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Foreword

Brain criticality emerged at the turn of the century as a promising theoretical
framework to address the plethora of scale-invariant phenomena observed in neu-
roscience. From neuronal avalanches measured in vitro across millimeters of brain
slices to long-range time correlations measured non-invasively across the entire
human brain, theoreticians and experimentalists alike have been investigating the
mechanisms which allow these phenomena to emerge and the impacts they have on
brain function. At the interdisciplinary frontier where the physics of complex
systems meets the daunting minutiae governing brain dynamics, the literature on
brain criticality has seen an effervescent growth in the last decade. Despite the
enthusiasm in the field and the richness of the results that have since emerged,
coherent collections with the current state of the art have been scarce.

This volume helps to fill that gap, focussing on novel approaches for establishing
concrete links between brain function and criticality. Examples include
modelling/theoretical work with biophysically plausible schemes for harnessing
critical states in information processing; experimental studies linking neural sig-
natures of criticality to key aspects of brain function, such as learning, memory, and
perception; and expanding the focus of ‘classic’ research on criticality to comple-
mentary concepts.

The authors came together in the wonderful conference “Dynamical Network
States, Criticality and Cortical Function”, which was organized by Udo Ernst and
Nergis Tomen at Delmenhorst in March of 2017. I am sure it will be very helpful to
researchers in the field as well as students and newcomers.

Recife, Brazil
March 2019

Mauro Copelli
Federal University of Pernambuco
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Introduction

Background

Self-organised criticality has been described as the way nature works (Bak 1996),
and even systems that emerge due to human activity, such as economies or traffic
jams, show similar behaviour. A general definition of this phenomenon is still
elusive, but a common property of critical systems is that they are the result of a
complex interaction of many active components which are not tightly controlled by
a central agency.

Criticality has been studied for a long time in the context of phase transitions in
physical systems where it relates to sudden qualitative changes as a function of a
parameter. A slight decrease in the temperature turns liquid water into ice if the
temperature passes a critical point where ice and liquid water are present at the same
time. Near this point, the interaction of the two phases can produce complex
structures. The behaviour of a system near a phase transition is rather special and
may display interesting properties which decay as one moves away from the critical
point. This special behaviour might be characterised by the presence of power laws
in the distributions of certain quantitative measures of the system. For example, the
power-law distribution of ranges of interaction at the transition point represents the
transition from short-range to extended correlations.

The fact that a similar characterisation applies to a variety of different phe-
nomena as a typical, rather than an exceptional behaviour, does appear surprising
(Frigg 2003; Mora and Bialek 2011). While, in biology, it can be attributed to the
evolutionary drive towards the functional benefits that are implied by criticality
(Shew and Plenz 2013), in systems in geo-, astro-, plasma or quantum physics, this
is not easily explained by putative complex control mechanisms. Theoretical
approaches to explain the typicality of criticality include the maximal entropy
production principle (Dewar 2003), which is a generalisation of the maximal
entropy principle from equilibrium statistical mechanics, or the Tweedie expo-
nential dispersion model (Kendal 2015), which also relates to random matrix theory
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for ensembles that obey an invariance (Kendal and Jørgensen 2011). Alternative
explanations are also mentioned in Watkins et al. (2016).

The idea of self-organisation first occurred in Vico’s New Science (Vico 1984)
and was popularised in the context of living systems by Ashby (1991), who also
pointed to the logical problem inherent in the notion: the distinction between the
dynamics of the states of the system and the adaptivity of mechanism that is
necessary to reach criticality is not always unambiguous, which contributes to the
difficulty of a general definition of the concept. In other words, the concept of
self-organised criticality is but a name for the phenomenon of critical dynamics
without fine tuning, unless specific mechanism is revealed that leads to this effect.

Specifically, if a control parameter, such as temperature or average connectivity,
is identified, then a self-organizing critical system should approach the critical value
of this parameter without being given explicit directions. This means the critical
parameter value represents the attractor of the system. The lack of necessity for fine
tuning of the parameters is often referred to in order to distinguish SOC from phase
transitions at a specific critical point, but it is also one of the controversial aspects.
A number of mechanisms and explanations have been suggested as to how such
systems emerge, following the seminal paper of Bak et al. (1987). However, the fact
that other specifications of the system, which are not obvious from the system
dynamics (e.g. a “hidden” control parameter), need to be precise for SOC to exist
remains one of the main criticisms of the concept.

Facets of Criticality

Properties of Criticality

Although criticality is often presented as a common feature of a variety of different
systems, it appears as a multifaceted concept which is characterised by a set of
properties (see Dickman et al. 2000; Muñoz 2018), such as the presence of power
laws in event distributions or spatial or temporal correlation functions. This implies
the absence of a typical length or time scale, i.e. the system is scale-invariant, at
least as scales larger than the individual elements and smaller than the total system
size are concerned. Often, scale invariance is accompanied by the occurrence of
fractals, and indeed, critical dynamics represent an important mechanism for the
generation of fractal structures.

In addition, critical systems are on the brink of losing stability, which means that
the average time to return to the attractor diverges at the critical point, a phe-
nomenon known as critical slowing down. This marginal stability is also the reason
for the sensitive response to external perturbations. Critical systems show very high
susceptibility. This can be produced by the amplification of small events which
implies the possibility of the formation of avalanches. Small inputs can thus be
detected by means of strong responses of the system, which is seen as one of the
reasons why neural systems are critical. Due to the scale invariance, larger inputs
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also lead to corresponding effects and avoid saturation, which leads to a high
dynamical range, providing another advantage for a perceptual system.

Characterisation of Criticality

There exist a number of ways to characterise criticality in a more general sense.
They are different in the way that they set the precedence of the properties or
mechanisms which imply criticality.

So far we have asked, why systems have power-law event distributions. This
approach is usually referred to as dynamical criticality and relates to the idea of the
edge of instability, namely the marginal case of a stable system that will show large
fluctuations under noise. The condition for a dynamical system to bemarginally stable
is the presence of zero eigenvalues (or unit eigenvalues in the case of a map).Whether
or not a high-dimensional marginally stable system displays power laws depends on a
number of factors, and thus, zero eigenvalues are only a necessary condition. A linear
system, in particular, will typically not show power-law behaviour.

In nonlinear systems, there are many ways to couple dimensions, some of which
have received special attention, including the dynamics on small-world or scale-free
graphs. Such networks were numerically shown to produce a behaviour that is more
similar to criticality in finite size compared to random or fully connected networks,
such that it is tempting to talk about a form of structural criticality. Although this
form of criticality is only possible if the system is also dynamically critical, the
notion is not unreasonable as many classes of complex networks have a larger
fraction of near-zero eigenvalues than random networks.

It is often possible to relate the supposed underlying mechanisms, for example,
in a neural network model that exhibits critical behaviour, to a mathematical
paradigm such as the Tweedie exponential dispersion model (Kendal and Jørgensen
2011), critical branching processes (Otter 1949; Kimmel and Axelrod 2015; Alava
and Lauritsen 2009) or directed percolation (Stauffer and Aharony 1991; Vázquez
and Costa 1999). The paradigms, e.g. branching processes and percolation, are
related and lead to the same predictions in the infinite case (Levina 2008), and all
are compatible with the idea of dynamical criticality.

A different characterisation is a statistical criticality. As dynamical criticality
manifests itself in the power-law event distribution, the aim in statistical approaches
is a direct match of the event distribution to statistical models, without considering
the time evolution or dynamical dependencies between the events. A more in-depth
comparison of statistical and dynamical criticality can be found in Chapter
“Statistical Models of Neural Activity, Criticality, and Zipf’s Law”.

Conditions for Criticality

Typically, the external perturbations which drive a critical system are slow. In
addition, the slow driving force which eventually causes an avalanche may follow a
different physical principle than the behaviour of the avalanche itself. For example,
an earthquake is a series of sudden rock fractures and stick–slip friction of layers
of the earth’s crust, while the driving force originates in the deeper regions of the
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planet and manifests itself in the slow continental drift. In sandpiles, however, the
driving input to the system and the toppling of the sand grains during the avalanche
are the same physical phenomenon. What is common to both systems is that, in
either case, the driving force is assumed not to interfere with the fast processes
of the avalanche. This is true if the driving force is very slow, so slow that even in a
sandpile of substantial size, a previous large scale avalanche will have concluded
before the next grain of sand from the driving force arrives. This separation of
two-time scales is formally necessary for self-organised criticality. If the external
input would “intelligently” wait until the avalanche dynamic has ceased, then we
would not be able to speak of self-organisation.

The larger the system, the smaller the driving force must be in order to exclude
any overlap with the avalanche dynamics. In theory, when the limit case of an
infinite system is considered, the strength of the driving force—be it as a temporal
average or as the strength of a continuous signal—consequentially needs to vanish.
This is a reasonable assumption, for example, for earthquake dynamics, where the
accumulation of stress can build up over centuries.

Moreover, the accumulation of the driving inputs and how it affects avalanche
dynamics are related to a conservation law. If a sand grain is added to a sandpile at a
certain location, it will stay there unless it is affected by an avalanche. Conservation
in this case is simply the local constancy of the number of grains.

In terms of conservation in the whole system, one possibility would be to construct
finite size models where sand grains are lost through toppling out of the boundaries
of the system, but are replaced by the driving input. Theoretically, one may also
consider an infinite sandpile where avalanches depart towards the infinitely far bot-
tom, and the fraction of sand grains which arrive within a finite time is negligible
compared to the infinite volume of the theoretical pile. The opposite case of studying
the behaviour of a finite pile in infinite time may work as well. For example, in Eurich
et al. (2002) the asymptotic form of the event distribution was derived for a finite size
model, which can then be evaluated in the limit of infinite system size which,
however, requires the input to become arbitrarily small as mentioned above.

Conservation on the scale of the full system is thus a questionable concept: in a
finite system, the driving force and the avalanche-related fluctuations will lead to
departures from conservativity, whereas in the infinite case small departures may go
unnoticed. A more useful concept is local conservativeness which either refers to
the redistribution of activity during the avalanche, where sand grains leaving a site
must arrive somewhere else or to the time between avalanches or sites which are
unaffected by the current avalanche, where the sand grains simply stay in place.

Criticality and the Brain

When addressing criticality in the brain, sooner or later one has to link the concept
to function. Over time, brains have evolved to generate meaningful behaviour for
ensuring survival in complex dynamic environments. If particular neural
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populations, or the whole brain, exhibit signatures of criticality, then such states can
be inferred to likely correlate with certain advantages, either for processing sensory
information, for adapting computation to task requirements or for generating
appropriate behavioural responses. However, it turns out that before being able to
assess the link between criticality and function one has to cope with a range of other
challenges since the brain is neither a spin glass nor an idealised sandpile.

First of all, it is obvious that the brain is not a homogeneous system constructed
from identical units with simple dynamics. Instead, the brain has a modular
structure, comprising a multitude of specialised areas, linked by connections with a
rich and diverse topological structure, and consisting of billions of highly nonlinear
units with miscellaneous and complex microscopic dynamics. Moreover, neural
systems are composed of highly adaptive components which themselves contain
processes for structural self-organisation. These include the processes governing the
geometry of the dendritic tree, the arrangement of ion channels, the maintenance of
organelles and structures within the cell or the interactions with non-neural
neighbouring cells. All of these processes interact with the signalling with other
neurons, such that it is a bold assumption to consider those elements as representing
a static function.

To the scientific community, it thus came somewhat as a surprise that neural
systems are nevertheless capable of displaying critical dynamics (Beggs and Plenz
2003), which was previously only studied in computer simulations and mathe-
matical analyses of rather “hypothetical” neural networks (e.g. Eurich et al. 2002).
One can speculate that this initial empirical observation of criticality was facilitated
by the fact that the observations took place in vitro and the corresponding networks
were organotypic cultures and acute slices of the rat cortex. This implies relatively
homogeneous and isolated networks, receiving neither sensory input nor recurrent
signals from other brain areas, in which activity emerges spontaneously and on a
time scale much slower than the resulting avalanches.

Nevertheless, a plethora of follow-up studies provided further and ample evi-
dence for criticality in brain dynamics, focusing on a range of different signatures in
a variety of different species observed in both active and passive brain states. The
appealing fact about criticality in the brain, as opposed to, for example, geological
or astrophysical systems, is that experimental conditions are controllable to a good
extent, can be carried out in situ and have enriched the discussion of the applica-
bility of the concept in brain science from an early stage. It is, however, still difficult
to describe the system in questions beyond drastically simplified theoretical models,
which consequently do not reach strong explanatory power.

Signatures and Conditions of Neural Criticality

Studying the macroscopic phenomenon of criticality is largely independent of the
specific underlying model. Complex neural models are rarely used (Wojcik et al.
2007) in studies of neural avalanches, so that any findings may still be artefacts
of the idealisations. While other features of biological neural networks may support
criticality, the more interesting theoretical results on neuronal avalanches, which
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have been obtained for simple model neurons, may be lost with inclusion of further
biocomplexity. Thus being confronted with the full complexity of the brain, one
often has to adapt, or otherwise newly develop, suitable methods for identifying
signatures of criticality before addressing its benefits for computation. The contri-
butions in this book provide a range of interesting ideas and solutions.

A particularly difficult problem is the lack of a clear separation of time scales: if
a sensory stimulus drives a neural system, input signals arrive with the same rate at
which collective events are taking place, making it effectively impossible to identify
individual avalanches and obtain precise avalanche statistics. In this case, one had
to instead focus on alternative measures and properties of criticality.

One idea is to look at the eigenvalues of the systems’ slow dynamics—if the brain
is in a critical state, one expects the system to be marginally stable, with some
eigenvalues having a small positive real part, thus inducing a small local instability,
which is kept in check by nonlinear contributions, keeping the system globally stable
Chapter “Linear Stability of Spontaneously Active Local Cortical Circuits: Is There
Criticality on Long Time Scales?”. This concept is intrinsically linked to “critical
slowing down”, which leads to the emergence of correlations on long time scales.
Interestingly, Chapter “From Neurons to Networks: Critical Slowing Down Governs
Information Processing Across Vigilance States” demonstrates that this phenomenon
appears on a systems level (measured with EEG recordings), as well as on a single
neuron level. Under certain conditions long-range correlations will be accompanied
by nested oscillations, such as high-amplitude low-frequency b -oscillations and
low-amplitude high-frequency c -oscillations, Chapter “Avalanche Dynamics and
Correlations in Neural Systems” or possibly involving more frequency bands as
observed in somatosensory neocortex slices Chapter “Linear Stability of
Spontaneously Active Local Cortical Circuits: Is There Criticality on Long Time
Scales?”. A novel concept for linking criticality to oscillatory brain activity emerges
from the idea of decomposing functional interactions into a so-called connectome
harmonics, i.e. oscillatory eigenmodes which are engaged and disengaged in
dependence on current needs, and exhibit scale-free power spectra over spatial scales
Chapter “Playing at the Edge of Criticality: Expanded Whole-Brain Repertoire of
Connectome-Harmonics” when the brain dynamics is critical.

An aspect which makes brain research nontrivial, also in other contexts, is
observability: even with advanced methods, experimentalists can only observe part
of a region of interest in the brain. Methods such as fMRI are also subject to those
limitations since they trade measurements from the whole system for a much
coarser spatial and temporal resolution. This limitation is known as the “subsam-
pling” problem. Luckily, a subsampling-invariant estimator has recently been
developed for quantifying the distance of a system from criticality Chapter
“Assessing Criticality in Experiments”.

A further challenge is to reliably determine under which conditions neural
systems become critical. Typically, the emergence of critical dynamics in a neural
system involves more than just one system parameter, for example, Chapter
“Complexity of Network Connectivity Promotes Self-organized Criticality in
Cortical Ensembles” a combination of structural aspects (scale-free and small-world
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features) and dynamical aspects (balance of excitation and inhibition). In Chapter
“The Role of Criticality in Flexible Visual Information Processing”, a similar
interplay between a particular ratio of excitation and inhibition in combination with
a connection structure matching the statistics of the sensory input is required.
However, if it is indeed necessary that so many different factors have to be precisely
controlled in order to poise a system at a particularly useful functional state, how is
this achieved by the brain? This important question has been addressed by many
studies. In this book, we present examples investigating growth processes in the
developing brain Chapter “Homeostatic Structural Plasticity Can Build Critical
Networks” and studying activity-dependent plasticity in neural circuits Chapter
“Fading Memory, Plasticity, and Criticality in Recurrent Networks”. In the latter
example networks evolve into a state where the typical signatures of criticality only
show up under certain conditions, but not when the network is actively processing a
stimulus.

Taken together, such examples taken from the chapters of this book demonstrate
that relating criticality in neural systems to brain function is in many cases
intrinsically linked to identifying conclusive signatures or necessary conditions for
criticality in strongly driven, inhomogeneous systems in the first place.

Linking Criticality to Brain Function

Theoretical work has developed elegant ideas about how critical states might support
function (see, e.g. Shew and Plenz 2013). However, if we were to have a closer and
rather critical look at these concepts, many unsolved questions become apparent. For
instance, let us consider the notion that criticality maximises the dynamic range of a
neural system (Kinouchi and Copelli 2006), bringing about optimal sensitivity to
sensory stimuli (Chialvo 2006): such a property could be used, for example, to
represent a set of stimuli to be discriminated by inducing maximally different neural
responses. But how should those stimuli be encoded to optimally use the full
dynamic range? How will such networks scale as new stimulus representations are
added? Can noise in the system and complex interactions between different areas
lead to avalanches propagating everywhere, such that in the end, all neurons display
maximum activation and discrimination between stimuli is not possible anymore?
And even if an appropriate and noise-robust encoding can be found, what would be
the corresponding read-out mechanism for the information contained in the
emerging dynamics? This is just one example of the wide spectrum of related
questions the contributions in this book are addressing.

One of the central ideas surrounding the function of criticality, or in a more
general sense having a system operate at the transition point between two different
dynamical regimes, is functional flexibility: small changes in the system configu-
ration can lead to dramatic effects in the network dynamics and allow smooth and
fast transitions between network states Chapter “Complexity of Network
Connectivity Promotes Self-organized Criticality in Cortical Ensembles”. One
example is switching between anticipatory behaviour and active sensing in rodents,
caused by switching synchronisation between superficial and deep cortical layers
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(Kodama et al. 2018), which is a functional role consistent with observations of
signatures of critical dynamics Chapter “Linear Stability of Spontaneously Active
Local Cortical Circuits: Is There Criticality on Long Time Scales?”.

Another idea which has been explored is that attention serves to move neural
systems towards or away from a critical point, which can greatly enhance neural
processing depending on the behavioural task, with only small changes to network
configuration Chapter “The Role of Criticality in Flexible Visual Information
Processing”. Corresponding network dynamics often involve the emergence of
nested oscillations, for example in the beta–gamma range Chapter “Avalanche
Dynamics and Correlations in Neural Systems”, which has been related, by com-
plementary experimental work (Bosman et al. 2012), to selective information
processing and signal routing in the visual system.

Memory is another prominent example where switching between two modes is
pivotal, namely between faithful replay of learned patterns or sequences (recall) and
a faithful representation of the stimulus (storage) Chapter “Critical Behavior and
Memory Function in a Model of Spiking Neurons with a Reservoir of Spatio-
Temporal Patterns”. Since both functions use the same neural substrate, the capa-
bility to rapidly switch between the different modes is both theoretically interesting
and of functional importance. A complementary example also linking criticality to
memory postulates an optimum for a “latching” dynamics, i.e. maximizing the
ability of a network to perform an unstructured stochastic hopping between
attractors while still exhibiting an unambiguous overlap with the stored pattern
(discriminability) Chapter “The Challenge of Taming a Latching Network Near
Criticality”.

Apart from flexibility and optimisation between competing functional require-
ments, information integration over space and time is another focal point in linking
criticality to function. In the critical state, avalanches of spikes propagate quickly
over large neuronal ensembles. This ability can serve to transmit information from
the senses quickly and reliably towards the motor components, in order to control
the body in agreement with the affordances of the environment (Bertschinger and
Natschlager 2004; Kinouchi and Copelli 2006). It could also be used to link dis-
tributed information into coherent representations, which are easy to read out by
neural coincidence detectors Chapter “The Role of Criticality in Flexible Visual
Information Processing”. A “meaningful” sensory stimulus therefore serves as a
template which can activate a matching, critical subnetwork in the cortex thus
engaging a linking process which generates stimulus-specific, characteristic acti-
vation patterns Chapter “Optimal Fisher Decoding of Neural Activity Near
Criticality”.

With respect to the temporal dimension, critical networks exhibit long temporal
correlations Chapter “Linear Stability of Spontaneously Active Local Cortical
Circuits: Is There Criticality on Long Time Scales?” related to the property of critical
slowing down, enabling the brain to successfully integrate information over time.
Chapter “From Neurons to Networks: Critical Slowing Down Governs Information
Processing Across Vigilance States” demonstrates that this ability breaks down
under fatigue, but recovers slowly by the corresponding networks reassuming the
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critical state during sleep. Naturally, optimally linking (sensory) information over
space and time is equally beneficial when it comes to learning or storing
spatio-temporal patterns Chapter “Fading Memory, Plasticity, and Criticality in
Recurrent Networks”, Chapter “Critical Behavior and Memory Function in a Model
of Spiking Neurons with a Reservoir of Spatio-Temporal Patterns”.

From theoretical work outside of neural systems, self-organised criticality
appears as the normal or ideal behaviour of a system. Under realistic conditions or
in practical use, however, the system may be found to deviate to either side and
represent a compromise between the benefits of criticality and other system char-
acteristics. Neural systems are subject to additional constraints or limitations, such
as finiteness, risk-avoidance or feedback. We may therefore find both sub- and
supercritical systems that can still serve as examples of self-organised criticality
when studied theoretically.

In fact, it has been suggested that the brain operates in a driven, slightly subcritical
state (Priesemann et al. 2014) Chapter “Assessing Criticality in Experiments”. In
particular in the presence of parametric fluctuations, a subcritical system will be less
prone to enter the risky supercritical phase (Priesemann et al. 2014; Tomen et al.
2014). Criticality in metaheuristic optimisation is also optimal only for temporally
and spatially unbounded systems. In real problems, a slightly subcritical parameter
setting produces better results (Erskine et al. 2017). If the optimal function is only
engaged on demand, for example, when attention is directed towards a sensory
stimulus, it may be reasonable for the system to stand by in a subcritical state until a
control input brings it closer to criticality (Tomen et al. 2014) Chapter “The Role of
Criticality in Flexible Visual Information Processing”.

In addition to temporal modulations, the distance of a network state from the
critical point may also be spatially non-uniform. Functionally speaking, the brain is
continuously bombarded with a large number of sensory signals, of which only a
subset might contain behaviourally relevant information. If criticality emerges as a
consequence of part of a sensory input matching an internal representation Chapter
“The Role of Criticality in Flexible Visual Information Processing”, only the
dynamics in parts of the network engaged in processing the corresponding,
task-relevant signals might become critical, while the remaining, larger part of the
network processing irrelevant information remains in a subcritical state.

In other contexts, deviations towards supercriticality might be useful: a neural
system for motor control, for example, will need to enter the supercritical regime in
order to provide a substantial driving of the actuators. In this case, critical dynamics
represent the readiness to execute a movement which can then be actualised by an
excursion into the supercritical regime. Negative feedback from the actuator can be
used to terminate the excursion and to reestablish the critical regime. More gen-
erally, if the system has the function to produce a particular structure, then the
wealth of structural forms that is present at the critical point may serve as a reservoir
Chapter “The Challenge of Taming a Latching Network Near Criticality”, but the
eventual formation of the structure requires an increased permanence of the
structure which is present in the supercritical state. For example, in a critical neural
network that serves the function of memory (Uhlig et al. 2013), the cue for a
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memory pattern raises the dynamics into the supercritical regime, where an acti-
vation of a firing pattern is possible that exceeds the likelihood of the pattern
implied by the activity distribution of the uncued network.

Taken together, the examples collected in this book demonstrate both, the
existing challenges but also a range of innovative and fresh ideas on how to cope
with them when relating the concept of criticality to brain function. For our readers,
it offers the unique chance to get a comprehensive overview of methods, concepts
and examples of critical phenomena in neural systems and their relation to function,
computation, and behaviour. We hope readers will enjoy the contents of this book
as much as we enjoyed the variety of contributions to our workshop in March 2017!

Thanks: We would like to express our special thanks to our office manager Agnes
Janßen, who not only organised a smoothly running workshop together with the
staff at the Hanse-Wissenschaftskolleg in Delmenhorst (Germany), but also helped
us greatly in putting together this book. Furthermore, we would like to extend our
heartfelt gratitude to everyone who provided us with well thought out reviews of the
chapter manuscripts, who were recruited both from amongst the participants of the
workshop and contributors to this book and from members of the scientific com-
munity interested in criticality and network dynamics in the brain.
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Avalanche Dynamics and Correlations
in Neural Systems

Fabrizio Lombardi, Hans J. Herrmann and Lucilla de Arcangelis

Abstract The existence of power law distributions is only a first requirement in the
validation of the critical behavior of a system. Long-range spatio-temporal correla-
tions are fundamental for the spontaneous neuronal activity to be the expression of a
system acting close to a critical point. This chapter focuses on temporal correlations
and avalanche dynamics in the spontaneous activity of cortex slice cultures and in
the resting fMRI BOLD signal. Long-range correlations are investigated by means
of the scaling of power spectra and of Detrended Fluctuations Analysis. The exis-
tence of 1/ f decay in the power spectrum, as well as of power-law scaling in the
root mean square fluctuation function for the appropriate balance of excitation and
inhibition suggests that long-range temporal correlations are distinctive of “healthy
brains”. The corresponding temporal organization of neuronal avalanches can be dis-
sected by analyzing the distribution of inter-event times between successive events.
In rat cortex slice cultures this distribution exhibits a non-monotonic behavior, not
usually found in other natural processes. Numerical simulations provide evidences
that this behavior is a consequence of the alternation between states of high and
low activity, leading to a dynamic balance between excitation and inhibition that
tunes the system at criticality. In this scenario, inter-times show a peculiar relation
with avalanche sizes, resulting in a hierarchical structure of avalanche sequences.
Large avalanches correspond to low-frequency oscillations, and trigger cascades of
smaller ones that are part of higher frequency rhythms. The self-regulated balance
of excitation and inhibition observed in cultures is confirmed at larger scales, i.e. on
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fMRI data from resting brain activity, and appears to be closely related to critical
features of avalanche activity, which could play an important role in learning and
other functional performance of neuronal systems.

1 Introduction

Critical systems are characterized by divergent correlations in space and time. As
a consequence such systems lack a characteristic length scale, and the statistics of
events is governed by power laws. At the beginning of this century, a novel experi-
mental approach has revealed that spontaneous cortical activity is organized in bursts
made of neuronal avalanches [1]. An avalanche is defined as an ensemble of neurons
that fire close-in-time, namely at a temporal distance smaller than a given time inter-
val, and is usually characterized by its size and duration. The particular definition of
size and duration depends on the specific signal that is used to investigate spontaneous
network activity. In general, those definitions provide a measure for the population
of firing neurons and the time interval covered by their almost-synchronous firings.

Neuronal avalanches have been first identified in the organotypic cultures from
coronal slices of rat somatosensory cortex [1], where they are stable for many hours
[2]. The size and duration of neuronal avalanches follow power law distributions with
very robust exponents, which is a typical feature of a system acting in a critical state,
where large fluctuations are present and the response does not have a characteristic
size. The same critical behavior has been observed also in vivo on rat cortical layers
during early post-natal development [3], and on the cortex of awake adult rhesus
monkeys [4], usingmicroelectrode array recordings, aswell as ondissociated neurons
from rat hippocampus and cortex [5, 6] or leech ganglia [5]. Recently, avalanche
dynamics has been also identified in the resting state of the human brain by means
of non-invasive techniques such as magneto-encephalography (MEG) [7].

All these experimental results consistently exhibit power law size distributions
decaying with the exponent −1.5, and duration distributions that follow a power
law with exponent −2. These exponents are consistent with the universality class of
the mean field branching process [8] and are therefore independent of the dimen-
sionality of the system. This property, verified experimentally, is unusual in critical
phenomena and it has been shown numerically to depend on the combined action of
plastic adaptation and refractory time [9]: Starting from a fully connected network,
refractory time selects a preferential direction in the synaptic connection between
two neurons, while the repeated adaptation of less used connections leads to the
progressive depletion of loops in the network. As a result, the network becomes
“tree-like” providing the mean field universality class.

Brain activity having features typical of systems at a critical point represents a
crucial ingredient for learning. Indeed, a neuronal network model reproducing quan-
titatively the experimentally observed critical state of the brain, is able to learn and
remember logical rules including the exclusive OR, which has posed difficulties to
several previous attempts [10]. Learning occurs via plastic adaptation of synaptic
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strengths and exhibits universal features: The learning performance and the average
time required to provide the right answer are controlled by the strength of plastic
adaptation, in a way independent of the specific task assigned to the system. Inter-
estingly, even complex rules can be learned provided that the plastic adaptation is
sufficiently slow. The implemented learning dynamics is a cooperative mechanism
where all neurons contribute to select the right answer. In fact, because the system
acts in a critical state, the response to a given input can be highly flexible, adapting
more easily to different rules. The analysis of the dependence of the performance
of the system on the average connectivity confirms that learning is a truly collective
process, where a high number of neurons may be involved and the system learns
more efficiently if more branched paths are possible [10]. The investigation of the
learning performance in neuronal networks provides also insights into the role of
inhibitory synapses. Performing more tasks in parallel is a typical feature of real
brains characterized by the coexistence of excitatory and inhibitory synapses, whose
percentage in mammals is measured to have a typical value of 20–30%. By investi-
gating parallel learning of more Boolean rules in neuronal networks [11], it has been
evidenced that that multi-task learning results from the alternation of learning and
forgetting the individual rules. Interestingly, a fraction of 30% inhibitory synapses
optimizes the overall performance, since it guarantees, at the same time, the network
excitability necessary to express the response and the variability required to confine
the employment of resources.

Slow relaxation is a fundamental feature of systems acting at the critical point.
Hence, temporal correlations are relevant over long time scales, and give rise to bursts
of events. This phenomenology is distinctive of many natural phenomena, where not
only power lawdistributions arise, but also a complex temporal organization of events
is observed. Examples are earthquakes and solar flares, which share a number of
statistical laws evidencing the presence of temporal correlations between successive
events [12]. Several statistical tools are currently available for detecting the presence
of such correlations and investigate their temporal range. In the case of brain activity,
thesemethods can be applied either to the rawneuronal signal, defined as a continuous
variable, or else to the sequence of neuronal avalanches, considered as a point-process
in time. An intriguing question is indeed how to reconcile well-known properties of
neuronal signals, such as oscillations with different characteristic frequencies, with
neuronal avalanches lacking characteristic spatial and temporal scales [4, 13, 14].

Such techniques, applied to numerical and experimental data from systems at
different scales, constitute the necessary ingredient towards a definite assessment
of criticality. In parallel, numerical models are of crucial importance to identify the
dynamicmechanisms controlling correlations, and to understand the role of criticality
in brain functions. In this chapter, we will present a summary of different statistical
methods and their application for the investigation of avalanche dynamics in neural
networks, with a particular focus on temporal correlations. Experimental results
will be supported by numerical studies with the objective of providing a coherent
understanding of the temporal features of neuronal activity.
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2 Avalanche Activity and Power Spectra

A first indication of long-range temporal correlations is provided by the observation
of 1/ f noise. Indeed, by the Wiener–Kintchine theorem [15], this implies that the
time correlation function decays to zero in an infinitely long time interval. Analyses
of experimental recordings of spontaneous neural activity, from EEG, to MEG and
LFPs, generally show a power law decay in the power spectral density (PSD), S( f ) ∝
f −β , with superimposed peaks at the characteristic frequencies of dominant brain
rhythms. However, estimated values of the exponent β vary over a rather broad
interval, and appear to depend on brain areas and patient conditions. In particular,
for healthy subjects β takes values within the interval [0.8, 1.5] [16–20], whereas it
is much larger in epileptic patients [21].

To understand some of the basic mechanisms affecting the PSD scaling of neural
signals, in this sectionwe investigate the relationship between network inhibition, i.e.
the percentage of inhibitory synapses, and the scaling exponent β in a neuronal net-
work of integrate and fire neurons driven by slow external stimulation that simulates
spontaneous activity. We consider neurons on a scale-free network and consistently
show that inhibitory neurons determine the scaling behavior of the PSD: For a neu-
ronal network of only excitatory neurons, the PSD follows a power law with an
exponent β � 2. By introducing inhibitory neurons, β decreases, and exhibits val-
ues in the interval [1, 1.4] for a percentage of inhibitory synapses between 20 and
30%, in agreement with experimental findings [16–19].

2.1 Neuronal Model and Avalanche Activity

We simulate the intrinsic activity of a neuronal network by means of an integrate and
fire model [22–24] inspired in self-organized criticality (SOC) [25]. In this model,
each neuron i is characterized by a membrane potential vi and fires if and only if vi is
equal or above a firing threshold vc. To trigger activity, namely to bring a neuron at or
above the firing threshold, we apply a small stimulation to a randomly chosen neuron.
Then, whenever at time t the potential of neuron i fulfils the condition vi ≥ vc, the
neuron fires, changing the potential of all connected neurons.

The N neurons are located at the nodes of a network which can have a very
general topology. In the following, we present results obtained for neurons ran-
domly distributed in a square and connected by a scale-free network of directed
synapses. More precisely, to each neuron i we assign an out-going connectivity
degree, kouti ∈ [2, 100], according to the degree distribution P(kout ) ∝ k−2

out of the
functional network measured in [26], and two neurons are then connected with a
distance-dependent probability, P(r) ∝ e−r/r0 , where r is their Euclidean distance
[27] and r0 a typical edge length. To each synaptic connection we assign an initial
random strength gi j ∈ [0.15, 0.3] and to each neuron an excitatory or inhibitory char-
acter by fixing a percentage pin of inhibitory synapses. Outgoing synapses are exci-
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tatory if their presynaptic neuron is excitatory, inhibitory otherwise. Since synapses
are directed, gi j �= g ji , in general out-degree and in-degree of a neuron do not coin-
cide. Therefore once the network of out-connections is established, we identify the
resulting degree of in-connections, kin j , for each neuron j , namely we identify the
number of synapses directed to j .

The change in the membrane potential of the postsynaptic neuron j due to the
firing of neuron i is proportional to the relative synaptic strength g ji/

∑
l gli

v j (t + 1) = v j (t) ± vi · kouti
kin j

g ji
∑kouti

l=1 gli
. (1)

Here the normalization by the synaptic strengths ensures that during the propagation
of very large avalanches the membrane potential assumes finite values, while the
plus or minus sign is for excitatory or inhibitory synapses, respectively. After firing,
the membrane potential of the neuron is set to vi = 0 and the neuron remains in a
refractory state for tre f = 1 time step, during which it is unable to receive or transmit
any signal. Each neuron in the network is an integrate and fire unit, therefore it will
change its potential by summing the successive stimulations from presynaptic firing
neurons according toEq.1.With respect to traditional neuronalmodels implementing
partial differential equations for the temporal dependence of themembrane potential,
this model is a cellular automaton where time is a discrete variable. The time unit
is the time delay between the triggering of the action potential in the presynaptic
neuron and the change of the membrane potential in the postsynaptic neuron, which
corresponds to few ms in real neuronal system. Within this temporal window our
model is unable to provide the state of the neuron, however it is numerically very
efficient thus allowing simulations of very large systems.

When a neuron i fires, its out-going connections induce a potential variation in the
kouti postsynaptic neurons. The strength g ji of these active synapses is increased pro-
portionally to themembrane potential variation |δv j | that occurred at the postsynaptic
neuron j

g ji = g ji + |δv j |/vc. (2)

Conversely, the strength of all inactive synapses during an avalanche is reduced
by the average strength increase per bond

Δg =
∑

i j

δg ji/NB, (3)

where NB is the number of bonds. We set a minimum and a maximum value for
the synaptic strength gi j , gmin = 0.0001 and gmax = 1.0. Whenever gi j < gmin , the
synapse gi j is pruned, i.e. permanently removed.

These rules constitute a Hebbian-like scheme for synaptic plastic adaptation.
The network memorizes the most used synaptic paths by increasing their strengths,
whereas less used synapses eventually atrophy. They implement a sort of long-term
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synaptic plasticity, a homeostatic mechanism that dynamically balances synaptic
strengthening and weakening in the network. Short-term plasticity is not taken into
account in the present version of the model. Plastic adaptation is implemented during
an initial sequence of external stimuli and shapes the network of synaptic strengths.
Its extent can be viewed as a measure for the experience of the trained network.
Synaptic strengths are initially uniformly distributed in the interval [0.15, 0.3]. The
distribution of gi j resulting from plastic adaptation is shown in the inset of Fig. 1b,
and closely resembles the distribution of synaptic strengths measured experimentally
[28]. Then avalanche activity is measured for fixed synaptic connections by applying
a new sequence of random stimulations. Figure1a and b show the network activity
as function of time for different percentage of inhibitory neurons.

An avalanche is defined as a cascade of successively firing neurons after an exter-
nal stimulation and can involve a variable number of neurons. The avalanche size
is defined as the number of firing neurons s, or, alternatively, as the sum sΔV of
all positive potential variations (depolarizations) δv+

i that occurred in the network,
namely sΔV = ∑

i δv
+
i . Avalanches are also characterized by their duration T , which

is defined as the number of iterations taken by the activity propagation. The distribu-
tions of avalanche sizes, P(s), and durations, P(T ), obtained by this model, are in
agreement with experimental data [1, 7], namely they exhibit a power law behavior
with exponents α � −1.5 and τ � −2.0, respectively, followed by an exponential
cutoff (Figs. 1c and 2b). As shown in the lower inset of Fig. 1c, a scaling relation
exists between s and sΔV , namely sΔV (s) ∼ sγs with γs � 1, implying that P(sΔV )

follows the same scaling behavior as the distribution of avalanche sizes measured in
terms of firing neurons.

The scaling behavior of such distributions is independent of the network topology
and of the percentage pin of inhibitory synapses. On the other hand, pin signifi-
cantly affects the exponential cutoff, as shown in Fig. 1c: By increasing the percent-
age of inhibitory synapses the exponential cutoff gradually moves towards smaller
avalanche sizes s and the scaling regime shrinks, evidencing the universal scal-
ing behavior P(s) ∼ s−α f (s/p−θ

in ). The scaling function confirms that the size of
the largest possible avalanche decreases with the percentage of inhibitory synapses,
whereas the critical exponentα shows a stable value 1.5. Similar behavior is observed
for the duration distributions [24].

2.2 Power Spectra

The analysis of the size and duration distributions evidences the crucial role played
by inhibition in avalanche dynamics [24]. A very first step in the investigation of
temporal correlations in neuronal signals is the analysis of the power spectrum [24].
In real neuronal network, one generally studies the electric signal resulting from the
firing of a more or less localized population of neurons, such as local field potentials
(LFPs) [1]. In a close analogywithLFPs, for each network configurationwe construct
a temporal signal, V (t), as the sum of all potential variations occurring at each time
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Fig. 1 Network activity and avalanche size distributions for different fraction pin of inhibitory
synapses. The intensity of activity V (t) is the sum of all potential variations occurring in the network
at each time step, namely V (t) = ∑

i δvi (t). Network activity for pin = 0.05 (a) and pin = 0.25
(b). Inset of b: Distribution P(gi j ) of synaptic strengths at the end of the initial period of plastic
adaptation. The dashed lines indicate the initial uniform distribution; c Avalanche size distributions
on a scale-free network for different values of pin . Upper inset: Plotting sαP(s) versus pθ

ins, with
α = 1.5 and θ = 2.2, data collapse onto a universal scaling function; Lower inset: Relation between
the number of firing neurons s and the sum sΔV of all positive potential variations (depolarizations)
δv+

i occurred in the network, namely sΔV = ∑
i δv

+
i
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Fig. 2 Power spectral density of avalanche activity (a) and duration distribution P(T ) (b) for a
scale-free networkwith N = 64,000 neurons and different pin . The PSD follows a power lawwhose
exponent β depends on pin (Inset) and approaches the value β = 1 for pin = 0.3. The cutoff at low
frequencies (arrows), which indicates the transition to white noise, scales with pin and corresponds
to avalanche durations in the exponential cutoff of P(T ) (dashed lines)

step of network activity, i.e V (t) = ∑
i δvi (t).We then evaluate the Fourier transform

of this signal, whose squared amplitude averaged over all configurations provides
the PSD of the network activity. The signal V (t) significantly depends on pin , and
exhibits not only smaller peaks, but also sparser high amplitude fluctuations for larger
percentage of inhibitory synapses, as shown in Fig. 1a. The dissipative property of
inhibitory synapses turns out to have a strong influence on the PSD of the avalanche
activity, S( f ). In Fig. 2a, we show S( f ) for several values of pin .

In the simulations the time unit can be roughly estimated as the time interval
between the firing of the presynaptic neuron and the induced voltage change in the
postsynaptic neuron, which in real systems should correspond to a few milliseconds.
With this rough correspondence, our PSD frequency range goes from approximately
1Hz to about 100Hz. We notice that the PSD has the same qualitative behavior for
each value of pin , namely a f −β decay and a cutoff at low frequencies that, as the cut-
off in the avalanche size distribution shifts towards smaller s values, moves towards
higher frequencies with increasing pin . The low-frequency cutoff indicates the tran-
sition to white noise, which characterizes an uncorrelated process, and corresponds
to avalanche durations in the exponential cutoff of the distribution P(T ) of avalanche
durations. The exponentβ decreases for increasing values of the fraction of inhibitory
synapses. In particular, for a purely excitatory network we find that β is close to 2, an
exponent associated to the PSD of brown noise and larger than values found in exper-
imental studies of spontaneous cortical activity in healthy subjects [16–19], but close
to values measured for epileptic patients [21]. However, when pin becomes closer to
the fraction of inhibitory synapses characteristic of real neuronal systems, i.e. about
0.3, we find that β is in the interval [1, 1.4], the range of experimentally measured β

values [16–19].More specifically, for 0.1 ≤ pin ≤ 0.3 the exponent β decays as p−δ
in ,

where δ � 0.49, and tends to one as pin → 0.3 (Fig. 2a). The range of the scaling
regime varies as a function of pin , and, according to our rough estimate of numeri-
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cal time units, goes from a few to nearly 100 Hz for 0.1 ≤ pin ≤ 0.3 (Fig. 2a). The
low-frequency cutoff (arrows in Fig. 2a) is indeed at about 4Hz, 8Hz, and 10Hz, for
pin = 0.1, 0.2, and pin = 0.3, respectively. As shown in [24], for a fixed value of pin
the low-frequency cutoff scales with the systems size, and decreases for increasing
sizes.

The 1/ f scaling regime observed in the resting state brain activity approximately
spanned the interval [1, 10]Hz in [19], while more recent studies evidenced that
this regime extends to higher frequencies [16, 18], and shows superimposed peaks
corresponding to dominant brain rhythms [29]. In particular, Novikov et al. showed
that the 1/ f behavior extends up to 50Hz in theMEG of resting human brain, a range
that considerably overlap with our numerical results. Moreover, it is interesting to
notice that experiments ondissociated networks of rat hippocampal neurons and leech
ganglia [5] exhibit a very similar behavior as a function of network inhibition: The
power spectra for both systems exhibit a 1/ f power law decay, however if inhibition
is hindered by introducing picrotoxin (PTX) or bicuculline in the physiological bath,
the power-law decay becomes closer to brown noise, i.e. 1/ f −2, as obtained in
simulations of purely excitatory networks.

The scaling exponent β of the PSD is related to the critical exponent τ−1
α−1 , which

connects avalanche sizes and durations [25], s(T ) ∼ T
τ−1
α−1 . It has been shown that, for

purely excitatory models with α < 2, β = τ−1
α−1 [30]. Our model very closely follows

this analytical prediction: Indeed for a purely excitatory network we find β � 2 and
τ−1
α−1 � 2. On the other hand, to our knowledge no analytical derivation of the relation
betweenβ and τ−1

α−1 is available for systemswith excitatory and inhibitory interactions.
Deriving such a relationship for SOC-like models with inhibitory interactions is a
general problem of great interest and implies the introduction of anti-ferromagnetic
interactions in the model in [30]. The 1/ f behavior of power spectra provides a first
important evidence for the existence of long-range correlations in systems that are
self-tuned into a critical state, and appears to be connected to the right percentage
of inhibition in the system. In particular, de los Rios et al. [31] have shown that a
dissipative term in the dynamics of the original sand pilemodel gives rise to avalanche
activity whose PSD decays as 1/ f . However, in their model the avalanche sizes are
not distributed according to a power law. In our neuronal model instead, inhibition
gives rise to 1/ f power spectra and avalanche size distributions still follow a power
law behavior with a universal scaling function.

3 Inter-event Time Distributions

For a wide variety of natural stochastic phenomena the presence and extent of tem-
poral correlations is analyzed in terms of the distribution of inter-event times. This is
the distribution of time interval durations between successive events. The advantage
of this analysis is that the distribution of inter-event times has a simple exponential
decay for a pure Poisson process, whereas it exhibits a power law regime over the
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temporal range where correlations are relevant. In particular, it has been shown ana-
lytically that the Omori temporal decay of the earthquake rate after the occurrence of
a large mainshock gives rise to a power law decay in the inter-event time distribution
with an exponent related to the Omori exponent [32]. More generally for several pro-
cesses, such as earthquakes, solar flares,or acoustic emissions due to rock fracture,
this distribution is monotonic and behaves as a Gamma distribution, exhibiting an
initial power law decay followed by an exponential cutoff. This behavior is robust and
universal with respect to different event catalogs and the lower threshold imposed
to the event size in the temporal sequence [12, 33]. Following this approach, we
identified neuronal avalanches in rat cortex slice cultures and measured the distribu-
tion P(Δt) of time intervals separating consecutive avalanches [34]. Interestingly,
the inter-avalanche time distribution exhibits a novel, non-monotonic behavior in
different culture samples, with common features: An initial power-law regime that
is characterized by exponent values between −2 and −2.3, a local minimum located
at 200 ms < Δtmin < 1 s, and a more or less pronounced maximum at Δt � 1 − 2
s. This complex behavior is not usually observed in other natural phenomena and
suggests that temporal correlations are not only relevant in avalanche occurrence,
but reflect complex underlying dynamical mechanisms.

3.1 Up-States and Down-States

Numerical simulations evidence that a traditional integrate and fire neuronal model
is unable to reproduce the non-monotonic behavior of the inter-avalanche event
distributions found experimentally. To achieve this goal we hypothesize that non-
monotonicity arise from the transition between two substantially different network
states, and introduce in the model (2.1) the concept of up and down-states.

Spontaneous activity exhibits a complex alternation betweenbursty periods, called
up-states, where neuronal avalanches are detected, and quiet periods, named down-
states. These are characterized by a general disfacilitation in the system, i.e. absence
of synaptic activity, causing long-lasting returns to resting potentials in a large popu-
lation of neurons [35]. Action potentials are rare during down-states, however small
amplitude depolarizing potentials originating from spontaneous synaptic release,
may occur. The non-linear amplification of small amplitude signals leads to the gen-
eration of larger depolarizing events, bringing the system back into the up-state.
Moreover, together with this network features, experimental observations indicate
that neurons are characterized by two preferred values of the membrane potential: A
very negative one, below resting potential, in the down-state, and a more depolarized
one in the up-state. Since the neuron up-state is just a few millivolts below the action
potential threshold, during the up-state neurons respond faster to synaptic stimula-
tions, giving rise to close-in.time avalanches. The down-state instead is characterized
by long periods of quiescence during which the network recovers from biomolecular
mechanisms that hamper activity, as the exhaustion of available synaptic vesicles, the
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increase of the nucleoside adenosine inhibiting glutamate release, or the blockade of
receptor channels by the presence of external magnesium [35–38].

