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Abstract We extend the index-aware model order reduction method (IMOR) to
differential-algebraic equations (DAEs) arising from gas transport networks, which
have a tractability index of one or two. Applying model order reduction (MOR)
techniques to DAEs has to be done carefully and the techniques, in particular for
nonlinear systems, can not handle arbitrary models. In previous work, MOR for
DAEs arising from gas transport networkswas done by rewritingDAEs into ordinary
differential equations (ODEs) by index reduction. Then, standard MOR techniques
could be applied. We propose an approach to create an ODE system and algebraic
equations from the original DAE, which is done automatically. That means we can
get a new decoupled system easily, even if we change the discretization scheme or
the coupling condition in the gas network. We explain the details of the automatic
decoupling for the linearized gas transport equation and show its efficiency on several
numerical examples.

Keywords Nonlinear differential-algebraic equations · Decoupling · Gas
transportation networks · Model order reduction · Tractability index

1 Introduction

We consider a gas transportation network consisting of several pipes. It is represented
via a directed graph. All the edges of the graph are pipes and the nodes are either just
interior nodes or supply nodes or demand nodes. We assume that at supply nodes
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a pressure boundary condition is given and at demand nodes a mass flux boundary
condition is imposed. The one-dimensional isothermal Euler equations are often
used in modelling natural gas transport through a pipe [1, 2], and this is what we will
do in the following as well. Spatial discretization of these equations together with
algebraic conditions on the nodes leads to a nonlinear dynamical system of the form
[1]

Eẋ = Hx + f(x) + Bu, Ex(0) = Ex0, (1a)

y = Cx + h(x), (1b)

where E ∈ R
n×n is singular, indicating that (1a) is a system of nonlinear differential-

algebraic equations (DAEs). This implies that x0 must be a consistent initial con-
dition.H ∈ R

n×n, B ∈ R
n×m, C∈ R

�×n,h(x) ∈ R
�, f(x) ∈ R

n, and the state vector
x ∈ R

n includes states representing the gas mass flow and states representing the gas
pressure at discretization points within the pipe network. The input function u(t)
includes the vector of supply pressures, and the vector of demand mass flows. The
desired output vector y could be any combination of pressure values and mass fluxes,
but is often choosen to collect the pressure at the demand nodes and the mass fluxes
at the supply nodes.

DAEs are known to be difficult to simulate and the level of difficulty is measured
using index concepts such as differential index, tractability index, etc. The higher
the index, the more difficult to simulate the DAE. Moreover, the system (1a) is a
hyperbolic balance law including friction and gravity effects, increasing the compu-
tational complexity due to strong coupling and stiffness of the problem. In general,
the solutions of hyperbolic balance laws can blow-up in finite time which can lead to
numerical integration challenges. Despite the ever increasing computational power,
dynamic pipeline network simulation using the system (1a) is costly, since it involves
to solve of a hyperbolic partial differential equations (PDEs) for each pipe, see [2].We
are interested in a fast and stable prediction of the dynamics of natural gas transport
in the pipe networks, and therefore the application of model order reduction (MOR)
is vital. MOR aims to reduce the computational burden by generating reduced-order
models (ROMs) that are faster and cheaper to simulate, yet accurately represent the
original large-scale system behavior. MOR replaces (1) by a ROM

Er ẋr = Hrxr + fr (xr ) + Bru, Erxr (0) = Erxr0 , yr = Crxr + hr (xr ), (2)

