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Abstract Self-organizing systems acquire their structures and functions without
patterned input from the outside world. In the interconnected architectures of the
neocortex, spontaneous activity—that is, activity that arises without external sen-
sory or electrical stimulus—predominates over sensory-evoked activity. Thus, spon-
taneous neuronal activity provides a means to characterizing the structure, function
and dynamics of neocortical networks.We have recorded spontaneous, asynchronous
network activity from hundreds of neurons constituting local cortical circuits in mice
with high-density microelectrode arrays (MEAs) in vitro. The spontaneous activity
in the network displayed features of a system at criticality and scale-free structures,
such as fluctuation scaling and multiple frequency bands. To investigate dynami-
cal parameters, we have investigated the linear and nonlinear components of the
network dynamics. The former allows us not only to define a linear measure of func-
tional connectivity, but also to determine the linear stability of the system through its
eigenvalues. Similarly, the latter allows us to define ameasure of nonlinear functional
connectivity. An important feature revealed by this approach is the large number of
eigenvalues with positive real parts and the high density of eigenvalues near the
imaginary axis, which demonstrate respectively that this high-dimensional system
is linearly unstable and critical on long time scales (>1s). The function of critical
dynamics in these networks is discussed with respect to exploratory behavior in
rodents.
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1 Introduction

Systems exhibiting self-organized criticality (SOC) reach their critical points without
the need to tune order parameters. They display scale-invariant structures character-
ized by power-laws for many observable quantities [5]. The general class of critical
phenomena are well-defined by their instabilities and bifurcations [24, 47, 48]. These
instabilities form hierarchies that generate macroscopic patterns which may in turn
self-impose constraints on the constituent elements [25]. Stability, both global and
local, offer qualitative information about how close a system is to criticality. A SOC
system becomes stable when a network of minimally stable states reduces to the
point where signals cannot be transmitted through infinite distances [5]. These mini-
mally stable states in SOC systems are a subset of marginally stable states in critical
systems. Marginally stable states may be observed directly in linear models, such as
generalized linear models [39], by examining the distribution of the real component
of the complex eigenvalues derived from the linear coefficient matrix.

In the study of the cerebral cortex, neural network models are mathematically
equivalent to SOC models of earthquakes [4, 11, 26]. This has been observed exper-
imentally in neuronal avalanches [7, 18], for which branching ratios of unity are
well-defined and represent a directed percolation process. Although power laws may
have non-unique origins in the cortex [6, 58], extensive evidence of scale-free phe-
nomena in the graphical topology of neuronal networks [17, 53, 55] points to a
critical system [13, 14, 37]. The computational advantages of systems operating at
critical states are clear [31], however, the functional role of criticality to information
processing, in the cortical substrate and under physiologically relevant conditions,
is still unclear.

Activity of the cortical substrate may arise spontaneously without patterned stim-
uli or external sensory input. The predominance of spontaneous activity over sensory-
evoked activity in the neocortex [34] is a consequence of the disproportionately high
anatomical connections between neocortical neurons compared to feedforward sen-
sory inputs [1, 16].Nevertheless, functional relationships only emerge after the under-
lying networks have adapted to sensory inputs from the body and the environment
[12]. The spontaneous activity that occurs after this body- and environment-driven
adaptationmay be used to infer the functional roles of self-organized criticality. In the
local circuits of the cerebral cortex, large networks of neurons are composed of both
excitatory synapses [7] and inhibitory synapses [40]. It is important then to examine
these networks of excitatory and inhibitory synapses in their intrinsic, unperturbed
mode of activity—neuronal spiking—and determine if they self-organize into spatial
and temporal scale-free structures.