We implement up and down-states in the original model by monitoring the
avalanche activity [34]. We measure the size of each avalanche in terms of depo-
larizations δvi of all active neurons, sΔv (see Sect. 2.1). As soon as an avalanche
is larger than a threshold value, smin

Δv , the system transitions into a down-state and
neurons active in the last avalanche become hyperpolarized proportionally to their
previous activity, namely we reset

vi = vi − hδvi (4)

where h > 0. This equation implies that each neuron is hyperpolarized proportionally
to its previous activity, i.e. its potential is the lower, the higher its potential variation
in the previous avalanche. This rule introduces a short-range memory at the level of
a single neuron and models a number of possible mechanisms for local inhibition
[36–38]. Conversely, if an avalanche has a size smaller than smin

Δv , the system remains
or transitions into an up-state. In the up-state, the potentials v of all neurons firing in
an avalanche are not set equal to zero resting potential, but to the depolarized value

vi = vc(1 − sΔv/s
min
Δv ) (5)

The neuron membrane potential in the up-state then depends on the response
of the whole network and remains close to the firing threshold. The threshold smin

Δv
controls the extension of the up-state and therefore the level of excitability of the
system, whereas h controls the level of hyperpolarization of neurons in the down-
state and therefore its duration. Interestingly, the last two equations each depend on
a single parameter, h and smin

Δv , which introduce a memory effect at the level of single
neuron activity and of the entire system, respectively. These two parameters can be
tuned separately in numerical simulations to obtain the best fit with experimental
data. The implementation of up and down-states in numerical simulations provides a
temporal activity made of bursts of avalanches (up-states) followed by long periods
of quiescence (down states). In Fig. 3 the duration distributions of up and down-states
indeed show that down-states can last much longer that up-states, in agreement with
experimental data on rat visual cortex [39] and simulations of integrate and fire
neuron networks [40].

The inter-avalanche time distribution for the temporal sequence of up and down-
states is shown in Fig. 4, together with experimental results for critical and super-
critical samples of rat cortex slices. Super-critical samples are generally obtained
by suppressing inhibition, or enhancing excitation. They are characterized by an
excess of large avalanches and a smaller α power law exponent in the avalanche size
distribution as compared to the normal, critical samples (Fig. 4d). The non-monotonic
behavior of experimental data can be reproducedwith very good agreement by tuning
separately the two parameters h and smin

Δv . The close-in time avalanches occurring
in the up-state are responsible for the initial power law regime with an exponent
close to −2 (Fig. 4a), as for experimental data (Fig. 4b), evidencing that temporal
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Fig. 3 Distribution of durations of down-states (a) and up-states (b) averaged over 100 configura-
tions of networks with N = 64,000 neurons with pin = 0.1

correlations are extended over a range at least comparable to the up-state duration.
Conversely, the long-lasting down-states originate the bell-shaped behavior at large
Δt centered at a value that depends on h and smin

Δv . The superposition of these two
different regimes then provides the local minimum and therefore the non monotonic
behavior of the distribution.

The overall behavior of the inter-event time distribution, and thus the temporal
organization of avalanches, is controlled by a single parameter, the ratio R = h/smin

Δv ,
which expresses the balance between excitation and inhibition, dynamically realized
by the alternation of up and down-states. By increasing the level of excitability,
the system becomes super-critical, and the distribution of avalanche sizes closely
resembles the one for disinhibited cultures (Fig. 4c). At the same time, we observe
major changes in the inter-event time distribution (Fig. 4a). In particular, the power
law regime becomes shorter, its exponent changes, and the local minimum gets more
pronounced. Similar changes are observed in cultures treatedwith PTX (Fig. 4b) [41].

The model described here, consistently connects avalanche statistics with dynam-
ical properties of neural systems that are captured by the inter-event time distribution.
Very similar values of R have to be implemented to reproduce the experimental distri-
butions for different critical samples. This means that the up and down-state features
consistently change to produce a specific temporal organization of avalanches at criti-
cality. In the next Sectionwewill discuss the intimate connection between inter-event
time and avalanche size.

3.2 Avalanches and Oscillations

According to similar studies performed for other dynamical processes, we analyze
the experimental inter-event time distribution by constructing temporal sequences
of events containing only avalanches whose size is larger than a given threshold sc.
Usually this selection provides a sparser sequence, where avalanches are larger and
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Fig. 4 Numerical and experimental distribution of inter-event time and avalanche size in critical and
supercritical state. a Numerical inter-event time distributions averaged over 100 scale-free network
configurations with N = 16,000 neurons for values of smin

Δv and h providing the best agreement with
experimental data in normal (critical) condition with R � 10−4 (blue circles). For smaller values of
R activity becomes supercritical (red crosses) and the distribution becomesmore similar to data from
disinhibited cultures. b Experimental inter-event time distribution for a slice of rat cortex in normal
condition (blue line) and disinhibited by PTX (red line). c Numerical avalanche size distribution
in a critical condition (blue circles), R = 10−4, and in a super-critical condition, R = 10−5 (red
squares). d Experimental avalanche size distribution measured for the culture in normal, critical
condition (blue line) and for the culture treated by PTX, i.e. in disinhibited, super-critical condition
(red line)

more distant in time. In many cases, the scaling behavior of the inter-event time
distributions obtained using such a procedure for different thresholds turns out to
be universal if the inter-event time Δt is rescaled by the average rate τ0, namely all
distribution collapse onto a universal function f [33],

P(Δt; sc) = τ0 f (τ0Δt) (6)

where f is a Gamma function. This result evidences the presence of a unique time
scale in the process, namely the average inter-event time or the inverse average rate.
The same analysis performed on experimental data for seven samples of rat cortical
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Fig. 5 a Experimental inter-event time distribution P(Δt; sc) are evaluated by setting different
thresholds sc for the minimum avalanche size. The color code of the vertical bars corresponds to
the legend of panel b. Avalanches whose size falls in the blue region tend to occur at frequency
θ or smaller, whereas avalanches with size in the green region tend to occur at higher frequency.
b Experimental inter-event time distributions for different values of the threshold sc on avalanche
size. Already for sc = 80µV, the distribution clearly exhibits an additional peak. Beside the one
at large time scales, Δt � 1000 − 2000ms, which is related to the characteristic time of up-state
recurrence, the peak at about 300ms corresponds to the period of θ oscillations, and the peak around
40 ms to the β/γ rhythms. Inset: The same distributions evaluated for the reshuffled avalanche time
series and for different values of the threshold sc on avalanche size. c Hierarchical organization
of avalanches with different sizes (bar heights) corresponding to temporal organization of nested
θ − β/γ oscillations. Large avalanches (blue bars) occur with θ frequency and trigger smaller
avalanches related to faster γ oscillations (green bars). Here bar widths indicate durations. Spacing
between blue bars corresponds to a θ period. Spacing between the starting points of green bars
corresponds to the γ period. Sizes s of avalanches related to θ cycles tend to fall within the blue
region of the size distribution P(s) plotted in a, whereas the sizes corresponding to nested γ

oscillations fall within the green region

slices [14] evidences a more complex behavior, as shown in Fig. 5 for the critical
sample discussed in Sect. 3. By increasing the minimum size threshold from 20 to
250µV, the distributions, as expected, show a decrease in the probability to observe
small Δt and a corresponding increase at large Δt . More strikingly, the functional
form of the probability distribution is clearly non-universal, since for increasing sc
values pronounced peaks emerge at Δts corresponding to the characteristic periods
of θ and β/γ rhythms, Δtθ � 300ms and Δtγ � 40ms, respectively (5b). In partic-
ular, we notice that the probability P(Δtθ ; sc) is nearly independent of sc (Fig. 5b),
which means that the ratio N (Δtθ ; sc)/N (sc) � const , and thus the number Nθ (sc)
of avalanches related to θ oscillations decreases proportionally to N (sc) for increas-
ing values of sc. On the other hand, the probability P(Δt; sc) increases with sc for
Δt > Δtθ and decreases for Δt < Δtθ , implying that the number of avalanches sep-
arated by longer (shorter) Δt , decreases slower (faster) than N (sc). Hence, long
inter-event times tend to separate large avalanches, whereas shorter inter-event times
tend to separate smaller avalanches.
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The same analysis has been applied to a sequence in which avalanche sizes are
reshuffled by keeping their occurrence time fixed. In this case the peaks observed in
Fig. 5b disappear (inset of Fig. 5b). Since reshuffling sizes does not change the inter-
event time distribution but destroys the underlying relationship between avalanche
sizes and inter-event times, we must conclude that the peaks emerging in the distri-
butions are a consequence of the correlations between sizes and Δts. While short
quiet times and fast β/γ oscillations tend to be associated with smaller avalanches,
slower oscillations are in general related to larger avalanches. Indeed, varying the
threshold sc in a range of values within the power law regime of the size distribu-
tion P(s), typically between 30 and 400µV (Fig. 5a), the probability P(Δtθ ; sc) of
Δt associated with θ or slower oscillations (Fig. 5b), remains nearly unchanged. In
particular, the coexistence of a θ peak with a faster decrease of the probability of
Δtγ suggests an hierarchical structure in the avalanche sequence, reminiscent of the
temporal organization of nested θ − β/γ oscillations [3] (Fig. 5c): Large avalanches
occur with θ frequency and trigger smaller ones in faster β/γ cycles (Fig.5c). In
a previous study [13] it has been numerically shown that critical-state dynamics of
avalanches and oscillations jointly emerge in a neuronal network model when excita-
tion and inhibition is balanced. The present analysis of experimental data enlightens
that oscillations in neuronal activity are the outcome of the temporal organization of
avalanches with different size and provides a first empirical evidence for the coexis-
tence of avalanches and oscillations in the critical regime of neuronal activity.

On the basis of these observations, it is clear that no universal function as in
Eq.6 can be obtained for the cortex slice data. Indeed, one can see that only the
second regime of the distribution, the bell-shaped bump originated by the down-
states, collapses onto a unique function when inter-event times are appropriately
rescaled [14, 42]. Concerning the up-states, the appearance of peaks indicates that
avalanche occurrence is not controlled by a unique time scale, and that the temporal
structure is more complex.

4 Detrended Fluctuation Analysis

In the previous Section we have seen that a predominant characteristic of the intrinsic
activity in cortex slice cultures is the continuous alternation of two distinct network
states, one with prominent correlations in neural firing, the up-state, and another one
with sparse and weakly correlated activity, the down-state. The analysis of inter-
event time distributions shows that consecutive avalanches are correlated over a
time-scale of about 1 s, and raises the question whether avalanches separated by
a longer temporal distance, namely by a down-state, are significantly correlated. In
other words, we aim to understandmore closely the role of down-states in the context
of avalanche dynamics: Are they a sort of memory resetting period? Do they keep
memory of past activity and thus correlate consecutive up-states [41]?

In order to address this questions, we first consider the spontaneous activity signal
recorded in cortex slice cultures, V (t) = ∑ne

i=1 δvi (t) [41], i.e. the sumof all potential
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variations recorded at time t on the ne electrodes placed on the cortical slice, and
apply the detrended fluctuation analysis (DFA) to quantify its long-range power-law
correlations. The DFA [43] involves the following steps: (i) Calculate the integrated
signal I (t) = ∑Nmax

t ′=1 (V (t ′)− < V >), where < V > is the mean activity and Nmax

is the length of the signal; (ii) Divide I (t) into boxes of equal length n and fit I (t)with
a polynomial In(t) of order 1, which represents the trend in that box; (iii) Detrend
I (t) by subtracting the local trend, In(t), in each box and calculate the root-mean-

square (r.m.s.) fluctuation F(n) =
√
1/Nmax

∑Nmax
t=1 [I (t) − In(t)]2; (iv) Repeat this

calculation over a broad range of box sizes and obtain a functional relation between
F(n) and n. For a power-law correlated time series, the average r.m.s. fluctuation
function F(n) and the box size n are connected by a power-law relation, that is
F(n) ∼ nH . The exponent H is a parameter which quantifies the long-range power-
law correlation properties of the signal. Values of H < 0.5 indicate the presence of
anti-correlations in the time series, H = 0.5 absence of correlations (white noise),
and H > 0.5 indicates the presence of positive correlations in the time series.

For the spontaneous activity in cortex slice cultures, the fluctuation function tends
to follow either of the representative behaviors that we present in Fig. 6. The first
one (Fig. 6a) corresponds to the culture whose inter-event time distribution is dis-
cussed in Sect. 3, and exhibits a peculiar structure characterized by a power-law with
an exponent H � 0.8 for n < T0, a crossover to a short flat region at n � T0, and
again a power-law regime with H � 0.8 up to n = T1. For n > T1, the fluctuation
function becomes completely flat. We begin the analysis of this complex behavior
by discussing the plateau for n > T1. According to previous studies on the effects of
specific trends on the scaling behavior of the r.m.s. fluctuation function [44, 45], this
plateau is due to the peculiar periodic structure of the signal that can be clearly rec-
ognized in the integrated signal I (t) (Fig. 6a, lower inset) and in the average network
activity as a function of time (Fig. 6b, lower panel). Furthermore, the auto-correlation
(Fig. 6a, upper inset) shows a clear peak around T1 = 50 s, that approximately cor-
responds to the length of the period observed in I (t) (Fig. 6a, lower inset).

Inside this fundamental cycle one can easily identify a further periodicity at T0 �
1s (Fig. 6a, upper inset), that corresponds to the characteristic duration of down-states
(Fig. 4) [14, 34]. Following Refs. [44, 45], this periodic trend could be responsible
for the crossover observed in the fluctuation function at n � T0. Indeed, this kind of
crossover between two regimes with approximately the same exponent H , has been
associated with either periodic trends [44] or non-stationarities [45] in an otherwise
long-range correlated signal, such as long segmentswith zero amplitude. In the signal
we consider here, zero amplitude segments correspond to down-state durations and
have indeed a characteristic length of about T0. As pointed out in Refs. [44, 45],
the correlation features of the ‘clean’ signal dominate for n << T0 and n >> T0.
Hence, this behavior confirms the presence of strong correlations in the up-states, i.e.
n < T0, and, at the same time, reveals that temporal correlations extend over a much
longer range, spanning the entire period T1. Interestingly, the investigation of the local
behavior of the signal and its evolution over time (Fig. 6b), shows that the exponent
H fluctuates between 0.7 and 0.8 and closely follows the periodic behavior of the
network activity, being larger when the network activity is more intense (Fig. 6b).
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Fig. 6 Detrended fluctuation analysis of spontaneous activity for two representative samples of
cortex slice cultures. The logarithm logF(n) of the r.m.s. fluctuation function is plotted versus
the logarithm logn of the window size n. a F(n) for the network activity V (t) corresponding to
the experimental inter-avalanche time distribution (blue curve) shown in Fig. 4. T0 indicates the
characteristic duration of down-states, while T1 refers to a longer periodicity that may appear in the
activity of cultures [14]. Upper inset: Auto-correlation of the network activity V (t); Lower inset:
Integrated activity I (t). Vertical red lines delimit the period T1. b Upper panel: DFA performed
using a sliding window T = 200 s with a step of 1 s. H is estimated in each window with a least
square fit. Lower panel: Average network activity in consecutive sliding windows T . c F(n) for the
activity of a culture that only exhibits the periodicity related to the alternation of up and down-states
[34]. T0 indicates the characteristic duration of down-states. Upper inset: Auto-correlation of the
network activity V (t); Lower inset: Integrated activity I (t). d Upper panel: DFA performed using
a sliding window T = 300 s with a step of 1 s. H is estimated in each window with a least square
fit. Lower panel: Average network activity in the sliding window T

In Fig. 6c, we show a second representative behavior observed in the r.m.s. fluc-
tuating function of culture network activity. In this case there is only one peak in
the auto-correlation at τ = T0 � 600ms (Fig. 6c, upper inset), which corresponds
to the characteristic down-state duration of the sample, and F(n) exhibits a first
crossover at n � T0 from a region with H � 0.75 to one with H � 0.4, followed by
a second crossover to the power law regime with H � 0.75 (Fig. 6c). As for the first
representative case (Fig. 6a), we observe that the short and long timescale behavior
of the fluctuation function are very similar, which suggests that the network activity
features long-range temporal correlations transcending up-state durations. Similarly
to the scenario in Fig. 6a, here the short and long-range power law scaling of F(n)

are separated by a crossover that starts around n � T0. However, the interpretation
of this extended crossover to a region with H � 0.4 is more delicate. On the one
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hand, it seems to be related to the down-state duration T0, as discussed above. On
the other hand, the analysis of the local behavior of the signal (Fig. 6d), evidences
the presence of anti-correlated segments with H � 0.4 (Fig. 6d, upper panel). To
better understand the origin of the crossover at n � T0, we have repeated the DFA
in segments of the signal with and without anti-correlations. In both cases, we have
found a very similar behavior for 103 < n < 104 as in the F(n) averaged over the
entire signal, which suggests that again the crossover at n � T0 has to be associated
with the rhythmic alternation between up and down-states.

In summary, although the presence of periodic trends and non-stationarities gives
rise to crossovers and non-constant scaling exponents, the DFA indicates that tem-
poral correlations extend beyond the duration of a single up-state and transcend the
down-state time scale. As suggested by numerical simulations, the crossover located
around the characteristic time of the down-state may be indicative of a change in the
nature and intensity of correlations in the down-state. To better understand this last
point and provide a more refined characterization of the temporal structure of the
intrinsic activity, in the following Section we introduce a method to systematically
investigate the relation between avalanches and inter-times.

5 Conditional Probability Analysis

The DFA represents a preliminary approach in the query for temporal correlations
in neuronal signals. As we have seen above, DFA can provide information about
the nature of the correlations and help in identifying distinct dynamical mechanisms
that operate on specific timescales. However, this approach does not allow to inves-
tigate the temporal organization of the process, namely the correlations between
the avalanche sizes and their occurrence times. In order to address this question, we
apply a powerful statistical method to the temporal sequence of neuronal avalanches,
where avalanches are characterized by their size si , their starting and ending time, t ii
and t fi , respectively.

The method, developed for the analysis of seismic catalogs [46], is based on
the analysis of conditional probabilities on real and surrogate data. Specifically,
here we evaluate the probability P(si+1/si > λ|Δt < t0) to observe two consecu-
tive avalanches with size ratio si+1/si > λ under the condition that their temporal
separation Δt = t ii+1 − t fi < t0, where λ and t0 are parameters. For each couple of
parameter values, we evaluate the same probability in temporal sequences where
avalanche sizes are reshuffled in time by keeping their occurrence times fixed. Since
in reshuffled sequences avalanche sizes are uncorrelated by construction, the condi-
tional probability P evaluated for several realizations of reshuffled sequences follows
a Gaussian distribution, whose average value P∗ and standard deviation σ depend
on the parameters λ and t0 [41]. Then, we compare P(si+1/si > λ|Δt < t0) with P∗
by considering the difference δP = P(si+1/si > λ|Δt < t0) − P∗ for each couple
of parameters. If |δP > 2σ |, we conclude that non-zero correlations exist between
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the size of avalanches separated by Δt < t0, and distinguish two cases: δP > 0 and
δP < 0. In the first case, it is more likely to observe two consecutive avalanches dis-
tant in time Δt < t0 with a size ratio si+1/si > λ in the original avalanche sequence
rather than in a reshuffled sequence. This indicates that consecutive avalanche sizes
are positively correlated. Conversely, we say that consecutive avalanches are anti-
correlated if δP < 0, meaning that it is more likely to observe two consecutive
avalanches distant in timeΔt < t0 with a size ratio si+1/si > λ in a random sequence
rather than in the original one.

In Fig. 7a we plot δP averaged over seven samples of cortex slices as function
of λ for different values of the temporal distance t0. Data show that the intensity of
correlations depends on t0 since curves clearly separate and the amplitude decreases
if farther in time avalanches are included in the probability evaluation. Themaximum
of the conditional probability indicates the most probable size ratio for different t0.
Interestingly the same analysis performed for other stochastic processes, as earth-
quakes and solar flares, provides a maximum position not changing as t0 increases.
Conversely, we observe that, if two consecutive avalanches have a temporal distance
smaller than 100ms, the maximum is located at λ < 1, indicating that the second
avalanche tends to be smaller than the first one. By increasing the temporal dis-
tance, the maximum drifts towards the region λ > 1, implying that for consecutive
far-in-time avalanches, the second one tends to be larger.

This complex temporal organization can be understood in the context of the alter-
nation of up anddown-states pointed out inSect. 3. In the up-state avalanches are close
in time and their sizes are correlated. Due to the longstanding activity, avalanche sizes
tend to gradually decrease. Conversely, far-in-time avalanches occur after a down-
state, during which the system is able to recover resources and then trigger larger
avalanches.

Crucially, for disinhibited cultures (PTX) this temporal organization is strongly
altered [41], and individual cultures may exhibit either single or multiple peaks in

Fig. 7 a The quantity δP(si+1 > λsi ,Δti < t0) as a function of λ for different values of t0 in
normal conditions. The bar on each data point is 2σ . Each curve represents an average over all
experimental samples. Inset: The ratio |δP|/σ as a function of λ for different values of t0. The
magenta horizontal line indicates the value 2σ . b The same quantities for disinhibited cultures
treated with PTX
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δP . As a consequence, the group average shown in Fig. 7b exhibits multiple peaks
located at different values of λ. Importantly, all analyzed cultures exhibit a maxi-
mum for λ > 1 that is nearly independent of t0, evidencing that in the disinhibited
condition, the avalanche process is extremely unbalanced, and an avalanche can
be considerably larger than the previous one, independently of their time separation.
These observations further suggest that the temporal structure of neuronal avalanches
is the signature of a healthy system, and is controlled by fundamental biomolecular
mechanisms.

The same analysis can be performed on neuronal signals from systems at larger
scale, for instance to study correlations between large events in the brain blood
oxygenated level dependent (BOLD) signal measured by fMRI on healthy patients
[47]. The activity B(ri , t) is monitored at each voxel i as function of time. Data
are recorded in time every δt = 2.5 s, therefore time is measured in units of δt . The
study focuses only on extreme activity events and therefore analyzes voxels forwhich
B(ri , t) is larger than a given threshold Bc = 18,000, value that selects the largest
10% of the entire activity range. The below-threshold values are substituted by zero.
Rather than the activity itself, the interesting quantity is the activity variation at each
voxel, si (t) = B(ri , t + δt) − B(ri , t), which can have positive and negative values.
Following the same procedure outlined before, δP = P(Δs < s0|Δt < t0) − P∗
measures the probability to observe the difference between successive variations
occurring at any couple of voxels l and m, Δs = sm(t ′) − sl(t) < s0, at a temporal
distance Δt = t ′ − t < t0, compared to a reshuffled, uncorrelated sequence. To pro-
vide amore detailed information, data can be analysed by separating the four different
cases of successive variations having the same/opposite sign. This study evidences
[47] that successive variations with the same sign (both positive or both negative)
are anti-correlated over a short time scale, i.e. less than few seconds, and they are
uncorrelated over longer time scales. Conversely, consecutive variations with oppo-
site sign appear to be strongly correlated over the time scale of few seconds (Fig. 8).
The overall analysis suggests that successive activity enhancements or depressions

Fig. 8 The quantity δP(s0, t0) as a function of s0 for t0 = 5, 25, 125, 175, 225s. For each t0 and
s0 the error bar is the standard deviation σ(s0, t0). Different panels consider different combinations
of successive variations with opposite sign
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are very unlikely if close in time, and completely uncorrelated over longer temporal
scales. Conversely, decreasing activity in some voxels triggers activity enhancements
in other voxels after a short time delay, and vice versa. Variations of different signs
show, indeed, a strong evidence of correlations suggesting that the system activity
realizes a sort of homeostatic balance compensating local enhancements and depres-
sions.

6 Conclusions

In this reviewwe have presented a number of statistical analyses of experimental data
aimed at understanding avalanche dynamics in neural networks through the study
of temporal correlations. We focused on spontaneous local field potential activity
recorded in cortex slice cultures, and on the resting fMRI BOLD signal. In order
to achieve a deeper comprehension of the microscopic mechanisms leading to the
temporal organization observed at the macroscopic scale, we compare experimental
results to numerical simulations of a network of integrate and fire neurons. A first
achievement of numerical simulation was the identification of the crucial role of
inhibition in the scaling behavior of the EEG power spectra. We have shown that the
PSD follows a power-law whose exponent scales with the percentage of inhibitory
synapses, and tends to 1/ f noise for a percentage of about 30%, a value usually
estimated for mammal brains. Conversely, fully excitatory networks exhibit 1/ f 2

PSD, i.e. brown noise, which suggests that long range correlations can be obtained
only if a certain level of inhibition is present in the network [24]. These evidences
indicated that the frequency spectrum of resting brain activity may be controlled by
the ratio between excitation and inhibition, and could be used as a tool tomeasure this
ratio experimentally, asmore recently shown in [48], and thus investigate pathological
conditions. Indeed the analysis of the PSD in epileptic patients provides a scaling
exponent close to 2,while in healthy subjects it generally falls in the interval [0.8,1.4].

We further investigated the role of balanced excitation and inhibition focusing on
the sequence of avalanches [14, 34] in normal and disinhibited condition. Within
this approach, avalanche activity is considered as a point process and attention is
shifted to the time elapsed between successive avalanches, i.e. the inter-event time.
The analysis of inter-event times is widely used to investigate temporal correlations,
which are often associated with the presence of a power-law regime in the inter-
event time distribution. For instance, in seismology such distribution behaves as a
Gamma distribution, where the initial power-law decay is the expression of correla-
tions in earthquake occurrence due to aftershock sequences triggered by large main-
shocks. In spontaneous activity of rat cortex slice cultures, we consistently observe a
power-law regime that indicates significant temporal correlations between consecu-
tive avalanches over a temporal range of several hundreds of milliseconds. However,
the general functional behavior is more complex than a Gamma distribution, since
the inter-event time distribution exhibits non-monotonicity and a characteristic inter-
event time of about one second. Numerical simulations are able to provide insights
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into this peculiar behavior, and show that the underlying avalanche dynamics results
from the alternation of up and down-states, corresponding to long bursts and quies-
cent periods, respectively. The crucial observation is that data from different samples
are reproduced by numerical simulations if the ratio of the two parameters controlling
those two distinct network states is tuned to the same, “optimal” value. This ratio
controls the dynamic balance of excitation and inhibition that is realized by the alter-
nation of high and low activity periods, and goes beyond the structural inhibition,
i.e. the percentage of inhibitory synapses. The combined influence of dynamical and
structural inhibition on the PSD of the network activity will be subject of upcoming
studies. In this reviewwe have shown that unbalanced excitation disrupt the temporal
organization of avalanches and alters the functional form of the inter-avalanche time
distribution, at the same time moving the system away from criticality. These con-
clusions are supported by a remarkable agreement with ours and other experimental
results [49]. Indeed, the comparison of critical and disinhibited, supercritical cultures
evidences the same changes observed in numerical simulations [50].

The analysis of inter-event time distributions has also shown that avalanche occur-
rence preserves the temporal features of θ and β/γ oscillations [14], and has uncov-
ered a hierarchical structure where large avalanches occurring with θ frequency
trigger cascades of smaller avalanches corresponding to the higher frequency oscil-
lations, reminiscent of the temporal organization of nested θ − β/γ oscillations [51].
Remarkably, our analysis showed that characteristic brain rhythm time scales do not
imply characteristic avalanche sizes, and indicates that different rhythms interact and
organize in time as avalanches with scale-free size. The connection between nested
oscillations and neuronal avalanches has been also pointed out in [3]. Investigation
of spontaneous neuronal activity in the rat cortex layer 2/3 has shown that bursts
develop a temporal organization of higher frequency oscillations, β and γ , nested
into θ oscillations, while the spatio-temporal organization of LFPs is characterized
by the scaling behavior of neuronal avalanches.

The self-regulated balance of excitation and inhibition is widely considered as
a fundamental property of ‘healthy’ neural systems. Pharmacological alterations of
this balance can drive those systems to a pathological conditions and thus away from
criticality, as seen above. Such kind of perturbation not only influences the avalanche
statistics, as previously reported [49], but determines a general reorganization of
avalanches in time, as we discussed here. In order to address this point, we used a
technique that compares conditional probabilities evaluated in real and reshuffled
time series, particularly suitable for understanding the relationship between bursty
and quiescent periods [12, 41]. In a recent study we have shown that suppressing
inhibition disrupts the relationship between bursts and quiescence that characterizes
cortical networks at criticality. In particular, while in the critical state longer recovery
periods are needed for the system to generate large avalanches, in the disinhibited
condition large avalanches also arise after short periods of quiescence [41]. As a
consequence, in critical cultures an avalanche tends to be smaller than the preceding
one in the up-states, i.e. for Δt shorter than about 200 ms, and viceversa when the
time separation is larger, namely when two avalanches are separated by a down-
states. In the case of network disinhibition, this organization is strongly altered and
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an avalanche can be considerably larger than the previous one, independently of their
time separation.

Overall, the study of inter-event time and their relation with avalanche sizes
reveals basic features of avalanche dynamics: Temporal correlations are certainly
relevant in the up-states, and the analysis of conditional probabilities indicates that
also avalanches belonging to consecutive up-states, namely separated by a down-
state, are correlated, although the nature and strength of their correlation may be
different. The detrended fluctuations analysis confirms these conclusions and indi-
cates that network activity is long-range correlated. The r.m.s. fluctuation function
is generally characterized by the same scaling exponent at short and long timescale,
H � 0.8, and these two power law regimes are separated by a crossover to a region
with H � 0.5. This crossover is always located around the characteristic time of the
down-state and may be a consequence of a change in the nature and intensity of
correlations in this network state [44, 45].

Finally, we have shown that balanced network activity can be also recognized at
larger scale, in the fMRI BOLD signal [47]. Variations in the signal at each voxel
exhibit clear correlations in time: A local increase in activity is followed by a close
in time decrease in activity at other voxels and vice-versa. Therefore, at different
scales, for different neuronal systems and signal kinds, results consistently indicate
that healthy neuronal systems self-regulate the dynamic balance of excitation and
inhibition, which is the expression of relevant temporal correlations in network activ-
ity. Balanced networks exhibiting critical avalanche dynamics are able to accomplish
tasks, as learning Boolean rules and multi-task learning, characterized by properties
observed in real systems [10, 11]. Criticality could therefore play an important role
in the optimal response to external stimuli, in information processing, and in the
functional performances of neuronal systems in general.
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Playing at the Edge of Criticality:
Expanded Whole-Brain Repertoire
of Connectome-Harmonics
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Abstract In order for us to survive, our behaviour has to be perched somewhere
between stability and flexibility, or between exploitation and exploration of avail-
able resources. This requires the underlying spatiotemporal brain dynamics to be
delicately balanced between order and disorder, drawing upon a large repertoire of
available brain states. Beyond survival, in order to thrive the brain has to be suf-
ficiently flexible to be able to seek novel trajectories and expand the dynamical
repertoire. Here we propose that a key ingredient could be play, the active explo-
ration of novelty beyond exploiting existing potentially scarce resources. Using a
novel analysis method called ‘connectome harmonics’ we not only demonstrate that
brain activity resides close to criticality—at the delicate balance between order (sta-
bility) and disorder (flexibility)—but this whole-brain criticality is also intrinsically
linked to oscillatory brain dynamics. We show that compared to wakefulness, other
conscious states are related to different connectome-harmonic repertoires and differ
in their proximity to criticality, where the critical regime may enhance the ability
to flexibly seek new brain states. In particular, we propose that these brain dynam-
ics may underlie the creative process found in play and improvisation, and as such
may shed new light on discovering how the brain optimizes the balance between
exploitation and exploration needed for behavioural flexibility.
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1 Introduction

What are the conditions in the brain that allow for the optimal behavioural flexibility
including creativity; for the creation of valuable novelty in behaviour and thought?
Here we propose that play, i.e. the engagement in activities with freedom to explore
and predict the outcomes without a specific, enforced final goal, may provide one of
the best routes to allow creativity to flourish. Play can provide stability and flexibility,
which are necessary not only for creativity but also for the emergence of complexity
and complex behaviour in dynamical systems. Play imposes the necessary structure
and stability while also allowing freedom to explore and is found in all mammalian
species, although it does seem to be optimally expressed in humans; not just in
childhoodbut also later in scientific and artistic expression such asmusic. Similarly, at
criticality, complex dynamical systems also try to attain the optimal balance between
two opposing forces, between organization and flexibility, between order and chaos,
between integration and segregation and between regularity and randomness.

The critical regime, where two opposing processes are balanced [1], enables the
essential dualism necessary for complex dynamics; i.e. certain amount of stability
(order) for coherent functioning and certain degree of disorder to enableflexibility [2].
Notably, criticality has also been proposed to underlie the resting state dynamics of
healthy human brain. Due to its various functional advantages; e.g. larger capacity for
information encoding [3] and faster information processing [3, 4], criticality stands
out as an important necessary candidate mechanism in the dynamics of spontaneous
activity and cognitive function of the brain.

Generally, the key characteristic of criticality manifests itself in certain statistical
properties [2].A fundamental prerequisite for critical dynamics is that the distribution
of observables and their fluctuations follow power-laws indicating a scale-free orga-
nization [2, 5]. Remarkably, supporting the hypothesis that brain dynamics reside
at the edge of criticality, experimental studies have revealed this key characteristic
of critical dynamics—the power-law distributions—in large scale brain networks
in functional magnetic resonance imaging (fMRI) [6, 7], electroencephalography
(EEG) [8–10], magnetoencephalography (MEG) [6, 8, 10, 11] and intracranial depth
recordings in humans [12] as well as in numerical simulations of computational
models of brain dynamics [13, 14], mostly with small deviations from criticality to
the subcritical (ordered) regime. Although diverse generative mechanisms can give
rise to power-law distributions [15–17], the observation of power-laws in multiple
observables with consistent exponents at various scales of neural activity ranging
from neuronal avalanches (bursts of activity) measured in LFP to large-scale brain
activity as well as in numerical simulations of various computational neural models
[13, 14] provide strong evidence for the hypothesis that brain dynamics reside at the
edge of criticality.

Despite this growing body of experimental and theoretical evidence, however, the
relation between the critical dynamics in the brain and one of the most fundamental
characteristics of human brain activity—spontaneous cortical oscillations—remains
poorly understood. Here, we review findings of a novel analysis on functional neu-
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roimaging data using harmonic brain states, which not only reveals signatures of
criticality in brain activity but also illustrates the crucial link between whole-brain
criticality and neural oscillations. To this end, we take advantage of a newly intro-
duced technique, i.e. ‘connectome harmonics’ [18], to decompose brain activity into
the activation of a set of brain states [19]. Remarkably, when expressed in terms of
these harmonic brain states (connectome harmonics), the power-frequency distribu-
tion of the dynamical repertoire observed in functional magnetic resonance imaging
(fMRI) data follows power-laws for all power-frequency relations. These findings
firstly provide confirming evidence for the hypothesis that whole-brain criticality
underlies brain activity in resting state. Secondly, the connectome harmonic decom-
position reveals that brain activity in an altered state of consciousness, the psychedelic
state, exhibits a closer fit to power-laws implying that these pharmacological alter-
ations may tune brain dynamics closer towards criticality and in fact the proximity
of brain dynamics to criticality may be crucial for understanding the neural signa-
tures of different mental states. More importantly, the implicit link of these harmonic
brain states; i.e. spatial patterns of synchronous neural activity on the cortex, to the
frequency of temporal oscillations, establishes the missing link between whole-brain
criticality and oscillatory brain dynamics.

2 Oscillations, Synchrony and Harmonics in Brain Activity

A fundamental aspect of the mammalian brain activity persistent across various
anatomical scales is coherent oscillations. The cortical oscillations of the mam-
malian brain range approximately from 0.05Hz to all 500Hz [20], which are notably
coherent among spatially distributed cortical regions. For instance, the discovery
of strong temporal correlations within widely distributed cortical regions in spon-
taneous slow (<0.1Hz) fluctuations of the blood oxygen level dependent (BOLD)
signalmeasuredwith fMRI has revealed that human brain at rest exhibits a large-scale
spatiotemporal organization into distinct networks. These networks, termed resting
state networks (RSNs), show synchronous fluctuations of neural activity [21–23].
Remarkably, the topography of these functional connectivity patterns closely resem-
bles the functional networks of the human brain identified by various sensory, motor,
and cognitive paradigms [22] suggesting the important functional significance of
these oscillatory networks.

How do the spatially distributed parts of the human brain exhibit synchronized
activity over time and is there a fundamental principle that predicts which anatomical
regions will exhibit such synchrony? In other words, can one predict the particular
shape of these oscillatory resting state networks? Recently, it has been demonstrated
that the spatial patterns of resting state networks were in fact predicted by the har-
monic waves emerging on the structural connectivity of the human brain; i.e. the
human connectome [18].

Harmonic patterns are ubiquitous in nature emerging as building blocks of pat-
tern formation in various physical and biological phenomena: standing wave pat-
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terns emerging in sound-induced vibrations of a guitar string or a metallic plate (first
demonstrated as complex sand patterns by Chladni [24]), patterns of ion motion
emerging from electro-magnetic interactions [25, 26], electron wave function of a
free particle given by time-independent Schrödinger equation [27, 28] and even pat-
terns emerging in complex dynamical systems such as the reaction-diffusion models
introduced by Turing [29], which can explain various instances of biological pattern
formation [30]. To gain a more intuitive understanding of the emergence of these har-
monic patterns, consider the simple and famous example of vibrating metal plates.
Every vibrating system, such as a musical instrument or even a simple metal plate,
has certain preferred frequencies, called natural frequencies. When the system is
excited at one of its natural frequencies, it vibrates, forming standing wave patterns.
As firstly illustrated by Ernst Chladni in the 18th century, even a simple metal plate
can form these standing wave patterns [24], where each point on the metal plate
oscillates up and down with the same frequency (Fig. 1).

Notable, in this simple example of resonance or synchronization phenomena, the
shape of the standing wave (i.e. pattern of synchronous oscillations) is determined
by only two factors; (1) the activated natural frequency and (2) the shape of the metal
plate. When a different natural frequency is activated, the forming standing wave
pattern changes automatically. Furthermore, the emerging standing wave patterns
naturally adapt their shape to the boundary conditions posed by the geometry of
the metal plate. Each of these harmonic patterns—the standing wave patterns—
provides a mode of vibration, in which the whole system; i.e. the metal plate, is fully
synchronized. Hence, the harmonics can be seen as the fully synchronous modes of
oscillations.

Mathematically, these harmonic patterns are given by the eigenfunctions of the
Laplace operator, which lies at the heart of theories of heat, light, sound, electricity,
magnetism, gravitation and fluid mechanics [32]. The Laplace operator is defined
as the combination of two differential operators; i.e. the divergence of the gradient,
which in Cartesian coordinates corresponds to the sum of second partial derivatives.
The spectral decomposition of the Laplacian yields a set of eigenfunction-eigenvalue
pairs (Eq.1):

�ψk = λkψk, with 0 < λ1 < λ2 < · · · . (1)

The eigenfunctionsψk of this spectral decomposition are the solutions of the time-
independent (standing) wave equation (known as Helmholtz equation) yielding the
spatial patterns of synchronous oscillations in standing waves and the eigenvalues
relate to the frequencyof oscillation. Interestingly,when applied to a one-dimensional
domain with circular boundary conditions, the Laplace eigenfunctions correspond to
the sine and cosine functionswith different frequencies, i.e. to thewell-knownFourier
basis (Fig. 1). Furthermore, the spherical harmonics, which have been commonly
used in shape and geometry processing and recently been proposed to underlie human
brain activity [31], also correspond to the eigenfunctions of the Laplace operator on
a sphere (Fig. 1). Notably, application of the graph theoretical counterpart of the
Laplace operator, the graph Laplacian, to the human connectome has also enabled
the computation of these harmonic patterns on the particular structural connectivity
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Fig. 1 Harmonic patterns. a Harmonics, i.e. eigenfunctions of the Laplace operator applied to a 1D
domain yield the sine and cosine functionswith different frequencies, which provide thewell-known
Fourier basis. b Standing wave patterns emerging on vibrating metal plates, firstly illustrated by
Chladni [24], are also described by the eigenfunctions of the Laplacian. c The eigenfunctions of the
Laplace operator applied to a sphere reveal the spherical harmonics, which have been intensively
used in shape and geometry processing. Furthermore, close analogs of spherical harmonics, i.e.
harmonics of the cortical surface, have recently been also proposed to underlie human brain activity
[31]

of the human brain [18] (Fig. 2). Importantly, due to this implicit relation, connectome
harmonics provide a connectome-specific extension of the Fourier basis [19]. The
same way that any continuous signal can be reconstructed from the Fourier basis,
any pattern of cortical activity pattern, e.g. measured in fMRI or MEG, can also be
decomposed and reconstructed from the set of connectome harmonics [19]. Hence,
the connectome harmonics provide a new function basis, a harmonic language, to
describe brain activity as a combination of fully synchronous patterns of activity,
where each harmonic corresponds to a unique frequency of temporal oscillation and
a unique spatial wavelength [19].
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Fig. 2 Computationof connectomeharmonics.aThehumanconnectomewas formedby combining
the local cortical (gray matter) connections, which encode the particular geometry of the human
cortex, with the long-distance white matter connections. b Connectome harmonics computed as
the eigenvectors of the graph Laplacian—analogous of the Laplace operator in graph theory [33]—
applied to the human connectome. The figure has been adapted from [18]
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A unique feature of connectome harmonic representation is that it enables the
investigation of the temporal evolution of different frequency brain states sepa-
rately [19]. Intuitively, equating each brain state to a connectome harmonic with a
unique temporal frequency and a spatial wavelength and expressing the brain dynam-
ics as the temporally evolving co-activation of these harmonic brain states, is theo-
retically analogous to hearing a musical piece and decomposing it into its musical
notes. As next, we first discuss how synchrony emerges in biological systems and
biological oscillators and then turn our attention to how one can infer what type of
dynamical regime the brain operates from the simple question of what kind of music
is your brain playing.

3 Synchrony in Biological Oscillators

Synchrony does not only occurs in simple physical systems, such as vibrating metal
plates ormusical instruments. Remarkably, biological systems and biological oscilla-
tors also collectively synchronize their activity leading to the emergence of complex,
global patterns. School of fish, or flock of birds synchronize their activity to effort-
lessly move as a group, thousands of fireflies orchestrate their flashing to flash on
and off in synchrony and even thousands of neurons synchronize their firings to give
rise to coherent oscillations throughout the cortex [34]. With its 100 billion neu-
rons interconnected by trillions of synapses, studying the synchrony in the brain is
clearly not as simple as studying the synchrony in vibrating metal plates. In partic-
ular, due to the cooperation and collaboration between the individual elements, the
collective activity of biological systems is governed by non-linear equations; i.e. the
dynamics of the whole system is different than the sum of its parts. However, here
we discuss how simple mathematical tools describing harmonics in linear systems
can be used to study the collective dynamics of macro-scale brain activity and how
synchrony in populations of biological oscillators relates to the physical concepts of
phase transitions and criticality.

Order emerges in the collective behaviour of large biological systems with no
central control; i.e. no part directs the behaviour of any other part. For instance in
school of fish, flock of birds, ant colonies or group of neurons, no individual directs
the behaviour of another but the global pattern of collective activity emerges (self-
organizes) from the interactions between the constituents of the group. How does
such self-organization occur in large, collective biological systems, and in particular
how do large groups of biological oscillators mutually synchronize their activity?

While studying the mutual synchrony in populations of biological systems as a
model of coupled oscillators, Winfree and Kuramoto have separately discovered that
there was a critical value of population diversity at which the amount of synchrony
increased abruptly [34]. Remarkably, in physical systems such abrupt changes in
organization occur at a phase transition; imagine coolingwater. Until the temperature
reaches 0◦, there is no change in the structure of water, the water is liquid and the
water molecules move rather freely. However, at 0◦, at the freezing point, the phase
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transition occurs from liquid to solid and a new form of order is born in the form
of ice. What Winfree discovered in his initial model of coupled oscillators, which
then formed the base of the well-known Kuramoto model, was that for wide range of
values for the diversity of oscillator frequencies, no synchrony occurred until a critical
threshold was reached. Just like during a phase transition, at a critical threshold for
diversity; i.e. sufficient homogeneity in the nature of individual oscillators; Winfree
found that some oscillators spontaneously locked their frequencies and the narrower
the distribution of frequencies became, the more oscillators joined the synchronized
pack [34]. In dynamical systems, when this transition (e.g. freezing water) between
a relatively disordered (e.g. water) and a more ordered state (e.g. ice) occurs at the
critical value of the driving parameter (temperature), the system is said to be at
criticality. Hence, Winfree has discovered that mutual synchronization in coupled
oscillators is analogous to a phase transition, like the freezing of water into ice [34].

It is worth noting that although the example of melting ice provides an intu-
itive understanding of the remarkably sharp transition between an ordered and less
ordered state, which is also a key signature of critical phenomenon, this particular
example belongs to the class of first order (discontinuous) phase transition. Gener-
ally, the critical behavior observed in dynamical systems such as coupled oscillators
is characterized as second-order (continuous) phase transition, where the transition
between ordered and less-ordered states occurs continuously yet with a sharp tran-
sition; i.e. with infinite slope at the critical point [35]. In such critical phenomena,
the correlation length becomes much larger than the range of microscopic interac-
tions, enabling communication across all scales and leading to the emergence of a
collective behavior that is independent of the system’s microscopic detail [35–37].
Furthermore, this diverging correlation length gives rise to striking similarities in
the behaviour near critical point among systems that are otherwise quite different in
nature [35, 37].

In fact, the brain is also hypothesized to work near a phase transition because
criticality enhances information processing capabilities and offers certain functional
advantages [3, 38, 39]. As next, we discuss how whole-brain criticality and the
concept of phase transition relate to the repertoire of (harmonic) brain states and
oscillatory brain dynamics.

4 Whole-Brain Criticality and the Repertoire
of Connectome Harmonics

InWinfree andKuramoto’smodels, when the dispersion of frequencies is sufficiently
reduced, the system abruptly crosses a phase transition threshold and synchronization
emerges [34]. We now extend the concept of frequency spectrum for synchronous
states of brain activity. To this end, we define the brain states—the building blocks
of brain activity—as the connectome harmonics [19] and study the brain dynamics
as the temporal evolution of the repertoire of these harmonic brain states.
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Dynamical system is referred to a system whose state evolves over state space
continuously over time according to a fixed rule.
Steady state in a dynamical system means the system does not change over
time or continuously changes back to the same state. For instance, imagine
placing a pendulum on a table. After swinging back and forth for a period, the
pendulum will come to stillness hanging towards the table. This is an steady
state of the pendulum.
Stability in a dynamical system means perturbations, i.e. slight disturbances,
die out.
In the pendulum example, the state, where the pendulum is hanging with
all its weight at the lowest possible point is also a stable state, as the small
disturbances will die out and the pendulum will return to the same stable
state after the transient period. However, now imagine that the pendulum was
perfectly balanced upwards, with its weight at the top of its circle. Although
this position of the pendulum is a steady state, it is unstable. The pendulum
may stay there if not pushed. However any small perturbation, i.e. a breath of
wind, will push it out of this steady state, making this state unstable.
Attractor in a dynamical system is a state to which the system converges
after initial transient dynamics, for a wide variety of starting conditions of the
system. When the system is close enough to an attractor it will remain close
even if slightly disturbed.
Multistability in a dynamical system refers to the co-existence of multiple
attractors [40].
Metastability in a dynamical system also refers to the co-existence of multiple
attractors [41]. However, unlike in multistability, there are no stable attractors
yielding a form of winnerless dynamics [40].
Bifurcation is an abrupt qualitative change in the system’s dynamics occuring
when one or more parameter pass through critical values, i.e, a small change in
one or more parameters cause a qualitative change in system dynamics [41].
Criticality is the critical point (i.e. critical value of an order parameter in
a dynamical system), at the brink of a bifurcation, where a stable state is
becoming unstable and the system displays certain characteristic dynamical
features, of which most are related to enhanced fluctuations [41]. At criticality
the systems attractor(s) is(are) only weakly stable [40].

