater and consequently surface and drinking water (DW), the development and optimization of biological and abiotic water treatment technologies is essential, especially since both compounds are recalcitrant. Studies report complete removal of CP and IF during certain advanced oxidation processes; however, these treatments are still not available due to the high costs involved. In addition, understanding the degradation pathways of these compounds is important, since their transformation products (TPs) could exhibit higher toxicity toward aquatic ecosystems than the parent compounds. Finally, several studies describing the analysis, occurrence, and formation of CP and IF transformation products during various water treatments are discussed in this chapter.

Keywords Cyclophosphamide · Ifosfamide · Occurrence · Analysis · Removal · Transformation products

259

M. Česen \cdot T. Kosjek \cdot E. Heath (\boxtimes)

Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia

Jožef Stefan International Postgraduate School, Ljubljana, Slovenia e-mail: Ester.Heath@ijs.si

[©] Springer Nature Switzerland AG 2020

E. Heath et al. (eds.), Fate and Effects of Anticancer Drugs in the Environment, https://doi.org/10.1007/978-3-030-21048-9_12

12.1 Methodology for Determining CP and IF in Water Samples

Cyclophosphamide (CP) and ifosfamide (IF) are two cytostatic agents used to treat cancer patients. In particular, CP is used to treat different types of leukemia, malignant lymphoma, some malignant solid tumors with or without metastases, Ewings' sarcoma, for various progressive autoimmune diseases (e.g., rheumatoid arthritis, erythematosus lupus, and myasthenia gravis) and as immunosuppressive therapy after organ transplantations. Ifosfamide is used to treat bronchial carcinoma, ovarian cancer, some testicular cancer tumors, soft tissue sarcomas, breast cancer, pancreatic carcinoma, renal cell cancer, carcinoma of the endometrium, and malignant lymphomas. Once excreted from our bodies, CP and IF residues reach SW and ground waters via treated WW. For quantitative analysis of cytostatic residues in aqueous samples, analytical methods typically employ solid-phase extraction (SPE) as sample preparation step followed by either gas chromatography (GC) or liquid chromatography (LC) coupled to mass spectrometry (MS). In the case of GC-MS, derivatization step is also applied, which was in the case of CP and IF successfully achieved by acylation with trifluoroacetic anhydride (Momerency et al. [1994;](#page-31-0) Steger-Hartmann et al. [1996;](#page-31-1) Česen et al. [2015](#page-28-0)).

Sample preconcentration for trace analysis of CP and IF is typically performed with N-vinylpyrrolidone and divinylbenzene (Oasis HLB™) copolymers (Ferrando-Climent et al. [2013](#page-29-0), [2015](#page-29-1); Gómez-Canela et al. [2012](#page-29-2); Kovalova et al. [2012;](#page-30-0) Köhler et al. [2012;](#page-30-1) Martín et al. [2011](#page-31-2); Moldovan [2006](#page-31-3); Valcárcel et al. [2011\)](#page-32-0) or surfacemodified styrene-divinyl benzene (Strata X™) cartridges (Buerge et al. [2006;](#page-28-1) Busetti et al. [2009;](#page-28-2) Delgado et al. [2010;](#page-28-3) Garcia-Ac et al. [2010](#page-29-3); Llewellyn et al. [2011\)](#page-30-2). Several studies have extracted CP and IF using "on-line" SPE also with N-vinylpyrrolidone and divinylbenzene copolymer sorbent, proving that this technique is highly applicable for routine analysis of water samples (Garcia-Ac et al. [2009;](#page-29-4) Kovalova et al. [2012](#page-30-0); Negreira et al. [2013\)](#page-31-4). In these studies, multianalyte analysis was performed and the optimal conditions were determined for all investigated compounds.

Several studies report the use of GC or LC coupled to MS for determining the occurrence of CP and IF in aqueous environment. Among them, only two studies use GC-MS technique for their quantification (Table [12.1\)](#page-2-0). Despite different instrumentation, the limits of detection (LODs) and quantification (LOQs) are comparable (all in low ng L^{-1} range), suggesting the adequate sensitivity of these methods for trace analysis, with the only exception being a study by Kiffmeyer et al. ([1998\)](#page-30-3), who used an UV detector (Table [12.1\)](#page-2-0). In the case of GC-MS analysis, HP-5MS (5% diphenyl/ 95% dimethylpolysiloxane) and Permabond SE-52-DF (5% phenyl/95% methylpolysiloxan) columns were used for separation (Moldovan [2006;](#page-31-3) Steger-Hartmann et al. [1996](#page-31-1)). In both cases, ionization and mass analysis were based on EI and single quadrupole (Q; Table [12.1](#page-2-0)). Studies based on LC-MS used mainly reversed phase (RP) C18 columns and water in combination with either methanol (MeOH) or acetonitrile (ACN) as mobile phases (MPs). In addition, acidification of

		Quantitative analysis		LOO/LOD	References
Comp.	Matrix	Separation	Detection		
CP, IF	WW	GC: on-column injection (Permabond SE-52- DF); carrier gas: helium	Single Q; electron ionization (EI) at 70eV; detection mode: selected ion monitoring (SIM)	LOD _s : 6 ng L^{-1} (CP) 7 ng L^{-1} (IF)	Steger- Hartmann et al. (1996)
CP, IF	River water, WW	RP HPLC: C18 col- umn; MP: water/ACN with addition of 10 mM ammonium acetate ($pH = 5.7$)	QqQ-MS; $ESI(+);$ detection mode: multiple reaction monitoring (MRM)	LOD _s : $10~\mathrm{ng}~\mathrm{L}^{-1}$ (CP and IF)	Ternes (1998)
CP	SW	RP HPLC: C18 col- umn; MP: phos- phate buffer $(pH = 3)/MeOH$	UV detector (200 nm)	LOD: $200 \mu g L^{-1}$	Kiffmeyer et al. (1998)
CP	WW	RP HPLC: C8 col- umn. MP: 0.1% formic acid $(pH = 2)/ACN$	QqQ MS; $ESI(+);$ detection mode: multiple reaction monitor- ing (MRM)	LOQ: 1.9 ng L^{-1}	Castiglioni et al. (2005)
CP	WW, SW	RP HPLC: C8 col- umn MP: 0.1% formic acid $(pH = 2)/ACN$	QqQ MS; $ESI(+)$ detection mode: MRM	n.a.	Zuccato et al. (2005)
CP, IF	WW, SW	RP HPLC: C18 col- umn. MP: 0.1% formic acid/0.1% formic acid in MeOH	QqQ MS; $ESI(+);$ detection mode: MRM	LOD _s : 0.02 ng L ⁻¹ (SW; CP and IF) 0.3 ng L ⁻¹ (WW; CP and IF)	Buerge et al. (2006)
CP	SW	GC: HP-5MS col- umn; carrier gas: n.a.	Single Q; EI mode at 70 eV; detection mode: SIM	LOQ: 30 ng L^{-1}	Moldovan (2006)
CP, IF	WW	RP UPLC: C18 col- umn; MP: 0.1% formic acid/ACN	QqQ MS; $ESI(+);$ detection mode: MRM	LOD _s : 2 ng L^{-1} (CP and IF)	Yin et al. (2010 _b)
CP, IF	WW	RP HPLC: C18 col- umn; MP: 0.1% formic acid/0.1% formic acid in MeOH	QqQ MS; $ESI(+)$ and APCI; detection mode: selected reaction monitoring (SRM)	LOQ _s : $0.11-$ 0.4 ng L ⁻¹ (CP) 0.16- 0.24 ng L^{-1} (IF)	Llewellyn et al. (2011)
CP, IF	WW	RP UPLC: C18 col- umn; MP: 0.1% formic acid/ACN	QqQ-LIT; $ESI(+);$ detection mode: 2 SRMs for each compound	LOQ _s : 3.6 ng L^{-1} (CP) 5.8 ng L^{-1} (IF)	Ferrando- Climent et al. (2013)

Table 12.1 Studies reporting quantitative analysis of CP and IF in aqueous samples

		Quantitative analysis		LOQ/LOD	References
Comp.	Matrix	Separation	Detection		
CP, IF	WW	RP UPLC: C18 col- umn; MP: 0.1% formic acid/ACN	QqQ-LIT; $ESI(+);$ detection mode: MRM	LOQ _s : 1.3 ng L^{-1} (CP) 1.7 ng L^{-1} (IF)	Ferrando- Climent et al. (2015)
CP	WW	RP HPLC: C18 col- umn; MP: 0.1% formic acid/0.1% (v/v) formic acid in MeOH	Orbitrap $ESI(+);$ detection mode: full scan and HRMS (resolving $power = 50,000$	LOO: 0.35 ng L ⁻¹	Gómez- Canela et al. (2012)
CP, IF	WW	On-line solid-phase extraction (SPE)-RP HPLC: C18 col- umn; MP: MeOH, ACN, 0.1% formic acid	QqQ $ESI(+);$ detection mode: SRM	LOQ _s : 10–84 ng L^{-1} (CP) $2-17$ ng L^{-1} (IF)	Kovalova et al. (2012)
CP, IF	SW, WW	RP HPLC: C18 col- umn; MP: 0.1% formic acid in $ACN/15$ mM ammonium formate containing 0.1% formic acid	QqQ; $ESI(+);$ detection mode: 2 MRMs	LOO _s : 1.7–2.3 ng L^{-1} (CP) $1.1 - 1.7$ ng L ⁻¹ (IF)	Martín et al. (2011)
CP, IF	SW, tap water	RP HPLC: C18 col- umn; MP: ACN/0.1% formic acid	QqQ-LIT; $ESI(+);$ detection mode: two SRMs	LOOs: 4 ng L^{-1} (CP) 1 ng L^{-1} (IF)	Valcárcel et al. (2011)
CP, IF	WW	RP HPLC: C18 col- umn; MP: 0.4% formic acid/1% formic acid in MeOH	QqQ; $ESI(+);$ detection mode: MRM	LOO _s : 310 pg on col- umn (CP) 454 pg on column (IF)	Busetti et al. (2009)
CP	Drinking water	On-line SPE-RP HPLC: C18 col- umn; MP: 0.2% acetic acid/ACN	QqQ; $ESI(+);$ detection mode: SRM	LOO: 3.2 ng L^{-1}	Garcia-Ac et al. (2010)

Table 12.1 (continued)

MP with formic acid was often applied and the ionization was operated in electrospray ionization (ESI) positive mode with triple quadrupole (QqQ) being the most commonly used mass analyzer, followed by either QqQ-LIT (triple quadrupole Linear Ion-Trap) or Orbitrap (Table [12.1\)](#page-2-0).

