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Abstract This work proposes a new reduced order modelling method to improve
the computational efficiency for the dynamic simulation of a jointed structures with
localized contact friction non-linearities. We reformulate the traditional equation
of motion for a joint structure by linearising the non-linear system on the contact
interface and augmenting the linearised system by introducing an internal non-linear
penalty variable. The internal variable is used to compensate the possible non-linear
effects from the contact interface. Three types of reduced basis are selected for the
Galerkin projection, namely, the vibration modes (VMs) of the linearised system,
static modes (SMs) and also the trial vector derivatives (TVDs) vectors. Using these
reduced basis, it would allow the size of the internal variable to change correspond-
ingly with the number of active non-linear DOFs. The size of the new reduced order
model therefore can be automatically updated depending on the contact condition
during the simulations. This would reduce significantly the model size when most
of the contact nodes are in a stuck condition, which is actually often the case when
a jointed structure vibrates. A case study using a 2D joint beam model is carried out
to demonstrate the concept of the proposed method. The initial results from this case
study is then compared to the state of the art reduced order modeling.
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1 Introduction

Jointed structures have been widely used in gas turbine engine to transfer the loading
from one component to the other. The joints between the substructures such as the
shrouds, underplatform damper and dovetail joint in gas turbine engines are also
regarded as the primary damping sources for energy dissipation. However, they also
significantly complicate the dynamic behaviour of an assembly by the change of sta-
bility, the jumpphenomenon and energy localization [4]. It is therefore very important
to understand and improve the dynamics of the joints for a improved design. The use
of finite element (FE)method for analysing such dynamical systems is however often
impeded by the unacceptable computational expense due to the tremendous size of
the model and strong inherit contact friction nonlinearities. The harmonic balanced
method (HBM) provides a very efficient approach to obtain the steady state dynamic
behaviour of such jointed structures comparing to the time integration method [4].
However, HBM would expand the size of the orginal system by multiplying the
chosen number of harmonic coefficients [6]. One of the viable approaches to take
these nonlinearities into account is to reduce the model size by several orders of
magnitudes by employing reduced order modelling (ROM) techniques [4, 6, 12].

Component mode synthesis (CMS) techniques have been extensively used for
model order reduction for linear and localised nonlinear dynamic systems where
the physical nonlinear DOFs on the interface are retained as unknowns [8, 13].
A CMS-Hybrid approach based on free interface modes and flexible residual have
been successfully applied to the Imperial VUTC in-house FORSE solver [6]. Another
effectiveCMSapproach is on the use ofCraig-Bampton (CB)method [2].A reviewof
CMS based ROM techniques for the applications to the linear vibration and localized
nonlinear vibration can be referred to [3, 12]. The main drawback of these two
approaches is the size of the reduced model is proportional to the number of DOFs
involved in nonlinearities. It could become extremely large when nonlinear interface
regions are intensive and densely meshed [10, 12]. In terms of modeling contact
friction on the interface, a node-to-node modeling approach has been widely used
[1] and also experimentally validated for turbine underplatform damper at Imperial
VUTC [5]. The contact friction conditions can be described as in stuck, slip and gap
states. More details on the contact friction modelling would be introduced in Sect. 2.
Figure1 shows the forced frequency response of a turbine blade and also the average
contact conditions of the interface nodes during the non-linear dynamic analysis.
An interesting observation is that most of the contact nodes are actually in a stuck
condition under vibrational loads. When the contact interface is in a stuck condition,
the coupling between two contact interfaces can be represented as the linear springs.
An inspiration from this observation is that we can linearise the non-linear system
using linear springs, and compensate the non-linear effect from those contact nodes
in a slip or gap condition with a internal penalty variable.

This paper aims to investigate this novel penalty-based ROM approach in order
to further reduce the model size comparing to those reduced models using classical
CMS methods. The paper is organized as follows: The reformulated equation of
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Fig. 1 An example of the contact conditions of a turbine during the vibrations

motion (EOM) for this penalty approach will be firstly presented; it is followed by
the presentation of reduced basis for Galerkin projection; we will then elaborate how
this method can be coupled with the harmonic balanced method; the performance of
this approach will be then demonstrated using a 2D jointed beam case study.

2 Formulation

2.1 Equation of Motion

A dynamic system consisting of two connected substructures with localized contact
friction interfaces is considered as an example. The partial differential governing
equation of such a system without taking into account of damping matrix is:

Mü + Ku = F − Fnl(u, ü) (1)

It is assumed the size of each substructures is N and the size of contact DOFs for
each substructure is M . Using the finite element modelling method, the assembled
system with two substructures can be expressed as:
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[
M1 0
0 M2

] [
ü1
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(2)
where M1,M2,K1,K2 are the mass and stiffness matrix of two substructures with
the same dimensions of NxN ; FT and FN are the 2Mx1 non-linear contact friction
force vector, which are in a function of the relative displacement of the contact
interface in a joint structure. BTand BN are the 2Nx2M boolean matrix related to
the boundary DOFs in tangential and normal direction separately.