In the last decade, modern in vitro electrophysiological and imaging technologies
have characterized the spontaneous activity of neuronal networks, especially syn-
chronous circuit events that were drug-induced or obtained through manipulations
of the solutions bathing these networks [7, 34]. The recent realization of systems
displaying asynchronous spiking and other physiologically relevant activity [22, 23,
40], presents a unique opportunity to investigate neuronal network phenomenology
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pertinent to other domains of network activity. The self-organization of spiking neu-
ronal networksmay offer novel insight into behaviorally relevant and functional brain
states; asynchronous spiking in particular provides a complementary perspective to
that of synchronous discharges or oscillations.A linear stability analysis reveals unin-
tuitive answers to seemingly paradoxical questions such as: is asynchronous firing
organized in time? Below we find the effort to answer this question reveals how criti-
cal neuronal networks organize without sensory input and minimal spike synchrony.
Moreover, interpreting these principles of organization on long time scales (>1 s)
suggests several functional advantages that have been conferred onto the animal
during exploratory behavior.

Information processing is spatiotemporal and involves the regime of spontaneous
neuronal spiking.Not only is it temporal, it ismultitemporal—that is, it spansmultiple
time scales [10]. Do local circuits of the neocortex exhibit features of criticality
in the temporal structure of spontaneous neuronal spiking on long time scales? If
so, is it possible to measure aspects of criticality, such as linear stability, and also
deduce this temporal structure? We propose a method to (1) characterize the scaling
of spatiotemporal structure of neuronal spiking, (2) retrieve the linear and nonlinear
functional connectivity of spontaneously active networks, (3) infer the overall balance
between functional excitation and inhibition, (4) assess the linear stability of the
system’s dynamics, and (5) interpret the results in a functional and behavioral context.
Here, in the study of spontaneous neuronal spiking, we present two features of
temporal structure, both of which are characteristic of a neural system operating in a
regime near a critical state: a power law in the inter-spike interval statistics, referred
to as fluctuation scaling [29], and frequency banding that is present at macroscopic
spatial scales, such as the electroencephalogram. We do so at the mesoscopic level
of neural networks constituting intact cortical circuits and spanning its anatomical
features (columns and layers). We also describe a method for processing binary
spike trains, fitting the resulting trajectories to a linear model, and assessing the
eigenvalues of the linear coefficients on the complex plane, which simultaneously
yields a measure of linear stability and explains for the temporal structure in the
neuronal spiking. Finally, we characterize the nonlinear residuals of themodel, which
display scale-free structure in synchronous network bursts that are not present in the
firing rate. We also show that the residuals are centered at zero, non-Gaussian, and
non-white. Given our recent work [28], these finding are interpreted in a functional
and behavioral context.

2 Methodological Approach

2.1 Experimental Methods

The emergence of spontaneous activity in acute cortical slices, without electrical
stimulation or pharmacological manipulation, has been shown to depend on the
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constituency of the artificial cerebrospinal fluid (aCSF), particularly the solute com-
position and oxygenation [23]. Neuronal spiking and other cortical activity that was
only previously observed in vivo has been observed in vitro only at high oxygen
concentrations; this is because of the limited diffusion of oxygen during perfusion
in vitro,which is in contrast to the direct delivery of oxygen through capillaries in vivo
[22]. Recently, the investigation of spontaneous activity under these conditions has
revealed a rich diversity in neuronal firing that is associated with specific cell types
[40]. In parallel, synchronous network discharges have been shown to correspond
with network-wide ‘up’ and ‘down’ states [27, 33, 34, 53, 59].

Slice Preparation. Here we used the artificial cerebrospinal fluid (aCSF) solu-
tions reported by the MacLean lab [54] and high flow/oxygen rates recommended
by Hájos et al. which allow us to measure sustained, non-epileptogenic, spiking neu-
ronal activity. Three aCSF solutions were prepared for brain extraction and slicing at
4 °C, slice incubation at 30 °C, and perfusion at 31 °C. All solutions were cooled or
warmed to their designated temperature before they were saturated with 95%O2–5%
CO2. Coronal slices (350 μm thickness) of primary somatosensory cortex (S1) were
collected from juvenile (P13–P17) C57BL/6 mice. Animals were anesthetized with
vapor isoflurane and decapitated; brains were submerged in ice-cold aCSF. Slices
were directly collected and transferred to the oxygenated incubation solution to equi-
librate for 30 min. Finally, a single slice was selected and placed into the recording
chamber.