There are only few published studies concerning the formation of CP and IF TPs (Table [12.2\)](#page-4-0). Separation of TPs was achieved in all cases using an RP C18 column. For ionization, ESI was used, while the applied mass analyzers differed (Table [12.2\)](#page-4-0).

Qualitative analysis		Reference	
Separation	Detection		
RP LC: C18 column MP: water/ACN	Q-TOF; $ESI(+)$	Fernández et al. (2010) and Venta et al. (2005)	
RP LC: C18 column MP: 0.1% formic acid/ACN	IT:	Lutterbeck et al.	
	$ESI(+)$	(2015)	
RP LC: $C18$ column MP: 0.1% formic acid for positive mode and 5 mM ammonium acetate for negative mode (A) ; 0.1% formic acid in MeOH for positive mode and 5 mM ammonium acetate in MeOH for negative mode (B)	QqQ; ESI $(+/-)$	Lai et al. (2015)	
RP LC: C18 column MP: water/ACN	HCT Ultra IT $(+/-)$	Ofiarska et al. (2016)	
RP LC: C18 column MP: 0.1% formic acid/ 0.1% formic acid in ACN	LTQ Orbitrap- XL	Česen et al. (2016)	
RP LC: C18 column MP: 0.1% formic acid/0.1% formic acid in MeOH	QqQ;	Zhang et al. (2017)	
		$ESI (+)$	

Table 12.2 Qualitative analysis for identification of CP and/or IF TPs

The suitability of these analyzers (QTOF, IT, QqQ, and Orbitrap) for the identification of unknown TPs is discussed in a review paper by Kosjek et al. ([2007\)](#page-30-4). Interestingly, only Česen et al. [\(2016](#page-28-5)), Fernández et al. ([2010\)](#page-29-5), and Venta et al. [\(2005](#page-32-3)) used hyphenated techniques enabling both, MSn experiments and HRMS.

12.2 Environmental Occurrence and Transformations

12.2.1 Sources and Physicochemical Parameters of Cyclophosphamide and Ifosfamide

The current trend in chemotherapy is toward outpatient treatment, that is, patients go home once they have received their therapy at the hospital. This reduces the cost of cancer therapy and increases patient comfort. These patients may excrete cytostatic residues including CP and IF in the hospital, since intravenous treatment can last several hours or at home due to their long half-lives in the body (Kosjek and Heath [2011\)](#page-30-5). In addition, there is still a number of hospitalized patients receiving chemotherapy with CP and IF, which makes hospitals an important source of anticancer drug residues that end up in WW (Kümmerer [2001\)](#page-30-6). There have been several attempts to reduce pollution from hospitals by separating urine, but the emergence of outpatient therapies has meant that this strategy has not been implemented to any significant degree (Janssens et al. [2017](#page-29-6)).

Once in the environment, physicochemical properties, namely, solubility, dissociation constant (pK_a), bioconcentration factor (BCF), sorption constant (K_d), octanol– water (K_{ow}) and organic carbon–water (K_{oc}) partition coefficients, and Henry's law constant (HLC), will dictate distribution and fate of a certain compound. The solubility of CP and IF is significantly higher than their environmental concentrations; hence, it does not limit their occurrence in the aquatic compartment (Table [12.3\)](#page-5-0). Based on their pKa values, both compounds act as weak acids and are partially dissociated in neutral environment suggesting low sorption to organic matter. This agrees with their $K_{\rm oc}$ values that also indicate only partial adsorption onto organic matter in the soil and sediment compartments, for example, humus (Table [12.3\)](#page-5-0). Moreover, the log K_{ow} value determines the distribution of a compound between water and organic matter, in particular, lipids and fats. In the case of CP and IF, their log K_{ow} values are <1, indicating their high polarity and, consequently, a tendency to distribute into the water phase (Table [12.3](#page-5-0)). In addition, the bioconcentration factor (BCF) predicts the potential of a compound to accumulate in aquatic organisms. For CP and IF, their BCF values (Table [12.3](#page-5-0)) indicate low potential for bioaccumulation. The data for sorption of CP and IF on solids like sludge, sediment, and soil are very scarce. Mioduszewska et al. [\(2016](#page-31-7)) report the low sorption potential of CP and IF onto soil and rapid leaching from soils once exposed to aqueous environment. However, the authors do not give the K_d values of CP and IF. It is known that CP and IF do not sorb onto activated sludge at wastewater treatment plants (WWTPs), suggesting limited elimination from WW by this mechanism (Kümmerer et al. [1997\)](#page-30-9). Finally, reported HLC values (Table [12.3\)](#page-5-0) suggest CP and IF have low volatility.

			log K_{ow}			HLC $(\text{atm} \times \text{m}^3)$	
Structure	Solubility $(g L^{-1})$	pKa	and K_{oc}	BCF	K_d	$mole^{-1}$)	References
$\rm CP$ HŃ СI СI	40	6.00	0.63 52	3	n.a. ^a	1.4×10^{-11}	Mahoney et al. (2003) and Kosjek and Heath (2011)
IF ŃH СI	38	3.75	0.86 70	3	n.a.	1.36×10^{-11}	Mahoney et al. (2003) andKosjek and Heath (2011)

Table 12.3 Physicochemical characteristics of the investigated compounds

^an.a. not available

12.2.2 Occurrence of Cyclophosphamide and Ifosfamide in Wastewaters and Surface Waters

Physicochemical properties of CP and IF suggest that they will occur mainly in the aqueous environment; however, a number of additional factors are also important for quantifying their presence in the environment. They include their consumption, disposal, pharmacokinetics, and fate during WW treatment. Table [12.4](#page-7-0) gives the detected concentrations of CP and IF in various WWs (hospital WW and WWTP influents and effluents) and SWs as determined concentration ranges or, where these data was not available, as the mean value \pm SD (standard deviation). The first studies, reporting the levels of CP and IF in SW and WW, were published 20 years ago (Ternes [1998](#page-31-5); Steger-Hartmann et al. [1996,](#page-31-1) [1997\)](#page-31-8). The presence of CP and IF in either ground water or tap water remains to be evaluated.

The highest concentrations of CP and IF are in hospital WWs, followed by WWTP influents and effluents (\lt LODs or LOQs to μ g L⁻¹) and the lowest in SWs (Table [12.4](#page-7-0)). The low concentrations in SWs (< LODs or LOQs to $ng L^{-1}$) can be attributed to effluent dilution once it is introduced into the receiving SW. Except for Gómez-Canela et al. ([2012\)](#page-29-2) and Ternes [\(1998](#page-31-5)), who reported levels of $\text{CP} \leq 13,100 \text{ ng } L^{-1}$ and of IF $\leq 2900 \text{ ng } L^{-1}$ in WWTP effluent, respectively, the reported concentrations in influents and effluents ranged from below the LOD to ng L^{-1} (Table [12.4\)](#page-7-0). In addition, several studies report comparable concentrations of CP and IF in pairs of WWTP influents and effluents, suggesting only limited biodegradation of these compounds (Buerge et al. [2006;](#page-28-1) Česen et al. [2015;](#page-28-0) Negreira et al. [2014](#page-31-9); Franquet-Griell et al. [2017b](#page-29-7)). Recently, Franquet-Griell et al. [\(2017b](#page-29-7)) reported the occurrence of CP in WW effluent using novel macroporous ceramic passive samplers. The authors report comparable concentrations of CP in effluent using either passive or grab sampling approach, confirming the former as a useful tool for monitoring time-weighted average concentrations of CP in WWs (Table [12.4\)](#page-7-0).

12.2.3 Environmental Transformations

The rate at which chemical (hydrolysis, oxidation), microbiological, and/or physicochemical (photodegradation) degradation occurs depends on many factors, including ambient temperature, the amount of solar irradiation, pH, the presence of other species, and the nature of the compound of interest. For example, Khetan [\(2007](#page-29-8)) found that seasonal variations in temperature and light intensity affect the fate of pharmaceutical residues in SW.