where Er ,Hr ∈ R
r×r , fr ∈ R

r ,Br ∈ R
r×m and yr ∈ R

�, hr ∈ R
�, Cr ∈ R

�×r such
that the reduced order of the state vector xr ∈ R

r is r � n.A good ROM should have
a small approximation error ‖y − yr‖ in a suitable norm ‖.‖ for a desired range of
inputs u. There exist manyMORmethods for nonlinear systems such as POD, POD-
DEIM, etc. However, applying these MORmethods directly to DAEs typically leads
to ROMs which are ODEs. These may be inaccurate or very difficult to simulate
[1, 3]. This is due to the fact that they do not respect the hidden constraints, the
consistent initial conditions and the smoothness of the input data. In [1, 4], using the
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state-of-the-art transformation, discretized gas transport problems of the form (1a)
are transformed into a systemofODEs and then PODwith theDEIM is used to reduce
the system size. However, this approach leads to stiff ROMs, which affects the choice
of suitable numerical solvers strongly. Moreover, this approach can not be automated
and it depends on the spatial discretization method. It is in particular unclear how to
extend it to gas networkswith network control elements, such as compressors, valves,
regulators, etc. We propose an index-aware MOR (IMOR) method for DAEs arising
fromgas transport networks. This approach involves first the automatic decoupling of
the given discretized and linearized gas transport DAEs into differential and algebraic
parts, then each part can be reduced separately leading to easier-to-simulate ROMs.

The paper is organized as follows. In Sect. 2, we present the discretized dynamic
DAEmodel arising fromgas transport networks and its transformedODEproposed in
[1, 4]. In Sect. 3, we discuss how a linearDAE system can be decoupled automatically
into differential and algebraic parts using IMOR [3]. In Sect. 4, we show the details
of the automatic decoupling applied to the linearized DAE introduced in Sect. 2. In
Sect. 5,we brieflydiscuss how to doMORwithin the IMORmethod, in particular how
to treat the algebraic part. In the final section, we present some numerical examples,
divided into small, medium and large-scale examples illustrating the performance of
the proposed method.

2 Discretized Gas Transport Network DAE Model

In this section, we consider the spatially discretized system of a gas transportation
network proposed in [1, 4] leading to a nonlinear DAE. We then present the index
reduction of the derived nonlinear DAE proposed in [4]. The nonlinear dynamic
system of gas transport in a network is described by the pressure at the supply nodes
ps ∈ R

ns , the pressure at all other nodes pd ∈ R
nd+n0 , the difference of flux over

a pipe segment q− ∈ R
nE and the average of the mass flux over a pipe segment

q+ ∈ R
nE , modelled over a graph with nE edge segments, that are the size of the

discretization, ns supply nodes, nd demand nodes and n0 interior nodes. The resulting
structure of the equation is

|AT
S |∂tps + |AT

0 |∂tpd = − M−1
L q−,

∂tq+ = MA(AT
Sps + AT

0pd) + g(q+,ps,pd),

0 = A0q+ + |A0|q− − Bdd(t),

0 = ps − s(t), (3)

where ML ∈ R
nE×nE and MA ∈ R

nE×nE are diagonal matrices encoding parameters
such as length, radius of the pipe segments as well as constants coming from the gas
equation. The matrixBd ∈ R

(nd+n0)×nd is a matrix of ones and zeros making sure that
the demand of the demand node is put at the right place in the mass flux equation.
The matrix A0 is created by taking the incidence matrix of the graph representing
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the refined gas transportation network and removing the rows corresponding to the
supply nodes, where AS is the matrix created from the incidence matrix by only
taking the rows corresponding to the supply nodes. The matrices |A0| and |AS|
are the incidence matrices of the undirected graph defined as the component-wise
absolute values of the incidence matrices of the directed graph, see [1]. The vectors
d(t) = (. . . , di (t), . . .)T ∈ R

nd and s(t) = (. . . , si (t), . . .)T ∈ R
ns are demand mass

flow and supply pressure, respectively, which are considered as input functions. The
vector g(q+,ps,pd) = (. . . , gk(q+,ps,pd), . . .)T ∈ R

nE is the discretization of the
gravity and friction term and therefore represents the nonlinear part of the equation
with

gk(q+,ps,pd) = −gkψk(pd ,ps)
�hk
Lk

− λk
qk+|qk+|

ψk(pd ,ps)
,

where ψk(pd ,ps) is the k-th entry of the vector-valued function:

ψ(pd ,ps) = |AT
S |ps + |AT

0 |pd ∈ R
nE .

