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IUTAM Symposium on “Model Order Reduction
of Coupled System” MORCOS 2018

About the Symposium and the Proceedings

For the understanding and development of complex technical systems like
automotive/aeronautic systems, bionic systems, mechatronic systems, the human
body, civil structures, material modeling, or multiscale systems, an integrated,
multiphysics, and multidisciplinary point of view is essential. The combination of
different physical domains or different subcomponents can increase functionality,
allow optimization, and reduce cost. Nowadays, many problems can be solved by
simulation within one physical domain, e.g., by using the well-known finite element
method, where the models can have more than 107 degrees of freedom, based on the
meshing of 3D-data from design or CT-scans. However, for correct prediction,
optimization, and control of nowadays complex systems the different simulation
domains respectively substructures need to be connected with each other.
Frequently, this combination is only possible by using advanced and modern
reduced-order models where the large-scale system is approximated with a system
of much smaller dimension. Here the most dominant features, input–output
behavior, passivity, stability, etc. of the large-scale system are to be retained in the
reduced system as much as possible.

The field of model order reduction (MOR) is interdisciplinary as rapid simula-
tion requests are indispensable in all engineering application areas. It was, therefore,
the aim of this IUTAM symposium to encourage the interdisciplinary work between
researchers from Engineering, Mathematics, and Computer Science to identify,
explore, and compare the potentials, challenges, and limitations of recent and new
advances. The symposium took place at the University of Stuttgart, Campus
Vaihingen, in Stuttgart, Germany, from May 22 to 25, 2018, and was hosted by the
Institute of Engineering and Computational Mechanics, the Institute of Applied
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Analysis and Numerical Simulation and the Cluster of Excellence in Simulation
Technology (SimTech).

For many years, SimTech has been active in these fields and has established
numerous cooperations and contacts with international scientists and international
companies. Hence, the symposium perfectly fitted to the continuously running
MOR-seminar and to the MORML 2016 Workshop on “Data-driven Model Order
Reduction and Machine Learning”. But also at the Institute of Engineering and
Computational Mechanics, this IUTAM symposium nicely resumed the tradition of
IUTAM symposia, as this was the sixth IUTAM symposium hosted by this institute
after the following:

• the IUTAM symposium on “Nonlinear Dynamics in Engineering Systems” in
1989,

• the IUTAM symposium on “Optimization of Mechanical Systems” in 1995,
• the IUTAM symposium on “Multiscale Problems in Multibody System

Contacts” in 2006,
• the IUTAM symposium on “Dynamical Analysis of Multibody Systems with

Design Uncertainties” in 2014, and
• the IUTAM symposium on “Advances in Biomechanics of Hearing” in 2016.

The IUTAM symposium was supervised by the following international
Scientific Committee: Francisco Chinesta (France), Jörg Fehr (Germany,
Chairman), Bernard Haasdonk (Germany, Co-Chairman), Gianluigi Rozza (Italy),
Anthony T. Patera (USA), Wil Schilders (Netherlands), Taichi Shiiba (Japan), and
Peter Eberhard (Germany, IUTAM Representative). Four keynote presentations
were given by the following:

• Kathrin Smetana (University of Twente, Netherlands),
• Olivier Brüls (University of Liege, Belgium),
• David Knezevic (Akselos, Cambridge, USA), and
• Tommaso Tamarozzi (KU Leuven/Siemens PLM, Belgium).

From the abstracts submitted for the symposium, 37 papers had been selected for
oral presentation. Furthermore, 10 additional poster presentations where given
including a poster flash. In these 47 contributions, many aspects related to model
order reduction were discussed. The importance of linking different physical
domains by using MOR techniques was discussed. The contributions clearly
showed the increase of functionality, the advanced possibilities for optimization,
and the cost reduction. The detailed scientific program of the symposium was as
follows:
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Scientific Program

Tuesday, May 22, 2018

Session 1—Chair: Prof. Dr. B. Haasdonk

Advances in Reduced Order Methods for Computational Fluid Dynamics
Problems in Applied Sciences and Engineering: Perspectives
Gianluigi Rozza*

09:30–10:00

POD-Based Economic Model Predictive Control of Heat Convection
Phenomena
Luca Mechelli*, Stefan Volkwein

10:00–10:30

Fully online ROMs based on LUPOD
Maria-Luisa Rapuń, Filippo Terragni, José M. Vega*

10:30–11:00

Randomized Generation of Localized Approximation Spaces for Parameterized
Partial Differential Equations
Andreas Buhr*, Kathrin Smetana

12:15–12:45

Session 2—Chair: Dr. C. Himpe

Model Order Reduction of Coupled, Parametrized Elastic Bodies for Shape
Optimization
Benjamin Fröhlich*, Florian Geiger, Jan Gade, Manfred Bischoff, Peter
Eberhard

11:30–12:00

Basis Selection for Non-Intrusive Modal Substructuring of Geometric
Nonlinear Finite Element Models
Morteza K. Mahdiabadi*, Daniel J. Rixen

12:00–12:30

Towards an Input-Aware System-Theoretic Model Order Reduction Approach
for Nonlinear Systems
Björn Liljegren-Sailer*, Nicole Marheineke

12:30–13:00

Keynote Presentation 1—Chair: Prof. W. Schilders

Optimal Interface Reduction for Static Condensation or Substructuring
Kathrin Smetana*

14:15–15:00

Session 3—Chair: Prof. Gianluigi Rozza

Hybrid Hyper-Reduced Modeling for Contact Problems in Elastostatics
Jules Fauque*, Isabelle Ramiére, David Ryckelynck

15:00–15:30

A Novel Penalty Based Reduced Order Modelling Method for Dynamic
Analysis of Jointed Structures with Localized Nonlinearities
Jie Yuan*, Loic Salles

15:30–16:00

Session 4—Chair: Prof. K. Smetana

Model Order Reduction for Drilling Automation
Harshit Bansal*, Laura Iapichino, Wil H.A. Schilders, Nathan van de Wouw

16:30–17:00

Structured Cross-Covariance-Based Model Reduction Applied to Gas Network
Models
Peter Benner, Sara Grundel, Christian Himpe*

17:00–17:30

Poster Flash and Poster Presentation—Chair: Prof. P. Eberhard

Reduced-Order Modelling and Computational Homogenisation in
Magnetomechanics
Benjamin Brands*, Julia Mergheim, Paul Steinmann

18:30–18:32

(continued)
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(continued)

Poster Flash and Poster Presentation—Chair: Prof. P. Eberhard

Model Order Reduction for the Monodomain Reaction-Diffusion Equation in
Neuro-Muscular Systems
Nehzat Emamy*, Pascal Litty, Thomas Klotz, Miriam Mehl, Oliver Röhrle

18:32–18:34

Thermal Model Order Reduction Using Load Vector Snapshots to Consider
Heat Radiation
Stephan Rother*, Michael Beitelschmidt

18:34–18:36

Model Order Reduction of an Elastic Body with Large Deformations
Ashish Bhatt*, Jörg Fehr, Dennis Grunert, Bernard Haasdonk

18:36–18:38

Towards a Stable and Fast Dynamic Skeletal Muscle Model
Mylena Mordhorst*, Bernard Haasdonk, Oliver Röhrle

18:38–18:40

Model Reduction for Switched Systems with Low-Rank Switching
Philipp Schulze, Benjamin Unger*

18:40–18:42

Error Estimation for the Simulation of Elastic Multibody Systems
Jörg Fehr, Dennis Grunert*, Bernard Haasdonk, Ashish Bhatt

18:42–18:44

Coupling of Incompressible Free-Surface Flow, Acoustic Fluid and Flexible
Structure via a Modal Basis
Florian Toth*, Manfred Kaltenbacher

18:44–18:46

Polynomial Tensor-Based Stability Identification of Milling Process
Chigbogu G. Ozoegwu

18:46–18:48

Wednesday, May 23, 2018

Keynote Presentation 2—Chair: Prof. J. Fehr

Model Order Reduction for Drivetrain Dynamics: From Linear MOR to
Hyper-Reduction of Coupled Problems
Tommaso Tamarozzi*

09:00–09:45

Session 5—Chair: Prof. S. Leyendecker

Mechatronic Simulation for the Development of Machine Tools–Challenges
for Model Reduction in an Industrial Application
Alexandra Ast*, Aulon Bajrami, Kevin Diebels

09:45–10:15

Mixing Model Order Reduction Methods with Augmented Reality Techniques:
A New Paradigm to (Re)Discover
Alberto Badias*, Icίar Alfaro, David Gonzalez, Francisco Chinesta,
Elias Cueto

10:15–10:45

Session 6—Chair: Dr. S. Rave

Application of Reduced-Order Modeling to CFD-Simulated Data for the Study
of Wake Deflection within Wind Farms
Alberto Fortes-Plaza*, Filippo Campagnolo, Carlo L. Bottasso

11:15–11:45

Combining POD with Adaptivity for the Model Order Reduction of the
Cahn-Hilliard System
Carmen Gräßle*, Michael Hinze

11:45–12:15

(continued)
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(continued)

Session 6—Chair: Dr. S. Rave

Randomized Generation of Localized Approximation Spaces for Parameterized
Partial Differential Equations
Andreas Buhr*, Kathrin Smetana

12:15–12:45

Session 7—Chair: Prof. H. Matthies

Smart Sparse Sampling
Rubén Ibáñez-Pinillo*, Emmanuelle Abisset-Chavanne, Elías Cueto,
Francisco Chinesta

14:00–14:30

A Reduced Model Approach for the Optimal Control of Dielectric Elastomer
Actuated Systems
Tristan Schlögl, Sigrid Leyendecker*

14:30–15:00

Two-Stage Data-Assisted Mechanical Homogenization
Felix Fritzen, Oliver Kunc*

15:00–15:30

Session 8—Chair: Dr. D. Knezevic

Reduced Order Models Using a Data-Driven and Equation-Free Method
Soledad Le Clainche*, José M. Vega

16:00–16:30

Proper Orthogonal Decomposition (POD) Combined with Hierarchical Tensor
Approximation (HTA) in the Context of Uncertain Parameters
Steffen Kastian*, Stefanie Reese, Dieter Moser, Lars Grasedyck

16:30–17:00

Parameterised Reduced Order Models
Hermann G. Matthies*, Roger Ohayon

17:00–17:30

Thursday, May 24, 2018

Keynote Presentation 3—Chair: Prof. T. Shiiba

Component-Based Model Reduction for Industrial-Scale Problems
David J. Knezevic

09:00–09:45

Session 9—Chair: Dr. F. Fritzen

Online-Adaptive Localized Reduced Basis Approximation of Parameterized
Parabolic Problems
Mario Ohlberger, Stephan Rave*, Felix Schindler

09:45–10:15

Experimental Dynamic Substructuring on a 3 MW Wind Turbine
Andreas Schulze*, János Zierath, Roman Rachholz, Reik Bockhahn, Sven-Erik
Rosenow, Johannes Luthe, Christoph Woernle

10:15–10:45

Session 10—Chair: Prof. O. Brüls

Recent Advances on Nonlinear Vibration Analysis Using Nonlinear Modes as
Reduced Basis
Malte Krack*, Johann Groß, Maren Scheel

11:15–11:45

An Open Source Description for (Semi-)Automatic Generation and Model
Reduction of Machine Tool Network Models
Norman Lang, Andreas Naumann, Jens Saak*, Stefan Sauerzapf

11:45–12:15

IUTAM Symposium on “Model Order Reduction of Coupled System” MORCOS 2018 ix



Friday, May 25, 2018

Keynote Presentation 4—Chair: Prof. W. Schiehlen

Nonlinear Projection Methods for Mechanical Structures and Systems
Olivier Brüls*

09:00–09:45

Session 11—Chair: Dr. F. Naets

Combined Frequency-Time Reduction Methods for Calculating Periodic
Solutions of Unilaterally Constrained Systems
Frederic Schreyer, Remco I. Leine*

09:45–10:15

Model Order Reduction of Linear Switched Systems with Constrained
Switching
Ion V. Gosea*, Igor P. Duff, Peter Benner, Athanasios C. Antoulas

10:15–10:45

Session 12—Chair: Dr. T. Tamarozzi

Index-Aware MOR for Gas Transport Networks
Nicodemus Banagaaya*, Sara Grundel, Peter Benner

11:15–11:45

Efficient Analysis of Impact Between Reduced Flexible Bodies
Stephan Tschigg*, Pascal Ziegler, Robert Seifried

11:45–12:15

Two-Stage Parametric Model Order Reduction for the Design Optimization of
a Coupled Structural and Controller Model
Frank Naets*, Wim Desmet

12:15–12:45

Session 13—Chair: Dr. J. Saak

Order-Reduction for Magneto-Quasistatic Fields Including Magnetic Material
Characteristics of Saturation Type
Daniel Klis, Rolf Baltes*, Romanus Dyczij-Edlinger

14:00–14:30

A Model Order Reduction Method for Electro-Magnetic Vibration Analysis of
Electric Motors
Akira Saito*

14:30–15:00

Magnetically Levitated Vehicles: Coupling Multibody and Mechatronic
Systems with Elastic Structures Subject to Model Order Reduction
Werner Schiehlen*

15:00–15:30

The symposium had 56 participants from the following 11 countries: Austria,
Belgium, France, Germany, Italy, Japan, the Netherlands, Nigeria, Spain, United
Kingdom, and the United States. In the 47 presentations, given in the course of the
symposium, many application examples from civil structures to automotive and
aeronautic systems, or the efficient simulation of gas networks. Applications from
industry included the improved control via MOR of laser machines from TRUMPF,
one of the many companies around Stuttgart.

The scientific achievements and progress of this IUTAM symposium were
significant and substantial. The symposium was successful in bringing together
mathematicians, engineers, and computer scientist with practical and theoretical
background and to encourage and strengthen their interdisciplinary work.
Furthermore, it helped to create a link and a mutual understanding between the
different research communities.
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The scientific articles in this volume are reflecting this range of topics and shall
provide an insight into the different issues addressed at the symposium. The order
of the paper is as follows. We start with an article about a keynote presentation
given at the symposium. Kathrin Smetana reports about port/interface reduction
which is of uttermost importance for the coupling of systems. Then, the more
methodically oriented papers are presented. The work of Matthies and Ohayon
provides a unifying formulation for parametric models of coupled system in a
functional analytic view. The next paper authored by Gosea et al. deals with model
reduction of switched system. The work of Le Clainche and Vega is concerned with
the discovery of the underlying physics in spatiotemperal data via an equation-free
method. For nonlinear systems, the proper orthogonal decomposition (POD) of
snapshots of offline simulations is one of the most common used MOR techniques.
Kastian and Reese present in their paper an adaptive procedure of how to choose
significant snapshots. The work of Rapun et al. handles the acceleration of
time-dependent solvers for nonlinear systems by a fully online reduced-order
model, using a POD on the fly and a collocation method called LUPOD. The final
work in the method section is the work of Bhatt et al. which considers the
approximation error introduced by MOR and provides two methods for estimating
the error in the time domain.

After the methods section, various examples from the application domains are
presented. The papers by Karatzas et al. and Jehle et al. address the efficient
simulation of heat transport with the help of MOR techniques. In the work of
Karatzas et al., the Shifted Boundary Method is applied for a heat exchange
problem, whereas in Jehle et al. different manners to compute the POD snapshots
are compared to solve an optimal boundary control problem of a heat equation with
convection. The paper by Toth and Kaltenbacher discusses the coupling of
incompressible free-surface flow, acoustic fluids, and flexible structures via a modal
basis. Parametrized model order reduction is considered in the paper by Fröhlich
et al. for shape optimization of static components. Another example from
mechanical engineering/aerospace engineering is the paper of Yuan et al. where
jointed structures with localized nonlinearities are analyzed with the help of a
combination of vibration modes, static modes, and trial vector derivatives. In the
paper by Emamy et al., the nonlinear POD-DEIM technique is applied to a 0D/1D
model used to simulate the propagation of action potentials through the myo-
cardium or along skeletal muscle fibers. The paper by Banagaaya et al. uses
index-aware MOR techniques for the efficient simulation of gas networks.
A reduced-order finite element approach is used to speed up the stability analysis of
a milling process in the paper by Ozoegwu.

IUTAM Symposium on “Model Order Reduction of Coupled System” MORCOS 2018 xi
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Static Condensation Optimal
Port/Interface Reduction and Error
Estimation for Structural Health
Monitoring

Kathrin Smetana

Abstract Having the application in structural healthmonitoring inmind,wepropose
reduced port spaces that exhibit an exponential convergence for static condensation
procedures on structures with changing geometries for instance induced by newly
detected defects. Those reduced port spaces generalize the port spaces introduced in
[K. Smetana and A.T. Patera, SIAM J. Sci. Comput., 2016] to geometry changes and
are optimal in the sense that they minimize the approximation error among all port
spaces of the same dimension. Moreover, we show numerically that we can reuse
port spaces that are constructed on a certain geometry also for the static condensation
approximation on a significantly different geometry, making the optimal port spaces
well suited for use in structural health monitoring.

Keywords Interface reduction ·Model order reduction · (component-based) static
condensation · Substructuring · Component mode synthesis

1 Introduction

Manual or automated inspection of large structures such as offshore platforms is
carried out on a regular basis; the effects of any detected defects must be assessed
rapidly in order to avoid further damage or even catastrophic failure. This can be
facilitated by relying on numerical simulations. One step towards a fast numerical
simulation response for such large structures is to exploit their natural decomposi-
tion into components and apply static condensation to obtain a (Schur complement)
system of the size of the degrees of freedom (DOFs) on all interfaces or ports in the
system. However, as the size of this Schur complement systemmay still be very large

K. Smetana (B)
Department of Applied Mathematics, University of Twente, P.O. Box 217,
7500 AE Enschede, The Netherlands
e-mail: k.smetana@utwente.nl

Department of Mechanical Engineering, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA
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2 K. Smetana

it is vital to reduce the number of DOFs on the interfaces or ports and thus consider
reduced interface or port spaces.

In the popular component mode synthesis (CMS) approach [3, 4, 10, 12, 15]
this reduced space is spanned via certain eigenmodes. In [13] generalized Legendre
polynomials are used and in [9] deformation patterns from an analysis of the assem-
bled structure are employed. Moreover, local reduced models are generated from
parametrized Lagrange or Fourier modes and coupled via FE basis functions in [14].
Finally, empirical modes generated from local solutions of the PDE are suggested in
[5, 7, 20].

Recently, port spaces that are optimal in the sense of Kolmogorov and thus min-
imize the approximation error among all port spaces of the same dimension have
been introduced in [24]. The approach in [24] generalizes the idea of separation of
variables by connecting two components at the port for which we wish to construct
the port space and consider the space of all local solutions of the partial differential
equation (PDE) with arbitrary Dirichlet boundary conditions on the ports that lie on
the boundary of the two-component system. From separation of variables we antici-
pate an exponential decay (of the higher modes) of the Dirichlet boundary conditions
to the interior of the system. To quantify which information of the Dirichlet bound-
ary conditions reaches the shared port of the system, a (compact) transfer operator
that acts on the space of local solutions of the PDE is introduced. Solving the trans-
fer eigenproblem for the composition of the transfer operator and its adjoint yields
the optimal space. For related work in the context of the generalized finite element
method we refer to [1, 2].

In [6] it has been shown that by employing methods from randomized numerical
linear algebra an extremely accurate approximation of those optimal port spaces can
be computed in close to optimal computational complexity. To account for variations
in a material or geometric parameter in [24] a parameter-independent port space is
generated from the optimal parameter-dependent port spaces via a spectral greedy
algorithm. It is further numerically demonstrated in [24] that the optimal port spaces
often outperform other approaches such as Legendre polynomials [13] or empirical
modes [7]; also an exponential convergence of the approximation can be observed.
Finally, those optimal port modes have been used in structural integrity management
of offshore structures in [17] and optimal local approximation have been exploited
in the context of data assimilation in [26].

In this article we want to investigate the applicability of optimal port spaces for
structural healthmonitoring andmore specifically extend the concept of [24] to geom-
etry changes. First, we show how to construct one port space for several different
geometries such as a beam and a beamwith a crack or hole via a spectral greedy algo-
rithm. Moreover, if during an inspection a defect is detected, unfortunately, often the
precise geometry of the newly detected defect is not amongst the component geome-
tries the reduced model has been trained for. Therefore, we demonstrate numerically
that for realistic error tolerances the optimal port spaces constructed on one geome-
try can often be reused on another. In order to assess whether the resulting reduced
model is accurate enough we suggest to employ the error estimator for port reduction
introduced in [23] as this error estimator is both an upper and lower bound of the
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error and based on local error indicators associated with the ports; also the latter are a
lower bound of the local error on the component pair that shares the respective port.
Error estimation for port or interface reduction has also been considered in [5, 7, 15].
Finally, we note that also in [5] local reduced order models for geometry changes
are suggested. However, the authors of [5] neither reuse existing reduced models nor
build one reduced model for different geometries.

The remainder of this paper is organized as follows. In Sect. 2 we introduce the
problem setting and recall the algebraic (port reduced) static condensation procedure.
Subsequently,we recall the optimal port spaces introduced in [24] in Sect. 3. In Sect. 4
we propose quasi-optimal port spaces for parametrized problems including geometry
changes such as from a beam to a beam with a crack. Subsequently, we discuss in
Sect. 5 how to deal with systems with many components and recall in Sect. 6 the a
posteriori error estimator from [23]. Finally, we present numerical experiments in
Sect. 7 and draw some conclusions in Sect. 8.

2 Preliminaries

2.1 Problem Setting

Let Ωgl ⊂ R
d , d = 2, 3, be a large, bounded domain with Lipschitz boundary and

assume that ∂Ωgl = ΣD ∪ ΣN , where ΣD denotes the Dirichlet and ΣN the Neu-
mann boundary, respectively. We consider a linear, elliptic PDE onΩgl with solution
ugl , where ugl equals gD onΣD and satisfies homogeneous Neumann boundary con-
ditions on ΣN noting that the extension to non-homogenous Neumann boundary
conditions is straightforward.

To compute an approximation of ugl we decompose the large domain Ωgl into
(many) non-overlapping subdomains. To simplify the presentation we consider
henceforth two subdomains Ω1,Ω2 ⊂ Ωgl and their union Ω with Ω̄ = Ω̄1 ∪ Ω̄2 as
illustrated in Fig. 1; the approximation of the whole system associated with Ωgl will
be discussed in Sect. 5. Moreover, we introduce the shared interface Γin := Ω̄1 ∩ Ω̄2

and Γout := ∂Ω \ ∂Ωgl .
We consider the following problem on Ω: For given f find u such that

A u = f in Ω, and u = ugl on Γout , (1)

Fig. 1 Illustration of Ωgl , Ω , defined as Ω̄ = Ω̄1 ∪ Ω̄2, and the ports Γin and Γout
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where A is a linear, elliptic, and continuous differential operator. We may then
introduce a conforming Finite Element (FE) discretization and a FE approximation
u whose FE coefficients u ∈ R

N solve the following linear system of equations

Au = f. (2)

Here, A ∈ R
N×N discretizes the (weak form of the) differential operator A and

f ∈ R
N accounts for the discretization both of f and enforcing the non-homogeneous

Dirichlet boundary conditions ugl |Γout ; we assume that in the rows associated with
the Dirichlet DOFs the non-diagonal entries are zero and the diagonal entries equal
one.

2.2 Static Condensation

To obtain a linear system of equations of the size of the number of DOFs Nin on the
interface Γin we perform static condensation. To that end, we first sort the DOFs in
DOFs associated with Ω1, Ω2, and Γin to rewrite (2) as follows:

⎡
⎣

AΓin
AT

Γin ,Ω1
AT

Γin ,Ω2

AΓin ,Ω1
AΩ1

0
AΓin ,Ω2

0 AΩ2

⎤
⎦

⎡
⎣

uΓin

uΩ1

uΩ2

⎤
⎦ =

⎡
⎣

fΓin

fΩ1

fΩ2

⎤
⎦ . (3)

We may then apply static condensation to remove the DOFs corresponding to the
interior of Ω1 and Ω2: We define the Schur complement matrix and the Schur com-
plement right-hand side as

ASC = AΓin
− AT

Γin ,Ω1
A−1

Ω1
AΓin ,Ω1

− AT
Γin ,Ω2

A−1
Ω2

AΓin ,Ω2
∈ R

Nin×Nin (4)

fSC = fΓin
− AT

Γin ,Ω1
A−1

Ω1
fΩ1

− AT
Γin ,Ω2

A−1
Ω2

fΩ2
∈ R

Nin (5)

such that the vector of interface coefficients solves the Schur complement system

ASCuΓin
= fSC of size Nin × Nin. (6)

We note that computing A−1
Ωi

AΓin ,Ωi
corresponds to solving the PDE on Ωi , i = 1, 2,

Nin times with homogeneous Dirichlet boundary conditions on Γin and right-hand
sides that occur from lifting the respective Nin FE basis functions on Γin .
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2.3 Port or Interface Reduction

As indicated in the introduction, unfortunately, for many real-world applications the
size of (6) is still too large, such that a further reduction in size is desirable. We
assume that we have a reduced basis φ

1
, . . . , φ

n
∈ R

Nin , n � Nin , at our disposal,

which we store in the columns of a matrix Φn ∈ R
Nin×n . We may then introduce a

port reduced static condensation approximation [7]un with FE coefficientsun ∈ R
N ,

where the coefficients on the interface un
Γin

satisfy the reduced Schur complement
system

ΦT
n ASCΦnun

Γin
= ΦT

n fSC of size n × n (7)

and theDOFs ofun in the interior ofΩi , i = 1, 2 can be obtained in a standardmanner
via the definition of ASC and fSC . The question of how to construct a reduced basis
φ
1
, . . . , φ

n
∈ R

Nin which yields a rapidly convergent approximation and is even in
some sense optimal will be addressed in the next section.

3 Optimal Port Spaces

Rather than assuming a priori knowledge about the shape of the global system asso-
ciated withΩgl , we wish to enable maximum flexibility in terms of system assembly
on the user’s side. In other words, we wish to supply the user with many compo-
nents (or subdomains), each equipped with (local) reduced models, which the user
can then use to build the desired system and thus implicitly define Ωgl . As a con-
sequence, due to the a priori unknown geometry of Ωgl , we assume that the trace
of the global solution ugl on Γout is unknown to us when constructing the reduced
basis φ

1
, . . . , φ

n
∈ R

Nin . We thus aim at approximating all local solutions of (1) with
arbitrary Dirichlet boundary conditions on Γout . Before presenting the construction
of the reduced basis in Sect. 3.1 we illustrate in a motivating example taken from [24,
Remark 3.3] why we may hope to be able to find a low-dimensional port space that
approximates the set of all local solutions well.

Remark 1 We consider two components Ωi ⊂ R
2, i = 1, 2 each of height H in x2

and length L in x1, such that Γout is at x1 = −L and x1 = L and Γin is at x1 = 0. We
consider the Laplacian and impose homogeneous Neumann conditions on x2 = 0
and x2 = H in both subdomains. Proceeding with separation of variables, we can
infer that all local solutions of the PDE for this problem are of the form

u(x1, x2) = a0 + b0x1 +
∞∑

n=1

cos(nπ
x2
H

)
[
an cosh(nπ

x1
H

) + bn sinh(nπ
x1
H

)
]
, (8)

where the coefficients an, bn ∈ R, n = 0, . . . ,∞ are determined by theDirichlet data
on Γout . Thanks to the cosh function we can observe a very rapid and exponential
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decay of the local solutions (8) in the interior of Ω . Therefore, most of the local
solutions (8) have negligibly small values on Γin , which is why we expect a low-
dimensional port space on Γin to be able to provide a very good approximation of
all local solutions (8). The construction procedure described below generalizes the
separation of variables ansatz.

3.1 Construction of Optimal Port Spaces via a Transfer
Operator

First, we address the case f = 0; the general case will be dealt with at the end of this
subsection. Motivated by the separation of variables procedure, and the fact that the
global solution ugl on Ωgl satisfies the PDE locally on Ω , we consider the space of
all local solutions of the PDE

H := {w : A w = 0 inΩ, w = 0 onΣD ∩ ∂Ω}. (9)

As in [2, 6, 24] we may then introduce a transfer operator T : S → R that takes
arbitrary data ζ on Γout as an input, solves the PDE A u = 0 on Ω with that data
ζ as Dirichlet boundary conditions on Γout , and finally restricts the local solution
to Γin . Introducing the source and range spaces S := {w|Γout : w ∈ H } and R :=
{(w − Pker(A )(w))|Γin : w ∈ H } the transfer operator is thus defined as

T (w|Γout ) = (
w − Pker(A )(w)

) |Γin forw ∈ H . (10)

Here, Pker(A )(w) denotes the orthogonal projection of w on the kernel of the differ-
ential operator. Note that for instance for the Laplacian ker(A ) equals the constant
functions and in the case of linear elasticity ker(A ) is the space of the rigid body
motions. Following up Remark 1 note that the transfer operator allows us to assess
how much of the data on Γout reaches the inner interface Γin . It can then be shown
that thanks to the Caccioppoli inequality T is compact and that certain eigenfunc-
tions ofT ∗T span the optimal port space, whereT ∗ : R → S denotes the adjoint
operator (see [2, 21, 24] for details). Here, we use the concept of optimality in the
sense of Kolmogorov [19]: A subspace Rn ⊂ R of dimension at most n for which
holds

dn(T (S );R) = sup
ψ∈S

inf
ζ∈R n

‖T ψ − ζ‖R
‖ψ‖S

is called an optimal subspace for dn(T (S );R), where the Kolmogorov n-width
dn(T (S );R) is defined as

dn(T (S );R) := inf
R n⊂R

dim(R n)=n

sup
ψ∈S

inf
ζ∈R n

‖T ψ − ζ‖R
‖ψ‖S .
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We summarize thefindings about the optimal port spaces in the followingproposition.

Proposition 1 (Optimal port spaces) [24]) The optimal port space is given by

Rn := span{φsp
1 , ..., φsp

n }, where φ
sp
j = T ϕ j , j = 1, ..., n, (11)

and λ j are the largest n eigenvalues and ϕ j the corresponding eigenfunctions that
satisfy the transfer eigenvalue problem: Find (ϕ j , λ j ) ∈ (S ,R+) such that

(T ϕ j , T w )R = λ j ( ϕ j , w )S ∀w ∈ S . (12)

Moreover, the following holds:

dn(T (S );R) = sup
ξ∈S

inf
ζ∈R n

‖T ξ − ζ‖R
‖ξ‖S = √

λn+1. (13)

Remark 2 We note that, as can be seen from (12), the optimal modes are those
that maximize the energy on the inner interface Γin relative to the energy they
have on Γout . The optimal port space is thus spanned by the modes that relatively
still contain the most information on Γin . For our motivating example discussed in
Remark 1 we obtainRn := span{cos(π x2

H ), cos(2π x2
H ), . . . , cos(nπ x2

H )}. Moreover,
we can exploit the separation of variables solution to solve (12) in closed form:
λ j = (

cosh(Lσ j−1)
)−2

, j = 1, 2, 3, ..., where the eigenproblem in x2 in the separa-
tion of variables procedure yields separation constantsσ j = ( jπ)/H , j = 0, 1, 2, ....
This simple model problem also foreshadows the potentially very good performance
of the associated optimal space (11) in light of (13) and Proposition 2: we obtain
exponential convergence.

For f �= 0 we solve the problem: Find u f such that

A u f = f in Ω and u = 0 on Γout

and augment the space Rn with u f |Γin to arrive at

Rn
data,ker := span{φsp

1 , ..., φsp
n , u f |Γin , η1|Γin , . . . , ηdim(ker(A ))|Γin }, (14)

where {η1, . . . , ηdim(ker(A ))} denotes a basis for ker(A ).
Using the optimal port space Rn

data,ker within the static condensation procedure
allows proving the following a priori error bound for the static condensation approx-
imation. We note that Proposition 2 gives a bound for the continuous analog on un

of un , the latter being defined in Sect. 2.3. To simplify the notation we do not give a
precise definition of un and refer to that end to [24]. Note however, that the conver-
gence behavior of un towards u is very similar to the continuous setting, differing
only due to the FE approximation.



8 K. Smetana

Proposition 2 (A priori error bound) [24]) Let u be the (exact) solution of (1) and
un the continuous static condensation approximation employing the optimal port
space Rn

data,ker. Moreover, denote with ‖ · ‖E the norm induced by the bilinear form
associated with the differential operator A . Then we have the following a priori
error bound: ‖u − un‖E

‖u‖E ≤ C1(Ω)
√

λn+1, (15)

where λn+1 is the n + 1th eigenvalue of (12) and C1(Ω) is a constant which depends
neither on u nor on un.

3.2 Approximation of the Optimal Spaces

In this subsection we show how an approximation of the continuous optimal local
spacesRn

data,ker can be computedwith the FEmethod. First, in order to define amatrix
form of the transfer operator we introduce DOF mappings DΓout →Ω ∈ R

N×Nout and
DΩ→Γin

∈ R
Nin×N that map the DOFs on Γout to the DOFs of Ω and the DOFs of

Ω to the DOFs of Γin , respectively; Nout denotes the number of DOFs on Γout . By
denoting with ζ ∈ R

Nout the coefficients of a FE function ζ on Γout and denoting by
K Ω the matrix of the orthogonal projection Pker(A ),Ω on ker(A ) on Ω we obtain
the following matrix representation T ∈ R

Nin×Nout of the transfer operator:

T ζ = DΩ→Γin

(
1 − K Ω

)
A−1DΓout →Ω ζ . (16)

Finally, we denote by M S the inner product matrix of the FE source space S and by
M R the inner product matrix of the FE range space R. Possible inner products for S
and R are the L2-inner product and a lifting inner product. Toobtain the latterwe solve
for instance for a function ξ defined on Γin the PDE on Ω1 and Ω2 numerically with
Dirichlet data ξ onΓin and homogeneous Dirichlet boundary conditions onΓout—for
further details we refer to [24] and for the FE implementation to the Supplementary
Materials of [24]. The FE approximation of the transfer eigenvalue problem then
reads as follows: Find the eigenvectors ζ

j
∈ R

NS and the eigenvalues λ j ∈ R
+
0 such

that
T t M R T ζ

j
= λ j M S ζ

j
. (17)

Note that in actual practice we would not assemble T but instead solve successively
the linear system of equations

Aui = DΓout →Ωei with the standard unit vectors ei (18)

and assemble (T T M RT )i, j = (DΩ→Γin
u j , DΩ→Γin

ui )R . The coefficients of the FE
approximation of the basis functions {φsp

1 , ..., φ
sp
n }of the optimal local approximation
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space Rn := span{φsp
1 , ..., φ

sp
n } are then given by φsp

j
= T ζ

j
, j = 1, . . . , n.Adding

the representation of the right-hand side and a basis of ker(A ) yields the optimal
space Rn

data,ker.

Remark 3 We may also define the discrete transfer operator implicitly via (16) and
pass it together with its implicitly defined adjoint to a Lanczos method. This is in
general much more favorable from a computational viewpoint compared to solving
(18) Nout times. However, it turns out that employing techniques from randomized
linear algebra can be evenmore computationally beneficial than a Lanczosmethod as
it requires only about n local solutions of the PDE with random boundary conditions
while yielding an approximation of the eigenvectors ζ

j
of (17) at any required

accuracy [6].

4 Extension to Parameter-Dependent Problems and
Problems with Geometric Changes

Many applications require a rapid simulation response for many different material
parameters such asYoung’smodulus or a real-time simulation response for a different
geometry such as a beam with a newly detected crack. Therefore, it is desirable to
have a port-reduced static condensation procedure that is able to deal efficiently with
parameter-dependent PDEs and geometric changes. Recall however that the optimal
port space as presented in Sect. 3 is based on the space of functions that solve the
(now parametrized) PDE on a specific domain Ω and therefore also depends on
the parameter and the geometry of Ω . As constructing a new optimal port space
“from scratch” for each new parameter value is in general not feasible, the goal of
this section is to show how to construct a low-dimensional and quasi-optimal port
space that is independent of the parameter and the geometry but yields an accurate
approximation for the full parameter set and all geometries of interest. To that end,
we present in Sect. 4.3 a spectral greedy approach which constructs a reduced basis
to approximate the n eigenspaces associated with the n largest eigenvalues of the
parameter and geometry dependent generalized (transfer) eigenvalue problem. Here,
we slightly extend the spectral greedy algorithm introduced in [24] to the case of
varying geometries. At the beginning we state the parametrized PDE of interest in
Sect. 4.1 and recall the port-reduced static condensation procedure for parameter-
dependent PDEs in Sect. 4.2.

4.1 Parametrized Partial Differential Equations with
Geometric Changes

We consider a setting where Ω(μ) accounts for different geometries such as a beam,
a beam with a crack or a beam with a hole. Note that in contrast to “standard” model
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order reduction approacheswe do accommodate here geometries that cannot be trans-
formed into one another by a C1-map. Moreover, we allow different discretizations
in the interior of Ωi (μ), i = 1, 2. However, we have to insist that the geometry of
Γin(μ) is parameter-independent and that the meshes associated with all considered
components coincide on Γin(μ); translation is of course possible resulting in the
parameter dependency of Γin(μ).

In detail, we consider a discrete geometry parameter set PGeo being the union
of the considered geometries. Geometric changes via smooth maps can additionally
be accounted for via the parameter-dependent operator A (μ), where μ belongs
to the compact parameter set PP DE ⊂ R

p. Again we assume that the port is not
geometrically deformed. Then, we consider the following problem on Ω(μ): For
any μ ∈ P := PGeo × PP DE and given f (μ) ∈ L2(Ω(μ)) find u(μ) such that

A (μ)u(μ) = f (μ) in Ω(μ), and u(μ) = ugl(μ) on Γout (μ). (19)

Again, we introduce a conforming FE discretization to arrive at the linear system of
equations A(μ)u(μ) = f(μ) of size N (μ) × N (μ) and FE approximation u(μ).

4.2 Port Reduced Static Condensation for Parametrized
Equations

We assume that we have given a parameter-independent reduced port basis φ
1
, . . . ,

φ
m

∈ R
Nin , m � Nin that we store in the columns of the matrix Φm ∈ R

Nin×m . Pro-
ceeding as above we can then define a parameter-dependent port reduced static
condensation approximation [7] um(μ) with FE coefficients um(μ) ∈ R

N , where
the coefficients on the interface um

Γin
(μ) satisfy the parametrized and reduced Schur

complement system

ΦT
m ASC (μ)Φmum

Γin
(μ) = ΦT

m fSC (μ) of size m × m (20)

and the Schur complement matrix ASC (μ) ∈ R
Nin×Nin and the Schur complement

right-hand fSC (μ) ∈ R
Nin are defined as follows

ASC (μ) = AΓin
(μ) − AT

Γin ,Ω1
(μ)A−1

Ω1
(μ)AΓin ,Ω1

(μ) − AT
Γin ,Ω2

(μ)A−1
Ω2

(μ)AΓin ,Ω2
(μ),
(21)

fSC (μ) = fΓin
(μ) − AT

Γin ,Ω1
(μ)A−1

Ω1
(μ)fΩ1

(μ) − AT
Γin ,Ω2

(μ)A−1
Ω2

(μ)fΩ2
(μ).

We note that in order to facilitate a simulation response at low marginal cost one
would in actual practice also use model order reduction techniques to approximate
A−1

Ωi
(μ)AΓin ,Ωi

(μ), i = 1, 2. This is however not the topic of this paper and we refer
for details to [13]. We only note that if one wishes to perform many simulations for
different parameters or a real-time simulation after a (non-smooth) geometry change
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a new intra-element reduced space has to be generated. Depending on the smoothness
of the parameter-to-solution map the construction of the intra-element reduced space
can be more expensive than the generation of the interface space. However, the total
online computational time for the construction of all reduced spaces is reduced if we
reuse the interface space after a geometry change. Moreover, in particular in cases
where no intra-element reduced space is required reusing the reduced interface space
can be appealing from a computational perspective.

4.3 Spectral Greedy Algorithm

The process defined in Sect. 3 yields for every μ ∈ P the (optimal) port space
Rn

data,ker(μ) for this specific parameter μ ∈ P = PGeo × PP DE . The spectral
greedy algorithm as introduced in [24] and which we extend here to the case of
geometry changes constructs one quasi-optimal parameter-independent port space
Rm which approximates those parameter-dependent spaces Rn

data,ker(μ)with a given
accuracy on a finite dimensional training set Ξ = PGeo × ΞP DE with ΞP DE ⊂
PP DE . In the spectral greedy algorithm we exploit the fact that, although the solu-
tions on the component pair may vary significantly with the parameter μ ∈ PP DE

and the geometry, we expect that the port spaces Rn
data,ker(μ), and in particular the

spectral modes that correspond to the largest eigenvalues, are much less affected by
a variation in the parameter and changes in the geometry thanks to the expected very
rapid decay of the higher eigenfunctions in the interior of Ω(μ).

The spectral greedy as described in Algorithm 4.1 then proceeds as follows. After
the initialization we compute for all μ ∈ Ξ the parameter-dependent optimal port
spaces Rn

data,ker(μ).1 Also in the parameter-dependent setting we can prove an a
priori error bound [24] for the error between u(μ) and the continuous port-reduced
static condensation approximation un(μ) corresponding to the parameter-depedent
optimal port space Rn

data,ker(μ):

‖u(μ) − un(μ)‖E (μ)

‖u(μ)‖E (μ)

≤ c1(μ)c2(μ)C1(Ω(μ),μ)
√

λn+1(μ). (22)

Here, the norm ‖ · ‖E (μ) is the norm induced by the parameter-dependent bilinear
form associated with A (μ) and c1(μ) and c2(μ) are chosen such that we have
c1(μ)‖ · ‖E (μ̄) ≤ ‖ · ‖E (μ) ≤ c2(μ)‖ · ‖E (μ̄) for all μ ∈ PP DE and a fixed reference
parameter μ̄ ∈ PP DE .2 To ensure that for every parameter μ ∈ Ξ we include all
necessary information that we need to obtain a good approximation for this spe-

1Note, that thismay restrict the applicability of the spectral greedy to training setsΞP DE ofmoderate
cardinality.
2We note that in order to prove (22) it is necessary to define the lifting inner product on the ports for
one reference parameter μ̄ ∈ PGeo and use the equivalence of the norm induced by the lifting inner
product and the H1/2-norm on the ports. Exploiting that the latter is the same for all considered
geometries allows switching between the geometries in the proof.
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Algorithm 4.1: spectral greedy [24]
input : train sample Ξ ⊂ P , tolerance ε

output: set of chosen parameters Pm , port space Rm

1 Initialize
Pdim(ker(A )) ← ∅, Rdim(ker(A )) ← span{η1|Γin , . . . , ηdim(ker(A ))|Γin }, m ← dim(ker(A ))

2 foreach μ ∈ Ξ do
3 Compute Rn

data,ker(μ) such that c1(μ)c2(μ)C1(Ω(μ),μ)
√

λn+1(μ) ≤ ε
2 .

4 end

5 while true do
6 if maxμ∈Ξ E(S(Rn

data,ker(μ)), Rm) ≤ ε/(ε + 2C2(Ω(μ),μ)c1(μ)c2(μ)) then
7 return
8 end
9 μ∗ ← argmaxμ∈Ξ E(S(Rn

data,ker(μ)), Rm)

10 Pm+1 ← Pm ∪ μ∗
11 κ ← arg supρ∈S(Rn

data,ker(μ
∗)) infζ∈Rm ‖ρ − ζ‖R

12 Rm+1 ← Rm + span{κ}
13 m ← m + 1
14 end

cific parameter μ we choose the dimension of Rn
data,ker(μ) for each μ ∈ Ξ such that

c1(μ)c2(μ)C1(Ω(μ),μ)
√

λn+1(μ) ≤ ε
2 for a given tolerance ε. Although precise

estimates for C1(Ω(μ),μ) can be obtained, setting C1(Ω(μ),μ) = 1 yields in gen-
eral good results as another value would just result in rescaling ε; for further details
see [24]. After having collected all vectors on Γin that are essential to obtain a good
approximation for all vectors DΩ(μ)→Γin

u(μ),μ ∈ Ξ , wemust select a suitable basis
from those vectors. This is realized in an iterative manner in Lines 5-14.

In each iteration we first identify in Line 9 the port space Rn
data,ker(μ

∗) that max-
imizes the deviation

E(S(Rn
data,ker(μ)), Rm) := sup

ξ∈S(Rn
data,ker(μ))

inf
ζ∈Rm

‖ξ − ζ‖R, μ ∈ Ξ,

where possible choices of S(Rn
data,ker(μ)) ⊂ Rn

data,ker(μ) will be discussed below.
Subsequently, we determine in Line 11 the function κ ∈ S(Rn

data,ker(μ
∗)) that isworst

approximated by the space Rm and enhance Rm with the span of κ . The spectral
greedy algorithm terminates if for all μ ∈ Ξ we have

max
μ∈Ξ

E(S(Rn
data,ker(μ)), Rm) ≤ ε/(ε + 2C2(Ω(μ),μ)c1(μ)c2(μ)) (23)

for a constant C2(Ω(μ),μ), which can in general be chosen equal to one. A slight
modification of the stopping criterion (23) and a different scaling of ε in the threshold
for the a priori error bound in Line 3 allows to prove that after termination of the
spectral greedy we have [24]
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‖u(μ) − um(μ)‖E (μ)/‖u(μ)‖E (μ) ≤ ε, (24)

where um(μ) is the continuous port-reduced static condensation approximation cor-
responding toRm ;Rm being the continuous outcome of the spectral greedy.

Choice of the Subset S(Rn
data,ker(μ))

First, we emphasize that in contrast to the standard greedy as introduced in [27] we
have an ordering of the basis functions in Rn

data,ker(μ) in terms of their approxima-
tion properties thanks to the transfer eigenvalue problem. To obtain a parameter-
independent port space that yields a (very) good static condensation approximation
already for moderate m it is therefore desirable that the spectral greedy algorithm
selects themore important basis functions sooner rather than later during the while-
loop. The sorting of the basis functions in terms of their approximation properties
is implicitly saved in their norms as ‖φ j (μ)‖2R = λ j (μ), j = 1, . . . , n where φ j (μ)

denotes the spectral basis of Rn
data,ker(μ). As suggested in [24] we thus propose to

consider

S(Rn
data,ker(μ)) := {ζ(μ) ∈ Rn

data,ker(μ) :
dim(Rn

data,ker(μ))∑
i=1

(ζ (μ)i )
2 ≤ 1} (25)

with ζ(μ) = ∑dim(Rn
data,ker(μ))

i=1 ζ (μ)iφi (μ). The deviation E(S(Rn
data,ker(μ)), Rm) can

then be computed by solving the eigenvalue problem: Find (ψ
j
(μ), σ j (μ)) ∈

(Rdim(Rn
data,ker(μ)),R+) such that

Z(μ)ψ
j
(μ) = σ j (μ)ψ

j
(μ), (26)

where Zi,l(μ) := (φl(μ) −
m∑

k=1

(φl(μ), φk)Rφk, φi (μ) −
m∑

k=1

(φi (μ), φk)Rφk)R,

(27)

where φk denotes the basis of Rm and the underscore denotes the coefficients
of a vector in Rn

data,ker(μ) expressed in the spectral basis φl(μ). We thus obtain
E(S(Rn

data,ker(μ)), Rm) = √
σ1(μ), for all μ ∈ Ξ , and κ = ψ1(μ

∗) at each itera-
tion. To further motivate this choice of S(Rn

data,ker(μ)) let us assume that all spec-
tral modes in Rn

data,ker(μ) are orthogonal to the space Rm for all μ ∈ Ξ , which
is the case for instance for m = dim(Rn

data,ker(μ)) but also often for higher m.
In this case the matrices Z(μ) reduce to diagonal matrices with diagonal entries
Zi,i (μ) = ‖φi (μ)‖2R , i = 1, ..., dim(Rn

data,ker(μ)), μ ∈ Ξ . A spectral greedy based
on E(S(Rn

data,ker(μ)), Rm) would therefore select the parameter μ∗ such that the
associated function ψ1(μ

∗) has maximal energy with respect to the (·, ·)R-inner
product. Note that this is consistent with our aim to include the weighting induced
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by the transfer eigenvalue problem into the basis selection process by the spectral
greedy.

Remark 4 Note that were we to consider the norm ‖ · ‖R in (25) the sorting of the
spectral basis φi (μ) of Rn

data,ker(μ) in terms of approximation properties is neglected
in the while loop of Algorithm 4.1; for further explanations see [24]. As a conse-
quence it may and often would happen in actual practice, also due to numerical inac-
curacies, that a spectral greedy algorithm based on the ‖ · ‖R norm in (25) selects first
functions that have beenmarked by the transfer eigenvalue problem as less important.
Therefore, we would observe an approximation behaviour of the static condensation
approximation based on the so constructed port space that is not satisfactory for
moderate m.

5 Approximating the Whole System Associated with Ωgl

To allow a maximal topological flexibility during assembly of the system associ-
ated with Ωgl , we assume that we neither know the size, the composition, nor the
shape of the system when generating the reduced model. Therefore, we perform the
spectral greedy algorithm for all interfaces that may appear in the large structure
on the component pairs that share the interface. Multiplying the left-hand side of
the inequality in Line 3 in Algorithm 4.1 and 2C2(Ω(μ),μ)c1(μ)c2(μ) in Line 6
in Algorithm 4.1 by an estimate for the number of times we expect the interface to
appear in the large system ensures that the relative approximation error on the whole
domain Ωgl associated with the system will lie below ε (see [24] for the proof).3 We
note that in actual practice numerical experiments show a very weak scaling in the
number of ports such that the scaling might not be necessary [24].

6 A Posteriori Error Estimation

In order to assess after the detection of a new defect in the assembled systemwhether
the quality of the reduced port space is still sufficient we wish to have an a posteriori
error estimator for the error between the port reduced solution um(μ) and the FE
solution u(μ) available. To that end, we employ the error estimator derived in [23].
We exploit that the FE solution satisfies a weak flux continuity at the interface Γin

fSC(μ) − ASC (μ)uΓin
(μ) = 0. (28)

Regarding the term “weak flux continuity” we recall first that (28) is the discrete
version of a Steklov-Poincaré interface equation. The latter is the weak counterpart

3As indicated above it is necessary to slightly modify the spectral greedy algorithm to prove con-
vergence.
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of the Neumann condition
∂u|Ω1

∂n = ∂u|Ω2
∂n on Γin for the outer normal n, requiring

continuity of the flux across the interface. For further details we refer to [22].
Also the reduced solution um(μ) satisfies a weak flux continuity with respect to

the reduced test space:

ΦT
m fSC(μ) − ΦT

m ASC (μ)Φmum
Γin

(μ) = 0.

However, the reduced solution um(μ) does not satisfy a weak flux continuity with
respect to the full test space:

ΦT
Nin

fSC (μ) − ΦT
Nin

ASC(μ)Φmum
Γin

(μ) �= 0. (29)

Here, the first m columns ofΦNin
∈ R

Nin×Nin contain the basis φ
1
, . . . , φm generated

by the spectral greedy and the remainder spans the orthogonal complement of Rm .
Note that the left-hand side in (29) can also be interpreted as a residual on Γin . We
use the violation of the weak flux continuity in (29) to assess how much the reduced
solution differs from the FE solution at the interface Γin . To utilize this information
for a posteriori error estimation in [23] the concept of conservative fluxes defined
according to Hughes et al. [11] is adapted to the setting of port reduction. In a slight
generalization of [23] we define the jump of the conservative flux ζ m(μ) as the
solution of

ΦT
Nin

M RΦNin
ζ m(μ) = ΦT

Nin
fSC(μ) − ΦT

Nin
ASC(μ)Φmum

Γin
(μ). (30)

If φ1, . . . , φm are orthonormal with respect to the inner product in R the linear system
of equations (30) simplifies to

ζ m(μ) = ΦT
Nin

fSC(μ) − ΦT
Nin

ASC(μ)Φmum
Γin

(μ). (31)

The computation of the jump of the conservative flux thus reduces to assembling the
residual. Therefore, the computational costs scale linearly in (Nin − m) and m.