The environmental fate of CP and IF has been rarely reported. Haddad et al. [\(2015](#page-29-9)) reviewed all the available data on transformation products (TPs) of cytostatics, but no CP and IF TPs, formed under environmental conditions, are

	Type of water	Sampling (flow-proportional, time- proportional or grab and number of samplings)	Concentration $(ng L^{-1})$	References
CP	Hospital WW	24 h time-proportional $n=7$	$19 - 4500$	Steger- Hartmann et al. (1997)
		24 h time-proportional $n=1$	146	Steger- Hartmann et al. (1996)
		Grab $n=12$	$<$ LOD $(2) - 21$	Thomas et al. (2007)
		Grab $n = 65$ (21 hospitals)	$6 - 2000$	Yin et al. (2010a)
		24 h time-proportional $n=1$	5730	Gómez- Canela et al. (2012)
		Grab $n = 1$ (4 hospitals)	$<$ LOQ (3.6) – 200.7	Ferrando- Climent et al. (2013)
		24 h time-proportional $n=7$	$<$ LOQ (3.0) – 100.0	Negreira et al. (2014)
Grab		$n = 1$ (5 hospitals)	$<$ LOD (0.78) – 22,000	Česen et al. (2015)
		Grab $n=7$	76-2680	Česen et al. (2016)
		3 grab samples/day – mixed together	Effluent 1: 114-1187	Olalla et al. (2018)
		$n = 1$ (2 effluents from one hospital, 5 days in a row)	Effluent 2: 46-3000	
CP	WWTP influent	8 h time-proportional	$<$ LOD (6) – 143	Steger- Hartmann et al. (1997)
		$n=2$	$<$ LOD $(6) - 8$	
		Flow-proportional (24 h)	$2 - 11$	Buerge et al. (2006)
		$n = 5$ (3 WWTPs)		
		24 h time-proportional $n=2$	$<$ LOD (2)	Thomas et al. (2007)
		24 h time-proportional $n=1$	$<$ LOQ (7.1)	Martín et al. (2011)
		24 h time-proportional $n = 2$ (3 WWTPs)	\langle LOD (0.35) – 13,100	Gómez- Canela et al. (2012)
		Grab $n = 2$ (3 WWTPs)	$<$ LOQ (3.6)– 25.5	Ferrando- Climent et al. (2013)

Table 12.4 The occurrence of CP and IF in WW and SW

	Type of water	Sampling (flow-proportional, time- proportional or grab and number of samplings)	Concentration $(\text{ng } L^{-1})$	References	
		24 h time-proportional	$<$ LOQ (3.0) –	Negreira et al.	
		$n = 1$ (12 WWTPs)	43.8	(2014)	
		24 h time-proportional	$<$ LOD (0.55) –	Česen et al.	
		$n = 1$ (3 WWTPs)	27	(2015)	
		24 h time-proportional	$<$ LOD (2.3)	Česen et al.	
		$n=1$		(2016)	
		Grab	15 ± 9	Franquet-	
		$n = 4$		Griell et al. (2017b)	
	WWTP	8 h time-proportional	$6 - 17$	Steger-	
	effluent	$n=2$	$8 - 15$	Hartmann et al. (1997)	
		Grab	\langle LOD (10) –	Ternes (1998)	
		$n=1$	20		
		24 h time-proportional	$<$ LOQ (1.9) –	Castiglioni	
		$n = 9$ (different WWTPs)	9	et al. (2005)	
		Flow-proportional (24 h)	$2 - 10$	Buerge et al.	
		$n = 5$ (3 WWTPs)		(2006)	
		24 h time-proportional	Median: 0.6	Zuccato et al.	
		$n = 1$ (8 WWTPs)		(2005)	
		24 h time-proportional	$<$ LOD (2)	Thomas et al.	
		$n=2$		(2007)	
		24 h time-proportional and grab	$<$ LOQ (5)	Busetti et al.	
		$n = 3$ (2 WWTPs)		(2009)	
		24 h time-proportional	$<$ LOQ (7.7)	Martín et al.	
		$n=1$		(2011)	
		Grab	$0.19 - 3.7$	Llewellyn	
		$n = 3$ (2 WWTPs)		et al. (2011)	
		24 h time-proportional	$<$ LOD (0.35)	Gómez- Canela et al.	
		$n = 2$ (3 WWTPs)		(2012)	
		24 h time-proportional	$<$ LOQ (SM) $-$	Negreira et al.	
		$n = 1$ (12 WWTPs)	25.0	(2014)	
		24 h time-proportional	\langle LOD (0.55) –	Česen et al.	
		$n = 1$ (3 WWTPs)	17	(2015)	
		24 h time-proportional	$<$ LOD (2.3)	Česen et al.	
		$n=1$		(2016)	
		Grab	17 ± 4	Franquet-	
		$n = 4$		Griell et al.	
		Passive sampling with macroporous ceramic passive sampler	19 ± 3	(2017b)	
		$n=3$			

Table 12.4 (continued)

	Type of	Sampling (flow-proportional, time- proportional or grab and number of	Concentration $(ng L^{-1})$		
	water	samplings)		References	
	SW	Grab	$<$ LOD (10)	Ternes (1998)	
		$n=1$			
		Grab	$0.05 - 0.17$	Buerge et al. (2006)	
		$n = 5 (3 \text{ SWs})$			
		2.5 h time-proportional	$<$ LOD (not	Zuccato et al.	
		$n = 1$ (2 SWs)	available)	(2005)	
		Grab	$<$ LOQ (30) –	Moldovan	
		$n = 2 (4$ SWs)	65	(2006)	
		Grab	$<$ LOO (5.5)	Martín et al. (2011)	
		$n=1$			
		Grab	$<$ LOD (3)	Valcárcel	
		$n = 5$ (5 rivers)		et al. (2011)	
		Grab	$<$ LOQ (10)	de Jongh et al.	
		$n = 7$ (7 rivers)		(2012)	
IF	Hospital WW	Grab	$<$ LOD (6) – 1914	Kümmerer et al. (1997)	
		24 h time-proportional	24	Steger-	
	$n=1$ Grab			Hartmann et al. (1996)	
			$<$ LOD (2) –	Thomas et al.	
		$n=12$		(2007)	
		Grab	$4 - 10,647$	Yin et al. (2010a)	
		$n = 65$ (21 hospitals)			
		Grab	$<$ LOQ (5.8) –	Ferrando-	
		$n = 1$ (4 hospitals)	227.9	Climent et al. (2013)	
		24 h time-proportional	$<$ LOQ (2.0) –	Negreira et al.	
		$n=7$	19.4	(2014)	
		Grab	$<$ LOD (2.8) –	Česen et al.	
		$n = 1$ (5 hospitals)	6800	(2015)	
		Grab	$26 - 47$	Česen et al.	
		$n=7$		(2016)	
		3 grab samples/day - mixed together	Effluent $1:$ < $LOD(0.2) - 31$	Olalla et al. (2018)	
	$n = 1$ (2 effluents from one hospital, 5 days in a row) WWTP 6 h time-proportional		Effluent 2: 58–4761		
			$7 - 29$	Kümmerer	
influent		$n = 2$	$<$ LOD (6) – 29	et al. (1997)	
	Flow-proportional (24 h)		$<$ LOD (0.3) –	Buerge et al.	
		$n = 5$ (3 WWTPs)	15	(2006)	
		24 h time-proportional	$<$ LOD (2)	Thomas et al. (2007)	
		$n=2$			

Table 12.4 (continued)

Sampling (flow-proportional, time- proportional or grab and number of Type of Concentration $(ng L^{-1})$ samplings) water	References
3.5 ± 0.1 24 h time-proportional	Martín et al.
$n=1$ $(\text{mean} \pm SD)$	(2011)
Grab $<$ LOQ (5.8) –	Ferrando-
130.1 $n = 2$ (3 WWTPs)	Climent et al. (2013)
24 h time-proportional $<$ LOQ (2.0) – 27.9 $n = 1$ (12 WWTPs)	Negreira et al. (2014)
$<$ LOD (0.36) 24 h time-proportional	Česen et al.
$\overline{n=1}$ (3 WWTPs)	(2015)
24 h time-proportional $<$ LOD (4.8)	Česen et al.
$n=1$	(2016)
$<$ IDL ^a Grab	Franquet-
(0.009 ng) $n = 4$	Griell et al. (2017b)
WWTP $10 - 40$ 6 h time-proportional	Kümmerer
effluent $n = 2$ $<$ LOD (6) – 43	et al. (1997)
Grab $<$ LOD (10) –	Ternes (1998)
2900 $n=1$	
$1.7 - 6$ Flow-proportional (24 h)	Buerge et al.
$n = 5$ (3 WWTPs)	(2006)
24 h time-proportional $<$ LOD $(2) - 71$	Thomas et al.
$n=2$	(2007)
24 h time-proportional and grab $<$ LOO (25)	Busetti et al.
$n = 3$ (2 WWTPs)	(2009)
24 h time-proportional 1.2 ± 0.1	Martín et al.
$n=1$ (mean \pm SD)	(2011)
$<$ LOQ (0.24) Grab	Llewellyn
$n = 3$ (2 WWTPs)	et al. (2011)
24 h time-proportional $<$ LOQ (2.0) –	Negreira et al.
15.9 $n = 1$ (12 WWTPs)	(2014)
24 h time-proportional $<$ LOD (0.36)	Česen et al.
$n = 1$ (3 WWTPs)	(2015)
24 h time-proportional $<$ LOD (4.8)	Česen et al.
$n=1$	(2016)
Grab $<$ IDL	Franquet-
$(0.009$ ng) $n = 4$	Griell et al.
Passive sampling with macroporous ceramic $<$ IDL	(2017b)
passive sampler (0.009 ng)	
$n = 3$	
SW Grab $<$ LOD (10)	Ternes (1998)
$n=1$	

Table 12.4 (continued)

Type of water	Sampling (flow-proportional, time- proportional or grab and number of samplings)	Concentration $(ng L^{-1})$	References
	Grab	$0.05 - 0.14$	Buerge et al.
	$n = 5 (3 \text{ SWs})$		(2006)
	Grab	$<$ LOO (4.4)	Martín et al.
	$n=1$		(2011)
	Grab	$<$ LOD $(1) - 41$	Valcárcel
	$n = 5$ (5 rivers)		et al. (2011)
	Grab	$<$ LOQ (10)	de Jongh et al.
	$n = 7$ (7 rivers)		(2012)

Table 12.4 (continued)

^aIDL instrumental detection limit

reported. To the author's knowledge, only two studies address the environmental degradation of CP and/or IF in Switzerland and Taiwan, both in synthetic and natural SWs (Buerge et al. [2006;](#page-28-1) Lin et al. [2013\)](#page-30-11). Lin et al. ([2013\)](#page-30-11) investigated the degradation of CP, while Buerge et al. ([2006\)](#page-28-1) investigated the fate of both compounds. Both studies suggest limited environmental biodegradation and that direct photodegradation plays only a minor (if any) role in the degradation of CP and/or IF in the environment. This agrees with the findings from a recent study by Franquet-Griell et al. $(2017a)$, who also report low degradation $(20%) during artificial solar$ irradiation experiments for both compounds. However, the authors report an increase in photochemical degradation, which correlates to an increase in •OH formation in the presence of $NO₃-N$, a naturally present photosensitizer. They conclude that the highest degradation of CP and/or IF occurs in shallow, clear, $NO₃-N$ -rich natural waters (Buerge et al. [2006](#page-28-1); Lin et al. [2013](#page-30-11)).