Microelectrode Array Recordings. High-densitymicroelectrode arrays (MEAs)
with 120 electrodes (100μmpitch) were used to record fromS1. The entire thickness
of the somatosensory cortex (~1 mm) was fixed to the 1.2 × 1.2 mm perforated
recording fieldwith 15-mbar suction. The slicewas perfusedwith aCSF at 6.5ml/min
and 53.3 kPa O2 for 30 min before the start of the recording and for the duration
of the recording. The activity from acute brain slices was recorded at a sampling
frequency of 50 kHz with a resolution of 16 bits in the range of −2 to 2 mV and
two sequential hardware filters (2nd order 0.5 Hz high-pass filter; 1st order 10 kHz
low-pass filter) were used to eliminate voltage offsets and drifts.

Signal Processing. All processing and other data analyses were carried out in
MATLAB.Adigital band-pass filter (80–2,000Hz, 3rd order)was used to pre-process
all recordings. Spikes were detected as events based on a time-varying threshold
defined for 1 s windows as ±4 × standard deviation. Spike sorting was conducted
with a wavelet-based spike sorting algorithm [50]. Spike trains that appeared in more
than one electrodewith <1ms delays were considered to come from the same neuron:
if the number of sub-millisecond spikes was greater than 30%of the number of spikes
in either putative neuron, the neuron with smaller peak amplitude waveforms was
omitted from further analyses. Nearly two hundred neurons were resolved in each
slice and animal (187 ± 4 neurons, mean ± s.e.m. across 6 mice). Further details on
our experimental preparation can be found in Kodama et al. [28].



Linear Stability of Spontaneously Active Local Cortical … 143

2.2 Data Analysis

Pre-processing. The spike times of each neuron were represented as binary spike
trains with 1 ms resolution. The binary spike-train signals were convolved with a
triangular window of unitary area and duration of 1 s to compute the instantaneous
firing rate (spikes per second) for each neuron in the recording.We chose a duration of
1 s because we have previously shown that this is the time scale at which the number
of significant pairwise correlations between neurons is largest [28]. The derivative of
the firing rate was obtained by center differencing the firing rate at the time resolution
of 1 ms. From the instantaneous firing rates and their time derivatives, we obtained
the linear coefficients and nonlinear residuals introduced in the next paragraph.

Dynamical Model. The state vector �u of the spiking neuronal network contained
the firing rate for each neuron. Thus, the most general expression for the spontaneous
network dynamics is

d �u
dt

= F(�u). (1)

We are interested in the fluctuations in firing rate around its mean across all
neurons �x = �u − �u0 where �u0 is the mean firing rate. Upon substitution in (1) we
obtain

d �x
dt

= F(�x + �u0) = L �x + �G(�u0; �x),

where we have split the right hand side into a linear component (first term, with
L being a square matrix) and a nonlinear component which is an implicit function
of time via its dependence on �x (second term). The key idea of our approach to
quantifying critical parameters is that we can estimate both L and �G from empirical
data by means of a simple linear regression of the form

�y = L �x + �η(t), (2)

where the dependent variable �y = d �x/dt and the independent variable �x are both
known from the experimental recordings. Thus, the regression returns matrix L and
the residuals of the regression corresponding to the nonlinear component of the
dynamics, �η(t) = �G(�u0; �x(t)). If the network dynamics are linear and stable, then
all the eigenvalues of L have negative real parts and the residuals must be white
and Gaussian. If the network dynamics are linearly unstable but the firing rates are
bounded and therefore, finite, then at least one eigenvalue of L has a positive real
part. In general, the more eigenvalues have a positive real part, the more complex the
behavior will be. In these cases, the residuals, that is, the nonlinear component of the
dynamics cannot be trivial; they cannot bewhite andmust have a non-zero correlation
time. In other words, the auto-correlogram of the residuals for each neuron cannot be
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a Dirac’s delta function. From the perspective of time series analysis, the residuals
can be thought of as the de-trended time derivative of the firing rate.