The constant λk encodes friction and other specifics of the pipe segment k, whereas
gk represents the gravity and pipe specific parameters and �hk denotes the height
difference of the pipe segment. These scalar parameters in the system and those
defined earlier are known at least within some range of uncertainty. System (3) can
be rewritten in the form (1a) leading to a system of nonlinear DAEs with dimension
n = nE + nE + nd + n0 + ns . The desired outputs in R

ns+nd can be obtained using
the output equation

y =
(
yq
yp

)
=

(
0 |AS| 0 0
0 0 BT

d 0

)
⎛
⎜⎜⎝
q−
q+
pd
ps

⎞
⎟⎟⎠ ,

where yq = |AS|q+ and yp = BT
d pd . If we let x = (

qT− qT+ pTd pTs
)T ∈ R

n, then the
discretized gas flow model can be written in the form (1), where

E =

⎛
⎜⎜⎝
0 0 |AT

0 | |AT
S |

0 I 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , H =

⎛
⎜⎜⎝

−M−1
L 0 0 0

0 0 MAAT
0 MAAT

S|A0| A0 0 0
0 0 0 I

⎞
⎟⎟⎠ , f(x) =

⎛
⎜⎜⎝

0
g(x)
0
0

⎞
⎟⎟⎠ ,

B = −

⎛
⎜⎜⎝
0 0
0 0
0 Bd
I 0

⎞
⎟⎟⎠ , C =

(
0 |AS | 0 0
0 0 BT

d 0

)
, u =

(
s(t)
d(t)

)
, h(x) = 0.

with ns + nd inputs. In [4], simulation and MOR of (3) were discussed and the
tractability index concept was used to classify the DAE. It was shown that gas
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transportation networks are of tractability index 1 if and only if they have only one
supply node, otherwise they are of index 2. However, the transformation techniques
using projectionmatrices and back substitutionwere used to rewrite (3) into nonlinear
ODEs given by

(|A0|ML |AT
0 | 0

0 I

) (
∂tpd
∂tq+

)
=

(
0 A0

MAAT
0 0

) (
pd
q+

)
+

(|A0|ML |AT
S |∂ts(t)

g(q+, s(t),pd)

)
(4)

+
(

0 −Bd

MAAT
S 0

) (
s(t)
d(t)

)
.

After simulating the aboveODE,q− andps can then be computed in a post processing
step, however it is not necessary to compute the desired output. We can observe the
dimension of the original DAE (3) has been reduced to nd + n0 + nE . Then using
standard MOR methods can be applied to the index-reduced ODE (4).

3 Automatic Decoupling of Linear DAEs

In this section, we recall the automatic decoupling process, which can be used for
any linear DAE with certain properties [3]. In order to use this approach, we have
to first linearize our nonlinear DAE, then use the automatic decoupling. A solution
of the system is then computed from the decoupled system. This approach can be
summarized in Fig. 1.

We first linearize the nonlinear DAE (1) by computing a stationary solution xs for
a given static input us . This means we have

0 = Hxs + f(xs) + Bus .

Fig. 1 Graphical
representation of automatic
decoupling of DAEs
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Then, using theTaylor series expansion around a steady-state operatingpoint (xs ,us),
a linearized DAE system is obtained given by

Ex̄′ = Ax̄ + Bū, Ex̄(0) = Ex̄0, (5a)

ȳ = Cx̄, (5b)

where A = ∂F
∂x

∣∣∣∣
xs

= H + ∂f
∂x

∣∣∣∣
xs

∈ R
n×n , x̄ = x − xs ∈ R

n and ū = u − us ∈ R
m .

The linearized DAE system (5a) holds in a neighborhood of the stationary point
(xs,us) for the nonlinear DAE (1).