12.3 Removal and Transformation During Various Water **Treatments**

Various WW treatment technologies exist, which are designed to remove compounds, particles, dissolved gasses, and pathogens from WW (Jjemba [2008\)](#page-29-11). Certain compounds that are resistant to biodegradation, including CP and IF, can pass through the WWTPs either partially or completely unchanged (Eggen et al. [2015\)](#page-29-12). The research toward upgrading existing conventional biological treatment has led to the development of new treatment technologies. The efficiency of conventional and advanced treatment techniques in terms of removal of CP and IF is discussed in the following paragraphs.

12.3.1 Biological Treatment

The results of published studies concerning the removal of CP and IF during biological treatment are given in Table [12.5.](#page-13-0) In general, both compounds show limited removal under experimental conditions with either suspended biomass or fungi. Despite different concentrations of CP and IF applied in the studies (ng L^{-1}) to mg L^{-1} range), their highest removal efficiency was reported for conventional treatment, that is, 17% and 15%, respectively. In addition, these tests, lasting days to months, revealed no improvement in removal efficiency with prolonged time (Table [12.5](#page-13-0)). Four studies report the removal efficiency for CP using the MBR with inconsistent results (Delgado et al. [2011;](#page-28-7) Kovalova et al. [2012;](#page-30-0) Köhler et al. [2012;](#page-30-1) Seira et al. [2016](#page-31-11)). Delgado et al. ([2011](#page-28-7)) and Seira et al. [\(2016\)](#page-31-11) reported significant removal ($\leq 80\%$ and 60%, respectively), while Kovalova et al. [\(2012\)](#page-30-0) and Köhler et al. (2012) reported lower removals ($\lt 20\%$). One reason for this discrepancy could be the use of different matrices, that is, hospital WW with varying amounts of contaminants that could affect biomass activity (real situation) versus artificial/ semiartificial WW, that is less contaminated and has a constant composition to which biomass adapts. On the contrary, Česen et al. (2015) (2015) (2015) reports higher removal using attached growth biomass in the case of hospital WW compared to an artificial WW matrix (Table [12.5](#page-13-0)). However, the duration of experiments described by Česen et al. ([2015](#page-28-0)) differs significantly (artificial WW: 120 days and hospital WW: 2 days). Higher removal $(35%)$ in this study was observed also for IF, when hospital WW was introduced into bioreactors. To the author's knowledge, this the highest reported IF removal during biological WW treatment.

12.3.2 Abiotic Treatment

Various abiotic treatment technologies like UV irradiation, ozonation, advanced oxidation processes (AOPs), and physical treatment can be used to disinfect and/or remove not readily biodegradable compounds like CP and IF from water (Glaze et al. [1987;](#page-29-13) Huber et al. [2005;](#page-29-14) Legrini et al. [1993](#page-30-12)). A review of such treatments is given in the following paragraphs.

12.3.2.1 UV Irradiation

UV irradiation can be used for disinfection and removal (complete or partial degradation) of organic compounds in water. The latter can be achieved by direct and indirect photolysis (Klavarioti et al. [2009](#page-30-13); Legrini et al. [1993](#page-30-12)). A review of the literature reveals four studies on the removal of CP and IF by UV irradiation. All four studies report similar results (Table [12.6\)](#page-15-0). These compounds do not absorb

	Treatment type	Type of water	Conc.	Duration	Removal	References
CP	Modified Zahn- Wellens test (OECD 302 B)	OECD medium + activated sludge (AS) from WWTP	$160 \text{ mg } L^{-1}$	28 days	None	Steger- Hartmann et al. (1997)
	Simulated WWTP	Synthetic $WW + AS$ from WWTP	$10 \mu g L^{-1}$	42 days	Poor (\approx 17%)	Steger- Hartmann et al. (1997)
	OECD Confirma- tory test (Degra- dation and Accumulation,	Synthetic $WW + AS$ from WWTP	375 mg L^{-1} 750 mg L^{-1} $150 \text{ mg } L^{-1}$	10 days 14 days	None $(0 \pm 5\%)$	Kiffmeyer et al. (1998)
	1992)					
	Simulated Influent + AS WWTP from WWTP		$90 \text{ ng } L^{-1}$ 900 ng L^{-1}	24 h	None	Buerge et al. (2006)
	Membrane biore- actor (MBR)	Synthetic $WW + AS$ from WWTP	$5 \mu g \overline{L^{-1}}$	139 days 115 days	$< 80\%$	Delgado et al. (2011)
	MBR	Hospital WW	161 ng L^{-1}	1 year	$~10\%$	Kovalova et al. (2012)
	MBR	Hospital WW	Data not provided	5 days	$\approx 12\%$	Köhler et al. (2012)
	Biological treat- ment with fungi Trametes versicolor	Hospital WW	$10 \text{ mg } L^{-1}$ $100 \mu g L^{-1}$	8 days	None	Ferrando- Climent et al. (2015)
	Bioreactors with attached biomass on Mutag™	Artificial $WW + AS$ from WWTP	$10 \mu g L^{-1}$	120 days	$42 \pm 12\%$	Česen et al. (2015)
	carriers	Hospital $WW + AS$ from WWTP	5.3 µg L^{-1}	2 days	$59 \pm 15\%$	Česen et al. (2015)
	MBR	Semi-syn- thetic WW	$5 \mu g L^{-1}$	77 days	60%	Seira et al. (2016)
	Sequential batch reactors	WW effluent + AS from WWTP	$\frac{1}{20}$ µg L ⁻¹	2 days	$\approx 15\%$	Franquet- Griell et al. (2017a)
IF	Modified Zahn- Wellens test	$DW + AS$ from WWTP	$160 \overline{mg} L^{-1}$	42 days	None	Kümmerer et al.
	(OECD 302 B)	Hospital $WW + AS$ from WWTP	4.3 mg L^{-1}			(1997)

Table 12.5 The removal efficiency for CP and IF during various biological treatments

Treatment type	Type of water	Conc.	Duration	Removal	References
Simulated WWTP	Effluent $+ AS from$ WWTP	11.4 μ g L ⁻¹	56 days	~100	Kümmerer et al. (1997)
Simulated WWTP	Influent $+ AS$ from WWTP	$120~\mathrm{ng}~\mathrm{L}^{-1}$ 1200 ng L^{-1}	24 h	None	Buerge et al. (2006)
Biological treat- ment with fungi Trametes versicolor	Hospital WW	$10 \text{ mg } L^{-1}$ $100 \mu g L^{-1}$	8 days	None	Ferrando- Climent et al. (2015)
Bioreactors with attached biomass on Mutag™	Artificial $WW + AS$ from WWTP	$10 \mu g L^{-1}$	120 days	$18 \pm 11\%$	Česen et al. (2015)
carriers	Hospital $WW + AS$ from WWTP	6.8 µg L^{-1}	2 days	$35 \pm 9.3\%$	Česen et al. (2015)
Sequential batch reactors	WW effluent + AS from WWTP	50 µg L^{-1}	2 days	$\approx 15\%$	Franquet- Griell et al. (2017a)

Table 12.5 (continued)

photons under UV irradiation (due to the lack of aromatic rings or $C = C$ bonds), which means that removal is poor regardless of the experimental conditions applied (Russo et al. [2017](#page-31-12)).

12.3.2.2 Ozonation

Ozonation is a treatment process, where ozone (O_3) is introduced into water. Similar to UV irradiation, it can be used for disinfecting and/or removing compounds from water via direct or indirect degradation processes.

Seven studies report the removal efficiency of CP and IF by ozonation using varying O_3 concentrations (Table [12.7\)](#page-16-0). In general, removal efficiencies >60% can be achieved in up to 30 min regardless of the matrix type (deionized water or hospital WW) and initial CP or IF concentration. Only Česen et al. ([2015\)](#page-28-0) and Li et al. [\(2016](#page-30-14)) report lower removal, which can be related to the lower O_3 concentration used in their experiments (10 mg L^{-1} and 0.25–5 mg L^{-1} , respectively) compared to other studies. Table [12.7](#page-16-0) also shows how pH plays an important role in removal. For example, Venta et al. [\(2005](#page-32-3)) report 20% removal of CP at pH 7 and 60% at pH 9. The crucial role played by pH in the removal is described also by Fernandez et al. (2010) and Lin et al. (2015) (2015) for both compounds (Table [12.7](#page-16-0)). These outcomes suggest that ozonation is a promising technique, especially for highly contaminated hospital WWs; however, installation and maintenance costs are high and further detailed operational costs of this treatment are needed (Ferre-Aracil et al. [2016\)](#page-29-15).

