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Abstract Many neural networks, ranging from in vitro cell cultures to the neocortex
in vivo, exhibit bursts of activity (“neuronal avalanches”) with size and duration dis-
tributions characterized by power laws. The exponents of these power laws point to a
critical state in which network connectivity is such that, on average, activity neither
dies out nor explodes, a condition that optimizes information processing.Various neu-
ral properties, including short- and long-term synaptic plasticity, have been proposed
to underlie criticality. Reviewing several model studies, here we show that during
development, activity-dependent neurite outgrowth, a form of homeostatic structural
plasticity, can build critical networks. In the models, each neuron has a circular neu-
ritic field, which expands when the neuron’s average electrical activity is below a
homeostatic set-point and shrinks when it is above the set-point. Neurons connect
when their neuritic fields overlap. Without any external input, the initially discon-
nected neurons organize themselves into a connected network, in which all neurons
attain the set-point level of activity. Both numerical and analytical results show that
in this equilibrium configuration, the network is in a critical state, with avalanche
distributions described by precisely the same power laws as observed experimen-
tally. Thus, in building critical networks during development, homeostatic structural
plasticity can lay down the basis for optimal network function in adulthood.
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1 Introduction

Experimental studies have observed an intriguing dynamical state characterized by
so-called neuronal avalanches in a variety of neural systems, including acute and
cultured cortical slices [5, 6], developing cultures of dissociated cortex cells [48],
the developing retina [30], the developing cortex in vivo [25] and the adult neocortex
in vivo [49]. Neuronal avalanches are spontaneous bursts of activity that have power-
law size and duration distributions [5, 6]. Most studies report that the number of
avalanches of a given size (e.g., in terms of number of electrodes on which activity
is recorded) decreases proportionally to the size to the power −1.5, and that the
number of avalanches of a given duration declines proportionally to the duration to
the power−2 [5, 25]. Power laws typically emerge in systems when they are critical,
meaning that they are close to a transition in behavior [42]. Simple mathematical
models have shown [78] that power laws with exponents −1.5 and −2 can arise
if connectivity is such that every neuron that fires an action potential causes, on
average and independently of network activity [38], one other neuron to fire. With
this connectivity, network activity, on average, neither dies out nor blows up over
time.

How do networks develop and maintain such a critical pattern of connectivity?
Reviewing several model studies, here we show that activity-dependent outgrowth of
neurites (axons and dendrites) can self-organize a network into a critical state. During
development, electrical activity controls the elongation, branching and retraction of
neurites [34, 44, 60, 77] by modifying the level of intracellular calcium. Calcium,
which enters the cell through voltage-gated channels, is the principal regulator of
the growth cone, a specialized structure at the tip of outgrowing neurites [24, 34, 37,
40]. A high intracellular calcium concentration, caused bymembrane depolarization,
a high neuronal firing rate, or stimulation by excitatory neurotransmitters, arrests
neurite outgrowth or even causes retraction. Conversely, a low calcium concentration,
due to a low firing rate, hyperpolarization, or inhibitory neurotransmitters, promotes
neurite elongation [16, 23, 32, 45, 46]. Thus, the way in which electrical activity
modulates neurite outgrowth contributes to maintaining neuronal electrical activity
at a stable average level (homeostasis). When the electrical activity of a neuron
is above a desired value (homeostatic set-point) its neurites retract, breaking-up
synaptic connections and so reducing neuronal activity. Conversely, when activity is
below this value, neurites grow out, making new synaptic connections and so raising
the neuron’s activity.

Activity-dependent neurite outgrowth is a form of homeostatic structural plastic-
ity [14, 15, 22], with structural plasticity defined as encompassing all the structural
adaptations, such as neurite outgrowth and changes in dendritic spine numbers, that
lead to the formation or deletion of synapses [14, 69]. Structural plasticity can con-
nect previously unconnected neurons, disconnect neurons, or change the number of
synapses by which neurons are connected. In contrast, synaptic plasticity is defined
as a change in the strength of existing synapses. Hebbian synaptic plasticity changes
synapse strength depending on the correlation between pre- and postsynaptic activ-
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ity [8, 28], whereas synaptic scaling (homeostatic synaptic plasticity) modifies the
strengths of all the cell’s incoming synapses so as to stabilize neuronal activity around
some set-point value [63].

One of the first models of homeostatic structural plasticity is the neuritic field
model of activity-dependent neurite outgrowth [70–72, 75]. In this model, the neurite
extensions of each neuron are represented by a circular neuritic field, which expands
when the neuron’s electrical activity is below a homeostatic set-point and shrinks
when the neuron’s activity is above the set-point. Neurons connect synaptically when
their neuritic fields overlap.