Next, we split the linearized DAE (5) into differential and algebraic parts using
special projectors and their respective bases as proposed in [3]. For convenience,
we set x̄ = x and ū = u. According to [3], in order to decouple linear constant
coefficientsDAEs into differential and algebraic parts, we can use the definition of the
tractability index as the starting point. Assume (5) is solvable, i.e., det(λE − A) �= 0,
thenwe can define amatrix and projector chain by settingE0 := E andA0 := A given
by

E j+1 := E j − A jQ j , A j+1 := A jP j , for j≥0, (6)

where Q j ∈ R
n×n is a projector onto the null space of E j and P j = I − Q j ∈ R

n×n .

Then if there exists an index γ such that Eγ is nonsingular and all E j are singular
for all 0 ≤ j < γ − 1 it is called the tractability index. In [4], the tractability index
concept was used to classify DAEs arising from gas transportation networks. In this
paper, we discus how the tractability index concept can be used to split the DAE into
differential and algebraic parts. In order to obtain an appropriate tool for decoupling
of the DAE (5) of index higher than one, an additional constraint Q jQi = 0, j > i,
is introduced. This class of projectors are sometimes called admissible projectors
[5] or canonical projectors [6]. These projectors are numerically feasible and their
construction is well discussed in [6]. A key step in forming the projectors in (6) is
to find the initial projectors Q j spanning the nullspaces of the usually sparse E j .
Standard ways of identifying the nullspace include singular value decomposition
(SVD) or alike, which do not utilize matrix patterns and can be expensive for large-
size matrices. The most efficient way is to employ the sparse LU decomposition-
based routine, called LUQ, see [7]. This same routine was also used to construct the
projector bases introduced in [3]. According to [3], these projectors and projector
bases can be used to split system (5) into an equivalent decoupled system given by

Ep∂tξp = Apξp + Bpu, ξp(0) = ξp0 , (7a)

−L∂tξq = Aqξp − Lqξq + Bqu, (7b)

y = Cpξp + Cqξq , (7c)

where L ∈ R
nq×nq is a nilpotent matrix with index γ and Lq ∈ R

nq×nq ,Ep ∈ R
np×np

are always non-singular matrices. The subsystems (7a) and (7b) correspond to the



Index-Aware MOR for Gas Transport Networks 197

differential and algebraic parts of system (5). ξp ∈ R
np and ξq ∈ R

nq are the differen-
tial and algebraic variables, respectively. The value of the differential variable ξp is
computed by applying any standard numerical integration scheme to (7a). After com-
puting the value of the differential variable, the algebraic variables can be computed
as follows. We can observe that (7b) can be rewritten as

Lqξq − L∂tξq = Aqξp + Bqu ⇒ (I − LL−1
q ∂t )Lqξq = Aqξp + Bqu

⇒ Lqξq = (I − Nq∂t )
−1

(
Aqξp + Bqu

) ⇒ Lqξq =
γ−1∑
j=0

N j
q∂

j
t

(
Aqξp + Bqu

)
,

where Nq = LL−1
q is also a nilpotent matrix with the same index γ as L. Thus, (7b)

can be rewritten as

Lqξq =
γ−1∑
j=0

N j
q

(
Aq∂

j
t ξp + Bq∂

j
t u

)
. (8)

The above system can be simulated using numerical solvers. Thus, the algebraic
variable ξq is computed by first applying numerical integration on (7a) to obtain ξp,
and then apply numerical solvers for (8). Then the output solution can be obtained
using (7c). Hence, instead of numerically integrating (7b) one has to numerically
solve (8) which leads to stable solutions. For the two relevant values of tractability
index in our situation, (5) becomes

• γ = 1:

Lqξq = Aqξp + Bqu. (9)

• γ = 2:

Lqξq = Aqξp + Bqu + Nq
(
Aq∂tξp + Bq∂tu

)
. (10)

In order to avoid numerical errors while solving the above system, ∂tξp can be
obtained by applying numerical solver for (7a) after obtaining the value of ξp,
while ∂tu can be computed explicitly or symbolically.