Matrix L is not only useful to investigate critical parameters. It can also be consid-
ered a generalmeasure of functional connectivity [19, 56]. If the nonlinear component
of the dynamics is non-trivial, as it is the case for critical systems, one may define
a nonlinear measure of functional connectivity, N, as the correlation matrix of the
residuals

Ni j =
〈
ηi (t)η j (t)

〉

√〈
η2
i (t)

〉〈
η2
j (t)

〉 ,

where the brackets 〈. . .〉 denote time averages. By definition, the nonlinear functional
connectivity is symmetric, contrary to L, which will be non-symmetric in general.

Surrogate data. To assess the explanatory power of our analytical approach,
we compared the results of our analysis of the experimentally observed data with
surrogate data obtained by circularly shifting the spike trains: the whole spike train
is advanced by the shift value and the portion exceeding the duration of the recording
is then wrapped around at the beginning of the recording. For each neuron, the shift
in milliseconds was randomly chosen between 1 and the total time in milliseconds.

3 Results

We simultaneously recorded spontaneous, asynchronous network activity from
murine primary somatosensory cortex (S1) with high-density microelectrode arrays
(MEAs, Fig. 1a–c). Notably, simultaneous neuronal spiking was widely observed
across the entire network without pharmacological manipulation or patterned elec-
trical stimulation (Fig. 1d). To assess the spatiotemporal structure of the observed
activity, spike timing statistics were evaluated and signal processing methods for
binary spike trains were employed (Fig. 1e–g). Temporal structure can be observed
at the level of the raster plots, the diversity of spike timing structure in the net-
work obeys a fluctuation scaling law, and the broadband spectral content of neuronal
spiking is characteristic of spatiotemporal scaling in cortical networks.

Coronal sliceswere prepared such that local cortical circuits were intact, but exter-
nal inputs were severed. The entire thickness of the acute slice was attached to the
MEA field with negative pressure (Fig. 1a), with the surface of the slice tangentially
aligned to the first row of electrodes. Columns of the barrel field in the somatosen-
sory cortex and layers of the cortical thickness could be observed and selected for,
prior to slice placement. The spikes were sorted according to their waveforms. In a
single experiment, roughly 200 neurons could be discerned from multi-unit activity
(Fig. 1b, 1–7 per electrode). The spikes assigned to multiple neurons were visu-
ally validated (Fig. 1c) in a supervised clustering step. Redundant spikes observed
in neighboring electrodes were accounted for by identifying sub-millisecond spike
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Fig. 1 Experimental preparation, recordings, and scale-free features in time. a Microelectrode
array on top of primary somatosensory neocortex. There are 120 electrodes (100 μm pitch) sam-
pling the entire cortical thickness across layers. b Multiunit recording in a single electrode channel.
The electrode captures action potentials from different neurons. c These neurons have different
waveforms that can be discriminated with standard spike-sorting techniques. d Raster plot of action
potentials for 46 neurons sorted by vertical location on the array. e Fluctuation scaling of neu-
ronal firing. The relationship between the mean and standard deviation of the inter-spike intervals
follows a power law of exponent ~ 1, that is, a linear relationship. f Auto-correlograms for three rep-
resentative neurons demonstrate long-term correlations and/or sustained oscillations. g Frequency
bands of neuronal firing: they are virtually the same as those measured from the whole brain with
electroencephalography in rodents and humans

alignments and only the largest one in voltage amplitude was kept. The raster plot
of all uniquely identified neurons, recorded simultaneously, was sorted by the neu-
ron’s vertical position in the neocortex (Fig. 1d). Temporal structure and large-scale
diversity are readily apparent in the raster plot.