In this chapter, we give a brief overview of the original neuritic field model,
followed by a review of studies [2, 38, 61] that have employed the model to examine
the development of criticality. The results show that simple, homeostatic growth rules
can construct neural circuits with critical, power-law behavior.

2 The Neuritic Field Model

2.1 Model at a Glance

In constructing the neuritic field model, we were inspired in part by developing
cultures of dissociated cortex cells, in which initially disconnected cells assemble
themselves, without external input, into a synaptically connected network by neu-
rite outgrowth and synaptogenesis [43, 48, 65, 76]. In the model, growing neurons
are described as expanding neuritic fields, representing both axons and dendrites.
Neurons become synaptically connected when their neuritic fields overlap, with a
connection strength proportional to the area of overlap. The outgrowth of each neu-
ron depends on its own level of electrical activity, as follows. The neuritic field
expands when the neuron’s electrical activity is below a certain set-point and shrinks
when activity is above this set-point. Thus, a reciprocal influence exists between
electrical activity (fast dynamics) and outgrowth (slow dynamics): electrical activ-
ity determines outgrowth, while in turn outgrowth alters connectivity and conse-
quently activity. Through these interactions, the initially disconnected neurons orga-
nize themselves into a synaptically connected network, guided only by the activity
generated by the network itself; there is no external input.

2.2 Neuronal Activity

Neuronal electrical activity is described by the shunting model [26]. In this model,
excitatory inputs drive the membrane potential towards a maximum (the excitatory
saturation potential), while inhibitory inputs drive the membrane potential towards
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a minimum (the inhibitory saturation potential). For a network containing only exci-
tatory cells, the model becomes [70]:

dXi

dt
= − Xi

τX
+ (1 − Xi )

N∑

j=1

Wi j F
(
X j

)
(1)

where Xi is the membrane potential of neuron i, t is time, τX is the membrane
time constant, Wi j ≥ 0 is the connection strength between presynaptic neuron j and
postsynaptic neuron i, F

(
X j

)
is the firing rate of neuron j, andN is the total number of

neurons. The term (1 − Xi ) implies that inputs from other cells drive the membrane
potential towards a saturation potential of 1. The firing rate, with its maximum set
to 1, is a sigmoidal function of the membrane potential:

F
(
X j

) = 1

1 + e(θ−X j)/α
(2)

where α determines the steepness of the function and θ represents the firing thresh-
old. The low firing rate for sub-threshold membrane potentials reflects spontaneous
neuronal activity.

2.3 Outgrowth and Connectivity

Neurons are placed at random positions on a two-dimensional surface. Each neuron
has a circular neuritic field, the radius of which is variable. When the fields of
neurons i and j overlap, both neurons become connected with a strengthWi j = σ Ai j ,
where Ai j = A ji is the area of overlap, representing the total number of synapses
formed reciprocally between neurons i and j; and σ is a constant of proportionality,
representing the strength of a single synapse.

The change in neuritic field size depends on the neuron’s own firing rate:

dRi

dt
= ρG[F(Xi )] (3)

where Ri is the radius of the neuritic field of neuron i, and ρ determines the rate of
outgrowth. The outgrowth function G is defined as

G[F(Xi )] = 1 − 2

1 + e[Ftarget−F(Xi )]/β
(4)

where Ftarget is the homeostatic set-point, i.e., the value of F(Xi ) for which G = 0;
andβ determines the steepness of the function. Equation 4 implements that depending
on the value of F(Xi ), a neuritic field grows out [G > 0 if F(Xi ) < Ftarget], retracts [G
< 0 if F(Xi ) > Ftarget] or remains constant [G = 0 if F(Xi ) = Ftarget]. In biological



Homeostatic Structural Plasticity Can Build Critical Networks 121

neurons, the effect of electrical activity on neurite outgrowth is mediated by calcium
[24, 34, 37, 40], with the concentration of intracellular calcium acting as indicator
of the neuron’s firing rate [2, 3, 58].

2.4 Network Assembly, Overshoot and Homeostasis

The neurons are initialized with no or small neuritic fields, so most neurons are
initially disconnected or organized in small, isolated clusters (Fig. 1a). Consequently,
neuronal firing rates F(Xi ) are below the homeostatic set-point Ftarget, and neuritic
fields start expanding. As the neurons grow out, they begin to formmore and stronger
connections, linking neurons together and slowly raising the level of activity in
the network. At some degree of connectivity, network activity abruptly jumps to
a much higher level (Fig. 1d), but activity is then so high that F(Xi ) > Ftarget.
As a result, neuritic field size and connectivity start decreasing and activity drops.
As neurons adjust the size of their neuritic fields, and react to the adjustments of
their neighbors, the network eventually reaches a stable equilibrium in which the
connectivity between cells is such that for all cells F(Xi ) = Ftarget and neuritic fields
and connectivity no longer change (Fig. 1b). The neurons thus self-organize, via a
transient phase of high connectivity (overshoot) (Fig. 1c), into a stable network with
network-wide homeostasis of activity. They thereby adapt to the local cell density,
with neurons acquiring small neuritic fields in areas with a high cell density and large
fields in areas with a low cell density (Fig. 1b).