	O_3	Type of				
	concentration	water	pН	Conc.	Removal	References
CP	45 mg L^{-1}	Pure water	7 9	$261 \text{ mg } L^{-1}$	$\approx 20\%$ (pH = 7, after 12 min); \approx 60% (pH = 9, after 12 min)	Venta et al. (2005)
	$32 \text{ mg } L^{-1}$	Pure water	5.6 9 11	$\overline{5}$ mg L^{-1} $20 \text{ mg } L^{-1}$	61\% (pH = 5.6; after 30 min)- 100% (pH = 11; after 5 min) not concentration dependent	Lin et al. (2015)
		Hospital WW	7.8	$20 \text{ mg } L^{-1}$	100% after 20 min	
	$6-15$ mg L^{-1}	Pure water	8.1	$\overline{100 \text{ ng } L^{-1}}$	87% after 2 min 100% after 30 min	Garcia-Ac et al. (2010)
		DW	Ambient		96% after \approx 5 min	
	$30 \text{ mg } L^{-1}$	Buffered	τ	130.5 mg L^{-1}	75% (pH = 7)	Fernández
	45 mg L^{-1}	water	9 11	261 mg $\rm L^{-1}$	and 90% ($pH = 9$) or 11) after 40 min not con- centration dependent	et al. (2010)
	$10 \text{ mg } L^{-1}$	Artificial WW	$\overline{7}$	$10 \mu g L^{-1}$	42% after 120 min	Česen et al. (2015)
	$0.25 -$ $5 \text{ mg } L^{-1}$	Diluted treated WW with ultrapure water	7.2	$5 \overline{\mu g} L^{-1}$	\approx 10–70% after 30 min (O ₃ dose dependent)	Li et al. (2016)
	$60 \text{ mg } L^{-1}$	Hospital WW	8.9	$0.14-$ $1187 \mu g L^{-1}$ (native concentrations)	97-100% after 10 min $(O_3$ dose dependent)	Ferre- Aracil et al. (2016)
IF	$3 g O_3 h^{-1}$	Deionized water	5.6 9 11	5 mg L^{-1} $20 \text{ mg } L^{-1}$	79% (pH = 5.6; after 30 min) - 100% (pH = 11; after 5 min) not concentration dependent	Lin et al. (2015)
		Hospital WW	7.8	$20 \text{ mg } L^{-1}$	100% after 20 min	
	$10 \text{ mg } L^{-1}$	Artificial WW	τ	$\frac{10 \text{ }\mu\text{g L}^{-1}}{2}$	36% after 120 min	Česen et al. (2015)

Table 12.7 The removal efficiency for CP and IF during ozonation treatment experiments

O ₃ concentration	Type of water	pH	Conc.	Removal	References
$0.25 -$ $5 \text{ mg } L^{-1}$	Diluted treated WW with ultrapure water	7.2	5 μg L ⁻¹	$\approx 10-70\%$ after 30 min (O ₃ dose dependent)	Li et al. (2016)
60 mg L^{-1}	Hospital WW	8.9	$0.016-$ $0.031 \,\mathrm{\mu g\,L}^{-1}$ (native) concentrations)	100% after 10 min (regard- less of the O_3 dose)	Ferre- Aracil et al. (2016)

Table 12.7 (continued)

12.3.2.3 Advanced Oxidation Processes

Glaze et al. ([1987\)](#page-29-13) defined advanced oxidation processes as "those which involve the generation of hydroxyl radicals (•OH) in sufficient quantity to affect water purification." They described only O_2/H_2O_2 , UV/ O_3 , and UV/ H_2O_2 as AOPs. Nowadays, also other AOPs such as UV/TiO_2 , Fe^{2+}/H_2O_2 (Fenton), $UV/Fe^{2+}/H_2O_2$ (photoassisted Fenton), and $UV/O₃/H₂O₂$ represent efficient DW and WW treatment technologies (Linden and Mohseni [2014;](#page-30-17) Saharan et al. [2014](#page-31-13); Fabiańska et al. [2015\)](#page-29-16). During AOP, the formation of •OH is followed by their reaction with the organic compounds present. These interactions lead to a series of complex oxidation reactions, which results in either their partial or complete degradation (Saharan et al. [2014\)](#page-31-13). The high costs involved means that AOPs as WW treatment technologies can be applied as a tertiary treatment for WW containing high amounts of proteins or sugars, which are degraded during biological treatment, while the remaining biorecalcitrant organic matter can be degraded by an AOP (Oller et al. [2011](#page-31-14)).

The formation of •OH is common to all AOPs; however, the mechanism of their "synthesis" differs. For example, in the case of the Fenton process, •OH are formed due to the oxidation of Fe^{2+} to Fe^{3+} . This is a metal-catalyzed oxidation, in which iron acts as a catalyst (Saharan et al. [2014](#page-31-13)). A number of photoassisted AOP treatments also exist, such as UV/TiO₂, UV/H₂O₂, UV/O₃, UV/O₃/H₂O₂, and UV/Fe²⁺/H₂O₂ (photoassisted Fenton AOP), which is an advanced version of Fe^{2+}/H_2O_2 with a higher •OH formation rate (Legrini et al. [1993](#page-30-12); Saharan et al. [2014](#page-31-13); Glaze et al. [1987;](#page-29-13) Andreozzi et al. 1999). Except for UV/TiO₂, which is a photocatalytic process, others can be described as photoactivated chemical reactions, where interactions between photons with sufficient energy levels and H_2O_2 or O_3 result in the formation of free radicals (mostly •OH), which react with the compounds present in water (Saharan et al. [2014\)](#page-31-13). To achieve homolytic cleavage of H_2O_2 , an UV irradiation (254 nm) is usually applied. When UV is used in combination with O_3 , it is also recommended to use UV light with a wavelength of 254 nm (Andreozzi et al. [1999](#page-28-8)). An alternative way to produce •OH is by photo-catalytic oxidation with $UV/TiO₂$, where •OH are formed on the surface of a semiconductor catalyst, for example, titanium dioxide ($TiO₂$). The absorption of UV irradiation and consequent formation of electron–hole pairs on the catalyst's surface reduces the dissolved O_2 to the superoxide radical (O_2^-) ion and $H₂O$ and OH⁻ to \bullet OH (Saharan et al. [2014](#page-31-13)).

Besides UV/O₃, there are also other O₃-based AOPs: O_3/H_2O_2 and UV/O₃/H₂O₂. It is known that decomposition of O_3 in an aqueous solution is accompanied by the formation of both H_2O_2 and \bullet OH (Legrini et al. [1993](#page-30-12)). The rate of \bullet OH formation can be increased by adding H_2O_2 and by applying UV irradiation (Legrini et al. [1993](#page-30-12)).

To the author's knowledge, there are 15 AOP-based studies (Table [12.8\)](#page-19-0), within which four report low removal efficiency of CP and/or IF (Wols et al. [2013;](#page-32-7) Lai et al. [2015;](#page-30-8) Zhang et al. [2017;](#page-32-4) Česen et al. [2015\)](#page-28-0). Wols et al. [\(2013](#page-32-7)) report 10–15% (CP) and $10-30\%$ (IF) removal efficiency during UV/H₂O₂ treatment in tap water and WWTP effluent (Table [12.8\)](#page-19-0). This contradicts Kim et al. ([2009a](#page-30-18)), who used similar experimental conditions, that is, WWTP effluent as a matrix, similar initial H_2O_2 concentration and UV dose, and reported $\leq 90\%$ CP removal (Table [12.8\)](#page-19-0). However, the initial CP concentration reported by Kim et al. ([2009a](#page-30-18)), 3 ng L^{-1} , is far less than what is reported in the other cases. In addition, this value was below the LOD, which was determined using standard solutions, directly analyzed by LC-MS/ MS without taking into account the concentration factor of SPE. This represents an additional ambiguity in their determination of CP removal. The two studies that report high CP removal efficiency ($\approx 90\%$) from WWTP effluent with similar initial CP concentrations used considerably higher UV and H_2O_2 doses (Kim et al. [2009b;](#page-30-19) Köhler et al. [2012](#page-30-1)).

Another study reporting low IF removal was described by Lai et al. [\(2015](#page-30-8)), who investigated the removal efficiency of IF during $UV/TiO₂$ treatment in one hospital WW, whereas higher removal was achieved in another hospital WW, deionized water and two WWs coming from pharmaceutical industry. The authors report a DOC-dependent removal efficiency, resulting from 10% for hospital WW with highest DOC value (29 mg L^{-1}) to 100% removal efficiency in deionized water with the lowest DOC value (data not provided) within 120 min of treatment (Lai et al. 2015). Although significantly shorter UV/H₂O₂ treatment (3 min) was performed by Zhang et al. [\(2017](#page-32-4)), the authors also report matrix-dependent removal efficiency with the lowest CP removal from treated WW ($\approx 45\%$). Interestingly, in Lai et al. ([2015\)](#page-30-8)'s study, who addressed IF, removal can be compared to that of Hui-Hsiang et al., (2013), who investigated CP removal using $UV/TiO₂$. Similar matrices (purified water) and initial CP/IF concentrations were applied in both cases (Table [12.8](#page-19-0)). The only difference was the TiO₂ concentration (20 and 100 mg L^{-1}), which accounts for the decrease in the time needed to remove 100% of either CP (2 h) or IF (10 min; Table [12.8\)](#page-19-0).

Česen et al. ([2015\)](#page-28-0) also report low CP and IF removal during O_3/H_2O_2 treatment, that is, 30–40% and 26–39% after 120 min of treatment, respectively (Table [12.8\)](#page-19-0). The authors report comparable or even decreased removal with an increased amount of H_2O_2 . On the contrary, Ferre-Aracil et al. ([2016\)](#page-29-15) achieved complete CP removal using the same treatment of hospital WW in only 20 min for similar CP concentrations, but with higher O_3 and a significantly lower H_2O_2 concentration (Table [12.8](#page-19-0)). It can be assumed that in the first study, the high amount of H_2O_2 acted as scavenger of •OH produced by ozonation, which resulted in low CP and IF removal.