2.2 Contact Friction Modelling

A node-to-node approach with Jenkin model is used to model the contact friction
phenomenon in a joint, which includes stuck, slip and gap states. These contact
friction states are dependent on the preloading levels as well as the amplitude of
relative movements on the interface. The Jenkin model has been widely used and
also validated with experiments [1]. The formulation for a 3D contact node pair using
this Jenkin model can be written as:

FT
x =

⎧⎪⎨
⎪⎩
kt (Δx − Δxc) + N 0

x , stuck

μFN
z sin(θ), slip

0, gap

(3)

FT
y =

⎧⎪⎨
⎪⎩
kt (Δy − Δyc) + N 0

y , stuck

μFN
z cos(θ), slip

0, gap

(4)

FN
z =

⎧⎪⎨
⎪⎩
knΔz + N 0

z , stuck

knΔz + N 0
z , slip

0, gap

(5)

whereΔx,Δy and Δz are the time-dependent tangential and normal relative dis-
placement of a contact node pair; Δxc,Δyc are internal variables representing the
tangential position of the slider, which also needs to update at each time step; FT

x , FT
y

are the tangential force in x and y direction; FN
z is the normal force in z direction;

θ is the angle between the tangential force component in x and y direction, which is
determined by the predicted tangential force:

θ = arctan(
kt (Δx − Δxc) + N 0

x

kt (Δy − Δyc) + N 0
y

) (6)
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The stuck condition occurs when the predicted tangential force
√
FT
x
2 + FT

y
2 is

less than the critical slipping forceμFN
z . The contact forcewould behave linearly and

there would be no energy dissipation. The slip condition occurs when the predicted
tangential friction force is larger than the critical value μFN

z . The tangential contact
force would behave non-linearly with a value of μFN

z and the energy dissipation
would happen then. The gap condition would happen when predicted normal force
FN
z is less than zero, and all the contact force would be zero then.

3 Penalty-Based Approach

3.1 EOM Modification

For the proposed penalty-based approach, the original EOM in Eq. 2 is linearised
on the interface using contact stiffness by assuming all of the contact nodes are in a
stuck condition. The modified linearised EOM of the system can be expressed as:

[
M1 0
0 M2

] [
ü1
ü2

]
+

[
K1 + KJoint −KJoint

−KJoint K2 + KJoint

] [
u1
u2

]
=

[
F1

F2

]
(7)

whereKJoint is the NxN stiffness matrix containing the local stiffness matrix associ-
ated to the joint DOFs. The linearised stiffnessmatrix in Eq.7 is denoted asKlinearized.

When any contact nodes are in a slip or gap condition, an internal variable Δp
would be needed to augment linearised EOM. The dimension of Δp is Mx1, which
is the half number of the total joint DOFs. The internal variable would become zero
when a contact node are in a stuck condition. The expression of the internal variable
can be formulated as:

Δp =

⎧⎪⎨
⎪⎩
0, stuck

Knl,nl
Joint

−1
(Fnl(Δu) − Knl

JointΔu), slip

Knl,nl
Joint

−1
(Fnl(Δu) − Knl

JointΔu), gap

(8)

where Knl,nl
Joint is the MxM joint stiffness matrix associated to non-linear internal

variable; Knl
Joint is the NxM joint matrix relating to the DOFs in each substructure.

Δu is the assembly of relative displacement (Δx,Δy,Δz) of all the contact pairs in
joint interfaces. By integrating the internal penalty variable, the modified EOM can
be further augmented:

⎡
⎣M1 0 0
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0 0 0
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⎦
(9)
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Here,MNew,KNew are used to denote as new assembledmass and stiffness matrix.
It is worth noting that the zero part of Δp associated to the contact nodes in a stuck
condition can be further eliminated in EOM. The following section would detail how
the ROM formulates to enable such an automatic updating.

3.2 Reduced Basis

Galerkin projection is used to reduce the size of a physical model by transforming it
into a subspace. The solution of the system can be expressed as a linear combination
of vectors spanning the subspace. The selection of the reduced basis is crucial in
determining the accuracy and computational efficiency of a reduced system. More
about Galerkin projection can be referred to [7, 12]. The reduced basis for the pro-
posed penalty approach contain three parts, namely the vibrational modes of the
corresponding linearised system, constrain (static) modes and also the modal deriva-
tives vectors (Trial Vector Derivatives). The vibration modes can be obtained by
solving the eigenvalue problem of the linearised system Eq.2:

− ω2

[
M1 0
0 M2

] [
φ
] +

[
K1 + KJoint −KJoint

−KJoint K2 + KJoint

] [
φ
] = [

0
]

(10)

Like CMS techniques, the static modes are used to approximate the high fre-
quency response on the contact interface, which can be obtained by applying unit
displacement vectors on the DOFs related to internal penalty variable.