The assembly of initially unconnected model neurons into a connected network
strongly resembles development in cultures of dissociated cortex cells, with respect
to both activity and connectivity [27, 55, 57, 65, 66]. The first three weeks in vitro
show a phase of steady neurite outgrowth and synapse formation [65, 66], with
neuron firing and network activity abruptly appearing within a window of a few days
[27] and network structure exhibiting a transition from local to global connectivity
[57]. In the next week, this is followed by a substantial elimination of synapses until
a stable connectivity level is reached [65, 66].

2.5 Analytical Relationship Between Activity
and Connectivity

The relationship between activity and connectivity, and the changes in activity and
connectivity during development, can be predicted directly from Eq. 1 [70]. For a
given connectivity matrix W, the equilibrium points of Xi are solutions of

0 = − Xi

τX
+ (1 − Xi )

N∑

j=1

Wi j F
(
X j

)
(5)
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Fig. 1 Network assembly. In this example of the original neuritic field model [70, 72], all cells
are excitatory. a Early stage of network development. Neuritic fields are small, connectivity is low,
and cells have a low level of electrical activity. b Network at equilibrium. The electrical activity of
all cells is at the homeostatic set-point, and the neuritic field sizes remain constant. c Development
of network connectivity Â = 1

2

∑N
i=1, j=1 Ai j = total area of overlap (see Sect. 2.3) over time.

d Network-averaged membrane potential X against network connectivity Â. Electrical activity is
initially low, so connectivity increases.When connectivity is strong enough, activity abruptly jumps
to a much higher level. This level exceeds the homeostatic set-point, so connectivity and activity
then decrease until activity is at the homeostatic set-point. Parameters of the model: τX = 8,
ρ = 2.5× 10−6, θ = 0.5, α = 0.1, β = 0.1, Ftarget = 0.6, σ = 0.4 (a and b) or 0.1 (c and d), N =
64. The value of the outgrowth rate ρ is small enough for connectivity to be quasi-stationarity on
the time scale of membrane potential dynamics (Figure reproduced, with permission, from [70])

If all cells have the same Ftarget and the variations in Xi are small relative to the
average membrane potential X of the network, then 0 = −X/τX +(

1 − X
)
WF

(
X

)
,

where W is the average connection strength. Rewriting this equation gives

W = X/τX(
1 − X

)
F

(
X

) 0 ≤ X < 1 (6)

Equation 6, which defines a manifold in (W , X) space (Fig. 2), provides the
equilibrium value(s) of X for a given, fixed value of W (i.e., a bifurcation diagram).
Equilibrium states on branch CD of the manifold are unstable with respect to X ;
equilibrium states on branches ABC and DEF are stable. Because changes in W are
slow, being caused by outgrowth and retraction of neuritic fields (Eq. 3), W can be
considered quasi-stationary on the time scale of membrane potential dynamics. That
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Fig. 2 Relationship between activity and connectivity. In the original neuritic field model [70,
72], the manifold of Eq. 6 defines the equilibrium value(s) of the network-averaged membrane
potential X for a given, fixed value of the network-averaged connectivity W in a purely excitatory
network. Equilibrium values on branch CD are unstable with respect to X ; equilibrium values on
branches ABC and DEF are stable. The intersection point with the line X = F−1(ε), where F−1

is the inverse of the firing rate function and ε = Ftarget (see Eqs. 2–4), is the equilibrium state of
the whole system, at which W remains constant. See further Sect. 2.5 (Figure reproduced, with
permission, from [70])

is, in the time that X relaxes to its equilibrium value, W hardly changes. In other
words, at any given value of W , X is at its equilibrium value. Therefore, the slow
evolution of X , i.e., the changes in X that are brought about by changes in W , take
place along the manifold.