Fernandez et al. (2010), who also investigated CP removal during O_3/H_2O_2 , observed a decrease in removal efficiency at elevated pH values. This differs from ozonation treatment, where higher pH values result in more •OH being produced and consequently enhanced degradation (von Gunten and von Sonntag [2012](#page-32-8)). The authors explain the reverse phenomenon observed within the experiments, where the added H_2O_2 acts as a scavenger of the \bullet OH produced at higher pH values. The same observation was reported by Venta et al. ([2005\)](#page-32-3), who reports complete CP removal within 15 min, but with a lower amount of H_2O_2 compared to Fernandez et al. (2010).

Within the UV-based AOPs (Table [12.8](#page-19-0)), the most efficient is photo-Fenton (UV/Fe²⁺/H₂O₂), where CP was completely degraded in less than 2 min (Lutterbeck et al. [2015](#page-30-7)). This is comparable to O_3 -based AOP, that is, O_3/H_2O_2 , conducted at an environmentally relevant initial CP concentration, 100 ng L^{-1} (Garcia-Ac et al. [2010\)](#page-29-3). In the latter study, the amount of H_2O_2 used is relatively small (2.5 mg L⁻¹ compared to 333 mg L^{-1}); however, O₃-based treatment technologies are more costly compared to UV-based AOPs (von Gunten and von Sonntag [2012;](#page-32-8) Saharan et al. 2014). Wols et al. (2013) (2013) (2013) , Zhang et al. (2017) (2017) (2017) , and Franquet-Griell et al. [\(2017a](#page-29-10)) also achieved 100% CP and IF removal within only few min of UV/H₂O₂ treatment (comparable UV doses; Table [12.8\)](#page-19-0), where low amounts of H_2O_2 (20, 6.8, and 15 mg L^{-1} , respectively) were applied. In all studies, environmentally relevant concentrations of CP and IF in pure water were used. In addition, the authors report a drop in removal efficiency with increased matrix complexity (Table [12.8](#page-19-0)). This can be explained by CP/IF competition with other species present in WW for reaction with \bullet OH (Zhang et al. [2017](#page-32-4); Wols et al. [2013\)](#page-32-7).

A direct comparison among the different studies (Table [12.8\)](#page-19-0) in terms of costefficiency for real-world applications is not possible at this point since the described experimental conditions vary significantly. For example, studies were performed in different matrices and volumes of samples (laboratory to pilot-scale experiments) using varying instrumentation and were conducted at different initial concentrations of CP and IF.

12.3.3 Physical Treatment

Adsorption on activated carbon (AC), nanofiltration (NF), and reverse osmosis (RO) are common physical treatment technologies, which can improve the quality of WW (Jjemba [2008](#page-29-11)). The main disadvantage of these techniques is that retained compounds are not degraded and require further treatment (Rakić et al. [2015\)](#page-31-15).

The data on CP and IF removal using physical treatment are scarce (Table [12.9\)](#page-23-0). A study by Chen et al. ([2008\)](#page-28-9) reports a carbon dose–dependent removal efficiency of CP (AC dose of 100 mg L⁻¹ resulted in $\approx 90\%$ removal). In addition, a correlation

Treatment	CP conc.	Matrix type	Removal	References
AC $(0.1-100 \text{ mg } L^{-1})$	$10 \mu g L^{-1}$	Pure water	$\approx 1 - 90\%$	Chen et al. (2008)
$AC(22 \text{ mg } L^{-1})$	$2 \mu g L^{-1}$	Pure water	70%	de Ridder et al. (2009)
		SW	55%	
		Effluent	28%	
NF	$1-10 \mu g L^{-1}$	Pure water	$20 - 40\%$	Wang et al. (2009)
		Effluent	60%	
R _O	$1-10 \mu g L^{-1}$	Pure water	$>90\%$	
		Effluent	$>90\%$	

Table 12.9 Removal efficiency of CP during various physical treatments (data for IF is unavailable)

between matrix complexity and removal efficiency was also reported, with CP removal between 28% and 70% depending on tested matrix (de Ridder et al. [2009\)](#page-28-10).

Nanofiltration and RO can be also used to treat WW by physically removing the dissolved compounds. In case of NF, particles with a diameter > 1 nm are retained, whereas in RO, only particles <0.1 nm in diameter can pass through the membrane. Pretreatment is also necessary to remove any solid particles that could affect the rejection efficiency of NF and RO (Ravikumar et al. [2014;](#page-31-16) Radjenović et al. [2008;](#page-31-17) von Gunten et al. [2006](#page-29-18)). Wang et al. [\(2009](#page-32-9)) studied the rejection efficiency of CP in pure water and treated WW by NF and RO. For NF, the rejection efficiency was matrix dependent (Table [12.9](#page-23-0)), where the lower rejection efficiency for untreated WW was correlated to membrane fouling by the organic matter present. The authors report over 90% rejection efficiency of CP by RO regardless of the matrix type (Table [12.9\)](#page-23-0).

12.3.4 Transformations

Compounds undergo similar transformation reactions during water treatment as in the environment, that is, chemical, physicochemical, and/or microbiological transformations. However, these processes are typically more intense during treatment, where degradation and formation of TPs strongly depend on the applied conditions (Mompelat et al. [2009;](#page-31-18) Saharan et al. [2014](#page-31-13)). The transformations of CP and IF during biological treatment have not been studied yet, most likely due to their poor biodegradability, whereas TPs formed during abiotic treatments have been extensively investigated (Table [12.10](#page-24-0)). Seven studies have looked at CP degradation and identified 16 different TPs, whereas three studies report 17 different IF TPs (Tables [12.10](#page-24-0) and [12.11](#page-26-0)). O_3 -based treatments of CP produced one TP, a keto-CP. Ketonization was the most common reaction also during UV treatment and UV-based AOPs. Apart from keto-CP, there are several other reports of TPs that share the same molecular structure as known CP and IF human metabolites,

AOP	Identified TPs		Reference		
O_3/H_2O_2	Keto-CP		Venta et al. (2005)		
	\mathbf{C}				
O_3 , pH = 9	Keto-CP		Fernández et al. (2010)		
$\rm UV/H_2O_2$ UV/TiO ₂	3-dechloroethyl-CP (only UV/H_2O_2)	Keto-CP	Imino- phosphamide	Lutterbeck et al. (2015)	
	HN СI	CI	HI C. СI		
	$CP-TP1$ ÒН				
UV/TiO ₂	Keto-CP	CP-TP2 (loss of Cl	$bis(2 -$ chloroethyl)amine	Lai et al. (2015)	
	HN Cľ	HI H_3C CI	CI СI		
	3-dechloroethyl-CP	CP-TP3 (loss $CH2$)	$2 -$ chloroethylamine		
	CI	CI СI	H_2N СI		

Table 12.10 Reported TPs of CP during various AOPs

AOP	Identified TPs		Reference		
UV/TiO ₂	Keto-IF Cľ $\sum_{N=0}^{n}$	$IF-TP1$ $(\text{loss} 1 \text{ Cl})$ CI CH ₃	IF-TP2 (loss CH ₂) H_3C CI,	Lai et al. (2015)	
	3-dechloroethyl- ifosfamide HŃ CI	IF-TP3 $(\text{loss} 1 \text{ Cl})$ H_3C $\frac{1}{N+1}$ O CI	IF-TP4 (loss $CH3-Cl$ H_3C C		
	IF-TP5 H_2C^2	IF-TP6 $(\text{loss } 2 \text{ Cl})$ H_3C CH ₃	$2 -$ chloroethylamine H_2N CI		
UV and UV/H_2O_2	3-dechloro- ethyl-IF HN CI IF-TP7 IF-TP7 NH ₂	Keto-IF CI, AH H CI	Imino-IF сí ун үн CI	Česen et al. (2016)	
	CH $_2$				

Table 12.11 Reported TPs of CP during various AOPs

AOP	Identified TPs		Reference	
$UV/TIO2$ and $UV/Pt-TiO2$	Inorganic species: $NH4+$ PO_4^3 - Cl^{-}	IF-TP8 $C-NH-P$ Н	IF-TP9	Ofiarska et al. (2016)
	2-dechloroethyl-IF			
	H_2			

Table 12.11 (continued)

namely, 2- and 3-dechloroethyl and imino derivatives of CP and IF formed during UV/H₂O₂ and UV/TiO₂ treatments (Tables [12.10](#page-24-0) and [12.11](#page-26-0)). Certain treatments result in the same TPs, which is expected due to the similarity in the chemical structure CP and IF. These include, for example, a short chain TP (2-chloroethylamine), CP-TP4/IF-TP5 and CP-TP5/IF-TP7 (Table [12.10\)](#page-24-0). Interestingly, Ofiarska et al. ([2016](#page-31-6)) identified IF-TP9, which has the same molecular weight as CP-TP8, a TP identified by Zhang et al. [\(2017\)](#page-32-4). Both TPs were identified as the hydroxylation products of parent compounds, where Ofiarska et al. ([2016](#page-31-6)) left the exact position of hydroxyl group undetermined. Since no spectra are available for the comparison of both TPs, it is hard to conclude whether they share the same structural formula or not. As CP and IF typically occur together, the amount and potency of the formed species might be higher than one would assume based on the degradation of the individual compound. This should be investigated by studies addressing toxicity, where both compounds shall be treated simulta-neously. Interestingly, Ofiarska et al. ([2016\)](#page-31-6) report the formation of NH⁴⁺, $PO₄³⁻$, and Cl^- formed from CP and IF when using UV/TiO₂ (Tables [12.10](#page-24-0) and [12.11](#page-26-0)). As these inorganic species might have an adverse effects on aqueous biota, further studies addressing their formation during other treatments and an evaluation of the toxicity of $UV/TiO₂$ -treated samples shall be studied in the future.