Similar to the temporal activity of generic dynamical systems, the functional
complexity of brain activity can also be studied in terms of its spatial frequency
content: when the connectome-harmonic repertoire (the dispersion of frequencies of
harmonic brain states) becomes narrower, the brain activity becomes more synchro-
nised (like the emergence of a synchronized pack in Kuramoto and Winfree’s mod-
els) and resides in a more ordered regime (like ice in relation to water). At a critical
expansion of the connectome-harmonic repertoire, the brain dynamics can approach
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criticality displaying more complex patterns of activity (combination between a syn-
chronised pack as well as individual asynchronous oscillators in Kuramoto andWin-
free’s models) similar to the dynamics observed at a phase transition (transition of
ice into water).

In computational neuroscience literature, it has already been proposed that the
optimal exploration of the dynamical repertoire of brain states is achieved by maxi-
mizingmetastability; i.e. the variability of the state repertoire [41]. Using aKuramoto
(coupled phase oscillator)model forwhole-brain dynamics, the brain states have been
previously defined as the oscillator phases of a set of brain areas and the metasta-
bility has been measured as the standard deviation of the Kuramoto order parameter
across time, yielding how the synchronisation between the different brain areas fluc-
tuates across time [41–43]. Notably, the concept of metastability is closely related
to criticality. Equating each of these brain states to an attractor, metastability occurs
when the brain dynamics approach criticality, when multiple brain states (attractors)
become unstable (or weakly stable) [41] and co-exist within winnerless dynamics
[40]. As the maximal metastability allows for a full exploration of the rich functional
repertoire of brain states, it has been hypothesized to underlie healthy brain dynamics
[41].

Here, we explore the ideas ofmetastability and criticality in terms of the repertoire
of harmonic brain states; i.e. connectome harmonics [18, 19] and review the exper-
imental evidence from the application of this method to fMRI data showing that the
brain dynamics reside at the edge of criticality. Unlike previous definition of brain
states, such as those in Kuramoto model [41], each harmonic brain state is asso-
ciated with a unique frequency of oscillation and hence the connectome-harmonic
decomposition of brain activity not only reveals the repertoire of brain states but also
the repertoire of (fully synchronised) oscillator frequencies. Furthermore, due to the
implicit link between the Fourier basis and the connectome harmonics [19], as also
discussed in Sect. 2, this decomposition can yield the amount of synchronization and
complexity of brain activity in terms of its frequency (harmonic) content. The fully
synchronous oscillations (such as in resonance phenomena) and no-synchrony (such
as in noisy or chaotic dynamics) become the two extreme tendencies of highly strong
versus no (weak) structural organization in the connectome-harmonic language (see
also the simple illustration of this relation in the temporal domain in Fig. 3).

Like in the temporal domain the Fourier decomposition of a pure oscillation corre-
sponds to a narrow and sharp peak in the frequency spectrum, a strongly synchronous
state of brain activity is associated with the activation of a narrow range of connec-
tome harmonics. On the other extreme, the same way that the Fourier transform of a
noisy or a chaotic signal yields a broad range of frequencies; a highly disorganized
pattern of brain activity would require the activation of a broad range of connectome
harmonics. Right at the edge of criticality; i.e. at the brink of a bifurcation, where the
dynamics transition between the two extreme tendencies of order and disorder, the
system reaches its optimum state repertoire, where structural organization and flexi-
bility of dynamics are balanced. On the other hand, by definition, each connectome
harmonic provides a brain state that exhibits long-range correlation, and provides an
attractor for brain dynamics. A broad repertoire of connectome harmonics, yields a
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Fig. 3 Oscillations and complexity. a Simple harmonic oscillations are composed of a narrow peak
in the frequency domain. b Frequency spectrum following power-laws yields amore complex signal
in the temporal domain. c Amore evenly or randomly distributed frequency content corresponds to
simple noise. Hence, the power-law spectrum can be seen to provide the balance between structure
and randomness, between oscillations and noise

Fig. 4 Connectome-harmonic decomposition and criticality (metastability). Brain dynamics are
proposed to evolve on a landscape of harmonic brain states—connectome harmonic brain states
(or their combinations). The change from a to c; i.e. the flattening of the landscape of attractors of
possible harmonic brain states—illustrates increased metastability occurring when brain dynamics
are tuned further towards criticality. The more equally the probabilities of these harmonic brain
states are distributed, themore likely it is that the brain activity resides at themetastable (winnerless)
dynamics

landscape of multiple metastable attractors, which in turn leads to complex dynamics
of brain activity. Hence, the metastability can be simply estimated as the richness of
the connectome harmonic repertoire. Figure4 illustrates the idea of metastable brain
dynamics in terms of the attractor landscape of connectome harmonics.

In summary, unlike simple physical systems, such as vibrating metal plates, brain
dynamics can be understood as constantly transitioning between the harmonic attrac-
tors over time instead of only oscillating with one of the natural frequencies. Using
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our musical analogy, the brain acts like an orchestra composing a complex musi-
cal piece by constantly activating and deactivating combinations of various musical
notes. Thus, the same orchestra (the brain) could be said to be playing different types
of music in different states such as sleep, conscious awake state and drug-induced
enhanced states of consciousness, such as the psychedelic state. The connectome-
harmonic decomposition of functional neuroimaging data, such as fMRI, allows us
to investigate what kind of music the healthy brain is playing in the conscious awake
state and if the brain dynamics exhibit signatures of a phase transition, i.e. of whole
brain criticality.

In a recent study, we explored the dynamical repertoire of connectome har-
monics in two different states of consciousness; conscious wakefulness and LSD-
induced psychedelic state. It has been previously hypothesized that LSD, a powerful
psychedelic compound, tunes the brain dynamics towards criticality [44]. Remark-
ably, we first found that LSD indeed induced an expansion of the connectome har-
monic repertoire, when compared to the brain activity in the resting state; i.e. to the
brain activity of the control group, who received a placebo instead of LSD, which
does not have any known altering effect on brain dynamics. Notably, this repertoire
expansion did not occur in a random fashion, but exhibit increased co-activation
across different frequencies. Hence, the expended repertoire of harmonic brain states
under LSD is not only indicative of more complex dynamics of brain activity due
increased metastability but the non-random co-activation of harmonic brain states is
also strongly suggestive of the re-organization of a new type of order, similar to that
occurring at criticality.

A fundamental characteristic of systems approaching criticality is the emergence
of power-law distributions between the system’s observables indicating a scale-free
organization [2, 5]. Notably, the connectome-harmonic decomposition of the fMRI
data showed multiple power-law distributions in the relation of activation patterns
of connectome harmonics and their spatial wavelength (Fig. 5). Note that the spa-
tial wavelength of connectome harmonics also relate to the temporal frequency of
oscillations as in the example of vibrating metal plates. The power-law distribu-
tions showed a drop-off at the tail, which indicates a deviation of the distribution
from power-laws and suggests that the brain dynamics reside close to criticality with
slight deviations towards the subcritical regime [12]. This finding is highly consistent
with previous studies that explore criticality in brain activity using neural avalanches
[6–12]. Remarkably, under LSD, the power (amount of activation)-frequency (spa-
tial wavenumber) distribution of connectome harmonics fit power-laws more closely
suggesting that the brain dynamics tune further towards criticality under the effect
of LSD [45]. Hence, the LSD-induced variation in neural activity lead to alteration
of the power-law exponent (steepness of the line) without destroying the power-law
distributions. These findings not only provide supporting evidence for whole-brain
criticality in the healthy resting brain, as also reported by previous studies [6–12],
but also provide the first experimental evidence showing that a pharamcologically-
induced repertoire expansion of harmonic brain states also leads to enhanced sig-
natures of whole-brain criticality, such as power-law distributions emerging in the
harmonic repertoire. Moreover, the definition of the brain states as connectome har-
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Fig. 5 Power-law distributions observed in the power-frequency relations of connectome harmonic
decomposition of resting state functional magnetic resonance imaging data under LSD (cyan) and
placebo (dark blue). Distribution of a maximum power, b mean power of connectome harmonics as
well as c power fluctuations plotted in relation to the frequency (indicated by the spatial wavenumber
of an harmonic pattern) follow power law distributions with a slight deterioration to the subcritical
regime indicated by the cut-off observed in the tail of the distribution. The power-frequency relations
in brain activity under LSD showed both a closer fit to power-laws (i.e. decreased error of fit (ε))
as well as a reduced slope—power-law exponent (i.e. decreased value of power-law exponent (β)).
The figure has been adapted from [45]

monics and the exploration of critical dynamics in terms of the diversity of the
harmonic repertoire, bridges the missing link between oscillatory brain dynamics
and criticality.

5 Discussion

Criticality is poised right at the transition between order and disorder, and as an
organizing principle could offer several functional advantages, which are necessary
requirements for healthy brain dynamics. At criticality, a dynamical system is not
yet as sensitive as in the chaotic regime, where even small disturbances get largely
amplified and can lead to totally unpredictable behaviour of the system. It is also not
as rigid as in the highly ordered state that the system is incapable of change. Hence,
criticality provides a balancing point between these two opposing forces, between
stability and flexibility.

It has been proposed that the critical regime, where two opposing processes are
balanced [1], enables the essential dualism necessary for healthy brain dynamics;
i.e. certain amount of stability (order) for coherent functioning and certain degree of
disorder to enable flexibility [2], where the brain also may obtain the optimal balance
between integration and segregation [46]. Notably, supporting this hypothesis, exper-
imental studies demonstrated one of the key characteristic of critical dynamics—the
power-law distributions—in large scale brain networks in fMRI [6, 7], EEG [8–10],
MEG [6, 8, 10, 11] and intracranial depth recordings in humans [12] as well as in
numerical simulations of computational models of brain dynamics [13, 14].
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Interestingly,while emergence of power laws in brain dynamics has been observed
in different states of consciousness including wakefulness [12], deep-sleep [12],
REM sleep [12] and during anaesthetics induced loss of consciousness [47], crucial
differences in power-law characteristics have been reported for different states [5,
12, 45, 48–50]. In particular, the critical state has been found to slightly deterio-
rated in sustained wakefulness [49] and cognitive load [50] and recovered during
sleep [12]. Sleep, furthermore, has been identified as a potential mechanism to re-
establish the critical dynamics as well as a safetymargin from the potentially harmful
supercritical regime [48]. These findings and theoretical propositions suggest that
even though power-laws could be a feature of neural dynamics, which transcends
levels of consciousness, differences in power-law distributions and the proximity of
these states to critical dynamics are characteristic of different states. Furthermore,
such deviations and subsequent re-emergence of power-laws with changing states of
consciousness and cognitive-load strongly indicate that they originate from critical
network dynamics, ruling out alternative explanations such as filtering or noise [5].

On the other hand, deviations of from the critical point have been also pro-
posed to be symptomatic or causative for certain pathologies [5]. In particular, brain
dynamics in depression [44, 48], addiction [44] and obsessive compulsive disorder
(OCD) [44] have been associatedwith the subcritical regime [44, 48], whereas super-
critical regime has been found to govern brain dynamics during epileptic seizures
[4, 5, 48, 51] and in conditions such as autism [3]. In contrast to epileptic seizures,
pharmacological alterations do not necessarily lead to the diminishment of power-
laws. In particular, alterations in brain dynamics induced by dopamine agonist [52],
dopamine antagonist [53], acetylcholine [54] and LSD [45] have been found to
preserve the power-laws but change its critical exponents (steepness of power-laws).
Take together, these findings strongly support that healthy brain dynamics reside suf-
ficiently close to criticality and the power-law characteristics may be closely linked
to the characteristics of brain dynamics.

In fact, these theoretical propositions and experimental findings become quite
meaningfulwhen considered in terms of the connectomeharmonic repertoire attained
at criticality. As the diversity of the repertoire of brain states is optimized at the edge
of criticality [3], critical dynamics enable the emergence of maximally novel brain
states. On the other hand, each harmonic brain state is by definition a fully syn-
chronous state of oscillation and hence exhibits a high degree of organization (order).
By expanding the repertoire of connectome harmonics, brain dynamics attained at
criticality optimize the trade-off between stability and flexibility.

Interestingly, the balance between the complementary dynamics governing sta-
bility (ordered regime) and flexibility (chaotic regime), attained at criticality, has
also been proposed to underlie the spatiotemporal brain activity in creative thinking
[55]. As the diversity of the repertoire of brain states is maximized at the edge of
criticality [3], maximum number of brain states becomes available for exploration,
which in turn leads tomaximumprobability for novelty and creativity. In otherwords,
critical dynamics enable the emergence of maximally novel brain states within an
ordered (predictable) regime of brain dynamics. Studies revealing the network cor-
relates of creativity provide further supporting evidence for this hypothesis [56]. The
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cooperation of two different types of brain networks; those linked to top-down con-
trol of attention and cognition; salience network (SAL), and the executive control
network (ECN) associated with cognitive control together with the default mode net-
work (DMN) associated with spontaneous thought [56] have been found to underlie
divergent thinking and creative idea production. Hence, criticality, where the balance
between stability (cognitive control) and flexibility (spontaneous thought) is attained,
provides both of the necessary conditions required for creativity.

Surprising parallels emerge between creativity, critical dynamics and the connec-
tome harmonic repertoire in light of themusical analogy once again. To answer ‘what
kind of music your brain is playing, when its dynamics approach criticality?’, let us
compare the LSD-induced psychedelic state, which shows enhanced signatures of
criticality [45] and the wakeful resting state. As discussed above, LSD induces an
expansion of the repertoire of connectome harmonics, which in the musical anal-
ogy corresponds to the use of an increased number of musical notes. Surprisingly,
studies exploring neural basis of jazz improvisation [57] also report that the number
of musical notes played during improvisation is significantly higher compared to
memorized play of the same piece [57]. Hence, the critical tuning induced by LSD
closely resembles jazz improvisation; just like improvising jazz musicians use many
more musical notes in a spontaneous and non-random fashion, the brain combines
many more of the harmonic brain states (connectome harmonics) spontaneously yet
in a structured way, when approaching criticality. Beyond providing an analogy for
intuitive understanding of dynamical changes in the brain, creativity and its under-
lying brain activity, such as observed during musical improvisation, remain yet to be
explored in terms of the changes in the repertoire of connectome harmonics.
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Complexity of Network Connectivity
Promotes Self-organized Criticality
in Cortical Ensembles

Paolo Massobrio and Valentina Pasquale

Abstract Large-scale dissociated in vitro cortical networks spontaneously exhibit
recurrent events of propagating spiking and bursting activity, usually termed as neu-
ronal avalanches, since their size and lifetime distributions can be described by
a power law, as in critical sand pile models. Indeed, this spontaneous activity is
originated by the synaptic interactions among neurons which are able to freely re-
create networks exhibiting complex topological structures. However, experimental
in vitro findings show that mature cortical assemblies not necessarily display a criti-
cal dynamics, but can follow two other different dynamic states, namely sub-critical
and super-critical. Well-known factors that drive the network to these different states
are the developmental stage and the excitation/inhibition balance. In this chapter, we
will investigate the interplay between self-organized critical state and topological
features of the underling cortical network. To investigate the role of connectivity in
driving spontaneous activity towards critical, sub-critical or super-critical regimes,
results achieved by combining both experimental and computational investigations
will be presented and discussed.

1 Introduction

The spontaneous activity originated by the interactions of neuronal assemblies is a
peculiar feature of the vertebrate nervous system [1]. In the cortex, it is characterized
by oscillatory patterns which span different frequencies or rhythms [2], while in
reduced neuronal systems, it is mainly characterized by amixture of spikes and bursts
lasting from tenths to hundreds of milliseconds [3]. Its analysis has revealed that
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cortical networks generate scale-free activation patterns called neuronal avalanches,
supporting the evidence of criticality in the brain. Such experimental findings are
robust and can be found at different level of investigations: neuronal avalanches have
been detected and identified for the first time in acute cortical slices [4] (Fig. 1a), and
later also in organotypic slices [5]. The robustness of such dynamics was confirmed
some years later when the same behavior was found in dissociated cortical cultures
[6] (Fig. 1b). Finally, thanks to the advancements of neurotechnologies that allowed
multi-site in vivo recordings, such a power-law dynamics was also detected in in vivo
experimental models like awake monkeys [7] (Fig. 1c), anesthetized rats [8] and cats
[9] (Fig. 1d), up to the human brain [10].

The panels of Fig. 1 display the avalanches size distributions in different in vitro
and in vivo experimental models. The different colors individuate the avalanches
size distributions as a function of the temporal bin use to detect avalanches. Indeed,
it is relevant for correctly detecting neuronal avalanches, to reduce the time scale of
observation, binning the data according to an optimal time bin derived from the inter-

Fig. 1 Neuronal avalanches are a robust feature of cortical activity. Avalanche size distribution
relative to: a cortical slice (adapted from [4]), b mature dissociated cortical culture (adapted from
[6]), c awake monkey (adapted from [7]), d anesthetized cat (adapted from [9])
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event interval (IEI) distribution.1 It is worth to notice that the different experimental
models show different dynamics in terms of temporal scale of observations: if for dis-
sociated cultures and acute slices 0.2–0.3 and 4 ms are the optimal bin, respectively,
such a values increase for in vivo preparations [7, 9]. In this chapter, we will apply
the self-organize critical (SOC) approach to dissociated cultures. These preparations
are relatively free of predefined constraints and allow neurons to self-organize dur-
ing development, creating a network that exhibits complex spatio-temporal patterns
of activity [11, 12]. Using this experimental framework, it is possible to study how
the spontaneous electrophysiological activity of the network changes and matures
during development [13, 14]. A marked sensitiveness of the spatio-temporal fir-
ing patterns to structural changes in the network during the in vitro maturation has
been extensively demonstrated, showing variations in the burst patterns and also
in the cross-correlation among all pairs of electrodes. Mature cultures (between 21
and 35 days in vitro (DIV)) exhibit a synchronized and distributed bursting activity,
mixed to a highly variable spiking activity (Fig. 4). In 2008, we found that dissociated
cortical cultures, although they are a simplified and reduced experimental model, are
able to present a SOC behavior, typical of the complex systems. Among the possible
factors that could support critical dynamics, the interplay between functional criti-
cal states and topological features of cortical networks remains poorly understood.
Experimental evidences in vitro show that mature cortical assemblies coupled to
Micro-Electrode Arrays (MEAs) not necessarily fall into a critical regime, but can
also show sub-critical or super-critical states [6, 15].

2 Micro-electrode Array (MEA) Technology for Recording
Electrophysiological Activity from Large-Scale Neuronal
Ensembles

Microtransducers based on Micro-Electrodes Arrays (MEAs) have been demon-
strated as powerful tools for recording the electrical activity of networks of neurons
cultured in vitro [16]. Under this experimental condition, neurons are directly cou-
pled to themicrotransducer by a neuro-electronic junction, and the neuronal electrical
activity is then extracellularly recorded [17].

The history of themicrotransducer arrays as extracellular recording devices begins
at the endof the 60s,when thefirstmetalmicroelectrodeswere adopted [18]. In 1980s,
Gross et al. [19] and Pine [20] designed arraysmade up of 32 electrodes able to record
the electrophysiological activity of excitable cells, and validated this approach on

1The IEI is the probability density of time intervals between successive spikes of all the neurons. The
average value of the IEI distribution gives an indication of the average time between two successive
activations of any pair of neurons. Generally, the average IEI is calculated by averaging the values
of the IEI distribution over a predefined time interval whose maximum value is determined as the
average time interval corresponding to more the 99% of the area of the mean cross-correlogram
(averaging cross-correlograms between all possible pairs of neurons).
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neuronal networks. MEAs allow long-term neuron signal recording thanks to their
non-invasive properties and, at the same time, allow applying external stimuli using
the same electrodes. In 1992, Kawana et al. [21], began studying the plasticity in
spontaneous and evoked activity patterns in dissociated rat cortical cultures [21–23].
They induced potentiation or depression in the activity by delivering a fast sequence
of strong stimuli (tetanic stimulation). They demonstrated that it is possible to induce
long-term potentiation (LTP) or depression (LTD) in a pathway-specificmanner [22].
During the years, MEAs have been used for characterizing the response to electrical
stimulation [24, 25], for generating peculiar patterns of activity [12], to study possible
neurotoxic effects [26] up to closed-loop experiments [27, 28].

From a technological point of view, MEAs (Fig. 2) are made of cell-sized elec-
trodes (10–100 μm diameter) placed onto a glass substrate (Fig. 2a). The electrodes,
typically made of Au, Indium-Tin Oxide (ITO), Titanium Nitride (TiN), or black
platinum, are biocompatible, long-term lasting, and have low impedance (less than
500 K� at 1 kHz) for low thermal noise. The MEA surface and electrode leads are
coated with biocompatible insulators (e.g., polyamide or silicon nitride/oxide) which
prevent short circuits with the electrolyte bath. These insulators, again coated with
adhesion molecules such as poly-lysine and laminin, allow and help neuron cou-
pling to the device surface. The low impedance of the electrodes, and the choice of a
correct voltage range to avoid the generation of neurotoxic redox complexes, enable
using them to deliver external stimuli. MEAs are equipped with an internal reference
electrode used to minimize the possibility of pollution that should be caused by the
introduction of an external reference electrode.

The results described in this chapter come from recordings with MEAs made
up of 60 flat round electrodes made of TiN. Tracks and contact pads are made of
Titanium and the insulationmaterial ismade of silicon nitride (Si3N4). The electrodes
are positioned in an 8 × 8 layout grid (Fig. 2b) with four electrodes at the inactive
corner. Electrode diameters are 30 μm with an inter-electrode distance of 200 μm.

Fig. 2 In vitro experimental set-up based on Micro-Electrode Arrays (MEAs). a MEA device;
b dissociated cortical culture coupled to a MEA. c Detail of two microelectrodes
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Dissociated neuronal cultures were obtained from cerebral cortices of embryonic
rats, at gestational day 18. Cells were then plated on MEA surface (Fig. 2b, c), pre-
coated with adhesion promoting molecules (poly-lysine and laminin), at the final
density of 1200–2000 cells/mm2. They were maintained in culture dishes, each con-
taining 1 ml of nutrient medium (i.e. serumfree Neurobasal medium supplemented
withB27 andGlutamax-I) and placed in a humidified incubator having an atmosphere
of 5% CO2 and 95% O2 at 37 °C. Half of the medium was changed weekly. Under
these environmental conditions, cortical neurons showed excellent growth and robust
synaptic connections that allowed to record spontaneous electrical activity from 7
DIV up to 5–6 weeks in vitro.

The extracellularly recorded signals are typically embedded in biological and
thermal noise. Thus, the first pre-processing phase consists in identifying the “re-
al” peaks corresponding to action potentials. Two main routs can be followed: spike
sorting [29] or spike detection [30]. In this chapter, the presented analyses come from
spike trains originated by applying to the raw data ad hoc algorithms of spike detec-
tion. In particular, the analyses presented in Sect. 3 come from spike trains detected
by applying a simple hard threshold voltage (typically set as n-times the standard
deviation of the noise) to the raw data. The results of Sect. 5 have been achieved
by applying a more rigorous algorithm of spike detection based on a differential
threshold, the peak lifetime period of the events, and the refractory period between
two consecutive events [31].

3 In Vitro Cortical Cultures Show Different Dynamical
States During Development

As revealed in the previous section, the use of in vitro dissociated cortical cultures
coupled to MEA allows to monitor the natural development of an assembly. Gener-
ally, it is possible to record the first electrophysiological signals after 7 DIVs. At this
stage, the global dynamics is essentially characterized by a random spiking activity
and only a few short bursts can sporadically appear. Then, the establishment of strong
synaptic connections as well as the maturation of the glutamatergic and GABAergic
system allow to shape the emergent dynamics by increasing the bursting activity and
the level of synchronization of the network [13, 14].

In 2010, Tetzlaff and co-workers characterized the development of in vitro cortical
ensembles in terms of SOC [15]. Figure 3a shows the time course of the avalanches’
size distribution relative to a dataset of 20 cultures. The plotted variable represent
the normalized goodness-of-fit (GoFnorm) of the avalanches distributions; the ideal fit
(corresponding to a power-lawwith an exponentα=−1.5) is represented by the black
dashed lines. Distributions that match or that are close to such a reference curve are
“critical”. Otherwise, if the curve displays a different trend, the exhibited dynamics
can be super-critical when there is an excess of avalanches involving the whole
networkwith respect to the expected number according to a power low distribution or
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Fig. 3 During development cortical assemblies display different dynamical states. a Time course of
the normalized goodness-of-fit (GoFnorm) for evaluating whether the avalanche distribution follows
a power law with −1.5 exponent (dotted line). Red, green, and cyan points indicate super-critical,
sub-critical, and critical dynamics. The initial conditions are marked in black. Squares indicate the
mean values. Data coming from the same preparation are connected by means of a straight black
line. b Morphological characteristics of the model as a function of the development split in three
phases. Trend of the synaptic density (the inset show experimental results) as a function of the
time course. c–d At early stage of development, the model foresees a slight sub-critical and critical
regime. e In phase 2, when we observe a strong increase of the synaptic density, the network display
a super-critical dynamics. f Once the network reaches a firing rate homeostasis (phase 3), a critical
and stable dynamical state appears. Adapted from [15]

sub-critical if distribution of the avalanches follows an exponential decay. Although
the initial state (black dots) presents GoFnorm in the range of [−0.19, −0.38] that
remains up to 19 DIV, suggesting that cortical assemblies develop towards criticality,
we also observed that this behavior is very unstable. After a couple of days, the
avalanches distributions change dramatically towards a super-critical regime (about
22 DIV on average). After 36 DIV (on average) network activity decreases and a sub-
critical regime appears. Finally, in the mature stage of development (at about 58 DIV,
on average) the system becomes stable and ruled out by a power-law distribution,
indication of a critical regime, since the deviation from the ideal −1.5 power law is
close to zero (GoFnorm ~−0.06± 0.17). Such a trend is shared bymost of the cultures
of the dataset, although little deviations can be found: from initial condition (black)
to super-critical (red) to sub-critical (green) and finally to a critical state (blue).

To support such an experimental findings, a computational model has been devel-
oped to verify which morphological variables (e.g., neuron morphology, synaptic
density, connectivity degree, etc.) support this behavior. The model is based on two
opposing mechanisms of axonal and dendritic growth which are regulated in order
to reach the homeostasis of the network firing rate. The first mechanism regulates
dendritic growth probabilities inversely to neuronal activity (firing rate), while the
second is the axonal outgrowth promoted by the activity itself [32].
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Simulating this model, it is feasible to reproduce the initial phase (phase 1) char-
acterized by neuritic growth, followed by first a structural overshoot and pruning
(phase 2), and then by a maturation phase (phase 3) which drives the network to a
stable level of connectivity degree (Fig. 3b). Slowly growing connectivity in phase
1 leads over to the fast building of many synapses and a strong increase in activity in
phase 2 (super-critical regime), while pruning leads to phase 3 with reduced number
of synapses by lowering the activity (critical regime).

The panels c–f of Fig. 3 show four different snapshots of the avalanches distri-
bution of the simulated network during development. Figure 3c, d are relative to
the first phase of development (phase 1) when the synaptic density is relative low:
the network dynamics evolve towards a non-stable critical regime that is destroyed
(phase 2, Fig. 3e) during the maturation stage of the inhibitory system. The network
drifts towards a super-critical state (about 22 DIV). Only in the mature stage (phase
3, Fig. 3f), when the homeostasis of the network firing rate has been reached thanks
to the correct setting-up of the excitatory and inhibitory synaptic connections, the
network becomes critical. Themodel foresees that developing inhibitory connections
is an important factor to reach criticality in developing neuronal networks. Only if
inhibition in the model is lowered (phase 3), the network displays critical dynamics.

4 Not All Mature Cortical Cultures Display Self-organized
Criticality

In large-scale networks developing ex vivo and chronically coupled toMEAs neurons
can freely form synaptic connections and, besides the fact that they grow on a rigid
substrate, they are not constrained by any additional external cues.

As reported in the Introduction, these networks spontaneously exhibit complex
spatio-temporal patterns of activity, characterized by synchronized and distributed
bursting activity mixed with highly variable spiking activity [13]. The raster plots
of Fig. 4, show 60 s of spontaneous activity of three representative cortical cultures
during their mature stage of development.

The electrophysiological activity was recorded without any chemical or electrical
stimulation (i.e., spontaneous activity). The recorded signals ranged from random
spike activity to more complicated and synchronized burst signals. However, it is
qualitatively evident from a visual inspection of the raster plots of Fig. 4 how the
generated patterns of electrophysiological activity present different features in terms
of burst duration, inter-burst interval distribution, level of synchronization, percent-
age of random spiking. This means that in vitro dissociated cortical cultures can
display a rich repertoire of motifs [13, 33].

It is worth to notice that such different electrophysiological behaviors are inde-
pendent from the cell preparation: the three snapshots of Fig. 4 are relative to three
mature cortical cultures coming from the same preparation, plated to MEAs at the
same final concentration (i.e., 1500 cells/mm2), and recorded at the same degree of
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Fig. 4 Raster plots showing 1 min of spontaneous activity of three cortical cultures at DIV 27
recorded by a 60-microelectrodes MEA. Each dot represents a detected spike
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Fig. 5 Firing and bursting statistics relative to a dataset of n= 9mature cortical cultures coupled to
MEAs. a Mean firing rate, i.e., the firing rate relative to each electrode averaged over the all active
electrodes of a MEA; b mean bursting rate, i.e., the bursting rate activity relative to each electrode
averaged over the all active electrodes of a MEA. Data are expressed as mean ± standard error of
the mean

development (i.e., 27 DIV). Figure 5 quantifies the macroscopic dynamics of these
cultures (n = 9) by means of the evaluation of the mean firing rate (MFR) and the
mean bursting rate (MBR) which quantify the frequency of spiking and bursting
activity. Indeed, this wide variety of patterns of activity influence the dynamical
states in which a cortical network can lie.

Once a culture reached the mature stage of development (i.e., fourth/fifth week
in vitro), it shows a preferred dynamical state (critical or quasi-critical, sub-critical
or super-critical). This means that not all cortical cultures evolve towards criticality
during development [6].

In Fig. 6, we reported three examples ofmature cortical cultures (4th and 5th week
in vitro) which show a sub-critical behavior (blue line), critical (red line) and a strong
super-critical (green line) behavior. Although the observed cultures did not share a
common pathway of development, they demonstrate that networks of dissociated
neurons can approach a critical state in the mature phase, giving rise to events of
propagation of activity that corresponds to the description of neuronal avalanches.

Averaging the results of n= 4 different cultures, which displayed a critical behav-
ior in the mature stage, we found an average slope of −1.60 ± 0.09 (mean ± std,
RMSE < 10−3) for the avalanche size and −1.86 ± 0.13 (RMSE < 10−2) for the
avalanche lifetime. Similarly, averaging the results of two sub-critical cultures, a
slope of−2.03± 0.12 (RMSE < 10−3) for the size and−2.45± 0.20 for the lifetime
(RMSE< 10−3) was achieved. Lastly, averaging the results of three super-critical cul-
tures, we obtained−1.88± 0.17 (RMSE < 10−2) and−2.19± 0.16 (RMSE < 10−2),
respectively for the size and the lifetime. Cultures have been clustered as critical,
sub-critical, and super-critical, by the inspection of their avalanches’ distributions
and by the GoF values.

The question that arises after observing these different dynamical states that
mature cortical assemblies can display is whether such different behaviors corre-
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Fig. 6 Dissociated cortical cultures may display different dynamical states, namely sub-critical
(blue), critical (red), and super-critical (green). a Avalanche size distributions. b Avalanche lifetime
distributions. In black dashed, the reference power laws with exponents −1.5 (size), and −2.0
(lifetime) are reported

late with other parameters describing the electrophysiological patterns of activity. It
was found that neuronal avalanches in cultures of neurons are associated with other
parameters describing spiking and bursting dynamics, mainly the degree of synchro-
nization of bursts among different channels and the proportion between spiking and
bursting activity. Super-critical behavior is associated with a high degree of synchro-
nization of bursts among all the electrodes, whereas sub-critical behavior is related
to low synchronization and high percentage of non-clustered activity. Therefore, the
critical state is achieved when spontaneous electrical activity is composed of both
medium-synchronized network bursts [34] and a very small amount of randomspikes.
When the activity is highly synchronized, all neurons fire together and frequently
originate avalanches involving the whole network: in this case, the distribution of
avalanche sizes is bimodal, as in cortical slices after treatment with picrotoxin [4].
Conversely, when the electrical activity is poorly correlated, each electrode fires
independently, and global avalanches occur with a lower probability. A medium-
level synchronization usually corresponds to a nearly critical state, suggesting that
criticality is strictly linked to the degree of connectivity, both in anatomical and
functional terms [35, 36].

Figure 7 show the coincidence index2 CI0 between all pairs of electrodes and the
percentage of random spikes (i.e. the fraction of spikes outside bursts). The former
is a measure of the level of synchronization among all the electrodes, while the latter
measures the proportion between spikes included within bursts and random spikes
outside bursts (in other words, it is an indication of the level of burstiness of the net-

2The coincidence index is defined as the ratio of the integral of the cross-correlation function in a
specified area (e.g., ±1 ms) around the zero bin to the integral of the total area [6].
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Fig. 7 Avalanches’ distributions correlate with different macroscopic dynamics. a Box plots of the
CI0 (indication of the level of synchronization of the network) distributions for sub-critical, critical,
and super-critical cultures; b box plots of the percentage of random spiking activity (i.e., spikes
not belonging to bursts) for the same groups of assemblies. Stars indicate statistically significant
differences (p < 0.05) with respect to the critical condition. Data are expressed as mean ± standard
error of the mean. Adapted from [6]

work). These results correlate with the corresponding distributions of the percentage
of random spiking activity and the coincidence index: in Fig. 7, we reported a box-
plot representation obtained by considering all cultures (4 critical, 2 sub-critical and
3 super-critical) of the dataset. These statistical distributions are different as con-
firmed by statistical tests (ANOVA for ranks, Kruskal–Wallis test3: CI0, H (N =
3356) = 1071.106, p ≤ 0.001; percentage of random spiking activity, H (N = 3264)
= 1112.986, p ≤ 0.001).

Critical distributions of avalanche sizes and lifetimes correlate with average syn-
chronization among electrodes, while sub-critical and super-critical distributions
correspond to low-level synchronization and to high-level synchronization, respec-
tively. In addition, observing Fig. 7b, we noticed that, in those cultures that tend
to criticality, most spikes are concentrated within bursts (i.e. median and 25–75%
percentile values of the proportion of random spikes are lower), whereas the other
cultures have, on average, a less compact bursting activity, more evidently for sub-
critical networks.

3Kruskal–Wallis non-parametric test was applied since the normality assumption was not verified
by the considered dataset (Kolmogorov-Smirnov normality test).
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5 Complex Network Topologies Promote Self-organized
Criticality in Cortical Assemblies

The experimental findings described in the previous section show that in vitro mature
cortical assemblies not necessarily fall into a critical regime, but can also show sub-
critical or super-critical states (Fig. 6). Since dissociated cultures are free to grow
without any physical or chemical constraint, their underlying structural connectivity
is a relevant variable that can push the network towards different dynamical states.
In 2006, Eytan and Marom found that the distribution of firing rates during the
early phase of a network burst (i.e., a network event that involves all the neurons
of a network) can be described by a power law, which is consistent with a scale-
free topology of connectivity [37]. Indeed, this was the first observation relative
to dissociated cortical cultures that postulated an interplay between the exhibited
dynamics and the underling (functional) connectivity.

From that work, and by exploiting the tremendous advances inmultichannel extra-
cellular recording techniques that made possible the simultaneous recording of the
electrophysiological activity of thousands of neurons [38–40], a more precise recon-
struction of the “functional” network organization of neuronal assemblies has been
reached. Nonetheless, also the development of high-computingmethods for inferring
the topological properties of neuronal assemblies [41, 42], as well as the support of
computational models of large-scale neuronal assemblies allowed to find a reliable
interplay between network dynamics and connectivity.

5.1 Scale-Free Networks with Small-Worldness Features
Promote Self-organized Criticality

In this section, we present synthetic results achieved by developing a bio-inspired
computational model reproducing the experimental electrophysiological patterns
of activity of mature in vitro dissociated networks. In particular, we characterized
the interplay between the different dynamic states (i.e. sub-critical, critical, super-
critical) and the underlying network topology.

To achieve such an issue, the morphological network connectivity was modeled
by means of the graph theory [43]. Graphs are made up of nodes which represent the
neurons and edges which model the morphological connections among the neurons.
The structure of the graph is described by the adjacency matrix, a square symmetric
matrix of size equal to the number of nodes N with binary entries. If the element
aij = 1, a connection between the node j to i is present, otherwise aij = 0 means
no connection. All the auto-connections (aii = 1) are avoided. Then, the value 1
of the non-zero aij elements are substituted with numbers representing the different
synaptic weights drawn from two normal distributions (one for excitatory and one
for inhibitory weights). Each node (neuron) of the graph is “replaced” by a neuron
model, whose dynamics is described by the Izhikevich equations [44]:
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dv

dt
= 0.04v2 + 5v + 140 − u + Itot (1)

du

dt
= a(bv − u) (2)

with the after-spike resetting conditions:

i f v ≥ 40mV →
{

v ← c
u ← u + d

(3)

In Eqs. (1–3), v is the membrane potential of the neuron, u is a membrane recov-
ery variable which takes into account the activation of K+ and inactivation of Na+

channels. Equation (4) displays the used values for the four parameters.

a =
[

0.02
0.02 + 0.08ri

]
b =

[
0.2

0.25 − 0.05ri

]
c =

[−65 + 15r2i
−65

]
d =

[
8 − 6r2i

2

]

(4)

In Eq. (4), the first row are relative to the excitatory neurons (regular spiking,
RS), while the second one to the inhibitory (fast spiking, FS) neurons. Although the
network makes use of the class of RS and FS models, a random variable ri (which
spans from 0 to 1) was introduced for each neuron to introduce more variability in
the neuron dynamics: a RS neuron is obtained if ri = 0, whereas if ri = 1, a bursting
neuron is obtained. Such distribution is biased towards RS neuron. Figure 8a, b
display the reproduced patterns of electrophysiological activity.

Figure 8c identifies the permitted connections among the neuronal populations:
practically, excitatory neurons project to excitatory and inhibitory, while inhibitory
neurons can establish synaptic connections only to excitatory neurons.

Fig. 8 Network model features. Electrophysiological patterns of a excitatory regular spiking and
b inhibitory fast spiking neurons. c Sketch of the allowed connections among the excitatory and
inhibitory populations
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The “modes” of connectivity used in the simulations are random and scale-free.
The model of random network (RND) follows the original derivation devised by
Erdős and Rényi [45]. The fundamental assumption of random networks is that,
despite the random placement of links, the correspondent graph is characterized by a
uniform connection probability and a Poissonian/Gaussian degree distribution. The
independent variables for building up a random graph are the number of nodes N
and the total number of edges, with the condition that the minimum number of edges
must be N · log N

2 . In scale-free networks (SF) [46] the degree distribution follows
a power-law: thus, if m is the number of edges which incident to a node (i.e. the
connectivity degree), the power-law distribution is given by [47]:

P(m) = m−γ (5)

where the characteristic exponent γ lies between 1.3 (slice recordings [7]) and 2
(fMRI recordings [5]).

For each RND and SF network topology, we generated 9 different configurations
(labeled from N1 to N9), with an increasing average connectivity degree. Figure 9a
shows the incoming degree (mean ± standard error) for SF (red) and RND (black)
networks. On average, all networks have a comparable incoming degree (similar
considerations can be also done for the outcoming degree); SF networks feature
higher standard deviation values of the connectivity degree, given the presence of a
small number of hub neurons. The inset of Fig. 9a quantifies the percentage of hub
neurons in SF networks which spans from 1.8% in correspondence of the network
N1 to 13.5% (N9). It is worth to notice that the composition of hub neuronsmaintains
the same balance between excitation and inhibition of the entire network, i.e. 30%
of inhibitory neurons.

Figure 9c, d show the degree distributions of SF and RND networks, respectively.
For all SF networks, the degree distribution can be fitted by a power-law (Fig. 9c)
and the corresponding exponent lies between −1.65 and −1.43, with no specific
correlation to the average degree. The degree distributions of RND networks have
been fitted by a Gaussian distribution (Fig. 9d), whose mean value corresponds to the
network average degree. Finally, Fig. 9b shows the values of the Small-World Index
(SWI)4 for the different SF (red) and random (black) networks. As predicted by the
theory, SF networks are always (i.e., for each considered degree) more clustered than
RND ones. However, for high average degrees (i.e., from N4), SF networks present
a value of SWI greater than 1 (dashed gray line in Fig. 9b) suggesting that such a
pool of SF networks have small-world features. In the light of this topology analysis,
the dataset of simulated network models consists of RND networks (N1–N9), SF
networks (N1–N4) and SF with small-world properties networks (N5–N9).

4The Small-World Index (SWI) is defined as: SW I = CCnet
CCrnd

/ PLnet
PLrnd

, where CCnet and PLnet are
the cluster coefficient and the path length of the investigated network; while CCrnd and PLrnd
correspond to the cluster coefficient and the path length of random networks equivalent to the
original network (i.e., with the same number of nodes and links). A SWI higher than 1 suggests the
emergence of a small-world topology.
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Fig. 9 Topologies features of the computational model mimicking dissociated neuronal network
dynamics. a Incoming degree (mean ± standard error of the mean) for SF (red) and RND (black)
networks. The inset shows the percentage of hub neurons in SF networks as a function of the degree
(i.e., from N1 to N9). b Small-World Index (SWI) for SF (red) and RND (black) networks as a
function of the degree. The dashed gray line (SWI = 1) indicate the threshold over that a network
presents small-world features. Degree distribution of c SF and d RND networks for the different
degree (i.e., from N1 to N9). Adapted from [36]

By simulating the aforementioned dataset, it was found that both RND and SF
networks display a mixture of synchronous bursts and asynchronous spiking activity
as in vitro biological preparations display (Fig. 4 and [34, 48]). Figure 10 displays
60 s of activity of two representative SF (Fig. 10a) and RND (Fig. 10b) simulations.

However only SF networkswith SW features display either sub-critical (i.e. show-
ing faster exponential decay) or critical (i.e. power-law) distributions of avalanche
sizes depending on the value of the SWI (correlatedwith network degree). Intuitively,
in SF networks with small-world features the coexistence of short- and long-range
connections, promoting both segregation and integration of information through high
clustering and short path length, should favor the generation of avalanches of all sizes,
and thus a critical behavior [49]. On the other hand, in RND networks, where inte-



62 P. Massobrio and V. Pasquale

Fig. 10 Simulated network dynamics. Raster plots of 60 s of simulated activity relative to two
representative a SF and b RND networks

gration of activity prevails and clusterization is low, only a super-critical behavior
emerges at physiological mean firing rates.

Figure 11 displays four significant examples of avalanche size distributions of two
SF (A) and two RND (B) networks, respectively. Figure 11 shows that by varying
in a wide range the connectivity degree SF networks, the dynamic state varies as a
function of the average degree. Figure 11a shows the avalanche sizes’ distributions
obtained from the simulation of a SF network with incoming average degree of 33.7
± 19.0 (N2, blue line). The power-law behavior is not identifiable and an exponential
drop emerges after about 1 decade.By increasing the average degree up to 93.6± 43.7
(N7, red line), the network shifts to a critical regime characterized by a power-law
relationship (α = −1.61). On the other way round, in RND networks the avalanche
distribution always shows a peak in correspondence to the biggest avalanches after
an exponential decay (Fig. 11b, green lines), indicative of a super-critical state.

To quantify whether SF and RND networks display power-law distributed
avalanches size, we estimated the goodness-of-fit (GOFpower law) by means of the
Kolmogorov-Smirnov (KS) distance.5 For the considered simulations, a significance
threshold of 0.1 was set [50]. P-values are higher than 0.1 only for SF networks with

5It is used to measure the distance between the empirical distribution and the fitted model. When
the p-value is close to 1, the data set is considered to be drawn from the fitted distribution, otherwise
it should be rejected.
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Fig. 11 Avalanche size distributions of SF andRNDnetworks. a SF networks can display both sub-
critical (blue line) and critical (red line) states depending on the average degree. b RND networks
display always a super-critical dynamics (green lines) independently of the average network degree.
The dashed black line identifies the reference slope of −1.5. Adapted from [36]

Fig. 12 GoF evaluated for
SF (red) and RND (black)
networks. The gray line
indicates the p-level value
used to assess power-law
fitting. Data are expressed as
mean ± standard error of the
mean. Adapted from [36]

a medium/high degree (i.e., from N3 to N9, Fig. 12, red squares). On the contrary,
the avalanche distributions of other SF and of all RND networks present a p-value
below 0.1 and thus cannot be considered as ruled by a power-law relationship.

The results of Fig. 12 suggest two main observations: first, RND topologies,
in the simulated physiological regimes, do not promote power-law avalanche size
distribution, even by spanning the incoming average degree in a wide range (from
19.5 ± 4.4 to 97.7 ± 9.1). The second result is that SF networks display a dual
behavior: for low connectivity degrees (N1 and N2), the fitting methods do not
support a power-law model for the avalanche distribution (GoF < 0.1), while for
higher connectivity, the avalanche size distribution approaches a power-law regime
(GoF > 0.1). It is worth to notice that the SF network configurations supporting the



64 P. Massobrio and V. Pasquale

Fig. 13 Level of
synchronization (CI0)
evaluated for SF (red) and
RND (black) networks. Data
are expressed as mean ±
standard error of the mean.
Adapted from [36]

avalanches’ power law distributions are the ones that exhibit small-world features
since SWI > 1 (Fig. 9b).

The presented simulated results correlate with the experimental findings of Fig. 7a
regarding the level of synchronization of the network. Highly connected SF networks
with small-world features are less synchronized than the corresponding RND ones,
thus allowing to achieve criticality (Fig. 13).

The combination of SF and small-world properties is the necessary substrate for
sustaining the network in an “optimal” regime of synchrony and thus allowing a
smooth transition between dynamic states (from sub-criticality to criticality) [51,
52].