If for all cells F(Xi ) = Ftarget, the neuritic fields, and therefore W , remain con-
stant. Thus, at the intersection point with the line X = F−1

(
Ftarget

)
(F−1 is the inverse

of F), W remains constant; above and below that line, it decreases and increases,
respectively. Consider, for example, an intersection point on branch DE (Fig. 2).
During development, connectivity and activity are initially low, so W increases, and
X follows the branch ABC until it reaches C, at which point it jumps to branch DEF.
However, X is then so high that the neuritic fields begin to retract andW to decrease
until X , moving along branch DEF, reaches the intersection point. Thus, in order to
arrive at an intersection point on branch DE, a developing network has to go through
a phase in which connectivity is higher than in the final situation (overshoot; see
Sect. 2.4). If the intersection point is on branch CD, connectivity and activity will
oscillate on the time scale of growth [71]. No overshoot or oscillations occur if the
intersection point is on branch ABC or EF.
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2.6 Inhibition and Further Results

Simulation studies revealed that also in networks with both excitatory and inhibitory
cells (mixed networks), all cells generally achieve homeostasis of activity, just as they
do in purely excitatory networks [72]. Overshoot of connectivity can be enhanced
in mixed networks [72]. Interestingly, although there are no intrinsic differences in
growth rules between excitatory and inhibitory cells in the model, the cells nev-
ertheless differentiate, with the neuritic fields of inhibitory cells becoming smaller
than those of excitatory cells [72]. Furthermore, both purely excitatory and mixed
networks are capable of self-repair after lesions. Following cell loss, the remaining
cells, especially those in the neighborhood of the deleted cells, lose connections and
undergo a drop in activity, triggering neuritic field outgrowth and formation of new
connections, until activity is restored at the homeostatic set-point [72]. In addition,
themodel can account for the development of intrinsic firing patterns [1], the develop-
ment of retinal mosaics [20], developmental changes in network-wide activity bursts
[35], and developmental transitions in cognition [51, 52]. For extensive reviews of
the model, see [68, 74].

3 Criticality in the Neuritic Field Model

3.1 Model

Abbott and Rohrkemper [2] used a slightly modified version of the original neuritic
field model [70, 72]. In their variant of the model, neuronal activity is governed by a
Poisson spiking model (rather than being described by a firing rate) and neuritic field
outgrowth is dependent on the neuron’s internal calcium concentration (rather than
directly on the neuron’s firing rate). In the purely excitatory network they investigated,
neuronal activity is generated by a Poisson spiking model based on a computed firing
rate. The firing rate Fi of neuron i is described by

dFi
dt

= F0 − Fi
τF

(7)

where F0 is a spontaneous background rate and τF is the time constant with which Fi
relaxes to F0. At every time step	t, neuron i fires an action potential with probability
Fi	t . After a neuron fires, it cannot fire again for a refractory period tref. Whenever
another neuron j fires an action potential, Fi is incremented, Fi → Fi +σ Ai j , where
Ai j is the area of overlap between neurons i and j, and the constant σ represents
synaptic strength.

The average level of activity of neuron i is monitored by the neuron’s internal
calcium concentration Ci , which is incremented whenever neuron i fires, Ci →
Ci + 1, and decays to zero otherwise,
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dCi

dt
= −Ci

τC
(8)

with time constant τC . The calcium concentration determines the change in the neu-
ritic field radius Ri of neuron i:

dRi

dt
= ρ

(
Ctarget − Ci

)
(9)

where ρ is the rate of outgrowth. If neuronal activity and thus calcium concentration
are low (Ci < Ctarget), neuron i grows out, leading tomore excitatory connections and
hence higher activity. Conversely, if neuronal activity and calcium concentration are
high (Ci > Ctarget), the neuron retracts, reducing connectivity and lowering activity.
In this way, each neuron grows out or retracts to try to reach the target level of calcium
concentration (Ci = Ctarget).

3.2 Results

In a similar manner to that described for the original model (Sect. 2.4), the neurons
grow out and assemble themselves into a synaptically connected network. In the
equilibriumstate, the calciumconcentrations of the neurons remain close toCtarget and
the radii Ri of the neuritic fields are nearly constant, with only small fluctuations over
time. In the equilibrium configuration, the pattern of network activity was analyzed
in terms of size and duration of networks bursts [2]. A network burst or avalanchewas
defined as an event inwhich spiking is observed in at least one neuron for a contiguous
sequence of time bins (tbin = 10 ms), bracketed before and after by at least one bin
of silence in all neurons. The results of the analysis (Fig. 3) were interpreted to show
that burst size and burst duration in the model follow power-law distributions (i.e.,
linearity in a log-log plot), characteristic of critical dynamics. The occurrence of
bursts of a given size (as measured in number of action potentials generated during
a burst) was described as following a power law with exponent −1.5 (Fig. 3a), and
the number of bursts of a given duration as a power law with exponent −2 (Fig. 3b),
similarly towhat had been observed in cultures of cortical slices [5, 6] and dissociated
cortex cells [48]. The property of the model that neurons grow out when activity is
low and withdraw when activity is high forces the network to find a middle ground
between all-to-all connectivity (producing excessive activity) and local connectivity
(producing insufficient activity). This middle-ground in connectivity, with a stable
average level of activity, was believed to underlie the generation of critical dynamics
in the model.