12.4 Conclusions

This chapter describes the analysis, occurrence, removal efficiency, and transformations of two cytostatic drug residues, CP and IF, in the aqueous environment. The most common method for the determination of CP and IF in aqueous samples is SPE with further LC-MS analysis. Their presence has been confirmed in

WWs on a global scale, while in SW, levels are typically below the LOD. Both compounds are recalcitrant to biodegradation and, for this reason, a number of studies have addressed their removal efficiency during abiotic treatments. So far, AOPs seem to be the most promising; however, their suitability for WW treatment is limited due to the high costs involved. Therefore, they require further optimization before they can be used in real world applications, for example, to treat highly contaminated hospital WWs. In addition, stable TPs have been confirmed during various abiotic treatments, which have structures similar to that of the parent compounds. These species might, besides CP and IF, also have adverse effects on aqueous biota. Therefore, environmental occurrence, fate, and effects of all CP and IF residues including identified TPs must be assessed in the future in order to evaluate the overall risks they pose to the environment.

References

- Andreozzi R, Caprio V, Insola A, Marotta R (1999) Advanced oxidation processes (AOP) for water purification and recovery. Catal Today 53:51–59
- Buerge IJ, Buser H-R, Poiger T, Müller MD (2006) Occurrence and fate of the cytostatic drugs cyclophosphamide and ifosfamide in wastewater and surface waters. Environ Sci Technol 40:7242–7250
- Busetti F, Linge KL, Heitz A (2009) Analysis of pharmaceuticals in indirect potable reuse systems using solid-phase extraction and liquid chromatography–tandem mass spectrometry. J Chromatogr A 1216:5807–5818
- Castiglioni S, Bagnati R, Calamari D, Fanelli R, Zuccato E (2005) A multiresidue analytical method using solid-phase extraction and high-pressure liquid chromatography tandem mass spectrometry to measure pharmaceuticals of different therapeutic classes in urban wastewaters. J Chromatogr A 1092:206–215
- Česen M, Kosjek T, Laimou-Geraniou M, Kompare B, Širok B, Lambropolou D, Heath E (2015) Occurrence of cyclophosphamide and ifosfamide in aqueous environment and their removal by biological and abiotic wastewater treatment processes. Sci Total Environ 527–528:465–473
- Česen M, Kosjek T, Busetti F, Kompare B, Heath E (2016) Human metabolites and transformation products of cyclophosphamide and ifosfamide: analysis, occurrence and formation during abiotic treatments. Environ Sci Pollut Res Int 23:11209–11223
- Chen Z, Park G, Herckes P, Westerhoff P (2008) Physicochemical treatment of three chemotherapy drugs: irinotecan, tamoxifen, and cyclophosphamide. J Adv Oxid Technol 11:254–260
- de Jongh CM, Kooij PJ, de Voogt P, ter Laak TL (2012) Screening and human health risk assessment of pharmaceuticals and their transformation products in Dutch surface waters and drinking water. Sci Total Environ 427–428:70–77
- de Ridder DJ, McConville M, Verliefde ARD, Heijman LTJ, Verberk JQJC, Rietveld LC, vn Dijk JC (2009) Development of a predictive model to determine micropollutant removal using granular activated carbon. Drink Water Eng Sci 2:189–204
- Delgado LF, Schetrite S, Gonzalez C, Albasi C (2010) Effect of cytostatic drugs on microbial behaviour in membrane bioreactor system. Bioresour Technol 101:527–536
- Delgado LF, Faucet-Marquis V, Pfohl-Leszkowicz A, Dorandeu C, Marion B, Schetrite S, Albasi C (2011) Cytotoxicity micropollutant removal in a crossflow membrane bioreactor. Bioresour Technol 102:4395–4401
- Eggen T, Vogelsang C, Eddy YZ (2015) Chapter 7: Occurrence and fate of pharmaceuticals and personal care products in wastewater. In: Comprehensive analytical chemistry. Elsevier, New York, pp 245–294
- Fabiańska A, Ofiarska A, Fiszka-Borzyszkowska A, Stepnowski P, Siedlecka EM (2015) Electrodegradation of ifosfamide and cyclophosphamide at BDD electrode: decomposition pathway and its kinetics. Chem Eng J 276:274–282
- Fernández LA, Hernández C, Bataller M, Véliz E, López A, Ledea O, Padrón S (2010) Cyclophosphamide degradation by advanced oxidation processes. Water Environ J 24:174–180
- Ferrando-Climent L, Rodriguez-Mozaz S, Barceló D (2013) Development of a UPLC-MS/MS method for the determination of ten anticancer drugs in hospital and urban wastewaters, and its application for the screening of human metabolites assisted by information-dependent acquisition tool (IDA) in sewage samples. Anal Bioanal Chem 405:5937–5952
- Ferrando-Climent L, Cruz-Morató C, Marco-Urrea E, Vicent T, Sarrà M, Rodriguez-Mozaz S, Barceló D (2015) Non conventional biological treatment based on Trametes versicolor for the elimination of recalcitrant anticancer drugs in hospital wastewater. Chemosphere 136:9–19
- Ferre-Aracil J, Valcárcel Y, Negreira N, de Alda ML, Barceló D, Cardona SC, Navarro-Laboulais J (2016) Ozonation of hospital raw wastewaters for cytostatic compounds removal. Kinetic modelling and economic assessment of the process. Sci Total Environ 556:70–79
- Franquet-Griell H, Medina A, Sans C, Lacorte S (2017a) Biological and photochemical degradation of cytostatic drugs under laboratory conditions. J Hazard Mater 323:319–328
- Franquet-Griell H, Pueyo V, Silva J, Orera VM, Lacorte S (2017b) Development of a macroporous ceramic passive sampler for the monitoring of cytostatic drugs in water. Chemosphere 182:681–690
- Garcia-Ac A, Segura PA, Viglino L, Fürtös A, Gagnon C, Prévost M, Sauvé S (2009) On-line solidphase extraction of large-volume injections coupled to liquid chromatography-tandem mass spectrometry for the quantitation and confirmation of 14 selected trace organic contaminants in drinking and surface water. J Chromatogr A 1216:8518–8527
- Garcia-Ac A, Broséus R, Vincent S, Barbeau B, Prévost M, Sauvé S (2010) Oxidation kinetics of cyclophosphamide and methotrexate by ozone in drinking water. Chemosphere 79:1056–1063
- Glaze WH, Kang J-W, Chapin DH (1987) The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone Sci Eng 9:335–352
- Gómez-Canela C, Cortés-Francisco N, Oliva X, Pujol C, Ventura F, Lacorte S, Caixach J (2012) Occurrence of cyclophosphamide and epirubicin in wastewaters by direct injection analysis– liquid chromatography–high-resolution mass spectrometry. Environ Sci Pollut Res 19:3210–3218
- von Gunten U, Janex-Habibi M-L, Ternes TA, Weber L (2006) Removal of PPCP during drinking water treatment. In: Ternes TA, Joss A (eds) Human pharmaceuticals, hormones and fragrances. IWA Publishing, London
- Haddad T, Baginska E, Kümmerer K (2015) Transformation products of antibiotic and cytostatic drugs in the aquatic cycle that result from effluent treatment and abiotic/biotic reactions in the environment: an increasing challenge calling for higher emphasis on measures at the beginning of the pipe. Water Res 72:75–126
- Huber MM, Korhonen S, Ternes TA, von Gunten U (2005) Oxidation of pharmaceuticals during water treatment with chlorine dioxide. Water Res 39:3607–3617
- Hui-Hsiang Lin H, Yu-Chen Lin A (2013) Photocatalytic oxidation of 5-fluorouracil and Cyclophosphamide via UV/TiO₂ in an aqueous environment. Water Res $48:559-568$
- Janssens R, Mandal MK, Dubey KK, Luis P (2017) Slurry photocatalytic membrane reactor technology for removal of pharmaceutical compounds from wastewater: towards cytostatic drug elimination. Sci Total Environ 599–600:612–626
- Jjemba PK (2008) The occurrence and fate of pharmaceuticals and personal care products in the environment. In: Pharma-ecology. Wiley, Hoboken, pp 251–293
- Khetan SK (2007) Human pharmaceuticals in the aquatic environment: a challenge to green chemistry. Chem Rev 107:2319–2364
- Kiffmeyer T, Götze H-J, Jursch M, Lüders U (1998) Trace enrichment, chromatographic separation and biodegradation of cytostatic compounds in surface water. Fresenius J Anal Chem 361:185–191
- Kim I, Tanaka H (2009) Photodegradation characteristics of PPCPs in water with UV treatment. Environ Int 35:793–802
- Kim I, Yamashita N, Tanaka H (2009a) Performance of UV and UV/ H_2O_2 processes for the removal of pharmaceuticals detected in secondary effluent of a sewage treatment plant in Japan. J Hazard Mater 166:1134–1140
- Kim I, Yamashita N, Tanaka H (2009b) Photodegradation of pharmaceuticals and personal care products during UV and UV/H₂O₂ treatments. Chemosphere $77:518-525$
- Klavarioti M, Mantzavinos D, Kassinos D (2009) Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ Int 35:402–417