6 Conclusions

In this chapter, we presented results coming from the analysis of the sponta-
neous dynamics generated by large-scale dissociated neuronal assemblies coupled
to Micro-Electrode Arrays (MEAs). As Sects. 3 and 4 show, neuronal avalanche size
and lifetime distributions follow a power-law relationship in bi-logarithmic scale.
This is an evidence of Self-Organized Criticality (SOC) that was found in some cul-
tures at a mature stage of development supporting the idea that this behavior is a
universal mechanism that is spontaneously implemented in many neuronal systems
both at in vitro and in vivo level. Such an avalanche behavior is a general dynamics
that applies at different time scales, reflects different hierarchical levels of organi-
zation. The results achieved considering dissociated cultures as biological substrate
suggest that despite its simplicity, such an in vitro model is capable to reproduce
network dynamic behaviors that resemble those found in other in vitro preparations
in which the architecture is partly maintained (i.e. cultured and acute slices [4, 5]).
However, not all the cultures necessarily reach a stable critical dynamics. As Fig. 6
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shows, mature cortical ensembles can display two other possible avalanche distribu-
tions, namely sub-critical and super-critical. Since in this experimental model their
development is free of predefined constraints, every network can be substantially dif-
ferent from the others, in terms of the underlying connectivity (not known a priori).
Therefore, it is not surprising that not all cultures self-organize and reach a critical
state.

The simulations of the model presented in Sect. 5.1 demonstrate that structural
features like the presence of hubs, the physiological balance between excitation
and inhibition, and the concurrent presence of scale-free and small-world features
are necessary ingredients to induce SOC dynamics. The combination of these two
topological properties is the necessary substrate for sustaining the network in an
“optimal” regime of synchrony and permitting a smooth transition between dynamic
states (from sub-criticality to criticality) [51, 52].

The use of high-density MEAs with a large (i.e., thousands) number of electrodes
would certainly confirm the prediction of the model: the use of standard MEAs
with tens of microelectrodes is not enough to correctly infer in a reliable way the
topological properties of a functional network [53]. Future studies should use these
new generation of MEAs to better reconstruct the network organization and study
its role in shaping the emergent dynamics.
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From Neurons to Networks: Critical
Slowing Down Governs Information
Processing Across Vigilance States

Christian Meisel

Abstract The general idea that computational capabilities are maximized at or
nearby critical states related to phase transitions or bifurcations led to the hypothesis
that neural systems in the brain operate at or close to a critical state. Near phase
transitions, a system is expected to recover more slowly from small perturbations,
a phenomenon called critical slowing down. In this chapter we will review and
discuss recent studies that have identified critical slowing down as a pervasive fea-
ture in neural system functioning and information processing across different spatial
scales from individual neurons to cortical networks. First, we will provide an easily
accessible introduction into the theory of critical slowing down with an emphasis
on its scaling laws. Second, we will review experimental work using the whole-cell
patch clamp technique demonstrating how critical slowing down governs the onset
of spiking in individual neurons. The associated scaling laws identify a saddle-node
bifurcation underlying the transition to spiking in pyramidal neurons and fast-spiking
interneurons. We will discuss implications for the integration of synaptic inputs and
neuronal information processing in general. Third, we will review evidence for the
existence of critical slowing down at the cortical network level. Recent studies in
rodents and humans conclusively show that cortex is goverend by long dynamical
timescales expected from critical slowing down that support temporal information
integration but change as a function of vigilance state and time awake. The results
provide novel mechanistic and functional links between behavioural manifestations
of sleep, waking and sleep deprivation, and specific measurable changes in the net-
work dynamics relevant for characterizing the brain’s changing ability to integrate
and process information over time and across vigilance states.
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1 Introduction

In recent years it has become apparent that the concept of phase transitions is not only
applicable to the systems classically considered in physics. It applies to amuchwider
class of complex systems exhibiting phases, characterized by qualitatively different
types of long-termbehavior. Thepertinence of such a framework for brain functioning
goes back to the 1950s when Alan Turing suggested it as a way the nervous system is
afforded the speed and flexibility required for instantaneous reaction to novelty [44].
Since then, the concept of phase transitions has been shown to accurately describe
the behavior of neural systems along different scales, including individual neurons
[15, 37], brain network function [2, 8], the transition between mutually exclusive
motor programs [40] or the on- or offset of disease states such as epileptic seizures
[20, 31].

In the terminology of physics, a system is said to exhibit a phase transition if it
passes a threshold where the emergent macroscopic behavior changes qualitatively.
To characterize this transition, one usually defines an ‘order parameter’ to distinguish
different macroscopic behaviours of the system. Upon variation of an ambient prop-
erty, called the ‘control parameter’, one then investigates how this order parameter
changes. Generally, there is a smooth change in the order parameter as the control
parameter is changed. At certain points, however, the values of the order parameters
undergo a rapid transition, exhibiting a ‘jump’ or sharp turn. At these critical points,
the phase transition occurs, which marks the boundary between different phases. If
the system resides at or near this critical point, it is said to be poised at criticality.
Themathematical analog of phase transitions are bifurcations. Bifurcation theory and
physics have been shown to provide the appropriate tools to quantitatively describe
the rapid transitions observed in many neural systems.

The relevance of phase transitions and bifurcations for neural systems is further
supported by their advantageous functional roles. Being at or near a critical state is
attractive because criticality has been argued to provide computational advantages
in some instances [24]. In the critical states, small changes can have a large effect
on the system. Therefore, a large dynamical repertoire can potentially be explored
at minimal energy expense [12, 19, 41]. Furthermore, at criticality systems exhibit
long-range spatial and temporal correlations which can subserve memory of events
long in the past or across cortical areas far apart. Such properties of critical states
may prove to be advantageous for computation and memory in the brain.

The systematic effects in dynamics that systems exhibit as they are brought closer
to the critical point are usually referred to as critical slowing down. As will be
reviewed in more detail below Sect. 2, critical slowing down in its broadest sense
refers to the tendency of systems to recover more and more slowly from small per-
turbation the closer they get to the critical point [47]. Recent research has provided
important new insights into critical slowing down in theory and experiment. At the
theoretical level, the scaling laws underlying critical slowing down, i.e., how specif-
ically certain system properties change as a function to the distance from the critical
point, could be identified [22, 31]. At the experimental level, critical slowing down
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was observed to occur in different neural systems and across spatial scales. Impor-
tantly, these experimental observations closely matched the theoretical predictions
and, collectively, have identified critical slowing down as a pervasive feature of neural
systems ranging from individual neurons to large-scale cortical networks. As such,
these results provide important insight into neural system functioning and how it
subserves information processing in the brain.

The current chapter aims to provide an accessible overview over these new
insights. The underlyingmotivation is that a thorough understanding of critical transi-
tions and critical slowing downwill be essential to grasp the principles of information
processing in neural systems. We will start by providing an introduction into the the-
ory of critical slowing downwith a particular emphasis on its newly identified scaling
laws. Next, we will summarize experimental evidence of critical slowing down in
biological neurons and its implications for information processing and functioning.
Finally, we will review experimental evidence for critical slowing down at the corti-
cal network level. We will discuss how critical slowing down provides mechanistic
and functional links between behavioural manifestations of sleep, waking and sleep
deprivation, and specific measurable changes in the network dynamics relevant for
characterizing the brain’s changing information processing capabilities.

2 The Theory of Critical Slowing Down

The following section is intended to provide an intuitive and easily accessible intro-
duction to critical slowing down and its scaling laws. Critical slowing down results
from the ever slower recovery from small perturbations when a bifurcation or phase
transition is approached [47]. For demonstration purposes, let us consider a ball in
a two-well potential (Fig. 1, left). Initially the ball sits in one of the two wells. The
bifurcation in this case corresponds to the transition of the ball to the other well,
which is facilitated by slowly changing the potential landscape. Now consider a
small perturbation, for example by kicking the ball a bit, upon which the ball will
roll up and down in the left well, but will eventually return to the bottom of the first
well exponentially fast (Fig. 1, right). As the bifurcation or phase transition, at which
the ball driven by noise fluctuations transitions to the second well, approaches, this
recovery from perturbations becomes progressively slower. This slowing of dynam-
ics upon approaching the bifurcation or phase transition point is the essence of critical
slowing down. Consequently, critical slowing down can be monitored by measuring
the recovery rate of system variables after small perturbations but it also manifests
itself by an increase in its fluctuations, i.e., variance, due to the longer relaxation
times, as well as higher autocorrelation values near the bifurcation [6, 14].

The occurrence of critical slowing down is a natural consequence of a system at or
near a critical phase transition. Over the last years, critical slowing down has attracted
considerable attention in a wide range of systems outside of neuroscience where it
was predominantly studied as a potential warning signal of an impending bifurcation
or tipping point [38]. In many real-world settings, warning signals of impending
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Fig. 1 Schematic
demonstration of critical
slowing down. The ball in
the first well needs longer
and longer to recover from
small perturbations upon
approaching the bifurcation
point, at which the ball
transitions to the second
well. The solid and dashed
lines on the right indicate the
recovery upon perturbations
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critical transitions are highly desirable because it is often difficult to revert a system
to the previous state once a critical transition has occurred [23, 39].

Research over the last years has identified the exact scaling laws of critical slowing
near a bifurcation by studying bifurcation normal forms. Recall that phase transitions
in physics equate to bifurcations in mathematics. Normal forms are model systems
associated with a bifurcation exemplifying the bifurcation type. These normal forms
can be used to quantify how exactly quantities like recovery rates from small pertur-
bations change as the bifurcation point is approached. Critical slowing down and its
scaling can be derived for different bifurcations which correspond to different types
of transitions. For demonstration purposes how these scaling laws can be derived,
consider a saddle-node bifurcation which is a common type of bifurcation where
a stable fixed point loses stability to an unstable fixed point. A normal form of a
saddle-node bifurcation is given by

dV

dt
= y + V 2. (1)

Here, y is the parameter which controls the distance to the bifurcation and which
is approached from the negative side. There are two equilibria V = ±√−y for y < 0
and the saddle-node bifurcation occurs for yc = 0. The equilibrium V− := −√−y
is stable because the linearized system around V− is

dX

dt
= (DV f )(V−)X = −2V−X = −2

√−yX, (2)

where D is the differential. If one assumes y to be quasi-stationary, one may solve
(2) and obtain
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X (t) = X (0)e−2
√−yt . (3)

From Eq. (3) one can see that when dynamics is perturbed slightly away from
the stable equilibrium V− for y < 0 it will return to V− exponentially fast. More
specifically, the exponent by which it returns scales like O(

√−y) in terms of the y-
variable as y ↗ 0. Consequently, the closer one gets to the bifurcation point yc = 0,
the longer it takes to recover from a perturbation which is the essence of critical
slowing down [11, 38, 47]. By studying these normal forms, one can thus derive
the exact mathematical scaling laws of how quantities like recovery rate change as
a function of distance to the bifurcation point and for different types of bifurcations
[22, 31].

Conclusively, theory posits critical slowing down to govern the dynamics near
transitions in neural systems and, thereby, to subserve an essential role in information
processing. Rigorous experimental evidence of critical slowing down, however, has
been sparse. In the following, we will discuss recent work demonstrating critical
slowing down in neural systems and how it supports information processing.

3 Critical Slowing Down in Individual Neurons

Functionally, quiescence and spiking can be regarded as two different states or phases
a neuron can be in. The transition between these two phases, i.e., the onset of spiking
in individual neurons, has long been studied with the mathematical tools of bifur-
cation theory [15]. It is because of this proximity to a bifurcation that neurons are
excitable and have the ability to exhibit a qualitative change in their dynamics. By
injecting a current, a quiescent neuron can be gradually driven towards the spiking
threshold (Fig. 2a, b). At the threshold, its qualitative behavior changes rapidly—it
starts to fire action potentials. In the terminology of phase transitions, the injected
current corresponds to the control parameter. A suitable order parameter can be
defined by the neuron’s firing frequency, for example, which becomes non-zero at
the spiking onset. As is well-known, the onset of spiking is caused by the complex
interplay between membrane ion channels, i.e., the interaction of many constituents.
Seminal studies have provided evidence that this complex biological system can be
accurately described as a bifurcation or phase transition [13, 15, 36, 37].

Although theory provides quantitative predictions on critical slowing down [42],
direct experimental evidence in neurons approaching their spiking threshold has long
been lacking. Specifically, bifurcation theory posits that variance and autocorrelation
in subthresholdmembrane potential activity should increase as a neuron comes closer
to spiking, while the recovery from small perturbations should take increasingly
longer [6, 14]. Importantly, the scaling laws by which these measures change is
predicted by the bifurcation type [22, 31]. The experimental confirmation of critical
slowing down has therefore long represented a missing link to theory.

Using whole-cell patch-clamp recordings, we developed a stimulation protocol to
monitor markers of critical slowing down [14, 38, 39] while systematically driving
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Fig. 2 Critical slowing down governs the transition to neuron spiking. a, Using the whole-cell
patch-clamp technique, a pyramidal neuron is driven to its spiking threshold by injecting a step-
wise increasing current with small perturbations on top. b, Subthreshold voltage exhibits clear
signatures of critical slowing down upon reaching spiking onset: a progressively slower recovery
from perturbations along with increasing variance and autocorrelation. These changes become
apparent when comparing subthreshold dynamics far from (left) and close to the spiking onset
(right). c, The experimental measures (black dots) follow predictions for a saddle-node bifurcation
(grey dashed line). Specifically, in log-log coordinates, the dashed line has a slope of 0.5, which is
the scaling exponent expected for a saddle-node bifurcation (see Eq. (3)). Measures of the recovery
rate from small perturbation follow this scaling relationship predicted by theory [29]
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the neuron towards its spiking threshold by increasing the injected current (Fig. 2a,
b). Characteristics of critical slowing down, i.e., a slower recovery fromperturbations
along with increasing variance and autocorrelation, became evident as the neuron
approached the spiking threshold [29]. The onset of spiking thus corresponds to
a critical transition from a dynamical perspective. Furthermore, the scaling laws
suggest a saddle-node bifurcation governing slowing down and the onset of spiking
(Fig. 2c). It is interesting to note that, bymeasuring the scaling laws of slowing down,
the type of transition (or,more specifically, bifurcation) can thus be determined purely
from the subthreshold activity without observing the transition itself.

Collectively, these results further demonstrate the deep insights that the concept
of critical transitions already provides at the individual neuron level. For example, it
explains why subthreshold voltage variance [16] or shape of postsynaptic potential
[9] are affected by a neuron’s holding potential. The occurrence of critical slowing
down near the spiking threshold has considerable implications on the integration of
inputs and, more generally, information processing in neurons. Interestingly, to our
knowledge, this particular aspect of neuron functioning has not been investigated in
much detail yet. In fact, many neuron models, such as most leaky integrate-and-fire
neuron models, do not take the effects of critical slowing down into account, by
omitting the dynamical modeling of action potential generation [5].

The systematic decrease in recovery rate resulting from critical slowing down
implies that inputs to a neuron, for example in the form of excitatory postsynap-
tic potentials (EPSPs), will become wider the closer the neuron is to the spiking
threshold. For demonstration purposes, consider the two responses to the same input
depicted in Fig. 2b, one far and one close to the onset of spiking. It is clear that the
more wide or more narrow shape of the EPSP from other neurons’ inputs will affect
how subsequent inputs are integrated and, by consequence, affect the generation and
timing of action potentials. Specifically, the widening of EPSPs due to critical slow-
ing down should progressively facilitate the temporal integration of small inputs to
a neuron the closer it gets to the spiking threshold since a longer memory of past
inputs is maintained.

4 Critical Slowing Down in Cortical Networks Is
Maintained by Sleep

A large body of research has identified bifurcations and, more recently, also critical
slowing down as essential features of individual neuron functioningwith implications
to their ability to integrate and process information. At the neural network level, the
maintenance and integration of information over extended periods of time is similarly
thought to be important for information processing. For example, in decision-making
and working memory tasks [7, 10, 17, 21], the ability to integrate information over
time may increase the signal-to-noise ratio and help to maintain some memory of
the past. Persistent network activity characterized by slowly decaying perturbation
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responses and autocorrelation functions, which are generic features of critical slow-
ing down, as discussed above, may provide the basis for this integration in cortex.
Consequently, neural network models, when poised at criticality, exhibit the slowest
decaying autocorrelation functions [27, 30]. The likelihood of critical slowing down
to play a role in cortical networks dynamics is further supported by the observation
of other neuronal activity patterns consistently following power-law distributions, a
hallmark of systems at a continuous phase transition [2, 4, 8, 48]. Slowly decay-
ing autocorrelation functions have been reported in awake cortex [25, 34] and to
disappear under anesthesia [3]. Critical slowing down and the long temporal mem-
ory effects it brings about is therefore an attractive and likely feature not only for
individual neurons, but also for cortical network functioning. Monitoring critical
slowing down might consequently provide insights into the brains changing ability
to integrate and process information over time and across vigilance states.

Using a multi-modal experimental approach spanning work on humans and
rodents, we recently asked whether there is indication of critical slowing down in
cortical network activity and whether it changes across time and across different
vigilance states [28, 30, 32]. Different vigilance states are known to impact cogni-
tive capabilities and, more generally, cortical information processing. Specifically, it
has long been a common observation that the brain’s ability to process information
declines during extended waking [1, 18, 33, 45]. Cortical information processing is
also affected by sleep. It has been suggested that during non-rapid eye movement
sleep (NREM sleep, a form of deep sleep) the brain loses its ability to effectively
integrate information [26]. This drastic decline of information integration capabil-
ities during NREM sleep has also been proposed to underlie the concomitant loss
of consciousness [43]. The neural correlates underlying the decline of information
processing capabilities during extended wake and sleep, however, have been difficult
to identify.

We focused on the decay of autocorrelation functions as a likely prerequisite for
cortical network information integration with direct relationship to critical slow-
ing down. The analysis of data from electroencephalogram in humans [28, 32] as
well as neuron and local field potential activity in rodents [30] demonstrated that
long-range temporal correlations related to slowly decaying autocorrelation func-
tions in cortical network activity are dependent on vigilance states. While wake and
REM sleep exhibit long timescales suitable for information integration, these long-
range temporal correlations break down during NREM sleep. Furthermore, extended
wake leads to a progressively faster decay of autocorrelation functions suggestive
of a progressive decline of information processing capabilities in cortical networks
(Fig. 3).

The slow autocorrelation function decays observed during normal wake and also
during REM sleep are in line with the idea that cortex dynamics is poised in the
vicinity of a phase transition where critical slowing down governs activity. Criti-
cal slowing down occurs upon approaching a critical transition; it can therefore be
expected to govern dynamics even when networks are not exactly at the critical point
but, for example, in a slightly subcritical regime [35]. At or near criticality, cortex
dynamics can thus benefit from long temporal information integration capabilities
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Fig. 3 Sleep recovers critical network dynamics for optimal information processing. Normal cortex
activity is characterized by reverberating, critical dynamics (left). The long timescales associated
with critical slowing down (CSD) afford the memory maintenance of past activity and thereby
contribute to optimal information integration. During extended wake, these long timescales are
increasingly disrupted by neuronal offline periods, which may lead to a decline of optimal infor-
mation integration and cognition (right). Sleep, conversely, reestablishes critical dynamics and its
associated long timescales for optimal function during wake [28, 30, 32]

whichmay help to, for example, increase the signal-to-noise ratio in decision-making
and working memory tasks. Conversely, during NREM sleep and extended wake the
long-range temporal correlations were found to be reduced suggesting an impaired
ability to integrate information over time. But what causes this disruption of critical
dynamics during NREM sleep and also during extended wake? In detailed analyses
we found that the tendency of neurons to go into a down state leads to this disrup-
tion. These periods where neurons do not participate in ongoing network dynamics
anymore, and so to say go offline for a brief amount of time, are well known to occur
in NREM sleep, but have also been observed as local phenomena during extended
wake [46]. The occurrence of such offline periods disrupts the normally occurring
reverberating cortical network activity and shuts down any memory it might have of
the past (Fig. 3, [30]). The increased disruption of critical slowing down and its asso-
ciated long timescales during extended wake complements other findings that have
also reported fading signatures of critical dynamics during sleep deprivation [32].
Collectively, these observations thus support an intriguing hypothesis for a func-
tion of sleep, to re-organize cortical networks towards critical dynamics for optimal
information processing during wake.
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5 Summary and Outlook

The existence of a critical transition and, by consequence, critical slowing down
in individual neuron function is now well established. At the neural network level,
critical slowing down is attractive as it may provide the basis for effective temporal
information integration. We here provided an accessible introduction into the theory
of critical slowing down with an emphasis on recent developments identifying its
scaling laws. We then discussed experimental evidence of critical slowing down in
individual neurons and at the cortical network level and how it relates to and supports
information processing at each spatial scale. It became apparent how critical slowing
down can provide novel mechanistic and functional links between behavioural man-
ifestations of sleep, waking and sleep deprivation, and specific measurable changes
in the network dynamics relevant for characterising the brain’s changing ability to
integrate and process information over time and across vigilance states. As shown
for the individual neuron case, critical slowing down is best monitored by slightly
changing a suitable control parameter which allows the rigorous identification of the
transition mechanism from subthreshold dynamics. Novel genetic and optogenetic
tools might afford a similar experiment at the cortical network level and, for example
by careful titration of the excitation/inhibition axis, to characterize critical slowing
down with similar rigor to identify and map out the critical transition governing
cortex dynamics.
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The Challenge of Taming a Latching
Network Near Criticality
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Abstract The Potts associativememory can be regarded as amodel of extended cor-
tical networks characterized, near a critical line, by spontaneous latching dynamics,
i.e. the unguided hopping from one attractor to the next. Can Potts dynamics also be
guided, and follow specific instructed transitions between attractors? In this paper, we
study to what extent instructions, given via an additional hetero-associative learn-
ing rule, determine latching sequences in an adaptive Potts neural network. Each
global activity pattern is both stored as an attractor and associated with a certain
strength λ to D randomly generated and a priori selected other patterns. Increasing
either the strength λ of hetero-couplings or D leads to longer latching sequences, but
also to lower retrieval quality. Further, while the fraction of transitions that follow
the instructions initially increases with λ, beyond a certain value it drops, the more
rapidly the larger D, as spontaneous dynamics ride on top of instructed transitions,
taking them off course. This is shown to be due to the (random) instructions not
reflecting the structure of correlations among memories, which drives spontaneous
dynamics. In fact, when the number of instructed options D is large, the network
appears to choose, among them, those with the same correlations as the spontaneous
transitions.
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1 Introduction

The Potts associative memory network, originally studied merely as a variant of
mathematical or potentially applied interest [1–5], can be interpreted as a reduced
model of cortical dynamics, in which local patches of cortex are modelled as Potts
units [6]. Thus, it offers one approach to model spontaneous dynamics in extended
cortical systems, in particular if simple mechanisms of temporal adaptation are taken
into account [7]. It can be subject to rigorous analyses of e.g. their storage capacity
[8], or of themechanics of saltatory transitions between states [9] and is amenable to a
description in terms of distinct ‘thermodynamic’ phases [10, 11]. The dynamic mod-
ification of thresholds (temporal adaptation) with timescales separate from that of
retrieval, together with the correlation between cortical states, are key features char-
acterizing cortical operations, and Potts network models may contribute to elucidate
their roles. Adaptation and its role in semantic priming [12] have been linked to the
instability manifested in schizophrenia [13]. This model of spontaneous behaviour
may also be relevant to elucidate the neural dynamics underlying confabulation [14]
and perhaps free association and creativity [10, 15]. As opposed to mental processes
that clearly require executive control [16], these are situations where the dynamics
can be thought of as largely self-organizing.

Saltatory or latching dynamics can be regarded as a critical phenomenon in that a
suitably definedmeasure of its quality is observed to diverge close to a critical line. As
discussed in previous studies [17], below the line latching dynamics is short lasting,
while above the line it does not distinguish well the currently active state from the
rest. Latching quality, defined below as the product of duration and discriminability,
is shown in [17] and in Fig. 2 to take high values only in a narrow band in phase
space.

In previous papers, such spontaneous latching dynamics has been extensively
studied [17, 18] in two distinct limits: the slowly adapting regime, where inhibition is
taken to act very slowly, and the fast adapting regime,where its time scale is faster than
those of excitation andof rate adaptation. In realityGABAA andGABAB mechanisms
provide cortical circuitswith inhibitionnear both limits [19], but the analysis is clearer
if they are considered separately. Such analysis has been largely limited to the case
of randomly correlated memory patterns, and we have seen (see e.g. Fig. 15 in [17])
that, particularly in a narrow band along the critical line where infinite latching arises
and is of good quality, in the slowly adapting regime, it is the (random) positive
fluctuations in the degree of correlation between memory patterns that determine
which transitions occur. In the fast adapting regime transitions appear to be more
random, and in fact to avoid pairs of correlated patterns, so we focus on the slowly
adapting limit as a more interesting case of self-organizing dynamics. Note that this
is self-organizing dynamics near criticality, not self-organized criticality. To explore
the latter, in this context, one could study a model of how cortical states come to be
stored inmemory, possibly through a learning process that itself involves spontaneous
trajectories. Here, we limit ourselves to a scenario where learning is taken to have
occurred already, to have established specific cortical states as memory attractors,
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and we study the endogenous dynamics among such attractors, after external inputs
have subsided.

One can ask, within this scenario, to what extent one may superimpose on spon-
taneous dynamics explicit instructions, that is, a list of transitions that the network is
instructed or encouraged to go through, by encoding them in the connection weights.
The answer is not straightforward, because the instructions may interfere with a col-
lective behaviour, latching, which is well expressed only in a narrow region near
criticality. Following [20], who proposed that transitions may be obtained in an asso-
ciativememory by adding specific couplings between each activity configuration and
its intended successor, here we introduce therefore a hetero-associative additional
component to the previously purely auto-associative Hebbian weights. We focus on
how effectively are these instructed transitions, encoded in the learning rule, fol-
lowed during latching, and on how much these instructions alter the spontaneous
behaviour of the network, i.e., the one determined by the correlational structure of
its memories.

2 The Model

Consider an attractor neural network model comprised of Potts units. The rationale
for the model is that each unit represents a local network of many neurons, with its
own attractor dynamics [21, 22], but in a simplified/integrated manner, regardless of
detailed local dynamics. Local attractor states are represented by S + 1 Potts states:
S active ones and one quiescent state (intended to describe a situation of no retrieval
in the local network), σk

i , k = 0, 1, . . . , S, with the constraint that
∑S

k=0 σk
i ≡ 1.

2.1 Interactions

The ‘synaptic’ connection between two Potts units is a tensor, summarizing the effect
of very many actual connections between neurons in the two local networks, but still,
following the Hebbian learning rule [23], the connection weight between unit i in
state k and unit j in state l is written as [8]

J kl
i j = ci j

Ca(1 − a/S)

p∑

μ=1

(
δξ

μ
i ,k

− a

S

) (
δξ

μ
j ,l

− a

S

)
(1 − δk0)(1 − δl0), (1)

where ci j is 1 if two units i and j have a connection and 0 otherwise, C is the
average number of connections per unit, a is the sparsity parameter, i.e. the fraction
of active units in every stored global activity pattern ({ξμ

i }, μ = 1, 2, . . . , p) and p
is the number of stored patterns. The last two delta functions imply that the learned
connection matrix does not affect the quiescent states. We will use the indices i , j



84 C. J. Kang and A. Treves

for units, k, l for (local) states and μ, ν for patterns (which are a subset of all global
activity states).

Units are dynamically set in their activity states in the following way:

σk
i (t) = exp (βrki (t))

∑S
l=1 exp (βr

l
i (t)) + exp [β(θ0i (t) +U )] (2)

and

σ0
i (t) = exp [β(θ0i (t) +U )]

∑S
l=1 exp (βr

l
i (t)) + exp [β(θ0i (t) +U )] , (3)

where rki (t) is the input to (active) state k of unit i integrated over a time scale τ1,
while U and θ0i (t) are, respectively, the constant and time-varying component of
the effective overall threshold for unit i , which in practice act as inverse thresholds
on its quiescent state. θ0i (t) varies with time constant τ3, to describe local network
adaptation produced by inhibition. The stiffness of the local dynamics is parametrized
by the inverse “temperature” β (or T−1), which is then distinct from the standard
notion of thermodynamic noise. The input-output relations (2) and (3) ensure that∑

k σk
i (t) ≡ 1.

In addition to the overall threshold, θki (t) is the threshold for unit i specific to
state k, and it varies with time constant τ2, representing adaptation of the individual
neurons active in that state, i.e. their neural or even synaptic fatigue.

2.2 Dynamics

The time evolution of the network is governed by the following equations of motion

τ1
drki (t)

dt
= hki (t) − θki (t) − rki (t) (4)

τ2
dθki (t)

dt
= σk

i (t) − θki (t) (5)

τ3
dθ0i (t)

dt
=

S∑

k=1

σk
i (t) − θ0i (t). (6)

Global dynamics crucially depend on the relative magnitude of the time constants
τ1, τ2 and τ3 for collective neuronal activity and for the thresholds for active and
inactive states. In this paper, we stay in what we call the slowly adapting regime,
characterized by τ1 � τ2 < τ3,where activity changes rapidly, compared to the adap-
tation of the active states (τ2) and to the extremely slow inhibition effects (τ3). The
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latter therefore is taken to model only GABAB inhibition in the cortex [19]; to
include also GABAA action one would have to consider an additional time scale
τ ′
3 � τ1 < τ2 � τ3, which would make the analysis cumbersome. Simulations in a
combined fast and slowly adapting regime are left for future work.

The field experienced by the unit i in state k reads

hki =
N∑

j �=i

S∑

l=1

J kl
i j σ

l
j + w

(

σk
i − 1

S

S∑

l=1

σl
i

)

. (7)

The local feedback term w is an important parameter that modulates the stability
of the local attractors and leads the network to speedily reach one of the attractors.
For further details and a discussion of these modelling choices, we refer to [8–10,
17, 18, 24, 25].

2.3 Memories

Randomly correlated patterns are generated by following the probability distribution

P(ξμ
i = k) = a/S

P(ξμ
i = 0) = 1 − a

(8)

as in the simplest of the paradigms discussed in [7]. Other paradigms include algo-
rithms for generating correlated patterns, which are not considered in this paper.

The overlap or correlation of the current state of the network with the stored

patterns
{
ξ

μ
j |μ=1,...,p

}
can be measured as

mμ(t) = 1

Na(1 − a/S)

N∑

j �=i

S∑

l �=0

(
δξ

μ
j l

− a

S

)
σl
j (t). (9)

to describe the activity of the network in memory space. In practice, however, we are
not interested in all such overlap values, but only in those, if any, that stand out before
the rest. As a simple assessment of this discriminability of retrieval, i.e., whether the
network is prevailingly correlated with a single stored pattern, we use d12, defined
in terms of two highest overlap values at each time t , m1(t) and m2(t), as

d12 = 〈
∫

dt (m1(t) − m2(t))〉cue, (10)

where angle brackets mean the (quenched) average over different initial cues, after
the temporal average obtained by integration.
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Finally, combining such average discriminability with the length l over which
latching extends, we introduce the latching quality Q, defined as

Q = d12 · l · η, (11)

where η is 0 when the network becomes trapped in the initially cued pattern during
simulation time, and 1 otherwise.

3 Imparting Latching Instructions with an Associative
Learning Rule

How can the suggestion by Kanter and Sompolinsky [20] be implemented in the
Potts network? The tensor connection between unit i in state k and unit j in state l
is generalized by adding a hetero-associative component of strength λ, to

Jkli j = ci j
Ca(1 − a/S)

p∑

μ=1

(

δξ
μ
i ,k

− a

S

)
⎧
⎨

⎩

(

δξ
μ
j ,l

− a

S

)

+ λ

D∑

d=1

(

δ
ξ
νd
j ,l

− a

S

)
⎫
⎬

⎭
(1 − δk0)(1 − δl0),

(12)
where the λ term effectively guides or instructs each pattern in the direction of D
other patterns. At each stage in the latching sequence, the network may follow one
of the D instructions, or proceed of its own to a different transition (or the sequence
may stop).

Weprovide the networkwith a table inwhich eachmemory pattern ({ξμ|μ=1,2,...,p})
is associated with its own set of D instructed patterns (

{
ξν |ν=1,2,··· ,D

}
) that are

selected randomly among the p that are stored auto-associatively.
An example of latching partially governed by instructions is shown in Fig. 1. A

latching sequence 1-5-3-7-· · · -15-· · · is indicated by solid lines while the patterns
hetero-associated to each pattern in the sequence are denoted by dashed lines. In the
example, patterns (4,5,7) are associated to pattern 1 and latching proceeds towards
pattern 5. For patterns 1, 5, 7, 15, dynamics flows along the associated patterns. Only
for pattern 3 spontaneous latching occurs.

Fig. 1 An example of latching sequence (1-5-3-7-· · · -15-· · · ) and the corresponding instructions
((4, 5, 7) to 1, (2, 3, 8) to 5, (9, 14, 15) to 3, . . .). Instructed transitions are denoted by dashed lines,
while solid lines denote those, instructed or not, occurring in the latching sequence
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It should be noted that the unambiguous identification of which patterns occur at
distinct stages in the sequence is only possible when latching is of sufficient quality.
If not, it may for example happen that an instructed transition does occur, but is
masked by a spontaneous transition to a different pattern, occurring simultaneously
and with slightly larger overlap. It is therefore appropriate to first assess the quality
of latching dynamics, in the presence of instructions.

4 The Effect of Hetero-Associative Instructions on Latching
Dynamics

The character of latching dynamics in a Potts network may be quantified in terms of
several different measures, including the latching length, l, the difference between
the two highest overlaps, d12, and the crossover in overlap between two successive
patterns, mcross [9, 10, 17, 18]. The quality of latching, Q, combines the first two of
these measures to give a visual impression of where robust latching occurs in phase
space.

We first address the question of what is the effect on latching behavior, in terms
of the above quantities, when hetero-associations supplement the original auto-
associative learning rule, with relative strength λ.

We keep the parameters N = 600, C = 90, p = 200, S = 7, a = 0.25,U = 0.1,
β = 12.5,w = 0.45, τ1 = 3.3, τ2 = 100.0 and τ3 = 106, corresponding to the slowly
adapting regime, throughout the chapter. Simulations are terminated after 6 · 105
updates and repeated over 1000 cued patterns. To see the influence of instructions on
latching, we focus on the D = 2 case, where each pattern is hetero-associated with
two other patterns at the learning stage.

We showexamples of latching behaviorwith andwithout theλ term in Fig. 2a, b, c.
Figure 2b shows that adding a small hetero-associative component to the connection

Fig. 2 Retrieval dynamics with λ = 0, 0.1 and 0.3 in a, b and c. Numbers indicate the patterns
with the highest overlap that compose the retrieved sequence, and those in red (light black) denote
instructed patterns. In these examples, D = 2
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(a)

(b)

Fig. 3 a Phase space of Q(S, p) with hetero-coupling strength λ = 0.0, 0.2 and 0.4. D = 2; b λ
dependence of d12 (solid line) and l (dashed line), with S = 7 and p = 200. Red (circles), green
(squares) and blue (triangles) stand for D = 1, 2, 3

weights has the main effect of lengthening the latching sequence, which however
also becomes less distinct. In the next panel, with larger λ, retrieval quality has
deteriorated much further, and one begins to notice collective instabilities, or bursts
of nearly simultaneously retrieved patterns, that stand in marked contrast to the
relatively clean sequence of the purely spontaneous latching in Fig. 2a.

Numbers on top of the largest overlaps in Fig. 2 comprise the sequence, and
those in red indicate instructed transitions. Even before a quantitative analysis, the
panel suggest that tripling the λ value does not succeed in eliminating spontaneous
transitions. In fact, we show below that the opposite is the case.

The bright regions, or bands, where relatively high-Q latching occurs are shown,
for different values ofλ (0.0, 0.2 and 0.4) in Fig. 3a. The number of hetero-associative
instructions at each stage is still D = 2. As already discussed in [17], the area right to
the band, with relatively large S and small p, shows good quality retrieval, measured
by relatively high d12 (and mcross), but short latching length. Instead, in the area left
to the band, with relatively small S and large p, latching extends indefinitely but is
very noisy, and the value of d12 becomes very low. The band decreases gradually in
peak values as λ grows, as illustrated in Fig. 3a.

To afford a closer look at phase space, a point (S = 7, p = 200) is chosen and
the values of d12 (solid line) and l (dashed line) are shown as a function of λ for
D = 1, 2, 3 (red (circles), green (squares) and blue (triangles)) in Fig. 3b. For all
three D values retrieval quality as measured by d12 gradually deteriorates, while
latching duration rapidly reaches the length of the simulations, with increasing λ. As
a function of D, the λ value offering the best compromise between d12 and l shifts
to the left with more instructed options, indicating that in the large D limit only very
gentle instructions (small λ values) can be effective.

We can interpret these observations in the following way. For a given value of D, a
strong hetero-associative coupling λ enhances the network tendency to latch, result-
ing in prolonged sequences, but it also disrupts auto-associative retrieval, making
the process noisier, and d12 lower. These effects are amplified for larger D values,
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since it becomes easier to latch in one of many instructed directions, but noise is
also larger and it becomes difficult to retrieve any clean pattern. As a result, λ and
D produce similar effects, in the sense that they both degrade latching quality while
increasing latching length.

5 Instructed Versus Spontaneous Latching Transitions

How often does the Potts network follow the instructions it is given? Can we obtain
an obedient network, that only does what it is told to do, in terms of transitions?

To measure the fraction of transitions that comply with the instructions given at
the learning stage, we introduce a compliance index f as

f = Tinstruct
Ttot

, (13)

where Tinstruct is the number of transitions, i.e. pairs of successively retrieved pat-
terns, with overlap above 0.5, that follow the instructions, and Ttot is the total number
of pairs of successive patterns in the latching sequence. f is 1 if the network com-
pletely follows the instructions it is given, and 0 if it never does.

For convenience, we introduce some abbreviations; FP denotes a pair of patterns
that follows the instructions, SP a spontaneous transition, LP a generic latching pair,
spontaneous or instructed, and AP any possible pair, whether occurring in a latching
sequence or not.

Simulations are run with the same parameters as in the previous section.
The fraction of FPs, f , is shown for D = 1, 2, 3 (red (circles), green (squares),

blue (triangles)) in Fig. 4. From the figure we see that the network initially follows
the instructions to an extent proportional to λ, but it quickly reaches a maximum
degree of compliance, around λ = 0.15, at values f > 0.5 (which increase mildly
with D). For larger values of λ, the compliance f drops, all the more rapidly the
larger is D.

Thismay be because the network is effectively accompanied towards an instructed
pattern only with a gentle fillip, i.e., at small enough λ, whereas larger values of λ
push the network with a shove that perhaps drives it to the instructed pattern, but then
often also past it and onward to an immediate further transition, that steps beyond
the instructed path. For larger values of D, the concurrent shove in several directions
accelerates the decrease in compliance f .

The correlations between latching pairs in the absence of the hetero-associative
term are shown in Fig. 5. C1 and C2 are the fractions of units that are active in the
same (different) states in the two patterns of a pair. As discussed in [10, 17], latching
occurs mostly for positively correlated pattern pairs, i.e., when C1 is larger than
its mean value, while C2 is smaller. Indeed, in the scatterplot LPs (red crosses) are
printed on top of APs (blue circles) around the bottom right portion of the distribution
of the latter in the (C1,C2) plane. The vertical and horizontal lines which cross the
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Fig. 4 λ dependence of f
for D = 1, 2, 3 (red (circles),
green (squares), blue
(triangles)
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Fig. 5 C1–C2 correlation
scatterplot for D = 2, λ = 0.
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Fig. 6 Cumulative density of pattern pairs (AP in blue triangles, FP in green squares, SP in red
circles) for increasing values of correlation, as measured by C1 and C2. Solid lines are for C1 and
dashed lines are for C2. λ = 0.1, S = 7 and p = 200

figure represent 〈C1〉 ≡ a/S and 〈C2〉 ≡ a(S − 1)/S, the average values of C1 and
C2.

As soon as we introduce the λ coupling term, the group of red crosses begins to
diffuse towards the centre of the blue circle distribution, but in order to understand
the change we need to separate FPs from SPs, among the full set of LPs. In Fig. 6,
the cumulative density of APs, FPs and SPs (in blue triangles, green squares and
red circles, respectively) are shown with respect to C1 (solid lines) and C2 (dashed
lines). λ = 0.1, S = 7, p = 200 and both D = 2 and D = 10 cases are considered.
The number of APs, FPs and SPs are of course normalized by their own total numbers
in the latching sequence.

In Fig. 6a, for D = 2, there is a clear separation of FPs and SPs from APs along
both C1 and C2 axes. Moreover, we see that SPs (red circles) are distributed towards
larger C1 and lower C2 values, as already shown in Fig. 5. FPs (green squares) are
closer to APs (blue (triangular) dots) in their scatter of correlation values, but still
their cumulative density does not coincide with theirs. This is because at D = 2 there
two options to follow at each stage and, even though the instructions are imparted at
random, when the network does follow one of the two it tends to choose one with the
correlations that more resemble those of SPs. The separation between SPs and APs
is less marked when D is high (D = 10 in Fig. 6b), because at fixed λ increasing
D increases the noise, and spontaneous transitions tend to occur more randomly;
but even more imperceptible is the separation between SPs and FPs since, among
the many options, the network apparently picks the instruction that moves it in a
direction it would take anyway, spontaneously.
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6 Conclusion

We have assessed the possibility of adding to the spontaneous dynamics, expressed
by the Potts network considered in previous papers, a set of specific instructions,
i.e., transitions that the network is encouraged to take when it is in or near one of
its memory states. The instructions are encoded, following a suggestion by Kanter
and Sompolinsky, in a hetero-associative term parametrized by a factor λ. Another
important parameter is the number of instructed transitions per memory pattern, D.
The main conclusion of the study is that combining what is effectively a supervised
learning of transitions with the spontaneous expression of latching sequences works
only to a limited extent. As either λ or D grow in value, latching quality deteriorates,
and in fact large values of either parameter end up adding noise to the dynamics.
Further, the network follows the instructions most of the time only over a λ range that
narrows down around λ = 0.15 as D increases, while the transitions are increasingly
indistinct. The ultimate reason for the difficulty of imparting instructions, in the
model, is that these are arbitrary, while latching dynamics in the Potts network,
especially in the critical band studied before, in the slowly adaptive regime, favors
transitions between correlated pairs of patterns. If D is large, the network can choose
among many options the ones that are more correlated to its current state, but even
then the presence of all the other options, with a sufficient λ factor, generates noise.

Instead of self-organized criticality, therefore, we have an example where critical-
ity prevents the subjugation of self-organized dynamics to an arbitrary command (in
this case given with an additional term in the recurrent weights, but similar results are
expected with an external drive). Away from criticality, the endogenous dynamics is
much less constrained—even though degraded in quality or limited in duration—and
easier to control.

In conclusion, it is difficult to harness the Potts network, an interesting simple
model of complex spontaneous dynamical behaviour, to externally-determined goals
via supervised learning. To explore the capability of the model to approach concrete
problems where latching dynamics may be relevant, it is critical of course to include
structure in the so far unstructured homogeneous network, and to allow the dynamics
to harmoniously reflect such structure, whether explicit or implicit, without attempt-
ing to force it to follow a prescribed course.
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Abstract Criticality signatures, in the form of power-law distributed neuronal
avalanches, have beenwidelymeasured in vitro and provide the foundation for the so-
called critical brain hypothesis, which proposes that healthy neural circuits operate
near a phase transition state with maximal information processing capabilities. Here,
we revisit a recently published analysis on the occurrence of those signatures in the
activity of a recurrent neural network model that self-organizes due to biologically
inspired plasticity rules. Interestingly, the criticality signatures are input dependent:
they transiently break down due to onset of random external input, but do not appear
under repeating input sequences during learning tasks. Additionally, we show that an
important information processing ability, the fading memory time scale, is improved
when criticality signatures appear, potentially facilitating complex computations.
Taken together, the results suggest that a combination of plasticity mechanisms that
improves the network’s spatio-temporal learning abilities andmemory time scale also
yields power-law distributed neuronal avalanches under particular input conditions,
thus suggesting a link between such abilities and avalanche criticality.
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1 Introduction

In recent years, the critical brain hypothesis has emerged as an important candidate to
understand the functioning of biological neural networks, and has been the focus of a
number of reviews [7, 12, 22, 36]. This hypothesis states that healthy neural circuits
operate near a second order phase transition with maximal information processing
capabilities. In the brain, supporting experimental evidence typically comes from
measurements of indirect signatures of criticality in the form of scale-free activation
patterns, called neuronal avalanches. One of the most prominent scale-free proper-
ties are approximate power-law distributions of duration and size of avalanches, i.e.
cascades of neural activity estimated from neuronal spikes and local field potentials
(LFP) [6]. These power-law distributions have been widely observed in vitro [6,
18, 33, 53, 57] and in coarse measures of neural activity in vivo (such as LFP,
EEG, MEG and BOLD activity) [40, 43, 47, 49, 54, 56], but in vivo spiking ac-
tivity resembles instead a driven subcritical regime [5, 45, 46, 67]. Such disparity
suggests that healthy neural networks are able to self-organize towards different dy-
namical regimes with potentially different functions, emphasizing the importance of
understanding their particular self-organization mechanisms. However, even though
power-law distributions provide the bulk of evidence supporting critical dynamics in
the brain, including its adaptation under external input [50], the mechanisms under-
lying the network’s continuous adaptation resulting in these distributions, as well as
their particular functions, are still not fully understood.

The continuous network adaptation towards criticality is commonly associated
with the self-organization observed in self-organized critical (SOC) systems [4, 6],
which evolve to eventually reach a critical point without tuning of control parame-
ters [7, 46]. In neural network models, SOC has been proposed to arise from ongoing
synaptic plasticity action. Power-law distributions of avalanche sizes have been ob-
served in networks of different complexity and plasticity mechanisms, ranging from
simple activity-dependent dynamic synapses [2, 31] to spike-timing-dependent plas-
ticity [37, 60] and a combination of short- and long-term plasticity [55]. Such studies
have suggested that SOC is indeed achievable via continuous adaptation under bi-
ologically inspired plasticity mechanisms. Interestingly, SOC and other states (for
example, a non-equilibrium Widom line [64]) can be achieved by networks with
different tuning conditions, such as excitatory and inhibitory balance [33, 53], but a
unified theory linking self-organization mechanisms with their biologically relevant
functions, such as learning and memory, is still to be developed [41].

From the brain’s perspective, critical dynamics could be highly desirable due to
its functions: computational studies have shown a number of functional benefits of
criticality [51]. Specifically, networks tuned to criticality show maximal dynamical
range [26], maximal information capacity [53] and number of metastable states [20],
while computation at the edge-of-chaos (i.e., at a phase transition point separating
non-chaotic from chaotic dynamics) is known to increase performance in classifi-
cation tasks [30] and maximize information transfer and storage [11] in recurrent
neural networks, allowing them to perform complex computational tasks due to an
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increased fading memory capacity [8]. Nonetheless, the definition of “criticality”
used in different studies is not necessarily the same: edge-of-chaos criticality (mea-
sured via perturbation analysis and Lyapunov exponents) and avalanche criticality
(usually measured via criticality signatures and power-law distributions of relevant
events) are commonly assumed to coexist, but they might refer to different phenom-
ena and do not necessarily co-occur in neural networks [14, 15, 24, 25]. As a gen-
eral link between edge-of-chaos criticality and neuronal avalanches is still missing,
a deeper understanding of the self-organization mechanisms that lead to a supposed
SOC regime is necessary in order to describe how useful information processing
capacities might also arise from them.