The small fluctuations in Ri that are still present in the equilibrium state are not
important for the size and duration distributions: shutting off growth completely
(ρ = 0) once equilibrium is reached did not make any noticeable difference to the
results. The distributions do also not crucially depend on the exact values of the
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Fig. 3 Burst size and duration. Burst size and duration in the model by Abbott and Rohrkemper
[2]. aHistogramof the fraction of bursts (events) with different numbers of spikes. The line indicates
−1.5 power. b Histogram of the fraction of bursts with different durations. The line indicates −2
power. Parameters of the model:F0 = 0.1 Hz, τF = 5 ms, 	t = 1 ms, tref = 20 ms, σ = 500 Hz,
τC = 100 ms, ρ = 0.002 s−1, Ctarget = 0.08, total number of neurons = 100 (Figure reproduced,
with permission, from [2])

model parameters. The value of Ctarget influences the exponents of the power laws
with which the distributions are described, but only values much higher or lower
than the one used in Fig. 3 lead to essentially different distributions. Much higher
values ofCtarget yield flat distributions of burst size and burst duration, whereas much
smaller values lead to a shortage of large, long-lasting bursts.

4 Analytical Proof of Criticality in the Neuritic Field Model

Being a relatively small simulation study, the work by Abbott and Rohrkemper
[2] could not claim conclusively that the neuritic field model is capable of building
critical circuits.Recently,Kossio et al. [38] proved analytically that a slightly different
version of themodel used byAbbott andRohrkemper [2] generates activity dynamics
characterized by power-law avalanche distributions. In their model, neuronal activity
is described by a stochastic, continuous-time spiking model that is very similar to
the one used in Abbott and Rohrkemper [2], with an instantaneous firing rate Fi of
neuron i and a low spontaneous firing rate F0 but without a refractory period (but
see below). As in Abbott and Rohrkemper [2], a spike from neuron j increments Fi
by σ Ai j , where Ai j is the area of overlap between neurons i and j, and the constant
σ represents synaptic strength. Without an input spike, Fi decays exponentially to
F0 with time constant τF (Eq. 7). A difference from Abbott and Rohrkemper [2] is
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Fig. 4 Avalanche size and duration in the model by Kossio et al. [38]. aAnalytical size distribution
(blue) and simulation results (gray) for a subcritical state (Ftarget = 0.04 Hz), and analytical size
distribution (red) and simulation results (black) for a near-critical state (Ftarget = 2 Hz) bAnalytical
duration distribution (green) and simulation results (gray) for the subcritical state, and analytical
duration distribution (orange) and simulation results (black) for the near-critical state.Red line shows
a closed-form approximation. Parameters of the model: F0 = 0.01 Hz, τF = 10 ms, σ = 500 Hz,
ρ = 10−6 s−1, total number of neurons = 100. For the subcritical state, a time bin tbin of 30 ms was
used, and for the near-critical state a tbin of 45 ms (Figure reproduced, with permission, from [38])

that the change in neuritic field radius Ri of neuron i depends directly on its firing
rate Fi . In the model, Ri increases linearly with rate ρ between spikes of neuron i
and decreases with a constant amount ρ/Ftarget when neuron i fires a spike. Thus,
on average, Ri increases if the time-averaged firing rate Fi < Ftarget, decreases
if Fi > Ftarget, and remains constant if Fi = Ftarget. The network grows into a
stationary state in which all neurons have an average firing rate of Ftarget. Kossio
et al. [38] showed mathematically that in this state, provided Ftarget � F0, avalanche
size follows a power-law distribution with exponent −1.5, and avalanche duration,
for large durations, a power-law distribution with exponent −2 (Fig. 4).

Numerical simulations further demonstrated that halting growth (ρ = 0) in the
stationary state so that small connectivity fluctuations are eliminated has no effect
on the avalanche statistics (as in [2]) and that introducing a biologically plausible
refractory period has only a moderate effect on the statistics. However, if the refrac-
tory period becomes too long, the power laws begin to break down. This last finding,
together with the fact that in Abbott and Rohrkemper [2] Ftarget (based on Ctarget)
is not much larger than F0, may explain the deviations from power law in Fig. 3
(generated with refractory period tref = 4τF ) [38].
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5 Criticality in a Network with Excitatory and Inhibitory
Cells and Separate Axonal and Dendritic Fields

5.1 Model

In the model by Tetzlaff et al. [61], in contrast to the original neuritic field model
[70, 72] and the models by Abbott and Rohrkemper [2] and Kossio et al. [38], each
neuron i has two separate circular neuritic fields, one describing the size of its axon
(radius Raxo

i ) and one the size of its dendrites (radius Rden
i ). The change in Rden

i
depends in the same way on the internal calcium concentration Ci as in the previous
two models:

dRden
i

dt
= ρden

(
Ctarget − Ci

)
(10)

where ρden is the rate of dendritic outgrowth and Ctarget is the target calcium concen-
tration. However, the change in Raxo

i is given by

dRaxo
i

dt
= −ρaxo

(
Ctarget − Ci

)
(11)

where ρaxo is the rate of axonal outgrowth. Thus, Raxo
i increases when Ci > Ctarget

and decreases when Ci < Ctarget, reflecting experimental observations that axons
require electrical activity to grow out [53, 79].