Proposition 3 (A posteriori error estimator for port reduction [23]) Equip R with
the L2-norm and define

Δm(μ) :=
(maxi=1,2 ct∗,i )

√
1 + c2p

αapp(μ)
‖ζ m‖L2(Γin), (32)

where ct∗,i is the discrete trace constant in ‖v‖L2(Γin) ≤ ct∗,i‖v‖H 1(Ωi ), cp is the
constant in the Poincaré-Friedrichs-inequality, and αapp(μ) an approximation of
the FE coercivity constant αh(μ) of the bilinear form associated with A (μ). If
αapp(μ) ≤ αh(μ), there holds

1

γh(μ)chh−1/2ca
Δm(μ) ≤ ‖∇u(μ) − ∇u(μ)‖L2(Ωμ) ≤ Δm(μ), (33)
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where ca is the continuity constant of the discrete extension operator, ch is the constant
in the inverse inequality ‖v‖H 1/2(Γin) ≤ chh−1/2‖v‖L2(Γin), and γh(μ) the FE continuity
constant of the bilinear form associated with A (μ).

Remark 5 (Error estimation on Ωgl) Let us assume that the system associated with
Ωgl has PΓ ports, which are denoted by Γp, p = 1, . . . , PΓ . Moreover, denote by
ζ m

p the jump of the conservative flux at portΓp. Then we can define an error estimator
on Ωgl as follows [23]:

Δm(μ) :=
ct∗

√
1 + c2p

αapp(μ)

⎛
⎝

PΓ∑
p=1

‖ζ m
p ‖2L2(Γp)

⎞
⎠

1/2

. (34)

Here, ct∗ denotes the maximum over the discrete trace constants in all components,
where we estimate the L2-norm on all ports of that component against the H 1-norm
on that component. cp is the constant in the Poincaré-Friedrichs-inequality with
respect to Ωgl . Again, one can show that the effectivity of the error estimator (34)
is bounded [23]. Moreover, we have that the effectivity of all local error indicators
defined as in (32) is bounded. Those local error indicators associated with one port
in the system can thus be used within an adaptive scheme to decide where to enrich
the port space first.

We note that due to coercivity constant and the constant cp the effectivities of
Δm(μ) are in general rather high. However, in [25] an error estimator is presented,
which is solely based on local constants and in consequence provides a very sharp
bound for the error. We finally note that the a posteriori error estimator introduced in
[23] also assess the error due to an RB approximation of A−1

Ωi
(μ)AΓin ,Ωi

(μ), i = 1, 2
in (20).

7 Numerical Experiments

In this section we investigate the performance of the optimal port space Rn
data,ker(μ)

for changing geometries as occurring in structural healthmonitoring.Wedemonstrate
in Sect. 7.2 that we can use a port space generated on a component pair of two un-
defecive (I-)beams also for a component pair with a defect such as a crack, obtaining
a relative approximation error of less than 10−3. Subsequently, we investigate the
performance of the spectral greedy algorithm for geometry changes in Sect. 7.3.
We begin in Sect. 7.1 with the description of our benchmark problem: isotropic,
homogeneous linear elasticity.

For the implementation we used the finite element library libMesh [16] includ-
ing rbOOmit [18]. The eigenvalue problems in the transfer eigenvalue problem and
the computation of the deviation have been computed with the Eigen library [8].



Static Condensation Optimal Port/Interface Reduction and Error Estimation . . . 17

7.1 Benchmark Problem: Isotropic, Homogeneous Linear
Elasticity

We assume that Ω(μ) ∈ R
d , d = 2, 3, Ω̄(μ) = Ω̄1 ∪ Ω̄2(μ) is filled with an

isotropic, homogeneous material and consider defects in the sense that Ω2(μ) may
have say a hole or a crack with a boundary Γde f ect (μ) ⊂ ΓN (μ). We consider the
following linear elastic boundary value problem: Find the displacement vector u(μ)

and the Cauchy stress tensor σ(u(μ)) such that

−∇ · σ(u(μ)) = 0 inΩ(μ),

σ (u(μ)) · n(μ) = 0 onΓN (μ), (35)

u(μ) = g(μ) onΓD,

where g is a given Dirichlet boundary condition on the displacement.
Thanks to Hooke’s law we can express for a linear elastic material the Cauchy

stress tensor as σ(u(μ)) = C : ε(u(μ)), where C is the stiffness tensor, ε(u(μ)) =
0.5(∇u(μ) + (∇u(μ))T ) is the infinitesimal strain tensor, and the colon operator :
is defined as C : ε(u(μ)) = ∑d

i, j=1 Ci jεi j (u(μ)). We assume in two spatial dimen-
sions, i.e. for d = 2, that the considered isotropic, homogeneous material is under
plane stress. Therefore, the stiffness tensor can be written as

Ci jkl =
{

ν
(1−ν)2

δi jδkl + 1
2(ν+1) (δikδ jl + δilδ jk), 1 ≤ i, j, k, l ≤ 2, if d = 2,

ν
(1+ν)(1−2ν)

δi jδkl + 1
2(1+ν)

(δikδ jl + δilδ jk), 1 ≤ i, j, k, l ≤ 3, if d = 3,

where δi j denotes the Kronecker delta and we choose Poisson’s ratio ν = 0.3. We
only consider parameters due to geometry changes such as a replacement of a beam
with a cracked beam and no material parameters; therefore we have PP DE = ∅.
As indicated in Sect. 4.1 we discretize the weak form of (35) by a conforming FE
discretization.

The kernel of A for the present example equals the three-dimensional space of
rigid body motions for d = 2 and the six-dimensional space of rigid body motions
for d = 3. To construct a port space Rn

data,ker(μ) on Γin(μ) for each parameter we
follow the procedure described in Sect. 3, where we use a lifting inner product
(for further details on the latter see [24]). As we do not consider a load here, we
obtain dim(Rn

data,ker) = n + 3 for d = 2 and dim(Rn
data,ker) = n + 6 for d = 3. In

order to construct one joint port space on Γin(μ) we use the spectral greedy algo-
rithm described in Sect. 4.3 using the L2-inner product on Γin and C1(Ω(μ),μ) =
C2(Ω(μ),μ) = 1; note that we have c1(μ) = c2(μ) thanks toPP DE = ∅.
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7.2 Reusing the Port Space for a Component with Different
Geometry

To provide a simulation response at low marginal cost it would be desirable if we
could reuse the port space generated for certain geometries also for other geometries.
Therefore, we investigate here the effect on the relative approximation error if we
construct a port space on a component pair of two un-defective beams and use that
port space for the approximation on a component pair consisting of one un-defective
beam on Ω1 and various defective beams on Ω2(μ).

To this end, we first connect components associated with the subdomains Ω1 =
(−7.5,−2.5) × (−0.5, 0.5) and Ω2(μ) = (−2.5, 2.5) × (−0.5, 0.5), i.e. two un-
defective beams, and construct the associated port space. Both the FE spaces cor-
responding to Ω1 and Ω2(μ) have the dimension of 1314 and the dimension of the
FE port space is Nin = 22. In the online stage we then prescribe random Dirichlet
boundary conditions4 drawn uniformly from the interval [−5, 5] on the non-shared
ports such that the random Dirichlet values are mutually independent. We verify that
the average relative error ‖u(μ) − un+3(μ)‖E (μ)/‖u(μ)‖E (μ) over 20 realizations
exhibits nearly the same convergence behavior as

√
λn+1(μ) (see Fig. 2). Subse-

quently, we replace the component associated with Ω2(μ) by defective components:
a cracked beam, a beam where the crack is shifted towards the shared port, and
a beam with a hole; the corresponding component meshes are depicted in Fig. 3.
The corresponding FE spaces on Ω2(μ) have the dimensions 2426, 2580, and 1898,
respectively, where Nin still equals 22 as all components share the same port mesh.
Again we prescribe random Dirichlet boundary conditions on the non-shared ports
and analyze the behavior of the average relative error for an increasing number of
spectral modes that have been constructed by connecting two un-defective compo-
nents. As anticipated the convergence behavior of the static condensation approx-
imation for the defective components is (much) worse as that of the un-defective
component (see Fig. 4). Analyzing the convergence behavior of the static condensa-
tion approximation for the cracked beam using a port space that has been constructed
by connecting a beam with a cracked beam (see Fig. 2) demonstrates that this worse
convergence behavior is solely due to the fact that for the results in Fig. 4 we have
employed the port space for the un-defective components. However, we emphasize
that already for six spectral modes (including the three rigid body modes) we obtain
for the defective components a relative error of about 10−5 (see Fig. 4). Moreover,
we observe that the error increases only slightly when we shift the crack towards the
shared port.

Therefore, we conclude that in two space dimensions reusing the port space of the
un-defective component yields a sufficiently accurate static condensation approxi-
mation. However, it should be noted that the port space contains only six port modes
and is therefore rather small.

4Note that the values of the random Dirichlet boundary conditions do not belong to the parameter
set.
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Fig. 2 Eigenvalues√
λn+1(μ) for the beam (b.)

and the cracked beam (c. b.)
and the average relative error
‖u(μ) −
un+3(μ)‖E (μ)/‖u(μ)‖E (μ)

if the respective spectral
modes are employed in the
static condensation
approximation

Fig. 3 Different component
meshes

Fig. 4 Average relative error
‖u(μ) −
un+3(μ)‖E (μ)/‖u(μ)‖E (μ)

for various defective
components

Thus, we consider next an I-Beam and a cracked I-Beam, whose corresponding
component meshes are depicted in Fig. 5a, b and the joint port meshes can be seen
in Fig. 5c. The FE space associated with the I-Beam component has a dimension
of 11781 and the FE space corresponding to the cracked I-Beam component has
a dimension of 21705. Finally, the FE space associated with the joint port mesh
is of dimension Nin = 150. We generate the reduced port space Rn

data,ker(μ) by
connecting two un-defective I-Beams. Then, we prescribe homogeneous Dirichlet
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Fig. 5 Component mesh of i-beam (a) and i-beam with crack (b) and mesh of shared port (c)

Fig. 6 Relative error
‖u(μ) −
un+6(μ)‖E (μ)/‖u(μ)‖E (μ)

for I-Beam with and without
crack in Ω2(μ); Dirichlet
boundary conditions on outer
ports of Ω1 and Ω2(μ) are
(0, 0, 0)T and (1, 1, 1)T ,
respectively

boundary conditions at the outer port of Ω1 and g = (1, 1, 1)T at the outer port of
Ω2(μ) and assess the relative error between the FE solutionu(μ) and the port reduced
static condensation approximation un+6(μ) based on that port space in Fig. 6; here
+6 accounts for the six rigid body motions included in Rn

data,ker(μ). We observe a
stagnation of the relative error if we connect an I-Beam with a cracked I-Beam and
use the spectral modes generated by connecting two un-defective I-Beams. However,
again, we stress that we obtain a relative error of less than 10−3.We also highlight the
extremely fast convergence of the reduced static condensation approximation for the
I-Beam and thus the convincing approximation capacities of the optimal port spaces
for this test case.

7.3 Spectral Greedy Algorithm for Geometry Changes

If we perform the spectral greedy algorithm to generate a joint port space both for the
defective and un-defective I-Beamwe obtain a port space of size 23 for a tolerance of
2 · 10−6; see also Fig. 7. Taking into account that for this tolerance the eigenspaces
for the transfer eigenvalue problems for each geometry have a dimension of 16 and
15 (see Fig. 7) including the six rigid body modes, we observe that at least for this
tight tolerance neither of the two eigenspaces is well suited to approximate the other.
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Fig. 7 Eigenvalues√
λn+1(μ) for the I-Beam

with and without crack in
Ω2(μ) and deviation
E(S(Rn

data,ker(μ)), Rm+6)

during the spectral greedy
algorithm

Note, that this is consistent with our observation of the stagnation of the relative error
in Fig. 6. However, based on the latter we would expect that for higher tolerances the
size of the port space generated by the spectral greedy is significantly smaller than
the size of space obtained by uniting the two eigenspaces obtained by the transfer
eigenvalue problem.This can indeedbeobserved inFig. 7. Ifweprescribe for instance
a tolerance of 10−2 the dimension of the port space obtained by the spectral greedy
would be 14while the dimension of the union of the two eigenspaces is 17. Increasing
the tolerance further rises the gain we obtain by employing the spectral greedy rather
than uniting the two eigenspaces as can be observed in Fig. 7, where we compare
2
√

λn+1(μ) and the scaled deviation 2E(S(Rn
data,ker(μ)), Rm+6). Note that the factor

2 comes from our chosen division of the tolerance in the spectral greedy, namely ε/2.
Furthermore, we increase m by 6 to ease comparison with the eigenvalues; the first
value of the deviation corresponds to the reduced space R6 comprising the 6 rigid
body modes.

Similar results are obtained in two space dimensions. We connect the 2d beam as
introduced in the beginning of Sect. 7.2 subsequently with the 2d beam, the cracked
beam depicted in Fig. 3a, and the beam with a hole (see Fig. 3c). For a tolerance
of 2 · 10−7 the spectral greedy yields a port space of dimension 13. As the three
eigenspaces have the sizes 6 (un-defective beam and beamwith hole) and 7, including
the three rigid body modes, we observe that in this case the dimension of the port
space generated by the spectral greedy equals the dimension of the union of the
three eigenspaces. However, we emphasize that for larger tolerances as 10−3 or 10−2

we observe, again, that the spectral greedy is able to produce a very small port
space which is able to yield accurate approximations for geometries which are rather
different (see Fig. 8).

Finally, we analyze the convergence behavior of the relative error ‖u(μ) −
um(μ)‖E (μ)/‖u(μ)‖E (μ) if we connect either an un-defective beam, a cracked beam,
or a beam with a hole with an un-defective beam and consider random Dirichlet
boundary conditions as above. Here, we use the port space constructed by the spec-
tral greedy algorithm. Again, we observe that already for very few modes, in this
case 5, we obtain for all geometries a relative error below 10−3. However, if we insist
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Fig. 8 Eigenvalues√
λn+1(μ) for the

un-defective beam, the
cracked beam, and the beam
with a hole, and the deviation
E(S(Rn

data,ker(μ)), Rm+3)

during the spectral greedy
algorithm

Fig. 9 Average relative error
‖u(μ) −
um(μ)‖E (μ)/‖u(μ)‖E (μ) for
the un-defective beam, the
cracked beam, and the beam
with a hole

on accuracies of 10−7 or below, we need at least for the defective components nearly
all modes provided by the spectral greedy. The very good convergence behavior of
the beam can be explained by the fact that after the initialization with the three rigid
body modes the spectral greedy selects three (un-defective) beam modes, such that
the (un-defective) beam eigenspace is contained in the spectral greedy port spaces
already for m = 6. Analyzing the convergence behavior for the defective compo-
nents in detail, we observe that the modes selected from the cracked beam-beam
combination reduce the error for the beam with hole-beam combination only very
slightly and vice versa (see Fig. 9), because as the 7th mode the cracked beam-beam,
as the 8th and 9th the beam with hole-beam, as the 10th the cracked beam-beam, as
the 11th the beam with hole-beam, and finally as the 12th and 13th mode the cracked
beam-beam combination has been selected during the spectral greedy.
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8 Conclusions

Having the application in structural health monitoring in mind we have proposed
quasi-optimal port spaces for parametrized PDEs on different geometries. To that
end, we employed the optimal port spaces generated by a transfer eigenvalue problem
as introduced in [24] and slightly generalized the there suggested spectral greedy
algorithm to geometry changes. In the numerical experiments we showed that for
tolerances of about 10−4–10−2 the spectral greedy algorithm is able to construct
a small port space that already yields an accurate approximation. Moreover, we
demonstrated that using the optimal port space generated on a component pair of two
un-defective beam yields a rather small relative approximation error on a component
pair of an un-defective beam and a beam with a defect. We therefore expect that if
one constructs port spaces for a library of defects, and then detects a new defect, very
often reusing the constructed port space will result in a small relative approximation
error.
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1 Introduction

Parametric models are used in many areas of science, engineering, and economics
to describe variations or changes of some system. They can have many different
uses such as evaluating the design of some system, or to control its behaviour, or to
optimise the performance in some way. Another important case is when some of the
parameters may be uncertain and are modelled by random variables (RVs), and one
wants to perform uncertainty quantification or identify some of the parameters in
a mathematical model. One important consideration is the preservation of structure
which one knows to be present in the system. One such structure is the consideration
of coupled systems, and it will be shown how this can be dealt with. In fact, the
coupling conditions can be one of the possible parameters.

The representations of such parametric models leads directly to reduced order
models which are used to lessen the possibly high computational demand in some
of the tasks described above. Such reduced models hence become parametrised. The
survey [1] and the recent collection [2], as well as the references therein, provide a
good account of parametric reduced order models and some of the areas where they
appear. The interested reader may find there further information on parametrised
reduced order models and how to generate them.

This present work is a continuation of [16, 17], where the theoretical background
of such parametrised models was treated in a functional analysis setting. For many
of the theoretical details we thus refer to these publications, and especially to [17]
for a more thorough account of the theory.

As an example, assume that some physical system is investigated, which is mod-
elled by an evolution equation for its state u(t) ∈ V at time t ∈ [0, T ], where V
is assumed to be a Hilbert space for the sake of simplicity: u̇(t) = A(μ; u(t)) +
f (μ; t); u(0) = u0, where the superimposed dot signifies the time derivative, A is
an operator modelling the physics of the system, and f is some external excitation.
The model depends on some quantity μ ∈ M, whereM denotes the set of possible
parameters, and we assume that for all μ of interest the system is well-posed. Other
than that, it is not assumed that the setM has any additional structure. In this way the
system state becomes a function of the parameters, and can thus be written as u(μ; t).
Later mainly the dependence on μ will be interesting, so that the other arguments
may be dropped.

To fix ideas, take as a simple example a very simple fluid-structure interaction
problem used in [14] to explain the basics of coupling algorithms: it is a mass-spring
system coupled with a gas-filled piston. The governing equations are in the simplest
case considered there (with slight change of notation):

m ẅ(t) + k w(t) = S(p(t) − p0); p(t) = p0

(
1 + γ − 1

2

ẇ(t)

c0

) 2γ
γ−1

.

The mass m and spring constant k are properties of the mass-spring system with
displacement w(t) coupled over the surface S with the gas-filled piston with pressure
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p(t). The equilibrium pressure is p0, and c0 is the speed of sound in the gas with
specific heat ratios γ . Introducing the velocity v(t) = ẇ(t), the state of the system is
given by u = [w, v]T, the system depends on the parameters μ = (m, k, S, c0, γ −
1), the state Hilbert space is V = R

2, the set M can be taken as M = {(μ j ) j=1..5 |
μ j > 0} ⊂ R

5, and the problem u̇(t) = A(μ; u(t)) + f (μ; t) becomes:

u̇(t) =
[

ẇ(t)
v̇(t)

]
=

⎡
⎣ v(t)

− k
m w(t) + Sp0

m

(
1 + γ−1

2
v(t)
c0

) 2γ
γ−1

⎤
⎦ +

[
0

− Sp0
m

]
. (1)

A little twist can be given to this by assuming that some, or all, of the parameters
are random variables; say for example the spring stiffness k. Formally, this is a
measurable function from some probability space into the real numbers: k : Ω → R.
Thismakes also the displacementw and velocity v into random variablesw, v : Ω →
R. If we assume that all involved random variables have finite variance, i.e. k, w, v ∈
L2(Ω), then the parameter set could be taken as M = R+ × L2(Ω) × R

3+, and the
state space would be the Hilbert space V = L2(Ω)2. Such probabilistic examples
have prompted much of the theory and terminology [13], and such probabilistic
problems are treated specifically in the present framework in [15]; but here we do
not want to digress and keep the focus on coupled systems.

A bit more involved is the following example from [18], it is a kind of generic
example of fluid-structure interaction. The fluid is described by the incompressible
Navier–Stokes equation in arbitrary Lagrangean–Eulerian (ALE) formulation in a
domain Ω f :

ρ f (v̇ + ((v − χ̇ ) · ∇)v) − div σ + ∇ p = r f , (2)

2σ = ν f (∇v + (∇v)T), div v = 0, (3)

where ρ f and ν f are the fluid mass-density and viscosity, v(x, t) is the fluid velocity-
field, σ(x, t) is the viscous stress in the fluid, r f (x, t) are the volume forces in the
fluid, and the pressure p(x, t) is the Lagrange multiplier for the incompressibil-
ity constraint, whereas χ(x, t) is the movement of the ALE background reference
system. On part of the boundary Γc ⊂ ∂Ω f the fluid is coupled to an elastic solid,
described in the solid domain Ωs (with also Γc ⊂ ∂Ωs) in a Lagrangean or material
frame by

ρs ẅ − div(F S ) = rs, F = ∇w, (4)

S = λs(tr E )I + 2μsE, 2E = C − I, C = F TF, (5)

where ρs is the solid mass-density and λs, μs are the elastic Lamé moduli, w(x, t)
is the solid displacement-field and F its gradient, S(x, t) is the elastic 2nd Piola-
Kirchhoff stress in the solid, rs(x, t) are the solid volume forces, and the Lagrange-
Green strain E is stated in terms of the Cauchy-Green strain tensor C. The position
of a solid particle which was at position x at time t = 0 is w(x, t) + x . Hence at the



28 H. G. Matthies and R. Ohayon

each point χ(x, t) = w(x, t) + x on the coupling boundary Γc with normal nnn(x, t)
one has the condition that the velocities of fluid and solid have to match

v(χ(x, t), t) = ẇ(x, t). (6)

The solution (v, p) to the fluid part Eqs. (2) and (3) lives in a Hilbert space
H(div)(Ω f ) × L2(Ω f ), whereas the displacement w of the solid part can be envi-
sioned in H1(Ωs)

3 with a velocity ẇ ∈ H1(Ωs)
3. The state of the system (v, p, w, ẇ)

is thus in the Hilbert space V = H(div)(Ω f ) × L2(Ω f ) × H1(Ωs)
6. The parameters

can for example be the material constants for fluid and solidμ = (ρ f , ν f , ρs, λs, μs)

such that the setM can be taken again asM = {(μ j ) j=1..5 | μ j > 0} ⊂ R
5, or it can

be the smooth initial shape χ0(x) of the coupling boundary Γc, such that μ = χ0 and
M ⊂ C1(Ωc) with the boundary description Ωc ⊂ R

2; or a combination of these
two cases.

With these two examples in mind, turning again to the general description, one is
interested in how the system changes when these parameters μ change. As we have
seen in the above examples, these can be something specific describing the operator,
or the initial condition, or specifying the excitation, etc. [1]. One may be interested in
the state of the system u(μ; t), or some functional of it, say�(μ). In the first example
this could for example be the maximum acceleration �(μ) = maxt ẅ(μ; t). While
evaluating A(μ; û(t))—for some trial state û(t)—or f (μ; t) for a certain μ may be
straightforward, there are situations where evaluating u(μ; t) or �(μ) may be very
costly.

In this situation one is interested in representations of u(μ; t) or�(μ)which allow
a cheaper evaluation, these are called proxy- or surrogate-models, among others. Any
such parametric object can be analysed by linear maps which are associated with
such representations. This association of parametric models and linear mappings has
probably been known for a long time, see [13] for an exposition in the context of
stochastic models.

It should be pointed out that the exposition here is a general techniquewhich can be
used to analyse any parametric model and its approximations, where the parameters
can be of whatever nature, e.g. just some numbers, or functions, or random variables,
etc., and not somuch something to be directly implemented. It is shown though that in
the framework of orthogonal bases it has a direct connection with proper orthogonal
decomposition (POD) and Karhunen-Loève expansions. As will be seen, it also
connects with representations in tensor product spaces, which allows numerically
to use low-rank tensor approximations [10, 16]. It is furthermore also connected
with non-orthogonal decompositions which are easier to compute, like the proper
generalised decomposition (PGD) [4]. Here we shall only consider orthogonal bases
for the sake of conciseness of exposition.

Whereas the parametric map may be quite complicated, the association with a
linear map translates the whole problem into one of linear functional analysis, and
into linear algebra upon approximation and actual numerical computation.
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2 Parametric Models and Reproducing Kernel

This is a short recap of the developments in [17], where the interested reader may
find more detail. Let r : M → U be one of the objects alluded to in the introduction,
where M is some set without any further assumed structure, and U is assumed for
the sake of simplicity as a separable Hilbert space with inner product 〈·|·〉U .

Assume without significant loss of generality that span r(M) = span im r ⊆ U ,
the subspace ofU which is spannedby all the vectors {r(μ) | μ ∈ M}, is dense inU—
otherwise we just restrict ourselves to the closure of span r(M) = span im r . Then
to each such function r one may associate a linear map R̃ : U 	 u 
→ 〈r(·)|u〉U ∈
R

M, the real-valued functions on the set M. As a motivation, one may think of
such functions as providing a ‘co-ordinate system’ on the otherwise unstructured set
M. By construction, R̃ restricted to span im r = span r(M) is injective, and has an
inverse on its restricted range range R̃ := R̃(span im r) ⊆ R

M. This may be used to
define an inner product on R̃ as

∀φ,ψ ∈ R̃ 〈φ|ψ〉R := 〈R̃−1φ|R̃−1ψ〉U , (7)

and to denote the completion of R̃ with this inner product by R. One immediately
obtains that R̃−1 is a bijective isometry between span im r and R̃, hence extends to
a unitary map between U and R, as does R̃.

Given the maps r : M → U and R̃ : U → R, one may define the reproducing
kernel [3, 11] given by κ(μ1, μ2) := 〈r(μ1)|r(μ2)〉U . It is straightforward to verify
that κ(μ, ·) ∈ R̃ ⊆ R, and span{κ(μ, ·) | μ ∈ M} = R̃, as well as the reproduc-
ing property φ(μ) = 〈κ(μ, ·)|φ〉R for all φ ∈ R̃.

On this reproducing kernel Hilbert space (RKHS)R one can build a first represen-
tation.AsU is separable, so isR, and onemay choose a complete orthonormal system
(CONS) {ϕm}m∈N inR. Then with the CONS {ym | ym = R̃−1ϕm = R̃∗ϕm}m∈N in U ,
the unitary operator R̃, and its adjoint or inverse R̃∗ = R̃−1, and the parametric
element r(μ) become [17]

R̃ =
∑
m

ϕm ⊗ ym; i.e. R̃(u)(·) =
∑
m

〈ym |u〉Uϕm(·), R̃∗ = R̃−1 =
∑
m

ym ⊗ ϕm;

r(μ) =
∑
m

ϕm(μ)ym =
∑
m

ϕm(μ) R̃∗ϕm . (8)

Observe that the relations Eq. (8) exhibit the tensorial nature of the representation
mapping. One sees that model reductions may be achieved by choosing only sub-
spaces of R, i.e. a—typically finite—subset of {ϕm}m . Furthermore, the representa-
tion of r(μ) in Eq. (8) is linear in the new ‘parameters’ ϕm .
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3 Correlation and Kernel Space

The RKHS construction R of Sect. 2 just mirrors or reproduces the inner product
structure on the original space U . There is presently no way of telling what is impor-
tant in the parameter setM. For this one needs additional information. As a way of
indicating what is important on the setM, assume that there is another inner product
〈·|·〉Q for scalar functions φ ∈ R

M, and denote the Hilbert space of functions with
that inner product by Q. We define a linear map in the same way as the map R̃ in
Sect. 2, but as it now has a different range or image space—Q instead of R—and
denote the map by R : U 	 u 
→ 〈r(·)|u〉U ∈ Q. As the inner product on the image
space has changed, the map R, unlike the map R̃ in Sect. 2, will in general not be
unitary any more. Also assume that the subspace dom R = {u ∈ U | ‖Ru‖Q < ∞}
is, if not the whole space U , at least dense in U , and that the densely defined operator
R is closed. These are essentially requirements that the topologies on U andQ fit in
some way with the map r : M → U . But to make things even simpler, assume here
that R is defined on the whole space and hence continuous, and still injective, unless
explicitly otherwise stated.

With this, one may define [13, 17] a densely defined map C in U through the
bilinear form

∀u, v ∈ U : 〈Cu|v〉U := 〈Ru|Rv〉Q. (9)

The map C , which may also be written as C = R∗ R, may be called the ‘correlation’
operator. By construction it is self-adjoint and positive, and if R is continuous so is
C . In case the inner product 〈·|·〉Q comes from a measure � on M, so that for two
functions φ and ψ on M one has

〈φ|ψ〉Q :=
∫
M

φ(μ)ψ(μ) �(dμ), such that from Eq. (9)

〈Cu|v〉U =
∫
M

〈r(μ)|u〉U 〈r(μ)|v〉U �(dμ), i.e. C = R∗ R =
∫
M

r(μ) ⊗ r(μ) �(dμ).

The space Q may then be taken as Q := L2(M,�). A special case is when � is a
probability measure, �(M) = 1, this inspired the term ‘correlation’ [13].

In Sect. 2 it was the factorisation of C = R∗ R which allowed the RKHS repre-
sentation in Eq. (8). For other representations, one needs other factorisations. Most
common is to use the spectral decomposition (e.g. [8]) of C to achieve such a fac-
torisation.

On infinite dimensional Hilbert spaces self-adjoint operators may have a contin-
uous spectrum, e.g. [8]. To make everything as simple as possible to explain the
main underlying idea, we shall from now on assume that C is a non-singular trace
class or nuclear operator. This means that it is compact, the spectrum σ(C) is a
point spectrum, has a CONS {vm}m consisting of eigenvectors, with each eigenvalue
λm ≥ λm+1 · · · ≥ 0 positive and counted decreasingly according to their finite mul-
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tiplicity, and has finite trace tr C = ∑
m λm < ∞. Then a version of the spectral

decomposition of C is

C =
∑

m

λm(vm ⊗ vm). (10)

Define a newCONS {sm}m inQ:λ1/2
m sm := Rvm , to obtain the corresponding singular

value decomposition (SVD) of R and R∗:

R =
∑
m

λ
1
2
m(sm ⊗ vm) ; i.e. R(u)(·) =

∑
m

〈vm |u〉U sm(·), R∗ =
∑
m

λ
1
2
m(vm ⊗ sm) ;

r(μ) =
∑
m

λ
1
2
m sm(μ)vm =

∑
m

sm(μ) R∗sm , as R∗sm = λ
1
2
m vm . (11)

The set ς(R) = {λ1/2
m }m = √

σ(C) ⊂ R+ are the singular values of R and R∗. The
last relation is the so-calledKarhunen-Loève expansion or proper orthogonal decom-
position (POD). The finite trace condition of C translates into the fact that r is in
U ⊗ Q. If in that relation the sum is truncated at n ∈ N, i.e.

r(μ) ≈ rn(μ) =
n∑

m=1

λ
1
2
m sm(μ)vm =

n∑
m=1

sm(μ) R∗sm, (12)

we obtain the best n-term approximation to r(μ) in the norm of U .
Observe that, similarly to Eq. (8), r is linear in the sm . This means that by choos-

ing the ‘co-ordinate transformation’ M 	 μ 
→ (s1(μ), . . . , sm(μ), . . . ) ∈ R
N one

obtains a linear / affine representationwhere the first co-ordinates are themost impor-
tant ones.

A formulation of the spectral decomposition different from Eq. (10) does not
require C to be nuclear [8], nor does C or R have to be continuous. The self-adjoint
and positive operator C : U → U is unitarily equivalent with a multiplication oper-
ator Mγ ,

C = V Mγ V ∗, (13)

where V : L2(T ) → U is unitary between some L2(T ) on ameasure space T and the
Hilbert space U , and Mγ is a multiplication operator, multiplying any ψ ∈ L2(T )

with a real-valued function γ . In case C is bounded, so is γ ∈ L∞(T ). As C is
positive, γ (t) ≥ 0 for t ∈ T , the essential range of γ is the spectrum of C , and Mγ

is self-adjoint and positive. Its square root is M1/2
γ := M√

γ , from which one obtains
the square-root of C1/2 = V M√

γ V ∗. The factorisation corresponding to C = R∗ R
with the square-root is C = (V M√

γ )(V M√
γ )∗ =: G∗G. Another possibility is C =

(C1/2)∗C1/2 = C1/2C1/2. From this follows another formulation of the singular value
decomposition (SVD) of R and R∗ with a unitary U : L2(T ) → Q:

R = U M√
μV ∗, R∗ = V M√

μU ∗. (14)
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These are all examples of a general factorisation C = B∗ B, where B : U → H
is a map to a Hilbert space H with all the properties demanded from R—see the
beginning of this section. It can be shown [17] that any two such factorisations
B1 : U → H1 and B2 : U → H2 with C = B∗

1 B1 = B∗
2 B2 are unitarily equivalent

in that there is a unitary map X21 : H1 → H2 such that B2 = X21B1. Equivalently,
each such factorisation is unitarily equivalent to R, i.e. there is a unitary X : H → Q
such that R = X B. For finite dimensional spaces, a favourite choice is the Cholesky
factorisation C = L LT, where B = LT and B∗ = L .

In the situation where C has a purely discrete spectrum and a CONS of eigenvec-
tors {vm}m in U , the map B from the decomposition C = B∗ B can be used to define a
CONS {hm}m inH: hm := BC−1/2vm , which is an eigenvector CONS of the operator
CH := B B∗ : H → H, with CHhm := λmhm , see [17]. From this follows a SVD of
B and B∗ analogous to Eq. (11). Taking the special case H = Q with CQ = R R∗,
we see that CQsm = λmsm , and sm = U V ∗vm , as well as CQ = U V ∗CV U ∗.

From the factorisation andKarhunen-Loève expansion in Eq. (11) one has r(μ) =∑
m sm(μ) R∗sm . With other equivalent factorisations C = B∗ B one obtains new

representations in an analogous manner. The main result is [17] that in the case of a
nuclear C every factorisation leads to a separated representation in terms of a series,
and vice versa. The associated ‘correlations’ CQ = R R∗ on Q resp. CH = B B∗ on
H have the same spectrum as C , and factorisations of CQ resp. CH induce new
factorisations of C .

The abstract equation CQ = U V ∗CV U ∗ = U Mγ U ∗ = ∑
m λmsm ⊗ sm can be

spelt out in more analytical detail for the special case when the inner product on Q
is given by a measure � on P . It then becomes for all ϕ,ψ ∈ Q:

〈CQϕ|ψ〉Q =
∑

m

λm〈ϕ|sm〉Q〈sm |ψ〉Q = 〈R∗ϕ|R∗ψ〉U =
∫∫

M×M
ϕ(μ1)κ(μ1, μ2)ψ(μ2) �(dμ1)�(dμ2) =

∫∫
M×M

ϕ(μ1)

(∑
m

λmsm(μ1)sm(μ2)

)
ψ(μ2) �(dμ1)�(dμ2) =

∑
m

λm

(∫
M

ϕ(μ)sm(μ) �(dμ)

) (∫
M

sm(μ)ψ(μ)�(dμ)

)
,

i.e. CQ is a Fredholm integral operator and its spectral decomposition is nothing but
the familiar theorem ofMercer [7] for the kernelκ(μ1, μ2) = ∑

m λmsm(μ1)sm(μ2).
Factorisations of CQ are then usually factorisations of the kernel κ(μ1, μ2).

An example is if on some measure space (X , ν) it holds that κ(μ1, μ2) =∫
X g(μ1, x)g(μ2, x) ν(dx), then the integral transform with kernel g will play the
role of a factor as before did themappings R or B, leading to a newKarhunen-Loève-
like representation of r . The abstract setting outlined in this section can hence be
applied to the analysis of a great number of different situations, of any kind of rep-
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resentation of r(μ), see [17] for more detail, and [15] for the case where essentially
μ is a random variable.

Let us remark how this framework here may be extended when the assumptions at
the beginning of this section are not satisfied. In case the parametric map r : M → U
maps not into a Hilbert space, but only into a locally convex topological vector space
(LCTVS), it is still possible to define a corresponding linear map and a correlation
operator. Denote the continuous dual space of U by U∗ and define a linear map
by S : U∗ 	 u∗ 
→ S(u∗) := 〈u∗, r(·)〉∗ ∈ Q, where 〈·, ·〉∗ is the duality pairing on
U∗ × U . The Hilbert space Q is still identified with its dual, although one could
also make generalisations here. Then the dual map S∗ : Q → U—w.r.t. the weak*
topology on U∗—is defined as usual by 〈u∗, S∗φ〉∗ := 〈Su∗|φ〉Q. This allows us to
define a ‘correlation’ CS : U∗ → U by CS = S∗S, i.e. 〈u∗, CSv∗〉∗ := 〈Su∗|Sv∗〉Q.
The dual map S∗ : Q → U can still provide a representation. Other factorisations
of CS such as CS = B∗ B, where B : U∗ → H—a Hilbert space identified with its
dual—can provide alternative representations via the map B∗ : H → U . But spectral
theory can not be used easily as we are not in a Hilbert space and domain and range
or image space are not the same for CS .

A frequent situation where some further development is possible is as follows:
there is an injective continuous map T : Z → U from a Hilbert space Z , which
will be a pivot space identified with its dual into the space U , such that the subspace
T (Z) ⊆ U is dense.Then thedualmapT ∗ : U∗ → Z is also injective and continuous,
T := T ∗(U∗) ⊆ Z is dense in Z , and we have a Gel’fand-like triplet of spaces

U∗ T ∗→ Z T→ U .

On the dense subspace T ⊆ Z the map T ∗ is invertible, J := T −∗
|T : T → U∗. This

allows one to define a mapping R and a ‘correlation’ C densely defined on T ⊆ Z:

R := S ◦ J : T J→ U∗ S→ Q and C := R∗ R = J ∗S∗S J = J ∗CS J : T → Z.

We view C now as a self-adjoint positive operator densely defined in the Hilbert
space Z , and we are in the previously described Hilbert space setting.

A typical occurrence of such a situation is the casewhenZ ↪→ U is a continuously
embedded Hilbert space, the map T is then just the identity. A concrete example of
this is r : M → S ′(Ω), a parametric map into the Schwartz space of tempered dis-
tributions. As the dual of U := S ′(Ω) in the weak* topology is U∗ = S (Ω), the
test space of rapidly decaying smooth functions, we have the continuous embeddings
U∗ = S (Ω) ↪→ Z := L2(Ω) ↪→ S ′(Ω) = U . Hence one may define the densely
defined maps R : T := S (Ω) → Q and C : Z := L2(Ω) → Z , given for f, g ∈
S (Ω) by the bilinear form 〈C f |g〉L2 = 〈R f |Rg〉Q = 〈〈r(·), f 〉S |〈r(·), g〉S 〉Q,
where 〈·, ·〉S is the duality pairing on S ′(Ω) × S (Ω).
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4 Structure Preservation and Coupled Systems

The main feature up to now was the mapping r : M → U and the associated linear
map R : U → Q ⊆ R

M, and the resulting tensor representation of r ∈ U ⊗ Q. Here
wemention somepossible refinements and extensionswhich try tomake someknown
structure in the parametric model explicitly visible.

One frequent situation is that the parameter space is a product space, say M =
M1 × M2 and a corresponding factorisation of the space Q = Q1 ⊗ Q2, where
Q1 ⊆ R

M1 and Q2 ⊆ R
M2 . Then the functions φ(μ) ∈ Q are linear combinations

of products ϕ(μ1)ψ(μ2), with ϕ(μ1) ∈ Q1 and ψ(μ2) ∈ Q2. Now such a product
may be seen as a parametric mapping

� : M2 	 μ2 
→ ϕ(·)ψ(μ2) ∈ Q1;

and by setting
Q = U∗ ⊗ Q∗ = Q1 ⊗ Q2, (15)

the theory of the preceding sections may now be applied to the parametric map �

and its tensor product representation in U∗ ⊗ Q∗ to get a refined representation of
the complete model. This shows how the product structure of the parameter setM =
M1 × M2 expresses itself in the representation. In some way the full parameter set
is a coupled object, and some of this is reflected in the factorisation. But for a real
coupled system we will demand a bit more, as will be explained later.

It is now not difficult to see that in case M = ∏
j M j with corresponding Q =⊗

j Q j and j ∈ J ⊂ N, this may be further factorised by different associations
depending on a partition of the parameter set J = J1 ∪ J2 into two disjoint sets
J1 ∩ J2 = ∅:

Q = U∗ ⊗ Q∗ =
⎛
⎝⊗

k∈J1

Qk

⎞
⎠ ⊗

⎛
⎝⊗

k∈J2

Qk

⎞
⎠ . (16)

Each of the factors can then be recursively factorised further, and this leads to hier-
archical tensor approximations, e.g. [10, 16].

Of course it is possible to split the tensor product in different ways, and the
grouping of indices can be viewed as a tree. Thewell-known canonical polyadic (CP)
decomposition uses the flat tensor product inEq. (16). It has also been published as so-
called proper generalised decomposition (PGD) as a computational method to solve
high-dimensional problems, see the review [5] and the monograph [4]. But recursive
splittings of Eq. (16) yield deep or hierarchical tensor approximations. Particular
formats are the tensor train (TT) and more generally the hierarchical Tucker (HT)
decompositions, see the review [9] and the monograph [10]. These hierarchical low-
rank tensor representations are connected with deep neural networks [6, 12]. It is
the eigenvalue structure of the correlation C or equivalently the structure of the
singular values of the associated linear map R in the particular splitting Eq. (16)



Analysis of Parametric Models for Coupled Systems 35

which determines howmany terms a series representation needs to be a good reduced
model with a certain accuracy.

Another frequent case is that the role of the Hilbert space Q is taken by a tensor
productW = Q ⊗ E , whereQ is as before but E is a finite-dimensional inner-product
(Hilbert) space [13]. Such a situation arises when the parametric model is in V =
U ⊗ E , where U is an unspecified Hilbert space as before, and one wants to see the
‘small’ space E separately. The parametric map can be defined as follows:

r : M → V = U ⊗ E; r(μ) =
∑

k

rk(μ)rrrk, (17)

where as before rk(μ) ∈ U and the rrrk ∈ E . Typically the index k will range over
the finite dimension of E , and the {rrrk}k are a suitable basis. An example of such a
situation is a vector field over some manifold. If at each point the vector is in the
finite-dimensional space E , e.g. the tangent space of the manifold, we model this by
a tensor product U ⊗ E , where U is some Hilbert space of scalar valued functions on
the manifold.

The ‘correlation’ can nowbe given by a bilinear form.The densely definedmapCE
in V = U ⊗ E is defined on elementary tensors u = u ⊗ uuu, v = v ⊗ vvv ∈ V = U ⊗ E
as

〈CEu|v〉U :=
∑
k, j

〈Rk(u)|R j (v)〉Q (uuuTrrrk) (rrrT
j vvv) (18)

and extended by linearity, where each Rk : U → Q is the map associated to rk(μ)

as before for just a single map r(μ). It may be called the ‘vector correlation’. By
construction it is self-adjoint and positive. The corresponding kernel with values in
E ⊗ E for the eigenvalue problem onW = Q ⊗ E is

κκκE(μ1, μ2) =
∑
k, j

〈rk(μ1)|r j (μ2)〉V rrrk ⊗ rrr j . (19)

While the situation just described occurs often when r(μ) is for example the state
of a system, a case which looks formally similar but allows an alternative approach
happenswhen the vector space E consist of tensors of even degree, hence E = F ⊗ F
for some space of tensors F of half the degree. An example of such a situation is
the stress or strain field of a continuum mechanics problem, where again U could
be a space of scalar spatial functions, and E the space of symmetric 2nd degree
tensors. Another example is the specification of a conductivity tensor field for a heat
conduction problem with E again the space of symmetric 2nd degree tensors, or the
specification of an elasticity tensor field with E the space of symmetric 4th degree
tensors.

Such a tensor of even degree can always be thought of as a linear map from a space
of tensors of half that degree into itself. Being a linear map, it can be represented as
a matrix AAA ∈ R

n×n , the case we shall look at here. The size of the matrix is equal to
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the dimension of the space F , i.e. n = dim F . So the space E can be thought of as
a space of matrices.

Often these linear maps/matrices possess some additional properties, like being
symmetric positive definite—as in the examples of the conductivity or elasticity
tensor—or e.g. orthogonal. One has to realise that the representation methods which
have been investigated here are linear methods, i.e. they work best when the rep-
resentation is in a linear manifold, essentially free from nonlinear constraints. The
two examples of positive definite or orthogonal tensor fields have such nonlinear
constraints. We discuss two possible approaches:

First, assume that AAA has to be orthogonal. It then satisfies AAAT AAA = III = AAAAAAT, a
nonlinear constraint. But the orthogonal matrices O(n) and its sub-group of special
orthogonalmatricesSO(n) form compact Lie groups. One thenmaywork in their Lie
algebra o(n) = so(n), the skew symmetric matrices, the tangent space at the group
identity III . This is a free linear space. An element AAA ∈ SO(n) can be expressed
with the exponential map AAA = exp(SSS) with SSS ∈ so(n) = E . Using the exponential
map from the Lie algebra to its corresponding Lie group one only has to deal with
representations in the Lie algebra.

As a second example, assume that the matrix AAA ∈ Sym+(n) has to be symmetric
positive definite (spd). Then it can be factored as AAA = GGGTGGG with invertible GGG ∈
GL(n). Both of these are nonlinear constraints. The spd matrices Sym+(n) are not
a linear space, but geometrically a salient open cone and a Riemannian manifold in
the space of all symmetric matrices sym(n). The manifold Sym+(n) can be made
into a Lie group in different ways. Here it is important to observe that any A ∈
Sym+(n) can be represented again with the matrix exponential as AAA = exp(HHH)with
HHH ∈ sym(n) = E . This is a good strategy even for scalar fields, i.e. n = 1.

Hence, in both cases, one may investigate the representation in some linear sub-
space g ⊆ F ⊗ F , in the concretematrix case here in a sub-space g ⊆ R

n×n = gl(n).
Such a parametric element may be represented first as HHH(μ) ∈ Q ⊗ g and then
exponentiated:

HHH(μ) =
∑

k

ςk(μ)HHH k, HHH(μ) 
→ exp(HHH(μ)) = AAA(μ). (20)

Hence we now concentrate on representing HHH(μ). The parametric map would be
written analogous to Eq. (17) as

R(μ) =
∑

k

rk(μ) ⊗ RRRk ∈ U ⊗ E, with RRRk ∈ g. (21)

The correlation analogous to Eq. (18) may now be defined via a bilinear form on ele-
mentary tensors as a densely defined map CE inW = U ⊗ F = U ⊗ R

n—observe,
not U ⊗ E = U ⊗ g—and extended by linearity:
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∀(u = u ⊗ vvv), (v = v ⊗ vvv) ∈W = U ⊗ F :
〈CFu|v〉U :=

∑
k, j

〈Rk(u)|R j (v)〉Q (RRRkuuu)T(RRR jvvv). (22)

The kernel corresponding to Eq. (19) is again matrix valued,

κκκF (μ1, μ2) =
∑
k, j

〈rk(μ1)|r j (μ2)〉U RRRT
k RRR j , (23)

defining an eigenproblem in Q ⊗ F .
For coupled systems, the approach has some similarity with the vector caseU ⊗ E

above. The main characteristic of a coupled system which we want to preserve is
that the space state may be written as U = U1 × U2 with the the natural inner product
〈u|v〉U = 〈u1|v1〉U1 + 〈u2|v2〉U2 , where uuu = (u1, u2),vvv = (v1, v2) ∈ U . This is for
two coupled systems, labelled as ‘1’ and ‘2’. The parametric map is

rrr : M → U = U1 × U2; rrr(μ) = (r1(μ), r2(μ)). (24)

The associated linear map is

RRR : U → Q2 = Q × Q; (RRR(uuu))(μ) = (〈u1|r1(μ)〉U1 , 〈u2|r2(μ)〉U2). (25)

As before, theseR
2 valued functions onM are like two problem-adapted co-ordinate

systems on the joint parameter set, one for each sub-system. From this one obtains
the ‘coupling correlation’, again defined through a bilinear form

〈CCCcuuu|vvv〉U :=
2∑

j=1

〈R j (u j )|R j (v j )〉Q. (26)

The kernel is then a 2 × 2 matrix valued function in an integral operator on W =
Q × Q:

κκκc(μ1, μ2) = diag(〈rk(μ1)|rk(μ2)〉Uk ). (27)

Often there is a bit more structure one wants to preserve, namely that M =
M1 × M2, and the parameter setM1 is for the sub-system ‘1’, and the setM2 is for
sub-system ‘2’. We also assume that not only U = U1 × U2, but alsoQ = Q1 × Q2,
where the scalar functions in Q1 depend only on M1, and similarly for subsystem
‘2’. The parametric map is hence

rrr : M = M1 × M2 → U = U1 × U2; rrr((μ1, μ2)) = (r1(μ1), r2(μ2)), (28)

with the associated linear map
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RRR : U → Q = Q1 × Q2; (RRR(uuu))(μ) = (〈u1|r1(μ1)〉U1 , 〈u2|r2(μ2)〉U2). (29)

The correlation may be defined as before in Eq. (26), and also the kernel on Q =
Q1 × Q2 is as in Eq. (27), but now the first diagonal entry is a function onM1 × M1

only, and analogous for the second diagonal entry.

5 Conclusion

Parametric mappings r : M → U have been analysed with in a variety of settings
via the associated linear map R : U → Q ⊆ R

M, enabling the linear analysis. The
RKHS setting allows a first representation, and essentially reproduces everything in
U in the function space R. The choice of another inner product and corresponding
Hilbert space Q leads to measures of importance in M, or, more precisely, in R

M.
It is shown that each separated representation defines an associated linearmap, and

that conversely under some more restrictive conditions, the normally more general
notion of an associated linear map defines a representation.

Several refinements are presented to represent some additional structure in the
linear map. One such structure is the information of dealing with a coupled system.
This can be reflected in the structure of the associated linear map.
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Abstract In this work, we propose a balanced truncation procedure for the reduction
of large-scale switched linear systems (SLSs) which are characterized by constrained
switching scenarios. To this aim, we introduce new generalized reachability and
observability Gramians, related to the constrained switched sequences, which satisfy
coupled Lyapunov equations. The main goal is to make use of the newly introduced
Gramian matrices to develop a balancing-type procedure for model order reduction
(MOR) of constrained switching SLSs. By following the classical scheme for linear
time-invariant (LTI) systems, the subspaces that are related to small singular values
can be truncated leading to reduced order SLSs. Finally, the efficiency of the proposed
approximation is demonstrated by several numerical examples.
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1 Introduction

MOR aims at finding efficient computational to replace models of complex, large-
scale time-varying processes by simpler and smaller models that can still capture
the behavior of the original process. Such high dimensional models are often linked
to the spatial discretization of partial differential equations (PDEs). The reduced
order models (ROM) could be used as efficient surrogates for the original model,
replacing it as a component in tasks such as simulation, analysis, or control. For
details on different MOR techniques, we refer the reader to the books [1, 5] and to
the surveys [4, 6].

In the context of LTI systems, balanced truncation (BT) is a common approach
which was initially introduced in [16, 17]. The main idea behind BT is to transform
a dynamical system to a balanced form defined in such a way that the states that are
difficult to reach are also difficult to observe. For more details on BT, see [7, 14].

Switched systems, a subclass of hybrid systems, can be considered as the result
of the interaction between a finite state automaton and a finite set of LTI subsystems
which are also referred to as modes. Switched systems have applications in control
of mechanical and aeronautical systems, power converters and also in the automotive
industry. In particular, such systems can be used to model processes that are subject
to known or unknown abrupt parameter variations such as synchronously switched
linear systems, networks with periodically varying switchings, and sudden change
of system structure. Typical examples of real world situations when switched or
hybrid systems are used to model the underlying dynamical behavior include vehicle
gearboxes, air conditioning systems, elevator systems or evaporation devices. For a
detailed characterization of switched systems, we refer the reader to the books [13,
24, 25].

In this work, we study continuous-time switched linear systems1 with coupling
or switching matrices, i.e., matrices that scale the continuous state at the switching
times. Whenever the dimension of the state space is large and, in addition, the SLS
has a big number of subsystems, difficulties for certain tasks such as simulation,
optimization and control might appear. To cope with this issue, the original SLS
might be approximated by a reduced order SLS by applying MOR. We refer to the
following contributions on model reduction of SLSs: [8, 10, 12, 15, 19–23] which
present balancing-related procedures, and, [2, 3, 11] which are related to moment
matching-type methods.