Finally, we discuss how thematrix coefficients of (7) can be computed as proposed
in [3]. If (5) is of tractability index γ = 1, the matrix coefficients of (7) are given by

Ep = p̂T0E0p0 ∈ R
n p×n p , Ap = p̂T0A0p0 ∈ R

n p×n p , Bp = p̂T0B ∈ R
n p×m ,

L = 0, Lq = q̂T0A0q0 ∈ R
nq×nq , Aq = q̂T0A0p0 ∈ R

n p×nq ,

Bq = q̂T0B ∈ R
nq×m , Cp = Cp0 ∈ R

�×n p , Cq = Cq0 ∈ R
�×nq and ξp0 = p∗T

0 P0x(0).
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The columns of the matrices

• q0 ∈ R
n×nq and p0 ∈ R

n×np are linearly independent and span the column
spaces of projectors Q0 ∈ R

n×n and P0 ∈ R
n×n , respectively. p∗T

0 ∈ R
np×n is the

left inverse of basis p0 such that p∗T
0 p0 = Inp .

• p̂0 ∈ R
n×np and q̂0 ∈ R

n×nq are linearly independent and span the null spaces of
the matrices qT

0A
T
0 ∈ R

nq×n and ET
0 ∈ R

n×n, respectively.

In this paper, we restrict ourselves to tractability index γ = 1, but in the case
tractability index γ = 2, the matrix coefficients of (7) can be computed as discussed
in [3].

The proposed automatic decoupling method allows efficient simulation of nonlin-
earDAEs arising fromgas transportation networkswithoutworrying about consistent
initial conditions, hidden constraints and smoothness of the input data. Hence, the
index problem is eliminated. Moreover, the decoupled system is well suited due to
well-conditioned projectors and projector bases required for the decoupling strategy.
The decoupling strategy allows automatic decoupling of nonlinear DAEs arising
from gas transportation networks of any structure.

4 Decoupling Analysis of DAEs Arising From Gas
Transport Networks

In this section, we discuss how the nonlinear DAE (3) arising from the spatial dis-
cretization of the gas transport network proposed in [4] can be explicitly decoupled
using an automatic approach discussed in the previous section.Linearization of (3)
leads to a linear DAE in the form (5). Following the discussion presented in the
previous section, system (5) can be decoupled as follows. Setting

E0 = E =

⎛
⎜⎜⎝
0 0 |AT

0 | |AT
S |

0 I 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ and A0 = A =

⎛
⎜⎜⎝

−M−1
L 0 0 0

0 A22 A23 A24

|A0| A0 0 0
0 0 0 I

⎞
⎟⎟⎠ ,

where A22 = ∂g
∂q+

∣∣∣∣
xs

∈ R
nE×nE , A23 = MAAT

0 + ∂g
∂pq

∣∣∣∣
xs

∈ R
nE×nd ,

A24 = MAAT
S + ∂g

∂ps

∣∣∣∣
xs

∈ R
nE×ns , we can now construct the projector and matrix

sequence as follows. We first construct projectors

Q0 =

⎛
⎜⎜⎝
I 0
0 0

0 0
0 0

0 0
0 0

Q

⎞
⎟⎟⎠ ∈ R

n×n and P0 = I − Q0 =

⎛
⎜⎜⎝
0 0
0 0

0 0
0 0

0 0
0 0

P

⎞
⎟⎟⎠ ∈ R

n×n, (11)
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such that Q0 projects onto the nullspace of E0, where Q ∈ R
(nd+ns ) is the projector

onto the nullspace of E13=
( |AT

0 | |AT
S |

)
and P ∈ R

(nd+ns ) is its complementary pro-
jector. We note that projectors Q0 and P0 are not unique. Using the definition (6) of
tractability index, we obtain E1 = E0 − A0Q0. If we assume E1 to be nonsingular,
then DAE (5) is of tractability index 1, since in [4], it was shown that gas networks
are of tractability index 1 if and only if they have only one supply node. This implies
that E1 is nonsingular if ns = 1 and singular if ns > 1. Since we are considering gas
networks with one supply node, (5) is an index 1 system and its decoupled system
can be derived from (7) leading to