The network may contain both excitatory and inhibitory neurons. In the neuron
model, which is similar to the one used in Abbott and Rohrkemper [2], the membrane
potential Xi (limited by a hard bound to 1) of neuron i is given by

dXi

dt
= X0 − Xi

τX
(12)

where X0 is the resting potential and τX is the time constant with which Xi relaxes to
X0. At every time step, neuron i fires an action potential when Xi > 
i , where 
i is
a uniformly distributed random number between 0 and 1 (drawn at each time step).
After a neuron has fired, it is refractory for four time steps.Whenever another neuron
j fires an action potential, Xi is incremented, Xi → Xi +σ j Ai j , where Ai j represents
the overlap between the axonal field of presynaptic neuron j and the dendritic field of
postsynaptic neuron i; and σ j is a constant representing synaptic strength, defining
whether presynaptic neuron j is excitatory (σ exc

j > 0) or inhibitory (σ inh
j < 0).

As in Abbott and Rohrkemper [2], the calcium concentration Ci of neuron i is
incremented whenever neuron i fires an action potential, Ci → Ci + γ , where γ is
the increase in calcium concentration. Between action potentials, Ci decays to zero
with time constant τC (Eq. 8). All the differential equations are solved by the Euler
method, with an interval length of one simulated time step.
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5.2 Results

During the early stage of development, all cells are taken to be excitatory. Initially,
the axonal and dendritic fields of the cells are so small that no connections exist.
Consequently, neuronal activity and calcium concentrations are low, triggering den-
dritic field outgrowth and a slow build-up of connections, together with a gradual rise
in neuronal activity (Phase I) (Fig. 5). At a certain point in time, neuronal activity
increases rapidly towards a maximum, in parallel with a shrinkage of dendritic fields
and an expansion of axonal fields, because of the calcium concentrations rising above
Ctarget (Phase II, similar to the overshoot phase described in Sect. 2.4). During Phase
II, inhibitory neurons are introduced by changing 20% of all neurons into inhibitory
ones (synaptic strength σ < 0), reflecting the developmental switch of the neurotrans-
mitter GABA from excitatory to inhibitory [7, 33]. Introducing inhibition dampens
neuronal activity. In the last stage of development, the system reaches an equilibrium
state in which neuronal activity fluctuates around a stable value (homeostasis) and
the calcium concentrations remain close to Ctarget (Phase III).

In each developmental phase, the pattern of network activitywas analyzed in terms
of the number of action potentials contained in networks bursts [61]. As in Sect. 3.2,
a network burst or avalanche was defined as a period of network activity between
two time bins in which all neurons are silent. In the figures showing frequency of
avalanches against number of spikes in an avalanche, the straight dashed lines indicate
the best power-law fit (Fig. 6). As before, if an avalanche distribution matches the
power-law line, it is called critical. An over-representation of large avalanches is
referred to as supercritical, and an under-representation as subcritical [4, 47].

Fig. 5 Developmental phases. Network development in the model by Tetzlaff et al. [61] shows
three distinct phases: Phase I, in which synaptic connectivity and neuronal activity gradually
increase; Phase II, in which connectivity and activity abruptly rise towards a maximum, followed by
pruning of connectivity and a lowering of activity; and Phase III, in which homeostasis of activity is
reached. a Development of synaptic connectivity (average Ai j ). Note that the time axis is expanded
in the middle. The inset shows the development of synaptic density in cell cultures [65, 66, 70].
b Development of axonal extent (“axonal supply”; average Raxo

i ) and dendritic extent (“dendritic
acceptance”; average Rden

i ). c The course of network activity (average Xi ) and calcium concentra-
tion (averageCi ) during network development. Parameters of the model: ρden = 0.02, ρaxo = 0.01,
Ctarget = 0.05, τX = 5,

∣∣σ inh
∣∣ = |σ exc| = 1000, γ = 0.5, τC = 10, X0 = 0.0005, total number of

neurons = 100 (From [61], open access)
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Fig. 6 Avalanche distributions. Avalanche size distributions undergo characteristic changes dur-
ing network development in the model by Tetzlaff et al. [61]. Gray area in inset indicates stage of
development (see Fig. 5). a At the beginning of Phase I, when there are hardly any synaptic connec-
tions, the distribution is Poisson-like. b As more connections are formed, the distribution takes on
a power-law form. c In Phase II, when connectivity is high, the distribution becomes supercritical.
d In Phase III (if