In general, for SLSs, the switching signal is not restricted and can follow any
trajectory. In this context, the concepts of reachability and observability have been
studied and described in terms of subspaces (see [26]) and Gramians (see [20]).
However, in many practical applications, the switching signal follows particular
sequences/patterns—examples are automatic gearbox shifting and power converters.
Thus the main goal in this paper is to develop suitable MOR methods whenever the
switched signal is constrained. To the best of our knowledge, the only contribution

1It is worth mentioning that, in the switched and hybrid systems literature, such classes of systems
are referred to also as linear switched systems (or LSSs).
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with this philosophy is [2],where the authors solve the problemofminimal realization
with constrained switching.

In this paper, we propose a balanced truncation MOR procedure for reducing
SLSs with constrained switching. The technique is based on defining generalized
reachability and observability Gramian matrices for each discrete mode, specifically
tailored to particular switching scenarios. Similar Gramians were introduced in [12],
for the general switching case, i.e., with no constraints imposed on the switches.
This allows us to find those states that are hard to reach and hard to observe via an
appropriate transformation. Truncating such states yields reduced-order SLSs.

The paper is organized in the following way: In Sect. 2, we introduce the def-
inition of continuous-time SLSs together with that of input–output mappings that
correspond to such systems. Additionally, some notation and symbols used through-
out the paper are defined in this section. In Sect. 3, we introduce the definition of
energy reachability and observability Gramians of constrained switching SLSs for
the case with two discrete modes. Section 4 introduces the proposed MOR balanced
truncation algorithm. In Sect. 5, three numerical experiments are presented (in which
we compare the performance of the new introduced method against that of others)
while a summary of the findings and the conclusion are stated in Sect. 6.

2 Linear Switched Systems: Definition and Properties

A continuous time switched linear system (SLS) denoted by � is a control system
described by the equations

� :
{
ẋ(t) = Aσ(t)x(t) + Bσ(t)u(t), x(0) = 0,
y(t) = Cσ(t)x(t),

(1)

where σ(t) ∈ � is the switching signal, � = {1, 2, . . . , D}, D > 1, is the set of
discrete modes, u(t) ∈ R

m is the input, x(t) ∈ R
nq is the state (depending on the

current active mode q), and y(t) ∈ R
p is the output. The system matrices Aq ∈

R
nq×nq , Bq ∈ R

nq×m, Cq ∈ R
p×nq , where q ∈ �, correspond to the linear system

active in mode q ∈ �.
In (1), the derivative of variable x with respect to time is denoted with ẋ.

More precisely, this denotes the derivative from the right, i.e., ẋ(t) = d+
dt x(t) =

lim
ε→0,ε>0

x(t + ε) − x(t)
ε

. Moreover, we assume homogeneous initial condition for

the first mode, i.e., x(0) = 0. For more details on general properties and control of
SLSs, we refer the reader to [13, 24].

For a fixed time interval [0, T ], the signal σ can be described using a sequence of
pairs (qi , ti ) from� × R+, denotedwith z = (q1, t1)(q2, t2) · · · (qk, tk)with i, k ∈ N,
i � k, q1, . . . , qk ∈ � and t1, . . . tk ∈ R+. Moreover, let Ti = t1 + . . . + ti and hence
T = Tk . Then, for all t ∈ [0, T ], we have
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σ(t) =
{

q1 if t ∈ [0, T1),

qi if t ∈ [Ti−1, Ti ), 2 � i � k.
(2)

Furthermore, the transition from mode qi to mode qi+1 at time Ti is made via the
switching or coupling matricesKqi ,qi+1 ∈ R

nqi+1×nqi , where qi , qi+1 ∈ �, as follows:
xqi+1(Ti ) = Kqi ,qi+1 lim

t↗Ti

xqi (t). This limit to the left exists because the evolution of

the switched system� in [Ti−1, Ti ) coincides with the evolution of themode qi linear
subsystem active in the same interval of time.

The switching matricesKqi ,qi+1 allow having different dimensions for the subsys-
tems active in different modes. If the Kqi ,qi+1 matrices are not explicitly given, it is
considered that they are identity matrices.

For ease and clarity of presentation, we will focus our attention to the case with
two switching modes. Hence, in the what follows, the presentation is tailored to the
case for which� switches between D = 2 subsystems only. Let the latter be denoted
by �1 and �2 and be described by the following differential equations:

�1 :
{
ẋ1(t) = A1x1(t) + B1u(t)

y(t) = C1x1(t)
, �2 :

{
ẋ2(t) = A2x2(t) + B2u(t)

y(t) = C2x2(t)
. (3)

Moreover, the matrices Aq are stable for all 1 � q � D, i.e., all eigenvalues of Aq

have a strictly negative real part. This implies that all linear subsystems of the SLS
are stable.

2.1 Input–Output Mapping of an SLS

The input–output behavior of an SLS can be described in time domain using the
mapping y = f(u, σ ) that can be decomposed into a generalized kernel representa-
tion (as presented in [18]). In the case of two modes and zero initial condition, the
input–output behavior is determined by analytic functions hqi ,...,qk : Rk+ → R

p×m

with qi , . . . , qk ∈ �, i, k � 1, k ≥ i . Hence, for all pairs (u, z) composed of control
input u(t) ∈ R

m and sequence z = (q1, t1)(q2, t2) · · · (qk, tk), we can write:

f(u, z) =
k∑

i=1

∫ ti

0
hqi ,qi+1,...,qk (ti − τ, ti+1, . . . , tk)u(τ + t1 + . . . + ti−1)dτ. (4)

The kernel functions h can be explicitly written in terms of the system’s matrices for
i, k � 1, k ≥ i , as follows,

hqi ,qi+1,...,qk (ti , ti+1, . . . , tk) = Cqk eAqk tkKqk−1,qk eAqk−1 tk−1 · · ·Kqi ,qi+1e
Aqi tiBqi . (5)
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Based on the kernels in (5), introduce time-domain multivariate functionals that
will be used in construction of the generalized infinite Gramian matrices for SLSs:

r1(t1) = eA1t1B1, r2(t2) = eA2t1B2, r1,2(t1, t2) = eA2t2K1,2eA1t1B1, . . . (6)

o1(t1) = C1eA1t1 , o2(t2) = C2eA2t1 , o1,2(t1, t2) = C2eA2t2K1,2eA1t1 , . . . (7)

In general, for q1, . . . , qk ∈ �, and based on the kernels in (5), one can write that:

hq1,··· ,qk (t1, . . . , tk) = Cqkrq1,··· ,qk (t1, . . . , tk) = oq1,··· ,qk (t1, . . . , tk)Bq1 . (8)

In the case where all switchings are possible, we need all the kernels in (8) in order to
determine the dynamics of �. However, if the switching pattern is constrained, then
only a limited number of kernels determines the behavior of �. Later, we use those
kernels to construct the reachability and observability Gramians that are related to
a constrained switching. In order to formalize the set of constrained switchings, we
briefly introduce the notion of a language.

2.2 Constrained Switching Described by Languages

Let �+ be the infinite set of non-empty sequences that can be formed with ele-
ments from � = {1, 2}, i.e. �+ = {1, 2, 12, 21, 121, 212, . . .}. Note that the kernel
functions in (5) encode the input–output energy transfer for all possible switching
scenarios (encoded as sequences from the set �+). In what follows, we introduce
the notion of a language, which encodes the restricted switching scenarios.

The elements of �+ shall be referred to as words over � and any nonempty
set L ⊆ �+ is a language over �. For a word w = q1q2 · · · qk ∈ �+, with qi ∈ �,
1 � i � k, we consider qi to be the i th letter of the word w. The concatenation of
a word w ∈ �+ with a word v ∈ �+ will be denoted with wv ∈ �+. For example,
if w = 12 and v = 1, then wv = 121. Also, a word v ∈ �+ is a prefix of a word
w ∈ �+ if there exists z ∈ �+ so that w = vz. Conversely, a word v ∈ �+ is a suffix
of a word w ∈ �+ if there exists y ∈ �+ so that w = yv.

For a language L ⊆ �+, introduce another language L− as the 1-prefix of L
and which contains all nonempty words from L by omitting the last letter of each.
Additionally, introduce the language −L as the 1-suffix of L , which contains all
words from L by omitting the first letter of each.

Definition 1 A language L ⊆ �+ is complete if the conditions L− ⊆ L and
−L ⊆ L are simultaneously verified.

Thus, we conclude that the languageL is complete if for any word w ∈ L , any
prefix or suffix of w also belongs toL .
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Next, denote with |w| the length of a word w ∈ �+, i.e. the number of letters and
also with |L | the length of a language L ⊆ �+, i.e. the number of words. We say
that a language L is finite, if |L | < ∞.

For example, |121| = 3 and |�+| = +∞. Consider the following language
L = {1, 2, 12, 21, 121} ⊆ {1, 2}+. Then, it follows that L− = {1, 2, 12}, −L =
{1, 2, 21} and |L | = 5. Note also that this language is complete.

3 Gramians for SLSs with Constrained Switching

In this section, we introduce the Gramians for SLSs with constrained switching.
This is inspired by the Gramians for LTI systems. We recall that an LTI system is
described by the equations

{
ẋ = Ax + Bu, y = Cx . The input–output behavior of

such a system is associated with the kernel h = CeAtB, which can be decomposed as
r(t) = eAtB and o(t) = CeAt . Using these kernels, the reachability infinite Gramian
P and the observability infinite Gramian Q are defined as follows:

P =
∫ +∞

0
eAtB(eAtB)T dt =

∫ +∞

0
r(t)(r(t))T dt,

Q =
∫ +∞

0
(CeAt )TCeAtdt =

∫ +∞

0
(o(t))T o(t)dt,

(9)

One can show that theP , Q matrices, defined in (9), satisfy Lyapunov equations:

AP + PAT + BBT = 0, ATQ + QA + CTC = 0. (10)

Next, we show how the results in (9) and (10) can be extended to the SLS case.

Definition 2 Let � be an SLS as in (1) for which all subsystems are stable. Let
L ⊆ �+ be a complete and finite language over � = {1, 2}, which includes all
allowed switching scenarios. Let w = q1 · · · qk ∈ L be a word which represents a
particular switching sequence. Then we can write definitions of the infinite reacha-
bility Gramian Pw and of the infinite observability Gramian Qw, associated to the
word w, in terms of the functionals in (8) as

Pq1···qk =
∫ +∞

0
· · ·

∫ +∞

0
rq1···qk (t1, . . . , tk)rq1···qk (t1, . . . , tk)

T dt1 · · · dtk, (11)

Qq1···qk =
∫ +∞

0
· · ·

∫ +∞

0
oq1···qk (t1, . . . , tk)

T oq1···qk (t1, . . . , tk)dt1 · · · dtk. (12)

Lemma 1 By assuming that the conditions stated in Definition 2 hold, it follows that
the Gramians introduced in (11) and (12) satisfy the following Lyapunov equations:

AqkPq1···qk + Pq1···qkA
T
qk

+ Kqk−1,qkPq1···qk−1K
T
qk−1,qk

= 0, (13)
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AT
q1Qq1···qk + Qq1···qkAq1 + KT

q1,q2Qq2···qkKq1,q2 = 0. (14)

As a remark, note that since the languageL is complete and q1 · · · qk ∈ L , it follows
that both q1 · · · qk−1 and q2 · · · qk are part ofL . Next, introduce the definition of the
reachability and observability Gramians corresponding to mode q ∈ {1, 2}.
Definition 3 Let � be an SLS as in (1) and L ⊆ �+ be a complete language over
� = {1, 2}. For q ∈ {1, 2}, let Pq be the reachability Gramian associated with mode
q. It follows that Pq can be written as a summation of the reachability Gramians
corresponding to all switching sequences w from L that end in mode q. More
precisely,

Pq =
∑

|w|=k,w(k)=q

Pw. (15)

Additionally, let Qq be the observability Gramian associated with mode q. It can
also be written as a summation of the observability Gramians corresponding to all
switching sequences w from L that start in mode q:

Qq =
∑

|w|=k,w(1)=q

Qw. (16)

Example 1 Consider the language introduced in Sect. 2, i.e.L = {1, 2, 12, 21, 121}
⊆ {1, 2}+. Then, we can write that:

{
P1 = P1 + P21 + P121, P2 = P2 + P12,

Q1 = Q1 + Q12 + Q121, Q2 = Q2 + Q21.
(17)

In order to explicitly compute the reachability Gramians Pq for q ∈ L , one needs
to solve a series of Lyapunov equations as stated in the following:

M1 :

⎧⎪⎨
⎪⎩
A1P1 + P1AT

1 + B1BT
1 = 0

A1P2,1 + P2,1AT
1 + K2,1P2KT

2,1 = 0

A1P1,2,1 + P1,2,1AT
1 + K2,1P1,2KT

2,1 = 0

, M2 :
{
A2P2 + P2AT

2 + B2BT
2 = 0

A2P1,2 + P1,2AT
2 + K1,2P1KT

1,2 = 0

Similarly for the observability Gramians Qq :

M1 :

⎧⎪⎨
⎪⎩
AT
1 Q1 + Q1A1 + CT

1 C1 = 0

AT
1 Q1,2 + Q1,2A1 + KT

1,2Q2K1,2 = 0

AT
1 Q1,2,1 + Q1,2,1A1 + KT

1,2Q2,1K1,2 = 0

, M2 :
{
AT
2 Q2 + Q2A2 + CT

2 C2 = 0

AT
2 Q2,1 + Q2,1A2 + KT

2,1Q1K2,1 = 0
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4 Description of the Method

The proposed balanced truncation method is presented in Algorithm 1. Let � be an
SLS as described by (1) with D = 2 modes and L ⊆ �+ be a complete language.
Denote with �̂ the reduced order SLS obtained by applying the new proposed BT
method to�. For q ∈ �, let (Âq , B̂q , Ĉq) be thematrices corresponding tomode q of
system �̂ and let rq be the dimension of each reduced subsystem of �̂. Additionally
K̂q1,q2 are the reduced-order coupling matrices corresponding to �̂.

Algorithm 1 BT using constrained Gramians
Input: Aq stable matrices, Bq , Cq , Kq1,q2 , a finite complete language L and order rq .
1: Solve the Lyapunov equations as described in (13) and (14).
2: Compute the Gramians Pq and Qq as in (15) and (16), for q = 1, 2.
3: Compute the Cholesky decomposition Pq = UqUT

q and the eigenvalue decomposition

UT
q QqUq = Vq�2

qV
T
q , where �2

q is a diagonal matrix that contains the singular values sorted
in decreasing order.

4: Construct the transformation matrices Tq ∈ R
nq ×nq as Tq = �

1/2
q VT

q U
−1
q .

5: Compute a balanced realization of � as

Āq = TqAqT−1
q , B̄q = TqBq , C̄q = CqT−1

q , K̄q1,q2 = Tq2Kq1,q2T
−1
q1 . (18)

6: Truncate the matrices in (18) as:

Âq = Āq (1 : rq , 1 : rq ), B̂q = B̄q (1 : rq , :), Ĉq = B̄q (:, 1 : rq ),

K̂q1,q2 = K̄q1,q2 (1 : rq2 , 1 : rq1 ).

Output: reduced order matrices Âq , B̂q , Ĉq , K̂q1,q2 .

Remark 1 For step 2 in Algorithm 1, the computation of the Gramians Pq and Qq

is performed by using the built-in standard solvers in Matlab: lyap and lyapchol (the
second one directly computes the Cholesky factors needed in step 3). Both of these
two direct solvers need cubic computations with respect to the dimension of the
subsystems, i.e. O(n3

q). A speed-up can be achieved by using iterative solvers that
only compute approximate low-rank factors of the Gramians and hence lower the
computations to O(nq) (provided that the matrices are sparse).

5 Numerical Results

In this section we compare the performance of the new proposed method against that
of other methods from the literature. More exactly, the initial switched linear system
� is going to be reduced by means of five balancing methods: Balancing using
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averaging linear Gramians (see [15] and denoted here by BT1), balancing using
generalized Gramians based on all possible switches (see [12] and denoted here by
BT2), balancing using Gramians obtained by recasting an SLS as an envelope LTI
(see [21] and denoted here by BT3), balancing using Gramians based on bilinear
reformulation of the SLS (see [20] and denoted here by BT4), and, the proposed
method in Algorithm 1 (denoted here by BT5).

5.1 First Example

For the first experiment, consider the CD player system in [9] of order 120 with
two inputs and two outputs. We consider that, at any given instance of time, only
one input and one output are active (the others are not functional due to mechanical
failure). More exactly, consider mode j to be activated whenever the j th input and
the j th output are simultaneously failing (where j ∈ {1, 2}). In this way, an SLS
system with two operational modes is constructed (as in [12]). Both subsystems are
stable SISO linear systems of order 120.

We use the signal u(t) = cos(10t) as the control input and the signal σ(t) that is
initiated inmode 2with switching times (0, 0.5, 2, 2.5, 3.5, 5.5, 6, 7.5, 8, 9, 10),
as the switching signal.

Choose the truncation orders r1 = r2 = 10 for the reduced SLS using all methods.
For the BT5 method, choose the languageL = {1, 2, 12, 21}. We compare the time
domain response of the original SLS against the ones corresponding to the five
reduced models. The output approximation errors are represented in Fig. 1. Note
that the response of all reduced models accurately follows that of the original model.
Note that the responses of the reduced models constructed with the BT2 and BT5
methods are very similar (deviation of 10−6 between them). Hence, in Fig. 1, the blue
and magenta curves coincide. Additionally, notice that the new proposed methods
provides slightly better approximation quality as compared to the others.

Fig. 1 Deviation between
the original output and the
ones corresponding to the
reduced SLSs

BT1 BT2 BT3 BT4 BT5

0 2 4 6 8 1010−7

10−4

10−1

Time(t)

Er
ro
r

Output approximation error



50 I. V. Gosea et al.

5.2 Second Example

For the second numerical experiment, let us consider an SLS with two modes of
order n1 = n2 = 300 as previously introduced in [20], whose system matrices are:

A1 =

⎡
⎢⎢⎢⎣

−2 1
0.1 −2 1

. . .
. . .

. . .

0.1 −2

⎤
⎥⎥⎥⎦ , A2 =

⎡
⎢⎢⎢⎣

−2 0.5
1 −2 0.5

. . .
. . .

. . .

1 −2

⎤
⎥⎥⎥⎦ ,

⎧⎨
⎩
BT
1 =

[
1 0 . . . 0

]
, BT

2 =
[
0 . . . 0 1

]
,

C1 =
[
0 1 0 . . . 0

]
,C2 =

[
0 . . . 0 1 0

] .

We use the signal u(t) = 10e−1/2t sin(20t) as the control input and the signal σ(t)
that is initiated in mode 1 with switching times (0, 1, 1.5, 2, 3, 4.5, 5, 6, 7.5, 8,
10), as the switching signal.

Choose the truncation order r = 20 for the reduced SLSs using all methods.
We again compare the time domain response of the original SLS against the ones
corresponding to the five reduced models. To this aim, we consider the following
two languages that encode the allowed switching sequences:

1. For the first case, let L1 = {1, 2, 12, 21}.
2. For the second case, let L2 = {2, 1, 21, 12, 212, 121}.

The output approximation errors are presented in Fig. 2. Note that, for the BT5
method, the left figure corresponds to the language L1, while the right figure cor-
responds to the language L2. Since only BT5 is a language-dependent method, the
curves corresponding to BT1, BT2, BT3 and BT4 are the same in both figures.

By inspecting Fig. 2, we observe that both BT1 and BT3 methods provide models
with poor approximation quality. A possible explanation for this behavior is that BT3
is designed for low-rank switching models as stated in [21]. The model analyzed

BT1 BT2 BT3 BT4 BT5
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Time(t)

M
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Output approximation error
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Fig. 2 Deviation between the original output and the ones corresponding to the reduced SLSs (the
left figure corresponds to L1 while the right figure corresponds to L2)



Model Order Reduction of Switched Linear Systems with Constrained Switching 51

in this example does not possess this property. On the other hand, note that the
approximation quality of the original response using either the BT2 or BT4 methods
is considerably better.

When using the language L1, the output approximation curve corresponding to
BT5 (depicted with magenta in the left side of Fig. 2) increases after two switches.
This is due to the fact that the language L1 does not include sufficient information.

By incorporating the sequences 121 and 212 into L2, we notice that the error
curve (depicted with magenta in the right side of Fig. 2) stagnates at a magnitude
around 10−12. Hence, the newmethod provides comparable approximation accuracy
with that of the methods BT2 and BT4 (that require solving generalized Sylvester
equations and hence need longer computational time to yield a ROM).

Remark 2 The BT1 method requires the solution of a number of 2D standard Lya-
punov equations (where D is the number of modes/subsystems of the SLS), while the
BT2 method requires the solution of 2D generalized Lyapunov equations. Finally,
the BT3 method relies on solving two standard Lyapunov equations, while the BT4
method needs the solution of two generalized Lyapunov equations.

Remark 3 The key difference between the new algorithm and the previously pro-
posed algorithm in [12] is the definition and the computation of theGramianmatrices.
With the new approach we avoid having to solve generalized Lyapunov equations,
for which the solution is computational challenging and not straightforward. Instead,
we relax this task by solving a number of standard Lyapunov equations which can
be performed in a reliable and fast manner.

Remark 4 The computational effort of Algorithm 1 directly depends on the per-
formance of the solver used for computing the Gramian matrices in step 2 of the
algorithm. In this work, we rely on direct built-in solvers as mentioned in Remark 1.
The size of the complete language directly influences the computations. In particu-
lar, the number of linear Lyapunov equations that need to be solved is equal to the
number of words in the language.

6 Conclusion and Outlook

In the current work, we have proposed generalized reachability and observability
Gramians for SLSs with constrained switching, which can be computed by solving
a series of classical Lyapunov equations. Also, these Gramians encode the reachable
and observable sets of the SLS tailored to the specific switching scenarios (described
by the corresponding language). Based on the new Gramian matrices, a balancing-
type procedure is proposed which enables to find local projection matrices used to
construct a reduced order model. Finally, the practical applicability of the proposed
methodwas illustrated bymeans of two numerical examples. Possible future research
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directions include establishing connections between the newly introduced Gramians
and the ones introduced in [12] for switching scenarios described by infinite lan-
guages and extending this framework for SLSs with more than two modes.

References

1. Antoulas, A.C.: Approximation of Large-Scale Dynamical Systems. SIAM, Philadelphia
(2005)

2. Bastug,M., Petreczky,M.,Wisniewski, R., Leth, J.:Model reduction of linear switched systems
by restricting discrete dynamics. In: Proceedings of the 53rd IEEE CDC (2014)

3. Bastug, M., Petreczky, M., Wisniewski, R., Leth, J.: Model reduction by nice selections for
linear switched systems. IEEE Trans. Autom. Control. 61(11), 3422–3437 (2016)

4. Baur, U., Benner, P., Feng, L.: Model order reduction for linear and nonlinear systems: a
system-theoretic perspective. Arch. Comput. Meth. Eng. 21, 331–358 (2014)

5. Benner, P., Cohen, A., Ohlberger,M.,Willcox, K. (eds.):Model Reduction andApproximation.
SIAM Publications, Philadelphia (2017)

6. Benner, P., Gugercin, S., Willcox, K.: A survey of projection-based model reduction methods
for parametric dynamical systems. SIAM Rev. 57(4), 483–531 (2015)

7. Benner, P., Stykel, T.: Model Order Reduction for Differential-Algebraic Equations: A Sur-
vey, Chap. 3. Surveys in Differential-Algebraic Equations IV, Part of the series Differential-
Algebraic Equations Forum, pp. 107–160. Springer, Berlin (2017)

8. Birouche, A., Mourllion, B., Basset, M.: Model order-reduction for discrete-time switched
linear systems. Int. J. Syst. Sci. 43(9), 1753–1763 (2012)

9. Chahlaoui, Y., Van Dooren, P.: A collection of benchmark examples for model reduction
of linear time invariant dynamical systems (2002). http://slicot.org/20-site/126-benchmark-
examples-for-model-reduction

10. Gao, H., Lam, J., Wang, C.: Model simplification for switched hybrid systems. Syst. Control.
Lett. 55, 1015–1021 (2006)

11. Gosea, I.V., Petreczky, M., Antoulas, A.C.: Data-driven model order reduction of linear
switched systems in the Loewner framework. SIAM J. Sci. Comput. 40(2), B572–B610 (2018)

12. Gosea, I.V., Petreczky, M., Antoulas, A.C., Fiter, C.: Balanced truncation for linear switched
systems. Adv. Comput. Math. 44(6), 1845–1886 (2018)

13. Liberzon, D.: Switching in Systems and Control. Birkhäuser (2008)
14. Mehrmann, V., Stykel, T.: Balanced truncation model reduction for large-scale systems in

descriptor form, Chap. 45. In: Benner, P., Mehrmann, V., Sorensen, D.C. (eds.), Dimension
Reduction of Large-Scale Systems, pp. 83–115. Springer, Berlin (2005)

15. Monshizadeh, N., Trentelman, H.L., Camlibel, M.K.: A simultaneous balanced truncation
approach tomodel reduction of switched linear systems. IEEETrans. Automat. Control 57(12),
3118–3131 (2012)

16. Moore, B.: Principal component analysis in linear systems: controllability, observability, and
model reduction. IEEE Trans. Automat. Control 26, 17–32 (1981)

17. Pernebo, L., Silverman, L.: Model reduction via balanced state space representation. IEEE
Trans. Automat. Control 27, 382387 (1982)

18. Petreczky, M., van Schuppen, J.H.: Partial-realization theory for linear switched systems - a
formal power series approach. Automatica 47, 2177–2184 (2011)

19. Petreczky, M., Wisniewski, R., Leth, J.: Balanced truncation for linear switched systems. In:
Nonlinear Analysis: Hybrid Systems, Special Issue related to IFAC Conference on Analysis
and Design of Hybrid Systems (ADHS 12), vol. 10, pp. 4–20 (2013)

20. Pontes Duff, I., Grundel, S., Benner, P.: New Gramians for switched linear systems: Reacha-
bility, observability, and model reduction. https://arxiv.org/abs/1806.00406, Accepted for pub-
lication in IEEE Trans. Auto. Control (2019)

http://slicot.org/20-site/126-benchmark-examples-for-model-reduction
http://slicot.org/20-site/126-benchmark-examples-for-model-reduction
https://arxiv.org/abs/1806.00406


Model Order Reduction of Switched Linear Systems with Constrained Switching 53

21. Schulze, P., Unger, B.: Model reduction for linear systems with low-rank switching. SIAM J.
Control Optim. 56(6), 4365–4384 (2018)

22. Shaker, H.R., Wisniewski, R.: Generalized Gramian framework for model/controller order
reduction of switched systems. Int. J. Syst. Sci. 42(8), 1277–1291 (2011)

23. Shaker, H.R., Wisniewski, R.: Model reduction of switched systems based on switching gen-
eralized Gramians. Int. J. Innov. Comput., Info. Contr. 8(7(B)), 5025–5044 (2012)

24. Sun, Z., Ge, S.S.: Switched Linear Systems: Control and Design. Springer, Berlin (2005)
25. Sun, Z., Ge, S.S.: Stability Theory of Switched Dynamical Systems. Springer, Berlin (2011)
26. Sun, Z., Ge, S.S., Lee, T.H.: Controllability and reachability criteria for switched linear systems.

Automatica 38, 775–786 (2002)



A Review on Reduced Order Modeling
using DMD-Based Methods

Soledad Le Clainche and José M. Vega

Abstract This article illustrates a review on the applications of a new method that
can be used either as a reduced order model or to uncover the underlying physics
in spatio-temporal data. The method is based on the higher order dynamic mode
decomposition (a recent extension of standard dynamic mode decomposition) of the
given data, which leads to a purely data-driven, equation free approach. The high
accuracy and robustness of the method makes it suitable to analyze very complex
spatio-temporal data resulting from either numerical simulations or experimental
measurements. The article illustrates the good performance and versatility of this
new reduced order model in two specific applications: (i) speeding up numerical
simulations in the wake of a circular cylinder and (ii) wind forecasting upstream
wind turbines using actual experimental data databases.

Keywords Higher order dynamic mode decomposition · Data driven reduced
order models · Temporal extrapolation from spatio-temporal databases · Cylinder
wake · Data forecasting in wind turbines

1 Introduction

Complex, generally unsteady flows are found both in nature and in a wide range
of industrial applications. For this reason, the study and understanding of the flow
behaviour is a research topic of high interest. Reduced order models (ROMs) are
generally used as a simple way of describing/simulating complex flows. The purpose
of developing ROMs lies in several advantages for different applications. Among
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the most important ones, it is possible to find the development of ROMs for fluid
dynamics, with the aim at, for example:

a. Reducing the computational cost in numerical simulations. This task, in turn, can
be performed in three different ways:

• Preprocessed ROMs, which are constructed by first computing a set of snap-
shots (following seminal ideas by Sirovich [37]) using a standard numerical
solver (pre-process), then extracting a limited number of representative modes
(dimension-reduction, using, e.g., POD), and finally projecting the governing
equations onto the set of modes, which gives a reduced order system, whose
integration is much faster than the full numerical solver. There is a variety of
methods to perform these steps, including standard proper orthogonal decom-
position [2], proper generalized decomposition [8], and reduced basismethods
[33]. These ROMs usually exhibit a very fast online operation and in time-
dependent simulations, they are useful mainly to simulate permanent dynam-
ics, excluding transients, which can be complicated to reproduce since their
dynamics are unpredictable.

• Adaptive ROMs. The two difficulties mentioned above in connection with pre-
processed ROMs can be overcome combining along the simulation a standard
numerical solver and a reduced system. The resulting method, known as POD
on the Fly [36], does not require any preprocess and is able to simulate not
only permanent dynamics, but also transients. The method has been used for
various purposes in various fields; see, e.g., [24, 34, 40].

• Data-driven ROMs. Using a purely data-driven method, which does not use
the underlying equations at all [21, 26] (except to generate the data when
numerical data is used), although it assumes a model. One such ROM will be
considered in the present paper. The benefit of this type of ROMS is that they
can be applied to any type of data, even experiments (as it will be presented
below).

b. Understanding the underlying physics in either numerical or experimental data,
and predicting the different involved flow states [27, 29]. This is one of the tasks
that will be addressed in the present paper.

c. Providing efficient tools for various applications, including flow control [13] and
optimal design [30].

Describing the nonlinear dynamics underlying complex flows requires identifying
both transient and permanent behaviours with a relatively good accuracy. This task
may be performed by decomposing the given spatio-temporal data v(x, t) as a sum of
simpler Fourier-like spatio-temporal patterns, in terms of normalized spatial modes
un(x), weighted with appropriate amplitudes an , and showing a temporal behavior
determined by the growth rates δn (whose sign determines temporal growth or decay)
and frequencies ωn (which determine temporal oscillation), as

v(x, t) �
∑

n=1

anun(x)e(δn+iωn)t. (1)
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Classical techniques can be used to obtain this approximation, based on, e.g., Fast
Fourier Transform or Power Spectral Density. However, the main inconvenient of
these methods is that the temporal length of the data analyzed must be very large
to obtain reasonably good results. A good alternative is using some other more
sophisticated techniques, such as dynamic mode decomposition (DMD) [35] or its
recently introduced extension, higher order DMD (HODMD) [25], which has been
successfully used in the analysis of complex flows [27], or with traditional methods
for reduced order modeling [1].

Once the amplitudes, spatialmodes, growth rates, and frequencies appearing in the
expansion (1) have been accurately computed, transient and permanent dynamics are
identified as resulting frommodeswith negative and zero (or very small) growth rates,
respectively, namely, δn < 0 and δn = 0, respectively. Thus, the final attractor can
be obtained from transient dynamics by just neglecting in (1) those modes such that
δn < 0. This is the basic idea behind usingHODMDas a reduced ordermodel (ROM)
to predict the final permanent dynamics from transient behavior, which involves
temporal extrapolation and will be considered in Sect. 3. Likewise, the spatial modes
un appearing in (1) can be spatially interpolated or extrapolated to obtain the temporal
data at spatial locations not considered in the original database, as it will be done in
Sect. 4.

With the above inmind, after a brief description of theHODMDmethod, in Sect. 2,
this article presents a review on two representative applications of the method, one
dealingwith its use as a data drivenROM,which is intended to diminish the computa-
tional cost in numerical simulations and will also be used for temporal extrapolation,
in Sect. 3, and another concerned with the use of the method to uncovering and fore-
casting the dynamics behind experimental data in wind turbines, in Sect. 4. The paper
ends with some concluding remarks, in Sect. 5.

2 Higher Order Dynamic Mode Decomposition

For convenience, we consider the discretized version of (1), referred to a (not nec-
essarily structured) spatial mesh, labeled with the index j and a uniform temporal
mesh, labeled with the index k, as

v(xj, tk) �
∑

n

anqn(xj) e
(δn+iωn)(k−1)�t, (2)

which is rewritten in the form (1) by appropriate interpolation in the x and setting (k −
1)�t = t (which involves interpolation in the time variable). The spatial distributions
for the discrete values of t are called the snapshots. Two definitions are now in order.
The dimension of the span of the vector space generated by the spatial modes qn
is known as the spatial complexity of the expansion, while the number of terms
appearing in (2) is called the spectral complexity, which at least equals the spatial
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complexity. However, the spectral complexity is larger than the spatial complexity
in many problems of scientific and industrial interest; see [24].

Now, the basic idea of standard DMD and its difference with HODMD is briefly
introduced in this chapter, although a better description of the algorithms can be
found in [23] and [25], respectively. The DMD expansion appearing in (2) is such
that

v(xj, tk+1) � L v(xj, tk), (3)

where the finite-dimensional linear operator L is known as the Koopman operator.
Once this operator has been computed (via, e.g., the pseudoinverse), its eigenvectors
give the modes qn appearing in (2), and their eigenvalues μn give the growth rates
and frequencies, as δn + iωn = log(μn)/�t ; the amplitudes an may be computed
via least squares fitting. However, the number of eigenvalues of L coincides with
its size, meaning that this method can only provide the expansion (2) if the spectral
complexity coincides with the spatial complexity. In the more general case, when the
spectral complexity is larger than the spatial complexity, the standard DMD method
does not provide good results and should be substituted by theHODMDmethod [25],
which combines standardDMDwith Takens’ delay embedding theorem [39], using d
index-lagged snapshots. Combination ofDMDanddelayed snapshotswas previously
suggested [41] and performed [6], in a spirit different from what is presented in this
section [25]. On the other hand, in the literature it is possible to find some other
variants of DMD with improved performance, although they are not related to time-
delayed snapshots. Some examples are: sparsity promotingDMD [19] (uses a penalty
to identify a smaller set of important modes using optimization techniques), extended
DMD [43] (extends the DMD approximation with more basis functions, allowing
the method to capture more complex dynamics), optimized DMD [7] (the expansion
is computed solving an optimization problem) and some other variants suitable to
reduce the level of noise in the data [9, 10, 16, 38]

The HODMDmethod proceeds in two steps (which are briefly summarized here,
see [25] for a more detailed description and illustration of the method). A version of
the code can be downloaded in [17].

1. Dimension reduction. To begin with, truncated singular value decomposition
(SVD) [14] is applied to the snapshot matrix (whose columns are the snapshots),
which gives a set of reduced snapshots. When the spatial mesh is structured, trun-
cated SDV can be advantageously replaced by truncated higher order SVD [22,
42], which is an extension of standard SVD (which treats matrices) to deal with
tensors.

2. Generating the expansion (2). The standardDMDmethod is applied to an enlarged
reduced snapshot matrix that contains, not only the reduced snapshots but also
the result of applying d shifts in then index k to these snapshots. The result is
an expansion of the form (2) for the reduced snapshots, which using the SVD
reconstruction yields the expansion (2) for the original snapshots and completes
the algorithm.
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As described, the method depends on three tunable parameters, namely the index
d, the tolerance ε1 used in step 1 to truncate the SVD expansion, and a second
tolerance ε2 that is used in step 2 to neglect in (1) those modes that exhibit a too
small amplitude an . These parameters are selected after some calibration of the
method with the aim of minimizing the relative error of the reconstruction of the
original data using expansion (1).

It is interesting to comment the role of errors, which are unavoidable in both
numerical data (truncation and round off errors) and specially in experimental data
(ambient noise and other experimental artifacts). Appropriate selection of the toler-
ances ε1 and ε2, comparable to the error size, help to filter errors. However, a more
efficient error filtering method results from applying iteratively steps 1 and 2 [27].

3 Application I: Acceleration of Numerical Simulations

When computing an attractor by an unsteady numerical simulation, transient dynam-
ics are usually found in the initial stage,where a large number of frequencies (physical
and spurious) develop simultaneously. The development and evolution of the modes
associated with these frequencies directly depend on the spatial and temporal dis-
cretization used to solve the numerical equations. For example, it is well known that
low order schemes (i.e.: finite volumes of second order) are more dissipative than
high order schemes (i.e.: high spectral methods). Thus low order schemes introduce a
smaller number of frequencies, since the small amplitude frequencies are dissipated
[11].

In this article, HODMD is used as a ROM to predict the final attractor from a
group of data collected in the initial transient stage of a numerical simulation. Note
that such aim involves temporal extrapolation. To this end, the expansion (1) will
be constructed retaining only the permanent modes, in principle those with δn = 0.
However, due to numerical errors, the growth rate of permanent modes will not
be exactly zero, but close to zero, defined as |δn| < ε (where ε is tunable). Once
the permanent modes are identified, we enforce that their associated growth rates
be exactly equal to zero, which converts the original expansion (1) (obtained via
HODMD) into the following expansion

v(x, t) �
N∑

n=1

anun(x)eiωnt. (4)

As a representative example we will show the performance of the DMD based
ROM in the three-dimensional incompressible cylinder wake, which is a classical
fluid dynamics problem [44, 45]. In the simplest incompressible formulation, assum-
ing spatially uniform density and kinematic viscosity ν, the nondimensional velocity
and pressure fields satisfy the continuity and Navier-Stokes equations
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Fig. 1 Modes B (left) and A (right) of the three-dimensional cylinder wake obtained at Re = 280
and Lz = 6.99

∇ · v = 0, (5)

∂v
∂t

+ (v · ∇)v = −∇p + 1
Re

∇2v, (6)

where the Reynolds number is defined in terms of the free stream velocity U and
the cylinder diameter D as Re = UD/ν. As is well known, the steady, reflection-
symmetric solution for small Re exhibits a Hopf bifurcation at Re � 46 [18, 32]
that produces a two-dimensional but unsteady periodic von Karman vortex street
flow. This flow remains orbitally stable up to Re � 190, where it suffers a secondary
bifurcation (Floquet multiplier= 1) and becomes three-dimensional [3] for some
specific values of the spanwise wave length β (or the spanwise period Lz = 2π/β).
It is possible to find two types of modes beyond this secondary instability depending
on the values of Re and Lz : the synchronous periodic modes and the asynchronous
quasi-periodic modes. The synchronous modes, known as modes A and B, are stand-
ing wave modes presenting different spatio-temporal symmetries. An example of
modes A and B is presented in Fig. 1, as obtained via Floquet linear analysis in
[31]. These modes oscillate with frequencies that are similar to that of the primary
two-dimensional periodic flow [3–5]. Mode A is a long-wave mode that emerges at
Re > 189, while mode B is a short-wave mode that appears at Re > 259. The asyn-
chronous quasi-periodicmodes emerge at Re � 380 through an instability associated
with a pair of complex Floquet multipliers [5].

In order to illustrate theHODMD-basedROMdescribed above, the numerical data
has been obtained upon integration of the continuity and Navier-Stokes equations
(5)–(6) at Re = 220 and Lz = 4. Note that mode A is to be present for this value
of the Reynolds number. The numerical solver is the open source, spectral element
code Nek5000 [12], which has been applied in a sufficiently large computational
domain. The boundary conditions are no-slip at the cylinder surface, periodic in the
spanwise direction, and appropriately non-reflecting at the outer boundary of the
computational domain; see [26] for further details.

Figure2 shows the evolution of the spanwise velocity at a representative point
of the computational domain, with coordinates (x, y, z) = (2, 0, 0). The cylinder
axis is the z-axis and the nondimensional cylinder diameter is 1, which means that
the selected point is the near field on the cylinder flow. As can be seen, there is a
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Fig. 2 Evolution of spanwise velocity in the three-dimensional numerical simulations of the cylin-
der wake at Re = 280 and Lz = 4 at a representative point near the cylinder. The blue rectangle
represents the transient stage where the data has been extracted for the HODMD computations, and
the red rectangle represents the attractor

very long transient stage until the final attractor is reached, at t ∼ 2900. This fact
makes it worthy the use of the HODMD-based ROM for guessing the attractor upon
extrapolation from the transient stage, instead of continuing the integration of the
Navier-Stokes equations until the attractor is reached. In fact, such extrapolation will
be performed using data from the short interval 575 ≤ t ≤ 825, highlighted in blue
in Fig. 2, which means that the acceleration factor resulting from using the ROMwill
be ∼2900/575 = 5.

In order to construct the HODMD-based ROM, a set of 500 snapshots have been
collected in the abovementioned transient region. HODMDhas been applied to these
snapshots using the following values of the tunable parameters d = 250, ε1 = 10−4,
and ε2 = 5 · 10−3 (set after some calibration), for which the HODMDmethod retains
19 modes. The permanent modes are defined such that |δn| < 10−3. Setting δn = 0
in these modes and neglecting the remaining modes lead to the DMD expansion (4),
which is used as an approximation of the attractor. The relative root mean square
(RMS) error of this approximation at t = 2900 is ∼6 · 10−2. It must be noted that
standard DMD (which coincides with HODMD for d = 1), with the same values
of ε1 and ε2, retains only 9 modes and gives a worse approximation, with a relative
RMS error ∼0.4, which is five times larger than its counterpart obtained for d =
250. Retaining 19 modes in DMD only provides worse results, since the remaining
modes captured by the method are related with transient or spurious artifacts (not
permanents). These results are illustrated in Fig. 3, where a representative snapshot is
plotted for the original flow and its reconstructions using d = 250 and d = 1. Three
remarks are in order in connection with this figure:

• Plotting the level lines does not make justice to the approximation, especially at
those regions where the velocity distributions are fairly flat or small.
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Fig. 3 A representative
snapshot in the attractor
showing the streamwise
(left), normal (middle), and
spanwise (right) velocity
components at the z = 0
plane for t = 2900,
considering the original data
and the HODMD
extrapolations for d = 250
and d = 1

Original data

HODMD with d = 250

HODMD with d = 1

• The approximation for the spanwise velocity component is much worse than for
the streamwise and normal components because the spanwise component is quite
small.

• The approximation with d = 250 is much better than with d = 1, especially for
the streamwise velocity component. In particular, the up-down symmetry in the
original data is preserved with d = 250, but not with d = 1.

Summarizing the above, the HODMD-based ROM gives fairly good reconstruc-
tion of the final attractor, with a computational cost that is five times smaller than its
counterpart using the full numerical solver.

4 Application II: Data Forecasting in Wind Turbines

As another interesting application of HODMD-based ROMs, we consider data fore-
casting based on experimental data. A case of particular interest is linked to the field
of renewable energies. Light detection and ranging (LiDAR) [15, 20] measurements
is a experimental a method usually employed in the wind energy for the remote mea-
surement of the line-of-sight component of thewind speed. LiDARmeasurements are
based on detection of the Doppler shift for light backscattered from natural aerosols
transported by the wind in the atmosphere. This technique is usually employed in the
wind energy industry with different goals. LiDAR measurements offer time depen-
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Fig. 4 Plane of
measurements upstream the
wind turbine in the LiDAR
experimental campaign. Data
are available in the six planes
that are closer to the wind
turbine, while the data on the
seventh plane are to be
predicted

dent signals that present high noise levels (15–20%). The LiDAR method usually
gives various signals upstream of the wind turbine, at the left and right sides of the
wind turbine, and at various distances that must be located between 20 and 200 m
from the measurement device, which is a restriction in certain applications. Here,
we consider six distances between 33 and 201 m. The aim of the HODMD-based
ROM in the present case is to obtain the time-dependent signals at a seventh distance,
namely 228 m, upstream the measurement device, which is not accessible to LiDAR
measurements; see Fig. 4. To this end, we collect the experimental data such that each
snapshot collects the two (left and right) measurements at the six available distances.
Thus, the spatial complexity is 12, which is much smaller than the very large number
of involved frequencies, namely the spectral complexity, meaning that HODMD,
with d > 1, is needed to obtain good approximations of the dominant frequencies.

In order to obtain a HODMD-based ROM, we first use a set of data collected
during 24 h in the six different locations presented. The HODMDmethod is applied
to these data with tolerances ε1 = ε2 = 10−4 and various values of d in the interval
30 ≤ d ≤ 40 (set after some calibration). The obtained results are fairly insensitive
to the selected value of d in this interval, which illustrates the robustness of the
method. With the results obtained, a reliable and accurate ROM is constructed as in
Eq. (1). Such expansion has been used to predict the wind velocity at the unknown
seventh distance (during the same 24 h period), by simply extrapolating in space the
spatial modes appearing in the expansion (1). To this end, both linear and quadratic
spatial interpolation is used. Figure5 compares the original data with the predictions
using both linear and quadratic spatial extrapolation.The data at the unknown seventh
distance are predicted with relative RMS errors ∼2% [29]. The computational cost
for predicting these measurements is negligible, making possible to easily update the
model in real-time.
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Fig. 5 Original (solid lines) and HODMD-predictions (dashed lines) of the wind velocity upstream
the wind turbine at x = 228 m using a linear (left) and quadratic (right) approximation model

5 Conclusions

TheHODMDmethod has been briefly described and applied to construct purely data-
driven ROMs, whose performance has been illustrated in two applications. Namely,

• The temporal extrapolation to obtain the final attractor in the cylinder wake from
transient data, which is useful to decrease the computational cost of obtaining the
attractor. In this case, the transient stage data has been obtained from numerical
simulation.

• The spatial extrapolation, to obtain the temporal evolution of data not provided
beforehand. In this case, highly noisy experimental data has been used.

As a main conclusion, the data-driven ROM considered in this paper seems to
be a fairly useful tool in several tasks of scientific and industrial interest. Several
extensions of the presentedmethods include the substitution of HODMDby themore
sophisticated spatio-temporal modal decomposition [28]. This method decomposes
the spatio-temporal data, not only in temporal Fourier-like modes, but in spatio-
temporal traveling waves.
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An Adaptive Way of Choosing Significant
Snapshots for Proper Orthogonal
Decomposition

Steffen Kastian and Stefanie Reese

Abstract In structural engineering problems, the resulting partial differential equa-
tions (PDEs) are often solved using the finite element method (FEM). The number
of degrees of freedom (DOF) and hence the computational time increases depending
upon the complexity of the problem (linear/nonlinear) and discretization of space and
time. The proper orthogonal decomposition (POD) yields a valuable set of vector
bases which can be used in model order reduction (MOR) techniques to reduce the
computational time. However, for nonlinear problems the trade-off with respect to
accuracy to gain speedup is still high. In this context, we present an adaptive method
to choose snapshots, which leads to a POD technique with either increased accuracy
or increased speed-up for a fixed accuracy compared to the classical POD.

Keywords Model order reduction · Proper orthogonal decomposition · Adaptivity

1 Introduction

Normally, calculation of engineering problems requiresmany simulations. In order to
get accurate results, the simulations include many degrees of freedom (DOF) which
make the calculation expensive.Model order reduction (MOR) can help to reduce the
cost. Due to the fact that optimization or uncertainty quantification require the solu-
tion of many similar problems which only differ by slight changes of parameters, the
use of MOR might lead to a significant improvement in computational cost. Among
others, proper orthogonal decomposition (POD) has been shown to be a suitable
method for this purpose [12, 19]. The POD method is already used in many differ-
ent fields e.g. in stochastics [3], transport phenomena [18], turbulent flows [15, 21],
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acoustics [22], image or signal analysis [6]. POD has been extensively studied in the
last decades in the fields of dynamics and solidmechanics [4, 11, 14]. Since nonlinear
simulations are still expensive with POD the CPU time can be additionally reduced
by using the discrete empirical interpolation method (DEIM) [17]. The system of
equations of a FE problem in general has a dimension as high as the number of DOF.
The POD projects this high dimension system of equations into an equation system
of smaller dimension. Due to this reduction, an error is generated. In literature, dif-
ferent kinds of approaches for the estimation of this error are proposed [8]. Volkwein
et al. show approaches for a posteriori error estimators [20, 24] and Chaturantabut
et al. introduce an error estimate for POD-DEIM [5]. If the expected error is too
high, most approaches add more basis functions. Radermacher and Reese introduce
the selective POD where POD is only applied to regions with approximately elastic
behaviour [16, 17]. A hp certified reduced basis (RB) was introduced by Eftang et al.
[7] in which a POD/Greedy [9] sampling procedure is used for the initial partition of
the parameter domain (h-refinement). Another interesting approach was shown by
Kunisch et al. [13] which focuses on the allocation of possible additional snapshots.
Haasdonk et al. [10] proposed amethod which starts with an empty projectionmatrix
and extends this basis with the worst resolved parameter combination. This proce-
dure enriches the projection matrix until a certain error tolerance is fulfilled. The
focus of their paper is to find a good training set for parameterized problems. Local
basis vectors for problems with different physical regimes and parameter variations
where shown by Amsallem et al. [1].

In contrast to the existing approaches, the present one incorporates a projection
matrix which adapts itself to the state of deformation The adaptive algorithm enables
a selection of a suitable snapshot set, while meaningless snapshots are sorted out.
During the course of a simulation different snapshots might become important to
obtain the best possible basis functions, while other snapshots are not important and
can be neglected. This approach is especially interesting for nonlinear problems,
since it allows to capture the change in the behaviour of a system adaptively.

Thepaper is organized as follows: Section2describes themain equations and ideas
of the POD method. The new adaptive approach for obtaining adjusted projection
matrices for each time step is developed in Sect. 3. It also includes an iterative
approach to select the number of modes. In Sect. 4, we present the investigated
nonlinear 3D example. In the context of this example, various aspects, for instance
the number of considered snapshots as well as the change of the POD modes, are
discussed. The paper finishes with a conclusion in Sect. 5.

2 Proper Orthogonal Decomposition

POD is based on precalculations, where so called snapshots are saved. In our case, the
snapshots are solution vectors for different time steps. Depending on the problem, it
might be necessary to carry out several precalculations. Here, the solution vectors are
the displacement vectors. The snapshots are stored in a snapshot matrix D ∈ R

n×l



An Adaptive Way of Choosing Significant Snapshots . . . 69

with D = [u1, ..., ul ] where n describes the number of degrees of freedom and l the
number of collected snapshots. In the case of a single precalculation, the number of
collected snapshots l is equal to the number of time steps j of the precalculation.
The solution vector of one time step in one precalculation is the displacement vector
u with the dimension n × 1. The goal of POD is to use the snapshot matrix D to
find an orthonormal basis such that the distance with respect to the projection of D
onto the subspace defined by Φ is minimized. The singular value decomposition of
D can be used to solve this problem:

D = SΣV T =
l∑

k=1

σk skvk T . (1)

In the latter equation the upper block of Σ is a diagonal matrix, which contains
singular values in decreasing order, and the lower matrix contains a null matrix:

Σ =

⎛

⎜⎜⎜⎜⎜⎝

σ1

. . .

σn

0

⎞

⎟⎟⎟⎟⎟⎠
with σ1 ≥ ... ≥ σn (2)

The matrices S = (s1, ..., sl) and v = (v1, ..., vl) are orthonormal. The vectors si
corresponding to them highest singular values are used to span the projection matrix

Φ = [s1, ..., sm] ∈ R
n×m . (3)

with the dimension n × m. The number of modes is represented by m which should
be much smaller than the number of degrees of freedom (m � n). This projection
matrix Φ can project the system of equations into a system of equations of smaller
dimension and hence reduce the cost.