Ep∂tξp = Apξp + Bpu, ξp(0) = ξp0 , (12a)

Lqξq = Aqξp + Bqu, (12b)

y = Cpξp + Cqξq , (12c)

where

Ep = p̂T0E0p0 ∈ R
np×np , Ap = p̂T0A0p0 ∈ R

np×np , Bp = p̂T0B ∈ R
np×m,

Lq = q̂T
0A0q0 ∈ R

nq×nq , Aq = q̂T
0A0p0 ∈ R

nq×np , Bq = q̂T
0B ∈ R

nq×m,

Cp = Cp0 ∈ R
�×np , Cq = Cq0 ∈ R

�×nq and ξp0 = p∗T
0 P0x(0) ∈ R

np .

The columns of the matrices

q0 =

⎛
⎜⎜⎝
I
0

0
0

0
0
q

⎞
⎟⎟⎠ ∈ R

n×nq and p0 =

⎛
⎜⎜⎝
0
I
0
0

0
0
p

⎞
⎟⎟⎠ ∈ R

n×np

are linearly independent and span the column spaces of Q0 and P0 in (11), respec-
tively. Let kq be the dimension of the nullspace of E13, and kp = (nd + ns) − kq .
Then, q ∈ R

(nd+ns )×kq and p ∈ R
(nd+ns )×kp are matrices whose columns are linearly

independent and span the column spaces ofQ and P in (11), respectively. Hence, the

left inverse p∗T
0 ∈ R

np×n of basis p0 is given by p∗T
0 =

(
0 I 0 0

0 0 p∗T

)
∈ R

n×np .where

p∗T is the left inverse of p. Finally, column matrices p̂0 ∈ R
n×np and q̂0 ∈ R

n×nq are
defined as p̂0 ∈ Ker(qT

0A
T
0 ) and q̂0 ∈ Ker(ET

0 ), respectively. We can observe that the
linearized DAE of (3) has been decoupled into np = nE + kp differential equations,
and nq = nE + kq algebraic equations. The differential part has the same dimension
as an implicit ODE (4) for gas transport networks with one supply node.
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5 Index-Aware MOR for Gas Transport Networks

In this, section we discuss how the decoupled system (7) can be reduced using the
index-aware MOR methods. IMOR replaces (7) by an IROM [3]

Epr ∂tξpr = Apr ξpr + Bpru, ξpr (0) = ξpr0 , (13a)

−Lr∂tξqr = Aqr ξpr − Lqr ξqr + Bqru, (13b)

yr = Cpr ξpr + Cqr ξqr , (13c)

where

Epr = VT
pEpVp,Apr = VT

pApVp ∈ R
rp×rp , Bpr = VT

pBp ∈ R
rp×m,

ξpr0 = VT
pξp0 ∈ R

rp×np , Lr = −VT
qLVq ∈ R

rq×rq , Lqr = VT
qLqVq ∈ R

rq×rq ,

Aqr = VT
qAqVp ∈ R

rq×rp , Bqr = VT
qBq ∈ R

rq×m, Cpr = CpVp ∈ R
�×np ,

Cqr = CqVq ∈ R
�×nq .

Vp ∈ R
np×rp is constructed using any standardMORmethod such as POD, empirical

balanced truncation methods, etc., applied to the ODE subsystem

Ep∂tξp = Apξp + Bpu, ξp(0) = ξp0 , (14a)

yp = Cpξp. (14b)

After constructingVp as above, the projectionmatrixVq ∈ R
nq×rq can be constructed

as follows. Substituting ξp ≈ Vpξpr into (8) leads to

Lqξq ≈
γ−1∑
j=0

N j
q

(
AqVp∂

j
t ξpr + Bq∂

j
t u

)
. (15)

We can observe that, for the algebraic variable ξq , we have the restriction

Lqξq ∈ Wq = Kγ(Nq ,Rq) = Span
(
Rq ,NqRq , . . . ,Nγ−1

q Rq
)
,

where Rq = (
Bq ,AqVp

) ∈ R
nq×(rp+m). Then,

ξq ∈ Vq = L−1
q Wq = Kγ(L−1

q Nq ,L−1
q Rq).