∣∣σ inh
∣∣ = |σ exc|), when homeostasis is reached, the distribution is critical. The

exponent of the power law is close to −1.5 (From [61], open access)

In the beginning of Phase I, when there are no or hardly any synaptic connec-
tions, the neurons do not influence each other’s electrical activity, and the avalanche
distribution is Poisson-like (Fig. 6a). Later during Phase I, when connectivity and
activity slowly increase, the avalanche distribution changes from a Poisson distribu-
tion to a power-law distribution (Fig. 6b). In Phase II, with high network activity, the
avalanche distribution becomes supercritical (Fig. 6c). Action potentials of both exci-
tatory and inhibitory neurons were included inmeasuring this distribution. Evenwith
much stronger inhibitory synaptic strength (

∣∣σ inh
∣∣ = 100|σ exc|, as compared with∣∣σ inh

∣∣ = |σ exc|, as in Fig. 6), the distribution stays supercritical. The system remains
supercritical during thewhole of Phase II, until shrinkage of dendritic fields has so far
pruned connectivity that homeostasis is reached, with calcium concentrations around
Ctarget and stable neuronal activity (Phase III). In Phase III, provided

∣∣σ inh
∣∣ = |σ exc|,

the avalanche distribution becomes critical (Fig. 6d). If inhibition is stronger, the
system turns into a subcritical state, whereas without inhibition it remains slightly
supercritical (although in all cases homeostasis of activity is reached). The exponent
of the power law in Phase III is close to −1.5.



Homeostatic Structural Plasticity Can Build Critical Networks 131

Finding a power law for avalanche distributions is not sufficient to show decisively
that the system is in a critical state [47]. Therefore, Tetzlaff et al. [61] performed
several additional tests to confirm criticality. They validated that the avalanche dis-
tribution remained critical when in the analysis fewer neurons or shorter or longer
time bins were used, and that the inter-avalanche distribution and the Fano Factor
[21, 41] also provided evidence for criticality.

Developing cultures of dissociated cortical cells show similar transformations in
avalanche distribution to those observed in the model [61]. Like the model, dis-
sociated cultures start with an initial stage characterized by Poisson-like avalanche
distributions, followed by a supercritical regime as connectivity and neuronal activity
sharply increase. As connectivity and activity subsequently decline, the cultures go
through a subcritical state before stabilizing in a critical state, a developmental course
that can be mimicked in the model by gradually reducing the inhibitory strength in
Phase III from

∣∣σ inh
∣∣ � |σ exc| to ∣∣σ inh

∣∣ = |σ exc|.

6 Discussion

Different variants [2, 38, 61] of the original neuritic field model [70, 72] have shown,
as reviewed in this chapter, that homeostatic structural plasticity is a potent develop-
mental mechanism for bringing networks to criticality. In the assembly of a critical
network, the developing neurons are guided only by the activity generated by the
network itself, and there is no need for any external instructive signal. All model
variants employ a spiking neuron model rather than a firing rate neuron model (as
used in the original model) so that bursts of activity can arise and avalanches be
defined.

Neurons in the neocortex have a broad spectrum of firing rates [54], whereas in
the models discussed here all cells have the same average firing rate at equilibrium.
However, the relevant firing rate is the time-averaged firing rate on the time scale
of structural growth, so cells can have different firing rates on shorter time scales.
Moreover, different types of cells may have different homeostatic set-points, with
neurons characterized by a high firing rate having their homeostatic set-point at a
higher activity level than neurons that fire less frequently [19, 29]. The impact of such
variability in set-points on the emergence of criticality could be a topic for future
research.

The use of circular neuritic fields in all models is a simple yet powerful way
to abstract away from detailed neuronal morphology. A disadvantage is that it puts
some constrains on the type of network topologies that can arise, as the strongest
connections are usually formed between neighboring cells. Another way to model
neuronal morphology, with fewer inherent constrains, is to assign to each neuron
a set of axonal synaptic elements (representing axonal boutons) and a set of den-
dritic synaptic elements (representing dendritic spines), which can combine to form
synapses [13, 17]. In this model, which has also been implemented in the neural
simulation package NEST [19], neurons generate new elements when neuronal elec-
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trical activity is below a target value, and delete elements, including those bound in
synapses, when activity is above the target value or below a certain minimum level.
The model can account for changes in visual cortex after focal retinal lesions [13],
alterations in global network topology following deafferentation and focal stroke
[10], the emergence of efficient small-world networks [11], and the inverse relation-
ship between cell proliferation and synaptic rewiring in the adult hippocampus [12],
but has not yet been used to study avalanche dynamics.