An essential information processing property of recurrent neural networks is their
fading memory capacity (sometimes referred to as working memory): their ability
to retain information about recent inputs in their activity [8, 35]. Such property is a
determinant for a network’s total memory capacity, allowing them to learn temporal
sequences [27]. Interestingly, the fading memory time scale is known to benefit
from a combination of Hebbian and homeostatic plasticity in random reservoirs [27]
and scales approximately logarithmically with the network size for systems tuned
to edge-of-chaos criticality (but slower for other systems) [8]. This result suggests
another potential functional role for criticality in the brain: an improvement in its
fadingmemory capacity,which in turn results in enhanced temporal learning abilities.
Any such link, however, relies on the assumption that edge-of-chaos and avalanche
criticality co-exist, to some extent, under particular input conditions and network
states. Notably, no study reports the presence of avalanche criticality in the activity
of those reservoirs, although it can be speculated that long distance correlations
should underlie both criticality phenomena simultaneously. Thus, the co-occurrence
of neuronal avalanches and logarithmic scaling of the fading memory capacity in
the same system might shed light on the functions of the first and the underlying
mechanisms connecting both phenomena in neural circuits.

In this chapter, we start by reviewing a previous study on self-organizing recurrent
neural networks (SORNs) that show criticality signatures, in the form of neuronal
avalanches with power-law distributed durations and sizes, in their spontaneous ac-
tivity [16]. Such models are of particular interest because in contrast to the majority
of critical neural networks and SOC models, they were not developed to display
criticality, but instead to study spatio-temporal learning [28, 29]. Moreover, they re-
produce experimentally measured statistics of synaptic strengths [69] and variability
of neural responses [21]. Nonetheless, the models self-organize due to biologically
inspired plasticity mechanisms and can naturally display signatures of criticality. We
continue by discussing the link between neuronal avalanches, learning and fading
memory, showing how these phenomena may arise from the same plasticity mech-
anisms. In particular, our results suggest that the occurrence of criticality signatures
in the networks’ spontaneous activity might be linked to an increase in their fading
memory time scale, therefore being beneficial for their learning abilities. We finish
by arguing that the implications of this novel link could help to clarify how self-
organization towards criticality or other states occurs in the brain and propose that



98 B. Del Papa et al.

the existence of neuronal avalanches might be tied to fundamental brain functions
such as learning and memory.

2 Self-Organizing Recurrent Networks

We use models from the Self-Organizing Recurrent Neural Network (SORN) fam-
ily [28, 69]. SORNs are reservoirs of perceptron-like neurons with dynamic synaptic
weights evolving according to biologically inspired plasticity mechanisms. Initially
developed to study sequence learning tasks [28], the original SORN model has been
able to reproduce a wide range of findings on spontaneous brain activity and the
variability of neural responses [21]. When combined with a simplified form of struc-
tural plasticity, the SORN is also able to reproduce the distribution and fluctuation
patterns of synaptic efficacies observed in the cortex and hippocampus [69], while
spontaneously generating synfire chains [70]. Additionally, structural plasticity al-
lows SORNs to learn complex tasks, such as artificial grammars [17].

In this section, we describe in detail all the SORN variants used in this study.
The main python code for our simulations is available at https://github.com/delpapa/
SORN.

2.1 Model Dynamics

The SORN models, as described in [16], consist of a reservoir of NE excitatory and
N I = 0.2 × NE inhibitory threshold neurons, whose state at each discrete time step t
is described by the binary vectors x(t) ∈ {0, 1}NE

and y(t) ∈ {0, 1}N I
, corresponding

to the activity of excitatory and inhibitory neurons, respectively. Biologically, each
discrete time step corresponds to the characteristic size of the spike-timing-dependent
plasticity window (roughly 20ms [10]). Both neuron types can be active (“1” state)
or inactive (“0” state) at each time step depending on their input, membrane noise and
firing threshold. Connections between neurons are represented by synaptic weights
Wi j (from neuron j to i) and may exist between different excitatory neurons (WEE ),
from excitatory to inhibitory neurons (W IE ) and from inhibitory to excitatory neu-
rons (WEI ). Connections between inhibitory neurons and self-connections are not
included in the models. At each time step, the network state is updated according to
the input each neuron receives and its current threshold:

xi (t + 1) = Θ

⎡
⎣

NE∑
j=1

WEE
i j (t)x j (t) −

N I∑
k=1

WEI
ik yk(t) + uExti (t) + ξ E

i (t) − T E
i (t)

⎤
⎦

(1)

https://github.com/delpapa/SORN
https://github.com/delpapa/SORN
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yk(t + 1) = Θ

⎡
⎣

NE∑
j=1

W IE
kj x j (t + 1) + ξ I

i (t) − T I
k

⎤
⎦ , (2)

where Θ is the Heaviside step function, uExti (t) is the external input received by
neuron i at time step t and T E

i and T I
k are the excitatory and inhibitory neuronal

thresholds, respectively. ξ E (t) and ξ I (t) represent the neuronal membrane noise
level, assumed to be a Gaussian random variable (with zero mean and variance
σ 2 = 0.05, unless stated otherwise).

The models are initialized as random reservoirs where 10% (20%) of randomly
chosen excitatory (inhibitory) synapses WEE (WEI ) are present, while the remain-
ing weightsW IE are dense matrices, in which all weights are present. All individual
weights are drawn from a uniform distribution over the interval [0, 0.1] and normal-
ized so that the incoming excitatory and inhibitory synapses separately sum up to
1 for all neurons. The excitatory and inhibitory thresholds are initially randomly
drawn from the uniform distributions [0, T E

max] and [0, T I
max], respectively, and the

initial network state x(0) and y(0) is randomly selected. Following a previous im-
plementation [69], the initialization parameters are T E

max = 1 and T I
max = 0.5 .

2.2 Plasticity Mechanisms

The synaptic weights WEE , W IE and WEI and the excitatory thresholds T E are
subject to plasticity at each time step t , while the inhibitory thresholds remain fixed.
There are five different types of plasticity mechanisms acting in SORN models:

Spike-timing-dependent plasticity (STDP)

As a biologically inspired form of Hebbian learning, a discrete model of STDP [10]
acts on all active excitatory to excitatory connections, increasing the weight WEE

i j
(from neuron j to neuron i) by a fixed value ηSTDP every time neuron i fires exactly
one time step after j . Conversely, the weight is decreased by the same value if
neuron j fires one time step before i . Very small weights (<10−6) are pruned after
each update. Formally, STDP can be written as:

ΔWEE
i j (t) = ηSTDP

[
xi (t)x j (t − 1) − x j (t)xi (t − 1)

]
. (3)

Inhibitory spike-timing-dependent plasticity (iSTDP)

Similarly to STDP, iSTDP acts on the inhibitory to excitatory synapticweights.When
an inhibition is unsuccessful, i.e., an inhibitory neuron k firing does not prevent an
excitatory neuron i firing at the next time step, the connection WEI

ik , if present, is
increased by ηinh/μIP, in which μIP < 1 represents the mean target firing rate of the
network. If successful, i.e., if i is silent one time step after k firing,WEI

ik is reduced by
a smaller value ηinh. In practice, this plasticity rule balances the increase of activity
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due to STDP, regulating the overall network activity, and can be simply written as:

ΔWEI
ik (t) = ηinhyk(t − 1) [1 − xi (t)(1 + 1/μIP)] . (4)

Structural plasticity (SP)

A structural plasticity rule adds new synapses between previously unconnected ex-
citatory neurons, representing the creation of new synapses in the cortex. At each
time step, a synapse is added between a previously unconnected neuron pair with a
small probability pSP = 0.1. The weights of new synapses are set to a small value
ηSP = 0.001, and themajority of themquickly decay below the STDPpruning thresh-
old (<10−6) and are eliminated [69].

Synaptic normalization (SN)

At each time step, after the STDP, iSTDP and SP updates, SN normalizes the in-
coming connections of every excitatory neuron, thus regulating the total amount of
input it receives while keeping the relative strengths of the connections. This rule is
separately applied to WEE and WEI :

Wi j (t) ← Wi j (t)∑
j Wi j (t)

. (5)

Intrinsic plasticity (IP)

Last, as a form of homeostatic plasticity, IP regulates the excitatory neurons’ firing
thresholds T E at each time step, driving them towards a fixed target firing rate μIPi

by a small learning rate ηIP:

ΔT E
i = ηIP [xi (t) − μIPi ] . (6)

Unless stated otherwise, the plasticity parameters for our simulations are: ηSTDP =
0.001, ηIP = 0.001, ηinh = 0.001 and μIP = μIPi = 0.1.

2.3 External Input

External input is included in the model via the parameter uExti (t) (Eq. 1), and consists
of a sequence of symbols of length L , randomly chosen from an alphabet of size
A (typically in the [10, 200] interval) and kept fixed throughout network training,
with one symbol presented per time step. By definition, the same input symbol can
occur twice in a given sequence. Each symbol provides strong extra input to a fixed
subset of NU = 0.02 × NE neurons randomly chosen from the excitatory unit pool,
forcing them to spike, while the remaining neurons are unaffected.
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2.4 Readout Layer and Performance Evaluation

During learning or memory tasks, an additional readout layer is trained in a super-
vised fashion (via logistic regression) in order to evaluate the performance of the
SORN models, similarly to the readout training process commonly used for static
reservoirs [34]. In practice, such readout layer acts as a classifier and has the same
size as the input’s alphabet size A. The readout is trained on the network excitatory
activity vector x(t) for Ttrain time steps while all plasticity mechanisms are turned
off. Subsequently, the performance of the model is evaluated for Ttest time steps, in a
task dependent manner, but again with plasticity mechanisms off. First, for learning
tasks whose input consists of repeating sequences of symbols (i.e., without any other
input in between), the performance is defined as the percent of correct predictions
of the next input symbol. In order to capture the performance for every symbol, the
condition Ttest � L must be satisfied. Second, for memory tasks whose input con-
sists of non-repeating random sequences (L → ∞), the performance is evaluated on
past time steps, i.e., at each time step t , the performance is defined as the normalized
number of correct classifications of input symbols received tp time steps in the past.

2.5 Fading Memory Time Scale Estimation

In general terms, fading memory is the ability of a neural network to store informa-
tion about past inputs in its current activity, i.e., the network state x(t) can be mostly
determined by a finite number of past inputs [8]. (For a more formal description of
the fading memory time scale in recurrent neural networks, see [35]. This property
is also referred to as short-term memory in echo state networks, in an independent
work [23]). Here, we estimate such capacity via themodel’s performance on classify-
ing past inputs based on the current activity (see previous subsection for details). We
define the fading memory time scale Mτ as the average memory of recent symbols
stored in the SORN’s excitatory activity, i.e., the average number of past time steps
in which past input symbols can be correctly classified with a performance of at least
90%.

2.6 SORN Variants

For clarity, we distinguish between the two main variants of the SORN model given
the plasticity mechanisms they incorporate. The original SORN model [28], hence-
forward referred to as SORNO, includes STDP, SN and IP, but excludes mem-
brane noise (ξ E

i (t) = ξ I
k (t) = 0). The extended SORN model [69], henceforward

referred to as SORNE, includes all five plasticity mechanisms listed in this section
(STDP, iSTDP, SN, SP and IP) and Gaussian membrane noise (mean zero, variance
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Fig. 1 Spontaneous activity and neuronal avalanches. Raster plot of the SORNE spontaneous
activity after self-organization and neuronal avalanches definition via activity threshold θ . A single
avalanche event startswhen the activity goes above θ , and lasts as long as it stays about this threshold.
Shaded red areas indicate the size of the avalanches and the blue line indicates the duration of a
single avalanche event

σ 2 = 0.05) for both excitatory and inhibitory neurons. Any further modifications in
these variants are detailed when necessary.

3 Spontaneous Activity: Self-Organization Towards
Avalanche Criticality

In this section, we review one of the main findings from a previous study [16],
by analyzing the occurrence of power-law distributed neuronal avalanches in the
spontaneous activity and their stability (Fig. 1). Due to the combination of plasticity
mechanisms, the SORNE displayed three distinct self-organization phases (see [16],
Fig. 1a for an example of connectivity evolution). After random initialization, in
the decay phase, the number of present WEE synapses quickly decayed as a re-
sult of STDP pruning actions, reaching a minimum at around 105 time steps, when
the growth phase starts. In this second phase, due to SP action, some new added
connections remained part of the network, and the number of connections grew un-
til around 2 × 106 time steps, when the fraction of connections stabilized (stable
phase), but small deviations continued to be observed. During the stable phase, af-
ter the aforementioned transient period, bursts of asynchronous activity could be
observed, suggesting potential avalanche events (Fig. 2).
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(a) (b)

(c) (d)

Fig. 2 Neuronal avalanches after self-organization, adapted from [16]. a, b Probability dis-
tributions of avalanches’ sizes (S) and durations (T) and power-law fits with exponents τ and
α, respectively. Gray points show the raw data of 50 independent simulations. c Distributions of
avalanche sizes for the SORNE with all plasticity mechanisms turned off after self-organization
(black) and for a random reservoir (RR, dashed gray). d For different levels of Gaussian neuronal
membrane noise, different distributions of events appear (see text). Only a medium noise level
(σ 2 ≈ 0.05) results in distributions resembling power-laws. All curves are for avalanche events in
the activity of networks of size NE = 200

Although the SORNE self-organized towards a dynamical regime in which neu-
ronal avalanches appeared, their definitionwas fundamentally different fromclassical
SOC models such as the Bak–Tang–Wiesenfeld model [4] due to the lack of separa-
tion of time scales. In the SORNE, as in neural activity in vivo, no complete pause
exists between two consecutive avalanches, resulting in an overlap between one or
more events. This entanglement could be partially solved via a process of activity
thresholding [19, 42], which introduces a threshold θ above which avalanche events
are measured. In general terms, an avalanche started at the time step when the net-
work activity a(t) went above the threshold and lasted while it remained above θ .
This process allowed for an alternative definition of avalanche duration and size: the
duration T of an avalanche was the number of time steps in which the activity re-
mained above θ ; the size S of an avalanche was equal to the sum of spikes exceeding
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this threshold at each time step during the avalanche (see Fig. 1). By definition, the
network activity, θ , T and S were integers.

Interestingly, the thresholded activity during the stable self-organization phase
showed bursts of spiking activity of various sizes and durations, whose distributions
could be fit by power-laws up to a size dependent cut-off point (Fig. 2, for details
on the power-law fitting, see Appendix). Here, we show distributions for an activity
threshold equal to half of the mean network activity (θ = 〈a(t)〉/2). However, the
thresholding process was robust regarding small deviations from this value (see the
results and supplementary material in [16] for further details).

As shown in [16], the cut-off point for both size and duration distributions in-
creased with the network size, as also expected for classical SOC models. Further-
more, the average avalanche size followed an empirical power-law as a function
of the avalanche duration, with exponent γ ≈ 1.3. As noted in [16], this exponent
agrees with previous estimations based on high resolution in-vitro cortical recordings
showing neuronal avalanches [18].

The plasticity mechanisms were necessary for the network self-organization, as
the power-law distributions were not observed in simple random reservoirs (RR)
(Fig. 2c). Remarkably, as soon as the network reached the stable phase, none of
the plasticity mechanisms were necessary to maintain the power-law distributions,
suggesting that the network indeed reached a different, possibly critical, dynamical
state. On the other hand, the membrane noise level was crucial for the appearance of
power-laws (Fig. 2d): a high noise level (Gaussian noise with mean zero and σ 2 ≈
5) resulted in Poisson-like activity, while a low noise level (σ 2 ≈ 0.005) resulted
in distributions resembling a combination of exponentials. As similar conclusions
could be drawn from different types of noise, the authors argued that the noise level
regulated the dynamical regime after self-organization and potentially indicated that
criticality signatures appeared only in a phase transition state.

In summary, the spontaneous activity of the SORNE showed robust criticality sig-
natures. The model self-organized towards a special “critical” dynamical state (fol-
lowing the avalanche criticality definition),whichdid not rely on the self-organization
mechanisms to be maintained. The membrane noise level acted as a control param-
eter: neuronal avalanches only appeared at a transition point, poised between two
distinct dynamical states. As the membrane noise could also represent input from
other sources not included in the model (such as other brain areas), we continue the
analysis by describing how the model behaves under external input.

4 External Input: Readaptation and Learning

Neural circuits in awake, behaving animals typically receive a large number of differ-
ent external inputs (i.e., sensory inputs). For the critical brain hypothesis to hold true,
adaptation mechanisms must tune neural networks towards criticality under various
external input regimes. Experimental evidence has shown that the onset of external
input breaks down the power-laws [50]. Specifically, that study showed that cortical



Fading Memory, Plasticity, and Criticality in Recurrent Networks 105

ex-vivo activity measured in the turtle brain is not critical immediately after the onset
of strong external input, but critical dynamics quickly reappears due to the system’s
readaptation. In [16], we showed similar results for the SORNE using random exter-
nal input: the criticality signatures transiently broke down after the onset of external
input, but were rapidly brought back by action of plasticity. However, using struc-
tured input of simple learning tasks such readaptation did not occur and power-laws
were not observed. We briefly contrast here both input conditions, emphasizing that
the same model can achieve distinct dynamics under distinct external drives.

In a first experiment, random external input (sequence of length L → ∞ and
alphabet size A = 10) was given to the network after it reached the stable phase,
and distributions of avalanche size and duration were measured immediately after
its onset (avalanche events starting in the first 10 time steps after stimulus) and after
readaptation due to plasticity, with all plasticity mechanisms on (2 × 106 time steps).
The external input consisted of a random sequence of symbols, where each symbol
provided strong input to a subset of NU excitatory neurons (see the External Input
subsection for further details). In agreement with the ex-vivo recordings, power-
laws did not appear in the transient activity, but were brought back by the network’s
readaptation mechanisms (Fig. 3a, duration distributions not shown), supporting the
argument that plasticity tunes the dynamical regime towards avalanche criticality.

In contrast to random external input, structured input is used in spatio-temporal
learning tasks [21, 28] and is commonly associated with more realistic sensory input
in behaving neural networks. Surprisingly, during such tasks, the repeating struc-
ture of the input was enough to destroy the power-law distributions in the SORNE

activity (Fig. 3b). Yet, longer sequences resulted in smoother distributions, qualita-
tively closer to power-laws, as long repeating input sequences resembled random
input, suggesting that additionally to plasticity, the structure of the external drive
fundamentally controls the model’s dynamical regime.

The action of the plasticity mechanisms in the SORNE abolished the criticality
signatures under structured input. The same plasticity mechanisms, however, im-
proved performance on a sequence learning task in the SORNO [28], as well as in the
SORNE, compared to a randomly initialized reservoir (RR, Fig. 3c). Interestingly,
the performance in the SORNE was better under low membrane noise than under
medium noise, and decreased to chance level for high noise (not shown). This, on the
one hand is to be expected, as noise masks the input sequences. On the other hand,
such result may appear surprising at first sight, as the SORNE showed signatures of
criticality under medium, but not low or high noise levels. What does this mean for
the relation between criticality and information processing? First, one may conclude
that performance is maximized at a state that does not show power-laws. However,
as none of the tested conditions showed power laws, it is still conceivable that there
may exist a state with power-law scaling and even better performance. Second, the
task is fairly simple, as it predicted the pattern at t + 1 from the activity at t . Maxi-
mal performance at this task may not require critical dynamics. Note that criticality
maximizes certain properties, such as susceptibility, correlation length and time, and
pattern diversity. Maximization of these properties fosters performance in tasks that
rely on them, e.g. tasks that require maintaining information about past input in their
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Fig. 3 Externally driven neuronal avalanches, adapted from [16]. a Probability distributions of
avalanches’ sizes (S) before the onset of random external input (black), immediately after (red) and
after readaptation (gray), for a network of NE = 200 neurons. Such distributions match experimen-
tal recordings from [50].bCorresponding probability distributions after the onset of structured input
of learning tasks (repeating sequences of different lengths L , with alphabet size A = 10). L → ∞
indicates a random, non repeating sequence. c Performance of the SORNE for the sequence learning
task depends on the membrane noise level. This is not the case for random reservoirs (RR). Curves
show averages of 50 simulations and error bars indicate the 25−75% percentiles interval

activity for long time (reservoir properties). However, for simple tasks as the one
used here, fast forgetting might be of advantage [11]. Hence, the higher performance
in the simple task under low membrane noise is expected.

Todirectly tackle thememoryproperties of theSORNE, i.e. the ability of a network
to store information about past inputs, we quantify in the next section how long
information can be read out from network activity by assessing its fading memory
time scale.

5 A Link Between Neuronal Avalanches and Fading
Memory

Fading memory is the ability of a model to retain and combine information about
previous inputs in its current activity, at any given time step. This property allows
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Fig. 4 Fading memory time scale in the SORN. a Error in input recall, for a SORNO of size
NE = 200 (nomembranenoise).Curves show the average classification error for a symbol presented
tp time steps in the past. The dashed line shows the 90% performance (10% error) threshold used for
the fading memory time scale estimation. b Fading memory time scale (Mτ ) scaling with network
size. Curves show the average Mτ for different alphabet sizes. Gray dashed lines show logarith-
mic functions, a · log(NE ) + b (A = 20: (a, b) ≈ (1.70,−6.09); A = 30: (a, b) ≈ (1.50,−5.64);
A = 40: (a, b) ≈ (1.27,−4.78). c Error in input classification, for a SORNE of size NE = 200
and A = 20. The membrane noise level greatly affects the model’s performance, and the smallest
error was observed for medium noise levels. All curves are averages of 20 SORN simulations

recurrent neural networks to perform complex temporal learning tasks [8] because it
enables the networks to combine past and present input. In this section, we measure
the fading memory time scale (Mτ ) of the SORN models as the time for which
readout of past inputs drops below 90%. We study Mτ under different input driven
dynamics, and identify an increase in such capacity at the regime in which avalanche
criticality occurs.

In order to estimate this fading memory time scale, we evaluated the SORNO’s
performance on random inputs received in previous time steps (see Fading memory
time scale estimation). Each input symbol was independently chosen at random from
an alphabet of size A, thus excluding any temporal correlation learning effect, as the
input sequence was never repeated. The error when classifying past input symbols
received tp time steps before the current time step quickly increased with tp, and the
model’s performance eventually reached chance level (Fig. 4a), for all tested alphabet
sizes (qualitatively, bigger alphabets resulted in a “shorter” memory time capacity).
Remarkably, the fading memory time scale increased approximately logarithmically
with the network size (Fig. 4b), independent of the alphabet size, reaching tp ≈ 6
for NE = 1600 and A = 20. Such scaling was comparable to the one observed in
recurrent networks operating at the edge-of-chaos [8].

Last, we tested whether the power-law distributed neuronal avalanches present in
the SORNE’s spontaneous activity were associated with an improvement in its fad-
ing memory time scale by comparing different levels of membrane noise (Fig. 4c).
As expected, high levels of membrane noise abolished the network’s learning and
memory capacity, where performance remained slightly above chance level. How-
ever, intermediate noise levels were not only associated with neuronal avalanches,
but also resulted in an improved fading memory time scale, with a slightly higher
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performance when compared to low noise levels. This result suggests that criticality
signatures in the spontaneous activity might indeed be associated with an increase in
the computational power of networks for tasks requiring the recognition of temporal
patterns.

6 Discussion

We have shown here that criticality signatures in the form of power-law distributions
of duration and size of bursts of neural activity can be found in the spontaneous
activity of a recurrent neural network subject to plasticity action. These signatures
resulted from self-organization due to biologically inspired plasticity mechanisms
and resembled neuronal avalanches observed in neural circuits [6, 18, 33, 40]. No-
tably, the power-law exponents (size: τ ≈ 1.3; duration: α ≈ 1.4) were smaller than
those for a random-neighbor network (2 and 1.5, respectively), potentially reflect-
ing the complex topology emerging after network self-organization. Our model also
showed that such power-laws are input dependent and appeared under unstructured
external input after a transient break down, a phenomenon that has also been observed
in ex-vivo preparations [50]. Additionally, the power-laws also required a suitable
intermediate level of membrane noise to occur in the model’s spontaneous activity.
This finding suggests that in cortex the strength of input received from other con-
nected areas could act as a control parameter maintaining the local network circuit
in a reverberating state, thus within the subcritical regime, as detailed by Zierenberg
and colleagues [71]. Such result highlights the role of self-organization in driving
a network towards a regime in which criticality signatures appear, but suggests that
such regime is only achievable under particular input conditions.

Importantly,we refer here to self-organization towards criticality instead of typical
self-organized criticality (SOC), as the SORN is not a pure SOC model such as the
Bak–Tang–Wiesenfeld sandpile model [4]. In the SORN, as opposed to typical SOC
models but in agreement with neural activity in-vivo, input and internal dynamics
occur at the same time and separation of time scales is absent (i.e., avalanche events
are not separated by pauses) [46]. The resulting overlap of avalanches was handled
via activity thresholding [42], which excluded very small events and potentially
induced left cut-offs in the power-law distributions (see Fig. 2). Although such cut-
offs are not a property of SOC systems, they have been observed in cortical data [46].
Furthermore, power-law scaling alone is insufficient evidence for phase transitions, as
non-critical stochastic systems have been shown to display such scaling [48, 59]. We
argue, therefore, that even though SORNmodels might not operate at a critical point,
their plasticity mechanisms drive them towards a regime in which experimentally
measured criticality signatures appear, and suggest that future work should focus on
understanding the link between criticality signatures (i.e., avalanche criticality) and
phase transitions (i.e., edge-of-chaos criticality) in systems without separation of
time scales. Furthermore, we note that in systems with non-zero external input, the
structure of the input may generate apparent criticality in non-critical systems [44,
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59]. Hence, whenever in a input-driven state, the input should be disentangled from
the internal model dynamics when drawing conclusions about criticality.

The differences between the two types of phase transitions generically referred to
as “critical points” have been highlighted before, and simulations showed that they
are not equivalent in neural networks [24, 25]. In fact, our results suggest that the
same occurs in SORN models: neuronal avalanches are present in their spontaneous
activity, but perturbation analysis has previously shown that the SORNO displays
subcritical behavior, at least under specific input conditions [28]. Interestingly, even
though criticality signatures are not associatedwithmaximum performance in simple
learning tasks [16], we note here that they coincide with improvement of the time
scale of memory persistence in the model. Furthermore, such capacity scaled loga-
rithmically with the network size, a property so far observed only in reservoirs tuned
to edge-of-chaos criticality [8]. These findings imply that the presence of criticality
signaturesmight not only be beneficial to a network’smemory, but also linked to exis-
tence of edge-of-chaos critical dynamics, as both phenomena result from an increase
in the long-range correlations across units and in time. Importantly, this implies that
the dynamical state of the cortex or of a network could and should be adapted to
task requirements. Such tuning is particularly sensitive if the network operates in a
reverberating state in the vicinity of criticality [65, 66]. A formal description of the
relation between these properties, however, is beyond of the scope of this manuscript
and should be the focus of future research.

Whereas in models the link between processing capacity and criticality has been
widely investigated, experimental evidence is scarce, potentially because it is harder
to obtain. The twomain challenges are first to tune the experimental system precisely
form sub- to supercritical states, ideally in a manner that does not impede its natural
processing capacities in a given state. Second, the processing capacities need to be
quantified. A classical approach is to make use of pharmacological interventions,
e.g. applying AP5 and DNQX to reduce excitation and thereby render a network
subcritical, and applying TTX to reduce inhibition and render a system more su-
percritical [53]. Indeed, the dynamic range obtained from LFP recordings in-vitro
under electrical stimulation is maximized in the unperturbed system and diminished
when excitation or inhibition is reduced pharmacologically [52]. The same holds
for the entropy of evoked patterns, and for the mutual information between stimu-
lus strength and response pattern [51, 53]. Recently, Wibral and colleagues showed
that the mutual information (MI) between the past activity of two neurons and their
future spiking increases with maturation in-vitro [61]. Given that with maturation
neural networks in-vitro approach a critical state [32], this clearly indicates that
more information about the past can be read out in the future, as the network self-
organizes towards a critical point. By characterizing contributions from the source
neurons [9, 62, 63], the relative contribution of synergy toMI increased, whereas the
unique contributions from each source decreased during the first four weeks. This
indicates that the network develops information modification capabilities [61]. In the
fifth week, however, the redundant or shared contribution dominated. Hence, infor-
mation processing became highly similar across neurons, possibly due to a lack of
external inputs [61]. Together, these studies in-vitro show that favorable information
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processing capabilities increase around criticality and thereby are very much in line
with modeling results. Thus, the same relation is also expected to hold in-vivo.

Linking criticality or the deviation from it to performance in a particular task in
experiments is challenging. Hence, theoretical work is crucial to drive a systematic
understanding [11, 16, 58]. Experimentally, a large body of work focuses on testing
whether recorded neural activity in-vivo or in-vitro complies with the criticality
hypothesis in showing avalanche distributions without a direct link to function [3,
5, 6, 18, 39, 43, 45, 46, 49, 50, 54, 56, 68]. An elegant approach is to track the
performance of a single task and monitor how the performance in this task relates
to alterations in network state, as studied systematically by the group of Palva and
Palva [38, 39]. The challenges when comparing between different tasks are twofold.
First, tasks typically come with altered input for each condition. The input makes
it very difficult to disentangle whether an observed difference is indeed caused by
a deviation from criticality or any general state change, whether it is induced by
transiently changing (non-stationary) input without underlying state change, or a
combination of both. Developing approaches to disentangle the two scenarios is an
important future challenge. The second challenge is that avalanche analysis requires
tens of minutes, or even hours, of recordings to be able to detect differences. This
is because an avalanche distribution that extends over the required two orders of
magnitude comprises thousands of avalanches for sufficient statistics. Assuming a
rate of one avalanche per second, the analysis requires at least 1000s or 20min of
recording—per condition. A fine temporal resolution in state change is, therefore,
difficult and data-costly. Novel approaches, such as the estimator derived recently by
Wilting and Priesemann [66] and detailed in this book (for details, see the chapter by
Priesemann, Levina and Wilting) now enables quantifying the distance to criticality
in a muchmore data efficient manner, requiring at most a fewminutes. Moreover, the
estimator’s invariance to subsampling is derived from first principles. With such an
estimator, changes in dynamical state can be tracked with minute-resolution, or even
down to seconds given a trial-based experimental design. Such novel approaches can
pave the path to new experimental insights when linking dynamical state, criticality
and task processing.

Taken separately, the results presented here seem to suggest an apparent contra-
diction: avalanche criticality is linked to an increase in the fading memory time scale
of recurrent networks, but not tomaximumperformance in simple learning taskswith
structured input. Although the understanding of the relation between both quanti-
ties is object of ongoing research, this discrepancy can be clarified by the nature
of the learning task and the readout training procedure. Medium membrane noise
levels resulted in an increased number of internal states, suggested by the increase
in the fading memory time scale and power-law distributions, but such effect could
not be exploited by a supervised readout layer as the noisy network activity slightly
increased the error of the classifier.

Additionally, as the power-law distributions seem to require unstructured input in
the SORN, their absence under repeating input sequences was not surprising. Despite
the absence of the most common criticality signature, the network can achieve an
internal structure that is beneficial for learning. Such results could be interpreted as
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a deviation from avalanche criticality due to structured input, while other network
information processing abilities, including the fading memory time scale, remained
unaffected. Therefore, criticality signatures might still indicate a favorable, although
not unique, dynamical regime for recurrent networks.

The contrast between the presence of power-law distributed neuronal avalanches
in the model’s spontaneous activity and their absence under structured input also
suggests an analogy between in-vivo and in-vitro activity in the brain. We have
shown that the same plasticity mechanisms might result in the occurrence or absence
of power-law distributions under different input conditions. As such distributions
indicate avalanche criticality, our results stand in agreement with the development
of criticality signatures in neural networks in-vitro [6, 18, 32, 57, 71] and with the
non-critical dynamics observed in spike avalanches in-vivo [46, 67, 71]. Such input
driven adaptation may be favorable for the neural circuits in behaving animals, as it
allows them to take advantage of the computational advantages of criticality while
avoiding unstable supercritical regimes [46] observed during epileptic seizures [37].
Thus, by keeping neural activity at a healthy, non-epileptic level, biological plasticity
mechanismsmight play an essential role in tuning the system towards and away from
criticality when required by varied input conditions [46, 71].

Appendix

Power-Law Fitting

Although power-laws are very common in nature, their characterization is particu-
larly complex and must be carefully evaluated. In particular, many false positives
may appear, ranging from inaccurate exponents to wrong distribution fits [13]. Such
problems can be better understood and avoided using maximum likelihood estima-
tors. In this study, we followed the procedure of a previous work [16], employing
the powerlaw python package [1] in order to estimate the distributions exponents.
For all the probability distributions of avalanche durations and sizes shown here,
power-laws with cut-offs provided better fits when compared to other single param-
eter distributions, such as exponential distributions. The cut-off was chosen in a case
by case analysis, based on the best power-law fit. For a step-by-step description of
power-law fitting via maximum likelihood estimators, see [13].

References

1. Alstott, J., Bullmore, E., Plenz, D.: powerlaw: a python package for analysis of heavy-tailed
distributions. PloS One 9(1), e85,777 (2014)

2. de Arcangelis, L., Perrone-Capano, C., Herrmann, H.J.: Self-organized criticality model for
brain plasticity. Phys. Rev. Lett. 96(2), 028,107 (2006)



112 B. Del Papa et al.

3. Arviv, O., Goldstein, A., Shriki, O.: Near-critical dynamics in stimulus-evoked activity of the
human brain and its relation to spontaneous resting-state activity. J. Neurosci. 35(41), 13927–
13942 (2015)

4. Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality: An explanation of the 1/f noise.
Phys. Rev. Lett. 59(4), 381 (1987)

5. Bedard, C., Kroeger, H., Destexhe, A.: Does the 1/f frequency scaling of brain signals reflect
self-organized critical states? Phys. Rev. Lett. 97(11), 118,102 (2006)

6. Beggs, J.M., Plenz, D.: Neuronal avalanches in neocortical circuits. J. Neurosci. 23(35), 11167–
11177 (2003)

7. Beggs, J.M., Timme, N.: Being critical of criticality in the brain. Front. Physiol. 3 (2012)
8. Bertschinger, N., Natschläger, T.: Real-time computation at the edge of chaos in recurrent

neural networks. Neural Comput. 16(7), 1413–1436 (2004)
9. Bertschinger, N., Rauh, J., Olbrich, E., Jost, J.: Shared information–new insights and problems

in decomposing information in complex systems. In: Proceedings of the European Conference
on Complex Systems 2012, pp. 251–269. Springer (2013)

10. Bi, G.Q., Poo, M.M.: Synaptic modifications in cultured hippocampal neurons: dependence on
spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18(24), 10,464–10,472
(1998)

11. Boedecker, J., Obst, O., Lizier, J.T., Mayer, N.M., Asada, M.: Information processing in echo
state networks at the edge of chaos. Theory Biosci. 131(3), 205–213 (2012)

12. Chialvo, D.R.: Emergent complex neural dynamics. Nat. Phys. 6(10), 744–750 (2010)
13. Clauset, A., Shalizi, C.R., Newman, M.E.: Power-law distributions in empirical data. SIAM

Rev. 51(4), 661–703 (2009)
14. Dahmen, D., Diesmann, M., Helias, M.: Distributions of covariances as a window into the

operational regime of neuronal networks (2016). arXiv:1605.04153
15. Dahmen, D., Grün, S., Diesmann, M., Helias, M.: Two types of criticality in the brain (2017).

arXiv:1711.10930
16. Del Papa, B., Priesemann, V., Triesch, J.: Criticality meets learning: criticality signatures in a

self-organizing recurrent neural network. PloS One 12(5), e0178,683 (2017)
17. Duarte, R., Series, P.,Morrison, A.: Self-organized artificial grammar learning in spiking neural

networks. In: Proceedings of the 36th Annual Conference of the Cognitive Science Society,
pp. 427–432 (2014)

18. Friedman, N., Ito, S., Brinkman, B.A., Shimono, M., DeVille, R.L., Dahmen, K.A., Beggs,
J.M., Butler, T.C.: Universal critical dynamics in high resolution neuronal avalanche data.
Phys. Rev. Lett. 108(20), 208,102 (2012)

19. Gautam, S.H., Hoang, T.T., McClanahan, K., Grady, S.K., Shew, W.L.: Maximizing sensory
dynamic range by tuning the cortical state to criticality. PLoS Comput. Biol. 11(12), e1004,576
(2015)

20. Haldeman, C., Beggs, J.M.: Critical branching captures activity in living neural networks and
maximizes the number of metastable states. Phys. Rev. Lett. 94(5), 058,101 (2005)

21. Hartmann,C., Lazar,A.,Nessler,B., Triesch, J.:Where’s the noise?Key features of spontaneous
activity and neural variability arise through learning in a deterministic network. PLoS Comput.
Biol. 11(12), e1004,640–e1004,640 (2015)

22. Hesse, J., Gross, T.: Self-organized criticality as a fundamental property of neural systems.
Front. Syst. Neurosci. 8, (2014)

23. Jaeger, H.: Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the
“echo state network” approach, vol. 5. GMD-Forschungszentrum Informationstechnik (2002)

24. Kanders, K., Lorimer, T., Stoop, R.: Avalanche and edge-of-chaos criticality do not necessarily
co-occur in neural networks. Chaos Interdiscip. J. Nonlinear Sci. 27(4), 047,408 (2017)

25. Kanders, K., Lorimer, T., Uwate, Y., Steeb, W.H., Stoop, R.: Robust transformations of firing
patterns for neural networks (2017). arXiv:1708.04168

26. Kinouchi, O., Copelli, M.: Optimal dynamical range of excitable networks at criticality. Nat.
Phys. 2(5), 348–351 (2006)

http://arxiv.org/abs/1605.04153
http://arxiv.org/abs/1711.10930
http://arxiv.org/abs/1708.04168


Fading Memory, Plasticity, and Criticality in Recurrent Networks 113

27. Lazar, A., Pipa, G., Triesch, J.: Fadingmemory and time series prediction in recurrent networks
with different forms of plasticity. Neural Netw. 20(3), 312–322 (2007)

28. Lazar, A., Pipa, G., Triesch, J.: Sorn: a self-organizing recurrent neural network. Front. Comput.
Neurosci. 3 (2009)

29. Lazar, A., Pipa, G., Triesch, J.: Emerging bayesian priors in a self-organizing recurrent network.
In: Artificial Neural Networks and Machine Learning–ICANN 2011, pp. 127–134. Springer
(2011)

30. Legenstein, R., Maass, W.: Edge of chaos and prediction of computational performance for
neural circuit models. Neural Netw. 20(3), 323–334 (2007)

31. Levina, A., Herrmann, J.M., Geisel, T.: Dynamical synapses causing self-organized criticality
in neural networks. Nature Phys. 3(12), 857–860 (2007)

32. Levina, A., Priesemann, V.: Subsampling scaling. Nat. Commun. 8, 15,140 (2017)
33. Lombardi, F., Herrmann, H., Perrone-Capano, C., Plenz, D., De Arcangelis, L.: Balance be-

tween excitation and inhibition controls the temporal organization of neuronal avalanches.
Phys. Rev. Lett. 108(22), 228,703 (2012)
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Homeostatic Structural Plasticity Can
Build Critical Networks

Arjen van Ooyen and Markus Butz-Ostendorf

Abstract Many neural networks, ranging from in vitro cell cultures to the neocortex
in vivo, exhibit bursts of activity (“neuronal avalanches”) with size and duration dis-
tributions characterized by power laws. The exponents of these power laws point to a
critical state in which network connectivity is such that, on average, activity neither
dies out nor explodes, a condition that optimizes information processing.Various neu-
ral properties, including short- and long-term synaptic plasticity, have been proposed
to underlie criticality. Reviewing several model studies, here we show that during
development, activity-dependent neurite outgrowth, a form of homeostatic structural
plasticity, can build critical networks. In the models, each neuron has a circular neu-
ritic field, which expands when the neuron’s average electrical activity is below a
homeostatic set-point and shrinks when it is above the set-point. Neurons connect
when their neuritic fields overlap. Without any external input, the initially discon-
nected neurons organize themselves into a connected network, in which all neurons
attain the set-point level of activity. Both numerical and analytical results show that
in this equilibrium configuration, the network is in a critical state, with avalanche
distributions described by precisely the same power laws as observed experimen-
tally. Thus, in building critical networks during development, homeostatic structural
plasticity can lay down the basis for optimal network function in adulthood.
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1 Introduction

Experimental studies have observed an intriguing dynamical state characterized by
so-called neuronal avalanches in a variety of neural systems, including acute and
cultured cortical slices [5, 6], developing cultures of dissociated cortex cells [48],
the developing retina [30], the developing cortex in vivo [25] and the adult neocortex
in vivo [49]. Neuronal avalanches are spontaneous bursts of activity that have power-
law size and duration distributions [5, 6]. Most studies report that the number of
avalanches of a given size (e.g., in terms of number of electrodes on which activity
is recorded) decreases proportionally to the size to the power −1.5, and that the
number of avalanches of a given duration declines proportionally to the duration to
the power−2 [5, 25]. Power laws typically emerge in systems when they are critical,
meaning that they are close to a transition in behavior [42]. Simple mathematical
models have shown [78] that power laws with exponents −1.5 and −2 can arise
if connectivity is such that every neuron that fires an action potential causes, on
average and independently of network activity [38], one other neuron to fire. With
this connectivity, network activity, on average, neither dies out nor blows up over
time.

How do networks develop and maintain such a critical pattern of connectivity?
Reviewing several model studies, here we show that activity-dependent outgrowth of
neurites (axons and dendrites) can self-organize a network into a critical state. During
development, electrical activity controls the elongation, branching and retraction of
neurites [34, 44, 60, 77] by modifying the level of intracellular calcium. Calcium,
which enters the cell through voltage-gated channels, is the principal regulator of
the growth cone, a specialized structure at the tip of outgrowing neurites [24, 34, 37,
40]. A high intracellular calcium concentration, caused bymembrane depolarization,
a high neuronal firing rate, or stimulation by excitatory neurotransmitters, arrests
neurite outgrowth or even causes retraction. Conversely, a low calcium concentration,
due to a low firing rate, hyperpolarization, or inhibitory neurotransmitters, promotes
neurite elongation [16, 23, 32, 45, 46]. Thus, the way in which electrical activity
modulates neurite outgrowth contributes to maintaining neuronal electrical activity
at a stable average level (homeostasis). When the electrical activity of a neuron
is above a desired value (homeostatic set-point) its neurites retract, breaking-up
synaptic connections and so reducing neuronal activity. Conversely, when activity is
below this value, neurites grow out, making new synaptic connections and so raising
the neuron’s activity.

Activity-dependent neurite outgrowth is a form of homeostatic structural plastic-
ity [14, 15, 22], with structural plasticity defined as encompassing all the structural
adaptations, such as neurite outgrowth and changes in dendritic spine numbers, that
lead to the formation or deletion of synapses [14, 69]. Structural plasticity can con-
nect previously unconnected neurons, disconnect neurons, or change the number of
synapses by which neurons are connected. In contrast, synaptic plasticity is defined
as a change in the strength of existing synapses. Hebbian synaptic plasticity changes
synapse strength depending on the correlation between pre- and postsynaptic activ-
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ity [8, 28], whereas synaptic scaling (homeostatic synaptic plasticity) modifies the
strengths of all the cell’s incoming synapses so as to stabilize neuronal activity around
some set-point value [63].

One of the first models of homeostatic structural plasticity is the neuritic field
model of activity-dependent neurite outgrowth [70–72, 75]. In this model, the neurite
extensions of each neuron are represented by a circular neuritic field, which expands
when the neuron’s electrical activity is below a homeostatic set-point and shrinks
when the neuron’s activity is above the set-point. Neurons connect synaptically when
their neuritic fields overlap.

In this chapter, we give a brief overview of the original neuritic field model,
followed by a review of studies [2, 38, 61] that have employed the model to examine
the development of criticality. The results show that simple, homeostatic growth rules
can construct neural circuits with critical, power-law behavior.

2 The Neuritic Field Model

2.1 Model at a Glance

In constructing the neuritic field model, we were inspired in part by developing
cultures of dissociated cortex cells, in which initially disconnected cells assemble
themselves, without external input, into a synaptically connected network by neu-
rite outgrowth and synaptogenesis [43, 48, 65, 76]. In the model, growing neurons
are described as expanding neuritic fields, representing both axons and dendrites.
Neurons become synaptically connected when their neuritic fields overlap, with a
connection strength proportional to the area of overlap. The outgrowth of each neu-
ron depends on its own level of electrical activity, as follows. The neuritic field
expands when the neuron’s electrical activity is below a certain set-point and shrinks
when activity is above this set-point. Thus, a reciprocal influence exists between
electrical activity (fast dynamics) and outgrowth (slow dynamics): electrical activ-
ity determines outgrowth, while in turn outgrowth alters connectivity and conse-
quently activity. Through these interactions, the initially disconnected neurons orga-
nize themselves into a synaptically connected network, guided only by the activity
generated by the network itself; there is no external input.

2.2 Neuronal Activity

Neuronal electrical activity is described by the shunting model [26]. In this model,
excitatory inputs drive the membrane potential towards a maximum (the excitatory
saturation potential), while inhibitory inputs drive the membrane potential towards
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a minimum (the inhibitory saturation potential). For a network containing only exci-
tatory cells, the model becomes [70]:

dXi

dt
= − Xi

τX
+ (1 − Xi )

N∑

j=1

Wi j F
(
X j

)
(1)

where Xi is the membrane potential of neuron i, t is time, τX is the membrane
time constant, Wi j ≥ 0 is the connection strength between presynaptic neuron j and
postsynaptic neuron i, F

(
X j

)
is the firing rate of neuron j, andN is the total number of

neurons. The term (1 − Xi ) implies that inputs from other cells drive the membrane
potential towards a saturation potential of 1. The firing rate, with its maximum set
to 1, is a sigmoidal function of the membrane potential:

F
(
X j

) = 1

1 + e(θ−X j)/α
(2)

where α determines the steepness of the function and θ represents the firing thresh-
old. The low firing rate for sub-threshold membrane potentials reflects spontaneous
neuronal activity.

2.3 Outgrowth and Connectivity

Neurons are placed at random positions on a two-dimensional surface. Each neuron
has a circular neuritic field, the radius of which is variable. When the fields of
neurons i and j overlap, both neurons become connected with a strengthWi j = σ Ai j ,
where Ai j = A ji is the area of overlap, representing the total number of synapses
formed reciprocally between neurons i and j; and σ is a constant of proportionality,
representing the strength of a single synapse.

The change in neuritic field size depends on the neuron’s own firing rate:

dRi

dt
= ρG[F(Xi )] (3)

where Ri is the radius of the neuritic field of neuron i, and ρ determines the rate of
outgrowth. The outgrowth function G is defined as

G[F(Xi )] = 1 − 2

1 + e[Ftarget−F(Xi )]/β
(4)

where Ftarget is the homeostatic set-point, i.e., the value of F(Xi ) for which G = 0;
andβ determines the steepness of the function. Equation 4 implements that depending
on the value of F(Xi ), a neuritic field grows out [G > 0 if F(Xi ) < Ftarget], retracts [G
< 0 if F(Xi ) > Ftarget] or remains constant [G = 0 if F(Xi ) = Ftarget]. In biological
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neurons, the effect of electrical activity on neurite outgrowth is mediated by calcium
[24, 34, 37, 40], with the concentration of intracellular calcium acting as indicator
of the neuron’s firing rate [2, 3, 58].