We denote by Vq the orthonormal basis of Vq which can be computed using the
singular value decomposition (SVD) and truncating the smallest singular values. For
indexγ = 1 gas transport networkmodels: Vq = orth(L−1

q Rq)while for indexγ = 2
gas transport network models: Vq = orth(

[L−1
q Rq ,L−1

q RqNq
]
). For γ > 2, one
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would in general use Arnoldi for this computation. As a result, both the differential
and algebraic subsystems are reducedwhile preserving the index of the original DAE.
An alternative way is to construct Vq using POD by generating snapshots using (8).

6 Numerical Examples

In this section, we illustrate the performance of the proposed automatic decoupling
and IMORmethods for nonlinearDAEs arising fromgas transportation networks.We
compute the relative error in the format Re.error = ‖y − yr‖2/‖y‖2.The output error
is defined as max(Re.error(pressure),Re.error(mass flow)). In all our experiments
the speedup is a number that measures the relative performance of simulating the
original and the reduced-order model. Simulations were done usingMATLAB®Ver-
sion R2012b on a Unix desktop.

Example 1 In this example, we compare different gas transport network models
derived from the same nonlinear DAE (3). These are: the linearized DAE model (5)
and the linear decoupled model (7). We consider a small size gas transport network
obtained from [8]. It consists of 17 nodes, 16 pipes, 1 supply node and 8 demand
nodes. Spatial discretization leads to a nonlinear DAE of the form (3) with n = 55,
m = � = 9,ms = 1,md = 8. We consider steady pressure at the supply node and
mass flow as step function at demand nodes as input functions as shown in Fig. 2.
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Fig. 2 Input functions in the time interval t ∈ [0, 500s] .
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Fig. 3 Comparison of the output solutions in the time interval t ∈ [0, 500s] .

The linearized DAEmodel is of the form (5) with dimension 55,while the decou-
pled system (7) has np = 36 differential equations and nq = 19 algebraic equations.
We used the implicit Euler integration scheme to simulate the linear DAE. We also
used the same method to simulate the ODE part and the LU method for solving the
algebraic part of the decoupled system. Using the same time steps and time interval,
we simulated all the models and some of the results are presented in Fig. 3. We can
observe that the solutions of the linearized DAE and the linear decoupled models
coincide as expected.

In Examples 2 and 3, we use gas transport network models from [9] with only one
supply pressure node to illustrate the performance of the IMOR method proposed in
Sect. 5. Both networks lead to index 1 DAEs. We apply the empirical balanced trun-
cation (EBT) [10] and POD methods to reduce the differential part and by induction
the algebraic part is also reduced to its minimum realization leading to ROMs which
are also DAEs of the same index.We call the correspondingmethods the index-aware
EBT (I-EBT) and index-aware POD (I-POD). For comparison, we also applied EBT
and POD to the decoupled original model.

Example 2 In this example, we are interested in comparing different standard MOR
methods with that of the IMOR methods. We consider a medium size gas transport
pipe networkwith 200 pipes generated using the following data. The length, diameter
and average roughness of each pipe are chosen constant given by 100m, 1m and
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Table 1 Comparison of the standard MOR and IMOR methods

Method Decoupled
model

IROM Red.
size

%Red. Offline Out. error Speed-
up

n p nq rp rq r

I-POD 400 201 2 4 6 99.0 0.07 1.2 × 10−5 4.1

POD − − − − 2 99.7 0.07 3.7 × 10−5 5.5

I-EBT 400 201 7 9 16 97.3 24.0 7.2 × 10−5 4.4

EBT − − − − 16 97.3 37.9 7.3 × 10−5 2.4

1.0 × 10−3 m, respectively. The gas composition through the network is methane
with specific gas constant 518.26 J/KgK at supply inputs as shown in the first row
of Fig. 6 in the time interval t ∈ [0, 86400s] . This leads to a nonlinear DAE (3) of
dimension n = 601 which we linearized and decoupled into np = 400 differential
equations and nq = 201 algebraic equations. For comparison, the size of ROMs for
different MOR methods is determined by making sure that the output error is below
10−4 and the results are presented in in Table 1.