3 Adaptive Proper Orthogonal Decomposition

In classical POD, the modes are selected once and stay constant throughout the
simulation. Thismeans that the behaviour is not expected to change significantly over
time. Nonlinear problems usually require more basis vectors than linear problems to
obtain accurate results. In this paper we introduce an approach to overcome the issues
which appear in a nonlinear regime. The main difference between the classical POD
and the new adaptive proper orthogonal decomposition (APOD) is that the projection
matrix Φ is not constant for all time steps. The projection matrix Φ̄(ūmax ) depends
on the maximum deformation
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ūmax = ||ū||∞ (4)

which is defined as the infinity norm of the displacement vector ū of the previous
time step. This will be called current state in the following. Other versions based on
an angle computation or a projection are currently under investigation. We believe
that this method is also applicable to problems of other fields and is not limited to
quasi-static problems. The infinity norm was chosen for two reasons. First of all, its
computation can be done by low effort. Secondly, we believe that the norm represents
the current state in a good manner. The displacement vectors in the snapshot matrix
have to be ordered by their infinity norm,

||u1||∞ ≤ ||u2||∞ ≤ ... ≤ ||ul ||∞, (5)

and with these ordered snapshots the total snapshot matrix is given by

D = [u1, ..., ul ] . (6)

It includes all snapshots from one or more precomputations. For more than one
precomputation, the snapshots in the snapshot matrix can be mixed up and only need
to be ordered by their infinity norm. The current maximum deformation is compared
to the infinity norm of the snapshot set to find snapshots which can describe the
current deformation in the best way. We find the position of the snapshot matrix D
with the minimum difference between the infinity norm of each snapshot and the
maximum current deformation ūmax with

b(ūmax ) = argmin
i∈{1,...,l}

(|(||ui ||∞ − ūmax )|) (7)

where b is the subscripted number of the best fitting snapshot. Additionaly a ∈ R

snapshots are chosen in the neighborhood of the best fitting snapshot. Using these
snapshots we obtain a new snapshot matrix D̄ for the current time step

D̄ = [u�b− a
2 � ... ub ... u�b+ a

2 �]. (8)

With this current snapshot matrix D̄ one can carry out singular value decomposition
analogously to Eq. 1 and compute the current projection matrix Φ̄ analogously to
Eq. 3. This is the projection matrix for the next time step. It is possible to precompute
the basis for each possible best fitting snapshots b in an offline step. This yields to
up to l different bases.

3.1 Iterative Number of Modes

It can be a challenging task to choose the number of modes a priori. In previous
papers [2, 23, 24], it was shown that the estimated error correlates with the decay
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of the singular values. This knowledge is used here to define an iterative scheme to
determine the required number of modes. The minimum number of modes is defined
as mmin , which is the start value for the first iteration step with m = mmin . This is
followed by the procedure of the APODmethod described in Sect. 3. However, after
calculating the singular values, the possible quality of the reduction is verified. For
this verification the decay of the singular values is observed. If the decay of the
singular values fulfills

σm∑m
i=1 σi

≤ Ctol (9)

then, the number of modesm is sufficient. Here, σi represent the singular values with
a decreasing sequence. Otherwise the procedure has to be repeated with an increased
m

m ← m + 1 (10)

until the criterion in Eq. 9 is fullfilled. Equation (9) can be dissatisfactory ifCtol is too
small. Then all snapshots are taken into account. Alternatively, the tolerance value
Ctol could be increased. This iterative process could also take place in an offline step,
so that only the corresponding basis has to be selected online. In the following a flow
chart of the algorithm is shown:
Offline:

(1) Collect snapshots in precomputations
(2) Order the existing snapshots by their infinity norm
(3) Create a basis for each possibly selected snapshot and store them with the cor-

responding number of the best fitting snapshot (b)

Online:
loop time steps

(1) Determine current maximum displacement umax

(2) Select corresponding basis Φ

(3) Galerkin projection
(4) Solve reduced system next time step

4 Numerical Example

In Sects. 2 and 3, POD and the new APOD were introduced. A comparison of these
two methods regarding accuracy and efficiency will be presented in Sect. 4.3.

We are solving the weak form

∫

Ω

ρ ü · w dV +
∫

Ω

σ : (Δw)dV =
∫

Ω

ρ b · wdV +
∫

∂Ωt

t · wdA
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x
yz

2l1

2l2l3

(a) Geometry, boundary condition and loading (b) Deformed configuration,
using the symmetry of the
system

Fig. 1 Cube under compression

of the balance of linear momentum where w represents a test function, ü the accel-
eration vector, σ the stress and ρb the body force density. We incorporate finite
strains and describe the material behaviour by means of a Neo-Hooke model. The
equation is discretized in space by means of the finite element method. Here we use
isoparametric trilinear shape functions.

A cube under compression, as shown in Fig. 1a, is chosen as an example. Due to
symmetry it is sufficient to consider only a quarter of the cube for the simulation. The
nodes at the bottom, at coordinate z = 0, are fixed during the whole simulation, such
that they can only move in x- and y-direction. Additionally the nodes at the top, with
initial z-coordinate z = l3 are fixed in x- and y-direction, i.e. they can only move in
z-direction. The symmetric cube is discretized by 8 elements in each direction which
yields a total of 83 elements. This is a 3D example with a Neo-Hookean material law,
which means that large deformations are taken into account. One deformed system
is plotted in Fig. 1b.

The Neo-Hookean material law includes two parameters. The Poisson’s ratio ν

is set to 0.4999, which represents almost incompressible material behaviour. The
Young’s modulus varies between E ∈ [100, 2000]N/mm2 and the geometry of the
cube undergoes small changes. A nondimensional length is introduced as li = Li /L0.
Therefore, the side lengths of the cube vary between l1, l2, l3 ∈ [0.95, 1.05]. In many
engineering problems one has one or a small number of quantities of interest. The
displacement of the degree of freedom which is maximal is called umax . For the
following, thismaximumdeformationwill be considered to be the quantity of interest.

4.1 Considered Snapshots

In order to apply POD, either the number of modes or a threshhold Ctol has to be
chosen. For the APOD, the number of considered snapshots a needs to be chosen
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Fig. 2 Error plotted over the
considered snapshots with
m = 5 modes, one
precomputation with 100
available snapshots

additionally. The number of considered snapshots should depend on the number of
precomputations and the number of used modes. To ensure that enough possible
basis vectors are available, the number of considered snapshots has to be bigger than
the number of modes:

a ≥ m. (11)

The first example in Fig. 2 is calculated with a fixed length, l1, l2, l3 = 1, and a fixed
Young’s modulus E = 100 N/mm2 for the precalculation as well as the reduced
calculation. In the following, the error between the unreduced model and (A)POD is
compared. The relative error is defined as

ε = |umax, f ull − umax,(A)POD|
|umax, f ull | ,

where umax, f ull is the maximum displacement of the unreduced reference system
and umax,(A)POD the maximum displacement of the reduced simulation. In Fig. 2
the error over the considered snapshots is shown for a constant number of modes
(m = 5) regarding the example shown in Sect. 4. In this examplewe have a fixed pool
of 100 snapshots. For each time step we select a fixed number a ≤ 100 of snapshots.
This is the number of considered snapshots shown on the x-axis. Each time step
only considers the amount of snapshots which are selected as shown in Sect. 3. All
other snapshots for one time step are neglected. It can be seen that in the case of one
precomputation, a smaller number of considered snapshots yields better results. The
smallest error is achieved if the number of considered snapshots is approximately
equal to the number of modes a = m. This leads to the additional advantage that the
CPU time is reduced. This is due to the fact that for each time step an SVD of smaller
dimension is required, which results in faster calculations. Considering all available
snapshots leads to the classic POD and yields the same results.

Allowing a variation in the size of the cube l1, l2, l3 ∈ [0.95, 1.05] results in amore
complex problem and requires a higher amount of precomputations. The number of
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Table 1 Precomputations to capture the influence of the cube for different geometries

l1 l2 l3 E [N/mm2]

0.95 0.95 0.95 200

1.05 0.95 0.95 200

0.95 1.05 0.95 200

0.95 0.95 1.05 200

Fig. 3 Error plotted over the
considered snapshots with
m = 10 modes, four
precomputations and 400
available snapshots

precomputations is called p. For this example p = 4 precomputations are chosen.
Table 1 shows the variations in the size of the cube upon which the precomputation
are based. The ranges for the different lengths are chosen in such a way that the
nonlinearity coming from the variation of geometry can be captured.

Figure 3 shows the error over the number of considered snapshots. Ten modes are
used in this example. The size of the cube was set to l1 = 1.05, l2 = 1.00, l3 = 0.95
to ensure that the simulation differs from the available sets of snapshots. For a small
number of considered snapshots (s < 20) the reduced model does not approximate
the original system verywell. On the other hand, using a higher number of considered
snapshots, the reduced systemcontains toomuch informationwhichdoes not describe
the problem appropriately. Thus, the error increases with the number of considered
snapshots.

According to Figs. 2 and 3 and other calculated examples (not shown in this paper)
the multiplication of the number of modesm times the number of precomputations p

a = m p (12)

is a good estimate for the number of snapshots (a) to be considered.
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(a) POD mode 1 (b) POD mode 2 (c) POD mode 3

Fig. 4 POD modes for the cube under compression with one precalculation and the classic POD

4.2 Comparison of Modes

In the classical POD the modes are calculated once and stay constant for the whole
simulation. Fig. 4a–c depict the first three modes for the cube under compression.
These are the most significant modes which are physically meaningful and have the
highest singular values.

Mode 1 in Fig. 4a captures themain structure of the problem. For a linear problem,
mode 1 would be sufficient. Modes 2 and 3 are important to capture partly nonlinear
behaviour of the cube.

In comparison to thephysicallymeaningfulmodes there aremodes that correspond
to singular values which are 1015 times smaller than the meaningful modes. These
modes have a negligible influence on the system, which is the reason why only a
small number ofmodes needs to be considered in order to obtain accurate results. The
non-meaningful modes are mainly interpreted as some kind of noise or numerical
inaccuracy. The 100th mode is pictured in Fig. 5 as an example of a non-physical
mode.

For theAPODnewmodes are calculated at each timestep. This enables themethod
to capture a good response for nonlinear simulations. In Figs. 6 and 7 the mode 1
for different timesteps and the corresponding displacement are shown. Mode 1 cor-
responds to the eigenvector related to the highest singular value. For each timestep
other snapshots are considered, which results in a changing mode 1 over time. While
for the first timestep mode 1 for APOD is qualitatively similar to mode 1 of POD,
one can see that the behaviour of the cube changes in the 90th timestep. For large
deformations (see e.g. Fig. 7c), the response of the cube in the corner where the
loading is applied becomes stiffer. This can be seen in mode 1 of the corresponding
timestep in Fig. 6c.
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Fig. 5 POD mode 100

(a) 1st timestep (b) 45th timestep (c) 90sth timestep

Fig. 6 APOD mode 1 for the cube under compression for different timesteps

(a) 1st timestep (b) 45th timestep (c) 90th timestep

Fig. 7 Displacements for the cube under compression for different timesteps
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Fig. 8 Comparison of the error between POD and APOD for a range of Young’s moduli

4.3 Results

In the previous chapter, the error over the number of considered snapshots and some
modes where shown. Finally, we can compare the APOD with the POD method
regarding accuracy and efficiency. The cube under compression shown in Fig. 1a
is investigated for this purpose. A Galerkin projection is used to reduce the model.
Sections 2 and 3 describe how to set up the projectionmatrix. To compare the different
methods, the size of the cube is fixed to l1, l2, l3 = 1.0. All reduced calculations were
done based on only one precalculation with a Young’s modulus of E = 100 N/mm2.
In order to carry out simulations with properties different from the precomputation
we allow a variation of the Young’s modulus E ∈ [100, 2000] N/mm2. The error
is defined in Eq. 1. The system is described in detail in Sect. 4. The number of
considered snapshots is equal to the number of modes (a = m). For the iterative
approach the tolerance was set to Ctol = 10−15.

In Fig. 8 the number after the method represents the number of used modes, e.g.
APOD3 depicts the APOD method with m = 3 modes. It can be seen that even
for a small number of modes APOD has accurate results while the classic POD
needs a higher number of modes to achieve equally accurate results. Comparing the
computational time in Fig. 9, one observes that for the same number of modes the
APOD is slightly slower than POD but has significantly better accuracy. For the
similar level of accuracy, it is clearly seen that APOD is faster than POD. APOD
with an iterative number of modes has the advantage that there is no need to choose
the number of modesm a priori. In addition, the method is error controlled. However,
it is slower than when choosing the number of modes a priori which is based on the
fact that for each time step several SVDs are required until the tolerance is fulfilled.
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Fig. 9 Comparison of the CPU time of POD and APOD for a range of Young’s moduli

5 Conclusion

Wedeveloped a newmethodwhich is able to select snapshots from an existing pool of
snapshots to create an adaptive basis for each timestep. This method is able to capture
nonlinearities better than the classic POD method. The adaptive proper orthogonal
decomposition can be coupled with other features of model order reduction methods
like error estimators or methods which enrich the pool of basis vectors.

Furthermore, it was shown that the APOD achieves more accurate results with
similar costs. It is seen that APOD has better stability than the classical POD for a
small number of modes.

Yet, the method might be limited to problems with a clear structure or one sig-
nificant value which can be used to compare the snapshots with the current state in
an appropriate way. Nevertheless, the possibility of a more general formulation as
well as the investigation of more complex problems should be in the centre of further
research.

Acknowledgements We would like to thank the German Research Foundation (Deutsche
Forschungsgemeinschaft(DFG)) for the financial support of the SPP 1886 with the title “Poly-
morphic uncertainty modelling for the numerical design of structures”.

References

1. Amsallem, D., Zahr, M.J., Farhat, C.: Nonlinear model order reduction based on local reduced
order bases. Int. J. Numer. Meth. Eng. 92(10), 891–916 (2012)

2. Antoulas, A.C., Danny, C.S., Yunkai, Z.: On the decay rate of Hankel singular values and
related issues. Syst. Control Lett. 46.5, 323–342 (2002)

3. Bastine, D., Vollmer, L., Wächter, M., Peinke, J.: Stochastic wake modelling based on POD
analysis energies 11(3), 612 (2018)



An Adaptive Way of Choosing Significant Snapshots . . . 79

4. Bolzon, G., Buljak, V.: An effective computational tool for parametric studies and identification
problems inmaterialsmechanics. Comput.Mech. 48, 675–687 (2011). https://doi.org/10.1007/
s00466-011-0611-8

5. Chaturantabut, S., Sorensen, D.S.: A state space error estimate for POD-DEIMnonlinearmodel
reduction. SIAM J. Numer. Anal. 50(1), 46–63 (2012)

6. Chatterjee, A.: An introduction to the proper orthogonal decomposition. Curr. Scir. 78(7),
808–817 (2000)

7. Eftang, J.L.,Knezevic,D.J., Patera,A.T.:Anhp certified reduced basismethod for parametrized
parabolic partial differential equations. Math. Comput. Modell. Dyn. Syst. 17(4), 395–422
(2011)

8. Haasdonk, B., Ohlberger, M.: Efficient reduced models and a posteriori error estimation for
parametrized dynamical systemsbyoffline/online decomposition.Math.Comput.Modell.Dyn.
Syst. 17(2), 145–161 (2011)

9. Haasdonk, B.: Convergence rates of the pod-greedy method ESAIM. Math. Modell. Numer.
Anal. 47(3), 859–873 (2013)

10. Haasdonk, B., Dihlmann, M., Ohlberger, M.: A training set and multiple bases generation
approach for parameterized model reduction based on adaptive grids in parameter space. Math.
Comput. Modell. Dyn. Syst. 17(4), 423–442 (2011)

11. Kerschen, G., Golinval, J.C., Vakakis, A., Bergman, L.: The method of proper orthogonal
decomposition for dynamical characterization and order reduction of mechanical systems: an
overview.NonlinearDyn. 41(1–3), 147–169, 2005. https://doi.org/10.1007/s11071-005-2803-
2

12. Kunisch, K., Volkwein, S.: Proper orthogonal decomposition for optimality systems ESAIM.
Math. Modell. Numer. Anal. 42(1), 1–23 (2008)

13. Kunisch, K., Volkwein, S.: Optimal snapshot location for computing POD basis functions
ESAIM. Math. Modell. Numer. Anal. 44(3), 509–529 (2010)

14. Lenaerts, V., Kerschen, G., Golinval, J., Chevreuils, C.D.: Proper orthogonal decomposition
for model updating of nonlinear mechanical systems. In: Golinval 2001 Mechanical Systems
and Signal Processing, pp. 31–41 (2001)

15. Lumley, J.L., Holmes, P., Berkooz,G.: Turbulence. Coherent structures. In:Dynamical Systems
and Symmetry. Cambridge University Press, Cambridge (1996)

16. Radermacher, A., Reese, S.: Model reduction in elastoplasticity: proper orthogonal decompo-
sition combined with adaptive sub-structuring. Comput. Mech. 54(3), 677–687 (2014)

17. Radermacher, A., Reese, S.: POD—basedmodel reductionwith empirical interpolation applied
to nonlinear elasticity. Int. J. Numer. Meth. Eng. 107(6), 477–495 (2016)

18. Reiss, J., Schulze, P., Sesterhenn, J., Mehrmann, V.: The shifted proper orthogonal decompo-
sition: a mode decomposition for multiple transport phenomena. SIAM J. Sci. Comput. 40(3),
A1322–A1344 (2018)

19. Sachs, E.W., Volkwein, S.: POD-Galerkin approximations in PDE-constrained optimization.
GAMM-Mitteilungen 33(2), 194–208 (2010)

20. Tonn, T., Urban, K., Volkwein, S.: Comparison of the reduced-basis and POD a posteriori error
estimators for an elliptic linear-quadratic optimal control problem. Math. Comput. Modell.
Dyn. Syst. 17(4), 355–369 (2011)

21. Meyer, R.D., Tan, G.: Use of proper orthogonal decomposition and linear stochastic estima-
tion technique to investigate real-time detailed airflows for building ventilation. Indoor Built
Environ. 25(2), 378–389 (2016)

22. Nagarajan, K.K., Singha, S., Cordier, L., Airiau, C.: Open-loop control of cavity noise using
proper orthogonal decomposition reduced-order model. Comput. Fluids 160, 1–13 (2018)

23. Penzl, T.: Eigenvalue decay bounds for solutions of Lyapunov equations: the symmetric case.
Syst. Control Lett. 40.2, 139–144 (2000)

24. Volkwein, S., Tröltzsch, F.: PODa-posteriori error estimates for linear-quadratic optimal control
problems. Comput. Optim. Appl. 44, 83115 (2009)

https://doi.org/10.1007/s00466-011-0611-8
https://doi.org/10.1007/s00466-011-0611-8
https://doi.org/10.1007/s11071-005-2803-2
https://doi.org/10.1007/s11071-005-2803-2


Fully Online ROMs and Collocation
Based on LUPOD

Maria-Luisa Rapún, Filippo Terragni and José M. Vega

Abstract This paper deals with the acceleration of time-dependent solvers for non-
linear dissipative systems. The governing equations are Galerkin-projected onto a set
of modes, which are obtained by applying proper orthogonal decomposition (POD)
to a set of snapshots calculated by a standard numerical solver. The advantage of
this approach is that the online operation of the resulting Galerkin system should be
much faster than the standard numerical solver. The basic version of such reduced
order model uses snapshots computed in a preprocess that is usually very computa-
tionally expensive. This difficulty can be overcome by an adaptive combination of
the standard numerical solver and the Galerkin system along the simulation, using
a method called POD on the Fly, which will be illustrated in a representative appli-
cation. In addition, Galerkin projection can be performed using only a suitable set
of collocation points, which decreases even further the computational cost. In this
context, an efficient collocation method called LUPOD will be described and tested
in various applications, including its combination with Galerkin projection.

Keywords Reduced order models · Collocation methods · Proper orthogonal
decomposition · LU decomposition · Galerkin projection
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1 Introduction

Reducing development time and computational costs by means of reduced order
models (ROMs) is a challenging research field that has received an increasing atten-
tion in the last two decades. The interest is twofold: ROMs help in the analysis and
understanding of the underlying physical problems, and facilitate their industrial
application.

In this paper, we first introduce in Sect. 2 some of our recent works [14, 16] on
the design of adaptive online ROMs for the acceleration of time-dependent numer-
ical solvers for dissipative problems, using a combination of an inexpensive proper
orthogonal decomposition (POD)-based Galerkin system (GS) with short runs of a
standard numerical solver (NS). The latter provides the snapshots needed for the con-
struction of the PODmodes, which form the linear subspace the governing equations
are Galerkin-projected onto. Alternation between running the NS and integrating the
GS is an ‘on the fly’ process, in which the underlying POD modes are dynamically
adapted over time to the local dynamics. Thus, this method is called POD on the Fly.

In Sect. 3, we discuss a sampling technique that, given a set of snapshots, selects
convenient collocation points retaining the ‘essence’ of the data, expressed, e.g.,
by concentrated spatio-temporal complexity. In essence, this collocation strategy is
based on two steps:

(i) Truncated (with a given accuracy) Gauss elimination (or LU decomposition)
with double pivoting is performed on the full snapshot matrix, which selects
the N most linearly independent snapshots and a set of N spatial points that
better account for such linear independency. The number N is comparable to
the number of POD modes that would be selected by applying POD to the full
snapshot matrix.

(i i) POD is applied to the selected snapshots using only the selected points, and
Galerkin projection is performed to obtain the ROM using only the values of
the obtained POD modes at the selected points.

Since it is a combination of LU and PODdecompositions, themethod is referred to as
LUPODmethod [15]. Let us note here that LUPOD is different to related methods in
the literature, such as the so-called Q-DEIM [9], which in turn is an improvement of
plain DEIM [7]. Specifically, in Q-DEIM the first step consists in applying truncated
POD to the full snapshot matrix, which selects a number of POD modes, to which a
QR decomposition with pivoting is then applied to select a number of spatial points
to be used in Galerkin projection.

The LUPOD method can be synergically combined with Galerkin projection to
improve the performance of the resulting ROM. In fact, LUPOD both enhances
the quality of the POD modes and decreases the required computational resources.
Section4 illustrates the combination of LUPOD with preprocessed ROMs, in which
snapshots andmodes are computed offline just once, to describe attractors. It is worth
mentioning that the final goal of these ideas would be constructing adaptive ROMs in
which the LUPOD-selected collocation points (together with themodes) may change
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over time to adapt to the transient local dynamics that are simulated. This is left as
future research; nonetheless simulations presented in Sect. 4, in which the efficiency
and robustness of LUPOD-based preprocessed ROMs are tested in some challenging
test cases, are an important step towards the mentioned extension of the method.

2 ROMs Based on POD on the Fly

Let us consider an evolution dissipative problem of the form

∂tq = L q + f(q, t) (1)

for the state vector q(x, t), where L is a linear operator (L typically involves
spatial derivatives and is elliptic) and f is nonlinear. A discussion on convenient
assumptions for such operators can be found in [14] and references therein. After
spatial discretization of the operators L and f (for which we will keep the same
notation), time discretization is performed by using, for instance, the Crank-Nicolson
plus Adams-Bashforth scheme with time step Δt (see [5]), yielding

2

Δt
(qk+1 − qk) = L (qk+1 + qk) + 3f(qk, tk) − f(qk−1, tk−1), (2)

where tk = kΔt and qk ∈ C
J stands for the spatial distribution of the state variable

q at the J grid points of the used spatial mesh. To generate a low dimensional
approximation of (2), we study the combination of POD plus Galerkin projection.
The idea is as follows. Consider the J × K snapshot matrix S = [s1, . . . , sK ] whose
columns are spatial distributions of the state variable q in the spatial mesh with J
grid points at K different time instants τ1 < . . . < τK , computed via the NS defined
by (2). Standard POD [6, 20] applied to S gives an orthonormal set of M < K POD
modes u1, . . . ,uM ⊂ C

J such that sk ≈ ∑M
m=1〈sk,um〉um , where 〈·, ·〉 is the inner

product associated to the spatial mesh, namely

〈u, v〉 =
J∑

j=1

u j v j , for u, v ∈ C
J , (3)

where overbars stand hereafter for the complex conjugate. POD modes are optimal
in the sense that they provide the best approximation with M modes of the whole
snapshot set with respect to the root mean square (RMS) error. We consider then
the linear expansion qGS = ∑M

m=1 am(t)um and substitute qGS into the spatially dis-
cretized counterpart of (1) to perform a Galerkin projection onto the POD modes.
Thus, the mode amplitudes a1, . . . , aM obey the GS
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d

dt
ai =

M∑

j=1

L GS
i j a j + f GS

i (a1, . . . , aM , t), i = 1, . . . , M, (4)

where

L GS
i j = 〈ui ,L u j 〉, f GS

i =
〈

ui , f

(
M∑

m=1

amum, t

)〉

.

Then, the system (4) of ODEs is integrated using the same time discretization as for
the original NS.When choosing the Crank-Nicolson plus Adams-Bashforth scheme,
the mode amplitude vector a = [a1, . . . , aM ]� is obtained from

2

Δt
(ak+1 − ak) = L GS(ak+1 + ak) + 3fGS(ak, tk) − fGS(ak−1, tk−1).

This kind of combination of POD with Galerkin projection has been widely used
for evolution problems, for instance in [1, 11]. In principle, time integration of the
GS involves a much smaller computational effort than the integration of the original
system. However, the GS can exhibit spurious dynamics, which seems to be due to
the non-invariance of the POD subspace under the true dynamics [17]. To avoid this
problem, when the GS is designed to approach attractors, [8, 19] proposed to correct
either the GS or the POD subspace. In previous papers coauthored by some of us
[14, 16, 21], we suggested a different approach to provide good approximations not
only of attractors, but also of transients. The method, called local POD plus Galerkin
projection or POD on the Fly, can be summarized as follows.

• Step 1. Snapshots are calculated by the original NS in an initial time interval, IN S .
• Step 2. POD is applied to identify the most relevant POD modes. The number M
of retained modes to guarantee an approximation within accuracy ε is selected in
terms of the relative RMS error, estimated as

RMSER
M =

√
√
√
√

R∑

j=M+1

(σ j )2
/ R∑

j=1

(σ j )2,

where the positive scalars σ j are the POD singular values and R is the rank of the
snapshot matrix. In principle, M could be selected by imposing RMSER

M < ε.
However, to anticipate drifts in the system, we keep M larger than necessary;
furthermore, an even larger number of modes, M1 > M , is retained to monitor the
mode truncation error (see step 3). These numbers are selected such that [16, 21]

RMSER
M < ε/100, RMSER

M1
< ε/10000.

• Step 3. The governing equations are Galerkin-projected onto the POD modes and
the resulting GS is integrated in a new interval, IGS , until the Galerkin approxi-
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mation is no longer accurate. To detect when the integration fails, we proposed in
[16, 21] to monitor (i) the mode truncation error by means of the estimate

EM1
M =

√
√
√
√

M1∑

j=M+1

|a j |2
/ M1∑

j=1

|a j |2, (5)

where a j are the amplitudes appearing in (4), and (ii) possiblemode instabilities by
an estimate based on the simultaneous integration of two GSs of different dimen-
sion. The latter method was improved in [14] by considering residual estimates.

• Step 4. A few new snapshots are computed in a new IN S interval using the NS to
update the POD subspace. This is done bymixing some of the old (weighted) POD
modes with the most relevant (weighted) ones calculated from the new snapshots
(see [14, 16] for further details). Then, the process is repeated from step 3.

For illustration, we consider the complex Ginzburg-Landau equation in 1D,

∂t q = (1 + iα)∂2
xxq + μq − (1 + iβ)|q|2q, with q = 0 at x = 0, 1, (6)

with parameters α = 2, β = −3.5 and μ = 80, discretized using centered second-
order finite differences in a uniform grid of J = 1000 points and using for the
time discretization the Crank-Nicolson plus Adams-Bashforth scheme [5] with time
step Δt = 5 · 10−5. The initial condition q(x, 0) = i sin(2πx) + (1 + i) sin(3πx)
is selected to avoid the dynamics to be restricted to an invariant subspace. In Fig. 1a
we show the temporal evolution of |q| at the spatial points x = 0.25, x = 0.5 and
x = 0.75 for 0 ≤ t ≤ 3. We observe that the dynamics completely changes around
t = 0.8. The spatio-temporal color map of |q| is shown in Fig. 1b. When applying
the POD on the Fly method, the initial NS interval, where the original NS is run,
is selected as IN S = [0, 0.12] and the first GS interval is IGS = [0.12, 0.817]. The
integration of the GS stops precisely at t = 0.817, where the method detects that the
approximation is going to fail. To visualize this, we have represented in Fig. 1c both
the E2 error, defined as E2 = ‖q − qM

GS‖/‖q‖ (where q is the ‘exact’ solution com-
puted by the NS, qM

GS is the GS solution when considering M modes and ‖ · ‖ is the

Fig. 1 a Temporal evolution of |q| at points x = 0.25, 0.5 and 0.75. b Spatio-temporal color map
of |q|. c E2 and EM1

M errors for ε = 0.01
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norm associated with the inner product (3)), and the estimated truncation error (5).
By observing these errors, we identify the first IN S interval because both errors are set
to zero and the first IGS interval where both errors are almost plot-indistinguishable.
We also observe that at t = 0.817, the estimate EM1

M equals the desired accuracy,
which is set to ε = 0.01. The numbers of modes are M = 10 and M1 = 16. Then,
a very short NS interval is required to update the POD basis, IN S = [0.817, 0.819].
Note that the new POD subspace, withM = 10 and M1 = 14, is sufficiently accurate
to describe the dynamics until the final time T = 3. To measure the efficiency of the
method, we compute the acceleration factor, defined as

C = CPU time (NS)

CPU time (ROM)
. (7)

In this example, it turns out that C = 3.20.
In order to improve the efficiency of themethod, we can either (i) reduce the length

of the initial IN S interval, which was the topic of our previous papers [13, 14], where
we proposed an efficient way to use previous (offline) information, or (ii) reduce the
cost of the POD computation and the GS integration by using information of the
snapshots at a reduced number N < J of collocation points, x j1 , . . . , x jN , namely by
considering the inner product

〈u, v〉 =
N∑

n=1

u jn v jn , foru, v ∈ C
J , (8)

instead of (3), which was associated to the full spatial mesh. Notice that, by doing
so, the new PODmodes will be orthogonal with respect to the inner product (8), and
Galerkin projection will be also carried out by using (8). Obviously, the simplest
choice is to select j1, . . . , jN equispaced. This was the strategy explored in [14,
16]. When repeating the numerical experiment of Fig. 1 by considering N = 100
or N = 30 equispaced points, the acceleration factor increases to C = 4.97 and
C = 6.25, respectively. The counterpart plots are indistinguishable from those in
Fig. 1 and the numbers of POD modes for the two GSs are unchanged. We have to
emphasize that a further reduction of the number of points promotes a deterioration
of the approximation. Furthermore, in [16] we calibrated, by trial and error, that the
number of equispaced points should satisfy N > 2M1. Another possibility is to select
the collocation points concentrated in the spatial regions that are known to be the
most significant, as done in [21] for the unsteady lid-driven cavity problem, where
points were located near the upper and lateral boundaries, where the solution exhibits
a richer spatial structure. In that case, N was calibrated to satisfy N > 3M1. More
efficient selections can be performedbyusingmore sophisticated sampling strategies,
such as missing point estimation [3], empirical [4, 10] and discrete empirical [7, 9,
12] interpolations, and hyper-reduction [2, 18]. However, the computational cost
to obtain the collocation points by using those methods could offset the advantage
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of using the inner product (8). In the next section, we describe a very promising
alternative that selects a number of points comparable to the number of retained
modes and whose computational cost is comparable to standard POD.

3 Collocation via LU and the LUPOD Method

In our recent paper [15], we proposed a sampling technique based on an incomplete
LU decomposition (i.e., Gauss elimination with double pivoting) to select both an
appropriate set of collocation points and a convenient set of snapshots froma snapshot
matrix. The algorithm, called LUPOD method, is as follows.

• Step 1. Given a snapshot matrix S = [s1, . . . , sK ], where sk ∈ C
J , we first identify

the element Sj1k1 of S with the largest absolute value. The indices j1 and k1 define
the first collocation point and the first selected snapshot, respectively.

• Step 2. Using Sj1k1 as pivot, we perform Gauss elimination by columns to set to
zero the j1-th row of S. The k1-th column of S is then removed to define the first
modified snapshot matrix S1. The first two steps are sketched in Fig. 2.

• Step 3. Steps 1 and 2 are iteratively performed for themodifiedmatricesS1,S2, . . .
to identify new collocation points (indices j2, j3, . . . ) and modified snapshots
(indices k2, k3, . . . ) until the pivot is smaller than a given small threshold εLU > 0,
namely until ‖SN+1‖max/‖S‖max < εLU .

Once the indices { j1, . . . , jN } and {k1, . . . , kN } are identified, we proposed in [15] to
perform POD (via truncated SVD) on the matrix S̃ = [sk1 , . . . , skN ] using the inner
product (8) based on the selected collocation points. Notice that POD is applied to
the original snapshots sk1, . . . , skN , not to the modified snapshots that appear during
the Gauss elimination process. Observe also that all the original snapshots can be
approximated as linear combinations of the selected snapshots, using information at
the collocation points only, within a relative maximum error of size εLU . We select
a set of POD modes u1, . . . ,uM , where the number M is found as in the standard
POD.

Fig. 2 First two steps in the LUPOD collocation method
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Fig. 3 First row: a Snapshot matrix S = Sa + Sb. bMatrix Sa . cMatrix Sb. Second row: Location
of the first N snapshots and collocation points, with d N = 5, e N = 10, f N = 15

To illustrate the performance of the LUPOD method, we consider an academic
toy model inspired in one of those proposed in [15], where the snapshot matrix has
concentrated complexity associated with localized peaks in the snapshots, which
will promote spatial concentration of the LUPOD points in those regions. It is worth
mentioning that, as explained in [15], concentrated complexity is not only related
to steep changes in the behavior of the snapshots, but also to changes of their first
or higher order derivatives. The considered matrix S of size 250 × 250 (represented
in Fig. 3a) has been obtained by adding two snapshot matrices, S = Sa + Sb. The
matrix Sa is equal to zero everywhere, except for five small elliptical regions (see
Fig. 3b), while Sb corresponds to a smooth function obtained by combination and
composition of transcendental functions (see Fig. 3c). Columns and rows in these
matrices correspond to snapshots and points, respectively.

In Fig. 3d–f, we represent by×−marks the first five, ten and fifteen snapshots and
collocation points selected by the LUPOD method. We observe that the first five are
located at the centers of the ellipses, while the subsequent snapshots and collocation
points are related to the complexity associated with the matrix Sb.

In Fig. 4a we illustrate the accuracy of the LUPOD reconstruction of S when
varying the number N of collocation points/snapshots and retaining M = N POD
modes, in terms of both the RMS and the maximum errors. We observe that errors
decay exponentially. For a further illustration, we compare in Fig. 4b the RMS and
maximum errors when fixing N = 25 and varying the number M of retained modes,
while Fig. 4c compares both errors when fixing M = 10 and varying the number
N of selected collocation points/snapshots. We observe that, for an optimal perfor-
mance of the method, N and M should be comparable. Finally, Fig. 4d compares
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Fig. 4 a Reconstruction errors versus the number N of collocation points/snapshots when select-
ing M = N modes. b Reconstruction errors versus the number M of modes when selecting
N = 25 collocation points/snapshots. c Reconstruction errors versus the number N of collocation
points/snapshots when selecting M = 10 modes. d RMS error when using LUPOD with M = N
(blue line) and SVD with N collocation points (remaining lines) versus M N

the RMS error versus M N (M N is the computational complexity associated with
a Galerkin projection in a POD-based ROM when using N collocation points and
M POD modes), when using LUPOD and standard SVD with uniform distributions
of N points and retaining M ≤ N POD modes. This plot evidences that LUPOD
outperforms in comparison with SVD for uniform mesh grids.

4 LUPOD for Preprocessed ROMs

In this section, we show how to use the LUPOD method for POD-based ROMs. The
final challenge would be to apply the strategy in the POD on the Fly method using
LUPOD instead of POD. However, the full adaptation of the strategy is still work
in progress, therefore we will devote this section to the application of the LUPOD
plus Galerkin projection to approximate attractors, namely the POD subspace will
not be adaptively changed. Nonetheless, it is worth remarking that testing the ability
of a LUPOD-based ROM to capture concentrated complexity in a nonlinear evolu-
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tion problem, as in the simulations below, is an essential step before the mentioned
adaptation may be developed. More precisely, we will consider the integration of the
problem (1) in a time interval [T0, T ] and proceed as follows. First, we use the NS
in an interval [T0, T1] to compute the snapshots, then we apply the LUPOD method
to identify the collocation points and compute the POD modes by using the inner
product (8) based on such collocation points, and finally we Galerkin-project the
equations by means of the same inner product to approximate the dynamics in the
interval [T1, T ].

For illustration, we consider the integration of the complex Ginzburg-Landau
equation (6) with the same parameter values and the same discretization scheme as
in Sect. 2. The original NS is used to integrate problem (6) in the interval [0, 1.12].
We then consider 240 equispaced snapshots in the interval [1, 1.12] to apply LUPOD.
Themodulus of these snapshots at 1000 equispaced spatial points is shown in Fig. 5a.
Notice that this plot corresponds to the restriction to the time interval [1, 1.12] of the
spatio-temporal color map represented in Fig. 1b.When applying LUPODwith a tol-
erance εLU = ε/100 = 10−4, only seven snapshots/collocation points are selected,
which are represented in Fig. 5a by ×-marks. The location of the collocation points
on the spatial interval [0, 1] is shown in Fig. 5b to further emphasize their concentra-
tion in [0.25, 0.75], where q is more complex. The LUPOD method selects M = 5
and M1 = 7 POD modes. The reduced model is finally integrated in the GS inter-
val [1.12, 4], providing an approximation within a relative error smaller than the
prescribed tolerance ε = 0.01, as can be seen in Fig. 6b. The acceleration factor cor-
responding to the LUPOD plus Galerkin method in the interval [1,4] is C = 9.09.
For comparison with our previous POD plus Galerkin method, we applied POD to
the same initial snapshots, considering N = 15 uniformly distributed spatial points
for the reduced inner product (8), which yields M = 5 and M1 = 10 modes. The
acceleration factor is C = 7.52. The corresponding E2 and EM1

M errors are shown in
Fig. 6c. Therefore, in this case, the acceleration factor obtained via LUPOD is larger
than with standard POD. Furthermore, we tested in [15] that the acceleration factors
in 2D problems when using LUPOD can be impressive.

Fig. 5 a Snapshot matrix corresponding to the integration of equation (6) in the time interval
[1, 1.12] when considering a spatial mesh with 1000 points. The columns are the modulus of the
snapshots at the time instants tk = 1 + 0.0005k, for k = 1, . . . , 240. b Location of the selected
collocation points
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Fig. 6 a Spatio-temporal color map of |q| in the interval [1,4]. b E2 and EM1
M errors for the LUPOD

plus Galerkin method. c E2 and EM1
M errors for the POD plus Galerkin method

Fig. 7 a Modulus of 100 equispaced snapshots in the time interval [2000, 2001]; the snap-
shot/collocation point selected by the LUPODmethod is indicated by an×-mark. b Spatio-temporal
color map of |q| in the interval [2000, 2300]. c Spatio-temporal color map of Re(q) in the interval
[2000, 2300]

To end this section, let us show even further the incredible ability of the LUPOD
method to identify the relevant features of the underlying dynamics. With this aim,
we consider an example extracted from [22], where the complex Ginzburg-Landau
equation with drift

∂t q = (1 + iα)∂2
xxq + c∂xq + μq − (1 + iβ)|q|2q, with q = 0 at x = 0, 60,

with parameters α = 0.45, β = −2, μ = 0.3 and c = 1, is taken into account. The
original NS is the same as for the complex Ginzburg-Landau equation without drift
(adding centered finite differences for the first space derivative), with a spatial mesh
of J = 1000 points and a time step Δt = 5 · 10−4. After eliminating the transient,
100 snapshots are selected in the time interval [2000, 2001], which are processed by
the LUPODmethod with a tolerance εLU = ε/100 = 10−4. The strategy selects just
one collocation point and one snapshot, which are indicated in Fig. 7a by an×-mark.
Only one PODmode is then kept. Integration of the GS on the interval [2001, 2300],
considering just this point and this mode, provides an approximation within an RMS
error E2 < 10−6. The modulus and the real part of the solution on such interval are
plotted in Fig. 7b, c. It is rather impressive that the LUPODmethod is able to capture
the dynamics by means of just one collocation point.
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5 Conclusions and Future Work

We have considered two ingredients that highly improve the performance of standard
ROMs. On the one hand, combining along the simulation a standard numerical solver
with a much faster Galerkin system leads to a POD on the Fly method, which is a
fully online method that improves standard (preprocessed) ROMs in which the POD
modes need to be computed from the outset. On the other hand, we have presented a
very efficient sampling method to select a good set of collocation points to perform
Galerkin projection. This method is called LUPOD because it is based on a synergic
combination of an LU decomposition of the snapshot matrix and the application of
POD. The technique has been combined with Galerkin projection to improve the
performance of preprocessed ROMs for the approximation of attractors exhibiting
concentrated spatio-temporal complexity. The combination of POD on the Fly and
the LUPOD method is very promising but it is beyond the scope of the paper and
will be the object of future research.
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A Posteriori Error Estimation in Model
Order Reduction of Elastic Multibody
Systems with Large Rigid Motion

Ashish Bhatt, Jörg Fehr, Dennis Grunert and Bernard Haasdonk

Abstract We consider the equation of motion of an elastic multibody system in
absolute coordinate formulation (ACF). The resulting nonlinear second order DAE
of index two has a unique solution and is reduced using the strong POD-greedy
method. The reduced model is certified by deriving a posteriori error estimators,
which are independent of the model order reduction (MOR) method used to obtain
the projection basis. The first error estimation technique, which we establish in this
paper, is a first order linear integro-differential equation. It relies on the gradient of a
function and can be integrated alongwith the reduced simulation (in-situ). The second
error estimation technique is hierarchical and requires a more enriched basis in order
to estimate the error in the solution due to a coarser basis. To verify and illustrate
the efficacy of the estimators, reproductive and predictive numerical experiments
are performed on a coupled elastic multibody system consisting of a double elastic
pendulum.
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Hierarchical

A. Bhatt (B)
IIT ISM Dhanbad, 2nd Floor, Science Block, Jharkhand 826004, India
e-mail: ashish.bhatt@mathematik.uni-stuttgart.de

J. Fehr · D. Grunert
University of Stuttgart, ITM, Pfaffenwaldring 5, 70569 Stuttgart, Germany
e-mail: joerg.fehr@itm.uni-stuttgart.de

D. Grunert
e-mail: dennis.grunert@itm.uni-stuttgart.de

B. Haasdonk
University of Stuttgart, IANS, Pfaffenwaldring 57, 70569 Stuttgart, Germany
e-mail: haasdonk@mathematik.uni-stuttgart.de

© Springer Nature Switzerland AG 2020
J. Fehr and B. Haasdonk (eds.), IUTAM Symposium on Model Order Reduction
of Coupled Systems, Stuttgart, Germany, May 22–25, 2018, IUTAM Bookseries 36,
https://doi.org/10.1007/978-3-030-21013-7_7

95

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21013-7_7&domain=pdf
mailto:ashish.bhatt@mathematik.uni-stuttgart.de
mailto:joerg.fehr@itm.uni-stuttgart.de
mailto:dennis.grunert@itm.uni-stuttgart.de
mailto:haasdonk@mathematik.uni-stuttgart.de
https://doi.org/10.1007/978-3-030-21013-7_7


96 A. Bhatt et al.

1 Introduction

Material properties of a body with linear elasticity can be described by its density,
Young’s modulus, and Poisson’s ratio. Thematerial properties and geometric proper-
ties, such as length andbreadth, alongwith external forces can comprise the parameter
space of the mechanical problem. The motion of an elastic multibody system with
equality constraints is governed by the principle of virtual work, which results in a
nonlinear parameterized partial differential-algebraic equation (PDAE) with a sec-
ond order differential part describing the evolution of the unknown displacement and
an algebraic part describing the constraints. This PDAE is accompanied by initial
conditions for the displacement and the velocity.

The motion of an elastic body can be decomposed into small elastic and relatively
large rigid body motion. When deriving the equations of motion, one can choose
between the floating frame of reference formulation (FFRF) and the absolute coor-
dinate formulation (ACF). The former expresses the elastic displacement in the local
frame assigned to the body and couples it with the global frame for the entire system.
This FFRF procedure results in a state-dependent nonlinear mass matrix and has
been widely used [10, 11, 28]. The latter ACF procedure measures the wholesome
displacement of the body in a global (inertial) frame and therefore results in a lin-
ear mass matrix with a co-rotated stiffness matrix [5]. We will consider the latter
approach in this work, see [13, 14] for a comparison of the two approaches. The
FFRF and ACF solutions can be transformed into each other [28]. We derive the
equations of motion from first principles for the ACF in Sect. 2.

Spatial discretization of the parameterized PDAE results in a high dimensional
parameterized differential-algebraic equation (DAE). It is often imperative to simu-
late the resulting high dimensional system repeatedly for varying parameters which
calls for a model order reduction (MOR) method. There exist a number of MOR
methods, e.g. balanced truncation, rational interpolation, and reduced basis methods
[1, 2, 15, 16, 20, 26]. In this work, we will use the strong POD-greedy method.
MORmethods are frequently also accompanied by hyperreduction techniques [6, 7,
9] to speed up the computation of high dimensional nonlinear terms, which we do
not include in the current study. We set up the reduced model in Sect. 3.

MOR methods often introduce an approximation error. For reduced basis type
methods of time-dependent problems, several error estimators have been proposed,
most of which are residual based. A space-time residual is computed, or a spatial
residual is integrated in order to compute such estimators [18, 20, 21, 26]. We take a
different route in this paper and deduce an in-situ error estimator in Sect. 4 which is
the solution of a linear integro-differential equation. This novel approach is compared
against and blended with hierarchical error estimators derived in the same section.
Finally, an illustrative experiment is presented in Sect. 5, and we close the discussion
with conclusions in Sect. 6.
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2 Equations of Motion of an Elastic Multibody System

When an elastic body, Ω ∈ R
d , at rest is perturbed on a time interval [0, T ] with an

external force, it reacts by transferring energy into elastic and kinetic components.
As a result of attempting to attain the equilibrium among all the forces, the system is
displaced, which results in elastic and rigid displacements. Proceeding as in [5], the
principle of virtual work [23] results in a PDAE that reads in the weak form, with
Lagrange multiplier λ(x, t) : Ω × (0, T ) → R

d ,

∫
Ω

ρ ü · δu dΩ +
∫

Ω

Ẽ : E : δ Ẽ dΩ + (∇C(u))Tλ · δu

=
∫

Ω

gs · δu dΩ +
∫

∂Ω

gΓ · δu dΩ,

C(u) = 0.

(1)

Here ρ is the constant mass density of the elastic body, gs(x, t), gΓ (x, t) : Ω ×
(0, T ) → R

d are the source and traction terms, respectively, C : Rd → R
m denotes

the accompanying linear constraints (e.g. a pivot or joints in a multibody system),
over dot denotes a time derivative as usual, δu denotes variation in the unknown
displacement u(x, t) : Ω × (0, T ) → R

d , ∂Ω is the boundary of the regionΩ ⊂ R
d

occupied by the system, and we have omitted space and time dependence in the
interest of brevity of exposition. The reduced strain tensor Ẽ in absolute coordinate
formulation (ACF) reads

Ẽ(x, t) = Sym(RT∇uflex).

Here R is a rotation matrix, ∇ denotes the gradient w.r.t. the spatial coordinate
x, displacements uflex(x, t), u0(x, t) : Ω × (0, T ) → R

d are the flexible and rigid
parts of the total displacement u such that u = uflex + u0, and Sym denotes the
symmetric part of a matrix. The fourth order elasticity tensor E is obtained from the
constitutive equation

E = λL I ⊗ I + μLI (2)

with Lamé constants λL , μL ∈ [a, b] ⊂ R, identity matrix I , tensor product ⊗, and
the fourth order symmetric identity tensor

(I )i jkl = δikδ jl + δilδ jk .

Here δi j are the Kronecker delta functions and the Lamé constants depend on the
Young’s modulus and Poisson’s ratio of the elastic material (Fig. 1).

We now spatially discretize Eq. (1) to derive the semi-discretized system of equa-
tions assumingΩ ⊂ R

d has smooth boundary ∂Ω . To this end, substituting the finite
element ansatz
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Fig. 1 Elastic and rigid
body displacements uflex and
u0, respectively, of an elastic
body. The total displacement
is measured w.r.t. the global
frame X in ACF

u(x, t) ≈ uh(x, t) = N(x)q(t)

into the equation, where N(x) ∈ R
d×n is the finite element shape function matrix

and q(t) ∈ R
n is the unknown solution vector, and supplying initial conditions, we

obtain the discretized system

Mq̈ + Rh(q)K RT
h (q)qflex + BTλh = f (q),

Bq = 0,

q(0) = q0, q̇(0) = q̇0,

(3)

with

M =
∫

Ω

ρNTN dΩ, K =
∫

Ω

Sym(∇N) : E : Sym(∇N) dΩ, and B = ∇C N.

Here M and K are constant mass and stiffness matrices dependent on the material
parameters ρ, λL , and μL , respectively, Rh(q) is the rotation matrix, f (q) is a
nonlinear function comprising of source and traction forces and the rotation matrix
gradient, qflex ∈ R

n is the unknown flexible displacement such that q = qflex + qrig
for the rigid displacement qrig ∈ R

n , B ∈ R
m×n , m � n, is the constraint matrix

resulting from the linear constraint functionC ofEq. (1), andλh ∈ R
m is theLagrange

multiplier. The constraint matrix B canmodel a variety of constraints including fixed
and conjoined nodes in the FEM mesh of a multibody system. The constants q0 and
q̇0 are initial conditions. Consistency of the initial conditions Bq0 = 0, Bq̇0 = 0 is
tacitly assumed here. For details of the derivation of Eq. (3) from Eq. (1), see [5, 14]
for instance.

Existence of the unique solution of Eq. (3) follows from [25]. Indeed, all the terms
of the equation are smooth, m < n, the matrix B has full row rank, and the mass
matrix M is positive definite. This ensures that the matrix

[
M BT

B 0

]
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is an isomorphism. Furthermore, DAE (3) with λh = 0 has index two via consistency
of the initial condition Bq̇0 = 0.

Remark 1 If additionally, the dynamics is consistent with the constraints

BM−1(−Rh(q)K RT
h (q)qflex + f (q)) = 0,

then it follows that Bq̈ = 0 by Eq. (3) and thus via integration Bq̇ = 0 and Bq =
0 for all times. This implies that λh = 0 and q is equivalently a solution of the
(unconstrained) IVP

Mq̈ + Rh(q)K RT
h (q)qflex = f (q),

q(0) = q0, q̇(0) = q̇0.
(4)

Solving the constrained problem Eq. (3) seems preferable as the constraint satisfac-
tion is expected to be numerically more accurate as compared to Eq. (4).

Numerical solution of (3) can be obtained by discretizing the equation in time
and then solving the resulting nonlinear system of equations iteratively. To this end,
let us define

CorrK (q) = Rh(q)K RT
h (q)q, f (q) = f (q) + Rh(q)K RT

h (q)qrig,

where we have used the splitting q = q f lex + qrig . Using this notation, (3) can be
rewritten as

Mq̈ + CorrK (q) + BTλh = f (q),

Bq = 0,

q(0) = q0, q̇(0) = q̇0,

(5)

Let us introduce the trapezoidal approximation, using j as the time-stepping index
and τ = t j+1 − t j as the uniform time step,

λh ≈ λ j+1, q̈(t j+1) ≈ a j+1, q(t j+1) ≈ q j+1 = q j + τv j + τ 2

4
a j︸ ︷︷ ︸

q̃ j+1

+τ 2

4
a j+1,

f (q(t j+1)) ≈ f (q j+1), Rh(q(t j+1)) ≈ Rh(q j+1).

Here v is the velocity and a is the acceleration. Substituting this discretization in (5)
yields

M̃(q j+1)a j+1 + BTλ j+1 = f (q j+1) + d(q j+1),

B a j+1 = e(q j+1).
(6)
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with

M̃(q j+1) = Rh(q j+1)

(
M + τ 2

4
K

)
RT
h (q j+1),

d(q j+1) = −CorrK (q j+1)q̃ j+1,

e(q j+1) = − 4

τ 2
B(q̃ j+1).