⎡
⎢⎣
K1 + KJoint −KJoint −Knl

Joint

−KJoint K2 + KJoint Knl
Joint

−Knl′
Joint Knl′

Joint Knl,nl
Joint

⎤
⎥⎦

[
ϕ

I

]
=

[
0
R

]
(11)

where I is the MxM identity matrix; ϕ is the 2NxM matrix including all the static
modes; R are the MxM reaction force matrix.

TVDs are used to calibrate the linear reduced basis in order to consider the effect
of the non-linearities from the contact friction. It is particularly usefully when all
contact nodes are in a gap condition. The detailed formulation to calculate the TVDs
can be referred to [11]. The first-order modal derivatives of the linear reduced basis
can be calculated as follows:

ϕi,j = K−1
linearised

∂Klinearised

∂qj
ϕj, φi,j = K−1

linearised
∂Klinearised

∂qj
φj (12)

Where ϕi,j and φi,j are the TVDs from the linear vibration modes φ j and constrain
modes ϕ j . The number of TVD vectors is equal to the squared number of the linear
reduced basis. The proper orthogonal decomposition is then used to reduced the size
of TVDs.
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The transformation of the physical system to the modal domain can be shown as
follows:

⎡
⎣ u1
u2
Δp

⎤
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⎤
⎦ ,MR = T

′
MNewT,KR = T

′
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where η1 and η2 are modal participation factors for vibrationmodels and TVDs;ΔpR
is the non-zero part of Δp; B is the index matrix to extract the non-zero part of Δp,
which would be updated during the simulation depending on the contact conditions;
the size of transformation matrix T would be also updated accordingly. As a result,
the reduced mass and stiffness system KR andMR would be adaptively changing to
reduce the computational time.

4 Harmonic Balanced Method with Continuation
Techniques

Harmonic balanced method is used for solving the Eq.7. The idea of this method
is to represent the steady state non-linear dynamic response using truncated Fourier
series with n harmonic series:

u(t) = ũ0 +
n∑

i=1

(ũci cosmiωt + ũsi sinmiωt) (15)

where ˜uc,si are cosine and sine harmonic coefficients; ω is the principal vibration fre-
quency; ũ0 is the zero harmonic response.The Newton-Raphson method, in coupling
with the alternating frequency-time (AFT) method, is used to solve these nonlinear
equations. The AFT technique is used to transform the frequency-domain solution
to the time domain for non-contact force calculation, and transforme non-linear con-
tact force back to frequency domain. More details about this part can be referred to
[4]. Figure2 illustrates the implementation process about how the contact friction
model,iterative Newton-Raphson solver work with reduced order modeling in HBM.
The physical nonlinear DOFs ub on the contact interface is firstly expanded from
modal subspace by T before employing the AFT procedure. After AFT procedure,
the nonlinear force Fnl is then projected back to the modal subspace. The continua-
tion techniques are then used to obtain the forced frequency response. More details
about continuation techniques can be referred to [9].
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Fig. 2 An illustration of how Newton-Raphson solver works with AFT scheme and ROMmethods

The automatic size updating depending on the contact condition is achieved as
follows.When evaluating the continuous forced frequency response, the contact con-
dition of all interface nodes would need to be assessed using the previous converged
solution. This would help to generate the index matrix B. The size of system can
be then reduced for the new simulation. If using the continuation techniques with
HBM, the size updating would be performed at the predictor stage. The size of
the system would be kept same in the corrector stage with the iterative solver. The
implementation of the size updating with HBM is still on-going research.

5 Case Study

Figure3 shows a jointed beam model with linear springs connecting the two equiv-
alent beam substructures. The length of each beam is 0.3m. The width and height
of the cross section is 25mm and 6mm respectively. They are modelled by using the
Euler-Bernoulli beam elements, where each node has three DOFs (ux , uy, rz). The
beams are made of steel with a nominal density of 7850kg/m3 and Young’s modulus
of 2.1e11Nm−2. The tangential stiffness of the springs in the joint is 1e4N/m while
normal contact stiffness is 5e6N/m and bending stiffness of 8e6Nm/rad.

Figure4 shows the first nine natural frequencies (NFs) andmodes of this linearised
jointed beam system. These nine modes all belong to the bending modes. Due to the
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Fig. 3 A 2D FE model of a jointed beam with contact non-linear springs
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Fig. 4 Modes of a linearised jointed beam

large value of stiffness used in the joint, local elastic modes in the joint do not appear.
The forced frequency response of the second bending mode would be studied.