2.4 Network Assembly, Overshoot and Homeostasis

The neurons are initialized with no or small neuritic fields, so most neurons are
initially disconnected or organized in small, isolated clusters (Fig. 1a). Consequently,
neuronal firing rates F(Xi ) are below the homeostatic set-point Ftarget, and neuritic
fields start expanding. As the neurons grow out, they begin to formmore and stronger
connections, linking neurons together and slowly raising the level of activity in
the network. At some degree of connectivity, network activity abruptly jumps to
a much higher level (Fig. 1d), but activity is then so high that F(Xi ) > Ftarget.
As a result, neuritic field size and connectivity start decreasing and activity drops.
As neurons adjust the size of their neuritic fields, and react to the adjustments of
their neighbors, the network eventually reaches a stable equilibrium in which the
connectivity between cells is such that for all cells F(Xi ) = Ftarget and neuritic fields
and connectivity no longer change (Fig. 1b). The neurons thus self-organize, via a
transient phase of high connectivity (overshoot) (Fig. 1c), into a stable network with
network-wide homeostasis of activity. They thereby adapt to the local cell density,
with neurons acquiring small neuritic fields in areas with a high cell density and large
fields in areas with a low cell density (Fig. 1b).

The assembly of initially unconnected model neurons into a connected network
strongly resembles development in cultures of dissociated cortex cells, with respect
to both activity and connectivity [27, 55, 57, 65, 66]. The first three weeks in vitro
show a phase of steady neurite outgrowth and synapse formation [65, 66], with
neuron firing and network activity abruptly appearing within a window of a few days
[27] and network structure exhibiting a transition from local to global connectivity
[57]. In the next week, this is followed by a substantial elimination of synapses until
a stable connectivity level is reached [65, 66].

2.5 Analytical Relationship Between Activity
and Connectivity

The relationship between activity and connectivity, and the changes in activity and
connectivity during development, can be predicted directly from Eq. 1 [70]. For a
given connectivity matrix W, the equilibrium points of Xi are solutions of

0 = − Xi

τX
+ (1 − Xi )

N∑

j=1

Wi j F
(
X j

)
(5)
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Fig. 1 Network assembly. In this example of the original neuritic field model [70, 72], all cells
are excitatory. a Early stage of network development. Neuritic fields are small, connectivity is low,
and cells have a low level of electrical activity. b Network at equilibrium. The electrical activity of
all cells is at the homeostatic set-point, and the neuritic field sizes remain constant. c Development
of network connectivity Â = 1

2

∑N
i=1, j=1 Ai j = total area of overlap (see Sect. 2.3) over time.

d Network-averaged membrane potential X against network connectivity Â. Electrical activity is
initially low, so connectivity increases.When connectivity is strong enough, activity abruptly jumps
to a much higher level. This level exceeds the homeostatic set-point, so connectivity and activity
then decrease until activity is at the homeostatic set-point. Parameters of the model: τX = 8,
ρ = 2.5× 10−6, θ = 0.5, α = 0.1, β = 0.1, Ftarget = 0.6, σ = 0.4 (a and b) or 0.1 (c and d), N =
64. The value of the outgrowth rate ρ is small enough for connectivity to be quasi-stationarity on
the time scale of membrane potential dynamics (Figure reproduced, with permission, from [70])

If all cells have the same Ftarget and the variations in Xi are small relative to the
average membrane potential X of the network, then 0 = −X/τX +(

1 − X
)
WF

(
X

)
,

where W is the average connection strength. Rewriting this equation gives

W = X/τX(
1 − X

)
F

(
X

) 0 ≤ X < 1 (6)

Equation 6, which defines a manifold in (W , X) space (Fig. 2), provides the
equilibrium value(s) of X for a given, fixed value of W (i.e., a bifurcation diagram).
Equilibrium states on branch CD of the manifold are unstable with respect to X ;
equilibrium states on branches ABC and DEF are stable. Because changes in W are
slow, being caused by outgrowth and retraction of neuritic fields (Eq. 3), W can be
considered quasi-stationary on the time scale of membrane potential dynamics. That
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Fig. 2 Relationship between activity and connectivity. In the original neuritic field model [70,
72], the manifold of Eq. 6 defines the equilibrium value(s) of the network-averaged membrane
potential X for a given, fixed value of the network-averaged connectivity W in a purely excitatory
network. Equilibrium values on branch CD are unstable with respect to X ; equilibrium values on
branches ABC and DEF are stable. The intersection point with the line X = F−1(ε), where F−1

is the inverse of the firing rate function and ε = Ftarget (see Eqs. 2–4), is the equilibrium state of
the whole system, at which W remains constant. See further Sect. 2.5 (Figure reproduced, with
permission, from [70])

is, in the time that X relaxes to its equilibrium value, W hardly changes. In other
words, at any given value of W , X is at its equilibrium value. Therefore, the slow
evolution of X , i.e., the changes in X that are brought about by changes in W , take
place along the manifold.

If for all cells F(Xi ) = Ftarget, the neuritic fields, and therefore W , remain con-
stant. Thus, at the intersection point with the line X = F−1

(
Ftarget

)
(F−1 is the inverse

of F), W remains constant; above and below that line, it decreases and increases,
respectively. Consider, for example, an intersection point on branch DE (Fig. 2).
During development, connectivity and activity are initially low, so W increases, and
X follows the branch ABC until it reaches C, at which point it jumps to branch DEF.
However, X is then so high that the neuritic fields begin to retract andW to decrease
until X , moving along branch DEF, reaches the intersection point. Thus, in order to
arrive at an intersection point on branch DE, a developing network has to go through
a phase in which connectivity is higher than in the final situation (overshoot; see
Sect. 2.4). If the intersection point is on branch CD, connectivity and activity will
oscillate on the time scale of growth [71]. No overshoot or oscillations occur if the
intersection point is on branch ABC or EF.
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2.6 Inhibition and Further Results

Simulation studies revealed that also in networks with both excitatory and inhibitory
cells (mixed networks), all cells generally achieve homeostasis of activity, just as they
do in purely excitatory networks [72]. Overshoot of connectivity can be enhanced
in mixed networks [72]. Interestingly, although there are no intrinsic differences in
growth rules between excitatory and inhibitory cells in the model, the cells nev-
ertheless differentiate, with the neuritic fields of inhibitory cells becoming smaller
than those of excitatory cells [72]. Furthermore, both purely excitatory and mixed
networks are capable of self-repair after lesions. Following cell loss, the remaining
cells, especially those in the neighborhood of the deleted cells, lose connections and
undergo a drop in activity, triggering neuritic field outgrowth and formation of new
connections, until activity is restored at the homeostatic set-point [72]. In addition,
themodel can account for the development of intrinsic firing patterns [1], the develop-
ment of retinal mosaics [20], developmental changes in network-wide activity bursts
[35], and developmental transitions in cognition [51, 52]. For extensive reviews of
the model, see [68, 74].

3 Criticality in the Neuritic Field Model

3.1 Model

Abbott and Rohrkemper [2] used a slightly modified version of the original neuritic
field model [70, 72]. In their variant of the model, neuronal activity is governed by a
Poisson spiking model (rather than being described by a firing rate) and neuritic field
outgrowth is dependent on the neuron’s internal calcium concentration (rather than
directly on the neuron’s firing rate). In the purely excitatory network they investigated,
neuronal activity is generated by a Poisson spiking model based on a computed firing
rate. The firing rate Fi of neuron i is described by

dFi
dt

= F0 − Fi
τF

(7)

where F0 is a spontaneous background rate and τF is the time constant with which Fi
relaxes to F0. At every time step	t, neuron i fires an action potential with probability
Fi	t . After a neuron fires, it cannot fire again for a refractory period tref. Whenever
another neuron j fires an action potential, Fi is incremented, Fi → Fi +σ Ai j , where
Ai j is the area of overlap between neurons i and j, and the constant σ represents
synaptic strength.

The average level of activity of neuron i is monitored by the neuron’s internal
calcium concentration Ci , which is incremented whenever neuron i fires, Ci →
Ci + 1, and decays to zero otherwise,
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dCi

dt
= −Ci

τC
(8)

with time constant τC . The calcium concentration determines the change in the neu-
ritic field radius Ri of neuron i:

dRi

dt
= ρ

(
Ctarget − Ci

)
(9)

where ρ is the rate of outgrowth. If neuronal activity and thus calcium concentration
are low (Ci < Ctarget), neuron i grows out, leading tomore excitatory connections and
hence higher activity. Conversely, if neuronal activity and calcium concentration are
high (Ci > Ctarget), the neuron retracts, reducing connectivity and lowering activity.
In this way, each neuron grows out or retracts to try to reach the target level of calcium
concentration (Ci = Ctarget).

3.2 Results

In a similar manner to that described for the original model (Sect. 2.4), the neurons
grow out and assemble themselves into a synaptically connected network. In the
equilibriumstate, the calciumconcentrations of the neurons remain close toCtarget and
the radii Ri of the neuritic fields are nearly constant, with only small fluctuations over
time. In the equilibrium configuration, the pattern of network activity was analyzed
in terms of size and duration of networks bursts [2]. A network burst or avalanchewas
defined as an event inwhich spiking is observed in at least one neuron for a contiguous
sequence of time bins (tbin = 10 ms), bracketed before and after by at least one bin
of silence in all neurons. The results of the analysis (Fig. 3) were interpreted to show
that burst size and burst duration in the model follow power-law distributions (i.e.,
linearity in a log-log plot), characteristic of critical dynamics. The occurrence of
bursts of a given size (as measured in number of action potentials generated during
a burst) was described as following a power law with exponent −1.5 (Fig. 3a), and
the number of bursts of a given duration as a power law with exponent −2 (Fig. 3b),
similarly towhat had been observed in cultures of cortical slices [5, 6] and dissociated
cortex cells [48]. The property of the model that neurons grow out when activity is
low and withdraw when activity is high forces the network to find a middle ground
between all-to-all connectivity (producing excessive activity) and local connectivity
(producing insufficient activity). This middle-ground in connectivity, with a stable
average level of activity, was believed to underlie the generation of critical dynamics
in the model.

The small fluctuations in Ri that are still present in the equilibrium state are not
important for the size and duration distributions: shutting off growth completely
(ρ = 0) once equilibrium is reached did not make any noticeable difference to the
results. The distributions do also not crucially depend on the exact values of the
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Fig. 3 Burst size and duration. Burst size and duration in the model by Abbott and Rohrkemper
[2]. aHistogramof the fraction of bursts (events) with different numbers of spikes. The line indicates
−1.5 power. b Histogram of the fraction of bursts with different durations. The line indicates −2
power. Parameters of the model:F0 = 0.1 Hz, τF = 5 ms, 	t = 1 ms, tref = 20 ms, σ = 500 Hz,
τC = 100 ms, ρ = 0.002 s−1, Ctarget = 0.08, total number of neurons = 100 (Figure reproduced,
with permission, from [2])

model parameters. The value of Ctarget influences the exponents of the power laws
with which the distributions are described, but only values much higher or lower
than the one used in Fig. 3 lead to essentially different distributions. Much higher
values ofCtarget yield flat distributions of burst size and burst duration, whereas much
smaller values lead to a shortage of large, long-lasting bursts.

4 Analytical Proof of Criticality in the Neuritic Field Model

Being a relatively small simulation study, the work by Abbott and Rohrkemper
[2] could not claim conclusively that the neuritic field model is capable of building
critical circuits.Recently,Kossio et al. [38] proved analytically that a slightly different
version of themodel used byAbbott andRohrkemper [2] generates activity dynamics
characterized by power-law avalanche distributions. In their model, neuronal activity
is described by a stochastic, continuous-time spiking model that is very similar to
the one used in Abbott and Rohrkemper [2], with an instantaneous firing rate Fi of
neuron i and a low spontaneous firing rate F0 but without a refractory period (but
see below). As in Abbott and Rohrkemper [2], a spike from neuron j increments Fi
by σ Ai j , where Ai j is the area of overlap between neurons i and j, and the constant
σ represents synaptic strength. Without an input spike, Fi decays exponentially to
F0 with time constant τF (Eq. 7). A difference from Abbott and Rohrkemper [2] is
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Fig. 4 Avalanche size and duration in the model by Kossio et al. [38]. a Analytical size distribution
(blue) and simulation results (gray) for a subcritical state (Ftarget = 0.04 Hz), and analytical size
distribution (red) and simulation results (black) for a near-critical state (Ftarget = 2 Hz) b Analytical
duration distribution (green) and simulation results (gray) for the subcritical state, and analytical
duration distribution (orange) and simulation results (black) for the near-critical state.Red line shows
a closed-form approximation. Parameters of the model: F0 = 0.01 Hz, τF = 10 ms, σ = 500 Hz,
ρ = 10−6 s−1, total number of neurons = 100. For the subcritical state, a time bin tbin of 30 ms was
used, and for the near-critical state a tbin of 45 ms (Figure reproduced, with permission, from [38])

that the change in neuritic field radius Ri of neuron i depends directly on its firing
rate Fi . In the model, Ri increases linearly with rate ρ between spikes of neuron i
and decreases with a constant amount ρ/Ftarget when neuron i fires a spike. Thus,
on average, Ri increases if the time-averaged firing rate Fi < Ftarget, decreases
if Fi > Ftarget, and remains constant if Fi = Ftarget. The network grows into a
stationary state in which all neurons have an average firing rate of Ftarget. Kossio
et al. [38] showed mathematically that in this state, provided Ftarget � F0, avalanche
size follows a power-law distribution with exponent −1.5, and avalanche duration,
for large durations, a power-law distribution with exponent −2 (Fig. 4).

Numerical simulations further demonstrated that halting growth (ρ = 0) in the
stationary state so that small connectivity fluctuations are eliminated has no effect
on the avalanche statistics (as in [2]) and that introducing a biologically plausible
refractory period has only a moderate effect on the statistics. However, if the refrac-
tory period becomes too long, the power laws begin to break down. This last finding,
together with the fact that in Abbott and Rohrkemper [2] Ftarget (based on Ctarget)
is not much larger than F0, may explain the deviations from power law in Fig. 3
(generated with refractory period tref = 4τF ) [38].
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5 Criticality in a Network with Excitatory and Inhibitory
Cells and Separate Axonal and Dendritic Fields

5.1 Model

In the model by Tetzlaff et al. [61], in contrast to the original neuritic field model
[70, 72] and the models by Abbott and Rohrkemper [2] and Kossio et al. [38], each
neuron i has two separate circular neuritic fields, one describing the size of its axon
(radius Raxo

i ) and one the size of its dendrites (radius Rden
i ). The change in Rden

i
depends in the same way on the internal calcium concentration Ci as in the previous
two models:

dRden
i

dt
= ρden

(
Ctarget − Ci

)
(10)

where ρden is the rate of dendritic outgrowth and Ctarget is the target calcium concen-
tration. However, the change in Raxo

i is given by

dRaxo
i

dt
= −ρaxo

(
Ctarget − Ci

)
(11)

where ρaxo is the rate of axonal outgrowth. Thus, Raxo
i increases when Ci > Ctarget

and decreases when Ci < Ctarget, reflecting experimental observations that axons
require electrical activity to grow out [53, 79].

The network may contain both excitatory and inhibitory neurons. In the neuron
model, which is similar to the one used in Abbott and Rohrkemper [2], the membrane
potential Xi (limited by a hard bound to 1) of neuron i is given by

dXi

dt
= X0 − Xi

τX
(12)

where X0 is the resting potential and τX is the time constant with which Xi relaxes to
X0. At every time step, neuron i fires an action potential when Xi > 
i , where 
i is
a uniformly distributed random number between 0 and 1 (drawn at each time step).
After a neuron has fired, it is refractory for four time steps.Whenever another neuron
j fires an action potential, Xi is incremented, Xi → Xi +σ j Ai j , where Ai j represents
the overlap between the axonal field of presynaptic neuron j and the dendritic field of
postsynaptic neuron i; and σ j is a constant representing synaptic strength, defining
whether presynaptic neuron j is excitatory (σ exc

j > 0) or inhibitory (σ inh
j < 0).

As in Abbott and Rohrkemper [2], the calcium concentration Ci of neuron i is
incremented whenever neuron i fires an action potential, Ci → Ci + γ , where γ is
the increase in calcium concentration. Between action potentials, Ci decays to zero
with time constant τC (Eq. 8). All the differential equations are solved by the Euler
method, with an interval length of one simulated time step.
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5.2 Results

During the early stage of development, all cells are taken to be excitatory. Initially,
the axonal and dendritic fields of the cells are so small that no connections exist.
Consequently, neuronal activity and calcium concentrations are low, triggering den-
dritic field outgrowth and a slow build-up of connections, together with a gradual rise
in neuronal activity (Phase I) (Fig. 5). At a certain point in time, neuronal activity
increases rapidly towards a maximum, in parallel with a shrinkage of dendritic fields
and an expansion of axonal fields, because of the calcium concentrations rising above
Ctarget (Phase II, similar to the overshoot phase described in Sect. 2.4). During Phase
II, inhibitory neurons are introduced by changing 20% of all neurons into inhibitory
ones (synaptic strength σ < 0), reflecting the developmental switch of the neurotrans-
mitter GABA from excitatory to inhibitory [7, 33]. Introducing inhibition dampens
neuronal activity. In the last stage of development, the system reaches an equilibrium
state in which neuronal activity fluctuates around a stable value (homeostasis) and
the calcium concentrations remain close to Ctarget (Phase III).

In each developmental phase, the pattern of network activitywas analyzed in terms
of the number of action potentials contained in networks bursts [61]. As in Sect. 3.2,
a network burst or avalanche was defined as a period of network activity between
two time bins in which all neurons are silent. In the figures showing frequency of
avalanches against number of spikes in an avalanche, the straight dashed lines indicate
the best power-law fit (Fig. 6). As before, if an avalanche distribution matches the
power-law line, it is called critical. An over-representation of large avalanches is
referred to as supercritical, and an under-representation as subcritical [4, 47].

Fig. 5 Developmental phases. Network development in the model by Tetzlaff et al. [61] shows
three distinct phases: Phase I, in which synaptic connectivity and neuronal activity gradually
increase; Phase II, in which connectivity and activity abruptly rise towards a maximum, followed by
pruning of connectivity and a lowering of activity; and Phase III, in which homeostasis of activity is
reached. a Development of synaptic connectivity (average Ai j ). Note that the time axis is expanded
in the middle. The inset shows the development of synaptic density in cell cultures [65, 66, 70].
b Development of axonal extent (“axonal supply”; average Raxo

i ) and dendritic extent (“dendritic
acceptance”; average Rden

i ). c The course of network activity (average Xi ) and calcium concentra-
tion (averageCi ) during network development. Parameters of the model: ρden = 0.02, ρaxo = 0.01,
Ctarget = 0.05, τX = 5,

∣∣σ inh
∣∣ = |σ exc| = 1000, γ = 0.5, τC = 10, X0 = 0.0005, total number of

neurons = 100 (From [61], open access)
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Fig. 6 Avalanche distributions. Avalanche size distributions undergo characteristic changes dur-
ing network development in the model by Tetzlaff et al. [61]. Gray area in inset indicates stage of
development (see Fig. 5). a At the beginning of Phase I, when there are hardly any synaptic connec-
tions, the distribution is Poisson-like. b As more connections are formed, the distribution takes on
a power-law form. c In Phase II, when connectivity is high, the distribution becomes supercritical.
d In Phase III (if

∣∣σ inh
∣∣ = |σ exc|), when homeostasis is reached, the distribution is critical. The

exponent of the power law is close to −1.5 (From [61], open access)

In the beginning of Phase I, when there are no or hardly any synaptic connec-
tions, the neurons do not influence each other’s electrical activity, and the avalanche
distribution is Poisson-like (Fig. 6a). Later during Phase I, when connectivity and
activity slowly increase, the avalanche distribution changes from a Poisson distribu-
tion to a power-law distribution (Fig. 6b). In Phase II, with high network activity, the
avalanche distribution becomes supercritical (Fig. 6c). Action potentials of both exci-
tatory and inhibitory neurons were included inmeasuring this distribution. Evenwith
much stronger inhibitory synaptic strength (

∣∣σ inh
∣∣ = 100|σ exc|, as compared with∣∣σ inh

∣∣ = |σ exc|, as in Fig. 6), the distribution stays supercritical. The system remains
supercritical during thewhole of Phase II, until shrinkage of dendritic fields has so far
pruned connectivity that homeostasis is reached, with calcium concentrations around
Ctarget and stable neuronal activity (Phase III). In Phase III, provided

∣∣σ inh
∣∣ = |σ exc|,

the avalanche distribution becomes critical (Fig. 6d). If inhibition is stronger, the
system turns into a subcritical state, whereas without inhibition it remains slightly
supercritical (although in all cases homeostasis of activity is reached). The exponent
of the power law in Phase III is close to −1.5.
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Finding a power law for avalanche distributions is not sufficient to show decisively
that the system is in a critical state [47]. Therefore, Tetzlaff et al. [61] performed
several additional tests to confirm criticality. They validated that the avalanche dis-
tribution remained critical when in the analysis fewer neurons or shorter or longer
time bins were used, and that the inter-avalanche distribution and the Fano Factor
[21, 41] also provided evidence for criticality.

Developing cultures of dissociated cortical cells show similar transformations in
avalanche distribution to those observed in the model [61]. Like the model, dis-
sociated cultures start with an initial stage characterized by Poisson-like avalanche
distributions, followed by a supercritical regime as connectivity and neuronal activity
sharply increase. As connectivity and activity subsequently decline, the cultures go
through a subcritical state before stabilizing in a critical state, a developmental course
that can be mimicked in the model by gradually reducing the inhibitory strength in
Phase III from

∣∣σ inh
∣∣ � |σ exc| to ∣∣σ inh

∣∣ = |σ exc|.

6 Discussion

Different variants [2, 38, 61] of the original neuritic field model [70, 72] have shown,
as reviewed in this chapter, that homeostatic structural plasticity is a potent develop-
mental mechanism for bringing networks to criticality. In the assembly of a critical
network, the developing neurons are guided only by the activity generated by the
network itself, and there is no need for any external instructive signal. All model
variants employ a spiking neuron model rather than a firing rate neuron model (as
used in the original model) so that bursts of activity can arise and avalanches be
defined.

Neurons in the neocortex have a broad spectrum of firing rates [54], whereas in
the models discussed here all cells have the same average firing rate at equilibrium.
However, the relevant firing rate is the time-averaged firing rate on the time scale
of structural growth, so cells can have different firing rates on shorter time scales.
Moreover, different types of cells may have different homeostatic set-points, with
neurons characterized by a high firing rate having their homeostatic set-point at a
higher activity level than neurons that fire less frequently [19, 29]. The impact of such
variability in set-points on the emergence of criticality could be a topic for future
research.

The use of circular neuritic fields in all models is a simple yet powerful way
to abstract away from detailed neuronal morphology. A disadvantage is that it puts
some constrains on the type of network topologies that can arise, as the strongest
connections are usually formed between neighboring cells. Another way to model
neuronal morphology, with fewer inherent constrains, is to assign to each neuron
a set of axonal synaptic elements (representing axonal boutons) and a set of den-
dritic synaptic elements (representing dendritic spines), which can combine to form
synapses [13, 17]. In this model, which has also been implemented in the neural
simulation package NEST [19], neurons generate new elements when neuronal elec-
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trical activity is below a target value, and delete elements, including those bound in
synapses, when activity is above the target value or below a certain minimum level.
The model can account for changes in visual cortex after focal retinal lesions [13],
alterations in global network topology following deafferentation and focal stroke
[10], the emergence of efficient small-world networks [11], and the inverse relation-
ship between cell proliferation and synaptic rewiring in the adult hippocampus [12],
but has not yet been used to study avalanche dynamics.

Future work may also include the analytical analysis of the role of inhibitory
cells in the development and maintenance of critical circuits. The variant of the
model that was studied analytically contains only excitatory cells [38]. The numerical
studies by Tetzlaff et al. [61] predicted that criticality is best reached with 20%
inhibitory cells and a synaptic strength of inhibitory connections that equals that of
excitatory connections. However, the models by Abbott and Rohrkemper [2] and
Kossio et al. [38] proved that inhibition is not required for criticality, thus meriting
further investigation into the potential impact of differences in model formulation,
especially the use of separate axonal and dendritic neuritic fields in Tetzlaff et al.
[61].

In addition to anatomical changes in connectivity, as brought about by homeostatic
structural plasticity, two other categories of neural mechanisms have been proposed
to explain the emergence of criticality: intrinsic cellular properties [18, 30] and short-
and long-term synaptic plasticity [18, 39, 59]. An example of the first category is
found in a biophysically realistic model of retinal waves [30]. In the model, starburst
amacrine cells are equipped with a slow after-hyperpolarization current, which reg-
ulates neuronal excitability. Spontaneous, cell-intrinsic firing activates this current,
thereby reducing excitability and desynchronizing the activity sustained by synaptic
transmission. The competition between the desynchronizing effect of spontaneous
firing and the synchronizing effect of synaptic transmission enables the network to
operate at a transition point between purely local and global functional connected-
ness. These dynamics are somewhat reminiscent of those seen in a simple model
for the occurrence of long-lasting periods of activity [73]. For certain parameter set-
tings, the network is in a critical state in which periods of high activity (“long-lasting
transients”) alternate irregularly with periods of quiescence. Transients are triggered
by spontaneous firing but are eventually also terminated by spontaneous firing, as
spontaneous firing, by means of inducing refractoriness, renders cells temporarily
non-excitable and so interferes with the flow of network-generated activity.

As to the second category of mechanisms for the origin of criticality, various
models have shown that short- and long-term synaptic plasticity can tune a neural
network into a critical state with power-law avalanche distributions. Levina et al. [39]
demonstrated, both analytically andnumerically, that synaptic depression—the short-
term decrease in synaptic strength due to depletion of neurotransmitter vesicles—can
drive the dynamics of a network towards a critical regime (but see [9]). Stepp et al. [59]
showed that a combination of short- and long-term synaptic plasticity can produce
hallmarks of criticality, with the interplay between Hebbian long-term excitatory and
inhibitory plasticity providing a mechanism for self-tuning. Likewise, Del Papa et al.
[18] found that a network endowedwith firing threshold adaptation and various types
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of plasticity, including homeostatic synaptic plasticity [62, 63] and a simple form of
structural plasticity, can give rise to criticality signatures in network activity.

The power-law exponents −1.5 and −2 for avalanche size and duration, respec-
tively, imply that each firing neuron activates, on average, one other neuron, so
activity will on average neither die out nor explode over time [78]. Thus, an impor-
tant functional advantage of such a critical state is that neural circuits are prevented
from becoming hyper- or hypoactive. Although functional properties have not been
studied in the models discussed here [2, 38, 61], maintaining a stable average level of
activity is in general crucial for processes ranging from memory storage to activity-
dependent development [31, 64]. Besides homeostatic structural plasticity, other
forms of slow plasticity, such as homeostatic synaptic plasticity or synaptic scaling
[63], are directed at stabilizing network activity (and may generate critical dynamics
[38]), in order to counter the destabilizing forces of synaptic long-term potentiation
(LTP) and long-term depression (LTD) during memory encoding.

Further functional benefits of critical dynamics include the maximization of
dynamic range, information transmission and information capacity [56]. A network
at criticality is sensitive to external input, exhibiting awide range of possible response
sizes [36]. Activity patterns in critical networks are not biased towards a typical scale
or sequence, providing flexibility that may be advantageous during development as
connections are established [30]. Avalanches may reflect the transient formation of
cell assemblies [50], and the scale-free organization of avalanche size at criticality
implies that assemblies of widely different sizes occur in a balanced way [36].

In conclusion, during development, homeostatic structural plasticity can guide the
formation of synaptic connections to create a critical network that has optimal func-
tional properties for information processing in adulthood. In this form of plasticity,
neurons adapt their axonal and dendritic morphology and, consequently, their con-
nectivity so as to reach andmaintain a desired level of neuronal activity. Homeostatic
structural plasticity does not require information about pre- and postsynaptic activity,
as does Hebbian synaptic plasticity (synapse-centric plasticity), but only needs the
local activity state of the neuron itself (neuron-centric plasticity). In general, home-
ostatic structural plasticity may act as a central organizing principle driving both the
formation of networks [11, 61, 67, 70, 72] and the compensatory structural changes
following loss of input caused by lesions, stroke or neurodegeneration [10, 13].
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Linear Stability of Spontaneously Active
Local Cortical Circuits: Is There
Criticality on Long Time Scales?

Nathan X. Kodama and Roberto F. Galán

Abstract Self-organizing systems acquire their structures and functions without
patterned input from the outside world. In the interconnected architectures of the
neocortex, spontaneous activity—that is, activity that arises without external sen-
sory or electrical stimulus—predominates over sensory-evoked activity. Thus, spon-
taneous neuronal activity provides a means to characterizing the structure, function
and dynamics of neocortical networks.We have recorded spontaneous, asynchronous
network activity from hundreds of neurons constituting local cortical circuits in mice
with high-density microelectrode arrays (MEAs) in vitro. The spontaneous activity
in the network displayed features of a system at criticality and scale-free structures,
such as fluctuation scaling and multiple frequency bands. To investigate dynami-
cal parameters, we have investigated the linear and nonlinear components of the
network dynamics. The former allows us not only to define a linear measure of func-
tional connectivity, but also to determine the linear stability of the system through its
eigenvalues. Similarly, the latter allows us to define ameasure of nonlinear functional
connectivity. An important feature revealed by this approach is the large number of
eigenvalues with positive real parts and the high density of eigenvalues near the
imaginary axis, which demonstrate respectively that this high-dimensional system
is linearly unstable and critical on long time scales (>1s). The function of critical
dynamics in these networks is discussed with respect to exploratory behavior in
rodents.
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1 Introduction

Systems exhibiting self-organized criticality (SOC) reach their critical points without
the need to tune order parameters. They display scale-invariant structures character-
ized by power-laws for many observable quantities [5]. The general class of critical
phenomena are well-defined by their instabilities and bifurcations [24, 47, 48]. These
instabilities form hierarchies that generate macroscopic patterns which may in turn
self-impose constraints on the constituent elements [25]. Stability, both global and
local, offer qualitative information about how close a system is to criticality. A SOC
system becomes stable when a network of minimally stable states reduces to the
point where signals cannot be transmitted through infinite distances [5]. These mini-
mally stable states in SOC systems are a subset of marginally stable states in critical
systems. Marginally stable states may be observed directly in linear models, such as
generalized linear models [39], by examining the distribution of the real component
of the complex eigenvalues derived from the linear coefficient matrix.

In the study of the cerebral cortex, neural network models are mathematically
equivalent to SOC models of earthquakes [4, 11, 26]. This has been observed exper-
imentally in neuronal avalanches [7, 18], for which branching ratios of unity are
well-defined and represent a directed percolation process. Although power laws may
have non-unique origins in the cortex [6, 58], extensive evidence of scale-free phe-
nomena in the graphical topology of neuronal networks [17, 53, 55] points to a
critical system [13, 14, 37]. The computational advantages of systems operating at
critical states are clear [31], however, the functional role of criticality to information
processing, in the cortical substrate and under physiologically relevant conditions,
is still unclear.

Activity of the cortical substrate may arise spontaneously without patterned stim-
uli or external sensory input. The predominance of spontaneous activity over sensory-
evoked activity in the neocortex [34] is a consequence of the disproportionately high
anatomical connections between neocortical neurons compared to feedforward sen-
sory inputs [1, 16].Nevertheless, functional relationships only emerge after the under-
lying networks have adapted to sensory inputs from the body and the environment
[12]. The spontaneous activity that occurs after this body- and environment-driven
adaptationmay be used to infer the functional roles of self-organized criticality. In the
local circuits of the cerebral cortex, large networks of neurons are composed of both
excitatory synapses [7] and inhibitory synapses [40]. It is important then to examine
these networks of excitatory and inhibitory synapses in their intrinsic, unperturbed
mode of activity—neuronal spiking—and determine if they self-organize into spatial
and temporal scale-free structures.

In the last decade, modern in vitro electrophysiological and imaging technologies
have characterized the spontaneous activity of neuronal networks, especially syn-
chronous circuit events that were drug-induced or obtained through manipulations
of the solutions bathing these networks [7, 34]. The recent realization of systems
displaying asynchronous spiking and other physiologically relevant activity [22, 23,
40], presents a unique opportunity to investigate neuronal network phenomenology
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pertinent to other domains of network activity. The self-organization of spiking neu-
ronal networksmay offer novel insight into behaviorally relevant and functional brain
states; asynchronous spiking in particular provides a complementary perspective to
that of synchronous discharges or oscillations.A linear stability analysis reveals unin-
tuitive answers to seemingly paradoxical questions such as: is asynchronous firing
organized in time? Below we find the effort to answer this question reveals how criti-
cal neuronal networks organize without sensory input and minimal spike synchrony.
Moreover, interpreting these principles of organization on long time scales (>1 s)
suggests several functional advantages that have been conferred onto the animal
during exploratory behavior.

Information processing is spatiotemporal and involves the regime of spontaneous
neuronal spiking.Not only is it temporal, it ismultitemporal—that is, it spansmultiple
time scales [10]. Do local circuits of the neocortex exhibit features of criticality
in the temporal structure of spontaneous neuronal spiking on long time scales? If
so, is it possible to measure aspects of criticality, such as linear stability, and also
deduce this temporal structure? We propose a method to (1) characterize the scaling
of spatiotemporal structure of neuronal spiking, (2) retrieve the linear and nonlinear
functional connectivity of spontaneously active networks, (3) infer the overall balance
between functional excitation and inhibition, (4) assess the linear stability of the
system’s dynamics, and (5) interpret the results in a functional and behavioral context.
Here, in the study of spontaneous neuronal spiking, we present two features of
temporal structure, both of which are characteristic of a neural system operating in a
regime near a critical state: a power law in the inter-spike interval statistics, referred
to as fluctuation scaling [29], and frequency banding that is present at macroscopic
spatial scales, such as the electroencephalogram. We do so at the mesoscopic level
of neural networks constituting intact cortical circuits and spanning its anatomical
features (columns and layers). We also describe a method for processing binary
spike trains, fitting the resulting trajectories to a linear model, and assessing the
eigenvalues of the linear coefficients on the complex plane, which simultaneously
yields a measure of linear stability and explains for the temporal structure in the
neuronal spiking. Finally, we characterize the nonlinear residuals of themodel, which
display scale-free structure in synchronous network bursts that are not present in the
firing rate. We also show that the residuals are centered at zero, non-Gaussian, and
non-white. Given our recent work [28], these finding are interpreted in a functional
and behavioral context.

2 Methodological Approach

2.1 Experimental Methods

The emergence of spontaneous activity in acute cortical slices, without electrical
stimulation or pharmacological manipulation, has been shown to depend on the
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constituency of the artificial cerebrospinal fluid (aCSF), particularly the solute com-
position and oxygenation [23]. Neuronal spiking and other cortical activity that was
only previously observed in vivo has been observed in vitro only at high oxygen
concentrations; this is because of the limited diffusion of oxygen during perfusion
in vitro,which is in contrast to the direct delivery of oxygen through capillaries in vivo
[22]. Recently, the investigation of spontaneous activity under these conditions has
revealed a rich diversity in neuronal firing that is associated with specific cell types
[40]. In parallel, synchronous network discharges have been shown to correspond
with network-wide ‘up’ and ‘down’ states [27, 33, 34, 53, 59].

Slice Preparation. Here we used the artificial cerebrospinal fluid (aCSF) solu-
tions reported by the MacLean lab [54] and high flow/oxygen rates recommended
by Hájos et al. which allow us to measure sustained, non-epileptogenic, spiking neu-
ronal activity. Three aCSF solutions were prepared for brain extraction and slicing at
4 °C, slice incubation at 30 °C, and perfusion at 31 °C. All solutions were cooled or
warmed to their designated temperature before they were saturated with 95%O2–5%
CO2. Coronal slices (350 μm thickness) of primary somatosensory cortex (S1) were
collected from juvenile (P13–P17) C57BL/6 mice. Animals were anesthetized with
vapor isoflurane and decapitated; brains were submerged in ice-cold aCSF. Slices
were directly collected and transferred to the oxygenated incubation solution to equi-
librate for 30 min. Finally, a single slice was selected and placed into the recording
chamber.

Microelectrode Array Recordings. High-densitymicroelectrode arrays (MEAs)
with 120 electrodes (100μmpitch) were used to record fromS1. The entire thickness
of the somatosensory cortex (~1 mm) was fixed to the 1.2 × 1.2 mm perforated
recording fieldwith 15-mbar suction. The slicewas perfusedwith aCSF at 6.5ml/min
and 53.3 kPa O2 for 30 min before the start of the recording and for the duration
of the recording. The activity from acute brain slices was recorded at a sampling
frequency of 50 kHz with a resolution of 16 bits in the range of −2 to 2 mV and
two sequential hardware filters (2nd order 0.5 Hz high-pass filter; 1st order 10 kHz
low-pass filter) were used to eliminate voltage offsets and drifts.

Signal Processing. All processing and other data analyses were carried out in
MATLAB.Adigital band-pass filter (80–2,000Hz, 3rd order)was used to pre-process
all recordings. Spikes were detected as events based on a time-varying threshold
defined for 1 s windows as ±4 × standard deviation. Spike sorting was conducted
with a wavelet-based spike sorting algorithm [50]. Spike trains that appeared in more
than one electrodewith <1ms delays were considered to come from the same neuron:
if the number of sub-millisecond spikes was greater than 30%of the number of spikes
in either putative neuron, the neuron with smaller peak amplitude waveforms was
omitted from further analyses. Nearly two hundred neurons were resolved in each
slice and animal (187 ± 4 neurons, mean ± s.e.m. across 6 mice). Further details on
our experimental preparation can be found in Kodama et al. [28].
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2.2 Data Analysis

Pre-processing. The spike times of each neuron were represented as binary spike
trains with 1 ms resolution. The binary spike-train signals were convolved with a
triangular window of unitary area and duration of 1 s to compute the instantaneous
firing rate (spikes per second) for each neuron in the recording.We chose a duration of
1 s because we have previously shown that this is the time scale at which the number
of significant pairwise correlations between neurons is largest [28]. The derivative of
the firing rate was obtained by center differencing the firing rate at the time resolution
of 1 ms. From the instantaneous firing rates and their time derivatives, we obtained
the linear coefficients and nonlinear residuals introduced in the next paragraph.

Dynamical Model. The state vector �u of the spiking neuronal network contained
the firing rate for each neuron. Thus, the most general expression for the spontaneous
network dynamics is

d �u
dt

= F(�u). (1)

We are interested in the fluctuations in firing rate around its mean across all
neurons �x = �u − �u0 where �u0 is the mean firing rate. Upon substitution in (1) we
obtain

d �x
dt

= F(�x + �u0) = L �x + �G(�u0; �x),

where we have split the right hand side into a linear component (first term, with
L being a square matrix) and a nonlinear component which is an implicit function
of time via its dependence on �x (second term). The key idea of our approach to
quantifying critical parameters is that we can estimate both L and �G from empirical
data by means of a simple linear regression of the form

�y = L �x + �η(t), (2)

where the dependent variable �y = d �x/dt and the independent variable �x are both
known from the experimental recordings. Thus, the regression returns matrix L and
the residuals of the regression corresponding to the nonlinear component of the
dynamics, �η(t) = �G(�u0; �x(t)). If the network dynamics are linear and stable, then
all the eigenvalues of L have negative real parts and the residuals must be white
and Gaussian. If the network dynamics are linearly unstable but the firing rates are
bounded and therefore, finite, then at least one eigenvalue of L has a positive real
part. In general, the more eigenvalues have a positive real part, the more complex the
behavior will be. In these cases, the residuals, that is, the nonlinear component of the
dynamics cannot be trivial; they cannot bewhite andmust have a non-zero correlation
time. In other words, the auto-correlogram of the residuals for each neuron cannot be
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a Dirac’s delta function. From the perspective of time series analysis, the residuals
can be thought of as the de-trended time derivative of the firing rate.

Matrix L is not only useful to investigate critical parameters. It can also be consid-
ered a generalmeasure of functional connectivity [19, 56]. If the nonlinear component
of the dynamics is non-trivial, as it is the case for critical systems, one may define
a nonlinear measure of functional connectivity, N, as the correlation matrix of the
residuals

Ni j =
〈
ηi (t)η j (t)

〉

√〈
η2
i (t)

〉〈
η2
j (t)

〉 ,

where the brackets 〈. . .〉 denote time averages. By definition, the nonlinear functional
connectivity is symmetric, contrary to L, which will be non-symmetric in general.

Surrogate data. To assess the explanatory power of our analytical approach,
we compared the results of our analysis of the experimentally observed data with
surrogate data obtained by circularly shifting the spike trains: the whole spike train
is advanced by the shift value and the portion exceeding the duration of the recording
is then wrapped around at the beginning of the recording. For each neuron, the shift
in milliseconds was randomly chosen between 1 and the total time in milliseconds.

3 Results

We simultaneously recorded spontaneous, asynchronous network activity from
murine primary somatosensory cortex (S1) with high-density microelectrode arrays
(MEAs, Fig. 1a–c). Notably, simultaneous neuronal spiking was widely observed
across the entire network without pharmacological manipulation or patterned elec-
trical stimulation (Fig. 1d). To assess the spatiotemporal structure of the observed
activity, spike timing statistics were evaluated and signal processing methods for
binary spike trains were employed (Fig. 1e–g). Temporal structure can be observed
at the level of the raster plots, the diversity of spike timing structure in the net-
work obeys a fluctuation scaling law, and the broadband spectral content of neuronal
spiking is characteristic of spatiotemporal scaling in cortical networks.

Coronal sliceswere prepared such that local cortical circuits were intact, but exter-
nal inputs were severed. The entire thickness of the acute slice was attached to the
MEA field with negative pressure (Fig. 1a), with the surface of the slice tangentially
aligned to the first row of electrodes. Columns of the barrel field in the somatosen-
sory cortex and layers of the cortical thickness could be observed and selected for,
prior to slice placement. The spikes were sorted according to their waveforms. In a
single experiment, roughly 200 neurons could be discerned from multi-unit activity
(Fig. 1b, 1–7 per electrode). The spikes assigned to multiple neurons were visu-
ally validated (Fig. 1c) in a supervised clustering step. Redundant spikes observed
in neighboring electrodes were accounted for by identifying sub-millisecond spike
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Fig. 1 Experimental preparation, recordings, and scale-free features in time. a Microelectrode
array on top of primary somatosensory neocortex. There are 120 electrodes (100 μm pitch) sam-
pling the entire cortical thickness across layers. b Multiunit recording in a single electrode channel.
The electrode captures action potentials from different neurons. c These neurons have different
waveforms that can be discriminated with standard spike-sorting techniques. d Raster plot of action
potentials for 46 neurons sorted by vertical location on the array. e Fluctuation scaling of neu-
ronal firing. The relationship between the mean and standard deviation of the inter-spike intervals
follows a power law of exponent ~ 1, that is, a linear relationship. f Auto-correlograms for three rep-
resentative neurons demonstrate long-term correlations and/or sustained oscillations. g Frequency
bands of neuronal firing: they are virtually the same as those measured from the whole brain with
electroencephalography in rodents and humans

alignments and only the largest one in voltage amplitude was kept. The raster plot
of all uniquely identified neurons, recorded simultaneously, was sorted by the neu-
ron’s vertical position in the neocortex (Fig. 1d). Temporal structure and large-scale
diversity are readily apparent in the raster plot.

The spike times, obtained from spike sorting, were used to compute inter-
spike intervals (ISIs) and construct binary spike train signals with 1 ms precision.
Both representations of spike timing were used to infer temporal structure in the
spontaneous firing of neurons. First, a power law relationship between the mean ISI
and its standard deviation was observed (Fig. 1e) with an exponent of 1.02, indicating
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an effectively linear relationship between the two parameters—incidentally, this is
the same relationship expected for a Poisson process. A power law between the mean
and standard deviation is known as fluctuation scaling and is a known property of
stochastic integrate-and-fire neurons [29]. This scale-free structure of neuronal firing
was confirmed by auto-correlograms of the spike trains (Fig. 1f). Several time scales,
from tenths of seconds to hundreds of seconds, pointed tomultitemporal patterns that
spanned tonic firing bursting and low frequency rhythms, and slow fluctuations in
firing rate. This complexity is also found in the power spectra of the spike trains,
which reveal frequency bands that are observed in the whole brain electroencephalo-
gram (Fig. 1g). Altogether, these results demonstrate that the firing of spontaneously
active neurons in local cortical circuits is non-random, diverse, and multiscale.

After the binary spike trains were smoothed to create firing rate estimates (see
Data Analysis in Methodological Approach), a dynamical model was fitted to the
data. This approach separates the linear and nonlinear components of the dynamics,
where the former is encoded in the linear coefficient matrix of themodel and the latter
is contained in the residuals. Each component was processed separately to obtain
measures of functional connectivity, stability, and criticality. Figure 2 shows the
firing rate of three representative neurons (Fig. 2a) and the corresponding nonlinear
residuals (Fig. 2b) obtained from Eq. (2). The three neurons display, to different
degrees, slow oscillations, transients, and tonic firing. There is apparent structure
in the nonlinear residuals: most notably, the nonlinear component displays many
burst-like events about the mean.

The distribution of the sizes of synchronous network events, obtained from sum-
mingfiring rate estimates across the network at various bin sizes, points to the absence
of neuronal avalanches (Fig. 2c), which is consistent with both the sparse and asyn-
chronous nature of neuronal firing seen in Fig. 1d. Thus, the question of whether the
system is critical must be evaluated in the absence of spatial scaling relationships
that are seen in feed-forward models [7]. The linear coefficient matrix of our model
serves as a starting point for evaluating the stability of the system directly. But first,
its interpretation as a measure of functional connectivity is assessed alongside with
the correlation coefficient matrix of the nonlinear residuals.

Linear and nonlinear coefficient matrices serve as measures of functional con-
nectivity in the network (Fig. 3). The contributions to the overall connectivity of
the network are distinct. The distribution of the coupling coefficients reveals that
both matrices are symmetric about zero suggesting that the functional excitation and
inhibition are balanced in the network. Interestingly, vertical and horizontal banding
structure of the linear coefficient matrix (Fig. 3a) suggests that a substantial portion
of the network is not linearly coupled with the rest of the neurons in the network.
However, these neurons are coupled in the nonlinear domain (Fig. 3d), though there
are neurons in the nonlinear connectivity matrix that are not coupled.