The spike times, obtained from spike sorting, were used to compute inter-
spike intervals (ISIs) and construct binary spike train signals with 1 ms precision.
Both representations of spike timing were used to infer temporal structure in the
spontaneous firing of neurons. First, a power law relationship between the mean ISI
and its standard deviation was observed (Fig. 1e) with an exponent of 1.02, indicating
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an effectively linear relationship between the two parameters—incidentally, this is
the same relationship expected for a Poisson process. A power law between the mean
and standard deviation is known as fluctuation scaling and is a known property of
stochastic integrate-and-fire neurons [29]. This scale-free structure of neuronal firing
was confirmed by auto-correlograms of the spike trains (Fig. 1f). Several time scales,
from tenths of seconds to hundreds of seconds, pointed tomultitemporal patterns that
spanned tonic firing bursting and low frequency rhythms, and slow fluctuations in
firing rate. This complexity is also found in the power spectra of the spike trains,
which reveal frequency bands that are observed in the whole brain electroencephalo-
gram (Fig. 1g). Altogether, these results demonstrate that the firing of spontaneously
active neurons in local cortical circuits is non-random, diverse, and multiscale.

After the binary spike trains were smoothed to create firing rate estimates (see
Data Analysis in Methodological Approach), a dynamical model was fitted to the
data. This approach separates the linear and nonlinear components of the dynamics,
where the former is encoded in the linear coefficient matrix of themodel and the latter
is contained in the residuals. Each component was processed separately to obtain
measures of functional connectivity, stability, and criticality. Figure 2 shows the
firing rate of three representative neurons (Fig. 2a) and the corresponding nonlinear
residuals (Fig. 2b) obtained from Eq. (2). The three neurons display, to different
degrees, slow oscillations, transients, and tonic firing. There is apparent structure
in the nonlinear residuals: most notably, the nonlinear component displays many
burst-like events about the mean.

The distribution of the sizes of synchronous network events, obtained from sum-
mingfiring rate estimates across the network at various bin sizes, points to the absence
of neuronal avalanches (Fig. 2c), which is consistent with both the sparse and asyn-
chronous nature of neuronal firing seen in Fig. 1d. Thus, the question of whether the
system is critical must be evaluated in the absence of spatial scaling relationships
that are seen in feed-forward models [7]. The linear coefficient matrix of our model
serves as a starting point for evaluating the stability of the system directly. But first,
its interpretation as a measure of functional connectivity is assessed alongside with
the correlation coefficient matrix of the nonlinear residuals.

Linear and nonlinear coefficient matrices serve as measures of functional con-
nectivity in the network (Fig. 3). The contributions to the overall connectivity of
the network are distinct. The distribution of the coupling coefficients reveals that
both matrices are symmetric about zero suggesting that the functional excitation and
inhibition are balanced in the network. Interestingly, vertical and horizontal banding
structure of the linear coefficient matrix (Fig. 3a) suggests that a substantial portion
of the network is not linearly coupled with the rest of the neurons in the network.
However, these neurons are coupled in the nonlinear domain (Fig. 3d), though there
are neurons in the nonlinear connectivity matrix that are not coupled.

The density about zero in the distribution of linear coefficients, in contrast to the
diffuse distribution of nonlinear coefficients, suggests that the network constituents
are weakly coupled. However, the nonlinear coupling of the network is, relative to
the linear coupling, stronger on the whole.
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To determine how critical the spontaneously active systemwas, the eigenvalues of
matrix L were computed. The real components reveal whether the network dynamics
are stable (λ < 0), marginally stable (λ = 0), or unstable (λ > 0). Figure 4, displays
the eigenvalues for six experiments (Fig. 4a) compared to surrogate data generated
as circularly-shifted spike trains (Fig. 4b; see Surrogate Data in Methodological
Approach). The latter preserves the intervals between spikes but disrupts the tempo-
ral relationships between neurons. Across experiments, the distribution of complex
eigenvalues points to marginal stability in the linear regime and thus criticality of the
network dynamics. Compared to the eigenvalues derived from the model fitted to the
surrogate data, the eigenvalues observed in the experiments were distributed more
diffusely (confirmed by a two-sample Kolmogorov–Smirnoff test on the real parts of
the eigenvalues, p = 2.44 × 10−6). The observed eigenvalues are also concentrated
near the origin which is consistent with the zero and redundant banding structure of
L, implying oversampling of the network’s dynamics.
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Furthermore, the number of positive eigenvalues across experiments points to
linear instabilities in the system. All six experiments have 59% or more positive
real eigenvalues. This is qualitatively consistent with the asynchronous and complex
firing of neurons in these networks. In the distribution of eigenvalues from a repre-
sentative experiment (Fig. 4c), it is clear that there are more positive real eigenvalues
in the observed data and more negative real eigenvalues in the circularly-shifted
controls. The distribution of the real components of the eigenvalues across exper-
iments (Fig. 4d) demonstrates that the system is more linearly unstable than the
corresponding circular-shifted control. Notably, the distribution of real eigenvalues
in the observed system also contains negative real eigenvalues that point to overall
stability in the system. Compared to the circular-shifted control, however, there are
less negative real eigenvalues, which means the observed system is truly less stable.
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It is worthwhile to note that the eigenvalues of the system are concentrated on the
imaginary axis. The substantial peak near zero imply the existence of neutrally stable
modes on a center manifold in the complex plane. This center manifold provides a
mechanism for slow fluctuations and suggest that the spontaneously active system
is marginally stable and therefore critical in its dynamics over long time scales.
Since the system is not displaying avalanches in its firing rate, but is rather in a
tonic, multi-rhythmic, and fluctuating state of neuronal spiking, these results point
to an alternative approach in assessing the criticality of the system. The eigenvalue
distribution of the system occupies a diffuse domain of stability that includes many
positive eigenvalues. This suggest that the system is linearly unstable with critical
dynamics.