The proposed method and also other reference methods are applied to the lin-
earised joint beam model at first. The reference methods include CB, Rubin, Dual
Craig-Bampton, MacNeal, Joint interface method and TVD methods. The formula-
tion of these methods can be referred to [12]. The idea here is to compare the quality
of these methods when all the contact nodes are in a stuck condition. Figure5 shows
the comparison of the natural frequency (NF) errors between the proposed method
and other reference methods. Except for the penalty method, all other methods have
the same number of normal modes, namely 20. In terms of the static modes, CB,
Rubin and MacNeal methods have the same number as the non-linear DOFs while
DCB and JIM methods have only half number of these non-linear DOFs. The static
modes with TVDmethod is independent of the non-linear DOFs. In this case, the size
of penalty method would be equal to the number of VMs in the linearised structure,
because the number of static modes is zero due to the stuck condition. Figure5 shows
the proposed method achieves the best accuracy with the smallest reduction ratio.
RR stands for the reduction ratio, which is the ratio between the size of a ROM to
the size of a full system.

For linear analysis, it is well known that the pre-processing effort would be the
main challenge when using the CMS techniques, because the inversion of matrix
during the dynamic analysis would be only needed once for each frequency. For non-
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Fig. 5 NF relative errors of the jointed beams between different ROM methods (RR:reduction
ratio)

linear analysis, the reduced size of systemwould be also a challenge especially when
the assemble structure contains intensive contact interfaces. It is because the iterative
solver would be needed to solve the reduced system until the solution converges.
Furthermore, using the HBM, the final size of system would be expanded by the
number of harmonics. Based on the authors’ previous simulation, the computational
time would be cubic relation to the reduced number of DOFs [5]. Therefore, the RR
would be particularly important to non-linear vibration analysis. In terms of the off-
line cost, the proposed method has the same computational time for pre-processing
when comparing to the classical CMS techniques.

For nonlinear analysis, the linear springs on the contact interface are replaced by
using Jenkin contact friction model. Figure5 shows the comparison of the frequency
response functions (FRFs) between the proposed method and Rubin, CB methods.
The structure is excited in the middle of the first substructure in the y direction.
The two structure would be separated if the excitation level was large, which would
activate the soften effect of the in-phase and out-of-phase bending modes. For Rubin
and CB methods, the number of nominal modes is 10 while the number of static
modes is equal to the number of non-linear DOFs in the joint. Figure6 shows the
peak of the out-of-phase resonance shafts on the left but the amplitude of the response
remain unchanged. It means that the jointed structure experiences the separation in
resonance frequency region. CB and Rubin have the same FRFs as that from the
full solution. Using 10 vibrational modes and 3 static modes, the penalty approach
leads to the noticeable errors. When increasing the number of vibration modes to 20,
the accuracy with the proposed method improves but one still can observe the clear
discrepancy. This is because the introduced non-linear force on the contact interface
would affect the linear reduced basis and cause mode interaction between them
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Fig. 6 Forced frequency response comparisons between CB,Rubin and Penalty ROM methods

[11]. This mean the linear reduced basis need to be calibrated in order to accurately
represent the dynamics of coupled systems. The TVD method is one of the effective
approaches for the calibration when this coupling between linear vibration modes is
significant [11]. Three TVDs vectors are then added into the reduced basis to assess
how this would improve the accuracy of the propose method. The results show that
the proposed method with TVDs can obtain the same FRF as that from the full
solution. Comparing to the CB and Rubin methods, the size of this reduced jointed
structure model using the proposed method can be reduced by 40% even near the
resonance frequency region.

6 Conclusions and Future Work

A novel penalty-based reduced order modelling approach has been proposed for
dynamic analysis of a jointed structure with localised contact friction non-linearities.
The formulation of the proposed approach has been presented where the contact
friction is modelled by Jenkin model. We also showed how the proposed method
can be effectively integrated with the harmonic balanced method, AFT and non-
linear solver. A case study using jointed beam has been carried out to demonstrate
the proposed method. The result obtained from the penalty approach was compared
with the full solution and also classical Rubin and CB methods. The initial results
show the method can effectively capture the FRFs of the non-linear dynamic system.
TVDs are particularly useful to improve the accuracy when the contact interface
is largely in a non-linear condition. Comparing to the classical CMS methods, the
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proposed method can reduce the size of ROM further when most of contact nodes
are in a stuck condition.

Themain objective of this paperwas to present the formulation of this new reduced
order modelling approach for a joint structure, and demonstrate the concept with a
simple case study. Further developments would be needed to couple the proposed
method with continuation techniques for HBM. This would enable the automatic
size updating during the forced frequency response simulations. Also, high fidelity
models are needed to further test and validate the proposed method and effects of
TVDs on the dynamics of joint structures.
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