Here we have used invariance of the mass matrix under Rh [13].
Equation (6) is a systemof nonlinear equationswhich needs to be solved iteratively

in every time step. For one fixed time t j the iteration suggested by [14] reads

1. set k = j
2. initialize qk+1 = qk
3. compute Rh(qk+1), f (qk+1), e(qk+1), d(qk+1)

4. compute λk+1 using (8)
5. compute ak+1 using (7)
6. compute qk+1 = q̃k+1 + τ 2

4 a
k+1, vk+1 = vk + τ

2 (ak + ak+1)

7. go to step 2 until convergence.
8. set λ j+1 = λk+1, q j+1 = qk+1, v j+1 = vk+1, a j+1 = ak+1.

The acceleration is computed with

a j+1 = M̃(q j+1)
-1

(
f (q j+1) + d(q j+1) − BT λ j+1

)
, (7)

M̃(q)
-1 = Rh(q(t))

(
M + τ 2

4
K

)-1

RT
h (q(t)),

and the Lagrange multiplier λ j+1 is calculated with the Schur-complement

BM̃(q j+1)
-1
BTλ j+1 = BM̃(q j+1)

-1
(
f (q j+1) + d(q j+1)

)
− e(q j+1). (8)

Let us emphasize that this process does not involve inverting any time-dependent
matrix.

3 Reduced Order Model of DAE (3)

MOR works by replacing the high dimensional space in which solutions reside with
an approximating space of much lower dimension via appropriate projection. Proper
orthogonal decomposition (POD) aims to minimize this projection error in an appro-
priate norm. PODof differential and differential-algebraic equations has been studied
extensively [4, 29]. Here, we obtain the projection basis using the strong POD-greedy
algorithm [16, 17]. This algorithm starts with an initial basis and the parameter value
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which maximizes the given selection criterion. The solution trajectories correspond-
ing to this parameter are then computed. Orthogonal trajectories are evaluated with
respect to the POD projection operator and the basis is enlarged with a POD basis of
their image space. This process continues until the selection criterion is less than the
given tolerance. We choose the Euclidean norm of the POD projection error to be
the selection criterion. Projection bases of various sizes can be obtained by varying
the tolerance. We orthonormalize the resulting projection bases for better numerical
stability.

For given projection matrices V ,W ∈ R
n×k , k � n, obtained via strong POD-

greedy such that q ≈ qr = V z, qflex ≈ qr,flex = V zflex with reduced states z, zflex ∈
R

k and WTV = I ∈ R
k×k , Eq. (3) can be reduced to the DAE

WTMV z̈ + WTRh(V z)K RT
h (V z)V zflex + WTBTλr = WT f (V z),

BV z = 0,

z(0) = WTq0, ż(0) = WTq̇0,
(9)

with Lagrange multiplier λr ∈ R
m . This reduced system can also be solved with the

same numerical solver used to solve the full system as mentioned in the previous
section. If we assume that the bases V , W are consistent with the constraints i.e.
BV = 0, BW = 0, then Eq. (9) simplifies to the unconstrained ODE system, which
is simply the projection of (4),

WTMV z̈ + WTRh(V z)K RT
h (V z)V zflex = WT f (V z),

z(0) = WTq0, ż(0) = WTq̇0.
(10)

Consistency of the bases is ensured by POD as the columns of V are a linear com-
bination of snapshots of q, all of which satisfy the constraint. Due to orthogonality,
we have W = V , which ensures consistency of W also.

After reduction, linear problems can be efficiently simulated to get the reduced
solution without further downsizing. However for nonlinear systems it is often nec-
essary to further reduce the nonlinearity (hyperreduction) in order to gain economy.
Offline-online decomposition [16] of parameter-separable forms is a common tech-
nique to improve the economy. For non-affine nonlinearities, one can use empirical
interpolation (EIM) [3], discrete empirical interpolation (DEIM) [30],Gauss-Newton
with approximated tensors (GNAT) [6], energy-conserving sampling and weighting
(ECSW) [9], etc. The reduced Eq. (9) can be discretized in time using, e.g., trape-
zoidal approximations.
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4 A Posteriori Error Estimation

The reduced model (10), although efficient, induces an error compared to the full
solution and therefore error estimation is needed for certification. One may be inter-
ested in the error in a low dimensional output quantity of interest y = h(q) or the
error in the solution itself. Many of the error estimators depend on evaluation of
intermediate solution dependent quantities whose values and economy influences
the efficacy of the estimator. Moreover, it is often desirable for the error estimator to
have the same structure as the reduced ODE (9) in order to be able to solve the error
ODE in-situ along integration of the system (10) by expanding it. We here assume
that the dynamics of the full problem lies on the constrainedmanifold, hence Remark
1 applies, λr = 0, and Eqs. (9) and (10) are equivalent.

4.1 In-Situ Error Estimator

We begin by taking the difference of the exact and reconstructed solutions and then
differentiate w.r.t. time to obtain the second order error ODE. This ODE is then
integrated in time to get an integro-differential equation for the error. This equation
is used to find the equation for the norm of the error. For succinctness, let us define

g(q) = M−1( f (q) − Rh(q)K RT
h (q)qflex)

then the full (4) and reduced system (10) read

q̈ = g(q), z̈ = WTg(V z), (11)

respectively. Defining the error e(t) = q(t) − V z(t), we deduce

ë = q̈ − V z̈ = g(q) − VWTg(V z). (12)

For linear systems, Eq. (12) can be solved for the error e using variation of parameters
formula. This approach was introduced in [18] for general first order systems where
an online/offline decomposition of parameterized quantities is used to accelerate the
online phase. It was later applied to linear mechanical systems in [27]. For second
order nonlinear systems, we proceed to integrate in time

ė(t) = ė(0) +
∫ t

0
g(q(s)) − VWTg(V z(s))ds

= ė(0) +
∫ t

0
(I − VWT)g(V z(s)) + ∇ g(V z(s))e(s) + O(‖e(s)‖2)ds
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where we have used first order multidimensional Taylor series expansion [8] for
the function g around V z. Ignoring the second order error term, using triangular
inequality, and d

dt ‖e(t)‖ ≤ ‖ė(t)‖, we get the scalar integro-differential equation

d

dt
‖e(t)‖ ≤ ‖ė(0)|| +

∫ t

0
‖(I − VWT)g(V z(s))‖ + ‖∇ g(V z(s))‖‖e(s)‖ds

The solution ‖e(t)‖ of this inequality satisfies ‖e(t)‖ ≤ ‖r(t)‖ [22, 24] for the solu-
tion ‖r(t)‖ of the corresponding equation

d

dt
‖r(t)‖ = ‖ė(0)|| +

∫ t

0
‖(I − VWT)g(V z(s))‖ + ‖∇ g(V z(s))‖‖r(s)‖ds

(13)

when ‖e(0)‖ = ‖r(0)‖.
Equation (13) can be solved using a numericalmethod [12] and the solution thereof

is denoted by the error estimator

Δk
1(t) := ‖r(t)‖. (14)

Here the superscript k on the estimator Δ1 denotes its dependence on size k of the
reduced system.Clearly, the efficacy of this estimator depends on the quantities ‖(I −
VWT)g(V z(s))‖ and ‖∇ g(V z(s))‖. In order to integrate the estimator in-situ, one
needs to supply it with the initial condition ‖r(0)‖ = ‖q(0) − V z(0)‖, which is zero
if q(0) ∈ colspan(V ). The quantity ‖ė(0)‖ is given by ė(0) = q̇(0) − V ż(0) whose
approximation results in different values of ‖e(0)‖ and ‖r(0)‖.
Remark 2 Another approach to error estimation is to turn Eq. (11) into a first order
ODE and then use Grönwall’s lemma [30]. To this end, let us rewrite the equation as

η̇ = h(η).

Here η = [qTq̇T]T and h = [q̇Tg(q)T]T. Then, as before,

〈e, ė〉 ≤ L(h)‖e‖2

where L(h) is the upper logarithmic Lipschitz constant, which can be approximated
by the largest eigenvalue of the symmetric part of the matrix ∇h(V z) up to an error
O(‖e‖). For a linear spring-mass system with stiffness k ∈ R and mass m ∈ R such
that 0 < k/m < 1, it holds

h(η) =
[

0 1
− k

m 0

]
, and L(h) = 1

2

√
(1 − k

m
) > 0.



104 A. Bhatt et al.

This results in an exponentially growing error bound and renders it impractical for
our second order mechanicals systems.

4.2 Hierarchical Error Bound

Hierarchical error estimators have been successfully used in the context of a non-
stationary problem using space-time FEM formulation in [21] and later in [19] on a
stationary problem by ensuring a saturated projection basis. Here, we adopt the finite
element error estimates proposed in [21] for parametric elastodynamics problems.
Given two reduced basesVk1 andVk2 such that k1 < k2 and the corresponding reduced
solutions z1 ∈ R

k1 , z2 ∈ R
k2 , it holds

‖ek1(t)‖ := ‖q(t) − Vk1 z1(t)‖
= ‖q(t) − Vk2 z2(t) − Vk1 z1(t) + Vk2 z2(t)‖
≤ ‖q(t) − Vk2 z2(t)‖ + ‖Vk1 z1(t) − Vk2 z2(t)‖ =: Δ

k1
0 (t). (15)

Here ‖ · ‖ is the Euclidean norm and the last equation defines the hierarchical estima-
tor Δ

k1
0 (t). The motivation is that the term ‖q(t) − Vk2 z2(t)‖ will have a very small

value, assuming k2 is large and the strong POD-greedy method converges, and the
second term can be evaluated exactly, i.e.,

Δ
k1
0 (t) ≈ ‖Vk1 z1(t) − Vk2 z2(t)‖.

Hence the bound promises to be very precise although it is impractical for practical
use because it requires the exact solution q(t). In order to get a practical error esti-
mator, we seek a bound for the term ‖q(t) − Vk2 z2(t)‖ instead of using a saturation
assumption on the reduced bases. Such a bound can be provided by the estimator
Δk

1(t) of Eq. (14) i.e.

Δ
k1
0 (t) := ‖q(t) − Vk2 z2(t)‖ + ‖Vk1 z1(t) − Vk2 z2(t)‖

≤ Δ
k2
1 (t) + ‖Vk1 z1(t) − Vk2 z2(t)‖ =: Δ

k1
2 (t). (16)

Remark 3 The choice of the inner product depends on the underlying physics of the
problem. In certain applications, it may be more appropriate to use a Grammian-
weighted norm than the Euclidean norm to estimate the errors.

Remark 4 Even though we have used strong POD-greedy method to obtain the
reduced system (9), we emphasize that none of the error estimators introduced in this
section are dependent on the model order reduction method used to obtain the pro-
jection basis. As such, we are free to chose other projection based reduction methods
as well.
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Fig. 2 Double pendulum
example: initial (blue stars)
and final (red circles)
position

5 Double Elastic Pendulum

We now present some initial results using error estimators of the previous section.
To this end, consider an elastic pendulum with another elastic pendulum attached
to its end. Under the effect of gravity and Neumann forces, such a system can be
represented by a nonlinear PDAE such as (1) and then reduced as in (9). See Fig. 2
for a double elastic pendulum displaced from its initial position. To compare the
performance of the error estimators, we use the formula

ηk
i (t) := Δk

i (t)

‖ek(t)‖; i ∈ {0, 1, 2}; k ∈ N

to measure effectivities of the estimators for reduced basis size k. Here Δk
i (t) and‖ek(t)‖ are the estimated and the exact errors, respectively, in the state q(t). Sub-

scripts i = 0, 1, 2 correspond to the estimated errors and the effectivities, for various
bases sizes k, due to the estimators Δk

0(t), Δk
1(t), Δk

2(t) of (15), (14), (16), respec-
tively. AlthoughΔk

0 depends on the exact solution, limiting its usefulness, it is a good
indicator of the optimal performance of the estimators based on Eq. (15) nonetheless.
In the following, the first experiment estimates the reproduction error and while the
second one estimates the prediction error.

In this reproduction experiment, we simulate the double elastic pendulum with
system parameters and other user-defined input values enlisted in Table1. These
simulation results are used to obtain strong POD-greedy bases of varying sizes k
enlisted in the table. We employ the error estimators developed in the last section
and plot the estimates and effectivities in Figs. 3 and 4. Figure 3 shows the exact
error, the estimate, and the effectivities corresponding to three different values of k
for the estimator Δ1. Figure4 shows only two lines for each of the estimators Δk

0(t)
and Δk

2(t) as they require a more enriched basis (k = 24). We observe decreasing
estimates as the basis size increases but the exact error begins to saturate after k = 18
for this reproduction case. The estimator Δk

0 eclipses the exact errors and has the
best effectivities, all close to 1 and indistinguishable from one-another on the log
scale (Fig. 4). This is as we expected from Eq. (15) and the discussion that follows
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Table 1 System parameters and other user-defined input values for reproducing simulation

Parameter Range/value in MKS units

Young’s modulus 2.00003E+11

Poisson’s ratio 0.4

Density ρ 1520

Neumann forcesa,b −10

Gravitational acceleration 9.81

Geometry Ω Rectangle

Dimensions ∂Ω 5 × 1

Time step τ 0.01

Time span [0, T ] [0, 1]

d, m, n 2, 4, 192

Strong POD-greedy tolerance {1E−7, 1E−9, 1E−11}
Basis size k {11, 18, 24}
aAt the end of beam 1 in the x direction
bAt the end of beam 2 in the x direction
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Fig. 3 In-situ error estimator results for different basis sizes: ‖ek‖ andΔk
1 (left) and corresponding

effectivities ηk1 (right) versus time
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Fig. 4 Hierarchical error estimator results for different basis sizes: ‖ek‖, Δk
0, and Δk

2 (left) and
corresponding effectivities ηk0, η

k
2 (right) versus time. Δk

0 almost entirely eclipse ‖ek‖

immediately after. The effectivities of the estimator Δk
1, which does not rely on the

exact solutions, are the next best (Fig. 3).
In another experiment, we start with the same set-up but estimate the error in

simulating the model for a parameter point not in the training parameter set, i.e.,
we now perform a prediction experiment instead of reproduction. Table 2 shows the
parameter space and other user-defined input used in this experiment. The dimension
of the parameter space is 5 and the number of training parameter points are 32. The
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Table 2 Five dimensional parameter space, delineated for clarity, other user-defined input values,
and derivative quantities for predicting simulation of a randomly selected parameter point from the
space

Parameter Range/value in MKS units

Young’s modulus (2.0001E+11, 2.0003E+11)

Poisson’s ratio (0.3, 0.4)

Density ρ (1520, 1530)

Neumann forcea,b (−100, − 10)

———————

Gravitation acceleration 9.81

Geometry Ω Rectangle

Dimensions ∂Ω 5 × 1

Time step τ 0.01

Time span [0, T ] [0, 0.51]

d, m, n 2, 4, 192

Training parameter points 32

Strong POD-greedy tolerance {1E−6, 1E−8, 1E−10}
Basis size k {10, 17, 29}
aAt the end of beam 1 in the x direction
bAt the end of beam 2 in the x direction
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basis size k is dependent on the POD-greedy tolerance. We plot errors, estimates,
and effectivities in Figs. 5 and 6 due to the in-situ and the hierarchical estimators.
As before, one can see the steadily decreasing error with increasing basis size and
near perfect effectivities of the estimators Δk

0 as was expected from Eq. (15) and
the discussion that follows immediately afterwards. Since hierarchical estimators
require a more enriched basis (k = 29 in this case), only two lines are drawn for Δ2

and Δ0 both.

6 Conclusions

A second order nonlinear PDAE system is discretized with FEM in space and trape-
zoidal rule in time and reduced using strongPOD-greedy algorithm.The resulting full
and reduced constrained nonlinear systems of equations are solved with the method
of Lagrange multipliers. A very stiff material (e.g. steel) only has very few dominant
singular values because of almost no elastic motion whereas a less stiff material has
more gradually decreasing singular values of the POD basis. An in-situ error estima-
tor for the state variable is established, compared against, and blended with existing
hierarchical estimators. The in-situ estimator derived in this work shows promising
results both for the reproduction and prediction cases. Unlike many estimators sug-
gested in earlier works, it does not require rewriting the mechanical system as a first
order system and estimates only the state and not the enlarged state-velocity space.
It also does not require the exact solution or a more enriched basis unlike hierar-
chical estimators. Future work comprises of a POD-greedy basis generation using
the estimators established here, hyper-reduction, and application to FFRFmultibody
simulators.

Acknowledgements The authors gratefully acknowledge the support of DFG grants FE1583/2-1
and HA5821/5-1. We also thank Andreas Schmidt for helpful discussions during the preparation of
this manuscript.

References

1. Antoulas, A.: Approximation of Large-Scale Dynamical Systems. SIAM Publications,
Philadelphia, PA (2005)

2. Banagaaya, N., Alì, G., Schilders, W.: Index-aware model order reduction. In: Index-Aware
Model Order Reduction Methods, pp. 61–70. Springer (2016)

3. Barrault, M., Maday, Y., Nguyen, N., Patera, A.: An “empirical interpolation” method: applica-
tion to efficient reduced-basis discretization of partial differential equations. Comptes Rendus
de l’Académie des Sciences, Series I(339), 667–672 (2004)

4. Benner, P., Stykel, T.: Model order reduction for differential-algebraic equations: a survey. In:
Surveys in Differential-Algebraic Equations IV, pp. 107–160. Springer (2017)

5. Bhatt, A., Fehr, J., Haasdonk, B.: Model order reduction of an elastic body under large rigid
motion. In: Proceedings of ENUMATH 2017, Voss, Norway (2018)



A Posteriori Error Estimation in Model Order Reduction . . . 109

6. Carlberg, K., Farhat, C., Cortial, J., Amsallem, D.: The GNAT method for nonlinear model
reduction: effective implementation and application to computational fluid dynamics and tur-
bulent flows. J. Comput. Phys. 242, 623–647 (2013)

7. Chaturantabut, S., Sorensen, D.C.: Discrete empirical interpolation for nonlinear model reduc-
tion. SIAM J. Sci. Comput. 32(5), 2737–2764 (2010)

8. Dattorro, J.: Convex Optimization & Euclidean Distance Geometry. Meboo Publishing USA
(2010)

9. Farhat, C., Avery, P., Chapman, T., Cortial, J.: Dimensional reduction of nonlinear finite element
dynamic models with finite rotations and energy-based mesh sampling and weighting for
computational efficiency. Int. J. Numer. Meth. Eng. 98(9), 625–662 (2014)

10. Fehr, J.: Automated and error-controlled model reduction in elastic multibody systems. Ph.D.
thesis, University of Stuttgart (2011)

11. Fehr, J., Grunert, D., Bhatt, A., Haasdonk, B.: A sensitivity study of error estimation in reduced
elastic multibody systems. In: Proceedings of MATHMOD 2018, Vienna, Austria (2018)

12. Gelmi, C.A., Jorquera, H.: IDSOLVER: a general purpose solver for nth-order integro-
differential equations. Comput. Phys. Commun. 185(1), 392–397 (2014)

13. Gerstmayr, J., Ambrósio, J.: Component mode synthesis with constant mass and stiffness
matrices applied to flexible multibody systems. Int. J. Numer. Meth. Eng. 73(11), 1518–1546
(2008)

14. Gerstmayr, J., Schöberl, J.: A 3D finite element method for flexible multibody systems. Multi-
body Syst. Dyn. 15(4), 305–320 (2006)

15. Grundel, S., Jansen, L., Hornung, N., Clees, T., Tischendorf, C., Benner, P.: Model order reduc-
tion of differential algebraic equations arising from the simulation of gas transport networks.
In: Progress in Differential-Algebraic Equations, pp. 183–205. Springer (2014)

16. Haasdonk, B.: Reduced basis methods for parametrized PDEs—a tutorial introduction for sta-
tionary and instationary problems. In: Benner, P., Cohen, A., Ohlberger, M., Willcox, K. (eds.)
Model Reduction and Approximation: Theory and Algorithms, pp. 65–136. SIAM, Philadel-
phia (2017)

17. Haasdonk, B., Ohlberger, M.: Reduced basis method for finite volume approximations of
parametrized linear evolution equations. ESAIM: M2AN. 42(2), 277–302 (2008)

18. Haasdonk, B., Ohlberger, M.: Efficient reduced models and a posteriori error estimation for
parametrized dynamical systems by offline/online decomposition.Math. Comput.Model. Dyn.
Syst. 17(2), 145–161 (2011)

19. Hain, S., Ohlberger, M., Radic, M., Urban, K.: A hierarchical a-posteriori error estimator for
the reduced basis method. arXiv preprint arXiv:1802.03298 (2018)

20. Hesthaven, J., Rozza, G., Stamm, B.: Certified reduced basis methods for parametrized partial
differential equations. In: SpringerBriefs in Mathematics (2016)

21. Hughes, T.J., Hulbert, G.M.: Space-time finite element methods for elastodynamics: formula-
tions and error estimates. Comput. Meth. Appl. Mech. Eng. 66(3), 339–363 (1988)

22. Lakshmikantham, V., Leela, S.: Differential and integral inequalities. Acad. Press, New York
(1969)

23. Lanczos, C.: The Variational Principles of Mechanics. Courier Corporation (2012)
24. Petrovitsch, M.: Sur une manière d’étendre le théorème de la moyence aux équations différen-

tielles du premier ordre. Math. Ann. 54(3), 417–436 (1901)
25. Rheinboldt, W.C.: On the existence and uniqueness of solutions of nonlinear semi-implicit

differential-algebraic equations.NonlinearAnal.: TheoryMeth.Appl.16(7–8), 647–661 (1991)
26. Rozza,G., Huynh,D.B.P., Patera, A.T.: Reduced basis approximation and a posteriori error esti-

mation for affinely parametrized elliptic coercive partial differential equations. Arch. Comput.
Meth. Eng. 15(3), 229–275 (2008)

27. Ruiner, T., Fehr, J., Haasdonk, B., Eberhard, P.: A-posteriori error estimation for second order
mechanical systems. Acta Mechanica Sinica 28(3), 854–862 (2012)

28. Shabana, A.A.: Dynamics of Multibody Systems. Cambridge University Press (2013)

http://arxiv.org/abs/1802.03298


110 A. Bhatt et al.

29. Volkwein, S.: Model reduction using proper orthogonal decomposition. In: Lecture Notes.
University of Konstanz (2011)

30. Wirtz, D., Sorensen, D., Haasdonk, B.: A posteriori error estimation for DEIM reduced non-
linear dynamical systems. SIAM J. Sci. Comput. 36(2), A311–A338 (2014)



A Reduced Order Approach for the
Embedded Shifted Boundary FEM and a
Heat Exchange System on Parametrized
Geometries

Efthymios N. Karatzas, Giovanni Stabile, Nabil Atallah, Guglielmo Scovazzi
and Gianluigi Rozza

Abstract Amodel order reduction technique is combinedwith an embedded bound-
ary finite element method with a POD-Galerkin strategy. The proposed methodology
is applied to parametrized heat transfer problems and we rely on a sufficiently refined
shape-regular background mesh to account for parametrized geometries. In partic-
ular, the employed embedded boundary element method is the Shifted Boundary
Method (SBM), recently proposed in Main and Scovazzi, J Comput Phys [17]. This
approach is based on the idea of shifting the location of true boundary conditions
to a surrogate boundary, with the goal of avoiding cut cells near the boundary of
the computational domain. This combination of methodologies has multiple advan-
tages. In the first place, since the Shifted BoundaryMethod always relies on the same
background mesh, there is no need to update the discretized parametric domain. Sec-
ondly, we avoid the treatment of cut cell elements, which usually need particular
attention. Thirdly, since the whole background mesh is considered in the reduced
basis construction, the SBM allows for a smooth transition of the reduced modes
across the immersed domain boundary. The performances of the method are verified
in two dimensional heat transfer numerical examples.
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Keywords Unfitted mesh · Reduced basis methods · Shifted boundary method ·
Immersed/embedded finite element method · Reduced order modeling

1 Introduction

In this work we present a reduced order modeling strategy for parametrized geome-
tries, starting from an embedded boundary method solver. The main idea in the
current manuscript is to exploit the advantages of embedded methods and in par-
ticular of the Shifted Boundary Method (SBM), [17, 18, 25], in a reduced order
modeling setting. Embedded methods, as full order conformal finite element meth-
ods, discretize the original set of equations into a usually high dimensional system of
algebraic equations. When a large number of different system configurations need to
be tested, or a large reduction in computational cost is the goal, the resolution of such
high dimensional system of equations becomes unfeasible. Reduced Order Methods
(ROM) have demonstrated to be a viable way to limit the computational burden [4, 6,
12, 19]. In this particular case, the attention is focused on parametrized geometries.
The methodology is tested on a simple heat transfer problem which will serve as a
base for future more complex scenarios such as flow problems [15]. The manuscript
is organized as follows: in Sect. 2 we introduce the mathematical problem and its full
order discretization; in Sect. 3 we present the reduced order model formulation and
its main features and differences with respect to a standard setting; finally in Sect. 4
numerical results are reported, and in Sect. 5 conclusions and perspectives for future
improvements are given.

2 Full Order Model Approximation

We start recalling, by a sketch description, the continuous strong formulation of
the problem and the weak formulation used for the full-order discretizaton of the
problems under consideration. The discrete SBMformulationwill be used for the Full
Order Method (FOM) simulation during the offline stage. The ROM is constructed
using a Proper Orthogonal Decomposition (POD) Galerkin approach following what
is reported in Sect. 3.

2.1 The Thermal-Heat Exchange Model

Given a k−dimensional parameter spaceP and the parameter vector μ ∈ P ⊂ R
k ,

let D(μ) ⊂ R
d , d = 2, 3 be a bounded parametrized domain depending on μ, with

boundary Γ (μ). We consider the following model problem in D(μ):
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Find the temperature T (μ) : D̄(μ) × P → R
d such that inP we have

− ΔT (μ) = f (μ) in D(μ),

T (μ) = gD(μ) on ΓD(μ), (1)

where ΓD(μ) is the boundary onto which a Dirichlet boundary condition is applied,
and the imposed forces f (μ), gD(μ) are given functions inD(μ) and on the boundary
ΓD(μ), respectively.

2.2 Weak SBM Formulation

In this subsection we briefly recall the SBM formulation which was originally pre-
sented in [17, 18, 25]. In what follows, we denote by Γ̃ the surrogate boundary
composed of the edges/faces of the mesh that are the closest to the true boundary Γ .
The closest faces/edges of Γ̃ to Γ are detected bymeans of a closest-point projection
algorithm.

The surrogate boundary Γ̃ encloses the surrogate domain D̃ . Furthermore, ñ
indicates the unit outward-pointing normal to the surrogate boundary Γ̃ , and it differs
from the outward-pointing normal n of Γ (see Fig. 1).

Notice also that the closest-point projection, in spite of the segmented/faceted
nature of the surrogate boundary Γ̃ is actually a smooth mapping M from points x̃
on Γ̃ to points x on Γ , namely,

M : x̃|Γ̃ → x|Γ ,

Fig. 1 Example of the SBMmesh on a disc. In the first row, from left to the right: the real geometry;
the SBM surrogate geometry and the backgroundmesh together with the surrogate SBMdiscretized
geometry. In the second row, from left to the right: a zoom of the surrogate SBM mesh/ surrogate
boundary and the normal and distance vector considering one element
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which also defines a distance vector function:

d ≡ dM(x̃) = x − x̃ = [M − I](x̃).

Thedistance vector, as seen inFig. 1, is oriented along the normal to the true boundary,
that isd = ||d||n, as a consequence of the use of the closest point projection. Between
the normal n to the true boundary and the normal ñ to the surrogate boundary, the
minimal grid resolution assumption n · ñ ≥ 0 is made. The unit normal vector n
and the unit tangential vectors τi (1 < i < d − 1) to the boundary Γ , can be easily
extended to the boundary Γ̃ since n̄(x̃) ≡ n(M(x̃)), τ̄i (x̃) ≡ τi (M(x̃)). Here we
denote by n̄, τ̄i the extensions to Γ̃ of n, τi , which are defined on Γ . In the following,
whenever we write n(x̃) we actually mean n̄(x̃) at a point x̃ ∈ Γ̃ , and similarly for
τi (x̃) and τ̄i (x̃). Moreover, the above constructions are the key ingredients when
building an extension ḡD of the Dirichlet boundary condition gD to the boundary Γ̃

of the surrogate domain.
Now we can introduce the Shifted Boundary (SB) variational formulation.

The SBM weak discrete formulation for the heat exchange system, with non-
homogeneous Dirichlet boundary conditions, reads:

Find T ∈ Vh =
{
υ ∈ C0(D̃(μ)) : υ|K ∈ P1(K ),∀K ∈ D̃T (μ)

}
, with number

of degrees of freedom equal to dim Vh = Nh < ∞ for all h > 0 such that

a(T,w) = �(w), ∀w ∈ Vh, (2)

with

a(T,w) = (∇w,∇T )
D̃

− 〈w + ∇w · d, ∇T · ñ〉
Γ̃D

− 〈∇w · ñ, T + ∇T · d〉
Γ̃D

+ 〈∇w · d, (n · ñ)/||d||∇T · d〉
Γ̃D

+ 〈α/h⊥(w + ∇w · d), T + ∇T · d〉
Γ̃D

,

�(w) =(w, f )
D̃

− 〈∇w · ñ, ḡD〉
Γ̃D

− 〈∇w · d, (∇ ḡD · τi )τi · ñ〉
Γ̃D

+ 〈α/h⊥(w + ∇w · d), ḡD〉
Γ̃D

,

where α is the Nitsche penalty parameter, h⊥ is a characteristic length of the elements
in the direction orthogonal to the boundary and d, T , D̃T are the distance vector,
the background mesh and the discretized surrogate geometry respectively, see e.g
Fig. 1. Finally, the standard notation (·, ·)D̃ , 〈·, ·〉Γ̃D

have been used for the L2(D̃)

and L2(Γ̃D) inner products onto the surrogate geometry D̃ and Γ̃D , respectively.
The idea of the Shifted Boundary method is to enforce the Dirichlet boundary

conditions weakly on the surrogate domain and to modify the value of the boundary
conditions to be imposed bymeans of a second-order accurate Taylor expansion, that
is T + ∇T · d ≈ ḡD , with the purpose of maintaining overall second-order accuracy
with a piecewise linear discretization.

The SBM weak formulation can be transformed in a system of linear equations
and rewritten in matrix form:
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A(μ)T (μ) = Fg(μ), (3)

where A(μ) ∈ R
Nh×Nh corresponds to the bilinear form a(·, ·), T (μ) ∈ R

Nh×1 is the
vector of the unknowns and Fg(μ) ∈ R

Nh×1 corresponds to the linear form �(·).

3 Reduced Order Method by a POD-Galerkin Technique

In this section we briefly recall the POD-Galerkin technique used to generate the
reduced order model and we highlight its peculiarities with respect to standard
approaches. In general a ROM is a simplification of a FOM that preserves essential
behavior and dominant effects, for the purpose of reducing solution time or storage
capacity. In particular here we employ a projection-based reduced ordermodel which
consists of the projection of the governing equations onto the reduced basis space.

In the recent past, RB methods were applied to linear elliptic equations in [21],
to linear parabolic equations in [10] and to non-linear problems in [9, 26]. Although
the number of works on reduced order models is now considerable (see e.g. [12] and
references therein), to the best of the authors’ knowledge, only very few research
works [1] can be found dealing with embedded boundary methods and ROM.

From a reduced order modeling point of view, our aim is to investigate how
ROMs are applied to the SBM and, more generally, to embedded boundary meth-
ods. Our main interest is to generate ROMs on parametrized geometries. The SBM
unfitted/surrogate mesh finite element method is used to apply parametrization and
reduced order techniques considering Dirichlet boundary conditions.

An important objective is also to test the efficiency of a geometrically parametrized
reduced order method without the usage of the transformation to reference domains,
which can be an important advantage of embedded methods relying on fixed back-
ground meshes.

Before going into the details, we just remind the basics of the reduced basis
method. The first step is the generation of a set of full order solutions of the
parametrized problem under the variation of the parameter values. The final goal
of RB methods is to approximate any member of this solution set with a low number
of basis functions and is based on a two stage procedure, the offline and the online
stage, [11, 19, 23].

Offline Stage

In this stage one performs a certain number of full order solves in order to use the
solutions for the construction of a low dimensional reduced basis that approximates
anymember of the solution set to a prescribed accuracy. It is then possible to perform
a Galerkin projection of the full order differential operators, describing the govern-
ing equations, onto the reduced basis space in order to create a reduced system of
equations. This operation usually involves the solution of a possibly large number of
high dimensional problems and themanipulation of high-dimensional structures. The
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required computational cost is high and therefore this operation is usually performed
on a high performance system such as a computer cluster.

Online Stage

During this stage, that can be performed also on a system with a reduced compu-
tational power and storage capacity, the reduced system of equations can be solved
for any new value of the input parameters. This offline-online splitting is effective in
many scenarios, such as uncertainty quantification, optimization, real-time control,
etc, [4, 6].

3.1 POD

In order to generate the reduced basis space, necessary for the projection of the
governing equations, one can find in the literature several techniques such as the
POD, the Proper Generalized Decomposition (PGD) and the Reduced Basis (RB)
with a greedy sampling strategy. For more details about the different strategies, the
reader may see [7, 8, 13, 21]. We apply here a POD strategy using the method
of snapshots [24]. In order to assemble the snapshots matrix, the full-order model
is solved for each μ ∈ K = {μ1, . . . , μNs } ⊂ R

k where K is a finite dimensional
training set of parameters chosen inside the parameter space P and k is the size of
the vector μ. The number of snapshots is denoted by Ns and the number of degrees
of freedom for the discrete full order solution by Nh . The snapshots matrix S , is
then given by Ns full-order snapshots:

S = [T (μ1), . . . , T (μNs )] ∈ R
Nh×Ns . (4)

Given a general scalar function T : D → R
d , with a certain number of realiza-

tions T1, . . . , TNs , and denoting by (·, ·)D and || · ||L2(D ) the L2(D) inner product
and norm onto the geometry D , the POD problem consists of finding, for each
value of the dimension of POD space NPOD = 1, . . . , Ns , the scalar coefficients
a11, . . . , a

Ns
1 , . . . , a1Ns

, . . . , aNs
Ns

and functions ϕ1, . . . , ϕNs that minimize the quan-
tity:

ENPOD =
Ns∑
i=1

||Ti −
NPOD∑
k=1

aki ϕk ||2L2(D ), ∀NPOD = 1, . . . , N (5)

with (ϕi , ϕ j )D = δi j , ∀i, j = 1, . . . , Ns .

It can be shown [16] that the minimization problem of Eq. (5) is equivalent of solving
the following eigenvalue problem:

C Q = Qλ, forCi j = (Ti , Tj )D , i, j = 1, . . . , Ns,
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where C is the correlation matrix obtained starting from the snapshots S , Q is a
square matrix of eigenvectors and λ is a diagonal matrix of eigenvalues.

The basis functions can then be obtained with:

ϕi = 1

Nsλ
1/2
i i

Ns∑
j=1

Tj Qi j . (6)

The POD space are constructed using the aforementioned methodology resulting
in the space:

L = [ϕ1, . . . , ϕNr ] ∈ R
Nh×Nr

, (7)

where Nr < Ns is chosen according to the eigenvalue decay of λ, see for example
[4, 21].

3.2 Main Differences with Respect to a Reference Domain
Approach

We highlight here that using an embedded approach there is no need to map all
the parametrized geometries to a common reference domain as usually done in the
reduced order modeling community [2, 4, 20–23]. The linear and bilinear forms of
Eq. (2), rewritten in a reference domain setting and in a conformal classical finite
element method formulation with homogeneous Dirichlet boundary conditions, are
transformed into:

ã(w, T ;μ) = �̃(w;μ),

ã(w, T ;μ) =
∫

D ∗
∇w(JT (μ))−1(JT (μ))−T |JT (μ)|∇T dx,

�̃(w;μ) =
∫

D ∗
|JT (μ)| f wdx,

where for a reference domain configurationD∗, JT (μ) and |JT (μ)| are the Jacobian
of the transformation map TM (μ) : D∗ → D(μ) and its determinants respectively.
For simple geometrical parametrizations, it is possible to find an affine decomposition
of the map and therefore of the differential operator ensuring a complete splitting
between the offline and the online procedure, see e.g. [12]. For more complex cases
such an operation becomes not trivial and therefore, in order to ensure an efficient
splitting one has to rely on empirical interpolation techniques or similar methods,
[3, 5, 20]. In the proposed method, even though an efficient splitting is not trivial,
there is no need to rely on a transformation map.
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Fig. 2 A zoom into the
embedded rectangle in order
to show the smoothing
procedure employed by the
SBM method inside the
ghost area

All the solutions are in fact referred to a common background mesh and therefore
the projection step and the reduced basis generation become straightforward. Each
snapshot however has an “out-of-interest” region which lives inside the embedded
domain and that is usually referred as “ghost area”. The location of such part of
the domain depends on the parameter μ but the value assumed by the nodes inside
that area is arbitrary. The shifted boundary method used herein has the particular
advantage that the solution smoothly decreases to zero from the boundary to the
interior of the ghost area (see Fig. 2). Besides the closest points, where we have such
smooth decrease, the value inside the ghost area is set to zero. Since this choice
is arbitrary, other choices are also possible (see [14] for more details). Using such
an approach we remark that it is usually not possible to easily recover an affine
decomposition of the differential operatorwith respect to the geometrical parameters.
However, as highlighted in the next section, it is still possible to rely on hyper
reduction techniques, [3, 5, 27].

3.3 The Projection Stage and the Generation of the ROM

Once the POD functional space is set, the reduced field can be approximated with:

T r ≈
Nr∑
i=1

ai (μ)ϕi (x) = La(μ), (8)

where the reduced solution vectors a ∈ R
Nr×1 depend only on the parameter values

and the basis functions ϕi depend only on the physical space. The unknown vector
of coefficients a can then be obtained through a Galerkin projection of the full order
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system of equations onto the POD reduced basis space and with the resolution of a
consequent reduced algebraic system:

LT A(μ)La(μ) = LT F(μ), (9)

which leads to the following algebraic reduced system:

Ar (μ)a(μ) = Fr (μ), (10)

where Ar (μ) ∈ R
Nr×Nr

, and Fr (μ) ∈ R
Nr×1 are the reduced discretized operators

and reduced forcing vector respectively. The dimension of the reduced operator, as
seen also in the numerical examples, is usually much smaller than the dimension of
the full order system of equations and therefore much faster to solve. We remark
here that the full order discretized differential operators that appear in Eq. (3) are
parameter dependent and therefore, also at the reduced order level, in order to com-
pute the reduced differential operator, we need to assemble the full order operators.
Possible ways to avoid such potentially expensive operation, relying on an affine
approximation of the full order differential operator, could be to use hyper reduction
techniques . In this work, since the attention is mainly devoted to the methodological
development of a reduced ordermethod in an embedded boundary setting, rather than
in its efficiency, we do not rely on such hyper reduction techniques and we assemble
the full order differential operators also during the online stage. Considering that
the most demanding computational effort is spent during the resolution of the full
order problem rather than in the assembly of the differential operators, as reported
in Sect. 4, it is anyway possible to achieve a computational speedup, and the related
results are reported in the next section.

4 Numerical Experiments

We consider a parameter space P and parameter vector μ ∈ P ⊂ R. Let D(μ) ⊂
R

2, be a bounded parametrized domain depending on μ, with boundary ΓD(μ). In
this Section, we report numerical results for the model problem: Find the reduced
basis temperature T (μ) : D̄(μ) × P → R such that inP we have

−ΔT (μ) = f (μ) in D(μ),

T (μ) = gD(μ) on ΓD(μ),

where ΓD(μ) is the embedded boundary onto which a Dirichlet boundary condition
is applied, and the imposed forces f (μ)=1, gD(μ) = 0 are forcing data in D(μ)

and on ΓD(μ), respectively. Two different geometries and parameterizations on an
embedded rectangle will be examined. In the first example the y-coordinate of the
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Fig. 3 Background and embedded geometry for a moving rectangle where the y-coordinate of its
barycenter has been parametrized

embedded domain center is parametrized, and in the second one its aspect ratio is
considered as a parameter.

4.1 Embedded Rectangle with Parameterized Center

In this first experiment the embedded domain consists of a rectangle of size 0.8 × 0.7
and its position inside the domain is parametrized with a geometrical parameter μ

which describes the position of the rectangle embedded domain with respect to its
y-center as in Fig. 3.

The horizontal coordinate of the center of the box is not parametrized and is
located in the x-center of the domain. The ROM has been trained with 100 and 400
samples forμ ∈ [−0.5, 0.5] chosen randomly inside the parameter space. To test the
accuracy of the ROM we compared its results on 50 additional samples that were
not used to create the ROM and were selected randomly within the same range. The
background domain size is a rectangle of size [−2, 2] × [−1, 1] discretized with
mesh size h = 0.035, while the background mesh boundary is handled as a wall
having zero temperature.

In Fig. 4, we plot the first four modes obtained with the POD procedure. In Fig. 6,
we plot the full order solution, the reduced solution and the error for the scalar
geometrical parametrized heat equation problem and it is possible to notice that
the full and the reduced solution are qualitatively indistinguishable. To verify the
behavior of the ROM and its sensitivity with respect to the number of modes in
Fig. 5i we compare, for different number of modes, the average of the L2 norm
relative error for the 50 different samples used to test the ROM. The plot is reported
for both the simple L2 projection of the full order results on the POD basis functions,
and for the ROM results.

Some Comments
In Table 1, for different dimensions of the reduced basis space, we report the relative
error of the L2 Galerkin projection of the snapshots onto the reduced basis space and
the relative error of the ROM solution. Two different ROM solutions are examined,
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Fig. 4 The first four basis components with μ ∈ [−0.5, 0.5] using 100 snapshots in the offline
stage

(i)

(ii)

Fig. 5 Heat exchange problem results for the first (i) and second (ii) numerical experiments. On
the left we plot the mean relative error for the L2 projection of the full order solution projected onto
the POD basis functions (dashed red line with square markers) and the ROM solution for various
number of modes (dotted blue and green lines with triangular and star markers). The error has been
computed as the mean of the error of 50 snapshots using different parameter values with respect to
those used to compute the PODmodes. On the right, the singular value decay of the POD procedure
is visualized

using 100 and 400 snapshots during the POD procedure. The plots of Fig. 5i are
generated with the ROM constructed using 100 and 400 snapshots and the ROM, as
well as the L2 projection, have been tested using 50 different parameter values not
previously used to train the ROM.

In Table 2, we report the computational time comparison using different dimen-
sions of the reduced basis space. Even for the casewhich employs 300modes (the one
with the largest number of modes) we still observe a good computational speedup.
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Fig. 6 Heat exchange problem results for the first numerical example. From left to the right we
report the full order solution, the reduced order solution and the absolute values of the error results
respectively. The results are for two selected values of the parameter, μ = 0.403 (first row) and
μ = −0.015 (second row)

Table 1 Relative error between the full order solution and the reduced basis solution. Results are
reported for different dimensions of the reduced basis space and for fifty test samples

Num of modes L2 projectionb Galerkin projectionb Galerkin projectiona

2 6.45035392e-02 7.10916700e-01 6.95126771e-01

5 1.14329338e-02 1.44949745e-01 1.36034892e-01

10 4.83332393e-03 2.64459969e-02 2.43322038e-02

20 2.19454585e-03 5.61736266e-03 7.45415783e-03

30 1.27046941e-03 3.30372025e-03 4.47413755e-03

40 7.72326410e-04 2.50189079e-03 3.08036033e-03

50 5.39532759e-04 1.69903034e-03 2.39470742e-03

100 6.79464703e-05 3.36531580e-04 1.19915352e-03

200 6.40774002e-06 1.21062274e-04 −
300 3.29000756e-06 6.94726761e-05 −
a100 snapshots, b400 snapshots

4.2 Embedded Rectangle with Parametrized Aspect Ratio

In this test problem a fixed uniform source is applied over a rectangular D using a
parameterμ equal to the aspect ratio of the rectangle (Fig. 7); the center ofD remains
fixed within T . The embedded domain consists of a rectangle of size k1 × k2, for
k1, k2 ∈ R and its size is parametrized by the parameter μ = k1

k2
with the additional

constraint given by μk2 = 0.2. The ROM has been trained with 400 samples for
μ ∈ [0.29, 6.67] chosen randomly inside the parameter space. To test the accuracy of
theROMwecompared its results on 50 additional samples thatwere not used to create
theROMandwere selected randomlywithin the same range. The background domain
size is a square with dimensions [−0.7, 0.7] × [−0.7, 0.7] and it is discretized with
mesh size h = 0.035.
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Table 2 Execution time, savings and speed up using 400 snapshots in the online stage. The com-
putation time includes the assembling of the full order matrices, their projection and the resolution
of reduced problem. Results are reported for various dimensions of the reduced basis space

Num of modes Execution time(s)a Savings Speedup

(tFOM − tRB)/tRBb,c tFOM/tRB

2 4.119470 × 10−2 96.399% 27.770

5 4.136089 × 10−2 96.384% 27.658

10 4.168334 × 10−2 96.356% 27.445

20 4.243647 × 10−2 96.290% 26.957

30 4.353909 × 10−2 96.194% 26.275

40 4.449359 × 10−2 96.110% 25.711

50 4.494564 × 10−2 96.071% 25.452

100 4.992923 × 10−2 95.635% 22.912

200 6.156138 × 10−2 94.618% 18.583

300 7.551091 × 10−2 93.399% 15.150

FOM 1.14540 × 100 − −
aOnline stage, b tFOM is the FOM solution time, c tRB is the RB solution time

Fig. 7 Background and
embedded geometry for a
rectangle with parameter its
aspect ratio. μ = k1

k2
and

μk2 = 0.2

To verify the behavior of the ROM and its sensitivity with respect to the number
of modes in Fig. 5ii we compare, for different number of modes, the average of the
L2 norm relative error for the 50 different samples used to test the ROM. The plot is
reported for the ROM results.

Some Comments
The plots of Fig. 5ii are generatedwith theROMconstructed using 400 snapshots.We
are pointing out here that for both experiments, we observe a discrepancy between the
convergence rate of the left and right side of Fig. 5i and ii. The relative errors graph
(left) shows a different convergence rate with respect to the eigenvalue decay. This
happens because we compare the full order results obtained on a different training
set respect to the one used to obtain the POD modes. In particular, we used the 50
different parameter values not previously used to train the ROM.
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5 Conclusions and Future Perspectives

In this work we proposed a new reduced order modeling technique for parametrized
geometries. We used an unfitted mesh finite element method to construct a reduced
basis onto the background mesh which is independent with respect to the parameter
and the parameterized geometry, applying a modified POD-Galerkin methodology.
Such coupling, relying on a common background mesh permits to avoid some of the
disadvantages related with a reference domain approach. The methodology has been
tested on a simple geometrically parametrized heat transfer problem showing promis-
ing results. In terms of future perspectives, our interest is in testing the methodology
on more complex scenarios and in particular on geometrically parametrized viscous
flow problems governed by Stokes [15] and Navier-Stokes equations. Moreover our
interest is also in investigating the efficiency of hyper reduction techniques to the
proposed methodology in order to further increase the computational speedups and
performances.
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POD-Based Augmented Lagrangian
Method for State Constrained
Heat-Convection Phenomena

Jonas Siegfried Jehle, Luca Mechelli and Stefan Volkwein

Abstract We consider an optimal boundary control problem of the heat equation
with convection with bilateral control and state constraints. The goal is to keep the
temperature (state) within a desired range while the norm of the boundary controls
is minimized. To numerically approximate the unique solution of the problem, a
first-order augmented Lagrangian method is utilized. The gradient of the augmented
Lagrangian is characterized by the solution of the adjoint equation. To decrease the
computational time, we apply a reduced-order approach based on proper orthogonal
decomposition (POD). To gain a sufficiently accurate approximation, we propose
and compare different manners to compute the snapshots and thus the POD basis.
Numerical tests compare the efficiency of the proposed strategies.

Keywords Convection diffusion equation · State constraints · Augmented
Lagrangian method · Proper orthogonal decomposition

1 Introduction

Nowadays, the optimal control of parabolic partial differential equations is subject of
interest in many applications, e.g. in acoustics, electromagnetism and thermodynam-
ics. In the literature, there are many contributions related to this field, like [8, 17]. In
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particular, we are interested in the optimal control of convection-diffusion equations
with bilateral control and state constraints, having energy efficient buildings in mind,
i.e. the solution of the parabolic equation represents the temperature in a room and
the heaters are seen as boundary controls; see [15, 16]. To solve this problem, in
contrast to [15], we use the augmented Lagrangian method, which can be seen as a
penalization method that allows in our case to treat the state constraints by solving
iteratively many only control-constrained optimal control problems; see [4, 5, 10,
11]. This approach is different from the one in [15], where a virtual control concept
is utilized (see [13]) that allows the use of a semi-smooth Newton method. For the
numerical solution of the equations, we apply a Galerkin finite element approxima-
tion combined with an implicit Euler scheme in time and, in order to speed-up the
computation of optimal solutions, we build a reduced-order model based on POD;
cf. [7, 9]. Since there is no computable a-priori POD error estimate, we compare
different techniques. Moreover, we are aware of methods to improve the quality of
POD basis, e.g. TR-POD [2], OS-POD [14] and a-posteriori snapshots location tech-
niques [1]. Methods to estimate this quality are also existing, e.g. a-posteriori error
estimator in [18]. However, we do not use them in this work.

The paper is organized in the following way: in Sect. 2 we introduce the optimal
control problem; in Sect. 3 we describe how we adapt the augmented Lagrangian
method to our setting; in Sect. 4 we briefly introduce the POD method and comment
on the three methods we use to generate the snapshots to build the POD basis; in
Sect. 5 numerical tests are shown and in Sect. 6 we draw some conclusions.

2 The Optimal Control Problem

We consider an optimal control problem with time horizon [0, T ] with T > 0. Let
Ω ⊂ R

d , d ∈ {2, 3}, be a bounded domain with Lipschitz-continuous boundaryΓ =
∂Ω . We suppose that ∂Ω is split into the two disjoint subsets Γc and Γo, where
at least Γc has nonzero (Lebesgue) measure. Let us set Q = (0, T ) × Ω , Σc =
(0, T ) × Γc, and Σo = (0, T ) × Γo. Moreover, let H = L2(Ω), V = H 1(Ω), U =
L2(0, T ;Rm). We recall the Hilbert space

W (0, T ) = {
ϕ ∈ L2(0, T ; V ) | ϕt ∈ L2(0, T ; V ′)

}
,

where V ′ denotes the dual space of V ; cf. [6]. We consider the following economic
optimal control problem:

min J (z) = 1

2
‖u‖2U, z = (y, u) ∈ Z := W (0, T ) × U (1a)

with u ∈ U being the boundary control for the state equation
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yt (t, x) − Δy(t, x) + v(t, x) · ∇ y(t, x) = 0 a.e. in Q,

∂y

∂n
(t, s) + y(t, s) =

m∑

i=1
ui (t)bi (s) a.e. on Σc,

∂y

∂n
(t, s) + γ y(t, s) = γ yout(t) a.e. on Σo,

y(0, x) = y◦(x) a.e. in Ω,

(1b)

where b1, . . . , bm ∈ L∞(Γc) are given control shape functions and ‘a.e.’ stands for
‘almost everywhere’. Moreover, u and y have to satisfy the bilateral inequality con-
straints

uai (t) ≤ ui (t) ≤ ubi (t), i = 1, . . . ,m a.e. in [0, T ], (1c)

ya(t, x) ≤ y(t, x) ≤ yb(t, x) a.e. in Q. (1d)

Assumption 1 In (1) we suppose that γ ≥ 0, yout ∈ L2(0, T ), y◦ ∈ H ,
v = (v1, . . . , vd) ∈ L∞(0, T ; L∞(Ω;Rd)), ua = (uai )1≤i≤m , ub = (ubi )1≤i≤m ∈ U

and ya, yb ∈ L2(Q).
We introduce the time-dependent bilinear form a(t; · , ·) : V × V → R

a(t;φ, ϕ) =
∫

Ω

∇φ · ∇ϕ + (
v(t) · ∇φ

)
ϕ dx + γ

∫

Γo

φϕ ds +
∫

Γc

φϕ ds

for ϕ, φ ∈ V , the time-dependent linear functional F (t) : V → V ′

〈F (t), ϕ〉V ′,V = γ yout(t)
∫

Γo

ϕ ds for ϕ ∈ V a.e. in [0, T ],

and the bounded linear operator B : Rm → V ′ defined as

〈Bu, ϕ〉V ′,V =
m∑

i=1

ui

∫

Γc

biϕ ds for all ϕ ∈ V

and for given u = (ui ) ∈ R
m . Now, a weak solution y ∈ W (0, T ) to (1b) for all

ϕ ∈ V satisfies the weak formulation

d

dt
〈y(t), ϕ〉H + a(t; y(t), ϕ) = 〈F (t) + B(u(t)), ϕ〉V ′,V a.e. in (0, T ] (2)

and y(0) = y◦ in H . By Assumption 1 the bilinear form a(t; ·, ·) is uniformly (w.r.t.
the time t) continuous and weakly coercive, it is known that (2) admits a unique
solution y ∈ W (0, T ); cf. [6]. Then, we can define the bounded linear solution oper-



130 J. S. Jehle et al.

ator S : U → W (0, T ), such that y = S u is the unique weak solution of (1b) for
u ∈ U. Now, (1) can be expressed as

min Ĵ (u) subject to u ∈ Zad (P)

where Ĵ (u) := J (S u, u) and the set of admissible solutions is given by

Zad = {
u ∈ U

∣∣ (S u, u) ∈ Z satisfies (1c) and (1d)
}
.