The density about zero in the distribution of linear coefficients, in contrast to the
diffuse distribution of nonlinear coefficients, suggests that the network constituents
are weakly coupled. However, the nonlinear coupling of the network is, relative to
the linear coupling, stronger on the whole.
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To determine how critical the spontaneously active systemwas, the eigenvalues of
matrix L were computed. The real components reveal whether the network dynamics
are stable (λ < 0), marginally stable (λ = 0), or unstable (λ > 0). Figure 4, displays
the eigenvalues for six experiments (Fig. 4a) compared to surrogate data generated
as circularly-shifted spike trains (Fig. 4b; see Surrogate Data in Methodological
Approach). The latter preserves the intervals between spikes but disrupts the tempo-
ral relationships between neurons. Across experiments, the distribution of complex
eigenvalues points to marginal stability in the linear regime and thus criticality of the
network dynamics. Compared to the eigenvalues derived from the model fitted to the
surrogate data, the eigenvalues observed in the experiments were distributed more
diffusely (confirmed by a two-sample Kolmogorov–Smirnoff test on the real parts of
the eigenvalues, p = 2.44 × 10−6). The observed eigenvalues are also concentrated
near the origin which is consistent with the zero and redundant banding structure of
L, implying oversampling of the network’s dynamics.
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Furthermore, the number of positive eigenvalues across experiments points to
linear instabilities in the system. All six experiments have 59% or more positive
real eigenvalues. This is qualitatively consistent with the asynchronous and complex
firing of neurons in these networks. In the distribution of eigenvalues from a repre-
sentative experiment (Fig. 4c), it is clear that there are more positive real eigenvalues
in the observed data and more negative real eigenvalues in the circularly-shifted
controls. The distribution of the real components of the eigenvalues across exper-
iments (Fig. 4d) demonstrates that the system is more linearly unstable than the
corresponding circular-shifted control. Notably, the distribution of real eigenvalues
in the observed system also contains negative real eigenvalues that point to overall
stability in the system. Compared to the circular-shifted control, however, there are
less negative real eigenvalues, which means the observed system is truly less stable.
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It is worthwhile to note that the eigenvalues of the system are concentrated on the
imaginary axis. The substantial peak near zero imply the existence of neutrally stable
modes on a center manifold in the complex plane. This center manifold provides a
mechanism for slow fluctuations and suggest that the spontaneously active system
is marginally stable and therefore critical in its dynamics over long time scales.
Since the system is not displaying avalanches in its firing rate, but is rather in a
tonic, multi-rhythmic, and fluctuating state of neuronal spiking, these results point
to an alternative approach in assessing the criticality of the system. The eigenvalue
distribution of the system occupies a diffuse domain of stability that includes many
positive eigenvalues. This suggest that the system is linearly unstable with critical
dynamics.

A substantial portion of network dynamics remains in the nonlinear residuals. This
is not surprising since only 10% of the variance is captured in L. Across all experi-
ments, 84% or more of the networks had residuals that were not normally distributed
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(Kolmogorov–Smirnov (KS) test with a normal distribution at a 5% significance
level). These distributions were symmetrically distributed about zero (Fig. 5a) and
exhibited temporal structure in their auto-correlograms (Fig. 5b), consistent with the
nonlinear component of the dynamics being non-white. Furthermore, the eigenvalues
of the correlation matrices of the residuals (Fig. 2b) are distributed non-randomly,
which is most clear when these eigenvalues are ranked and overlaid with the eigen-
values corresponding to the circularly-shifted binary spike trains (Fig. 5c). The dis-
tribution of eigenvalues is much more spread in its tails and less concentrated near its
center (Fig. 5d). Importantly, for the surrogate data, the eigenvalues of the correlation
matrix decay linearly with their rank, as expected for random symmetric matrices
[36, 38, 51]. In contrast, for the experimental data, there are multiple eigenvalues that
significantly deviate from that trend, demonstrating that the nonlinear coupling is not
random. Altogether, these features of the residuals suggest there is still dynamical
content in the residuals, not captured by the linear model.

4 Discussion

We have recorded spontaneous neuronal spiking from local cortical circuits and
investigated the linear and nonlinear functional connectivity, stability, and critical-
ity, of the system’s dynamics. The spontaneous activity exhibits fluctuation scaling
in the ISI of single neurons, slow firing-rate fluctuations, and the same frequency
bands as the whole-brain electroencephalogram in rodents and humans. Altogether,
these features point to complexity in spike-derived firing rates of the neurons in
the network and spatiotemporal scaling. To investigate linear stability and critical-
ity in the network firing dynamics, we separated the linear and nonlinear coupling
components.We found that the linear and nonlinear connectivity matrices were qual-
itatively different, but were both symmetrically balanced in functional excitation and
inhibition. In addition, we found numerous eigenvalues with positive real parts of
the linear connectivity matrix, which implies that the spontaneously active system
is linearly unstable and critical. We also found that the nonlinear components were
non-Gaussian, non-white, non-random, and contained temporal structure, consistent
with brain circuit dynamics being strongly nonlinear.

Since the seminalworkonneuronal avalanches conducted15years ago [7], numer-
ous innovations in experimental tools and numericalmethods have been brought forth
to understand criticality in the cortex. Although there are qualitative differences in
the experimental preparation and mathematical approach taken here, our observa-
tions are consistent with the perspective on neuronal avalanches insofar as they both
point to cortical networks self-organizing into critical states. However, we do not see
a power-law at the level of the firing rate and, as a direct result, take an alternative
approach to assessing the criticality of the system.

Recent studies have shown that the absence of observing power laws points to
subsampling of a neuronal network and that this subsampling leads to an overestima-
tion of stability in dynamical systems [32, 46, 60]. A limitation of this study is that it
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has not employed the subsampling-invariant estimators. Future areas of investigation
that use linear models to investigate marginal stability would benefit from employing
estimators such as the multiple-regression (MR) estimator described in Wilting and
Priesemann [60]. Associated with—yet clearly distinct from—the observability of
the underlying network is the degeneracy of the linear model. Here, the observation
that the linear matrix is singular with many zero eigenvalues points to the rank defi-
ciency of the linear coupling matrix suggesting that there exists a lower-dimensional
model of the system. The rank deficiency of the coupling matrix is related to the
observability of the system through the construction of the observability matrix of
the system and its row rank.

The stability of the network is the central feature of criticality assessed here. We
have shown that in the recurrent networks of the local cortical circuit, it is possible
to determine how critical the dynamics are directly from the dynamics themselves,
without necessarily connecting to the universal class of directed percolation used in
feedforward networks. We believe the results obtained here are consistent with the
overarching perspective of the field which is that the networks themselves are critical
through self-organizing mechanisms. Below we discuss the broader context for the
function of critical dynamics in the brain and provide our own interpretation of the
results here in the spontaneous activity of the local circuit as it applies to exploratory
behavior during active sensing.

4.1 Criticality and Spontaneous Neural Activity

Criticality is a universal phenomenon defined for a range of different systems—from
sand piles [5], to forest fires [35], to earthquakes [21]. The observation of criticality in
spontaneously active neural systems [7, 15, 20, 44]may be analyzed through different
theoretical frameworks [9] and likely hasmany functional benefits.Analyzing critical
neural phenomena as a branching process [3, 61] leads to fundamental insight into the
transmission of information in the brain, by characterizing the localized propagation
of activity through cortical networks.

It is worth noting the differences of the spontaneously active networks observed
here in comparison to neuronal avalanches.Near-synchronous circuit events appear to
be very similar to inter-ictal paroxysmal depolarizing shifts observed in disinhibited
network regimes at the single-cell, local circuit, and whole-brain levels [49]. These
network-wide events are useful probes into the excitatory synaptic networks of the
brain [7, 53, 54]. In vivo, where there are many incoming sensory inputs, networks
have been shown to be subcritical in the sense that they do not fully propagate activity
through the whole network [46, 57], that is, they operate below the percolation limit
associated with the onset avalanches. However, when modeling criticality in these
networks as a percolation process, the fine tuning of inhibitory circuits, constituting
~20% of the total neuronal population, appears to be lost. This fine tuning is most
apparent during ongoing neuronal spiking and has a characteristic diversity which is
well-characterized [40]. Here, we have adopted a methodology to assess criticality in
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neuronal networks that is based on dynamic systems theory rather than percolation
theory. In contrast to the propagating activity of near-synchronous circuit events, for
which the theory of branching processes is well-equipped to address, asynchronous
spiking activity has recurrent rather than only feed-forward connections (Fig. 3) and
criticality is more appropriately assessed by the eigenvalue spectra of this matrix.

The eigenvalues of the linear connectivity matrix govern the qualitative dynamics
of the networks, such as bifurcations. Positive real components of the eigenvalue
spectrum (1) identifies network elements that destabilize the dynamics from a quies-
cent to an active state and (2) reveals how unstable or critical the spontaneous activity
is [25]. Furthermore, the accumulation of eigenvalues along the imaginary axis with
both positive and negative real parts has significant implications on not only how
critical the networks are but also how chaotic they might be. Indeed, coherent chaos
has been recently described in recurrent neural networks [30].

4.2 Critical Dynamics, Function, and Exploratory Behavior

In assessing the spontaneous spiking networks of primary somatosensory cortex
in mice, it is fruitful to consider this in vitro work with past and ongoing in vivo
studies concerning exploratory whisking behavior of rodents [2, 8, 42, 41]. Critical
state transitions might be functionally relevant to the shifting behavioral states and
information processing that takes place during sensory-motor integration. There is a
rich behavioral repertoire correlated to constructive states of transients discharges,
oscillations, and asynchronous spiking.Here,we consider this last phenomenon since
asynchronous spiking can lead to the other two phenotypes of neuronal activity.

Spontaneous neuronal spiking is the fundamental mode of activity in neocortical
networks [52]; spiking may synchronize to form local field potentials, but there is
always a loss of information. This is a feature that becomes strikingly evident during
asynchronous firing states which occur during the states of cognition that are most
information-rich. Thus, the elucidation of the functional roles critical dynamics serve
during asynchronous firing is crucial to understanding the operational organization
of local cortical circuits.

Such an attempt has already yielded insight into local cortical circuits: for instance,
we have discovered that on behaviorally relevant timescales, the firing rates of
asynchronously spiking neurons self-organize into two anti-correlated networks that
localize to superficial and deep layers of the cortical anatomy [28]: when one network
fires more, the other fires less and vice versa. This interplay manifests itself on longer
timescales (>1 s), which is consistent with the localization of multiple eigenvalues
to the imaginary axis since these eigenvalues correspond to non-decaying modes
of the network dynamics. The anatomical localization of neurons with critical fir-
ing dynamics could have profound implications for function and behavior. These
competing networks, may be extended to a behavioral context when considering the
distinct exploratory modes of the rodent, which shift between feedforward sensa-
tion and top-down control configurations. These configurations correspond to active
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sensing and anticipatory behavioral states that are layer-specific: early activation of
deep layers correlates with anticipatory behavior, whereas early activation of superfi-
cial layers correlates with active sensing [43]. The rodent’s ability to switch between
these behavioral modes is crucial since each mode involved the mutually exclusive
use of subcortical brain structures and peripheral resources. Criticality in cortical
networks could imbue the system with this sort of capacity along with the entire set
of possible network configurations that give rise to rich behavior repertoires.

5 Conclusion and Future Directions

The approach presented here allows us to investigate the dynamical parameters that
quantify critical phenomena, such as scale-free features, linear and nonlinear func-
tional connectivity, and the linear stability of activity fluctuations. This can be attained
efficiently by a straightforward regression analysis of the empirical data to ourmodel.
A limitation of our approach, however, is that the dependence of the nonlinear com-
ponent on the firing rates remains unknown; only its dependence on time is retrieved
from our analysis. In other words, the residuals in Eq. (2) are obtained as �η(t) and
not as �η(�x(t)). Because of this, the Jacobian of the network dynamics cannot be
computed, which prevents us from computing the Lyapunov exponents, and hence,
from determining whether the dynamics is chaotic or not. An alternative approach
in this direction is to fit well-established firing-rate models to empirical data, and
then calculate its Jacobian from those parameters. Along this line, Pikovsky [45]
has recently fitted the firing rate model to simulated recordings, and in principle,
the same approach could be applied to experimental data. Fitting the firing rates to
this model would allow one to determine the functional connectivity, eigenvalues
and Lyapunov exponents parametrically. In preliminary studies, we have determined
that although this approach is very promising, the model underestimates the firing
rate of real neurons significantly. Future work should investigate other more realistic
models.
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Optimal Fisher Decoding of Neural
Activity Near Criticality

Eric S. Kuebler, Matias Calderini, Philippe Lambert
and Jean-Philippe Thivierge

Abstract Studies on the functional role of criticality in the brain have thus farmainly
examined the role of neural dynamics on stimulus encoding, with scant attention
devoted to the impact of these dynamics on downstream decoding. Here, we consider
the question of how a linear decoder may classify spontaneous cortical activity both
near and away from a critical state.We show that accurate performance of the decoder
is obtained only when network activity is near criticality. Simulations of a branching
process capture these results and argue for a potential role of the critical state in
providing a format for neural activity that canbe adequately processedbydownstream
brain structures.

Neuronal activity both in vitro and in vivo has increasingly been shown to behave
like a physical system operating near a critical state [30]. The proposed advantages
of critical activity are manyfold. In the critical state, neural activity is suggested to
display a maximal range of responses to sensory input [15]. Further, the critical state
mayoptimize information capacity and transmission [33].However, investigations on
the role of neural criticality have primarily focusedonneural encoding,with relatively
little attention paid to how criticality may impact neural decoding by downstream
brain structures [12, 38]. A priori, there is no reason to assume that a state that is
optimal for encoding is also optimal for decoding. Indeed, in a simplified scenario,
we can segregate information coding and decoding into two distinct steps along
an information processing pathway leading from “lower” to “higher” sensory areas
(Fig. 1a).

To address the role of criticality in neural decoding, this chapter examines three
approaches. First, we apply a linear decoder to network activity recorded with mul-
tielectrode arrays. Second, we compare experimental results with numerical sim-
ulations where we decode the activity of a simple branching model. Finally, we
provide analytical results relating critical branching to linear decoding. Together,
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Fig. 1 Setting up a linear decoder to read out a neuronal population. a Schematic description
of sensory encoding versus decoding along an information processing pathway from “lower” to
“higher” brain areas. A sensory stimulus activates neural pathways leading to cortex. The response
of cortical networks is read out by downstream structures in order to classify and discriminate
different stimuli. b Schema illustrating several networks (#1–3) projecting to a readout layer of units
that identify the active network at a given time. For illustration purposes, each network represents
an abstracted concept of “cat”, “flower”, and “house”

findings highlight the role of critical dynamics in providing a format for accurate
linear decoding of network activity.

1 Thought Experiment

To introduce the problemof neural decoding examined here,we beginwith a “thought
experiment” in which several cortical networks feed into a set of downstream read-
out units. One could think of these networks as representing stimulus-specific cell
assemblies [17] that code for concepts such as “cat”, “flower”, or “house” (Fig. 1b).
When these different networks are activated, the readout layer must identify the con-
cept that is encoded. Although highly simplified, this is a reasonable scenario in
cortical circuits where different networks perform distinct functions despite a degree
of shared interconnectivity [24, 28]. This thought experiment serves as the basis for
the analyses presented here.
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2 Optimal Linear Readout of Neural Activity

We recorded spontaneous population activity from 7 cultured cortical networks for a
20 min duration over days in vitro 17–23. Culturing of cortical neurons and record-
ing of multi-unit spiking activity was performed on a 64-electrode array as described
previously [20, 32, 36, 39]. Neural activity was characterized by network bursts that
extended over several hundreds of milliseconds (Fig. 2a). Bursts under control condi-
tions were compared to those obtained with the addition of either a GABAA receptor
antagonist (5 μM picrotoxin, PTX) or an NMDA receptor antagonist (2R)-amino-5-
phosphonovaleric acid (20 μM APV) combined with an AMPA receptor antagonist
6,7dinitroquinoxaline-2,3-dione (2 μM DNQX). As shown previously [39], PTX
resulted in increased bursting activity (specifically, in the number of electrodes active
during bursts), while APV/DNQX resulted in decreased bursting (Fig. 2a).

In control recordings, the number of electrodes active during avalanches followed
a power-law (Fig. 2b). The range of this distribution is limited to ~1.5 orders of
magnitude due to the limited size of the electrode array. We computed a maximum
likelihood estimate for the slope of this distribution [11], assuming a continuous
power-law function,

τ̂ = 1 + n

[
n∑

i=1

log
xi
xmin

]−1

, (1)

PTXAPV-DNQX

2 sec

Control

PTX

APV-DNQX

Control

(a)

(b)

Fig. 2 Neuronal avalanches. a Examples of population rasters under control and pharmacolog-
ical conditions. b Number of electrodes active per avalanche for control, APV-DNQX, and PTX
conditions. Panel b is taken from [39]
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where i = 1…n are the observed values of the data (x) corresponding to avalanche
sizes. We set xmin to the minimum value of the distribution. Statistical error in the
estimation of τ is given by

error = τ̂ − 1√
n

, (2)

yielding τ̂ = 1.52 (statistical error: 0.02), a value close to the expected mean field
exponent in the critical state [22]. As previously reported, pharmacological alter-
ations in neural activity shifted this slope (PTX, τ̂ = 1.47, statistical error: 0.01;
APV/DNQX, τ̂ = 1.63, statistical error: 0.04) [39]. Related work reports a power-
law of avalanche amplitudes [21] and duration [32] using the same dataset. A full
treatment of the goodness-of-fit of these data is considered elsewhere [21, 39, 40],
along with a comparison between function fitting with power-law and exponential
distributions [21]. The effect of binning the data using windows of various durations
(between 1 and 16 ms) has been shown to have a minimal impact on estimates of
power-law slopes [39].

One key feature of criticality is the presence of a systematic relation between
differentmeasures of avalanches, namely their duration, the number of cells activated,
and the number of spikes generated [32]. If we denote the power-law exponent of
these measures as α (duration), τ (number of active cells), and 1/σνz (relation
between duration and number of active cells), the mean-field exponent relation for
critical systems [26] is given by

α − 1

τ − 1
= 1

σνz
. (3)

This relation is approximated in cortical recordings under control conditions, but
disrupted with pharmacology [32].

Aside from the presence of power-law distributed activity, a key feature of neu-
ral activity in the critical state is the presence of avalanches whose duration can
be rescaled to show a similar temporal profile of activity [14]. In previous work,
we developed a statistical tool to test for this phenomenon, and reported reliable
rescaling of avalanches under control conditions [32]. This effect was not found with
pharmacologically-induced activity.

Next, following the thought experiment described above (Fig. 1), we asked
whether network bursts belonging to different networks could be accurately clas-
sified by a linear readout. This readout was applied to spontaneous activity. It is
unknown whether results would generalize to stimulus-driven activity, a point that
we return to in the Discussion.

To classify network bursts, we began by applying a threshold to the sum of net-
work activity to identify large network bursts. This threshold was adjusted such that
the total number of threshold-crossing events would be similar across experimental
conditions. For the control condition, the threshold was set to 15 concurrently active
electrodes within non-overlapping 10ms windows. This threshold was lowered to 12
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electrodes for the PTX condition and increased to 20 electrodes for the APV/DNQX
condition.

An example of a single network burst is shown in Fig. 3a. These bursts are charac-
terized by a sharp rise in population activity followed by a slightly longer timescale
of decay, as detailed in Thivierge and Cisek [37]. Note that the network activity
shown in this figure would provide multiple training samples if the burst extends
over several non-overlapping windows of 10 ms each.

Given N total electrodes, we summarized each threshold-crossing event by a
binary vector of length N where each element is set to “1” if the corresponding unit
spiked at least once (and “0” otherwise). We then merged activity from all 7 different
cortical networks into one dataset. We trained a Fisher linear decoder [6, 9] on one
half of this dataset, tested the performance of the readout on the other half, and
measured the percentage of errors in identifying the network of origin.

To understand the workings of this decoder, let’s consider a simplified scenario
where it receives input from two networks (generalizing tomore networks is straight-
forward). Assume a dataset X = {

x(1), x(2), . . . x(M)
}
, where each sample x is an

N-dimensional vector corresponding to a single threshold-crossing event, and M is
the total number of events recorded. Of these events, we have C = 2 subsamples

below threshold

above threshold

20 electrodes

below threshold

above
threshold

APV-DNQX

Control

PTX

(a)   (b)

(c)

Fig. 3 Linear classification of neural activity. a Example of a single network burst showing a
spike raster (top panel) and number of concurrently active electrodes (bottom panel). Dashed line,
example of threshold set to 15 active electrodes. b Readout accuracy of population activity based on
linear discriminant analysis. Dashed line, chance level. c Performance of the linear readout when
altering the threshold to detect network bursts. Vertical dashed line, default threshold value
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(or classes) M1 and M2 each belonging to a given network. The goal of the linear
decoder is to compute a scalar y = wTx such that the separation between the two
networksM1 andM2 is maximal. Formally, this is the line that maximizes the Fisher
criterion

J (w) = wT SBw
wT SWw

, (4)

where SB and SW are matrices of the between- and within-class covariance, respec-
tively. The between-class variance is obtained as

SB =
C∑
i=1

Mi
(
µi − x̄

)(
µi − x̄

)T
. (5)

where x̄ is the grand mean of the dataset. In the above equation, patterns for all
classes are sequentially indexed from 1 toM. In order to reference all patterns within
one class, we introduce kim ∈ [1, M], which is the index for them-th pattern of class
i. With this notation, we define the mean for each class,

µi = 1

Mi

Mi∑
m=1

x(kim ). (6)

The within-class variance is

SW =
C∑
i=1

(Mi − 1)�i , (7)

given the class covariance,

�i = 1

Mi − 1

Mi∑
m=1

(
x(kim ) − µi

)(
x(kim ) − µi

)T
. (8)

A closed-form solution to maximizing Eq. 4 for C = 2 is provided by

w = S−1
W (µ1 − µ2). (9)

The statistical assumptions underlying Fisher decoding, as well as the impact of
their violation in neural population activity, are addressed in detail elsewhere [6, 9].

We trained a separate classifier for each experimental condition (controls and phar-
macologically altered networks). The linear readout we employed provides a lower
bound on classification capacity and has shown good agreement with behavioral per-
formance on decision making tasks when employed to decode cortical activity [6,
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31].While this readout is not meant as a biologically grounded decodingmechanism,
it can be implemented biologically, for instance through a Hebbian learning rule [8].

In the control condition, the linear readout accurately classified bursts with nearly
0% testing error until approximately 90% of electrodes were randomly discarded
(after applying the burst detection threshold), at which point error rose sharply
(Fig. 3b). Thus, the linear decoder was successful at classifying network activity.
By comparison, pharmacological alterations in neural activity markedly disrupted
performance, regardless of the percentage of electrodes eliminated (Fig. 3b). In other
words, decoding was more accurate in networks near the critical state (in the control
condition) compared to pharmacologically-altered conditions.

Next, we asked whether accurate classification of network activity was limited
to network bursts or whether it could also be achieved with lower levels of activity.
As before, we employed a fixed threshold applied to summed population activity,
which we separated into above- and below-threshold components (Fig. 3a). We then
computed classification error of the linear decoder across different threshold values
(Fig. 3c). As the threshold was increased beyond ~15 electrodes, above-threshold
activity attained near-zero errorwhile below-threshold activity remainednear chance.
Thus, accurate classification of network activity was limited to large network bursts
where several electrodes were active concurrently.

To illustrate the performance of the linear readout,wegenerated a raster containing
all network bursts of the 7 arrays. We color-coded this raster according to either the
network of origin, readout classification using network bursts, or randomly assigned
labels. Classification using randomized data showed that most of the exemplars were
misclassified (Fig. 4); by comparison, classification using network bursts was nearly
identical to the original data.

While network activity near the critical state seems to convey an advantage for
decoding, the basic underlying mechanism responsible for this finding is thus far
unclear. To examine this question, the next section of this chapter turns to a simple
branchingmodel that allows us to explore the role of criticality in linear classification.

Threshold-crossing events

El
ec

tr
od

es

Original data
Readout trained on 

network bursts
Readout trained on 

shuffled network bursts

Fig. 4 Linear readout of network bursts. Rasters showing consecutive threshold-crossing events
when the linear readout was presented with either original or shuffled spikes. Different networks of
origin are labeled by color
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3 Neuronal Decoding in a Critical Branching Model

To examinewhy in vitro networks near the critical state can be accurately classified by
a linear readout, we turned to a simple phenomenological model of critical branching
that has been employed to describe the power-law distribution of neural avalanches
[5] and 1/f scaling dynamics [18]. Branching processes are fundamental for capturing
the mean-field behavior of critical systems as detailed in classic work [2, 10, 41].
While it is possible to produce both power-law avalanches and 1/f scaling without
criticality [3, 4], critical dynamics can exist at critical branching [23].

In the branchingmodel, each spike causes a given number of spikes in downstream
units (Fig. 5a). This number is determined by a branching ratio (σ ) expressed as the
average number of descendant to ancestor units,

σ = #descendants

#ancestors
. (10)

When the branching ratio parameter (σ) is less than 1, activation fades over time,
while σ = 1 leads to short-term sustained activation and σ > 1 leads to amplification.
A value of σ = 1 is associated with critical branching [41]. This value closely
matches our control data (mean of σ = 0.974 with standard error of 0.06 across
all control networks; the average is taken over all consecutively active time bins).
Pharmacologically altering network activity is associated with a shift in branching
parameter away from σ = 1. Specifically, APV/DNQX networks yielded a mean
branching ratio of 0.82 (standard error, 0.15), compared to 1.05 (standard error, 0.13)
for PTX networks. These shifts are captured by the branching model, as described
below (Fig. 5b).

100 ms

σ<1              σ=1               σ>1 σ=0.5

σ=1

σ=1.5

me

(a) (b)

Fig. 5 Neural activity generated by a branching model. a Propagation of activity in a branching
model with synapses (grey lines) connecting four neurons (circles) arranged in two layers repre-
senting different time points. b Spiking activity generated by the branching model with different
branching ratios
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A dynamical model of branching is described as follows. A population of N =
100 units are randomly connected following a uniform distribution with a connection
probability of pconn = 0.5 between pairs of units [7]. Each unit is either active or
inactive and may become spontaneously active with probability g = 0.001. The
connectivity of the whole circuit is given by a matrix W ∈ [0, 1]N×N with elements
0 ≤ wi j ≤ 1 describing the probability of a unit i propagating its active state to a
unit j within two consecutive time points,

W =

⎡
⎢⎢⎢⎢⎢⎢⎣

w11 . . . w1 j . . . w1N
... . . .

... . . .
...

wi1 . . . wi j . . . wiN
... . . .

... . . .
...

wN1 . . . wN j . . . wNN

⎤
⎥⎥⎥⎥⎥⎥⎦

. (11)

Connections are constrained such that

N∑
j=1

wi j = σ. (12)

Thus defined, the connectivity matrix does not allow for inhibitory connections.
Further, no refractory period was incorporated in the model.

We simulated 5 networks for 106 time-stepswith various branching ratios. Aswith
in vitro networks, we identified network bursts using a threshold of 15 concurrently
active units within time windows of 10 ms duration. Then, we stored network bursts
and trained a linear readout to classify them according to their network of origin.
Classification accuracy of the readout was highest near σ = 1. This result was robust
to changing the discharge probability for spontaneous activity (Fig. 6a) as well as
changing the density of connections (Fig. 6b).

Focusing on the critical branching condition σ = 1, we examined the perfor-
mance of the linear readout subject to input from an increasing number of networks.
In a model with N = 100 units, 10 networks were accurately classified before error
approached chance-level performance (Fig. 6c). By adding more units to each net-
work, this performance was markedly improved. Indeed, classification error was
lower with N = 500 units than with N = 100 units. Regardless of the number of
units per network, error increased non-linearly with the number of networks to clas-
sify. In sum, the branching model captured in vitro results showing that a regime
of σ ~ 1 leads to accurate linear readout of population activity. Next, we take an
analytical approach to examine the origin of optimal readout in critical branching.
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g=0.001
g=0.005
g=0.0001

N=500

N=300

(a) (b)

(c)

pconn=0.5
pconn=0.3

Fig. 6 Linear decoding of activity in a branching model. a Optimal linear discrimination of
network bursts from networks with various probabilities of spontaneous activity (g). Dashed vertical
line corresponds to σ = 1. Dashed horizontal line: chance level. b Optimal linear discrimination
with different synaptic densities obtained by varying the probability of pairwise connections in the
branching model from sparser (pconn = 0.3) to denser (pconn = 0.5). c Classification performance
relative to the number of networks entered in the decoder and the number of units (N) per network

4 Analysis of the Critical Branching Model

To study the dynamics of the branching model, we developed the following formal-
ization.We beganwith the assumption that all units are independent. This assumption
does not hold in practice given the connectivity amongst units (Eq. 11) but provides
a useful approximation, as shown below. We define a “network state” according
to a vector �X ∈ {0, 1}N×1 with elements xi representing whether unit i is active
(xi = 1) or silent (xi = 0). Second, we define the probability of spontaneous spiking
�G ∈ [0, 1]N×1 with elements gi representing the probability of spontaneous activity
for unit i.

Given the above definitions, we aim to calculate the probability of a neuron j
spiking at time-step t = 0, 1, 2, …, T. This problem can be approached by first
considering the probability of not spiking,

P
(
x j = 1|t) = 1 − P

(
x j = 0|t), (13)

where t denotes the time since the last point when the sum of activity across units
was zero. In a large network, this can be assumed to be t = 0.
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A given neuron can spike for two reasons: either it becomes active spontaneously,
or it is activated by a neuron to which it is connected. Hence, we can reformulate the
above as

P
(
x j = 1|t) = 1 − P

(
x j = 0|t, g j , �Xt−1,W

)
. (14)

Assuming independence between spontaneous activity and network connectivity,

P
(
x j = 0|t) = P

(
x j = 0|g j

)
P

(
x j = 0|t, �Xt−1,W

)
= (

1 − g j
)
P

(
x j = 0|t, �Xt−1,W

)
. (15)

By the law of total probability, expanding Eq. 15 for a single presynaptic unit
yields

P
(
x j = 0|t) = (

1 − g j
)[
1 − wi j P(xi = 1|t − 1)

]
. (16)

Converting this result back to the probability of spiking in the case of one presy-
naptic unit,

P
(
x j = 1|t) = 1 − (

1 − g j
)[
1 − wi j P(xi = 1|t − 1)

]
. (17)

For N independent units, this becomes

P
(
x j = 1|t) = 1 − (

1 − g j
) N∏
i=1

[
1 − wi j P(xi = 1|t − 1)

]
. (18)

To find a distribution P(x) which is invariant under the temporal dynamics, the
above equation can be iterated from t = 0 until convergence into a steady-state
solution.

A special case of Eq. 18 considers that all elements of each row inW are the same,
resulting in an equal probability of transmission across all outgoing connections of a
given unit, but allowing for different transmission probabilities across units. In this
case, Eq. 18 can be formulated as an explicit function of the branching parameter,

P
(
x j = 1|t) = 1 − (

1 − g j
) N∏
i=1

[
1 − σ

oi
P(xi = 1|t − 1)

]
, (19)

where oi is the out-degree of unit i. We verified that P
(
x j = 1|t) obtained from

Eq. 19 agrees with mean spike probabilities obtained from numerical simulations of
the branching model (Fig. 7).

The expected value for the state of unit j at generation t is given by
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Fig. 7 Spike probability
(P(xj |t)) obtained from
numerical simulations and
analytical estimate (Eq. 19).
Vertical dashed line, σ = 1

branching ra o (σ)

numerical values
analy cal es mates

E
[
x j |t

] = 1 × P
(
x j = 1|t) + 0 × P

(
x j = 0|t)

= P
(
x j = 1|t), (20)

with variance

Var
(
x j |t

) = 1 × P
(
x j = 1|t) + 0 × P

(
x j = 0|t) − E

[
x j |t

]2
= P

(
x j = 1|t) − P

(
x j = 1|t)2. (21)

To perform an optimal linear readout of network activity using a Fisher discrim-
inant criterion [25], we assume that two networks each with a different connectivity
matrixW (Eq. 11) generate spontaneous activity. This activity is then summed across
neurons and compared to a threshold θ to focus on time-steps when a given propor-
tion of neurons are active simultaneously. This scenario is equivalent to the analysis
performed previously on experimental data (Fig. 3a). The probability of observing
a network burst at generation t,

P

⎛
⎝ N∑

j=1

x j ≥ θ |t
⎞
⎠,

is equivalent to the probability of observing at least θ successful trials out of N
coin flips, each with probability pi = P(xi = 1|t) of success. With large N, the
probability of observing at least θ successful trials can be approximated by a normal
distribution ξ ,

ξ ∼ N
(
μξ , s

2
ξ

)
, (22)

with mean μξ and variance s2ξ given by

μξ =
N∑
i=1

pi , (23)

and
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s2ξ =
N∑
i=1

pi (1 − pi ). (24)

One then calculates the probability of observing at least θ successful trials by
integrating the Gaussian probability density function of ξ ,

P

⎛
⎝ N∑

j=1

x j ≥ θ |t
⎞
⎠ =

∞∫
θ

fξ dz

=
N∫

θ

fξ
(
z|μξ , s

2
ξ

)
dz. (25)

Solving the above integral yields

P

⎛
⎝ N∑

j=1

x j ≥ θ |t
⎞
⎠ = 1

2

⎡
⎣er f

⎛
⎝μξ − θ√

2s2ξ

⎞
⎠ − er f

⎛
⎝μξ − N√

2s2ξ

⎞
⎠

⎤
⎦, (26)

where er f (·) is the error function. We verified that the estimate provided by Eq. 26
matched numerical simulations (Fig. 8).

By combining Eqs. 17 and 19, we computed the probability that a unit j is active
given the occurrence of a network burst at a given time t,

P

⎛
⎝x j = 1

∣∣∣∣∣∣
N∑
j=1

x j ≥ θ, t

⎞
⎠ = P

⎛
⎝ N∑

j=1

x j ≥ θ |t
⎞
⎠P

(
x j = 1|t ), (27)

where independence of the two terms on the right-hand side arises in a network of
large N. We examined the impact of the branching ratio (σ ) on the probability of a
given unit being active during a network burst (Eq. 27) (Fig. 9). We found that this
probability was near zero for low values of σ (below 0.5) and near one for higher
values (above 1.5). Given that it would be impossible for a readout to classify network

Fig. 8 Estimating the
probability that the sum of
spikes exceeds a given
threshold Θ at time
t (Eq. 26). The branching
ratio was set to σ = 1

numerical values
analy cal es mates
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Fig. 9 Impact of branching
ratio on the spiking
probability of individual
units during network bursts
(Eq. 27). Vertical dashed
line, σ = 1. Numerical values
are averaged over units and
time-steps

bursts when either no units are active or all units are active, a necessary condition for
accurate classification is that this value is somewhere in between these two extremes.
This is the case with networks around critical branching (σ = 1).

In sum, this analysis provides insights into the role of criticality in terms of
“formatting” neural activity for downstream decoding. Through a set of probabilistic
equations that capture the statistics of network bursts, we show that criticality yields
network activity that is poised between overly active and inactive bursts. This form
of activity is well suited for an accurate linear decoder.

5 Discussion

In this work, we considered whether a linear readout could accurately classify spon-
taneous neural activity both near and far from the critical state. Our results show that
networks near the critical state were classified by a linear readout with near-perfect
accuracy. Classification error increased in pharmacologically altered networks that
shifted activity away from a critical state.

We captured these results using a branching process and showed that critical
branching near σ = 1 was associated with highest readout accuracy. Together, our
findings show that an accurate readout of neural activity by downstream populations
depends upon the dynamical regime of this activity. Further, in both the experimental
data and the model, readout accuracy was highest with dynamics near the critical
state, hence arguing for a potential role of this state in facilitating the readout of
neural information.

The critical state reported here is in line with previous in vitro literature as well as
anesthetized states in vivo [30]. However, recent work suggests that awake animals
transiently visit a range of critical and subcritical states on a timescale of seconds or
longer [16]. Further, these transient visits may correlate with behavior: while drowsi-
ness is linkedwith synchronized activity reminiscent of critical dynamics, heightened
wakefulness is linked to asynchronous activity akin to subcritical dynamics [34].

These results raise an important question: if critical dynamics are not typically
observed during active sensing, what is their functional role? One possibility is that
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critical dynamics arise during periods of low sensory awareness when the cortex
spontaneously explores various network states [16]. During low sensory awareness,
resting-state cortical activity may explore and reshape its dynamical repertoire, thus
promoting memory consolidation [1], reinforcing key synaptic pathways [19], and
regulating activity-dependent homeostatic plasticity [27]. This proposal is a departure
from the thought experiment described in Fig. 1, where active sensing activates
cortical representations.

The results provided in this chapter do not directly address the relative role of
spontaneous versus task-evoked activity, as we do not record from awake behaving
animals. We can, however, speculate on the following question: given that we record
from spontaneously active in vitro networks, what does it mean that decoding is
optimal near the critical state? Given the lack of reference to an external stimulus,
the type of neuronal decoding described here is performed with respect to intrinsic
cortical activity. We thus propose that criticality may allow the cortex to accurately
process intrinsic brain activity during periods of low sensory awareness.

Whatwould be the impact ofnot producing critical dynamics duringperiods of low
sensory awareness? Speculatively, this might lead to poor communication between
cortical regions. As a consequence, distinct cortical networks may fail to adequately
reinforce distributed pathways representing complex, multi-modal concepts such as
“cat”, “house”, or “flower” (Fig. 1). This proposal would benefit from experimental
support where critical dynamics in vivo are altered during periods of low sensory
awareness.

One prerequisite for the adequate decoding of network activity is that individual
networks generate a restricted range of possible burst configurations. If every network
explored the full range of possible spike combinations during bursts, the overlap
across networks would prohibit classification. A restricted number of configurations
makes it possible for downstream structures to accurately classify network dynamics.
While it is difficult to estimate the full range of burst configurations that a network
can generate, given the limited neurons and bursts recorded here, it is clear that
these burst configurations are not drawn randomly and uniformly across different
networks.

The classification strategy employed here—making use of network bursts—rep-
resents only one of themany potential routes for investigating neural decoding. Other
approaches could attempt to decode neural information by applying dimensionality
reduction [13] or by focusing on pairwise interactions as estimated by maximum
entropy [35]. These approaches, however, come with their own set of caveats and
are beyond the scope of this chapter.

Despite emerging evidence for the presence of critical-state brain dynamics, it
remains unclear whether this form of neural activity reflects a mere by-product of
biological organization (for instance, recurrent network activity) or whether it carries
important functional consequences for cognition and behavior. Our results on neural
decoding of in vitro activity suggest that criticality provides a useful format for brain
dynamics to be accurately decoded by downstream structures. These findings are
part of a larger effort to link critical brain dynamics to cognitive processing, memory
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formation, sensory discrimination, and motor control. Optimal linear decoding as
described here may be instrumental to understanding and formalizing these links.

In conclusion, our work aims to fill a gap in the literature on neural criticality,
which has been largely focused on encoding and information transmission, with
relatively little attention paid to the role of critical dynamics on decoding. Ultimately,
our goal is to seek neural codes that provide advantages for both sensory coding and
cognitive/motor decoding [29].A complete characterization of such codes constitutes
a major pillar of research in modern neuroscience.
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Critical Behavior and Memory Function
in a Model of Spiking Neurons with a
Reservoir of Spatio-Temporal Patterns

Silvia Scarpetta

Abstract Two intriguing phenomena characterize cortical dynamics both in-vitro
and in-vivo: (1) the memory function, with the cue-induced and spontaneous reacti-
vation of precise dynamical spatio-temporal patterns of spikes, and (2) criticality and
scale-free neuronal avalanches, characterized by power law distributions of bursts of
spikes both in-vitro and in the resting spontaneous activity. In this paper we review
recent results which link together both these features, memory function and critical
behavior, in a model with leaky neurons whose structured connectivity comes from
learning multiple spatio-temporal phase-coded patterns using a rule based on Spike-
Timing-Dependent Plasticity. We first study the stimulus-driven replay of stored
patterns, measuring the storage capacity, i.e. the number of spatio-temporal pat-
terns of spikes that can be stored and selectively reactivated. Then we focus on
the noise-evoked spontaneous dynamics, in absence of stimulation. Collective pat-
terns, which replay some of the patterns used to build the connectivity, spontaneously
emerge. Near the phase transition between persistent replay and no-replay regimes of
the spontaneous dynamics, critical phenomena and neural avalanches are observed,
with critical exponents close to the ones experimentally measured. Previous studies
have separately addressed the topics of phase-coded memory storage and neuronal
avalanches, and this is one of the few works which show how these ideas converge
in a single cortical model. This work therefore helps to link the bridge between
criticality and the need to have a reservoir of spatio-temporal metastable memories.

1 Introduction

Many experimental results support the idea that cortical resting activity has the
signature of a system posed near a critical point [1–7], as reflected by scale-free
distributions of neural avalanches. The functional role of being near the critical

S. Scarpetta (B)
Department of Physics, University of Salerno, Fisciano, Italy
e-mail: sscarpetta@unisa.it

INFN unit. Napoli grupp.coll. di Salerno, Fisciano, Italy

© Springer Nature Switzerland AG 2019
N. Tomen et al. (eds.), The Functional Role of Critical Dynamics
in Neural Systems, Springer Series on Bio- and Neurosystems 11,
https://doi.org/10.1007/978-3-030-20965-0_10

179

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20965-0_10&domain=pdf
mailto:sscarpetta@unisa.it
https://doi.org/10.1007/978-3-030-20965-0_10


180 S. Scarpetta

instability has been investigated from the point of view of the ability of the brain
to respond to a wide range of inputs, to process the information in an optimal way
[8–10], and to enhance stimulus discriminability [11]. In this paper we review our
recent results which link together the associative memory function and the critical
scale-free neural avalanches observed in the spontaneous dynamics of cortex.

Notably, an important feature of cortical activity, reported in a variety of in vivo
studies, is the similarity of spontaneous and sensory-evoked activity patterns [12–14].
Recently the spontaneous and evoked activity similarity has been reliably observed
also in dissociated cortical networks [15], reinforcing the idea that the emergence
of cortical recurring patterns, both during spontaneous and evoked activity, is the
results of the cortical connectivity (with its micro-circuits and dynamical attractors)
[15, 16], which result in the similarity of the patterns.

Many in-vivo results shows that repeatable precise spatiotemporal patterns of
spikes play a crucial role in coding and storage of information. Temporally struc-
tured replay of spatiotemporal patterns have been observed to occur in the awake
state [17] and during sleep [18], both in the cortex and hippocampus [19], and it
has been hypothesized that this replay may subserve memory consolidation. Among
repeating patterns of spikes a central role is played by phase-coded patterns [20–22],
i.e. periodic patterns with precise relative phases of the spikes of neurons participat-
ing to a collective oscillation, or precise phases of spikes relatively to the ongoing
oscillation.

We model the cortical activity over the course of a learning phase of periodic
spatiotemporal patterns and after the learning phase with connections fixed, compar-
ing stimulus-evoked activity from noise-evoked spontaneous dynamics. The model
undergoes a discontinuous phase transition between replay and no-replay of stored
patterns, mediated by excitability threshold. The model have the following features
(1) a learning rule inspired by spike-time-dependent-plasticity, which, as opposed to
symmetric Hebbian rules, allows for dynamical attractors to arise in the network, (2)
two firing thresholds to account for the heterogeneity of neuron excitability and (3)
poissonian background noise.

Multiple periodic spatio-temporal patterns (periodic spike sequences) are store
in the connectivity as dynamical metastable attractors. The learning rule inspired by
the spike-time dependent plasticity (STDP) observed in neocortical and hippocam-
pal pyramidal cells [23–26] is particularly suitable to store spatiotemporal patterns.
While within the class of symmetric hebbian rules the associative memory dynamics
converge towards a static patterns, the plasticity which depends on the relative timing
of pre- and post-synaptic firing underscores the importance of timing and dynamics,
and it’s able to stores dynamical attractors, as opposed to static ones.

The proposed associative memory approach, with replay of the stored sequences,
can be a method for recognize an item, by activating the same memorized pattern in
response of a similar input, or could be a method to transfer the memorized item to
another area of the brain (such as for memory consolidation during sleep).

As studied before [27–31], the network is able to selectively replay each of the
stored patterns when a partial cue (a short stimulus similar to the patterns) is pre-
sented. We review the results on the storage capacity of the system, comparing the
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capacity of this network (for dynamical patterns) with the storage capacity of the
Hopfield model (for static patterns).

Even in absence of cue stimulation [32–34] the noise (focused by leader neurons
and disordered structure of connections) may generate a spreading replay of a spatio-
temporal pattern (randomly chosen between the encoded ones).

At the critical value of the threshold, that marks the transition from the metastable
self-sustained replay regime to the no-replay regime, and viceversa, we observe crit-
ical phenomena precursors of the discontinuous transition [35], with scaling invari-
ance and large fluctuations, and power laws in the size and duration of the avalanches,
with critical exponents similar to the one experimentally observed [6]. Interestingly,
the scale-free neural avalanches observed near this critical threshold are composed
of short replays of some of the stored patterns. Notably this is in agreement with the
observation that experimentally neuronal avalanches are highly repeatable [36–38]
and can be clustered into statistically significant families of activity patterns that
satisfy several requirements of a memory substrate.

The systems is therefore both able to work as a stimulus-activated reservoir of
spatio-temporal attractors, in the region where dynamic attractors are metastables
with long lifetimes, and as a more flexible device when used at the border of the
critical instability. Indeed at the critical threshold the normalized variance of the
spontaneous dynamics has a maximum, and the susceptibility, which is the response
to a stimulus, is also maximal.

2 Emerging of Collective Dynamics

The model, described in the Appendix, is composted of N coupled leaky integrate-
and-firing (LIF) units with connectivity dictated by a STDP-based learning of P peri-
odic spatio-temporal patterns of spikes. The emerging complex collective dynamics
which makes the net able to work as associative memory is the result of the con-
nectivity built in the learning stage, while the single units are simply LIF units. To
take into account the heterogeneity of the neurons we use two values for the firing
threshold, a value θth for the majority of the units, and a lower value θth1 for few,
more excitable, units. To model the spontaneous neurotransmitter release at indi-
vidual synapses, as well as other sources of irregular background synaptic noise,
we include a noise term to the membrane potential, whose times and strengths are
extracted randomly and independently for each unit. The times of noise contribution
are poissonian, while noise strengths are extracted from a Gaussian distribution with
zero mean and standard deviation σnoise.

We distinguish two stages: a learning stage in which plasticity rule in Eqs. (9,
10), inspired to the STDP, is used to store P phase-coded patterns into the network
connectivity, from a dynamic stage (or retrieval stage) in which connections Ji j are
fixed to the value found after learning, and the collective dynamics of the neurons
is studied. This distinction in two stages (learning and retrieval), even though is not
well assessed in real neural dynamics, is useful to simplify the analysis and also finds
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some neurophysiological motivations [39, 40]. Even with fixed connections Ji j the
emerging dynamics is not trivial, showing associative memory functioning and an
interesting interplay between criticality and memory replay when spiking threshold
is close to critical value corresponding the the phase transition between sustained
replay and no replay. The dynamics when connections Ji j are not fixed but plastic
will be even richer, and will be studied in a future work.

In the following we study both the stimulus-evoked dynamics (Sect. 2.1) and the
spontaneous dynamics (Sect. 2.2).

2.1 Cue-Evoked Replay and Storage Capacity

The LIF network, with the connectivity that comes from the learning procedure
described in the appendix, is able to work as an associative memory for periodic
spatio-temporal patterns of spikes. Each pattern is a periodic train of spikes, with
one spike per neuron and per cycle, with the neuron i firing at times tμi + nT μ, with
tμi randomly and uniformly extracted in the interval [0; T μ]; T μ is the period, and
φ

μ

i = 2π tμi /T μ are the phases encoded. As studied in [27], a short cue-stimulation,
with M spikes with the proper phase relationship, is able to induce the selective
replay of the stored pattern.

We first review the cue-evoked dynamics when P patterns with period T μ =
333ms are stored, and we give a short cue stimulation with M spikes, with
M = N/10, at times tμi = Tstimφ

μ

i /2π , i = 1, . . . , M , with Tstim = 50ms, where
φ

μ
1 , . . . , φ

μ

M are M consecutive phases in pattern μ. Then, in Sect. 2.2 the behavior
without any cue stimulation (M = 0) is studied, in presence of noise.

Figure1 shows the network dynamics at different spiking threshold, when M =
N/10, in absence of noise (σstim = 0). In the example shown in Fig. 1a and b, the
short stimulation (which lasts less then 5 ms, shown in green in all the figures) has
the effect to selectively trigger the sustained replay of pattern μ. At high threshold,
such as in Fig. 1c, the cue stimulation only triggers a short transient replay, and at
even higher threshold no spontaneous activity is triggered by the stimulation.