We observed that direct reduction using EBT and POD methods lead to ODE
ROMs which are very close to DAEs which affects the choice of numerical solvers,
while the I-EBT and I-POD methods lead to DAE ROMs with the same index as the
original system.We can also observe that the I-ROMs are computationally cheaper to
construct compared to the ODE ROMs since they need lower offline costs especially
with the EBTmethod. However, the standardMORmethods leads to slightly smaller
ROMs compared to the IMOR methods. This is due to the fact the standard MOR
methods eliminate the algebraic part and yield ODEROMswhile the IMORmethods
preserves the algebraic part leading to a DAE ROM. For speed-up comparisons, we
use the implicit Euler scheme for the linearized coupled DAE system. In Figs. 4
and 5, we compare the relative error of the pressure and mass flows for both the POD
and EBTmethods are varying sizes of the ROMs. Figure 6 shows the output solution
of the ROMs.

Example 3 In this example, we are interested in comparing the speed-ups of the POD
with that of the I-POD.We consider a large-scale gas transport pipeline network with
5,000 pipes. This model was generated numerically using the following data. The
length, diameter and average roughness of each pipe are chosen constants given by
3,630m, 1.422m and 1.0 × 10−6 m, respectively. The gas composition is methane
with specific gas constant 518.26 J/KgK at supply inputs as shown in the first row
of Fig. 7 in time interval t ∈ [0, 2400] . This leads to a nonlinear DAE system (3)
of dimension n = 15, 001 which we linearized and decoupled into np = 10, 000
differential equations and nq = 5, 001 algebraic equations. Generating matrices of
the decoupled system took 370.6s. This implies that decoupling is computationally
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Fig. 4 Comparison of the relative errors of the POD models
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Fig. 5 Comparison of the relative errors of the EBT models
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Fig. 6 Comparison of the supply mass flow and demand pressure of the ROMs

Table 2 Comparison of the POD and I-POD methods

Method Decoupled model IROM %Red. Out. error Speed-up

n p nq rp rq r

I-POD 10, 000 5, 001 4 6 10 99.93 2.0 × 10−6 644.6

POD − − − − 4 99.97 1.8 × 10−5 575.8

efficient. For comparison the size of ROMs for different PODmethods is determined
by making sure that the output error is below 10−4 and the results are presented in
Table 2, where, we can observe that I-POD is 1.12 times faster compared to the
direct reduction using POD. In Fig. 7, we compare the output solutions of ROMs
which coincide as expected.
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Fig. 7 Comparison of the supply mass flow and demand pressure of the ROMs

7 Conclusion

We have proposed an automatic decoupling strategy and an index-aware MOR
method for linear DAEs arising from gas transportation networks. The automatic
decoupling strategy is based on the foundations of tractability index and is indepen-
dent of the spatial discretization method applied on the gas transportation networks.
Moreover, the decoupling strategy can be applied on general structured gas transport
networks with network control elements such as valves, compressors, regulators, etc.
The main advantage of the decoupling strategy is that, it allows the use of standard
numerical methods for simulation and model reduction of gas transport networks
since it eliminates the index problem which normally causes numerical troubles.
The IMOR method leads to ROMs which are also decoupled which makes them
easier to simulate. Our decoupling strategy does not experience numerical troubles
due to the well-conditioned projectors and projector bases. In cases of ill-conditioned
matrices, incidence matrices can be used to construct these projectors and projector
bases. This approach can also be applied directly to parametrized systems arising
from gas transportation networks, if the projectors and the bases can be construct
such that they are independent of the parameters. However, during the linearization
process some information can be lost. Future research will deal with nonlinear DAEs
without any kind of linearization.
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