- Köhler C, Venditti S, Igos E, Klepiszewski K, Benetto E, Cornelissen A (2012) Elimination of pharmaceutical residues in biologically pre-treated hospital wastewater using advanced UV irradiation technology: a comparative assessment. J Hazard Mater 239–240:70–77
- Kosjek T, Heath E (2011) Occurrence, fate and determination of cytostatic pharmaceuticals in the environment. TrAC Trends Anal Chem 30:1065–1087
- Kosjek T, Heath E, Petrović M, Barceló D (2007) Mass spectrometry for identifying pharmaceutical biotransformation products in the environment. TrAC Trends Anal Chem 26:1076–1085
- Kovalova L, Siegrist H, Singer H, Wittmer A, McArdell CS (2012) Hospital wastewater treatment by membrane bioreactor: performance and efficiency for organic micropollutant elimination. Environ Sci Technol 46:1536–1545
- Kümmerer K (2001) Drugs in the environment: emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources – a review. Chemosphere 45:957–969
- Kümmerer K, Steger-Hartmann T, Meyer M (1997) Biodegradability of the anti-tumour agent ifosfamide and its occurrence in hospital effluents and communal sewage. Water Res 31:2705–2710
- Lai WW-P, Lin HH-H, Lin AY-C (2015) TiO₂ photocatalytic degradation and transformation of oxazaphosphorine drugs in an aqueous environment. J Hazard Mater 287:133–141
- Legrini O, Oliveros E, Braun AM (1993) Photochemical processes for water treatment. Chem Rev 93:671–698
- Li W, Nanaboina V, Chen F, Korshin GV (2016) Removal of polycyclic synthetic musks and antineoplastic drugs in ozonated wastewater: quantitation based on the data of differential spectroscopy. J Hazard Mater 304:242–250
- Lin AY-C, Wang X-H, Lee W-N (2013) Phototransformation determines the fate of 5-fluorouracil and Cyclophosphamide in natural surface waters. Environ Sci Technol 47:4104–4112
- Lin AY-C, Hsueh JH-F, Hong PKA (2015) Removal of antineoplastic drugs cyclophosphamide, ifosfamide, and 5-fluorouracil and a vasodilator drug pentoxifylline from wastewaters by ozonation. Environ Sci Pollut Res 22:508–515
- Linden KG, Mohseni M (2014) Chapter 2.8: Advanced oxidation processes: applications in drinking water treatment. In: Ahuja S (ed) Comprehensive water quality and purification. Elsevier, Waltham, pp 148–172
- Llewellyn N, Lloyd P, Jürgens MD, Johnson AC (2011) Determination of cyclophosphamide and ifosfamide in sewage effluent by stable isotope-dilution liquid chromatography–tandem mass spectrometry. J Chromatogr A 1218:8519–8528
- Lutterbeck CA, Machado ÊL, Kümmerer K (2015) Photodegradation of the antineoplastic cyclophosphamide: a comparative study of the efficiencies of UV/H₂O₂, UV/Fe²⁺/H₂O₂ and UV/TiO2 processes. Chemosphere 120:538–546
- Mahoney BP, Raghunand N, Baggett B, Gillies RJ (2003) Tumor acidity, ion trapping and chemotherapeutics: I. Acid pH affects the distribution of chemotherapeutic agents in vitro. Biochem Pharmacol 66:1207–1218
- Martín J, Camacho-Muñoz D, Santos JL, Aparicio I, Alonso E (2011) Simultaneous determination of a selected group of cytostatic drugs in water using high-performance liquid chromatography– triple-quadrupole mass spectrometry. J Sep Sci 34:3166–3177
- Mioduszewska K, Maszkowska J, Białk-Bielińska A, Krüger O, Kalbe U, Liberek B, Łukaszewicz P, Stepnowski P (2016) The leaching behavior of cyclophosphamide and ifosfamide from soil in the presence of co-contaminant—Mixture sorption approach. Sci Total Environ 542:915–922
- Moldovan Z (2006) Occurrences of pharmaceutical and personal care products as micropollutants in rivers from Romania. Chemosphere 64:1808–1817
- Momerency GVC, Slee K, Van Oosterom PH, De Bruijn AT, A E (1994) The determination of cyclophosphamide and its metabolites in blood plasma as stable trifluoroacetyl derivatives by electron capture chemical ionization gas chromatography/mass spectrometry. Biol Mass Spectrom 23:149–158
- Mompelat S, Le Bot B, Thomas O (2009) Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. Environ Int 35:803–814
- Negreira N, López de Alda M, Barceló D (2013) On-line solid phase extraction–liquid chromatography–tandem mass spectrometry for the determination of 17 cytostatics and metabolites in waste, surface and ground water samples. J Chromatogr A 1280:64–74
- Negreira N, de Alda ML, Barceló D (2014) Cytostatic drugs and metabolites in municipal and hospital wastewaters in Spain: filtration, occurrence, and environmental risk. Sci Total Environ 497–498:68–77
- Ofiarska A, Pieczyńska A, Fiszka Borzyszkowska A, Stepnowski P, Siedlecka EM (2016) Pt–TiO2 assisted photocatalytic degradation of the cytostatic drugs ifosfamide and cyclophosphamide under artificial sunlight. Chem Eng J 285:417–427
- Olalla A, Negreira N, Lopez de Alda M, Barcelo D, Valcarcel Y (2018) A case study to identify priority cytostatic contaminants in hospital effluents. Chemosphere 190:417–430
- Oller I, Malato S, Sánchez-Pérez JA (2011) Combination of advanced oxidation processes and biological treatments for wastewater decontamination—A review. Sci Total Environ 409:4141–4166
- Radjenović J, Petrović M, Ventura F, Barceló D (2008) Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment. Water Res 42:3601–3610
- Rakić V, Rac V, Krmar M, Otman O, Auroux A (2015) The adsorption of pharmaceutically active compounds from aqueous solutions onto activated carbons. J Hazard Mater 282:141–149
- Ravikumar YVL, Kalyani S, Satyanarayana SV, Sridhar S (2014) Processing of pharmaceutical effluent condensate by nanofiltration and reverse osmosis membrane techniques. J Taiwan Inst Chem Eng 45:50–56
- Russo C, Lavorgna M, Cesen M, Kosjek T, Heath E, Isidori M (2017) Evaluation of acute and chronic ecotoxicity of cyclophosphamide, ifosfamide, their metabolites/transformation products and UV treated samples. Environ Pollut 233:356–363
- Saharan VK, Pinjari DV, Gogate PR, Pandit AB (2014) Chapter 3: Advanced oxidation technologies for wastewater treatment: an overview. In: Bhandari VVRM (ed) Industrial wastewater treatment, recycling and reuse. Butterworth-Heinemann, Oxford, pp 141–191
- Seira J, Sablayrolles C, Montréjaud-Vignoles M, Albasi C, Joannis-Cassan C (2016) Elimination of an anticancer drug (cyclophosphamide) by a membrane bioreactor: comprehensive study of mechanisms. Biochem Eng J 114:155–163
- Steger-Hartmann T, Kümmerer K, Schecker J (1996) Trace analysis of the antineoplastics ifosfamide and cyclophosphamide in sewage water by twostep solid-phase extraction and gas chromatography-mass spectrometry. J Chromatogr A 726:179–184
- Steger-Hartmann T, Kümmerer K, Hartmann A (1997) Biological degradation of cyclophosphamide and its occurrence in sewage water. Ecotoxicol Environ Saf 36:174–179
- Ternes TA (1998) Occurrence of drugs in German sewage treatment plants and rivers. Water Res 32:3245–3260
- Thomas KV, C D, Schlabach M, Langford KH (2007) Source to sink tracking of selected human pharmaceuticals from two Oslo city hospitals and a wastewater treatment works. J Environ Monit 9:1410–1418
- Valcárcel Y, González Alonso S, Rodríguez-Gil JL, Gil A, Catalá M (2011) Detection of pharmaceutically active compounds in the rivers and tap water of the Madrid Region (Spain) and potential ecotoxicological risk. Chemosphere 84:1336–1348
- Venta MB, Castro CH, Garcia LA, Marzo AL, Lorenzo EV, Alvarez CA (2005) Effect of O_2/H_2O_2 molar concetration ratio at different pH values on cyclophosphamide degradation. J Water Supply Res Technol AQUA 54:403–410
- von Gunten U, von Sonntag C (2012) Chemistry of ozone in water and wastewater treatment: from basic principles to applications. IWA Publishing, London
- Wang L, Albasi C, Faucet-Marquis V, Pfohl-Leszkowicz A, Dorandeu C, Marion B, Causserand C (2009) Cyclophosphamide removal from water by nanofiltration and reverse osmosis membrane. Water Res 43:4115–4122
- Wols BA, Hofman-Caris CHM, Harmsen DJH, Beerendonk EF (2013) Degradation of 40 selected pharmaceuticals by $UV/H₂O₂$. Water Res 47:5876–5888
- Yin J, Shao B, Zhang J, Li K (2010a) A preliminary study on the occurrence of cytostatic drugs in hospital effluents in Beijing, China. Bull Environ Contam Toxicol 84:39–45
- Yin J, Yang Y, Li K, Zhang J, Shao B (2010b) Analysis of anticancer drugs in sewage water by selective SPE and UPLC-ESI-MS-MS. J Chromatogr Sci 48:781–789
- Zhang Y, Xiao Y, Zhang J, Chang VWC, Lim T-T (2017) Degradation of cyclophosphamide and 5-fluorouracil in water using UV and UV/H₂O₂: kinetics investigation, pathways and energetic analysis. J Environ Chem Eng 5:1133–1139
- Zuccato E, Castiglioni S, Fanelli R (2005) Identification of the pharmaceuticals for human use contaminating the Italian aquatic environment. J Hazard Mater 122:205–209