Note that (P) is a linear-quadratic, strictly convex programming problem, so that
under Assumption 1 and assuming that the feasible set Zad is non-empty, there exists
a unique optimal solution which is denoted by z̄ = (ȳ, ū); cf. [8, Sect. 1.5].

3 Augmented Lagrangian Method

In order to apply the augmented Lagrangian method to solve the optimal control
problem (P), we follow [5, 11]. For c > 0 the augmented Lagrangian is given as

Lc(u, sa, sb, μa, μb) = Ĵ (u) + 〈μa, ya − S u + sa〉L2(Q) + 〈μb,S u − yb + sb〉L2(Q)

+ c

2
‖ya − S u + sa‖2L2(Q)

+ c

2
‖S u − yb + sb‖2L2(Q)

where sa, sb ∈ L2(Q) are non-negative slack variables used to transform the inequal-
ities (1d) into equalities andμa, μb ∈ L2(Q) are the Lagrange multipliers. From the
first-order optimality conditions

∂Lc

∂sa
(u, sa, sb, μa, μb)δsa = 〈μa, δsa〉L2(Q) + c〈ya − S u + sa, δsa〉L2(Q)

!= 0,

∂Lc

∂sb
(u, sa, sb, μa, μb)δsb = 〈μb, δsb〉L2(Q) + c〈S u − yb + sb, δsb〉L2(Q)

!= 0,

for all δsa , δsb ∈ L2(Q), we derive the two equalities

μa + c(ya − S u + sa) = 0 and μb + c(S u − yb + sb) = 0 a.e. in Q.

Hence, to ensure sa ≥ 0 and sb ≥ 0, we set

sa = max

{
0,S u − ya − 1

c
μa

}
and sb = max

{
0, yb − S u − 1

c
μb

}
. (3)
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Then, as proved in [12], it holds

L̂c(u, μa, μb) := Lc(u, sa, sb, μa, μb) = Ĵ (u) − 1

2c
(‖μa‖2L2(Q) + ‖μb‖2L2(Q))

+ c

2

∥∥∥max
{
0, ya − S u + μa

c

}∥∥∥
2

L2(Q)
+ c

2

∥∥∥max
{
0,S u − yb + μb

c

}∥∥∥
2

L2(Q)
.

Therefore, to find the optimal solution of (P), we can use Algorithm 1.

Algorithm 1 (Augmented Lagrangian method)

1: Data: Initial control u0 ∈ U, initial pair (μ0
a, μ

0
b) ∈ L2(Q) × L2(Q), initial

weight c0 > 0, increment β > 1 for cn , tolerance ε > 0 and nmax maximum num-
ber of iterations;

2: set n = 0 and flag= true;
3: while flag and n < nmax do
4: For fixed (μn

a, μ
n
b) find un+1 ∈ Uad := {

u ∈ U
∣∣ u satisfies (1c)

}
that mini-

mizes

L̂cn (u, μn
a, μ

n
b) = Ĵ (u) + cn

2

∥∥∥max
{
0, ya − S u + μn

a
cn

}∥∥∥
2

L2(Q)

+ cn

2

∥∥∥max
{
0,S u − yb + μn

b
cn

}∥∥∥
2

L2(Q)
− 1

2cn
(‖μn

a‖2L2(Q) + ‖μn
b‖2L2(Q)

)

︸ ︷︷ ︸
independent of u

(Ln)

5: Update the Lagrange multipliers

μn+1
a = max{0, μn

a + cn(ya − S un+1)}, μn+1
b = max{0, μn

b + cn(S un+1 − yb)};

6: if ‖un − un+1‖U ≤ ε then
7: flag = false
8: end if
9: set cn+1 = βcn and n = n + 1;
10: end while

Remark 1 In future works, we want to utilize an inexact version of Algorithm 1
within a Model Predictive Control approach, as done for the primal dual active set
strategy in [16]. The idea is then to compare the two different approaches in terms
of approximation of the feedback control u and of the computational time, for more
details we refer to [12]. Therefore, to solve the minimization problem in step 4 of
Algorithm 1, we use the projected gradient method (due to the control constraints).
To apply the projected gradient algorithm, we need the partial derivative with respect
to u of the reduced Lagrangian L̂c(u, μa, μb), i.e.

∂ L̂c

∂u
(u, μa, μb)u

δ = 〈−B p + u, uδ〉U for uδ ∈ U
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with p the solution of the adjoint equation

− d

dt
〈p(t), ϕ〉H + a(t;ϕ, p(t)) = 〈G (t; y(t), μa(t), μb(t)), ϕ〉V ′,V (4)

for all ϕ ∈ V a.e. in [0, T ] and p(T ) = 0 in H . Further, G (t; ·, ·, ·) : V × L2(Q) ×
L2(Q) → V ′ is defined as

〈G (t; θ, φ,ψ), ϕ〉V ′,V = c
∫

Ω

max
{
0, ya(t) − θ + φ

c
}
ϕ − max

{
0, θ − yb(t) + ψ

c
}
ϕ dx .

Also (4) admits a unique solution inW (0, T ). Therefore, we can define the bounded
linear solution operator A : U × L2(Q) × L2(Q) → W (0, T ): p = A (u, μa, μb)

is the unique solution of (4) for u ∈ U and μa, μb ∈ L2(Q). ♦

4 Proper Orthogonal Decomposition

For properly chosen admissible controls u ∈ Zad and Lagrange multipliersμa, μb ∈
L2(Q), we set y = S u and p = A (u, μa, μb). We define the linear space

V = span
{ ∫ T

0
y(t)ω1(t) + p(t)ω2(t) dt

∣∣ω1, ω2 ∈ L2(0, T ]
}

⊂ V (5)

with d = dimV ≥ 1. The method of proper orthogonal decomposition (POD) con-
sists in choosing an orthonormal basis {ψi }d

i=1 in V such that for every � ∈ N with
� ≤ d the mean square error between the snapshots y, p and their corresponding �-th
partial sum is minimized:

min
∫ T

0

∥∥∥y(t) −
�∑

i=1

〈y(t), ψi 〉V ψi

∥∥∥
2

V
+

∥∥∥p(t) −
�∑

i=1

〈p(t), ψi 〉V ψi

∥∥∥
2

V
dt

s.t. {ψi }�i=1 ⊂ V and 〈ψi , ψ j 〉V = δi j for 1 ≤ i, j ≤ �,

(6)

where δi j is the Kronecker delta.

Definition 1 A solution {ψi }�i=1 to (6) is called a POD basis of rank �. We define
the subspace spanned by the first � POD basis functions as V � = span {ψ1, . . . , ψ�}.

Using a Lagrangian framework, the solution to (6) is characterized by the follow-
ing optimality conditions (cf. [7, 9]):

Rψ = λψ, (7)

where the operator R : V → V given by
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Rψ =
∫ T

0
〈y(t), ψ〉V y(t) + 〈p(t), ψ〉V p(t) dt for ψ ∈ V (8)

is compact, nonnegative and self-adjoint operator. Thus, there exist an orthonormal
basis {ψi }i∈N for V and an associated sequence {λi }i∈N of nonnegative real numbers
so that

Rψi = λiψi , λ1 ≥ · · · ≥ λd > 0 and λi = 0, for i > d. (9)

MoreoverV = span{ψi }d
i=1. It can be also proved, see [9], that we have the following

error formula for the POD basis {ψi }�i=1 of rank �:

∫ T

0

∥∥∥y(t) −
�∑

i=1

〈y(t), ψi 〉V ψi

∥∥∥
2

V
+

∥∥∥p(t) −
�∑

i=1

〈p(t), ψi 〉V ψi

∥∥∥
2

V
dt =

d∑

i=�+1

λi .

If a POD basis {ψi }�i=1 of rank � is computed, we can derive a reduced-order
model for (2): for any u ∈ U the function y� = S �u ∈ W (0, T ) is the solution for
all ψ ∈ V � of

d

dt
〈y�(t), ψ〉H + a(t; y�(t), ψ) = 〈F (t) + B(u(t)), ψ〉V ′,V a.e. in (0, T ].

For any u ∈ Uad the POD approximation y� for the state solution is y� = S �u.
Analogously a reduced-order model can be derived for the adjoint equation; see,
e.g., [7]. The POD Galerkin approximation of (P) is given by

min Ĵ �(u) = min J (S �u, u) s.t. u ∈ Z�
ad, ( ˆP�)

where the set of admissible controls is

Z�
ad = {

u ∈ U
∣∣ u ∈ Uad and ya(t, x) ≤ (S �u)(t, x) ≤ yb(t, x) a.e. in Q}.

Remark 2 For implementing Algorithm 1 numerically, we discretize (2) and (4): for
the temporal discretization, we utilize the implicit Euler method, while the spatial
variable is approximated utilizing a reduced-order Galerkin approach; cf. [3, 15].
Here, we apply the POD method, where the snapshots are computed from piecewise
linear finite element (FE) solutions of the state anddual variables; cf. [7, 9].Moreover,
we replace the integral over [0, T ] in (6) and (8) by a trapezoidal approximation; see
[7]. In Sect. 5, we compare three different methods to compute the POD basis:

• (POD-M1): Use the optimal control ū to compute state and adjoint snapshots.
• (POD-M2): Use a random control ũ ∈ Uad to compute state and adjoint snapshots.
• (POD-M3): Use a sub-optimal control û, generated utilizing FE discretization for
n = 1, 2, 3 in Algorithm 1, to compute state and adjoint snapshots. ♦
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Remark 3 Due to the different magnitudes of state and adjoint snapshots, we
observed that it is convenient to scale them by two different values respectively,
in order to balance the optimization problem (6) involved in the basis computation.
This procedure does not change the set spanned by the snapshots, but improves the
POD basis approximation, as shown in Sect. 5. As mentioned, the PODmethod con-
sists in minimizing the mean square error between the snapshots and their projection
onto the POD subspace, moreover, once the time integral is approximated trough a
trapezoidal quadrature rule, almost each term in (6) is equally weighted, but many
adjoint terms can have a big magnitude for large penalty parameter c. Therefore,
the first POD functions are such that the larger adjoint equation snapshots can be
better approximated than the state equation ones. This fact causes the approximation
problems, which can be seen in Table 2, especially for POD-M1, where in the case
c0 = 1 and β = 4, for example, the penalty parameter c used to generate the adjoint
snapshots is equal to 412 � 1.7 × 107. After several tests with different scaling val-
ues (e.g. L2 norms, mean values), we choose to report the results for the best choice
we have found: we divide each state snapshot by its variance σ 2 defined as

σ 2 = 1

Nt

Nt−1∑

i=0

(‖y(ti )‖H − μ)2 , with μ = 1

Nt

Nt−1∑

i=0

‖y(ti )‖H

where Nt is the numerical ending time and ti are the numerical time steps. We do
similarly for the adjoint ones. When this approach is utilized, we report each method
with the name varPOD from now on. ♦

5 Numerical Tests

The tests in this section are implemented on a Notebook Acer Aspire E15 E5-71G-
717X, Intel ® CoreTM i7-5500U 2.4GHz (with Turbo Boost up to 3.0GHz) and 8GB
RAM in the programming language MATLAB. For the tests, we set T = 1 and the
unit square Ω = (0, 1) × (0, 1) represents our room. The controls, i.e. the heaters,
are placed as shown in Fig. 1 with related shape functions:

b1(x) =
{
1 for x1 = 0, 0 ≤ x2 ≤ 0.25,
0 otherwise,

b2(x) =
{
1 for x1 = 1, 0.75 ≤ x2 ≤ 1,
0 otherwise,

respectively. For the state equation, we choose the physical parameter γ = 0.05, the
initial condition y◦(x) = x21 + x22 for x = (x1, x2) ∈ Ω and the outside temperature
yout(t) = 2t − 1 for all t ∈ [0, T ].
The components of the velocity field v(t, x) are

v1(t, x) =
{−x1 − x2 for 0 ≤ t < 0.5,

−x1−x2
2 for 0.5 ≤ t ≤ T,

v2(t, x) =
{ x1+x2

2 for 0 ≤ t < 0.5,
x1 + x2 for 0.5 ≤ t ≤ T,
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Fig. 1 Spatial domain Ω with the two boundary controls and the velocity fields (black arrows) at
two time instances (left and middle); initial condition y◦(x) (right)

for (t, x) ∈ Q. Furthermore, we take ya(t, x) = 3t , yb(t, x) = 4 for (t, x) ∈ Q as
the state bounds and uai (t) = 0, ubi (t) = 12 for t ∈ [0, T ], i = 1, 2 as the control
bounds. For the implicit Euler method, we use the equidistant time step Δt = 0.01.
The spatial discretization is built by piecewise linear FE on a triangular mesh with
Nx = 712 nodes. As initial guess for the control, we choose u0(t) = (0, 0) for
t ∈ [0, T ]. In Table 1, for different values of c0 and β and different spatial dis-
cretizations, we report the number of iterations needed by the projected gradient
method to converge in step 4 of Algorithm 1 for any iteration n. Additionally, the
value of the cost functional Ĵ (ū), the number of active points for the state bounds∣∣A

∣∣ and the computational time speed-up due to the POD approximation are shown
in Table 2 together with the number of active points that differs between the FE and
the POD solutions

∣∣A FEΔA POD
∣∣ = ∣∣A FE ∪ A POD − A FE ∩ A POD

∣∣

and the POD relative error for the controls defined as

rel.err. u = ‖uFE − uPOD‖U
‖uFE‖U .

From these tables, one can observe that with both choices of c0 and β the optimal
control problem reaches the unique optimal solution as expected. The number of
active points for the optimal state is significantly small compared to the total number
of space-time grid points Nx × Nt = 712 × 101 = 71912 and it can be even reduced
setting different tolerances for the augmented Lagrangian (ε) and the project gradient
(εpg) methods. Note that the cost functional Ĵ (ū) for POD-M3 is smaller than the
FE one, but this is not surprising in this case, since what we are minimizing in
Algorithm 1 is the augmented Lagrangian (Ln), therefore a smaller contribution for
Ĵ (ū) is balanced by a greater violation of the constraints as can be seen from the
number of active points

∣∣A
∣∣. In Table 1, one can see that for almost all the ways
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Table 1 Results for different combinations of c0 andβ (augmentedLagrangian tolerance ε = 10−5,
projected gradient tolerance εpg = 0.2ε, number of POD basis elements � = 18, nmax = 150)

Discretiz. c0 β Projected gradient iterations n

FE 1 4 {4, 4, 4, 286, 3, 141, 155, 131, 308, 252, 279, 198, 2} 13

POD-M1 1 4 {4, 4, 4, 298, 3, 160, 167, 153, 476, 7, 2} 11

varPOD-M1 1 4 {4, 4, 4, 286, 3, 141, 155, 131, 308, 252, 279, 198, 2} 13

POD-M2 1 4 {4, 4, 4, 286, 3, 141, 154, 125, 304, 255, 1000, 4, 2} 13

varPOD-M2 1 4 {4, 4, 4, 286, 3, 141, 155, 131, 309, 250, 280, 202, 2} 13

POD-M3 1 4 {4, 4, 4, 286, 3, 142, 154, 111, 374, 434, 126, 2} 12

varPOD-M3 1 4 {4, 4, 4, 286, 3, 141, 155, 131, 308, 250, 275, 200, 2} 13

FE 0.1 5 {4, 4, 119, 4, 677, 3, 209, 134, 297, 249, 309, 211, 2} 13

POD-M1 0.1 5 {4, 4, 120, 4, 680, 3, 216, 139, 234, 316, 602, 184, 2} 13

varPOD-M1 0.1 5 {4, 4, 119, 4, 677, 3, 209, 134, 297, 249, 309, 210, 2} 13

POD-M2 0.1 5 {4, 4, 119, 4, 677, 3, 209, 134, 299, 249, 312, 166, 2} 13

varPOD-M2 0.1 5 {4, 4, 119, 4, 677, 3, 209, 134, 296, 249, 309, 212, 2} 13

POD-M3 0.1 5 {4, 4, 119, 4, 677, 3, 208, 131, 106, 160, 274, 6, 2} 13

varPOD-M3 0.1 5 {4, 4, 119, 4, 677, 3, 209, 134, 300, 249, 310, 209, 2} 13

Table 2 Cost functional Ĵ (ū), state active points, POD errors and computational time speed-up

Discretiz. c0 β Ĵ (ū)
∣∣A

∣∣ rel.err. u
∣∣A FEΔA POD

∣∣ Speed-up

FE 1 4 82.12 94 – – –

POD-M1 1 4 91.89 590 7.78 × 10−2 548 20.7

varPOD-M1 1 4 82.12 95 5.02 × 10−4 1 15.2

POD-M2 1 4 82.06 101 1.58 × 10−2 57 11.7

varPOD-M2 1 4 82.17 91 1.95 × 10−3 3 15.1

POD-M3 1 4 79.88 175 4.77 × 10−2 167 14.8

varPOD-M3 1 4 82.14 93 4.92 × 10−3 1 13.8

FE 0.1 5 82.07 95 – – –

POD-M1 0.1 5 95.51 299 1.98 × 10−1 270 13.4

varPOD-M1 0.1 5 82.08 95 5.31 × 10−4 0 14.9

POD-M2 0.1 5 82.04 98 5.06 × 10−3 3 14.6

varPOD-M2 0.1 5 82.12 93 3.20 × 10−3 2 15.8

POD-M3 0.1 5 83.68 343 8.48 × 10−2 304 9.6

varPOD-M3 0.1 5 82.04 96 3.42 × 10−3 3 8.2
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Fig. 2 Plots of optimal solution computed with FE with c0 = 1 and β = 4

to generate the POD basis elements the number of iterations for Algorithm 1 is 13.
Moreover, what can be observed is that to use the solution of the previous iteration as
warm start helps the convergence of projected gradient for increasing values of the
penalization parameter c, even if at the begin, small values of c implies really few
iterations, because the effort on respecting the state constraints is weaker. Then, e.g.
when c0 = 1 andβ = 4 at the 4th iteration ofAlgorithm1 the projected gradient takes
many iterations to converge, since c4 = 64 already implies that the state constraints
have to be way better satisfied compared to the iteration c3 = 16. In Fig. 2, we
can note that the optimal solution, in particular the average temperature, is almost
everywhere inside the bounds and, when it is not, there are only small differences,
which are related to the numerical tolerances chosen. In Table 2, it is shown also
that the quality of the POD approximation is improved after rescaling the snapshots
with their variance σ 2, in particular POD-M1 results can be significantly improved.
As already mentioned, when the snapshots of POD-M1 are not scaled they have
huge differences in magnitude, due to the fact that the adjoint variable magnitude
at each time step depends directly on c13 = 412 � 1.7 × 107 (or c13 = 0.1 × 512 �
2.4 × 107). Further, this improved approximation is also appearing for POD-M2 and
POD-M3, even if there is less effectiveness compared to POD-M1 because the value
of c for computing the snapshots is way smaller than 107. The speed-up is around
15 for all the methods, except for POD-M3 and varPOD-M3 in case of c0 = 0.1 and
β = 5 where it is even lower than 10. This can be justified from the fact that when we
compute the FE suboptimal control û for n = 3, the projected gradient method takes
119 iterations to converge, so the idea of fixing a maximum number of finite element
iterations should be considered to generate the suboptimal control û for improving
the computational time speed-up, of course paying in accuracy of the approximation.
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6 Conclusion

To conclude, in contrast to [15], we have applied a first-order augmented Lagrangian
method to solve the optimal control problem with bilateral control and state con-
straints. Except for few points (compared to the total number of nodes in the space-
time grid), we got the possibility to stay inside the state bounds as well. Therefore, it
is meaningful to proceed by combining this method with a model predictive control
approach, following the idea of [16]. Moreover, to speed-up the computational pro-
cess, we have combined the previous algorithm with POD and we have compared
different approaches to generate the snapshots. We have also improved the quality
of the POD approximation scaling state and adjoint snapshots by different values,
to balance the optimization process better which is involved in the POD basis’ com-
putation. This technique turned out to be successful: for the same number of basis
elements � we have that the relative errors of varPOD methods are lower than the
POD relative ones without affecting the computational time speed-up.
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DFG grant Reduced-Order Methods for Nonlinear Model Predictive Control.
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Coupling of Incompressible Free-Surface
Flow, Acoustic Fluid and Flexible
Structure Via a Modal Basis

Florian Toth and Manfred Kaltenbacher

Abstract Free surface flow of incompressible liquids interacts with compressible
gases and flexible structures in applications like liquid tanks or air chamber supported
floating platforms. After briefly describing the physical modeling of the coupled
system,we suggest a procedure formodel order reduction based on themodal bases of
the un-coupled domains. To again couple the different physical domains, one needs to
assemble the coupling conditions on the interfaces between gas, liquid, and structure
domains in terms of the modal coordinates. We demonstrate the effectiveness of the
model order reduction by applying it to a geometrically simple but strongly coupled
tank system, for which we compute the sloshing modes.

Keywords Free surface waves · Acoustics · Flexible structure · Modal coupling

1 Introduction

Air chamber supported floating platforms, or liquid tanks like liquefied natural gas
(LNG) containers are typical example applications in which the interaction of a
fluid in liquid and gaseous phase and a structure must be considered. In air chamber
supported floating platforms, large pockets of compressed air provide buoyancy and
can significantly reduce the wave induced loading on the platform [19]. For partially
filled liquid tanks the dynamics of thefluidwith free surface (sloshing)must be known
to allow for save operation [10]. Model order reduction is an attractive option to
reduce the computational effort in computational models. Especially for parameter
dependent problems, methods based on proper orthogonal decomposition (POD) are
frequently applied, e.g. for modelling arterial blood flow [1], parametric eigenvalue
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problems of vibrating structures [8], or the treatment of the free-surface problems
in osmotic cell swelling [14].

While model order reduction has already been applied to various coupled multi-
field problems [3], the case of free-surface-flow, acoustic fluid and flexible structure
has not been explored yet. A semi analytic procedure based on the acoustic modes in
an rectangular air-camber was proposed already by Newman to model wave effects
on floating platforms [17]. A coupling approach for flexible structure and air cham-
bers modeled by generalized (modal) coordinates and water waves modeled by the
boundary element method was proposed shortly afterwards [13]. There exist mul-
tiple examples of model order reduction techniques for coupled vibro-acoustical
systems [4, 7, 16, 21] most building on the ideas of component mode synthesis [5]
and related methods from structural dynamics [2, 9]. We will follow a similar pro-
cedure to include liquid sloshing dynamics originating from gravity waves on an
interface between fluids of different densities.

2 Physical Modeling

We consider a system consisting of three domains: flexible structure Ωs, liquid Ωw

and gas Ωa as depicted in Fig. 1. For the flexible structure we assume a linear elas-
tic material, i.e. Hook’s law σ = Cε where σ, ε, and C denote the stress, strain
and stiffness tensors, respectively, and small displacements, i.e. the linearized strain
displacement relationship ε = (∇u + (∇u)T

)
/2, where u denotes the displacement

vector. The liquid is assumed as inviscid and incompressible, which is a reasonable
assumption e.g. for water or LNG. However, in the gaseous domain we take com-
pressibility into account, which is necessary e.g. for (compressed) air. Additionally,
we assume that both fluid domains are in equilibrium and only consider small pertur-
bations to this equilibrium. This yields Poisson’s equation for the dynamic pressure in
the liquid domain, and the acoustic wave equation in the gaseous domain, as detailed
in [22]. The equations for the dynamic quantities then read

Fig. 1 Sketch of the
physical model domains:
incompressible liquid (blue),
compressible gas (red) and
flexible structure (gray), with
their respective coupling
interfaces
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∇ · ∇pw = 0 in Ωw , (1a)

∂2 pa
∂t2

− c2a ∇ · ∇pa = 0 in Ωa , (1b)

ρs
∂2u
∂t2

− 1

2
∇ · C (∇u + (∇u)T

) = 0 in Ωs , (1c)

where ca denotes the speed of sound in the gaseous domain, pi denotes the dynamic
pressure variation in the fluid domains, and ρi denotes the density, where the index
i = a,w,s is used to refer to gaseous (air), liquid (water) and structure domains,
respectively.

A non-standard coupling condition concerns the interface between liquid and gas
phase,Γaw. Here, one needs to enforce both the dynamic condition, i.e. equality of the
pressure, and the kinematic condition, i.e. particle velocities are equal. The derivation
of this coupling condition [22] introduced a variable describing the position of the
interface, η, as usually done in themodeling of water waves [15], which, however can
subsequently be removed. Care also has to be taken at the liquid-solid interface: Here
the contribution of buoyancy must be taken into account in the dynamic coupling
condition. Together with the usual conditions for acoustic-structural coupling on Γas

(which relate structural stress and acoustic pressure as well as structure displacement
and acoustic particle velocity, see e.g. [11]) we obtain the following set of relations

gρw
∂ pi
∂nη

= ρi
∂2

∂t2
(pa − pw) on Γaw , (2a)

∂ pi
∂ns

= −ρi
∂2u
∂t2

· ns on Γis , (2b)

σ · ns = −pans on Γas , (2c)

σ · ns = − (ρwg · u + pw) ns on Γws , (2d)

σ · ns = t on Γt , (2e)

σ · ns = 0 on Γ0 . (2f)

Again, the index i is used to denote air or water domain. Thus, Eqs. (2a) and (2b) hold
for both domains. The normal vector nη of the coupling surface between liquid and
gas, Γaw, is defined as pointing from the higher density liquid to the lower density
gas, i.e. from Ωw to Ωa, oriented like −g. The acceleration of gravity is denoted g,
and g is used for its magnitude. The normal vector of the structure ns points from
the fluid into the structure. We impose a surface traction t to the structure via an
inhomogeneous Neumann condition on Γt. The natural stress-free condition is the
homogeneous version applied at Γ0.
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3 Finite Element Formulation

We introduce appropriate test functions γ, ϕ, and δ for gas pressure, liquid pres-
sure and displacement vector, respectively, multiply our coupled system of PDEs
by these test functions and integrate over the whole computational domain. Integra-
tion by parts,1 and incorporation of the boundary conditions, yields the variational
formulation: Find pa ∈ H 1(Ωa), pw ∈ H 1(Ωw), and u ∈ (H 1(Ωs))

2 such that

∫

Ωa

∇γ · ∇padx+
∫

Ωa

1

c2a
γ

∂2 pa
∂t2

dx +
∫

Γaw

ρa

gρw
γ

∂2 pa
∂t2

ds

−
∫

Γaw

ρa

gρw
γ

∂2 pw
∂t2

ds +
∫

Γas

ρaγ
∂2u
∂t2

· nsds = 0 , (3a)

∫

Ωw

∇ϕ · ∇pwdx+
∫

Γaw

1

g
ϕ

∂2 pw
∂t2

ds

−
∫

Γaw

1

g
ϕ

∂2 pa
∂t2

ds +
∫

Γsw

ρwϕ
∂2u
∂t2

· nsds = 0 , (3b)

1

2

∫

Ωs

∇δ : C (∇u + ∇uT
)
dx −

∫

Γsw

ρwg · uns · δds +
∫

Ωs

ρsδ · ∂2u
∂t2

dx

−
∫

Γas

pans · δds −
∫

Γsw

pwns · δds =
∫

Γt

δ · tds , (3c)

for all test functions γ ∈ H 1(Ωa), ϕ ∈ H 1(Ωw), and δ ∈ (H 1(Ωs))
2.

After the standard spatial discretization by finite elements and collecting the nodal
degrees of freedom in the vectors qi we arrive at the following system of ordinary
differential equations

⎡

⎣
Ma Maw Mas

Mwa Mw Mws

0 0 Ms

⎤

⎦

⎡

⎣
q̈a
q̈w
q̈s

⎤

⎦ +
⎡

⎣
K a 0 0
0 Kw 0
K sa K sw K s

⎤

⎦

⎡

⎣
qa
qw
qs

⎤

⎦ =
⎡

⎣
0
0
f s

⎤

⎦ , (4)

where a dot over a variable denotes the derivative with respect to time. Note, that
the mass matrix associated with the liquid domain, Mw, originates solely from the
surface integral over the coupling surface Γaw in Eq. (3b). Neglecting any forcing

1Using the relation ∇ · (δ · σ) = (∇ · σ) · δ + σ : (∇δ), where ‘:’ denotes the double dot product,
i.e. the sum of the products of conjugated tensor elements.



Coupling of Incompressible Free-Surface Flow, Acoustic Fluid . . . 145

on the structure f s and using a harmonic ansatz for the solution one directly arrives
at the coupled eigenvalue problem. This can be solved by any eigenvalue solver
capable of handling real-valued, un-symmetric, generalized eigenvalue problems,
e.g. the FEAST solver [12, 20] which was used here.

4 Reduced Order Model

In order to derive a reduced order model, we decompose the system in its physical
sub-domains liquid, gas and structure. We neglect all couplings and, thus, arrive at
three un-coupled eigenvalue problems

K ivi = ω2M ivi , (5)

which can be solved to obtain a set of mi eigenvectors vi,k and corresponding eigen-
frequencies for each domain. To reduce the number of degrees of freedom we now
introduce modal coordinates φi,k in each domain and approximate the solution fields
in the usual form

qi (t) =
∑

k=1

mi vi,kφi,k(t) = V iφi (t). (6)

To obtain a coupled system in the chosen modal basis we proceed as follows: We
assemble the coupling terms in Eq. (3) for unit modal coordinates individually. The
linear forms to be assembled are equivalent to known right-hand-side forces, e.g. for
the coupling between structure and gas domain we need to assemble

f as,k =
∫

Γas

ρaγuk · nsds , (7a)

f sa,k = −
∫

Γas

δ · ns pa,kds , (7b)

where the displacements uk and pressures pa,k are known. They are obtained from
the fields defined by the k-th un-coupled basis vector, i.e. from vs,k for the structure
and va,k for the gas domain, respectively. By this procedure we obtainmi modal force
vectors containing ni elements, where ni denotes the number of degrees of freedom
in domain i . We are now able to write the variational formulation, Eq. (3), in terms
of the modal coordinates, e.g. for the air domain

MaV aφ̈a + Fawφ̈w + Fasφ̈s + K aV aφa = 0 , (8)

where the forcing vectors for unit modal structure displacement and unit modal
liquid pressure have been collected in the matrices Fas = [ f as,1, . . . , f as,Ms

] and
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Faw, respectively. Finally, we project each of the equations into its modal sub-space
to arrive at the coupled system

⎡

⎣
V T

a MaV a V T
a Faw V T

a Fas

V T
wFwa V T

wMwVw V T
wFws

0 0 V T
s MsV s

⎤

⎦

⎡

⎣
φ̈a

φ̈w

φ̈s

⎤

⎦ +
⎡

⎣
V T

a K aV a 0 0
0 V T

wKwVw 0
V T

s Fsa V T
s Fsw V T

s K sV s

⎤

⎦

⎡

⎣
φa
φw
φs

⎤

⎦ =
⎡

⎣
0
0

V T
s f s

⎤

⎦ . (9)

Again, the coupled system can be written as a generalized eigenvalue problem by
neglecting right-hand-side forcing and the use of an harmonic ansatz.

5 Application Example

As a simple example we consider a 2D model of a square box with a wall thickness
of 0.1m, which encloses a square fluid domain with a side length of 1m. The square
domain is filled up to a level of 0.7m by liquid, and the top 0.3 m are filled by gas. For
the 2D model we assume a plane strain state in the structure domain. The material
is assumed linear elastic and isotropic with a Young’s modulus of 5kPa, a Poisson’s
number of 0.25 and a density of 5kg/m3. The incompressible fluid has a density of
4 kg/m3 and the compressible gas has a density of 1kg/m3 and a speed of sound of 1
m/s. The acceleration of gravity is assumed pointing downwards with a magnitude
of 9.81m/s2. As boundary condition we constrain the displacement on the bottom
side of the structure (in both directions).

The eigenvalue analyses of the individual domains yield the modal basis for the
reduction of the system.Weuse themi firstmodes of the acoustic,water and structural
domain (see Fig. 2 and Table1 for the corresponding natural frequencies). We select

Fig. 2 Modal basis used for the model order reduction, showing the first 4 and the last used mode
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10 acoustic modes, ma = 10, 6 water wave modes mw = 6 and 15 structural modes
ms = 15.

Thus, we arrive at a reduced coupled system with 21 degrees of freedom, as
compared to 961 in the full model. The choice of the reduced basis requires some
engineering experience, and was done based of the following considerations: (a) one
should only use physical modes, i.e. ones that are appropriately represented by the
discretised FE model, and (b) one must use a sufficient number of modes not to over-
constrain the system, as each neglected mode can be seen as a linear constraint. In
the current case the limit for (a) is posed by the water domain where the free surfaces
waves must be properly resolved, which is the case approximately until mode 6 at
about 14Hz. The acoustic modes in the air domain are selected in a similar frequency
range, i.e. up to mode 10 at about 17Hz. Finally, the structural modes are selected
up to mode 15 in order to allow a sufficient deformation basis to honour criterion
(b).

We solve the eigenvalue problem in the modal sub-space, from Eq. (9), and com-
pare the results to the solution of the full model, from Eq. (4).

Observing the relative error of the natural frequencies of the reduced model with
respect to the full model we obtain good agreement. The relative error is generally
low with a maximum relative error lower than 6% for the first 10 modes given in
Table1. Figure3 shows a representative selection of mode shapes for the coupled
system (modes 1, 2, 4, 5, and 7). Visually, we obtain excellent agreement for most
of the modes (mind the different signs for some). For some modes (5 and 7) slight
discrepancies can be recognized between themode shapes of reduced and full model.
A quantitativemeasure of themode shape correlation is given by themodal assurance
criterion (MAC) [6, 18] given in Table1 and visually in Fig. 4 (left). The reason for
the discrepancies in the mode shapes most likely is an in-sufficient modal basis in the

Table 1 Obtained natural frequencies ωi in rad/s for the individual domains and for the coupled
system, as well as the relative error of the frequencies from reduced model with respect to the full
model, and the modal assurance criterion (MAC) between the modes of reduced and full model

Mode Gas Liquid Structure Coupled
(full)

Coupled
(reduced)

Relative
error

MAC

1 3.145 5.490 2.706 2.123 2.152 −0.01361 0.931

2 6.309 7.882 10.187 3.205 3.175 +0.00939 0.986

3 9.512 9.705 16.931 5.724 5.694 +0.00513 0.998

4 10.592 11.288 18.535 6.124 6.039 +0.01422 0.999

5 11.049 12.740 32.335 7.346 6.947 +0.05733 0.688

6 12.329 14.117 39.542 8.079 7.916 +0.02055 0.977

7 12.774 41.478 9.094 8.668 +0.04908 0.319

8 14.236 43.505 9.901 9.588 +0.03264 0.944

9 16.114 56.202 10.585 10.195 +0.03827 0.449

10 16.594 71.600 10.923 10.642 +0.02640 0.740
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Fig. 3 Representative mode shapes of the coupled system computed using the reduced and full
model, respectively

Fig. 4 MAC between the mode shapes of the reduced and full model (left) and relative contribution
of the individual basis modes to the mode shapes of the reduced coupled system (right)

liquid domain. As the un-coupled liquid modes show decaying pressure values with
increasing distance from the free surface, they are not able to account for structural
motions originating from the lower regions. As the liquid is incompressible, any
motion of the structure-liquid interface must have an impact on the free surface. This
impactmight be included by augmenting themodal basis by somemodes for the static
liquid pressure change due to interface deformation. Finally, the strength of coupling
between the different domains is depicted by visualizing the relative contribution of
each basis vector to the modes of the coupled system in Fig. 4 (right). For the first
coupled mode we see significant contributions of acoustic mode 1, liquid mode 1
and structural mode 1. For the coupled mode 3, the main contribution comes from
liquid mode 2 and acoustic mode 2. For the coupled mode 7 one sees an interaction
between liquid mode 2 and acoustic modes 4, 2 and 6. Another indication for the
strong coupling is that many of the un-coupled natural frequencies do not appear
again as a natural frequency of the coupled system.
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6 Conclusion

The suggested procedure works well, even for the chosen example case exhibiting
strong coupling between the different physical domains. The number of unknowns in
the reduced order model could be reduced by an order of magnitude from 961 nodal
degrees of freedom to 21 modal coordinates, while maintaining acceptable accuracy.
This was achieved simply by choosing a set of un-coupled modes as a modal basis. A
coupled system in this basis is obtained by assembling the coupling terms for the basis
vectors. The computational effort for the suggested procedure can be expected to be
significantly lower than for the treatment of the full model. Furthermore, it might be a
feasible option in caseswhere the assembly of the full system is too expensive, but the
sub-systems can still be handled. As long as the used modes from the sub-domains
are able to represent the coupled modes, accurate results can be expected. While
the procedure has only been applied to the computation of the coupled eigenvalue
problem, it has been formulated in a fully general manner, and could, thus, also
be applied to solve reduced coupled problems in the time and frequency domain.
Of course, time and frequency domain problems are only accurately represented by
the reduced model in the frequency range covered by the reduced basis. While the
extension of the proposed procedure to non-linear problems seems challenging, the
application to other linear multi-physics problems should work in a straightforward
way.
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Abstract In this contribution, coupled, parameterized second order systems are con-
sidered where the coupled, parameterized system is derived from the assembly of
several parameterized component models. Two approaches for the ParametricModel
Order Reduction of such coupled systems are presented and compared in a reduced
order shape optimization example. In the first approach, the coupled, parameterized
system is derived by coupling the parameterized, full order componentmodels. Then,
Parametric Model Order Reduction is executed for the coupled system. In the second
approach, the parameterized, component models are first reduced independently of
their actual mounting situation. Afterwards, the parameterized, reduced order com-
ponent models are coupled to derive the parameterized, reduced order systemmodel.
It is shown that the first approach yields smaller parameterized, reduced order sys-
tem models. However, the second approach allows to reuse and to recombine the
parameterized, reduced order component models arbitrarily. It therefore introduces
more flexibility in the modeling process, enabling for example a toolbox based opti-
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1 Introduction

The finite element method is a well-established method for modeling elastic struc-
tures. For fine spatial discretizations, the corresponding systems of second order dif-
ferential equations become very large making evaluations time consuming. Model
Order Reduction (MOR) is a powerful tool to decrease this high numerical effort.
However, models of sophisticated systems are often created in a modular fashion.
This means that the underlying component models are modeled separately and cou-
pled afterwards to derive the overall system model. This has several advantages as
it simplifies the modeling process and it allows to exchange single components to
conduct variant studies. A straightforward approach for the MOR of such coupled
systems is to couple the full order component models and to conduct the MOR for
the system model. A second approach is to reduce the components separately and
to couple the reduced order component models to derive the reduced order system
model as presented in [7, 10] for first order systems and applied in [6, 11] to second
order and parameterized second order systems.

The novel contribution of this paper is that geometrically parameterized compo-
nent models are considered. Coupling these geometrically parameterized component
models allows to derive parameterized system models in versatile design variations.
The two MOR approaches for coupled systems are extended to a Parametric Model
Order Reduction (PMOR) for coupled, geometrically parameterized systems. Both
approaches are well suited for reduced order modeling of coupled systems with a
parameterized shape. A comparison of the approaches is done in a reduced order
shape optimization example.

The paper is structured as follows. The next section reviews the theoretical back-
ground of the paper. TwoPMORmethods for the reduction of coupled, parameterized
systems are illustrated in Sect. 3. Both approaches are applied to a shape optimization
example in Sect. 4. The conclusion can be found in Sect. 5.

2 Theoretical Background

In this contribution, the linear finite element method (FEM) is used to model elastic
structures resulting in a set of second order differential equations

M(p)q̈ + K(p)q = fext. (1)

The nodal displacements are gathered inq ∈ R
N and the external forces are described

by fext ∈ R
N . The matricesM(p) ∈ R

N×N andK(p) ∈ R
N×N describe the mass and

the stiffness matrix. Furthermore, parameterized FEMmodels are considered mean-
ing that both the mass and the stiffness matrix are parameterized with a parameter
vector p ∈ R

d to describe e.g., a parameterized geometry or parameterized mate-
rial properties. Rewriting the external forces fext as a product of the input matrix
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B ∈ R
N×k and system inputs u ∈ R

k and adding an output equation results in a
second order, linear, parameter-variant system

M(p)q̈ + K(p)q = Bu (2)

y = Cq

where the output matrix C ∈ R
l×N extracts the outputs of interest y ∈ R

l from
the nodal displacements. The transfer behavior of system (2) can be equivalently
described in Laplace domain with the parameterized transfer function

H(s,p) = C
(
s2M(p) + K(p)

)−1
B, (3)

where s ∈ C denotes the Laplace variable.
It is the idea of linear model order reduction by projection to approximate the

solution of Eq. (2) as q ≈ Vq̄. This means that the full order solution q is approxi-
mated in a lower dimensional subspace V spanned by the columns of the projection
matrix V ∈ R

N×n with n � N . Using V to perform a Galerkin projection yields the
parameterized, reduced order system

M̄(p) ¨̄q + K̄(p)q̄ = B̄u (4)

ȳ = C̄q̄

with the reduced system matrices

M̄(p) = VTM(p)V, K̄(p) = VTK(p)V, B̄ = VTB, C̄ = CV. (5)

In this contribution, interpolatory projection methods or moment-matching meth-
ods, respectively, are used to determine the subspaceV . Thesemethodswere success-
fully applied to the reduction of linear, time-invariant systems, see, e.g., [1]. Later, so
called multi-moment matching methods extended these methods for parameterized
systems [3]. A numerically stable framework for parameterized systems is presented
in [2]. The idea is to construct a parameterized, reduced order model with the param-
eterized, reduced order transfer function

H̄(s,p) = C̄
(
s2M̄(p) + K̄(p)

)−1
B̄ (6)

interpolating the original transfer function H(s,p) at selected frequency expansion
points σ̂ and parameter expansion points p̂. According to [2], choosing a base as

span(V) = span([̂σ 2M(̂p) + K(̂p)]−1B) (7)

ensures that
H(s,p) = H̄(s,p) for s = σ̂ , p = p̂. (8)
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Additionally, if the inputs and outputs are collocated, meaning thatC = BT, the gra-
dients of the transfer function with respect to the Laplace variable and the parameters
are matched too, such that

∂H(s,p)

∂s
= ∂H̄(s,p)

∂s
and

∂H(s,p)

∂p
= ∂H̄(s,p)

∂p
for s = σ̂ , p = p̂, (9)

see [2]. It is also possible to construct a parameterized, reduced order model whose
transfer function interpolates the full order transfer function at multiple frequency
and parameter expansion points. For that, projection matrices for different frequency
and parameter expansion points have to be derived with Eq. (7) and gathered in a
concatenated projection matrix.

3 PMOR for Coupled, Parameterized Systems

This section addresses the construction of projection matrices for coupled, parame-
terized systems. Two approaches for the PMOR of coupled, parameterized systems
will be presented. For the sake of simplicity, all derivations will be shown for a cou-
pled system consisting of two component models. However, both methods are also
applicable when coupling an arbitrary number of components.

3.1 Governing Equations

First, the coupling of the parameterized component models to derive the parameter-
ized systemmodel is described.Quantities belonging to component 1 or component 2,
therefore describing quantities on component level will be indicated with the sub-
script ‘1’ or ‘2’. Quantities belonging to the coupled system and therewith describing
quantities on system level will be marked with the subscript ‘S’.

The system level equation of motion for two arbitrary components is given by

[
M1(p1) 0

0 M2(p2)

]

︸ ︷︷ ︸
=: MS(pS)

[
q̈1
q̈2

]

︸︷︷︸
=: q̈S

+
[
K1(p1) + JT1KcJ1 −JT1KcJ2

−JT2KcJ1 K2(p2) + JT2KcJ2

]

︸ ︷︷ ︸
=: KS(pS)

[
q1
q2

]

︸︷︷︸
=: qS

(10)

=
[
B1 0
0 B2

]

︸ ︷︷ ︸
=: BS

[
u1
u2

]

︸︷︷︸
=: uS

.
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Here, the parameterizedmass and stiffnessmatricesM1(p1),M2(p2),K1(p1),K2(p2)
of component 1 and component 2 are orderedblockdiagonal. The system level param-
eter vector pS = [p1, p2] is concatenated by component level parameter vectors. The
two components are coupled via stiffnesses Kc where the distribution matrices J1
and J2 extract the coupling degrees of freedom from the nodal displacements and
distribute the coupling forces on the structure.

3.2 Reduction on System Level

One approach is to couple the parameterized, full order component models to derive
the parameterized full order systemmodel as in Eq. (10). Then, interpolatorymethods
as described in Sect. 2 can be applied. The system level projection matrix

span(VS) = span(
[
σ̂ 2MS(̂pS) + KS(̂pS)

]−1
BS) (11)

ensures that the parameterized, full order transfer function of the coupled system and
the parameterized, reduced order transfer function (and its derivatives for CS = BT

S)
match at the frequency and parameter expansion points σ̂ and p̂S according to Eqs. (8)
and (9).

3.3 Reduction on Component Level

A second approach is to reduce the parameterized component models and to couple
the parameterized, reduced order components. For this, only the upper half of the
coupled equation of motion (10), which is given by

M1(p1)q̈1 + K1(p1)q1 = B1u1 + JT1 (KcJ2q2 − KcJ1q1)︸ ︷︷ ︸
=: uc

(12)

is considered. In a first step, the coupling forces uc, which depend on the nodal
displacements q1 and q2, are regarded as additional system inputs with the additional
input matrix JT1 . Therefore, a projectionmatrixV1 for the component level expansion
points σ̂ and p̂1 of component 1 with the augmented input matrix is given by

span(V1) = span(
[
σ̂ 2M1(̂p1) + K1(̂p1)

]−1

︸ ︷︷ ︸
=: Ĝ1

[B1, JT1 ]) = span([Ĝ1B1 Ĝ1JT1 ]).

(13)
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The projection matrixV2 for component 2 can be derived analogously. ArrangingV1

and V2 block diagonal yields the separate base reduction (SBR) projection matrix

span(VSBR) = span(blkdiag(V1, V2)) = span(

[
Ĝ1B1 Ĝ1JT1 0 0
0 0 Ĝ2B2 Ĝ2JT2

]
), (14)

(compare to [7, 10]).

3.4 Comparison of Both Approaches

Itwill be shown in the following that reducing the coupled, parameterized system (10)
withVSBR yields a meaningful coupled, parameterized, reduced order systemmodel.
The following results were first shown in [7, 10] for first order systems. Due to the
limited scope of this paper only the general idea is presented. For a more elaborate
derivation for second order systems and parameterized second order systems the
reader is referred to [6, 11].

First, the system level projection matrixVS calculated for the system level expan-
sion points σ̂ and p̂S = [̂p1, p̂2] from Eq. (11) is rewritten. This rewriting of VS is
not necessary for an actual application of the system level approach. It is only neces-
sary to enable an insightful comparison of the system level and the component level
approach. For rewriting, the Sherman–Morrison-Woodbury formula, [12], is used
with (

L + UPNT
)−1 = L−1 − L−1U

(
P−1 + NTL−1U

)−1
NTL−1, (15)

L =
[
σ̂ 2M1(̂p1) + K1(̂p1) 0

0 σ̂ 2M2(̂p2) + K2(̂p2)

]
=

[
Ĝ−1

1 0
0 Ĝ−1

2

]
, (16)

UPNT =
[
JT1KcJ1 −JT1KcJ2

−JT2KcJ1 JT2KcJ2

]
=

[
0 JT1
JT2 0

] [
Kc 0
0 Kc

] [−J1 J2
J1 −J2

]
. (17)

Plugging Eqs. (16) and (17) into Eq. (11) yields

VS =
[
Ĝ1B1 0
0 Ĝ2B2

]

︸ ︷︷ ︸
=: ΔB

+
[

0 Ĝ1JT1
Ĝ2JT2 0

]

︸ ︷︷ ︸
=: ΔJ

T
[
B1 0
0 B2

]

︸ ︷︷ ︸
=: BS

. (18)

with T = T(Kc, Ĝ1, J1, Ĝ2, J2), see [6].
First, it can be seen that TBS does not change the span of ΔJ , meaning that

span(ΔJTBS) = span(ΔJ ). Second, it can be seen that the expressions Ĝ1B1, Ĝ2B2,
Ĝ1JT1 and Ĝ2JT2 in the rewritten projection matrix VS from Eq. (18) also appear
in VSBR from Eq. (14). Herewith, it is possible to find a linear combination of
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the columns of VSBR spanning the same space as VS meaning that span(VS) ⊂
span(VSBR).

As themost important result, thismeans that the component level projectionmatri-
cesV1 for σ̂ and and p̂1 for component 1 andV2 for σ̂ and and p̂2 for component 2 can
be computed independently of each other. However, reducing the coupled, param-
eterized system from Eq. (10) with VSBR = blockdiag(V1, V2) ensures to obtain a
coupled, parameterized, reduced order system model whose transfer function inter-
polates the transfer function of the coupled, parameterized, full order system model
at σ̂ and p̂S = [̂p1, p̂2]. As in the non-coupled case it is also possible to derive con-
catenated component level projection matrices V1 and V2 for multiple expansion
points in order to improve the approximation quality of the coupled, parameterized,
reduced order system model.

The component level approach shows twomajor advantages. First, the PMOR can
be conducted for the parameterized component models and, therefore, for smaller
full order models. Second, no information about the coupled system (as the mount-
ing situation or the coupling stiffness Kc) are necessary during the PMOR of the
component models. Only the degrees of freedom at which coupling forces might
act have to be provided in form of the distribution matrices JT1 and JT2 . It allows
therefore to derive parameterized, reduced order component models and to couple
them afterwards arbitrarily. However, from Eq. (14) it can be seen that the number
of columns of VSBR directly depends on the number of columns of the distribution
matrices JT1 and JT2 and therewith on the number of interface degrees of freedom.
Therefore, a disadvantage of the component level approach compared to the system
level approach is that it yields rather large reduced order models if many coupling
degrees of freedom are considered.

4 Application to Shape Optimization in a Coupled Setup

In the following, both approaches are compared in a shape optimization example in
a coupled setup. To this end, two geometrically parameterized, component models
are generated. They are shown in Fig. 1 both for a reference shape (blue) and for an
illustrative shape (yellow).

Geometrically parameterized, solid finite elements as presented in [4] are used to
derive the parameterized systemmatrices for the parameterized shape resulting in full
order models with 8685 degrees of freedom for both components. The curvature of
component 1 is parameterized by a quadratic Bézier curvewith three parameters. One
additional parameter is used to control the height of the component. Component 2
is parameterized with two parameters controlling height and width. The interfaces
are modeled with standard Rigid Body Elements (RBE2), see e.g., [9], introducing a
rigid connection between the coupling nodes (black) with 6 degrees of freedom each
and the interfaces at the boundaries. The usage of RBE2 elements allows an easy
coupling of interfaces that do not share coinciding nodes. Additionally, the number
of interface degrees of freedom can be reduced. However, this comes at the price of
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Fig. 1 Component 1 and component 2 in initial shape (blue) and in an changed shape (yellow)
with coupling nodes (black), interfaces (red) and material properties

Fig. 2 Coupled system model with numbers of component models, coupling nodes and pinned
nodes (black), surface load (red) and displacements y1 to y3 (blue)

a stiffer interface and a locally nonrepresentative stress distribution (compare e.g.,
[5]).