A substantial portion of network dynamics remains in the nonlinear residuals. This
is not surprising since only 10% of the variance is captured in L. Across all experi-
ments, 84% or more of the networks had residuals that were not normally distributed
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(Kolmogorov–Smirnov (KS) test with a normal distribution at a 5% significance
level). These distributions were symmetrically distributed about zero (Fig. 5a) and
exhibited temporal structure in their auto-correlograms (Fig. 5b), consistent with the
nonlinear component of the dynamics being non-white. Furthermore, the eigenvalues
of the correlation matrices of the residuals (Fig. 2b) are distributed non-randomly,
which is most clear when these eigenvalues are ranked and overlaid with the eigen-
values corresponding to the circularly-shifted binary spike trains (Fig. 5c). The dis-
tribution of eigenvalues is much more spread in its tails and less concentrated near its
center (Fig. 5d). Importantly, for the surrogate data, the eigenvalues of the correlation
matrix decay linearly with their rank, as expected for random symmetric matrices
[36, 38, 51]. In contrast, for the experimental data, there are multiple eigenvalues that
significantly deviate from that trend, demonstrating that the nonlinear coupling is not
random. Altogether, these features of the residuals suggest there is still dynamical
content in the residuals, not captured by the linear model.

4 Discussion

We have recorded spontaneous neuronal spiking from local cortical circuits and
investigated the linear and nonlinear functional connectivity, stability, and critical-
ity, of the system’s dynamics. The spontaneous activity exhibits fluctuation scaling
in the ISI of single neurons, slow firing-rate fluctuations, and the same frequency
bands as the whole-brain electroencephalogram in rodents and humans. Altogether,
these features point to complexity in spike-derived firing rates of the neurons in
the network and spatiotemporal scaling. To investigate linear stability and critical-
ity in the network firing dynamics, we separated the linear and nonlinear coupling
components.We found that the linear and nonlinear connectivity matrices were qual-
itatively different, but were both symmetrically balanced in functional excitation and
inhibition. In addition, we found numerous eigenvalues with positive real parts of
the linear connectivity matrix, which implies that the spontaneously active system
is linearly unstable and critical. We also found that the nonlinear components were
non-Gaussian, non-white, non-random, and contained temporal structure, consistent
with brain circuit dynamics being strongly nonlinear.

Since the seminalworkonneuronal avalanches conducted15years ago [7], numer-
ous innovations in experimental tools and numericalmethods have been brought forth
to understand criticality in the cortex. Although there are qualitative differences in
the experimental preparation and mathematical approach taken here, our observa-
tions are consistent with the perspective on neuronal avalanches insofar as they both
point to cortical networks self-organizing into critical states. However, we do not see
a power-law at the level of the firing rate and, as a direct result, take an alternative
approach to assessing the criticality of the system.