Future work may also include the analytical analysis of the role of inhibitory
cells in the development and maintenance of critical circuits. The variant of the
model that was studied analytically contains only excitatory cells [38]. The numerical
studies by Tetzlaff et al. [61] predicted that criticality is best reached with 20%
inhibitory cells and a synaptic strength of inhibitory connections that equals that of
excitatory connections. However, the models by Abbott and Rohrkemper [2] and
Kossio et al. [38] proved that inhibition is not required for criticality, thus meriting
further investigation into the potential impact of differences in model formulation,
especially the use of separate axonal and dendritic neuritic fields in Tetzlaff et al.
[61].

In addition to anatomical changes in connectivity, as brought about by homeostatic
structural plasticity, two other categories of neural mechanisms have been proposed
to explain the emergence of criticality: intrinsic cellular properties [18, 30] and short-
and long-term synaptic plasticity [18, 39, 59]. An example of the first category is
found in a biophysically realistic model of retinal waves [30]. In the model, starburst
amacrine cells are equipped with a slow after-hyperpolarization current, which reg-
ulates neuronal excitability. Spontaneous, cell-intrinsic firing activates this current,
thereby reducing excitability and desynchronizing the activity sustained by synaptic
transmission. The competition between the desynchronizing effect of spontaneous
firing and the synchronizing effect of synaptic transmission enables the network to
operate at a transition point between purely local and global functional connected-
ness. These dynamics are somewhat reminiscent of those seen in a simple model
for the occurrence of long-lasting periods of activity [73]. For certain parameter set-
tings, the network is in a critical state in which periods of high activity (“long-lasting
transients”) alternate irregularly with periods of quiescence. Transients are triggered
by spontaneous firing but are eventually also terminated by spontaneous firing, as
spontaneous firing, by means of inducing refractoriness, renders cells temporarily
non-excitable and so interferes with the flow of network-generated activity.

As to the second category of mechanisms for the origin of criticality, various
models have shown that short- and long-term synaptic plasticity can tune a neural
network into a critical state with power-law avalanche distributions. Levina et al. [39]
demonstrated, both analytically andnumerically, that synaptic depression—the short-
term decrease in synaptic strength due to depletion of neurotransmitter vesicles—can
drive the dynamics of a network towards a critical regime (but see [9]). Stepp et al. [59]
showed that a combination of short- and long-term synaptic plasticity can produce
hallmarks of criticality, with the interplay between Hebbian long-term excitatory and
inhibitory plasticity providing a mechanism for self-tuning. Likewise, Del Papa et al.
[18] found that a network endowedwith firing threshold adaptation and various types
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of plasticity, including homeostatic synaptic plasticity [62, 63] and a simple form of
structural plasticity, can give rise to criticality signatures in network activity.

The power-law exponents −1.5 and −2 for avalanche size and duration, respec-
tively, imply that each firing neuron activates, on average, one other neuron, so
activity will on average neither die out nor explode over time [78]. Thus, an impor-
tant functional advantage of such a critical state is that neural circuits are prevented
from becoming hyper- or hypoactive. Although functional properties have not been
studied in the models discussed here [2, 38, 61], maintaining a stable average level of
activity is in general crucial for processes ranging from memory storage to activity-
dependent development [31, 64]. Besides homeostatic structural plasticity, other
forms of slow plasticity, such as homeostatic synaptic plasticity or synaptic scaling
[63], are directed at stabilizing network activity (and may generate critical dynamics
[38]), in order to counter the destabilizing forces of synaptic long-term potentiation
(LTP) and long-term depression (LTD) during memory encoding.

Further functional benefits of critical dynamics include the maximization of
dynamic range, information transmission and information capacity [56]. A network
at criticality is sensitive to external input, exhibiting awide range of possible response
sizes [36]. Activity patterns in critical networks are not biased towards a typical scale
or sequence, providing flexibility that may be advantageous during development as
connections are established [30]. Avalanches may reflect the transient formation of
cell assemblies [50], and the scale-free organization of avalanche size at criticality
implies that assemblies of widely different sizes occur in a balanced way [36].

In conclusion, during development, homeostatic structural plasticity can guide the
formation of synaptic connections to create a critical network that has optimal func-
tional properties for information processing in adulthood. In this form of plasticity,
neurons adapt their axonal and dendritic morphology and, consequently, their con-
nectivity so as to reach andmaintain a desired level of neuronal activity. Homeostatic
structural plasticity does not require information about pre- and postsynaptic activity,
as does Hebbian synaptic plasticity (synapse-centric plasticity), but only needs the
local activity state of the neuron itself (neuron-centric plasticity). In general, home-
ostatic structural plasticity may act as a central organizing principle driving both the
formation of networks [11, 61, 67, 70, 72] and the compensatory structural changes
following loss of input caused by lesions, stroke or neurodegeneration [10, 13].
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