The coupled system is shown in Fig. 2. It can be seen that component 1 is used
8 times in different geometric parameterizations and component 2 is used 3 times
resulting in a coupled, parameterized system model with 95535 degrees of freedom.
A detailed view of three aligning components is shown in Fig. 3. It shows that the
three RBE2 master nodes coincide. However, they are not coupled by an algebraic
constraint but with interface stiffnesses according to Sect. 3.1. This means that every
RBE2 master node keeps its six independent degrees of freedom. The interface
stiffness is chosen five orders of magnitude larger compared to component models in
order to approximate a rigid connection between the coinciding RBE2 master nodes.
The structure is subjected to a surface load fsurf acting on the horizontal components.

The objective is to adapt the shape of the components (and therefore the shape of
the coupled system) in order tominimize the displacements y1 to y3. The optimization
problem reads

minimize
pS

J = (CSKS(pS)−1fsurf)2

with P := {pS ∈ R
38 |m(pS) ≤ m(pS0) |Ab = 0 |pSl ≤ pS ≤ pSu}.

(19)
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Fig. 3 Detailed view of
three aligning components
with three coinciding, but
independent, RBE2 master
nodes (black) which are
connected by stiffnesses (not
shown)

Fig. 4 Shape of the
optimized, coupled system
model

The equality constraintAb = 0 ensures that the lower, horizontal components remain
straight and that the components only adapt their shape in a geometrically compliant
way. Additionally, the total mass of the coupled structurem(pS) must not exceed the
initial mass m(pS0). For the underlying system description of the coupled system,
the input vector BS ∈ R

95 535, and the transposed output vector CT
S ∈ R

95 535 extract-
ing the sum of the displacements are concatenated. Therewith, the special case of
collocated inputs and outputs is created artificially to yield a parameterized, reduced
order system with the properties of Eq. (9). The optimization problem is now solved
with the coupled, parameterized, full order systemmodel with the matlabR2015b
SQP solver fmincon. The optimized shape of the coupled system is shown in Fig. 4
and it can be seen that the optimal shape is similar to the shape of a tied-arch bridge.
The computation time for solving Eq. (19) and calculating the gradients during the
optimization is 105.0 s, see Table1.

In the following, the optimization problem is also solved with coupled, param-
eterized, reduced order system models where both the system level approach from
Sect. 3.2 and the component level approach from Sect. 3.3 are used to conduct the
PMOR. First, the reduction settings for both approaches are explained which is fol-
lowed by a comparison and a discussion. The reduction settings and the results are
later summarized in Table1. Note that the focus of this contribution is only about
highlighting the general advantages and disadvantages of the two PMOR approaches
for coupled systems and not about the selection of expansion points or about interface
reduction.

In the first approach, the system level approach, the parameterized, full order
component models are coupled with stiffnesses at the RBE2 master nodes according
to Sect. 3.1. The reduction is then conducted with the coupled, parameterized, full
order systemmodel meaning that the PMOR is done for a model with 95 535 degrees
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Table 1 Reduction settings and computation time in online and offline phase

Full order model PMOR on system
level

PMOR on component level

Component 1 Component 2

Order of full
model

95 535 95535 8685 8685

Parameter
expansion points

– 80 16 4

System inputs
and outputs

2 2 13 12

Order of reduced
components

– – 104 34

Order of coupled,
reduced system

– 152 934

Computation
time reduction

– 269.2 s 10.8s

Computation
time optimization

105.0 s 0.1s 1.2 s

of freedom. The columns of the system level projection matrix VS are derived with
Eq. (11)where all frequency expansion points are chosen as σ̂ = 0 as a static problem
is investigated. The expansion points are chosen randomly from the feasible design
space pS ∈ P. In this example, 80 parameter expansion points yields a model that is
accurate enough. So, the order of the reduced system becomes 80 · 2 − 4 = 156, as 4
columns ofVS are truncated due to rank deficiency. The computation time for calcu-
lating the projection matrix is 269.2 s. The computation time for solving Eq. (19) and
calculating the gradients during the optimization is 0.1s. Note that choosing random
parameters as expansion points is a rather brute force approach for prototyping.More
practical approaches could involve e.g., Latin Hypercube sampling, see [8], or an
approach in which the base VS is enriched in an iterative, error controlled process,
compare [4].

In the second approach, the component level approach, one projection matrix for
each component model has to be derived. Afterwards, the parameterized, reduced
order components are coupled with stiffnesses at the RBE2 master nodes.

The stiffness matrices K1(p1) and K2(p2) of the unconstrained component mod-
els are just positive semi-definite but not positive definite meaning that rigid body
deformations are left. Therefore, the frequency expansion points are chosen as
σ̂ = 2π j5Hz. The parameter expansion points for the component models are dis-
tributed as regular grids within the feasible design spaces of the component models.
For bothmodels two grid points per dimension are selected as this already delivers (in
this example) accurate enough reduced order component models. Both components
have twelve coupling inputs where component 1 has one additional system input to
consider the surface load fsurf . After truncating 104 columns due to rank deficiency
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the reduced order of component 1 is 42 · 13 − 104 = 104. Here, a relatively large
number of columns is truncated. The reason is that the geometry parameterization
for component 1 introduced in Fig. 1 allows one rigid body movement design vari-
ation. However, such a design variation will not change the transfer behavior of the
elastic component and will therefore also only add rank deficient columns toV1. The
reduced order of component 2 is 22 · 12 − 14 = 34 after truncating 14 rank defi-
cient columns. The computation time for deriving the projection matrices for both
components is 10.8s.

Using component 1 eight times and component 2 three times yields the coupled,
parameterized reduced order system model with 8 · 104 + 3 · 34 = 934 degrees of
freedom. The computation time for solving Eq. (19) and calculating the gradients
during the optimization is 1.2 s.

Both approaches are successfully applied in a shape optimization example. In the
system level approach, PMOR has to be conducted for a single system level model
with 95 535 degrees of freedom. In contrast, in the component level approach, two
parameterized component models have to be reduced. However, the reduction can be
performed with much smaller models of an order of only 8 685 for both component 1
and component 2. This means that the component level approach requires much
less effort during the offline phase. In this case, the reduction on component level
is about 25 times faster than the reduction on system level. The drawback is that
the component level approach requires to take the coupling degrees of freedom as
additional system inputs into account. This leads to larger reduced order component
models and, therefore, to larger reduced order systemmodels compared to the system
level approach. Consequently, the optimization problem is solved 16 times slower
with reduced order model obtained by the component level approach compared to the
reduced order model obtained by the system level approach. Still, the computation
times for both approaches are faster compared to the full order solution. However, the
larger reduced order model when using the component level approach might become
an issue in dynamical problems.

Though, the component level approach shows two additional major advantages.
First, the PMOR of component models is much simpler to conduct as the PMOR
for system models as the component models comprise less parameters. Therefore,
the user has more physical insight into the problem and it is a much simpler task to
select expansion points or to conduct an error analysis. Second, the component level
approach allows to derive a data base of parameterized, reduced order component
models and to combine them arbitrarily. It is not necessary to redo the PMOR if
the modular setup is changed and allows therefore a reduced order toolbox based
modeling or shape or topology optimization.
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5 Conclusion and Outlook

Two approaches for Parametric Model Order Reduction of coupled, parameterized
systems are presented. Both approaches are appropriate for the reduction of param-
eterized, coupled systems and were applied in a reduced order shape optimization
example. The system level approach showed better performance in the online phase
as it allows to derive smaller reduced order system models. The component level
approach required much less effort for obtaining the reduced order component mod-
els. A further advantage of this approach is that the parameterized, reduced order
component models can be reused and recombined arbitrarily enabling a reduced
order, toolbox based shape or topology optimization. A drawback of the compo-
nent level approach is that the coupled, parameterized reduced order system models
become larger compared to the system level approach.

Apromising topic for future investigations is the applicationof reduction strategies
to systems with a large number of system inputs and outputs or a better selection of
expansion points.
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A Novel Penalty-Based Reduced Order
Modelling Method for Dynamic Analysis
of Joint Structures

Jie Yuan, Loic Salles, Chian Wong and Sophoclis Patsias

Abstract This work proposes a new reduced order modelling method to improve
the computational efficiency for the dynamic simulation of a jointed structures with
localized contact friction non-linearities. We reformulate the traditional equation
of motion for a joint structure by linearising the non-linear system on the contact
interface and augmenting the linearised system by introducing an internal non-linear
penalty variable. The internal variable is used to compensate the possible non-linear
effects from the contact interface. Three types of reduced basis are selected for the
Galerkin projection, namely, the vibration modes (VMs) of the linearised system,
static modes (SMs) and also the trial vector derivatives (TVDs) vectors. Using these
reduced basis, it would allow the size of the internal variable to change correspond-
ingly with the number of active non-linear DOFs. The size of the new reduced order
model therefore can be automatically updated depending on the contact condition
during the simulations. This would reduce significantly the model size when most
of the contact nodes are in a stuck condition, which is actually often the case when
a jointed structure vibrates. A case study using a 2D joint beam model is carried out
to demonstrate the concept of the proposed method. The initial results from this case
study is then compared to the state of the art reduced order modeling.
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Mechanical joints · Component mode synthesis · Contact friction
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1 Introduction

Jointed structures have been widely used in gas turbine engine to transfer the loading
from one component to the other. The joints between the substructures such as the
shrouds, underplatform damper and dovetail joint in gas turbine engines are also
regarded as the primary damping sources for energy dissipation. However, they also
significantly complicate the dynamic behaviour of an assembly by the change of sta-
bility, the jumpphenomenon and energy localization [4]. It is therefore very important
to understand and improve the dynamics of the joints for a improved design. The use
of finite element (FE)method for analysing such dynamical systems is however often
impeded by the unacceptable computational expense due to the tremendous size of
the model and strong inherit contact friction nonlinearities. The harmonic balanced
method (HBM) provides a very efficient approach to obtain the steady state dynamic
behaviour of such jointed structures comparing to the time integration method [4].
However, HBM would expand the size of the orginal system by multiplying the
chosen number of harmonic coefficients [6]. One of the viable approaches to take
these nonlinearities into account is to reduce the model size by several orders of
magnitudes by employing reduced order modelling (ROM) techniques [4, 6, 12].

Component mode synthesis (CMS) techniques have been extensively used for
model order reduction for linear and localised nonlinear dynamic systems where
the physical nonlinear DOFs on the interface are retained as unknowns [8, 13].
A CMS-Hybrid approach based on free interface modes and flexible residual have
been successfully applied to the Imperial VUTC in-house FORSE solver [6]. Another
effectiveCMSapproach is on the use ofCraig-Bampton (CB)method [2].A reviewof
CMS based ROM techniques for the applications to the linear vibration and localized
nonlinear vibration can be referred to [3, 12]. The main drawback of these two
approaches is the size of the reduced model is proportional to the number of DOFs
involved in nonlinearities. It could become extremely large when nonlinear interface
regions are intensive and densely meshed [10, 12]. In terms of modeling contact
friction on the interface, a node-to-node modeling approach has been widely used
[1] and also experimentally validated for turbine underplatform damper at Imperial
VUTC [5]. The contact friction conditions can be described as in stuck, slip and gap
states. More details on the contact friction modelling would be introduced in Sect. 2.
Figure1 shows the forced frequency response of a turbine blade and also the average
contact conditions of the interface nodes during the non-linear dynamic analysis.
An interesting observation is that most of the contact nodes are actually in a stuck
condition under vibrational loads. When the contact interface is in a stuck condition,
the coupling between two contact interfaces can be represented as the linear springs.
An inspiration from this observation is that we can linearise the non-linear system
using linear springs, and compensate the non-linear effect from those contact nodes
in a slip or gap condition with a internal penalty variable.

This paper aims to investigate this novel penalty-based ROM approach in order
to further reduce the model size comparing to those reduced models using classical
CMS methods. The paper is organized as follows: The reformulated equation of
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Fig. 1 An example of the contact conditions of a turbine during the vibrations

motion (EOM) for this penalty approach will be firstly presented; it is followed by
the presentation of reduced basis for Galerkin projection; we will then elaborate how
this method can be coupled with the harmonic balanced method; the performance of
this approach will be then demonstrated using a 2D jointed beam case study.

2 Formulation

2.1 Equation of Motion

A dynamic system consisting of two connected substructures with localized contact
friction interfaces is considered as an example. The partial differential governing
equation of such a system without taking into account of damping matrix is:

Mü + Ku = F − Fnl(u, ü) (1)

It is assumed the size of each substructures is N and the size of contact DOFs for
each substructure is M . Using the finite element modelling method, the assembled
system with two substructures can be expressed as:
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[
M1 0
0 M2

] [
ü1
ü2

]
+

[
K1 0

0 K2

] [
u1
u2

]
=

[
F1
F2

]
− (

[
BT
1

BT
2

]
FT (u1, u2) +

[
BN
1

BN
2

]
FN (u1, u2))

(2)
where M1,M2,K1,K2 are the mass and stiffness matrix of two substructures with
the same dimensions of NxN ; FT and FN are the 2Mx1 non-linear contact friction
force vector, which are in a function of the relative displacement of the contact
interface in a joint structure. BTand BN are the 2Nx2M boolean matrix related to
the boundary DOFs in tangential and normal direction separately.

2.2 Contact Friction Modelling

A node-to-node approach with Jenkin model is used to model the contact friction
phenomenon in a joint, which includes stuck, slip and gap states. These contact
friction states are dependent on the preloading levels as well as the amplitude of
relative movements on the interface. The Jenkin model has been widely used and
also validated with experiments [1]. The formulation for a 3D contact node pair using
this Jenkin model can be written as:

FT
x =

⎧⎪⎨
⎪⎩
kt (Δx − Δxc) + N 0

x , stuck

μFN
z sin(θ), slip

0, gap

(3)

FT
y =

⎧⎪⎨
⎪⎩
kt (Δy − Δyc) + N 0

y , stuck

μFN
z cos(θ), slip

0, gap

(4)

FN
z =

⎧⎪⎨
⎪⎩
knΔz + N 0

z , stuck

knΔz + N 0
z , slip

0, gap

(5)

whereΔx,Δy and Δz are the time-dependent tangential and normal relative dis-
placement of a contact node pair; Δxc,Δyc are internal variables representing the
tangential position of the slider, which also needs to update at each time step; FT

x , FT
y

are the tangential force in x and y direction; FN
z is the normal force in z direction;

θ is the angle between the tangential force component in x and y direction, which is
determined by the predicted tangential force:

θ = arctan(
kt (Δx − Δxc) + N 0

x

kt (Δy − Δyc) + N 0
y

) (6)



A Novel Penalty-Based Reduced Order Modelling Method . . . 169

The stuck condition occurs when the predicted tangential force
√
FT
x
2 + FT

y
2 is

less than the critical slipping forceμFN
z . The contact forcewould behave linearly and

there would be no energy dissipation. The slip condition occurs when the predicted
tangential friction force is larger than the critical value μFN

z . The tangential contact
force would behave non-linearly with a value of μFN

z and the energy dissipation
would happen then. The gap condition would happen when predicted normal force
FN
z is less than zero, and all the contact force would be zero then.

3 Penalty-Based Approach

3.1 EOM Modification

For the proposed penalty-based approach, the original EOM in Eq. 2 is linearised
on the interface using contact stiffness by assuming all of the contact nodes are in a
stuck condition. The modified linearised EOM of the system can be expressed as:

[
M1 0
0 M2

] [
ü1
ü2

]
+

[
K1 + KJoint −KJoint

−KJoint K2 + KJoint

] [
u1
u2

]
=

[
F1

F2

]
(7)

whereKJoint is the NxN stiffness matrix containing the local stiffness matrix associ-
ated to the joint DOFs. The linearised stiffnessmatrix in Eq.7 is denoted asKlinearized.

When any contact nodes are in a slip or gap condition, an internal variable Δp
would be needed to augment linearised EOM. The dimension of Δp is Mx1, which
is the half number of the total joint DOFs. The internal variable would become zero
when a contact node are in a stuck condition. The expression of the internal variable
can be formulated as:

Δp =

⎧⎪⎨
⎪⎩
0, stuck

Knl,nl
Joint

−1
(Fnl(Δu) − Knl

JointΔu), slip

Knl,nl
Joint

−1
(Fnl(Δu) − Knl

JointΔu), gap

(8)

where Knl,nl
Joint is the MxM joint stiffness matrix associated to non-linear internal

variable; Knl
Joint is the NxM joint matrix relating to the DOFs in each substructure.

Δu is the assembly of relative displacement (Δx,Δy,Δz) of all the contact pairs in
joint interfaces. By integrating the internal penalty variable, the modified EOM can
be further augmented:

⎡
⎣M1 0 0

0 M2 0
0 0 0

⎤
⎦

⎡
⎣ ü1
ü2
Δ p̈

⎤
⎦ +

⎡
⎢⎣
K1 + KJoint −KJoint Knl

Joint
−KJoint K2 + KJoint −Knl

Joint
Knl′
Joint −Knl′

Joint Knl,nl
Joint

⎤
⎥⎦

⎡
⎣ u1
u2
Δp

⎤
⎦ =

⎡
⎣ F1

F2
Fnl (u1, u2)

⎤
⎦
(9)
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Here,MNew,KNew are used to denote as new assembledmass and stiffness matrix.
It is worth noting that the zero part of Δp associated to the contact nodes in a stuck
condition can be further eliminated in EOM. The following section would detail how
the ROM formulates to enable such an automatic updating.

3.2 Reduced Basis

Galerkin projection is used to reduce the size of a physical model by transforming it
into a subspace. The solution of the system can be expressed as a linear combination
of vectors spanning the subspace. The selection of the reduced basis is crucial in
determining the accuracy and computational efficiency of a reduced system. More
about Galerkin projection can be referred to [7, 12]. The reduced basis for the pro-
posed penalty approach contain three parts, namely the vibrational modes of the
corresponding linearised system, constrain (static) modes and also the modal deriva-
tives vectors (Trial Vector Derivatives). The vibration modes can be obtained by
solving the eigenvalue problem of the linearised system Eq.2:

− ω2

[
M1 0
0 M2

] [
φ
] +

[
K1 + KJoint −KJoint

−KJoint K2 + KJoint

] [
φ
] = [

0
]

(10)

Like CMS techniques, the static modes are used to approximate the high fre-
quency response on the contact interface, which can be obtained by applying unit
displacement vectors on the DOFs related to internal penalty variable.

⎡
⎢⎣
K1 + KJoint −KJoint −Knl

Joint

−KJoint K2 + KJoint Knl
Joint

−Knl′
Joint Knl′

Joint Knl,nl
Joint

⎤
⎥⎦

[
ϕ

I

]
=

[
0
R

]
(11)

where I is the MxM identity matrix; ϕ is the 2NxM matrix including all the static
modes; R are the MxM reaction force matrix.

TVDs are used to calibrate the linear reduced basis in order to consider the effect
of the non-linearities from the contact friction. It is particularly usefully when all
contact nodes are in a gap condition. The detailed formulation to calculate the TVDs
can be referred to [11]. The first-order modal derivatives of the linear reduced basis
can be calculated as follows:

ϕi,j = K−1
linearised

∂Klinearised

∂qj
ϕj, φi,j = K−1

linearised
∂Klinearised

∂qj
φj (12)

Where ϕi,j and φi,j are the TVDs from the linear vibration modes φ j and constrain
modes ϕ j . The number of TVD vectors is equal to the squared number of the linear
reduced basis. The proper orthogonal decomposition is then used to reduced the size
of TVDs.
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The transformation of the physical system to the modal domain can be shown as
follows:

⎡
⎣ u1
u2
Δp

⎤
⎦ =

[
φ φT ϕ

0 0 I

]⎡
⎣ η1

η2
Δp

⎤
⎦ =

[
φ φT ϕ

0 0 I

] ⎡
⎣I 0 0
0 I 0
0 0 B

⎤
⎦

⎡
⎣ η1

η2
ΔpR

⎤
⎦ (13)

T =
[
φ φT ϕ

0 0 I

] ⎡
⎣I 0 0
0 I 0
0 0 B

⎤
⎦ ,MR = T

′
MNewT,KR = T

′
KNewT (14)

where η1 and η2 are modal participation factors for vibrationmodels and TVDs;ΔpR
is the non-zero part of Δp; B is the index matrix to extract the non-zero part of Δp,
which would be updated during the simulation depending on the contact conditions;
the size of transformation matrix T would be also updated accordingly. As a result,
the reduced mass and stiffness system KR andMR would be adaptively changing to
reduce the computational time.

4 Harmonic Balanced Method with Continuation
Techniques

Harmonic balanced method is used for solving the Eq.7. The idea of this method
is to represent the steady state non-linear dynamic response using truncated Fourier
series with n harmonic series:

u(t) = ũ0 +
n∑

i=1

(ũci cosmiωt + ũsi sinmiωt) (15)

where ˜uc,si are cosine and sine harmonic coefficients; ω is the principal vibration fre-
quency; ũ0 is the zero harmonic response.The Newton-Raphson method, in coupling
with the alternating frequency-time (AFT) method, is used to solve these nonlinear
equations. The AFT technique is used to transform the frequency-domain solution
to the time domain for non-contact force calculation, and transforme non-linear con-
tact force back to frequency domain. More details about this part can be referred to
[4]. Figure2 illustrates the implementation process about how the contact friction
model,iterative Newton-Raphson solver work with reduced order modeling in HBM.
The physical nonlinear DOFs ub on the contact interface is firstly expanded from
modal subspace by T before employing the AFT procedure. After AFT procedure,
the nonlinear force Fnl is then projected back to the modal subspace. The continua-
tion techniques are then used to obtain the forced frequency response. More details
about continuation techniques can be referred to [9].
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Fig. 2 An illustration of how Newton-Raphson solver works with AFT scheme and ROMmethods

The automatic size updating depending on the contact condition is achieved as
follows.When evaluating the continuous forced frequency response, the contact con-
dition of all interface nodes would need to be assessed using the previous converged
solution. This would help to generate the index matrix B. The size of system can
be then reduced for the new simulation. If using the continuation techniques with
HBM, the size updating would be performed at the predictor stage. The size of
the system would be kept same in the corrector stage with the iterative solver. The
implementation of the size updating with HBM is still on-going research.

5 Case Study

Figure3 shows a jointed beam model with linear springs connecting the two equiv-
alent beam substructures. The length of each beam is 0.3m. The width and height
of the cross section is 25mm and 6mm respectively. They are modelled by using the
Euler-Bernoulli beam elements, where each node has three DOFs (ux , uy, rz). The
beams are made of steel with a nominal density of 7850kg/m3 and Young’s modulus
of 2.1e11Nm−2. The tangential stiffness of the springs in the joint is 1e4N/m while
normal contact stiffness is 5e6N/m and bending stiffness of 8e6Nm/rad.

Figure4 shows the first nine natural frequencies (NFs) andmodes of this linearised
jointed beam system. These nine modes all belong to the bending modes. Due to the
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Fig. 3 A 2D FE model of a jointed beam with contact non-linear springs
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Fig. 4 Modes of a linearised jointed beam

large value of stiffness used in the joint, local elastic modes in the joint do not appear.
The forced frequency response of the second bending mode would be studied.

The proposed method and also other reference methods are applied to the lin-
earised joint beam model at first. The reference methods include CB, Rubin, Dual
Craig-Bampton, MacNeal, Joint interface method and TVD methods. The formula-
tion of these methods can be referred to [12]. The idea here is to compare the quality
of these methods when all the contact nodes are in a stuck condition. Figure5 shows
the comparison of the natural frequency (NF) errors between the proposed method
and other reference methods. Except for the penalty method, all other methods have
the same number of normal modes, namely 20. In terms of the static modes, CB,
Rubin and MacNeal methods have the same number as the non-linear DOFs while
DCB and JIM methods have only half number of these non-linear DOFs. The static
modes with TVDmethod is independent of the non-linear DOFs. In this case, the size
of penalty method would be equal to the number of VMs in the linearised structure,
because the number of static modes is zero due to the stuck condition. Figure5 shows
the proposed method achieves the best accuracy with the smallest reduction ratio.
RR stands for the reduction ratio, which is the ratio between the size of a ROM to
the size of a full system.

For linear analysis, it is well known that the pre-processing effort would be the
main challenge when using the CMS techniques, because the inversion of matrix
during the dynamic analysis would be only needed once for each frequency. For non-
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Fig. 5 NF relative errors of the jointed beams between different ROM methods (RR:reduction
ratio)

linear analysis, the reduced size of systemwould be also a challenge especially when
the assemble structure contains intensive contact interfaces. It is because the iterative
solver would be needed to solve the reduced system until the solution converges.
Furthermore, using the HBM, the final size of system would be expanded by the
number of harmonics. Based on the authors’ previous simulation, the computational
time would be cubic relation to the reduced number of DOFs [5]. Therefore, the RR
would be particularly important to non-linear vibration analysis. In terms of the off-
line cost, the proposed method has the same computational time for pre-processing
when comparing to the classical CMS techniques.

For nonlinear analysis, the linear springs on the contact interface are replaced by
using Jenkin contact friction model. Figure5 shows the comparison of the frequency
response functions (FRFs) between the proposed method and Rubin, CB methods.
The structure is excited in the middle of the first substructure in the y direction.
The two structure would be separated if the excitation level was large, which would
activate the soften effect of the in-phase and out-of-phase bending modes. For Rubin
and CB methods, the number of nominal modes is 10 while the number of static
modes is equal to the number of non-linear DOFs in the joint. Figure6 shows the
peak of the out-of-phase resonance shafts on the left but the amplitude of the response
remain unchanged. It means that the jointed structure experiences the separation in
resonance frequency region. CB and Rubin have the same FRFs as that from the
full solution. Using 10 vibrational modes and 3 static modes, the penalty approach
leads to the noticeable errors. When increasing the number of vibration modes to 20,
the accuracy with the proposed method improves but one still can observe the clear
discrepancy. This is because the introduced non-linear force on the contact interface
would affect the linear reduced basis and cause mode interaction between them
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Fig. 6 Forced frequency response comparisons between CB,Rubin and Penalty ROM methods

[11]. This mean the linear reduced basis need to be calibrated in order to accurately
represent the dynamics of coupled systems. The TVD method is one of the effective
approaches for the calibration when this coupling between linear vibration modes is
significant [11]. Three TVDs vectors are then added into the reduced basis to assess
how this would improve the accuracy of the propose method. The results show that
the proposed method with TVDs can obtain the same FRF as that from the full
solution. Comparing to the CB and Rubin methods, the size of this reduced jointed
structure model using the proposed method can be reduced by 40% even near the
resonance frequency region.

6 Conclusions and Future Work

A novel penalty-based reduced order modelling approach has been proposed for
dynamic analysis of a jointed structure with localised contact friction non-linearities.
The formulation of the proposed approach has been presented where the contact
friction is modelled by Jenkin model. We also showed how the proposed method
can be effectively integrated with the harmonic balanced method, AFT and non-
linear solver. A case study using jointed beam has been carried out to demonstrate
the proposed method. The result obtained from the penalty approach was compared
with the full solution and also classical Rubin and CB methods. The initial results
show the method can effectively capture the FRFs of the non-linear dynamic system.
TVDs are particularly useful to improve the accuracy when the contact interface
is largely in a non-linear condition. Comparing to the classical CMS methods, the
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proposed method can reduce the size of ROM further when most of contact nodes
are in a stuck condition.

Themain objective of this paperwas to present the formulation of this new reduced
order modelling approach for a joint structure, and demonstrate the concept with a
simple case study. Further developments would be needed to couple the proposed
method with continuation techniques for HBM. This would enable the automatic
size updating during the forced frequency response simulations. Also, high fidelity
models are needed to further test and validate the proposed method and effects of
TVDs on the dynamics of joint structures.
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POD-DEIMModel Order Reduction for
the Monodomain Reaction-Diffusion
Sub-Model of the Neuro-Muscular
System

Nehzat Emamy, Pascal Litty, Thomas Klotz, Miriam Mehl
and Oliver Röhrle

Abstract We apply POD-DEIM model order reduction to a 0D/1D model used
to simulate the propagation of action potentials through the myocardium or along
skeletal muscle fibers. This corresponding system of ODEs (reaction) and PDEs
(diffusion) is called the monodomain equation. 0D sets of ODEs describing the ionic
currents flowing across the cell membrane are coupled along muscle fibers through
a 1D diffusion process for the transmembrane potential. Due to the strong coupling
of the transmembrane potential and other state variables describing the behavior of
the membrane, a total reduction strategy including all degrees of freedom turns out
to be more efficient than a reduction of only the transmembrane potential. The total
reduction approach is four orders of magnitude more accurate than partial reduction
and shows a faster convergence in the number of POD modes with respect to the
mesh refinement. A speedup of 2.7 is achieved for a 1D mesh with 320 nodes.
Considering the DEIM approximation in combination with the total reduction, the
nonlinear functions corresponding to the ionic state variables are also approximated
in addition to the nonlinear ionic current in the monodomain equation. We observe
that the same number of DEIM interpolation points as the number of POD modes
is the optimal choice regarding stability, accuracy and runtime for the current POD-
DEIM approach.
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Keywords Model order reduction · Proper orthogonal decomposition (POD) ·
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Reaction-diffusion equation

1 Introduction

The monodomain model is widely used in the field of computational electrophysiol-
ogy to simulate the propagation of action potentials through the myocardium [1] or
along skeletal muscle fibers in detailed multi-scale models of skeletal muscle tissue
[2, 3]. Such models can be used to systematically investigate the complex physio-
logical behavior of the neuromuscular system in a controlled environment (e.g. see
[4–7]). However, even though the monodomain model is an approximation of the
more complex bidomain model [8, 9], i.e., assuming that the intracellular and extra-
cellular conductivities are proportional, it is computationally challenging, since the
underling physics requires a fine discretization in space and time (see e.g. [10, 11]
and the references therein).

To reduce the computational costs, model order reduction techniques can be
applied. In literature, for spiking neurons, model order reduction is applied in [12],
where a proper orthogonal decomposition (POD) is used together with the proposed
discrete empirical interpolation method (DEIM) to approximate the nonlinear ionic
current resulting from the Hodgkin and Huxley model [13]. For parameter identifica-
tion in cardiac electrophysiology, the POD approach is used to build a reduced basis
for the extracellular and transmembrane potentials [14]. The bidomain equations are
considered and the phenomenological two-variable model of Mitchell and Schaeffer
[15] is employed to describe the ionic current in a simplified way. The POD-DEIM
approach is used in [16] to estimate the cardiac conductivities and in [17] to study
electromyographic signals for skeletal muscles. In [16], the monodomain equation
is reduced and the ionic model of Rogers-McCulloch [18] with one gating variable
is considered to control the depolarization and repolarization phases of the cardiac
action potential. In [17], the bidomain equations are reduced, where a characteristic
shape for the action potential is considered.

In our study, we consider the monodomain equation together with the biophys-
ically motivated model of Hodgkin and Huxley, where three gating variables are
considered for the activation/inactivation of potassium and sodium ion channels.
The usual reduction approach as used in the above mentioned studies, is to consider
snapshots of the transmembrane potential or nonlinear ionic current separately to
build the POD bases (partial reduction). As the transmembrane potential and ionic
state variables are strongly coupled, we focus on a reduction strategy to reduce
them all together in the current study (total reduction). We study total and partial
POD-based reduction strategies with respect to the spatial convergence, accuracy
and runtime. As the total reduction strategy appears to be superior, we consider it for
applying the POD-DEIM approach. For this purpose, some minor modification of
the discrete system of equations are required. As a test case for our studies mentioned
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above, we consider a 1cm muscle fiber, which is stimulated once in the middle. To
generalize our results, we further consider frequent stimulations of the fiber.We train
our model with frequencies between 50 and 100 Hz. The trained and untrained data
show a weak sensitivity with respect to frequency, which is negligible provided that
sufficient POD modes are considered for building the basis.

The current study is organized as follows. In Sect. 2, we show the monodomain
equation and its discrete version, respectively. In Sect. 3, we introduce the partial and
total reduction strategies as well as the POD-DEIM approach considering the total
reduction. Numerical experiments comparing partial and total reduction and showing
accuracy and runtime results for POD-Galerkin and POD-DEIM are presented in
Sect. 4. In this section, we also use the total reduction strategy to build the reduced
basis considering frequent stimulations from the nervous system and assess their
accuracy for different ‘untrained’ stimulation frequencies.

2 Propagation of Action Potentials Along Muscle Fibers

Considering skeletal muscles, the propagation of action potentials along a muscle
fiber can be approximated by the 1D monodomain equation (e.g. see [3, 4]), pro-
viding a good trade-off between numerical complexity and the possibility to include
biophysical details like the behavior of the muscle fiber membrane, resulting in a
reaction-diffusion equation:

∂Vm

∂t
= 1

AmCm

(
∂

∂x

(
σeff

∂Vm

∂x

)
− Am Iion

(
y, Vm, Istm

))
in Γ, (1a)

∂y
∂t

= G (y, Vm) in Γ. (1b)

Therein Vm is the transmembrane potential, Istm is an externally applied current rep-
resenting a stimulus from the nervous system, Iion is the ionic current flowing through
the ion channels and -pumps in the membrane, Cm is the capacitance of the muscle
fiber membrane (sarcolemma), Am is the fiber’s surface to volume ratio, σeff is the
effective conductivity and x denotes the spatial coordinate along the fiber. Further,
y summarizes additional state variables, e.g. the states of different ion channels (cf.
[13]) andG summarizes the right-hand side of all nonlinearODEs associatedwith the
state variables y. Here, the ionic currents across the muscle fiber membrane, i.e. the
non-linear reaction terms, are simulated with the model of Hodgkin and Huxley [13],
where y ∈ R

3 represent the three gating variables related to activation/inactivation
of potassium and sodium ion channels. We assume that no charges can leave the
fiber domain, leading to homogeneous Neumann boundary conditions for the trans-
membrane potential Vm at both ends of a 1 cm long fiber, which is considered as our
test case. Further, the initial values for the transmembrane potential Vm and y are set
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according to the Hodgkin and Huxley model. The stimulation current is applied at
the middle of the fiber.
Discrete System. For the time integration of the monodomain equation (1a), we
apply the Godunov splitting scheme, where we integrate the reaction and diffusion
terms in two separate steps. The reaction term is integrated together with (1b) using
the explicit Euler scheme. For the diffusion term we use the implicit Euler scheme.

[
V ∗
m
y∗

]
=

[
V (t)
m

y(t)

]
+ dt

⎡
⎢⎣− 1

Cm
Iion

(
V (t)
m , y(t), I (t)

stm

)

G
(
V (t)
m , y(t)

)
⎤
⎥⎦ , (2a)

[
V (t+1)
m

y(t+1)

]
=

[
V ∗
m

y∗

]
+ dt

⎡
⎣ 1

AmCm

∂
∂x

(
σeff

∂V (t+1)
m
∂x

)

0

⎤
⎦ in Γ (2b)

V ∗
m denotes an intermediate transmembrane potential for the time integration. After

the spatial discretization using the FEM method, we have the following discrete
system of equations, which define our full order model,

[
v∗
m

y∗

]
=

[
v(t)
m

y(t)

]
+

[
F(v(t)

m , y(t)) + I(t)stm

G(v(t)
m , y(t))

]
, (3a)

[
v(t+1)
m

y(t+1)

]
=

[
v∗
m

y∗

]
+

[
Av(t+1)

m

0

]
, (3b)

where vm ∈ R
n and y ∈ R

3n are the spatially discrete representations of Vm and y
on a spatial mesh with n nodes. The spatially discretized nonlinear part of Iion/Cm

is represented by F : R4n �→ R
n . The discrete vector representing the stimulation

current as an input term is Istm ∈ R
n , which is adjustable linearly with the number

of nodes in the mesh. The discrete diffusion operator acting on vm is A ∈ R
n×n and

G : R4n �→ R
3n is the discretized version of G.

3 Reduction Strategy and POD-Galerkin/POD-DEIM

POD-Galerkin. Reduction strategies are based on collected snapshots of the process
under consideration. In this work, we use ns snapshots in time (denoted by super-
scripts for the respective variables)1 and accordingly establish a snapshot matrix S
in which each column represents spatially discrete state variables on the used mesh
with n nodes. We consider two strategies with respect to these snapshots. First, for a

1Snapshots may be subsequent time steps or only a selection of time steps. In general, snapshots
may be based on parameters independent of time. Therefore, we do not use parenthesis for the
superscripts denoting the snapshots as we do for time step data.
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partial reduction, we choose the snapshots of the transmembrane potential. Second,
for a total reduction, we consider the snapshots of the transmembrane potential and
the three state variables:

Spart =
⎡
⎣
vm1

1 vm2
1 . . . vm

ns
1

.

.

.
.
.
. . . .

.

.

.

vm1
n vm2

n . . . vm
ns
n

⎤
⎦ ∈ R

n×ns Stotal =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vm1
1 vm2

1 . . . vm
ns
1

y111 y121 . . . y1
ns
1

y211 y221 . . . y2
ns
1

y311 y321 . . . y3
ns
1

.

.

.
.
.
. . . .

.

.

.

vm1
n vm2

n . . . vm
ns
n

y11n y12n . . . y1
ns
n

y21n y22n . . . y2
ns
n

y31n y32n . . . y3
ns
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
4n×ns .

For model order reduction, singular value decomposition (SVD) is applied on the
snapshot (sample of trajectory) matrix S = [s1, ..., sns ],

S = V�WT with V ∈ R
p×r ,� ∈ R

r×r ,W ∈ R
p×r ,

where p = n for the partial reduction approach and p = 4n for the total reduc-
tion, r is the rank of S, r ≤ min(p, ns). We follow the notation in [19], where
� = diag(σ1, ..., σr ) with σ1 ≥ σ2 ≥ ... ≥ σr > 0. The matrix V contains the left
singular vectors vi of S corresponding to the singular value σi . Reduction approaches
truncate this SVD to parts associated to the largest singular values σ1, σ2, . . . , σk ,
k < r , yielding

S ≈ Vk�kWT
k with Vk ∈ R

p×k,�k ∈ R
k×k,Wk ∈ R

p×k .

We use the KerMor2 [20] library and consider the Galerkin projection of the
system (3) above. Using the partial reduction, we have the following reduced system
to solve for the reduced transmembrane potential ṽm and the (unreduced) state vector
y:

[
ṽ∗
m

y∗

]
=

[
ṽ(t)
m

y(t)

]
+

[
VT

kF(v(t)
m , y(t)) + VT

k I
(t)
stm

G(v(t)
m , y(t))

]
, (4a)

[
ṽ(t+1)
m

y(t+1)

]
=

[
ṽ∗
m

y∗

]
+

[
VT

kAVk ṽ(t+1)
m

0

]
, (4b)

where we recover vm from vm = Vk ṽm. Considering the total reduction, we get the
system to be solved for the fully reduced state z̃:

2http://www.ians.uni-stuttgart.de/MoRePaS/software/kermor/.

http://www.ians.uni-stuttgart.de/MoRePaS/software/kermor/
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z̃∗ = z̃(t) + VT
kFG(v(t)

m , y(t)) + VT
k I

(t)
enh, (5a)

z̃(t+1) = z̃∗ + VT
kAenhVk z̃(t+1), (5b)

where FG(vm, y), Ienh, and Aenh as well as the full state recovery are defined by

FG(vm, y) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F1(vm, y)

G1(vm, y)

F2(vm, y)

G2(vm, y)
...

Fn(vm, y)

Gn(vm, y)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Ienh :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Istm,1

1
Istm,2

1
...

Istm,n

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Aenh :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1
1
A2
1
...

An
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Vk z̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vm,1
y1
vm,2
y2
...

vm,n
yn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The reduced matrix VT
kAVk or VT

kAenhVk is precomputed in an offline phase,
thus dramatically reducing the computational cost in the actual execution of time
steps (online phase) for the linear component of the system. The linear systems of
equations in (4b) and (5b) are solved using a direct solver, which suffices for our
case of 1D problem.
POD-DEIM. Besides the total reduction strategy in equation (5a), we apply the
discrete empirical interpolation method (DEIM) [19] to the nonlinear functions F
and G:

z̃∗ = z̃(t) + VT
kUm(PT

mUm)−1PT
mFG(v(t)

m , y(t)) + VT
k I

(n)
enh, (6a)

z̃(t+1) = z̃∗ + VT
kAenhVk z̃(t+1), (6b)

Here, we reduce the full state representation FG(v(t)
m , y(t)) to a representation Umc

in the subspace defined by the columns ofU ∈ R
4n×m found by applying a truncated

SVD to a snapshot matrix of FG, only. The coefficients c ∈ R
m are found by solving

the interpolation problem

PT
mUmc = PT

mFG(v(t)
m , y(t))

for m projection points defined in Pm = [e℘1, ..., e℘m] with selected unit vectors
e℘ i , i = 1, . . . ,m, where the indices {℘1, ..., ℘m} are found through the DEIM algo-
rithm with respect to the basis {u1, ...,um}. The DEIM algorithm selects an index
in each iteration corresponding to the maximum residual such that the growth of
an error bound is limited. Applying the above, the computational complexity of the
nonlinear functions is independent of n (spatial dimension) as FG is only evalu-
ated at the m interpolation points. Moreover, the matrix vector multiplication of size
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Table 1 Comparison of the singular values using the partial and total reduction strategies for
different meshes. k/r ratios show the number of singular values greater than 10−5 relative to the
rank of snapshot matrix

Partial reduction Total reduction

n 10 20 40 80 160 320 10 20 40 80 160 320

r 10 20 40 80 160 320 40 80 160 320 640 1280

k 8 18 38 78 120 124 32 72 121 135 157 160

k/r 0.8 0.9 0.95 0.98 0.75 0.39 0.8 0.9 0.76 0.42 0.245 0.16

k × 4n times 4n in equation (5a) is replaced by k × m times m in (6a) as the matrix
VT

kUm(PT
mUm)−1 ∈ R

k×m is precomputed.

4 Numerical Results

Evaluation of the Truncation Potential for Snapshot SVD. In the following, we
provide numerical tests based on snapshots gathered every time step (5 × 10−4 ms)
for 10 ms (ns = 20000) for meshes with n = 10, 20, 40, 80, 160 and 320 nodes. The
singular values are shown in Fig. 1 for the two reduction strategies. There are jumps in
the singular values, at which one can set a threshold for the reduction. A convergence
with respect to mesh refinement could be observed for both strategies. We consider
a threshold of 10−5 and show the number of singular values, which are greater than
this threshold in Table 1. The number of the POD modes k appears to converge by
the mesh refinement for both strategies. Small ratios k/r indicate that the reduction
is effective, specially for fine meshes. Using the total reduction, a faster convergence
in k and much smaller ratios k/r are achieved in comparison to the partial reduction.
Partial versus Total Reduction Error and Runtime Analysis. In Fig. 2, we
compare the two strategies partial and total reduction in terms of the mean rela-
tive L2-norm errors of the transmembrane potential versus runtime using a mesh
with 80 nodes. Each point on the plot resembles additional 5 modes for the partial
reduction and 20 modes for the total reduction yielding comparable percentages of
the total number of modes (k/r = 5/80 = 20/320). The relative L2-norm errors
are computed with respect to the full order model (3) and averaged over the whole
computational time. Using the total reduction, more accurate solutions are achieved
in smaller runtimes rather than using the partial reduction. For the same runtime of
approximately 24 s, the error is four orders of magnitude smaller for the total reduc-
tion. The last point in the partial reduction strategy shows a jump in the error, which
means that considering all modes, the error with respect to the full order model is
negligibly small as expected.
Runtimes and speedups. In Fig. 3, we show the errors of vm versus runtime and
speedup for different meshes using the total reduction. Considering a threshold of
5 × 10−5 for the errors, speedups of 1.5, 1.8 and 2.7 are achieved for meshes with
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n = 80, 160 and 320 nodes. As expected, the speedups become considerable for finer
meshes. However, spatial convergence in terms of the number of detected modes
(as visible in Fig. 1/Table 1) should be considered which renders too fine meshes
inefficient as no additional information is captured.
POD-DEIM Error and Runtime Analysis. We show the errors of the transmem-
brane potential versus runtime for the POD-DEIM approach in Figs. 4, 5 and 6. A
mesh with 80 nodes is used. As we use the total reduction strategy, the maximum
number of POD modes is equal to r = 4n = 320, the rank of the snapshot matrix.
Ratios m/r = 0.4, ..., 1 are the relative number of interpolation points with respect
to the rank of the snapshot matrix. Each data seriesm/r starts by considering k = 20
PODmodes. The number of modes is increased by 20 between data points. In Fig. 4,
we observe that the errors are reduced by increasing the number of PODmodes up to
the point where the number of interpolation points becomes smaller than the number
of POD modes, m < k. If m/r < 0.6, the solution is not stable. If more than 60
percent of the interpolation points are used (m/r > 0.6), the error is dominated by
the error of the DEIM approximation and not reduced further by adding more POD
modes. A smaller number of interpolation points rather than the POD modes would
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Fig. 1 Singular value decomposition of the snapshot matrix. Partial reduction on the snapshots of
the transmembrane potential (top). Total reduction on the snapshots of the transmembrane potential
and three ion-channel state variables (bottom)
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Fig. 2 Comparison of the partial and total reduction strategies. Errors of the transmembrane poten-
tial with respect to the full order model are shown. A mesh with 80 nodes is employed. Each point
on the plot resembles additional 5 and 20 (equivalent) modes in the partial and total reduction
strategies, respectively
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Fig. 3 Errors of the transmembrane potential versus runtime and speedup with respect to the full
ordermodel. The POD approachwith the total reduction strategy is applied. Starting from 20modes,
we increase the number of modes between points on the plot by 20

mean missing parts of the DEIM basis for the nonlinear functions, which are already
present in the POD basis of the solution. In Fig. 5, we observe that for a given level of
accuracy, the number of the DEIM interpolation points should be chosen equal to or
greater than the number of POD modes, m ≥ k. The minimum runtime is achieved
form = k. In Fig. 6, we show our optimal choicem = k, which is stable and provides
the minimum runtime. This is in agreement with [12], where they mention the equal
number of POD and DEIM modes as the best choice.
Generalization of theReducedModel. To assess the generalizability of our reduced
order model, we generate the snapshot matrix Stotal with full model simulations with
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Fig. 4 POD-DEIM approach for model order reduction. Errors of the transmembrane potential
with respect to the full order model are shown. The errors are reduced by increasing the number of
POD modes k up to the point where m < k. Ratios m/r show the number of DEIM interpolation
points relative to the rank of the snapshot matrix. Each data series m/r starts with k = 20 POD
modes, we increase the number of modes by 20 between points
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Fig. 5 POD-DEIM approach for the case that the number of DEIM interpolation points are greater
than or equal to the number of POD modes, m ≥ k. Errors of the transmembrane potential with
respect to the full order model are shown. Ratios m/r show number of DEIM interpolation points
relative to the rank of the snapshot matrix. Each data series m/r starts with k = 20 POD modes,
we increase the number of modes by 20 between points

frequencies of the stimulation current between 50 and 100 Hz. We simulate 200 ms
with time step of 0.005 ms. The snapshots are gathered from each time step on a
mesh with 80 nodes. The POD approach with the total reduction strategy is then
evaluated for ‘untrained’ testing frequencies between 20 and 100 Hz.

Errors of the transmembrane potential with respect to the full order model are
shown in Fig. 7. The errors show a weak dependence on the frequency of the stimu-
lation for both the training and testing frequencies. Slightly higher errors are observed
for frequencies between 70 and 90 Hz, an issue which can be overcome by using
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Fig. 6 POD-DEIM approach for the case that the number of DEIM interpolation points and the
number of POD modes are the same, m = k. Errors of the transmembrane potential with respect
to the full order model are shown. The points on the plot are the points with minimum runtime for
each series m/r from Fig. 5. The ratios m/r show number of DEIM interpolation points relative to
the rank of the snapshot matrix

more POD modes. Therefore, the obtained POD basis with adequate number of
modes could be used for different frequencies of stimulation without a consider-
able deviation. If the time interval between two stimuli is greater than the refractory
period of the membrane in the Hodgkin-Huxley model, which is about 20 ms (see
eg. [21]), the monodomain model in combination with the Hodgkin-Huxley model
behaves like a time invariant system. Therefore, for this special case a single stim-
ulation should basically contain all information about the system’s dynamics in the
physiological stimulation conditions and therefore be sufficient as the training data.
This is in agreement with our training strategy, where we did not require to train
for frequencies below 50 Hz. Probably, this will not hold anymore when using a
membrane model which also includes fatigue effects, e.g. the Shorten model [22].

5 Conclusion and Outlook

Our numerical results show that POD-DEIMmodel order reduction yields a consider-
able reduction of runtime for the simulation of the so-called monodomain equations,
i.e., action potential propagation along muscle fibers. We observed that, due to the
strong coupling between the transmembrane potential and ionic state variables, a total
reduction of all state variables simultaneously gives the best results. Comparing to
the usual partial reduction, where the transmembrane potential is reduced separately,
we consider additionally the three ionic state variables resulting from the Hodgkin
and Huxley model [13] to build one total snapshot matrix. The SVD decomposition
of the snapshot matrices in both partial and total reduction strategies show jumps
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Fig. 7 POD approach considering different frequencies of the stimulation. Errors of the transmem-
brane potential with respect to the full order model are shown. The POD basis is extracted using
the total reduction of the snapshots taken from the full order model simulations with frequencies
50, 60, 70, 80, 90 and 100Hz

in the singular values for coarse meshes. Using finer meshes, the jumps disappear.
This leads to the conclusion, that intermediate modes are not yet resolved on the
coarse meshes. For all meshes, however, only a certain number of singular values
is of considerable size. This number does not further increase with mesh resolution
after all modes of interest are resolved. Reference [16] present a similar reduction
approach that we, however, can not directly compare our results with because their
method would be only equivalent to our partial reduction. However, it seems that
the slow decays, which they mention for the singular values are due to the very fine
mesh used for gathering the snapshots. Comparing our total and partial reduction
strategies, more significant modes of the solution are retrieved on the same mesh
using the total reduction. As an example, for a mesh with 80 nodes, 135 singular
values are above a threshold of 10−5 using the total reduction, which are about 42
percent of the total singular values. The singular values above the threshold are 78
using the partial reduction, which are equivalent to 98 percent of the total singular
values. The effectiveness of the total reduction is approved further by comparing
the mean relative L2-norm errors of the transmembrane potential for both strategies
on the same mesh above. Using 30 modes for the partial reduction and 120 modes
for the total reduction, the error of the total reduction is four orders of magnitude
smaller with the same runtime. Adopting the total reduction strategy, speedups are
computed for different meshes with respect to the full order model. A speedup of 1.5
is achieved with the mesh with 80 nodes. A higher speedup of 2.7 is achieved for
a finer mesh with 320 nodes. Further mesh refinement is not performed as we have
shown the mesh convergence for the problem. In order to efficiently evaluate the
nonlinear ionic current in the monodomain equation, we use the DEIM approxima-
tion for the nonlinear functions of the ODEs resulting from the Hodgkin and Huxley
model, which are coupled with the monodomain equation. Varying the number of
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DEIM interpolation points for a fixed number of POD modes could considerably
reduce the runtime for a preserved accuracy as expected. However, if the number of
interpolation points is smaller than the number of POD modes, the solution is either
unstable (when using less than 60 percent of the interpolation points) or the errors are
dominated by the DEIM approximation error. This could be interpreted as a hint that
the nonlinear terms actually are decisive for the overall number of relevant modes.
An equal number of DEIM points and POD modes appears to be the optimal choice,
which is stable and accurate with a minimal runtime. Applying the current approach
to study the effect of the stimulation frequency shows a weak dependence on the
frequency of stimulation, which is acceptable employing the Hodgkin and Huxley
model. Our overall conclusion is that the potential for model order reduction lies
mainly in reduction of the reaction term of the monodomain equation. This should
be verified by considering more complicated models for chemical reactions such as
the Shorten model [22], which contains more than 50 state variables and includes
fatigue effects. Application of model order reduction to deforming fibers is still an
open question, which would be interesting for the following studies.
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Index-Aware MOR for Gas Transport
Networks

Nicodemus Banagaaya, Sara Grundel and Peter Benner

Abstract We extend the index-aware model order reduction method (IMOR) to
differential-algebraic equations (DAEs) arising from gas transport networks, which
have a tractability index of one or two. Applying model order reduction (MOR)
techniques to DAEs has to be done carefully and the techniques, in particular for
nonlinear systems, can not handle arbitrary models. In previous work, MOR for
DAEs arising from gas transport networkswas done by rewritingDAEs into ordinary
differential equations (ODEs) by index reduction. Then, standard MOR techniques
could be applied. We propose an approach to create an ODE system and algebraic
equations from the original DAE, which is done automatically. That means we can
get a new decoupled system easily, even if we change the discretization scheme or
the coupling condition in the gas network. We explain the details of the automatic
decoupling for the linearized gas transport equation and show its efficiency on several
numerical examples.