Recent studies have shown that the absence of observing power laws points to
subsampling of a neuronal network and that this subsampling leads to an overestima-
tion of stability in dynamical systems [32, 46, 60]. A limitation of this study is that it
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Fig. 5 Distribution and autocorrelation of residuals. aDistribution of residuals of the linear stability
analysis, with Gaussian fits indicated by the black curve. None are normally distributed (P � 0.01,
Kolmogorov–Smirnov (KS) test with a normal distribution) b Auto-correlograms of the nonlinear
residuals show that there is still temporal structure (i.e. they are not white). c Distribution of
the eigenvalues of the correlation matrices of the residuals. The tails of the ranked distribution
corresponding to the observed system (red) deviate from those of the circularly-shifted binary
spike trains (blue), indicating that the correlation structure is non-random. d The distribution of
eigenvalues of the correlation matrices of the residuals displays differences in the tails and centers
of the distributions
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has not employed the subsampling-invariant estimators. Future areas of investigation
that use linear models to investigate marginal stability would benefit from employing
estimators such as the multiple-regression (MR) estimator described in Wilting and
Priesemann [60]. Associated with—yet clearly distinct from—the observability of
the underlying network is the degeneracy of the linear model. Here, the observation
that the linear matrix is singular with many zero eigenvalues points to the rank defi-
ciency of the linear coupling matrix suggesting that there exists a lower-dimensional
model of the system. The rank deficiency of the coupling matrix is related to the
observability of the system through the construction of the observability matrix of
the system and its row rank.

The stability of the network is the central feature of criticality assessed here. We
have shown that in the recurrent networks of the local cortical circuit, it is possible
to determine how critical the dynamics are directly from the dynamics themselves,
without necessarily connecting to the universal class of directed percolation used in
feedforward networks. We believe the results obtained here are consistent with the
overarching perspective of the field which is that the networks themselves are critical
through self-organizing mechanisms. Below we discuss the broader context for the
function of critical dynamics in the brain and provide our own interpretation of the
results here in the spontaneous activity of the local circuit as it applies to exploratory
behavior during active sensing.

4.1 Criticality and Spontaneous Neural Activity

Criticality is a universal phenomenon defined for a range of different systems—from
sand piles [5], to forest fires [35], to earthquakes [21]. The observation of criticality in
spontaneously active neural systems [7, 15, 20, 44]may be analyzed through different
theoretical frameworks [9] and likely hasmany functional benefits.Analyzing critical
neural phenomena as a branching process [3, 61] leads to fundamental insight into the
transmission of information in the brain, by characterizing the localized propagation
of activity through cortical networks.

It is worth noting the differences of the spontaneously active networks observed
here in comparison to neuronal avalanches.Near-synchronous circuit events appear to
be very similar to inter-ictal paroxysmal depolarizing shifts observed in disinhibited
network regimes at the single-cell, local circuit, and whole-brain levels [49]. These
network-wide events are useful probes into the excitatory synaptic networks of the
brain [7, 53, 54]. In vivo, where there are many incoming sensory inputs, networks
have been shown to be subcritical in the sense that they do not fully propagate activity
through the whole network [46, 57], that is, they operate below the percolation limit
associated with the onset avalanches. However, when modeling criticality in these
networks as a percolation process, the fine tuning of inhibitory circuits, constituting
~20% of the total neuronal population, appears to be lost. This fine tuning is most
apparent during ongoing neuronal spiking and has a characteristic diversity which is
well-characterized [40]. Here, we have adopted a methodology to assess criticality in
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neuronal networks that is based on dynamic systems theory rather than percolation
theory. In contrast to the propagating activity of near-synchronous circuit events, for
which the theory of branching processes is well-equipped to address, asynchronous
spiking activity has recurrent rather than only feed-forward connections (Fig. 3) and
criticality is more appropriately assessed by the eigenvalue spectra of this matrix.