Keywords Nonlinear differential-algebraic equations · Decoupling · Gas
transportation networks · Model order reduction · Tractability index

1 Introduction

We consider a gas transportation network consisting of several pipes. It is represented
via a directed graph. All the edges of the graph are pipes and the nodes are either just
interior nodes or supply nodes or demand nodes. We assume that at supply nodes
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a pressure boundary condition is given and at demand nodes a mass flux boundary
condition is imposed. The one-dimensional isothermal Euler equations are often
used in modelling natural gas transport through a pipe [1, 2], and this is what we will
do in the following as well. Spatial discretization of these equations together with
algebraic conditions on the nodes leads to a nonlinear dynamical system of the form
[1]

Eẋ = Hx + f(x) + Bu, Ex(0) = Ex0, (1a)

y = Cx + h(x), (1b)

where E ∈ R
n×n is singular, indicating that (1a) is a system of nonlinear differential-

algebraic equations (DAEs). This implies that x0 must be a consistent initial con-
dition.H ∈ R

n×n, B ∈ R
n×m, C∈ R

�×n,h(x) ∈ R
�, f(x) ∈ R

n, and the state vector
x ∈ R

n includes states representing the gas mass flow and states representing the gas
pressure at discretization points within the pipe network. The input function u(t)
includes the vector of supply pressures, and the vector of demand mass flows. The
desired output vector y could be any combination of pressure values and mass fluxes,
but is often choosen to collect the pressure at the demand nodes and the mass fluxes
at the supply nodes.

DAEs are known to be difficult to simulate and the level of difficulty is measured
using index concepts such as differential index, tractability index, etc. The higher
the index, the more difficult to simulate the DAE. Moreover, the system (1a) is a
hyperbolic balance law including friction and gravity effects, increasing the compu-
tational complexity due to strong coupling and stiffness of the problem. In general,
the solutions of hyperbolic balance laws can blow-up in finite time which can lead to
numerical integration challenges. Despite the ever increasing computational power,
dynamic pipeline network simulation using the system (1a) is costly, since it involves
to solve of a hyperbolic partial differential equations (PDEs) for each pipe, see [2].We
are interested in a fast and stable prediction of the dynamics of natural gas transport
in the pipe networks, and therefore the application of model order reduction (MOR)
is vital. MOR aims to reduce the computational burden by generating reduced-order
models (ROMs) that are faster and cheaper to simulate, yet accurately represent the
original large-scale system behavior. MOR replaces (1) by a ROM

Er ẋr = Hrxr + fr (xr ) + Bru, Erxr (0) = Erxr0 , yr = Crxr + hr (xr ), (2)

where Er ,Hr ∈ R
r×r , fr ∈ R

r ,Br ∈ R
r×m and yr ∈ R

�, hr ∈ R
�, Cr ∈ R

�×r such
that the reduced order of the state vector xr ∈ R

r is r � n.A good ROM should have
a small approximation error ‖y − yr‖ in a suitable norm ‖.‖ for a desired range of
inputs u. There exist manyMORmethods for nonlinear systems such as POD, POD-
DEIM, etc. However, applying these MORmethods directly to DAEs typically leads
to ROMs which are ODEs. These may be inaccurate or very difficult to simulate
[1, 3]. This is due to the fact that they do not respect the hidden constraints, the
consistent initial conditions and the smoothness of the input data. In [1, 4], using the
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state-of-the-art transformation, discretized gas transport problems of the form (1a)
are transformed into a systemofODEs and then PODwith theDEIM is used to reduce
the system size. However, this approach leads to stiff ROMs, which affects the choice
of suitable numerical solvers strongly. Moreover, this approach can not be automated
and it depends on the spatial discretization method. It is in particular unclear how to
extend it to gas networkswith network control elements, such as compressors, valves,
regulators, etc. We propose an index-aware MOR (IMOR) method for DAEs arising
fromgas transport networks. This approach involves first the automatic decoupling of
the given discretized and linearized gas transport DAEs into differential and algebraic
parts, then each part can be reduced separately leading to easier-to-simulate ROMs.

The paper is organized as follows. In Sect. 2, we present the discretized dynamic
DAEmodel arising fromgas transport networks and its transformedODEproposed in
[1, 4]. In Sect. 3, we discuss how a linearDAE system can be decoupled automatically
into differential and algebraic parts using IMOR [3]. In Sect. 4, we show the details
of the automatic decoupling applied to the linearized DAE introduced in Sect. 2. In
Sect. 5,we brieflydiscuss how to doMORwithin the IMORmethod, in particular how
to treat the algebraic part. In the final section, we present some numerical examples,
divided into small, medium and large-scale examples illustrating the performance of
the proposed method.

2 Discretized Gas Transport Network DAE Model

In this section, we consider the spatially discretized system of a gas transportation
network proposed in [1, 4] leading to a nonlinear DAE. We then present the index
reduction of the derived nonlinear DAE proposed in [4]. The nonlinear dynamic
system of gas transport in a network is described by the pressure at the supply nodes
ps ∈ R

ns , the pressure at all other nodes pd ∈ R
nd+n0 , the difference of flux over

a pipe segment q− ∈ R
nE and the average of the mass flux over a pipe segment

q+ ∈ R
nE , modelled over a graph with nE edge segments, that are the size of the

discretization, ns supply nodes, nd demand nodes and n0 interior nodes. The resulting
structure of the equation is

|AT
S |∂tps + |AT

0 |∂tpd = − M−1
L q−,

∂tq+ = MA(AT
Sps + AT

0pd) + g(q+,ps,pd),

0 = A0q+ + |A0|q− − Bdd(t),

0 = ps − s(t), (3)

where ML ∈ R
nE×nE and MA ∈ R

nE×nE are diagonal matrices encoding parameters
such as length, radius of the pipe segments as well as constants coming from the gas
equation. The matrixBd ∈ R

(nd+n0)×nd is a matrix of ones and zeros making sure that
the demand of the demand node is put at the right place in the mass flux equation.
The matrix A0 is created by taking the incidence matrix of the graph representing
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the refined gas transportation network and removing the rows corresponding to the
supply nodes, where AS is the matrix created from the incidence matrix by only
taking the rows corresponding to the supply nodes. The matrices |A0| and |AS|
are the incidence matrices of the undirected graph defined as the component-wise
absolute values of the incidence matrices of the directed graph, see [1]. The vectors
d(t) = (. . . , di (t), . . .)T ∈ R

nd and s(t) = (. . . , si (t), . . .)T ∈ R
ns are demand mass

flow and supply pressure, respectively, which are considered as input functions. The
vector g(q+,ps,pd) = (. . . , gk(q+,ps,pd), . . .)T ∈ R

nE is the discretization of the
gravity and friction term and therefore represents the nonlinear part of the equation
with

gk(q+,ps,pd) = −gkψk(pd ,ps)
�hk
Lk

− λk
qk+|qk+|

ψk(pd ,ps)
,

where ψk(pd ,ps) is the k-th entry of the vector-valued function:

ψ(pd ,ps) = |AT
S |ps + |AT

0 |pd ∈ R
nE .

The constant λk encodes friction and other specifics of the pipe segment k, whereas
gk represents the gravity and pipe specific parameters and �hk denotes the height
difference of the pipe segment. These scalar parameters in the system and those
defined earlier are known at least within some range of uncertainty. System (3) can
be rewritten in the form (1a) leading to a system of nonlinear DAEs with dimension
n = nE + nE + nd + n0 + ns . The desired outputs in R

ns+nd can be obtained using
the output equation

y =
(
yq
yp

)
=

(
0 |AS| 0 0
0 0 BT

d 0

)
⎛
⎜⎜⎝
q−
q+
pd
ps

⎞
⎟⎟⎠ ,

where yq = |AS|q+ and yp = BT
d pd . If we let x = (

qT− qT+ pTd pTs
)T ∈ R

n, then the
discretized gas flow model can be written in the form (1), where

E =

⎛
⎜⎜⎝
0 0 |AT

0 | |AT
S |

0 I 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , H =

⎛
⎜⎜⎝

−M−1
L 0 0 0

0 0 MAAT
0 MAAT

S|A0| A0 0 0
0 0 0 I

⎞
⎟⎟⎠ , f(x) =

⎛
⎜⎜⎝

0
g(x)
0
0

⎞
⎟⎟⎠ ,

B = −

⎛
⎜⎜⎝
0 0
0 0
0 Bd
I 0

⎞
⎟⎟⎠ , C =

(
0 |AS | 0 0
0 0 BT

d 0

)
, u =

(
s(t)
d(t)

)
, h(x) = 0.

with ns + nd inputs. In [4], simulation and MOR of (3) were discussed and the
tractability index concept was used to classify the DAE. It was shown that gas
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transportation networks are of tractability index 1 if and only if they have only one
supply node, otherwise they are of index 2. However, the transformation techniques
using projectionmatrices and back substitutionwere used to rewrite (3) into nonlinear
ODEs given by

(|A0|ML |AT
0 | 0

0 I

) (
∂tpd
∂tq+

)
=

(
0 A0

MAAT
0 0

) (
pd
q+

)
+

(|A0|ML |AT
S |∂ts(t)

g(q+, s(t),pd)

)
(4)

+
(

0 −Bd

MAAT
S 0

) (
s(t)
d(t)

)
.

After simulating the aboveODE,q− andps can then be computed in a post processing
step, however it is not necessary to compute the desired output. We can observe the
dimension of the original DAE (3) has been reduced to nd + n0 + nE . Then using
standard MOR methods can be applied to the index-reduced ODE (4).

3 Automatic Decoupling of Linear DAEs

In this section, we recall the automatic decoupling process, which can be used for
any linear DAE with certain properties [3]. In order to use this approach, we have
to first linearize our nonlinear DAE, then use the automatic decoupling. A solution
of the system is then computed from the decoupled system. This approach can be
summarized in Fig. 1.

We first linearize the nonlinear DAE (1) by computing a stationary solution xs for
a given static input us . This means we have

0 = Hxs + f(xs) + Bus .

Fig. 1 Graphical
representation of automatic
decoupling of DAEs
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Then, using theTaylor series expansion around a steady-state operatingpoint (xs ,us),
a linearized DAE system is obtained given by

Ex̄′ = Ax̄ + Bū, Ex̄(0) = Ex̄0, (5a)

ȳ = Cx̄, (5b)

where A = ∂F
∂x

∣∣∣∣
xs

= H + ∂f
∂x

∣∣∣∣
xs

∈ R
n×n , x̄ = x − xs ∈ R

n and ū = u − us ∈ R
m .

The linearized DAE system (5a) holds in a neighborhood of the stationary point
(xs,us) for the nonlinear DAE (1).

Next, we split the linearized DAE (5) into differential and algebraic parts using
special projectors and their respective bases as proposed in [3]. For convenience,
we set x̄ = x and ū = u. According to [3], in order to decouple linear constant
coefficientsDAEs into differential and algebraic parts, we can use the definition of the
tractability index as the starting point. Assume (5) is solvable, i.e., det(λE − A) �= 0,
thenwe can define amatrix and projector chain by settingE0 := E andA0 := A given
by

E j+1 := E j − A jQ j , A j+1 := A jP j , for j≥0, (6)

where Q j ∈ R
n×n is a projector onto the null space of E j and P j = I − Q j ∈ R

n×n .

Then if there exists an index γ such that Eγ is nonsingular and all E j are singular
for all 0 ≤ j < γ − 1 it is called the tractability index. In [4], the tractability index
concept was used to classify DAEs arising from gas transportation networks. In this
paper, we discus how the tractability index concept can be used to split the DAE into
differential and algebraic parts. In order to obtain an appropriate tool for decoupling
of the DAE (5) of index higher than one, an additional constraint Q jQi = 0, j > i,
is introduced. This class of projectors are sometimes called admissible projectors
[5] or canonical projectors [6]. These projectors are numerically feasible and their
construction is well discussed in [6]. A key step in forming the projectors in (6) is
to find the initial projectors Q j spanning the nullspaces of the usually sparse E j .
Standard ways of identifying the nullspace include singular value decomposition
(SVD) or alike, which do not utilize matrix patterns and can be expensive for large-
size matrices. The most efficient way is to employ the sparse LU decomposition-
based routine, called LUQ, see [7]. This same routine was also used to construct the
projector bases introduced in [3]. According to [3], these projectors and projector
bases can be used to split system (5) into an equivalent decoupled system given by

Ep∂tξp = Apξp + Bpu, ξp(0) = ξp0 , (7a)

−L∂tξq = Aqξp − Lqξq + Bqu, (7b)

y = Cpξp + Cqξq , (7c)

where L ∈ R
nq×nq is a nilpotent matrix with index γ and Lq ∈ R

nq×nq ,Ep ∈ R
np×np

are always non-singular matrices. The subsystems (7a) and (7b) correspond to the
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differential and algebraic parts of system (5). ξp ∈ R
np and ξq ∈ R

nq are the differen-
tial and algebraic variables, respectively. The value of the differential variable ξp is
computed by applying any standard numerical integration scheme to (7a). After com-
puting the value of the differential variable, the algebraic variables can be computed
as follows. We can observe that (7b) can be rewritten as

Lqξq − L∂tξq = Aqξp + Bqu ⇒ (I − LL−1
q ∂t )Lqξq = Aqξp + Bqu

⇒ Lqξq = (I − Nq∂t )
−1

(
Aqξp + Bqu

) ⇒ Lqξq =
γ−1∑
j=0

N j
q∂

j
t

(
Aqξp + Bqu

)
,

where Nq = LL−1
q is also a nilpotent matrix with the same index γ as L. Thus, (7b)

can be rewritten as

Lqξq =
γ−1∑
j=0

N j
q

(
Aq∂

j
t ξp + Bq∂

j
t u

)
. (8)

The above system can be simulated using numerical solvers. Thus, the algebraic
variable ξq is computed by first applying numerical integration on (7a) to obtain ξp,
and then apply numerical solvers for (8). Then the output solution can be obtained
using (7c). Hence, instead of numerically integrating (7b) one has to numerically
solve (8) which leads to stable solutions. For the two relevant values of tractability
index in our situation, (5) becomes

• γ = 1:

Lqξq = Aqξp + Bqu. (9)

• γ = 2:

Lqξq = Aqξp + Bqu + Nq
(
Aq∂tξp + Bq∂tu

)
. (10)

In order to avoid numerical errors while solving the above system, ∂tξp can be
obtained by applying numerical solver for (7a) after obtaining the value of ξp,
while ∂tu can be computed explicitly or symbolically.

Finally, we discuss how thematrix coefficients of (7) can be computed as proposed
in [3]. If (5) is of tractability index γ = 1, the matrix coefficients of (7) are given by

Ep = p̂T0E0p0 ∈ R
n p×n p , Ap = p̂T0A0p0 ∈ R

n p×n p , Bp = p̂T0B ∈ R
n p×m ,

L = 0, Lq = q̂T0A0q0 ∈ R
nq×nq , Aq = q̂T0A0p0 ∈ R

n p×nq ,

Bq = q̂T0B ∈ R
nq×m , Cp = Cp0 ∈ R

�×n p , Cq = Cq0 ∈ R
�×nq and ξp0 = p∗T

0 P0x(0).
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The columns of the matrices

• q0 ∈ R
n×nq and p0 ∈ R

n×np are linearly independent and span the column
spaces of projectors Q0 ∈ R

n×n and P0 ∈ R
n×n , respectively. p∗T

0 ∈ R
np×n is the

left inverse of basis p0 such that p∗T
0 p0 = Inp .

• p̂0 ∈ R
n×np and q̂0 ∈ R

n×nq are linearly independent and span the null spaces of
the matrices qT

0A
T
0 ∈ R

nq×n and ET
0 ∈ R

n×n, respectively.

In this paper, we restrict ourselves to tractability index γ = 1, but in the case
tractability index γ = 2, the matrix coefficients of (7) can be computed as discussed
in [3].

The proposed automatic decoupling method allows efficient simulation of nonlin-
earDAEs arising fromgas transportation networkswithoutworrying about consistent
initial conditions, hidden constraints and smoothness of the input data. Hence, the
index problem is eliminated. Moreover, the decoupled system is well suited due to
well-conditioned projectors and projector bases required for the decoupling strategy.
The decoupling strategy allows automatic decoupling of nonlinear DAEs arising
from gas transportation networks of any structure.

4 Decoupling Analysis of DAEs Arising From Gas
Transport Networks

In this section, we discuss how the nonlinear DAE (3) arising from the spatial dis-
cretization of the gas transport network proposed in [4] can be explicitly decoupled
using an automatic approach discussed in the previous section.Linearization of (3)
leads to a linear DAE in the form (5). Following the discussion presented in the
previous section, system (5) can be decoupled as follows. Setting

E0 = E =

⎛
⎜⎜⎝
0 0 |AT

0 | |AT
S |

0 I 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ and A0 = A =

⎛
⎜⎜⎝

−M−1
L 0 0 0

0 A22 A23 A24

|A0| A0 0 0
0 0 0 I

⎞
⎟⎟⎠ ,

where A22 = ∂g
∂q+

∣∣∣∣
xs

∈ R
nE×nE , A23 = MAAT

0 + ∂g
∂pq

∣∣∣∣
xs

∈ R
nE×nd ,

A24 = MAAT
S + ∂g

∂ps

∣∣∣∣
xs

∈ R
nE×ns , we can now construct the projector and matrix

sequence as follows. We first construct projectors

Q0 =

⎛
⎜⎜⎝
I 0
0 0

0 0
0 0

0 0
0 0

Q

⎞
⎟⎟⎠ ∈ R

n×n and P0 = I − Q0 =

⎛
⎜⎜⎝
0 0
0 0

0 0
0 0

0 0
0 0

P

⎞
⎟⎟⎠ ∈ R

n×n, (11)
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such that Q0 projects onto the nullspace of E0, where Q ∈ R
(nd+ns ) is the projector

onto the nullspace of E13=
( |AT

0 | |AT
S |

)
and P ∈ R

(nd+ns ) is its complementary pro-
jector. We note that projectors Q0 and P0 are not unique. Using the definition (6) of
tractability index, we obtain E1 = E0 − A0Q0. If we assume E1 to be nonsingular,
then DAE (5) is of tractability index 1, since in [4], it was shown that gas networks
are of tractability index 1 if and only if they have only one supply node. This implies
that E1 is nonsingular if ns = 1 and singular if ns > 1. Since we are considering gas
networks with one supply node, (5) is an index 1 system and its decoupled system
can be derived from (7) leading to

Ep∂tξp = Apξp + Bpu, ξp(0) = ξp0 , (12a)

Lqξq = Aqξp + Bqu, (12b)

y = Cpξp + Cqξq , (12c)

where

Ep = p̂T0E0p0 ∈ R
np×np , Ap = p̂T0A0p0 ∈ R

np×np , Bp = p̂T0B ∈ R
np×m,

Lq = q̂T
0A0q0 ∈ R

nq×nq , Aq = q̂T
0A0p0 ∈ R

nq×np , Bq = q̂T
0B ∈ R

nq×m,

Cp = Cp0 ∈ R
�×np , Cq = Cq0 ∈ R

�×nq and ξp0 = p∗T
0 P0x(0) ∈ R

np .

The columns of the matrices

q0 =

⎛
⎜⎜⎝
I
0

0
0

0
0
q

⎞
⎟⎟⎠ ∈ R

n×nq and p0 =

⎛
⎜⎜⎝
0
I
0
0

0
0
p

⎞
⎟⎟⎠ ∈ R

n×np

are linearly independent and span the column spaces of Q0 and P0 in (11), respec-
tively. Let kq be the dimension of the nullspace of E13, and kp = (nd + ns) − kq .
Then, q ∈ R

(nd+ns )×kq and p ∈ R
(nd+ns )×kp are matrices whose columns are linearly

independent and span the column spaces ofQ and P in (11), respectively. Hence, the

left inverse p∗T
0 ∈ R

np×n of basis p0 is given by p∗T
0 =

(
0 I 0 0

0 0 p∗T

)
∈ R

n×np .where

p∗T is the left inverse of p. Finally, column matrices p̂0 ∈ R
n×np and q̂0 ∈ R

n×nq are
defined as p̂0 ∈ Ker(qT

0A
T
0 ) and q̂0 ∈ Ker(ET

0 ), respectively. We can observe that the
linearized DAE of (3) has been decoupled into np = nE + kp differential equations,
and nq = nE + kq algebraic equations. The differential part has the same dimension
as an implicit ODE (4) for gas transport networks with one supply node.
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5 Index-Aware MOR for Gas Transport Networks

In this, section we discuss how the decoupled system (7) can be reduced using the
index-aware MOR methods. IMOR replaces (7) by an IROM [3]

Epr ∂tξpr = Apr ξpr + Bpru, ξpr (0) = ξpr0 , (13a)

−Lr∂tξqr = Aqr ξpr − Lqr ξqr + Bqru, (13b)

yr = Cpr ξpr + Cqr ξqr , (13c)

where

Epr = VT
pEpVp,Apr = VT

pApVp ∈ R
rp×rp , Bpr = VT

pBp ∈ R
rp×m,

ξpr0 = VT
pξp0 ∈ R

rp×np , Lr = −VT
qLVq ∈ R

rq×rq , Lqr = VT
qLqVq ∈ R

rq×rq ,

Aqr = VT
qAqVp ∈ R

rq×rp , Bqr = VT
qBq ∈ R

rq×m, Cpr = CpVp ∈ R
�×np ,

Cqr = CqVq ∈ R
�×nq .

Vp ∈ R
np×rp is constructed using any standardMORmethod such as POD, empirical

balanced truncation methods, etc., applied to the ODE subsystem

Ep∂tξp = Apξp + Bpu, ξp(0) = ξp0 , (14a)

yp = Cpξp. (14b)

After constructingVp as above, the projectionmatrixVq ∈ R
nq×rq can be constructed

as follows. Substituting ξp ≈ Vpξpr into (8) leads to

Lqξq ≈
γ−1∑
j=0

N j
q

(
AqVp∂

j
t ξpr + Bq∂

j
t u

)
. (15)

We can observe that, for the algebraic variable ξq , we have the restriction

Lqξq ∈ Wq = Kγ(Nq ,Rq) = Span
(
Rq ,NqRq , . . . ,Nγ−1

q Rq
)
,

where Rq = (
Bq ,AqVp

) ∈ R
nq×(rp+m). Then,

ξq ∈ Vq = L−1
q Wq = Kγ(L−1

q Nq ,L−1
q Rq).

We denote by Vq the orthonormal basis of Vq which can be computed using the
singular value decomposition (SVD) and truncating the smallest singular values. For
indexγ = 1 gas transport networkmodels: Vq = orth(L−1

q Rq)while for indexγ = 2
gas transport network models: Vq = orth(

[
L−1
q Rq ,L−1

q RqNq
]
). For γ > 2, one
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would in general use Arnoldi for this computation. As a result, both the differential
and algebraic subsystems are reducedwhile preserving the index of the original DAE.
An alternative way is to construct Vq using POD by generating snapshots using (8).

6 Numerical Examples

In this section, we illustrate the performance of the proposed automatic decoupling
and IMORmethods for nonlinearDAEs arising fromgas transportation networks.We
compute the relative error in the format Re.error = ‖y − yr‖2/‖y‖2.The output error
is defined as max(Re.error(pressure),Re.error(mass flow)). In all our experiments
the speedup is a number that measures the relative performance of simulating the
original and the reduced-order model. Simulations were done usingMATLAB®Ver-
sion R2012b on a Unix desktop.

Example 1 In this example, we compare different gas transport network models
derived from the same nonlinear DAE (3). These are: the linearized DAE model (5)
and the linear decoupled model (7). We consider a small size gas transport network
obtained from [8]. It consists of 17 nodes, 16 pipes, 1 supply node and 8 demand
nodes. Spatial discretization leads to a nonlinear DAE of the form (3) with n = 55,
m = � = 9,ms = 1,md = 8. We consider steady pressure at the supply node and
mass flow as step function at demand nodes as input functions as shown in Fig. 2.
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Fig. 3 Comparison of the output solutions in the time interval t ∈ [0, 500s] .

The linearized DAEmodel is of the form (5) with dimension 55,while the decou-
pled system (7) has np = 36 differential equations and nq = 19 algebraic equations.
We used the implicit Euler integration scheme to simulate the linear DAE. We also
used the same method to simulate the ODE part and the LU method for solving the
algebraic part of the decoupled system. Using the same time steps and time interval,
we simulated all the models and some of the results are presented in Fig. 3. We can
observe that the solutions of the linearized DAE and the linear decoupled models
coincide as expected.

In Examples 2 and 3, we use gas transport network models from [9] with only one
supply pressure node to illustrate the performance of the IMOR method proposed in
Sect. 5. Both networks lead to index 1 DAEs. We apply the empirical balanced trun-
cation (EBT) [10] and POD methods to reduce the differential part and by induction
the algebraic part is also reduced to its minimum realization leading to ROMs which
are also DAEs of the same index.We call the correspondingmethods the index-aware
EBT (I-EBT) and index-aware POD (I-POD). For comparison, we also applied EBT
and POD to the decoupled original model.

Example 2 In this example, we are interested in comparing different standard MOR
methods with that of the IMOR methods. We consider a medium size gas transport
pipe networkwith 200 pipes generated using the following data. The length, diameter
and average roughness of each pipe are chosen constant given by 100m, 1m and
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Table 1 Comparison of the standard MOR and IMOR methods

Method Decoupled
model

IROM Red.
size

%Red. Offline Out. error Speed-
up

n p nq rp rq r

I-POD 400 201 2 4 6 99.0 0.07 1.2 × 10−5 4.1

POD − − − − 2 99.7 0.07 3.7 × 10−5 5.5

I-EBT 400 201 7 9 16 97.3 24.0 7.2 × 10−5 4.4

EBT − − − − 16 97.3 37.9 7.3 × 10−5 2.4

1.0 × 10−3 m, respectively. The gas composition through the network is methane
with specific gas constant 518.26 J/KgK at supply inputs as shown in the first row
of Fig. 6 in the time interval t ∈ [0, 86400s] . This leads to a nonlinear DAE (3) of
dimension n = 601 which we linearized and decoupled into np = 400 differential
equations and nq = 201 algebraic equations. For comparison, the size of ROMs for
different MOR methods is determined by making sure that the output error is below
10−4 and the results are presented in in Table 1.

We observed that direct reduction using EBT and POD methods lead to ODE
ROMs which are very close to DAEs which affects the choice of numerical solvers,
while the I-EBT and I-POD methods lead to DAE ROMs with the same index as the
original system.We can also observe that the I-ROMs are computationally cheaper to
construct compared to the ODE ROMs since they need lower offline costs especially
with the EBTmethod. However, the standardMORmethods leads to slightly smaller
ROMs compared to the IMOR methods. This is due to the fact the standard MOR
methods eliminate the algebraic part and yield ODEROMswhile the IMORmethods
preserves the algebraic part leading to a DAE ROM. For speed-up comparisons, we
use the implicit Euler scheme for the linearized coupled DAE system. In Figs. 4
and 5, we compare the relative error of the pressure and mass flows for both the POD
and EBTmethods are varying sizes of the ROMs. Figure 6 shows the output solution
of the ROMs.

Example 3 In this example, we are interested in comparing the speed-ups of the POD
with that of the I-POD.We consider a large-scale gas transport pipeline network with
5,000 pipes. This model was generated numerically using the following data. The
length, diameter and average roughness of each pipe are chosen constants given by
3,630m, 1.422m and 1.0 × 10−6 m, respectively. The gas composition is methane
with specific gas constant 518.26 J/KgK at supply inputs as shown in the first row
of Fig. 7 in time interval t ∈ [0, 2400] . This leads to a nonlinear DAE system (3)
of dimension n = 15, 001 which we linearized and decoupled into np = 10, 000
differential equations and nq = 5, 001 algebraic equations. Generating matrices of
the decoupled system took 370.6s. This implies that decoupling is computationally
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Fig. 6 Comparison of the supply mass flow and demand pressure of the ROMs

Table 2 Comparison of the POD and I-POD methods

Method Decoupled model IROM %Red. Out. error Speed-up

n p nq rp rq r

I-POD 10, 000 5, 001 4 6 10 99.93 2.0 × 10−6 644.6

POD − − − − 4 99.97 1.8 × 10−5 575.8

efficient. For comparison the size of ROMs for different PODmethods is determined
by making sure that the output error is below 10−4 and the results are presented in
Table 2, where, we can observe that I-POD is 1.12 times faster compared to the
direct reduction using POD. In Fig. 7, we compare the output solutions of ROMs
which coincide as expected.



206 N. Banagaaya et al.

0 500 1000 1500 2000
83

83.5

84

84.5

85
P

re
ss

ur
e 

@
 S

up
pl

y 
no

de

Time (s)

0 500 1000 1500 2000
350

400

450

500

550

M
as

s 
F

lo
w

  @
 D

em
an

d 
no

de

Time (s)

0 500 1000 1500 2000
350

400

450

500

550

M
as

s 
F

lo
w

 @
 S

up
pl

y 
no

de

Time (s)

Orig. model
POD
I−POD

0 500 1000 1500 2000
83.96

83.98

84

84.02

84.04

84.06

P
re

ss
ur

e 
@

 D
em

an
d 

no
de

Time (s)

Orig. model
POD
I−POD

Fig. 7 Comparison of the supply mass flow and demand pressure of the ROMs

7 Conclusion

We have proposed an automatic decoupling strategy and an index-aware MOR
method for linear DAEs arising from gas transportation networks. The automatic
decoupling strategy is based on the foundations of tractability index and is indepen-
dent of the spatial discretization method applied on the gas transportation networks.
Moreover, the decoupling strategy can be applied on general structured gas transport
networks with network control elements such as valves, compressors, regulators, etc.
The main advantage of the decoupling strategy is that, it allows the use of standard
numerical methods for simulation and model reduction of gas transport networks
since it eliminates the index problem which normally causes numerical troubles.
The IMOR method leads to ROMs which are also decoupled which makes them
easier to simulate. Our decoupling strategy does not experience numerical troubles
due to the well-conditioned projectors and projector bases. In cases of ill-conditioned
matrices, incidence matrices can be used to construct these projectors and projector
bases. This approach can also be applied directly to parametrized systems arising
from gas transportation networks, if the projectors and the bases can be construct
such that they are independent of the parameters. However, during the linearization
process some information can be lost. Future research will deal with nonlinear DAEs
without any kind of linearization.
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Polynomial Tensor-Based Stability
Identification of Milling Process:
Application to Reduced Thin-Walled
Workpiece

Chigbogu G. Ozoegwu

Abstract This work presents the stability analyses of milling process using a
Full-discretization Method (FDM) which is constructed in the framework of second
order polynomial tensor approximation of the cutting states. The proposed method
is applied to the frequent milling model where the workpiece is considered rigid and
the tool is considered compliant and, also, to the case where the thin-walled work-
piece is considered flexible and the tool is considered rigid. The rigid tool is treated
as a lumped parameter problem while the flexible thin-walled workpiece, being a
continuum with very many degrees of freedom (DOF), is treated as a reduced order
Finite Element problem. The computed numerical results agree with established
results. The method is therefore applicable to the knowledge-based optimization of
the milling of aero-structures. For future research, a foundation has been formed for
the approach to be generalized for all orders of approximation for full computeriza-
tion and accuracy optimization of the stability lobes of reduced order milling models
using the FDM.

Keyword Model order reduction · Finite element · Full-discretization method ·
Thin-walled workpiece chatter stability lobe · Polynomial tensor

1 Introduction

Stability analysis is important for the optimization of surface quality and productiv-
ity of milling process. The out-of-process strategy, which simultaneously guarantees
high productivity and reasonable surface integrity, is popular for the knowledge-
based selection of cutting process conditions. The strategy is based on modelling
and stability analysis of the regenerative dynamics of the cutting process utilizing
the results of experimental or theoretical modal analysis. The regenerative delay dif-
ferential equation models of milling process are periodic [1], and the computational
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stability analyses of the models are mostly done in either the frequency domain or
the time domain. The Frequency domain approaches are based on truncated Fourier
series expansion of the periodic coefficients and the Nyquist stability criterion [2, 3]
while the more recent time domain approaches are based on the time-domain dis-
cretization of the governing DDE and the construction of a finite-dimensional map
[4–8].

Monolithic parts for the aerospace industry require high strength to weight ratio.
As a result, the milling of thin-walled workpiece is a basic material processing
requirement in the industry. During such a machining process, much of the blank
workpiece is removed. The relatively high volume allowance has to be removed as
fast as possible for the process to be economically viable, therefore, optimization of
material removal rate (MRR) is key for the aero-machining industry. Since a thin-
walled workpiece is a distributed system, the response is dependent on the location
of the excitation (tool-workpiece interaction) and the extent of material removal.
Stability analysis of milling of thin-walled workpiece has mostly been carried out
in the frequency domain. A frequency domain approach was used for the stability
analysis of the relative regenerative vibration between a flexible plate and a flexible
milling tool [9, 10]. The three-dimensional stability boundaries of a thin-walled
plate fixed at the base and at one side were identified in the frequency domain in
the works [11, 12] and used to highlight the productive stable cutting depths as a
function of spindle speed and tool location. A nonlinear dependence of cutting force
coefficients on axial depth of cut was considered in a frequency domain construction
of the stability boundaries of the three-dimensional dynamics of thin-wall workpiece
milling in [13]. Three-dimensional stability lobeswere identified for the optimization
of stable milling of flexible workpiece in [14], considering the in-process structural
variation due to material removal and tool location. Recently, methods based on thin
plate theory and mode superposition principle were used to prepare the regenerative
dynamics of thin-walled workpiece milling for stability analysis in the frequency
domain [15, 16].

The regenerative chatter stability of thin-walled workpiece milling was studied
with the semi-discretization method in the work [17]. A semi-discrete-time-domain
method was established for the stability analysis of flexible workpiece milling con-
sidering process damping and non-uniform pitch effects [18], and this method was
recently applied in identifying the enhanced stability boundaries of milling of thin-
walled workpiece attached with appropriate additional masses [19]. Using the FDM,
the stability boundaries of thin-walled workpiece milling were constructed in the
works [20, 21]. The first order semi-discretization was recently used in the stability
analysis of milling of a reduced-order model of thin-walled workpiece [22]. In the
work, parametric model order reduction, which was based onmodal truncation of the
location-dependent modal matrices and cubic spline interpolation of the individual
reduced modes, was introduced for reducing the high DOF delayed dynamics of a
flexible workpiece. This work presents a new framework for the FDM, based on
polynomial tensor approximation of milling states, for the stability analysis of the
reduced-order model of thin-walled workpiece milling.
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2 The Method

Different models of milling process can be represented in the delayed first order form

ẋ(t) = Ax(t) + B(t)x(t) − B(t)x(t − τ), (1)

where t > 0 is the time, x(t) ∈ R
n is the milling state, τ ∈ R+ is the discrete

delay, A ∈ R
n×n is the coefficient matrix related to the transient response of the

system and B(t) ∈ R
n×n is the coefficient matrix related the periodic excitation

of the system. The discrete delay τ is also the period of the model for the case of
uniform-pitch milling. The period of the system is divided into k equal discrete time
intervals

[
ti , ti+1

]
where i = 0, 1, 2, . . . (k − 1) and ti = iτ/k = i�t = i(ti+1 − ti ).

Equation (1) is solved in each discrete interval to give

xi+1 = eA�txi +
ti+1∫
ti
eA(ti+1−t)(B(t)x(t) − B(t)x(t − τ))dt. (2)

Since the milling states do not have exact analytical form, the integration problem
can only be solved if the states x(t) and x(t − τ) are interpolated/approximated
accurately enough. This is the underlying problem the time domain methods sought
to solve. Inwhat follows, the proposedmethod for handling this problem is presented.

The general second order least squares approximation of x(t), as given in [23], is

x(t) = aT(t)

{
i+1∑

l=i−1

a(tl)aT(tl)

}−1 i+1∑

l=i−1

a(tl)xl , (3)

where a(t) = {
1 t t2

}T
is the vector of polynomial basis. The summations in Eq. (3)

should be understood to apply to every element of thematrix a(tl)aT(tl) and the vector
a(tl)xl . Equation (3) can therefore be written as

x(t) = aT(t)T−1Sv, (4)

where T and S are 3 by 3 numerical matrices and v is a vector of discrete milling
states. The matrix T is described as T = ∑i+1

l=i−1 a(tl)a
T(tl). The elements of T then

become Tmn = ∑i+1
l=i−1 [a(tl) � a(tl)]mn where the operation a(tl) � a(tl) implies

outer product of the numeric vector a(tl) with itself. Since {a(tl)}m = tm−1
l then

[a(tl) � a(tl)]mn = tm+n−2
l , thus

Tmn =
i+1∑

l=i−1

tm+n−2
l = (�t)m+n−2

1∑

l=−1

lm+n−2. (5)
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The matrix S and vector v are derived as follows; comparing Eqs. (3)

and (4) gives Sv = ∑i+1
l=i−1 a(tl)xl = {∑i+1

l=i−1 xl
∑i+1

i−1 tlxl
∑i+1

i−1 t
2
l xl

}T

= {Sv}m = ∑i+1
l=i−1 [a(tl) ⊗ xl ]m where ⊗ is the tensor or Kronecker product

operator. On decomposing this into coefficient matrix S and a vector of states v, it
becomes obvious that S is a Vandermonde matrix with elements

Smn = tm−1
i−2+n = (n − 2)m−1(�t)m−1, (6)

and the v is made of sub-vectors of states

vm = xi+m−2. (7)

Making use of Eqs. (5), (6) and (7), the approximation polynomial becomes

x(t) = 1

2(�t)2
(
t2 − t�t

)
xi−1 + 1

(�t)2
(
(�t)2 − t2

)
xi + 1

2(�t)2
(
t2 + t�t

)
xi+1.

(8)

Following a similar logic, the delayed state x(t − τ) is also approximated as

x(t − τ) = aT(t)T−1
τ Sτvτ , (9)

where

Tτ,mn =
i+2∑

l=i

tm+n−2
l = (�t)m+n−2

2∑

l=0

lm+n−2, (10)

Bτ,mn = tm−1
i−1+n = (n − 1)m−1(�t)m−1, (11)

vτ,m = xi+m−1−k . (12)

Making use of Eqs. (10)–(12), the delayed approximation polynomial becomes

x(t − τ) = 1

2(�t)2
(
2(�t)2 − 3t�t + s2

)
xi−k + 1

(�t)2
(
2t�t − t2

)
xi+1−k

+ 1

2(�t)2
(−t�t + t2

)
xi+2−k . (13)

Linear approximation of the periodic coefficient matrix B(t) is adopted, thus

B(t) = 1

�t
(�t − t)Bi + 1

�t
tBi+1. (14)
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In what follows in this section, the monodromy matrix is constructed. Equa-
tions (8), (13) and (14) are inserted in Eq. (2) and the integration executed and
rearranged to give

xi+1 = Pi (F0 + G22Bi + G25Bi+1)xi + Pi (G21Bi + G24Bi+1)xi−1

− Pi (D21Bi + D24Bi+1)xi−k − Pi (D22Bi + D25Bi+1)xi+1−k

− Pi (D23Bi + D26Bi+1)xi+2−k, (15)

where G21 = 1
2(�t)3

(−F2(�t)2 + 2F3�t − F4
)
, G22 =

1
(�t)3

(
F1(�t)3 − F2(�t)2 − F3�t + F4

)
, G23 = 1

2(�t)3
(
F2(�t)2 − F4

)
,

G24 = 1
2(�t)3

(−F3�t + F4),G25 = 1
(�t)3

(
F2(�t)2 − F4

)
,G26 = 1

2(�t)3
(F3�t + F4),

D21 = 1
2(�t)3

(
2(�t)3F1 − 5(�t)2F2 + 4�tF3 − F4

)
, D24 =

1
2(�t)3

(
2(�t)2F2 − 3�tF3 + F4

)
, D22 = 1

(�t)3
(
2(�t)2F2 − 3�tF3 + F4

)
,

D25 = 1
(�t)3

(2�tF3 − F4), D23 = 1
2(�t)3

(−(�t)2F2 + 2�tF3 − F4
)
, D26 =

1
2(�t)3

(−�tF3 + F4), F0 = eA�t , F1 = (F0 − I)A−1, F2 = (F1 − �tI)A−1, F3 =
(
2F2 − (�t)2I

)
A−1,F4 = (

3F3 − (�t)3I
)
A−1 andPi = (I − G23Bi − G26Bi+1)

−1.
The local discrete map for second order approximation becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xi+1

xi
xi−1

...

xi+3−k

xi+2−k

xi+1−k

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

Mi
11 M

i
12 · · · 0 Mi

1,k−1 M
i
1k M

i
1,k+1

I 0 · · · 0 0 0 0
0 I · · · 0 0 0 0
...

...
...

...
...

...
...

0 0 0 0 I 0 0
0 0 0 0 0 I 0

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xi
xi−1

xi−2
...

xi+2−k

xi+1−k

xi−k

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (16)

where Mi
11 = Pi (F0 + G22Bi + G25Bi+1), Mi

12 = Pi (G21Bi + G24Bi+1),
Mi

1,k−1 = −Pi (D23Bi + D26Bi+1), Mi
1k = −Pi (D22Bi + D25Bi+1) and Mi

1,k+1 =
−Pi (D21Bi + D24Bi+1). The monodromy matrix for the system becomes

ψ = Mk−1Mk−2 . . .M0. (17)

3 Applications

The method is equally applicable to the frequently adopted model of milling process
which assumes a flexible tool cutting a rigid workpiece and to the model of milling
process which assumes a rigid tool cutting a flexible workpiece. While application
of the established method is demonstrated for both cases, the latter case is of major
interest here since that is the case for milling of thin-walled aero-structures.
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3.1 Flexible Tool-Rigid Workpiece

For this milling case, a popular second order 2 DOF delayed model for symmetric
tool is

Mz̈(t) + Dż(t) + Kz(t) = H(t)(z(t) − z(t − τ)), (18)

where z(t) = {
zx (t) zy(t)

}T
, M =

[
mx 0
0 my

]
, D =

[
dx 0
0 dy

]
, K =

[
kx 0
0 ky

]
,

H(t) = −w

[
hxx (t) hxy(t)
hyx (t) hyy(t)

]
. The regenerative vibrations in the feed and feed-

normal directions are zx (t) and zy(t). Table 1 gives the values and the relationships
between the directional modal parameters in terms of the elements of the matrices
M, D and K. The quantities subscripted ′′x ′′ relate to the feed direction while those
subscripted ′′y′′ relate to the feed-normal direction. The specific force variations are
given as

hxx (t) = Ctγ (vτ)γ−1
N∑

j=1

g j (t)sin
γ θ j (t)

(
χ sin θ j (t) + cos θ j (t)

)
, (19)

hxy(t) = Ctγ (vτ)γ−1
N∑

j=1

g j (t)sin
γ−1θ j (t)cos θ j (t)

(
χ sin θ j (t) + cos θ j (t)

)
, (20)

hyx (t) = Ctγ (vτ)γ−1
N∑

j=1

g j (t)sin
γ θ j (t)

(
χ cos θ j (t) − sin θ j (t)

)
, (21)

hyy(t) = Ctγ (vτ)γ−1
N∑

j=1

g j (t)sin
γ−1θ j (t)cos θ j (t)

(
χ cos θ j (t) − sin θ j (t)

)
. (22)

Table 1 Parameters of the system [5]

Mass mx = my 0.03993 kg

Natural frequency ωnx = √
kx/mx = ωny = √

ky/my
5793 rads−1

Tool damping ratio ζx = dx/(2ωnxmx ) = ζy =
dy/

(
2ωnymy

)
0.011

Tangential cutting
coefficient

Ct 6 × 108 Nm−1−γ

Normal to tangential
force ratio

χ 0.33333

Force law feed exponent γ 1

Number of teeth N 2



Polynomial Tensor-Based Stability Identification … 215

Fig. 1 The geometric and modal parameters of the flexible tool-rigid workpiece model

Equation (18) takes the first order form given in Eq. (1) where A =[
0 I

−M−1K −M−1D

]
and B(t) =

[
0 0

M−1H(t) 0

]
. In the model, w is

the depth of cut, θ j (t) = π
 t/30 + 2π( j − 1)/N is the angular dis-
placement of the jth cutting edges (that is, j = 1,2,…,N), g j (t) =
0.5

(
1 + sgn

(
sin

(
θ j (t) − tan−1 P

) − sin
(
θs − tan−1P

)))
is the screening function

where P = (sin θs − sin θe)/(cos θs − cos θe), θs and θe are the start and end angles
of the cutting interval, B is the radial depth of cut and D is the tool diameter. For up-
milling, θs = 0 and θe = cos−1(1 − 2ρ)while for down-milling, θs = cos−1(2ρ − 1)
and θe = π where ρ = B/D is the radial immersion. A illustration of this model
showing the geometric and modal parameters is shown in Fig. 1.

3.1.1 Numerical Results and Discussions

On inserting the above model matrices in the constructed monodromy matrix and
substituting the numerical values given in Table 1, the stability diagrams given in
Fig. 2 are computed. The results agree with the known results in [4, 23].

3.2 Rigid Tool-Flexible Workpiece

This milling case is illustrated in Fig. 3 showing the primary motion (spindle rotation

) and the secondary motion (feed v) of the tool. The thin-walled workpiece is
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Fig. 2 The stability diagrams of the 2 DOF milling computed with the proposed method. (left) full
radial immersion ρ = 1 and (right) low radial immersion ρ = 0.05

Fig. 3 An illustrative rigid
tool-flexible workpiece
milling

much more flexible than the tool and it is thus considered compliant while the tool
is considered rigid.

3.2.1 Finite Element Model

Since the workpiece is a continuum, a large DOF second order delayed model is
needed to capture the regenerative dynamics. The regenerative dynamics of the thin-
walled workpiece is, therefore, subjected to Finite Element (FE) modelling to give
a dF -dimensional model for every location of the tool along the feed direction. The
model for a tool-location, as specifically presented in [22], can be given as

Mz̈(t) + Dż(t) + Kz(t) = BHH(t)CH(z(t) − z(t − τ)), (23)

where z(t) ∈ R
dF is the state,M ∈ R

dF×dF is the mass matrix, D ∈ R
dF×dF damping

matrix, K ∈ R
dF×dF is the stiffness matrix, BH ∈ R

dF×nd , H(t) ∈ R
nd×nd , CH ∈
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R
nd×dF and nd is the number of directions of regenerative response. The matrices

BH and CH serve to project the effect of the nd -dimensional specific force variation
matrix H(t) to the high DOF dF of the thin-walled workpiece. If it is assumed that
the axial component of cutting force is relatively low, which is a realistic assumption
when helix angle is ignored, the regenerative responses in the feed and feed-normal
directions are then considered so that nd = 2. The FE model that is adopted from
[22] has dF = 30888 DOF.

3.2.2 Model Order Reduction

Since the degree of freedom dF of the FE model is large, the computational process
will be costly or impossible. Model order reduction is necessary to overcome this
problem. Based on modal truncation, a parametric model order reduction of Eq. (23)
gives [22]

M̃(p)¨̃z(t) + D̃(p) ˙̃z(t) + K̃(p)z̃(t) = B̃H(p)H(t)C̃H(p)(z̃(t) − z̃(t − τ)), (24)

where z̃(t) ∈ R
dR is the reduced state, M̃(p) = VTMV ∈ R

dR×dR is the
reduced mass matrix, D̃(p) = VTDV ∈ R

dR×dR is the reduced damping matrix,
K̃(p) = VTKV ∈ R

dR×dR is the reduced stiffness matrix, B̃H(p) = VTBH ∈ R
dR×nd ,

C̃H(p) = CHV ∈ R
nd×dR and V ∈ R

dF×dR is the projection matrix. The matrix
V is a concatenation of the first dR eigenvectors where dR � dF . The param-
eter p here indicates the location-dependent dynamics along the feed direction
where p = 0 at the beginning of tool pass and p = 1 at the end of the pass.
Details can be found in [22] where each p-dependent matrix derived from cubic
spline interpolation of the values at a finite number of location zones under a con-
sistent system of coordinates z̃(t). The first order form of the reduced model is

still Eq. (1) but with A =
[

0 I

−
(
M̃(p)

)−1
K̃(p) −

(
M̃(p)

)−1
D̃(p)

]

, and B(t) =
[

0 0(
M̃(p)

)−1
B̃(p)H(t)C̃(p) 0

]

. This means that the proposed method is amenable

to the reduced-order models of milling with varying workpiece dynamics.

3.2.3 Numerical Results and Discussions

The parameters of the milling process and the workpiece are adopted from [22]. The
radial immersion of the up-milling process is 0.25. The milling tool has two teeth (N
= 2), the feed per tooth is 0.1 mm, the tangential cutting coefficient is Ct = 1.07 ×
108 Nm−1−γ , the force law feed exponent is γ = 0.75 and the normal to tangential
force ratio is χ = 40/107. The 0.17 m × 0.03 m × 0.15 m workpiece is a steel
material with density ρ = 7.8×103 kgm−3, Young’s modulus E = 210×109 Nm−2
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Fig. 4 The stability boundaries of milling the thin-walled workpiece at four locations

and Poisson ratio νpr = 0.3. On inserting the reduced matrices in the constructed
monodromy matrix and substituting the numerical values, the stability boundaries
of the system are constructed using three eigenmodes, see Fig. 4. The results agree
with the known results in [22]. The stability boundaries show the influence of both
tool location and the extent of material removal on the stability lobes. The stability
boundary at the location p = 1 differed from that at the location p = 0 because
of material that had been removed. The effect of material removal on the stability
boundary of cutting of thin-walled workpiece can be viewed as time-dependent. For
the studied workpiece, the effect of location on system stability threshold is most felt
in the higher speed domain. The implication of the position and time-dependence for
the industrial application of using fixed spindle speed for milling is that any choice
of cutting process parameters must satisfy any possible space-time existence of the
stability boundary.More discussion of these stability boundaries can be found in [22].

3.2.4 Future Work

Since the algorithm works well, it would be germane to point out the possibility of
generalizing the method with the aim of maximizing accuracy through identifying
the most accurate approximation order p. This approach of accuracy maximization
is especially important since it will serve as a way of compensating for any error
introduced by modal truncation of the full order model. It is found that when poly-
nomial tensor of degree p is used then T ∈ R

(p+1)×(p+1), S ∈ R
(p+1)×(p+1), Tτ ∈

R
(p+1)×(p+1), Sτ ∈ R

(p+1)×(p+1), x(t) ∈ R
dRnd , v ∈ R

dRnd (p+1) and vτ ∈ R
dRnd (p+1).

The generalized tensor elements and sub-vectors found to be specific for the
milling states are Tmn = (�t)m+n−2 ∑1

l=−p+1 l
m+n−2, Smn = (n − p)m−1(�t)m−1,

vm = xi+m−p, Tτ,mn = (�t)m+n−2
p∑

l=0
lm+n−2, Sτ,mn = (n − 1)m−1(�t)m−1,

vτ,m = xi+m−1−k . The future direction of this research would be to construct the
monodromy matrix of the reduced thin-walled workpiece with the generalization
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and, somewhat, compensate for any truncation inaccuracy by identifying and using
the most accurate order of approximation.

4 Conclusions

A new FDM was proposed for analytical stability identification of the regenerative
milling of thin-walled workpiece. Themethod is based on a second order polynomial
tensor approximationof themilling states. The stability boundaries of a parametric FE
model of the studied thin-walledworkpiece, which has dF = 30888DOFbut reduced
to 3 DOF via modal truncation, were successfully constructed with the new method.
The revealed effects of tool location and time (the extent of material removal) agrees
qualitatively and quantitatively with the known results in [22]. A foundation has been
formed in this work for future research intominimizing computational error, and thus
compensating for the effects of model order reduction on computational precision,
by generalizing themethod so that identifying themost accurate approximation order
becomes possible.
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