The eigenvalues of the linear connectivity matrix govern the qualitative dynamics
of the networks, such as bifurcations. Positive real components of the eigenvalue
spectrum (1) identifies network elements that destabilize the dynamics from a quies-
cent to an active state and (2) reveals how unstable or critical the spontaneous activity
is [25]. Furthermore, the accumulation of eigenvalues along the imaginary axis with
both positive and negative real parts has significant implications on not only how
critical the networks are but also how chaotic they might be. Indeed, coherent chaos
has been recently described in recurrent neural networks [30].

4.2 Critical Dynamics, Function, and Exploratory Behavior

In assessing the spontaneous spiking networks of primary somatosensory cortex
in mice, it is fruitful to consider this in vitro work with past and ongoing in vivo
studies concerning exploratory whisking behavior of rodents [2, 8, 42, 41]. Critical
state transitions might be functionally relevant to the shifting behavioral states and
information processing that takes place during sensory-motor integration. There is a
rich behavioral repertoire correlated to constructive states of transients discharges,
oscillations, and asynchronous spiking.Here,we consider this last phenomenon since
asynchronous spiking can lead to the other two phenotypes of neuronal activity.

Spontaneous neuronal spiking is the fundamental mode of activity in neocortical
networks [52]; spiking may synchronize to form local field potentials, but there is
always a loss of information. This is a feature that becomes strikingly evident during
asynchronous firing states which occur during the states of cognition that are most
information-rich. Thus, the elucidation of the functional roles critical dynamics serve
during asynchronous firing is crucial to understanding the operational organization
of local cortical circuits.

Such an attempt has already yielded insight into local cortical circuits: for instance,
we have discovered that on behaviorally relevant timescales, the firing rates of
asynchronously spiking neurons self-organize into two anti-correlated networks that
localize to superficial and deep layers of the cortical anatomy [28]: when one network
fires more, the other fires less and vice versa. This interplay manifests itself on longer
timescales (>1 s), which is consistent with the localization of multiple eigenvalues
to the imaginary axis since these eigenvalues correspond to non-decaying modes
of the network dynamics. The anatomical localization of neurons with critical fir-
ing dynamics could have profound implications for function and behavior. These
competing networks, may be extended to a behavioral context when considering the
distinct exploratory modes of the rodent, which shift between feedforward sensa-
tion and top-down control configurations. These configurations correspond to active
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sensing and anticipatory behavioral states that are layer-specific: early activation of
deep layers correlates with anticipatory behavior, whereas early activation of superfi-
cial layers correlates with active sensing [43]. The rodent’s ability to switch between
these behavioral modes is crucial since each mode involved the mutually exclusive
use of subcortical brain structures and peripheral resources. Criticality in cortical
networks could imbue the system with this sort of capacity along with the entire set
of possible network configurations that give rise to rich behavior repertoires.

5 Conclusion and Future Directions

The approach presented here allows us to investigate the dynamical parameters that
quantify critical phenomena, such as scale-free features, linear and nonlinear func-
tional connectivity, and the linear stability of activity fluctuations. This can be attained
efficiently by a straightforward regression analysis of the empirical data to ourmodel.
A limitation of our approach, however, is that the dependence of the nonlinear com-
ponent on the firing rates remains unknown; only its dependence on time is retrieved
from our analysis. In other words, the residuals in Eq. (2) are obtained as �η(t) and
not as �η(�x(t)). Because of this, the Jacobian of the network dynamics cannot be
computed, which prevents us from computing the Lyapunov exponents, and hence,
from determining whether the dynamics is chaotic or not. An alternative approach
in this direction is to fit well-established firing-rate models to empirical data, and
then calculate its Jacobian from those parameters. Along this line, Pikovsky [45]
has recently fitted the firing rate model to simulated recordings, and in principle,
the same approach could be applied to experimental data. Fitting the firing rates to
this model would allow one to determine the functional connectivity, eigenvalues
and Lyapunov exponents parametrically. In preliminary studies, we have determined
that although this approach is very promising, the model underestimates the firing
rate of real neurons significantly. Future work should investigate other more realistic
models.
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