Depending on the partial cue presented to the network, a different collective
activity emerges with the phases of the firing neurons which resemble one or another
of the stored patterns. Indeed, in the regime of correct replay, shown in Fig. 1a and
b, we check that if the partial cue is taken from pattern μ = 2, the neurons phase
relationships recall the phase of patternμ = 2 (uncorrelated with patternμ = 1) (not
shown).

Note that, after the short cue presentation, the retrieval dynamics has the same
phase relationship among units than the stored pattern, but the reactivation may
happen on a time scale different from the scale used to store the pattern (and also
different from the period Tstim of the cue), and the collective dynamics is a time
compressed (or dilated) replay of the stored pattern. The time scale of replay changes
slightly with spiking threshold. In the example of Fig. 1a and b, the time scale of the
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(a) (b) (c)

Fig. 1 Cue-induced network dynamics at different values of spiking threshold θth in absence of
noise (σnoise = 0). In these simulations a cue external stimulation (M spikes, shown in green) is
used, and a single value of spiking threshold is used for all units of the network. The network
has N = 3000 IF neurons, M = N/10 spike of stimulation, θth = 75, 90, 105 respectively in a, b
and c. a, b At proper value of the spiking threshold the cue initiates a persistent retrieval of the
spatio-temporal pattern, while at too high threshold (c) the network is silent or with only a short
transient retrieval. Example of selective successful retrieval (a, b) and example of failure (c) are
shown. The raster plot of 50 units (randomly chosen) are shown sorted on the vertical axis according
to increasing values of phase φ1

i of the first stored pattern μ = 1. Connections are given by Eqs. (9,
10) with P = 2 stored patterns at νμ = 3 Hz

retrieval dynamics is faster at lower threshold, and in both cases it is different from
the time scale used to learn the patterns.

The storage capacity, defined as the maximum number of encoded and success-
fully retrieved patterns, as a function of the spiking threshold of the units, is studied.

To measure quantitatively the success of the cue-induced self-sustained retrieval,
we introduce an order parameter, in analogy with the Hopfield model, which esti-
mates the overlap between the network emerging activity and the stored phase-
coded pattern. This quantity is 1 when the phases φ j of spike timings coincide with
the stored phases φ

μ

j , and is close to zero when the phases are uncorrelated with
the stored ones. Therefore, we consider the following time-dependent dot product
|Mμ(t)| =< ξ(t)|ξμ > where ξμ is the vector having components eiφ

μ

j , namely:

|Mμ(Tw, t)| =

∣
∣
∣
∣
∣
∣
∣
∣

1

N

∑

j=1,...,N
t<t∗j <t+Tw

e−i2π t∗j /Tw
eiφ

μ

j

∣
∣
∣
∣
∣
∣
∣
∣

(1)

where t∗j is the spike timing of neuron j during the emerging dynamics, and Tw is
an estimation of the period of the emerging dynamics.

Then, we consider the following order parameter:

mμ(Tw) = 1

〈Ns〉
〈∣
∣M(t, Tw)

∣
∣
〉

(2)
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where the average 〈· · · 〉 is done on the starting time t of the window, and 〈Ns〉 is the
average number of spikes on a window of time Tw.

The fluctuations of the order parameter are defined by

σ(mμ)2 = 1

〈Ns〉2
[〈∣

∣M(t, Tw)
∣
∣
2
〉

− 〈∣
∣M(t, Tw)

∣
∣
〉2
]

. (3)

Note that the value ofmμ between twoperiodic spike trainsmeasures the similarity
in the sequence of spiking neurons and in the phase lag between the spikes, being
invariant by a simple change in time scale. This is a suitable choice especially when
the replay of a spatio temporal pattern has to be detected independently from the
compression of the time scale. Note that if we have a spike train that is not periodic,
we cannot define the period, however we can define the order parameter (2) looking
at the time-window Tw which maximize the order parameter. This can be useful in
the case when one looks for a short replay hidden in a not-periodic spike train, such
as here and in many experimental situations. The overlap in Eq. (2) is equal to 1
when the phase-coded pattern is perfectly retrieved (i.e. same sequence and phase
relationships among spikes, even though on a different time scale), while is of order
� 1/

√
N when phases of spikes are uncorrelated to the stored phases.

The order parameter Mμ(t, Tw) at large times, and its average mμ(Tw), for the
optimal Tw, has been used to measure the network storage capacity in the space of
parameters θth and νμ = 1/T μ in [27]. The same order parameter mμ(Tw) and its
fluctuations have been used to study the phase transition between spontaneous replay
and no-replay in [32].

The storage capacity, as defined as usual as the ratio Pmax/N , is shown as a
function of the spiking threshold θth , in Fig. 2,whenM = N/10 spikes are used as cue
stimulation. Pmax is the maximum value of P, for which the cue is able to selectively

Fig. 2 Storage capacity αc = Pmax/N is shown as a function of spiking threshold θth , when
M = N/10 spikes are used as cue stimulation. The number of units is N = 3000, Tμ = 333ms,
Tstim = 50ms, noise strength σnoise = 0. The figure shows that near θth � 95 there’s a transition
from a region of cue-evoked persistent replay to a region of no cue-evoked replay
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activate the persistent replay of the stored pattern with an overlap mμ > 0.5. We
fixed the desired similarity value to 0.5, however the whole storage capacity analysis
is very robust with respect to this parameter, since in our numerical simulations mμ

has mostly two possible values, close to one (success) or close to 1/
√
N (failure).

The storage capacity, evaluated as Pmax/N , has a maximum value close to 0.01,
which is lower than the storage capacity of the Hopfield model. However, the infor-
mation content of a single pattern in our dynamical model with N units is higher
than the information content of a pattern in the Hopfield model with N-units. Indeed,
an Hopfield pattern is only a set of N binary values, while our phase-coded spatio-
temporal pattern is a set real number φ

μ

j ∈ [0 : 2π ] setting the spike timing differ-
ences. Moreover coding through spike phase-relationship leaves the possibility to
encode ancillary informations in the population rate. Preliminary results shows that
a mixed phase- and rate-coding, where only part of the units participates to each of
the pattern and the other part of the units is silent in that pattern, is able to reach
much higher value of storage capacity.

Notably for P < Pmax the replay is robust wrt noise (see [27] for details). Indeed
stored pattern is an attractor of the network dynamics, that is the dynamics spon-
taneously goes back to the retrieved phase-coded pattern for all the perturbations
which leave the system within the basin of attraction. Therefore phase errors do not
sum up, and the phase relationships may be transferred and kept stable over long
time scales.

The storage capacity in Fig. 2 is maximal at a value of the threshold around
θmax
th = 80. At too low threshold, the excitability of the network is too high, andwhen
P > Pmax (θth) the network responds with a persistent activity that is not correlated
with any of the stored patterns, i.e. a spurious state. At threshold around θth = 95
the capacity drops off and the network has a transition to a regime where no self-
sustained activity is possible for any value of P in response to the cue stimulation.
Near this value the cue-induced responses are short transient (non-persistent) replay
responses [27], while at even larger threshold the network is unresponsive.

This critical regime, near the phase transition between self-sustained replay and
no replay regimes, is further investigated in the following, in the absence of any
external cue stimulation (M = 0).

2.2 Spontaneous Collective Dynamics

While in previous subsection we studied the dynamics triggered by a short stimula-
tion cue, in the following we focus on the spontaneous dynamics without any cue
stimulation, in the presence of Poissonian noise coupled with strength of standard
deviation σnoise.

While in the region of persistent replay the evoked dynamics is robust wrt noise
[27], in the sense that once the dynamics falls in the basin of attraction of one pattern
the replay is persistent and robust wrt noise, near the critical point between persistent-
replay and no-replay, the system is more sensible to noise. Therefore it is important
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Fig. 3 Order parameter m(TW ), at optimal Tw , and its fluctuations as a function of θth , of the
noise-evoked activity for N = 3000, P = 2, θth1 = 26, νμ = 3Hz and noise σnoise = 6. There is
no cue-stimulation (M = 0). Note that at the critical point (θth = 90) between the two regimes, the
fluctuations of the order parameter are maximized, as expected near a second order phase transition
or near the spinodal line of a first order transition

to study the effects of noise in this transition region, and we therefore will focus
on the spontaneous dynamics in the absence of cue stimulation, in presence of only
poissonian noise.

Notably we find that, in absence of any external stimulation, it is the noise itself
which may initiate a alternation of short replays of stored patterns and quite states
(up/down alternation) at the critical value of the threshold, while at lower threshold
(higher excitability) the noise is able to induce a persistent replay of the stored patterns
(as in the cue-induced case). This is in agreement with the fact that the spontaneous
and evoked activity similarity has been reliably observed experimentally [12–15].

In Fig. 3 the mean value of order parameter mμ and its fluctuations are shown as
a function of spiking threshold θth , when θth1 = 26 and for the optimal Tw, when
spontaneous dynamics is studied (M = 0, σnoise = 6). At low spiking threshold the
order parameter is high and fluctuations are low, indicating that the noise is able to
initiate a successful retrieval (persistent replay) of one of the patternswhich are stored
into the connections. At high threshold both order parameter and its fluctuations are
low. At the critical point (θth = 90) between the two regimes, the fluctuations of the
order parameter are maximized, as expected near the instability of a phase transition.

Notably recent results [41] shows, using large scale fMRI measures, that the brain
spent most of the time near a critical point, with maximization of fluctuations. Inter-
estingly, in a recent paper [35] we observe in our model the presence of metastability
and hysteresis, which indicate that the transition in Fig. 3 is a non-equilibrium first
order one. Maximization of fluctuations, scale-free and critical behaviour in cortical
dynamics are frequently associatedwith second-order (continuous) phase transitions.
However power law and critical phenomena also emerge in first-order (discontinu-
ous) phase transitions as one enters the metastability region and approaches the



Critical Behavior and Memory Function in a Model of Spiking Neurons … 187

Fig. 4 Raster plot (up) and corresponding firing rate (bottom) as a function of time, of the spon-
taneous dynamics of the network at spiking threshold θth = 80, 90, respectively, in panels a, b.
As in previous figure, N = 3000, P = 2, θth1 = 26, M = 0, and noise σnoise = 6. The raster plots
are shown on the upper panels, with neurons sorted according to increasing values of the phases
in pattern μ = 1, and the corresponding firing rates (measures on a time window of 1 ms), as a
function of time, are shown on the bottom panels. a At low threshold (high excitability), a persistent
reactivation of one of the patterns (randomly chosen by the noise realization) emerges, in this case,
pattern μ = 1, as shown by the regular behavior in raster plot in (a). b At the critical value of the
threshold θth = 90, the noise is able to initiate an intermittent short collective replay of a pattern
(in this case pattern μ = 1). UP/DOWN alternation is shown in (b), with alternation of states of
quiescence with states of replay activity is shown. During the states of short collective replay, the
firing rate is high, while the firing rate is low in the quite periods

spinodal line, in systems with long range interactions [42, 43]. We show in [35] that
the maximization of fluctuations in Fig. 3, and the up-down alternation with scale-
free features described in Sect. 2.2.1, are indeed associated with the spinodal line of
an underlying discontinuous transition, when one enters the metastable region from
below.

In Figs. 4 and 5 it is shown the raster plot (and the firing rate) of the sponta-
neous dynamics of the network used in Fig. 3, at spiking threshold θth = 80, 90, 110
respectively, in Figs. 4a, b, 5a. In the low threshold regime, the noise-evoked activity
triggers the sustained replay of one of the patterns encoded in the network (Fig. 4a).
The intermediate regime, corresponding to the critical value of spiking threshold
θth = 90, is shown in Fig. 4b. In this case the noise is able to start the replay of
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Fig. 5 The spontaneous dynamics as in previous figure, but at high values of spiking thresholds.
θth1 = 26, and θth = 110 in (a), while we use a higher value of leaders spiking threshold θth1 = 40,
and θth = 120 in (b). The potential of neurons is governed by a Ornstein-Uhlenbeck process, and
with some probability crosses the threshold giving rise to a spike, that is not able, however, to
generate a spreading activity in the network

a pattern, but also to stop it, so that the activity is intermittent, and resembles the
experimentally observed alternation of up and down states [44]. The firing rate is
high in the UP state (during short replays) and is low during DOWN states, therefore
the distribution of the rates is bimodal [33]. At high threshold (Fig. 5a) the interplay
between noise and the leader units generated only very short replay. When also the
leader’s spiking threshold θth1 is higher (Fig. 5b), the dynamical behavior is domi-
nated by noise, and the rate distribution is nearly exponential with a maximum at
zero rate.

The maximization of the order parameter’s fluctuations at the critical threshold
θth = 90 in Fig. 3 is in agreement with the UP/DOWN alternation, with intermittent
replay, that we observe at θth = 90 in Fig. 4b. To further investigate the dynamical
features near the critical point, in the next subsectionwemeasure the neural avalanche
distribution to look for scale-free behaviour.
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2.2.1 Scale-Free Behavior

To characterize the spontaneous dynamics near the critical point, corresponding to
maximization of fluctuations (Fig. 3) and theUP/DOWNalternation shown inFig. 4b,
we measure the neural avalanches distribution. According with original work of
Beggs and Plenz [1] we define an avalanche as a sequence of spikes preceded and
succeeded by a time interval of length at least τmin without any spikes. The value of
τmin has been chosen looking at the network Inter Spike Interval (ISI) distributions,
as a value greater than the short timescale of ISIs within an event but shorter than the
timescale of the longer quiescent periods, which are not distributed exponentially.
Therefore, we take a value of τmin = 0.03ms as the time at which the ISI distribution
at the critical point deviates from the initial exponential behavior. Figure6 shows the
distribution of the sizes (number of spikes) and durations of the avalanches, P(S) and
P(T ), as well as the mean size as a function of duration <S>(T ), for N = 20000,
θth1 = 26, νμ = 3Hz and noise σnoise = 6, at thresholds θth1 = 75, 90, 110. At the
critical value of the threshold, the distributions approach a power law with critical
exponentsβ = 1.55 for size andα = 1.63 for duration, and the average size<S>(T )

as a function of duration approaches a power law with exponent k = 1.14, which
notably satisfies the relation, initially derived in Ref. [45] in relation to crackling
noise,

α − 1

β − 1
= k (4)

It is interesting that relation (4) between the critical exponents is verified in ourmodel
and also experimentally, both in-vivo [46] and in-vitro [5], while it is not verified in
models where power law is not a manifestation of a critical point [47].

Fig. 6 Avalanches distributions at three values of the spiking threshold: θth = 110 (blue circles),
θth = 90 (red squares), θth = 75 (green triangles). The distribution of avalanche’s size (a) and
duration (b), and themean size as a function of duration (c) are shown for a networkwith N = 20000,
σnoise = 6, M = 0, θth1 = 26. At the critical point the size and duration distribution approach a
power law, with exponents respectively β = 1.55 and α = 1.63. The average size <S>(T ) as a
function of duration approach a power law with exponent k = 1.14. (See [32] for details)
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Notably recent results [35] shows that the phase transition between the self-
sustained replay regime and the no-replay regime (shown in Fig. 3) is a non-
equilibriumfirst order transition. Interestingly first-order transitions are usually asso-
ciated with memory, as in the Hopfield model. The scale-free behavior observed at
the critical value of the threshold could be read, therefore, as the critical behavior
that one expects near the spinodal line of a first order transition [48]. As shown in
[35] the cut off of the power law in Fig. 6a, b scale with the system size N , indicating
a scale-free behavior.

3 Conclusion

In this paper we review a simple Leaky Integrate and Fire model where stimulus-
evoked patterns and spontaneous noise-evoked patterns are similar, since cortical
connectivity (with its stored dynamical attractors) imposes common constraints on
spontaneous and evoked activity flow. The learning rule, based on the STDP plas-
ticity, makes the network able to work as associative memory, replaying each of the
periodic spatio-temporal patterns that have been stored in a cue-selective manner.
Near the critical point, i.e. near the edge of instability of spontaneous self-sustained
replay regime, the spontaneous network activity wanders through the various activ-
ity patterns which are encoded in the connectivity, with alternation of up and down
states. Near the edge of this instability, neural avalanches with power law distri-
bution are observed. Notably the exponents of size and duration distribution, and
the exponent of the average size as a function of duration, are in agreement with
the experimental observations [5, 6, 46]. In the framework analyzed in this paper,
the neural avalanches and the UP/DOWN alternations are both manifestation of a
network with many dynamical attractors stored in the connectivity, posed near the
instability point.

One may speculate that indeed to stay in the regime where the reactivation is
not a persistent replay, but it’s only a transient short replay, may be convenient, in
terms of flexibility, and therefore a feedback mechanisms may regulates the degree
of excitability of the network to put it near this critical line.

Near this criticality line indeed the susceptibility is maximal, and the response of
the network is more various and flexible, and sensitive to novel experience, while the
region of persistent replay at threshold lower then the critical value is more suitable
when persistent activation of previous stored experience is needed. It is plausible that
the brain is able to change its state, by changing the value of excitability (threshold)
or with other mechanisms, going out of the critical region toward a supercritical
state (more suited for either spontaneous or cue-triggered persistent reactivation
of previous experience) or subcritical state (which favors faithful representation of
sensory inputs) depending on the different behavioural state.

The coexistence of cue-evoked persistent replay and spontaneous critical dynam-
ics in our model reminds the behaviour observed experimentally in Ref. [46], where
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spontaneous critical state is observed, while a transient state characterized by large
non-critical avalanches is observed in response to an external stimulus.

Another model that study criticality together with associative memory was pro-
posed in [49]. In their model, a Hebbian learning rule is used to store static patterns.
However, they found that Hebbian learning alone destroys criticality even when the
synaptic strength is properly scaled. Applying an optimization procedure that drives
the synaptic couplings either toward the critical regime, or toward the memory state
in an alternating fashion, they finally arrive at a configuration both critical and that
retains an associative memory. The reason why in our model the learning procedure
does not destroy criticality may be due to the difference in the learning rule, that
in our case is based on STDP and stores dynamical attractors, as opposed to static
ones.

The result of learning spatio-temporal patterns (each with quenched randomly-
chosen phase ordering) gives rise to quenched disorder in the network connections
structure, and the distribution of connection weight that comes out from our learning
rule is very skewed and long-tailed [35]. Note however that in our model the distri-
bution of the weights is not a sufficient condition to determine the dynamical phase
transition. Indeed, when we shuffle [50] the connections leaving their distribution
unchanged, this kind of transition disappears. It seems therefore that the topology
of the network, with its relative abundance of motifs and its corresponding stored
dynamical attractors, is crucial [50] for the manifestation of these kind of phase
transition between sustained memory reactivation and no-reactivation and its critical
features such as scale-free avalanches.

Appendix: The Model and the Learning Procedure

The model and the learning rule have been introduced in [27, 28, 30, 32, 34]. Here
we briefly review them. We have N coupled Leaky Integrate-and-Fire (LIF) units
with connectivity dictated by a STDP-based learning of P spatio-temporal patterns
of spikes.

The post-synaptic membrane potential of neuron i , represented by the Spike-
Response-Model [51], in presence of Poisson noise, is simply given by:

hi (t) =
∑

j

Ji j
∑

t>t j>ti

ε(t − t j ) + ηi (t), (5)

ηi (t) =
∑

t>tinoise>ti

Jnoise(tinoise)ε(t − tinoise). (6)

where ηi (t) is the Poissonian noise term, Ji j are the synaptic connections, ε(t)
describes the response kernel to incoming spikes, and the sum over t j runs over
all pre-synaptic firing times following the last spike of neuron i . The sign of the
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synaptic connection Ji j sets the sign of the post-synaptic potentials change. The
noise times tinoise are random and independent times, extracted from a Poissonian dis-
tribution P(δt) ∝ e−δt/τnoise , with τnoise = 1ms, while the strength Jnoise is extracted
for each time tinoise from a Gaussian distribution with mean J̄noise = 0 and standard
deviation σnoise. The response kernel ε(t) is given by

ε(t) = K

[

exp

(

− t

τm

)

− exp

(

− t

τs

)]

Θ(t) (7)

where τm is the membrane time constant (here 10 ms), τs is the synapse time constant
(here 5 ms), Θ(t) is the Heaviside step function, and K is a multiplicative constant
chosen so that the maximum value of ε(t) is one.

When the membrane potential hi (t) exceeds the spiking threshold θ i
th , a spike

is scheduled, and the membrane potential is reset to the resting value zero. To take
account of the heterogeneity of the neurons, we use two values of θ i

th : a low threshold
θth1 for N1 	 N units, to model units more sensible to noise (“leader units”), and a
higher threshold θth for the others N2 = N − N1 units. The leaders units (modeled
here with lower threshold), are neurons that fire more than other ones in response
to noise, and give rise to a cue able to initiate the short collective replay. They are
chosen as a fraction of 3% of neurons with consecutive phases, for each pattern. The
presence of a few highly active sites, driving cortical neural activity (leaders), has
been reported experimentally [52–54].

The emerging network dynamics is determined by the connectivity. Connections
Ji j are determined via a learning rule inspired by STDP [23, 26, 55], where long-term
potentiation and depression of the synaptic efficacies depends on the relative timing
of the pre- and post-synaptic activities. In the learning stage, we force the network
to store P spatio-temporal patterns of spikes.

According to the learning model [29–31, 56, 57] the connection change Ji j that
occurs in the time interval [−T, 0] to learn activity pattern yμ(t) can be modelled as
follows:

δ Jμ

i j = 1/N
∫ 0

−T

∫ 0

−T
yμ

i (t)A(t − t ′)yμ

j (t
′)dtdt ′ (8)

where yμ

j (t) is the activity of the pre-synaptic neuron at time t, and yμ

i (t) the activity
of the post-synaptic one. The learning window A(τ ) is the measure of the strength
of synaptic change when a time delay τ occurs between pre and post-synaptic train.
To model the experimental results of STDP, the learning window A(τ ) should be
an asymmetric function of τ , mainly positive (LTP) for τ > 0 and mainly negative
(LTD) for τ < 0. The learning window A(τ ) used in our model is the one introduced
and motivated by [55]

A(τ ) = ape−τ/Tp − aDe−ητ/Tp if τ > 0,
A(τ ) = apeητ/TD − aDeτ/TD if τ < 0,

with the same parameters used in [55] to fit the experimental data of [23], ap =
γ [1/Tp + η/TD]−1, aD = γ [η/Tp + 1/TD]−1, with Tp = 10.2 ms, TD = 28.6 ms,
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Fig. 7 Plot of the learning
window A(τ ) used in the
learning rule (8, 9) to model
STDP effects. Potentiation
A(τ ) > 0 or depression
A(τ ) < 0 depend on the
interspike interval τ between
pre-synaptic and
post-synaptic spikes. The
parameters of the function
A(τ ) are determined by
fitting the experimental data
reported in [23]

η = 4, γ = 1260. Notably, this function A(τ ), shown in Fig. 7, satisfies the balance
condition

∫ ∞
−∞ A(τ )dτ = 0.

While Eq.8 holds for activity pattern y(t) which represents instantaneous firing
rate and it has been studied in associative memory models with analog rate [30, 31,
56], including a model of theta phase precession [57] and in a spin network model
[28], herewewant to study the case of spiking neurons. Therefore, here the patterns to
be stored are defined as phase-coded patterns of spikes, i.e. periodic spatio-temporal
patterns of spikes made up of one spike per cycle. Each unit in each stored pattern
has a phase φ

μ

j randomly chosen from a uniform distribution in [0, 2π). The set of
timing of spikes of unit j can be defined as

tμj + nT μ =
(

φ
μ

j

2π
+ n

)

T μ.

Thus, the activity of the neuron j in pattern μ is a spike train at times tμj with period
T μ, namely yμ

j (t) = ∑

n δ(t − (tμj + nT μ)).
The synaptic strength of the connection Ji j , due to pattern yμ

i (t) = ∑

n δ(t −
(tμi + nT μ)), when the learning time is longer than the period T μ of the learned
pattern, is therefore formulated as follows:

δ Jμ

i j = 1/N
∞

∑

n=−∞
A(tμj − tμi + nT μ) (9)

where tμj are the spike times of the neuron j in the pattern μ. At the end of the
learning procedure, part of the connections are positive (excitatory) and part are
negative (inhibitory). Inhibitory neurons are not explicitly simulated, but negative
negative connections can be considered as connections mediated by fast inhibitory
interneurons.When the STDP kernel A(τ ), shown in Fig. 7, is used in Eq. (9) to learn
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phase-coded patterns with uniformly distributed phases, then the balance condition
assures that the averaged connections (1/N )

∑

j Ji j are of order 1/
√
N , and therefore

it assures a balance between excitation and inhibition.
When multiple patterns are stored, the learned connections are simply the sum of

the contributions from individual patterns, namely

Ji j =
P

∑

μ=1

δ Jμ

i j . (10)

where P is the number of stored patterns. Note that ring-like topology with strong
unidirectional connections is formed only in the case P = 1, when a single pattern is
stored.Whenmultiple patterns are stored in the same connectivity, with phases of one
pattern uncorrelated with the others, bidirectional connections are possible, and the
more the stored patterns, the more disordered and less ring-like is the connectivity.
The connectivity that comes out from this learning rule, even when P is much larger
then one, is still able to support the emerging of the stored patterns as discussed in
next section.

References

1. Beggs, J., Plenz, D.: Neuronal avalanches in neocortical circuits. J. Neurosci. 23(35), 11167–
11177 (2003)

2. Chialvo, D.R.: Emergent complex neural dynamics. Nat. Phys. (2010)
3. Petermann, T., Thiagarajan, T., Lebedev, M., Nicolelis, M., Chialvo, D., Plenz, D.: PNAS 106,

15921 (2009)
4. Pasquale, V., Massobrio, P., Bologna, L., Chiappalone, M., Martinoia, S.: Neuroscience 153,

1354 (2008)
5. Friedman, N., Ito, S., Brinkman, B.A.W., Shimono, M., Lee DeVille, R.E., Dahmen, K.A.,

Beggs, J.M., Butler, T.C.: Universal critical dynamics in high resolution neuronal avalanche
data. Phys. Rev. Lett. 108, 208102 (2012)

6. Plenz, D., Niebur, E. (eds.): Criticality in Neural Systems. Wiley (2014)
7. Massobrio, P., de Arcangelis, L., Pasquale, V., Jensen, H., Plenz, D.: Front. Syst. Neurosci. 9,

22 (2015)
8. Kinouchi, O., Copelli, M.: Nat. Phys. 2, 348 (2006)
9. Gautam, S., Hoang, T., Clanahan, K.M., Grady, S., Shew, W.: PLoS Comp. Bio. 11, e1004576

(2015)
10. Yang, H., Shew, W., Roy, R., Plenz, D.: J. Neurosci. 32, 1061 (2012)
11. Tomen, N., Rotermund, D., Ernst, U.: Front. Syst. Neurosci. 8, 151 (2014)
12. Luczak, A., Bartho, P., Harris, K.D.: Spontaneous events outline the realm of possible sensory

responses in neocortical populations. Neuron 62, 413–425 (2009). https://doi.org/10.1016/j.
neuron.2009.03.014

13. Tsodyks,M1.,Kenet, T., Grinvald,A., Arieli, A.: Linking spontaneous activity of single cortical
neurons and the underlying functional architecture. Science 286, 1943–1946 (1999)

14. Miller, J.E., Ayzenshtat, I., Carrillo-Reid, L., Yuste, R.: Visual stimuli recruit intrinsically
generated cortical ensembles. Proc. Nat. Acad. Sci. U.S.A. 111, E4053–4061 (2014). https://
doi.org/10.1073/pnas.1406077111

https://doi.org/10.1016/j.neuron.2009.03.014
https://doi.org/10.1016/j.neuron.2009.03.014
https://doi.org/10.1073/pnas.1406077111
https://doi.org/10.1073/pnas.1406077111


Critical Behavior and Memory Function in a Model of Spiking Neurons … 195

15. Pasquale, V., Martinoia, S., Chiappalone,M.: Stimulation triggers endogenous activity patterns
in cultured cortical networks. Scientific Report 7 (2017)

16. Luczak, A.,MacLean, J.N.: Default activity patterns at the neocortical microcircuit level. Front.
Integr. Neurosci., 12 June (2012)

17. Carr, M.F., Jadhav, S.P., Frank, L.M.: Hippocampal replay in the awake state: a potential
substrate for memory consolidation and retrieval. Nat. Neurosci. 14, 14753 (2011)

18. Euston, D.R., Tatsuno, M., McNaughton, B.L.: Fastforward playback of recent memory
sequence in prefrontal cortex during sleep. Science 318, 1147–1150 (2007)

19. Ji, D., Wilson, M.A.: Coordinated memory replay in the visual cortex and hippocampus during
sleep. Nat. Neurosci. 10, 100–107 (2007)

20. Kayser, C., Montemurro, M.A., Nikos, K., Logothetis, N.K., Panzeri, S.: Spike-phase coding
boosts and stabilizes information carried by spatial and temporal spike patterns. Neuron 61,
597–608 (2009)

21. Siegel, M., Warden, M.R., Miller, E.K.: Phase-dependent neuronal coding of objects in short-
term memory. Proc. Nat. Acad. Sci. U.S.A. 106, 21341–21346 (2009)

22. Montemurro, M.A., Rasch, M.J., Murayama, Y., Logothetis, N.K., Panzeri, S.: Phase-of-firing
coding of natural visual stimuli in primary visual cortex. Curr. Biol. 18, 375–380 (2008)

23. Bi, G.Q., Poo, M.M.: Precise spike timing determines the direction and extent of synaptic
modifications in cultured hippocampal neurons. J. Neurosci. 18, 10464–10472 (1998)

24. Debanne, D., Gahwiler, B.H., Thompson, S.M.: Long-term synaptic plasticity between pairs
of individual CA3 pyramidal cells in rat hippocampal slice cultures. J. Physiol. 507, 237–247
(1998)

25. Feldman, D.E.: Timing-based LTP and LTD and vertical inputs to layer II/III pyramidal cells
in rat barrel cortex. Neuron 27, 45–56 (2000)

26. Markram, H., Lubke, J., Frotscher, M., Sakmann, B.: Regulation of synaptic efficacy by coin-
cidence of postsynaptic APs and EPSPs. Science 275, 213 (1997)

27. Scarpetta, S., Giacco, F.: Associative memory of phase-coded spatiotemporal patterns in leaky
integrate and fire networks. J. Comput. Neurosci. (2012). https://doi.org/10.1007/s10827-012-
0423-7

28. Scarpetta, S., Giacco, F., De Candia, A.: Storage capacity of phase-coded patterns in sparse
neural networks. EPL 95(2) (2011)

29. Scarpetta, S., de Candia, A., Giacco, F.: Storage of phase-coded patterns via STDP in fully-
connected and sparse network: a study of the network capacity. Front. Synaptic Neurosci. 2,
1–12 (2010)

30. Scarpetta, S., Zhaoping, L., Hertz, J.: Hebbian imprinting and retrieval in oscillatory neural
networks. Neural Comput. 14, 2371–2396 (2002)

31. Yoshioka, M., Scarpetta, S., Marinaro, M.: Spatiotemporal learning in analog neural networks
using spike-timing-dependent synaptic plasticity. Phys. Rev. E 75, 051917 (2007)

32. Scarpetta, S., de Candia, A.: Neural avalanches at the critical point between replay and non-
replay of spatiotemporal patterns. PLoS One 8, e64162 (2013)

33. Scarpetta, S., de Candia, A.: Alternation of up and down states at a dynamical phase-transition
of a neural network with spatiotemporal attractors. Front. Syst. Neurosci. 8, 88 (2014)

34. Scarpetta, S., Giacco, F., de Candia, A., Lombardi, F.: Effects of Poisson noise in a IF model
with STDP and spontaneous replay of periodic spatiotemporal patterns, in absence of cue
stimulation. BIOSYSTEMS. Vol. https://doi.org/10.1016/j.biosystems.2013.03.017. Pag.1-7.
ISSN:0303-2647 (2013)

35. Scarpetta, S., Minati, L., Apicella, I., de Candia, A.: Hysteresis, neural avalanches and critical
behaviour near a first-order transition of a spiking neural network. Phys. Rev. E 97, 062305
(2018)

36. Beggs, J.M., Plenz, D.: Neuronal avalanches are diverse and precise activity patterns that are
stable for many hours in cortical slice cultures. J. Neurosci. 24, 5216–5229 (2004)

37. Stewart, C.V., Plenz,D.: Inverted-u profile of dopamine-nmda-mediated spontaneous avalanche
recurrence in superficial layers of rat prefrontal cortex. J. Neurosci. 26, 8148–8159 (2006)

https://doi.org/10.1007/s10827-012-0423-7
https://doi.org/10.1007/s10827-012-0423-7
https://doi.org/10.1016/j.biosystems.2013.03.017


196 S. Scarpetta

38. Ribeiro, T.L., Ribeiro, S., Copelli,M.: Repertoires of spike avalanches aremodulated by behav-
ior and novelty. Front. Neural Circuits 10, 16 (2016)

39. Hasselmo, M.E.: Acetylcholine and learning in a cortical associative memory. Neural Comput.
5, 32–44 (1993)

40. Hasselmo,M.E.: Neuromodulation: acetylcholine andmemory consolidation. TrendCogn. Sci.
3(9), 351 (1999)

41. Tagliazucchi, E., Balenzuela, P., Fraiman, D., Chialvo, D.R.: Criticality in large-scale brain
fMRI dynamics unveiled by a novel point process analysis. Front. Physiol. (2012)

42. Heermann, D.W., Klein, W., Stauffer, D.: Spinodals in a long-range interaction system. Phys.
Rev. Lett. 49, 1682 (1982)

43. Heermann, D.W., Coniglio, A., Klein, W., Stauffer, D.: Nucleation and metastability in three-
dimensional ising models. J. Stat. Phys. 36, 447 (1984)

44. Cossart, R., Aronov, D., Yuste, R.: Attractor dynamics of network UP states in the neocortex.
Nature 423, 283–288 (2003). https://doi.org/10.1038/nature01614

45. Sethna, J.P., Dahmen, K.A., Myers, C.R.: Crackling noise. Nature 410, 242 (2001)
46. Shew, W.L., Clawson, W.P., Pobst, J., Karimipanah, Y., Wright, N.C., Wessel, R.: Adaptation

to sensory input tunes visual cortex to criticality. Nat. Phys. 11, 659 (2015)
47. Touboul, J., Destexhe,A.: Power-law statistics and universal scaling in the absence of criticality.

Phys. Rev. E 95, 012413 (2017)
48. Minati, L., de Candia, A., Scarpetta, S.: Critical phenomena at a first-order phase transition in a

lattice of glow lamps: experimental findings and analogy to neural activity. Chaos 26, 073103
(2016). https://doi.org/10.1063/1.4954879

49. Uhlig, M., Levina, A., Geisel, T., Herrmann, J.M.: Critical dynamics in associative memory
networks. Front. Comput. Neurosci. 7, 87 (2013)

50. Apicella I., Scarpetta S., de Candia A.: Cortical phase transitions as an effect of topology of
neural network. In: Esposito, A., Faudez-Zanuy, M., Morabito, F., Pasero, E. (eds.) Multidisci-
plinary Approaches to Neural Computing. Smart Innovation, Systems and Technologies, vol.
69. Springer (2018)

51. Gerstner, W., Kistler, W.: Spiking Neuron Models: Single Neurons, Populations, Plasticity.
Cambridge University Press, NY (2002)

52. Luczak, A., MacLean, J.: Front. Integr. Neurosci. 6, 30 (2012)
53. Orlandi, J., Soriano, J., Alvarez-Lacalle, E., Teller, S., Casademunt, J.: Nat. Phys. 9, 582 (2013)
54. Pasquale, V., Martinoia, S., Chiappalone, M.: Sci. Rep. 7, 9080 (2017)
55. Abarbanel, H., Huerta, R., Rabinovich,M.I.: Dynamicalmodel of long-term synaptic plasticity.

PNAS 99, 10132–10137 (2002)
56. Scarpetta, S., Zhaoping, L.,Hertz, J.: Spike-timing-dependent learning for oscillatory networks.

Advances in Neural Information Processing Systems 13. MIT Press (2001)
57. Scarpetta, S., Marinaro, M.: A learning rule for place fields in a cortical model: theta phase

precession as a network effect. Hippocampus 15(7), 979–89 (2005)

https://doi.org/10.1038/nature01614
https://doi.org/10.1063/1.4954879


Critical Behavior and Memory Function in a Model of Spiking Neurons … 197

Silvia Scarpetta studied physics in University of Naples, Italy
and received her Ph.D. in physics from Salerno University
in 1999. She works on Computational Neuroscience as a
researcher in Salerno University from 2002. Her research inter-
ests include statistical mechanics, critical phenomena in living
matter, cortical dynamics and artificial intelligence.



Assessing Criticality in Experiments

Viola Priesemann, Anna Levina and Jens Wilting

Abstract Criticality is considered an attractive candidate state for the dynamics and
function of the brain, because in models criticality maximizes a number of properties
related to information transmission and computations. These include the dynamic
range, the susceptibility, the sensitivity to input, the correlation length, and the pat-
tern diversity. And indeed, numerous studies accumulated evidence that supports
the criticality hypothesis. However, some observations are also contradictory. The
latter might in part be explained by the fact that criticality is a “full system” prop-
erty, whereas experimental neural recordings can only assess a tiny part of the full
network (“subsampling problem”). Here, we first recapitulate the basic properties
of a dynamical system at and around the critical point in a pedagogic manner. We
show how subsampling can bias inference about the underling network dynamics,
and then present two recent analytical approaches to overcome the subsampling bias,
based either on neural avalanches, or on the time-series of neural activity proper. The
novel approach typically allows quantify the distance to criticality from less then ten
recorded neurons and a few minutes of recording only. Thereby, it offers a novel and
very powerful approach to assess criticality and task-related deviations thereof.
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1 Introduction

Criticality is considered an attractive candidate state for the dynamics and func-
tion of the brain, because in models criticality maximizes a number of properties
related to information transmission and computations. These include the dynamic
range, the susceptibility, the sensitivity to input, the correlation length, and the pat-
tern diversity [10, 11, 44, 46, 77, 79]. And indeed, numerous studies accumulated
evidence that supports the criticality hypothesis [7, 33, 66, 80, 83]. However, some
observations are also contradictory [6, 67, 70, 75, 76, 92]. The latter might in part be
explained by the fact that criticality is a “full system” property, whereas experimental
neural recordings can only assess a tiny part of the full network.

Testing the criticality hypothesis experimentally is a challenge, because critical-
ity is a property that inherently engages the entire system. However, when sampling
neural activity in experiments, only a tiny fraction of all neurons can be assessed.
More precisely, of the millions or billions of neurons in a mammalian brain, at most
a few hundred neurons can be sampled with millisecond precision. Such spatial
subsampling can lead to strong bias of the inferred dynamical properties of neural
activity [50, 67, 69, 70, 75, 76, 92]. Alternatively, criticality is assessed based on
“coarse” measures of neural activity, e.g. in the form of local field potentials (LFP),
electroencephalography (EEG), electrocorticography (ECoG), magnetoencephalog-
raphy (MEG) and functionalmagnetic resonance imaging (fMRI).All thesemeasures
have in common that they do not rely on single neuron activity, but measure the col-
lective effect of many neurons with potential contributions from glia, vasculature and
other physiological parameters [15, 51]. These measures sacrifice spatial resolution,
but have the advantage to sample activity from large portions or even the entire brain.

In the following, we first go over the well-known challenges that arise from
subsampling or coarse sampling when testing for criticality in more details, and
then show two recent advances to overcome the subsampling problem.

To this end, we first recapitulate the basic properties of a dynamical system at and
around the critical point in a pedagogic manner, using the framework of a branching
process. We then show that estimation of the control parameter of the branching
process, the “branching parameter” m, is inherently and systematically biased under
subsampling when using classical approaches. By uncovering the origin of the sys-
tematic bias, we devised a novel estimator that is capable to infer m in a unbiased
manner—in principle even from sampling a single unit. The majority of this chapter
is closely reproduced from [92].

We then turn to the problem of subsampling when assessing avalanche distribu-
tions, cluster size distributions, or node degree distributions of a graph.We first show
for all these properties, that subsampling affects them in the same manner. Hence
deriving the avalanche distribution or the degree distribution of the full system from
a subsample is mathematically equivalent. We recapitulate how the distributions
change under subsampling using probability generating functions, and then derive
the method of “subsampling scaling”, which allows us to infer the parent distri-
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bution from the subsampled one, and demonstrate how to distinguish critical from
non-critical systems. This chapter is reproduced from [50].

2 Investigating Criticality in Experiments

An intriguing property of systems that operate at a critical point is the emergence of
scale-free characteristics.Most importantly for neuroscience, scale-free distributions
are expected for avalanche sizes and durations if the network is poised at a critical
point. In the specific case of critical branching processes, which we introduce in
all details later, the avalanche size distributions follows a power-law with exponent
−1.5, p(s) ∼ s−1.5, and the duration distribution with exponent −2, p(d) ∼ d−2.
Indeed, most of the experimental evidence for criticality in neuroscience is based on
observing such power-laws, in particular power-law distributions of the sizes.

Subsampled avalanches. Owing to the scale-free nature of the avalanche distribu-
tions, it would be intuitive that a small subset of a critical system also shows scale-free
avalanche distributions—but with a cutoff that depends on the number of neurons
or electrodes sampled. This expectation is fueled by the theory of “finite-size scal-
ing”. Because of the finite size of any simulated system, the avalanche distributions
cannot extend to infinity, but show a system-size dependent cutoff. Likewise, the
susceptibility, dynamic range and correlation length do not diverge to infinity but
are bounded by the system size. If a system, however, is at criticality, then the cutoff
and finite-size effects show a clear scaling with the system size, and the scale-free
behavior of an infinite-size system can be demonstrated by extrapolation (“finite-size
scaling”).

With this background of scale-freeness and finite-size theory, it came as a large
surprise when it was discovered that a small subset of a large, critical system does not
show the expected power-law distributions, but can exhibit strong deviations [67].
Depending on the specific critical model, and depending on the sampling configura-
tion, a critical system can appear as if it was either subcritical or supercritical [67].
These results demonstrated that not finding a power law under subsampling does not
prove that the system is not critical. In more detail, for the numerical exploration of
subsampling effects, it was assumed that an array of n by n electrodes with a dis-
tance δ is used in a critical model to sample its activity. This approach was inspired
by the typical multi-electrode configurations used for spike and LFP recordings. It
was found that for close electrode spacing, the avalanche size distribution p(s) of the
Bak–Tang–Wiesenfeld Sandpilemodel [4] does not show the expected power law. In-
stead, p(s) shows clear peaks at themultiples of units sampled (c × n2, c = 1, 2 . . .).
These p(s) are reminiscent of supercritical systems. With increasing the electrode
spacing, the peaks disappear and the p(s) resemble distributions from subcritical
systems [67, 69]. By now we know that a random placement of electrodes all over
the system gives rise to an approximate power law with a cutoff that depends linearly
on the number of electrodes or neurons sampled [50] (see Sect. 4). The resulting



202 V. Priesemann et al.

distribution of avalanche sizes depends both on the topology of the full network
and placement of electrodes. Although true network structure of the neuronal tissue
remains unknown, we argue that placing electrodes at random diminishes the local
clustering effects and allows us to capture global dynamics. The same results hold for
any sampling configuration on a system with random connections (no spatial struc-
ture in the topology). The resulting “subsampling scaling” under random sampling
is reminiscent but clearly different from classical finite-size scaling. For a combined
finite-size-subsampling-scaling ansatz, we refer to [50] (see Sect. 4). The difference
between subsampling and finite-size scaling is in part routed in the fact that in a
finite system, the boundaries are typically absorbing. Under subsampling, however,
the hidden units contribute to the dynamics by enabling propagation of activity on a
system much larger than the observed part. Hence the differences between a small
system, and a small subset of a large system.

To investigate the effect of subsampling, it is essential to make a clear statement
about the meaning of “whole system”. For each question and each system, there
could be a different definition of “whole system” and “system size”. For the cultures
examined with the help ofMEAs and multi-unit activity, “system size” is the number
of neurons in the culture. However, the “whole system” might also be all neurons in
the layer 2/3 of rats cortex [9], in a different approach, it could be the whole brain
as seen in the MRI studies [83]. Careful and explicit definition of what the entire
system represents is essential both for the correct interpretation of the results of any
investigation and for accurate accounting for subsampling.

Quantitative subsampling studies. After the first reports of subsampling effects [67,
75], many experimental studies discussed their potential influence. A number of
studies also performed systematic analyses of subsampling-induced changes in p(s)
and p(d) by applying further subsampling, i.e. analyzing subsets of the recorded
units, to name just the most detailed ones [45, 70, 76, 96]. All these approaches,
however, were purely heuristic. They compared numerically obtained subsampling
results from models with those of experiments. The first analytical treatments, to the
best of our knowledge, were only achieved recently [50, 92]. As the approaches are
readily applicable to recorded data, we discuss them in all detail in the following
sections (Sects. 3 and 4).

Preceding investigations of subsampling in neuronal systems, a similar problem
has been treated in the past in the context of graphs. When assessing very large
networks, such as world wide web, social networks on Facebook, or gene regulatory
networks, one either does not have access to all data, or the data set is so large that for
practical reasons only a subnetwork can be treated. Thus in the latter case, a central
question is how to select a subnetwork, but preserve all features of the full system [47],
and how to visualize it truthfully [73]. Assuming that sampling is constrained by the
experimental accessibility, a central question is to test whether graphs are scale-free,
i.e. whether their degree distribution follows a power-law. Interestingly, the scale-free
property is lost under subsampling [81]. This has been derived under the assumption
of random sampling, i.e. every node is sampledwith a given probability p. In contrast,
when subsampling Erds–Renyi, exponential and truncated-normal graphs, they all



Assessing Criticality in Experiments 203

can be mistaken as scale-free under strong subsampling [35, 43, 60]. Hence wrong
inferences about the full system are easily drawn when naively extrapolating from
the subsampled graph to the full one. In the context of graph theory, the subsampling
theory has already provided a number of remarkable results, and is still a field of
very active research (see for example [1, 30, 47, 57, 74, 82]). Hence translating
the principles discovered for graph theory to neuroscience and specifically to the
analysis of neural avalanches promises very interesting future insights.

In addition to subsampling, experimental assessment of criticality is hindered fur-
ther by a number of challenges that originate from the complex nature and spatial
reach of dynamics at criticality. In the following we discuss the challenge to unam-
biguously separate one avalanche from the next one, the effects of coarse-sampling,
and the effects of potential non-stationarities in the input.

Separation of timescales. Are neural avalanches clearly separated in time and in
space, or do they overlap? If they overlap, how many avalanches start in a given time
window, how many are running in parallel, and what happens under collision of two
avalanches? The aim here is not to discuss potential collision-based computing, but
to draw the attention to a difference between neural avalanches as observed in vivo,
and those of classical “self-organized critical” (SOC) systems. In SOC systems, the
pauses between any two avalanches are much longer than the avalanches proper. This
condition is termed “separation of time scales” (STS) and is considered necessary for
SOC [70, 72]. Hence in SOC systems, even under subsampling the STSwould enable
us to clearly separate the events that belong to one avalanche from those that belong
to the subsequent one. In neural recordings in vivo, however, the separation of two
subsequent avalanches is not straightforward, because no clear pauses are observed.
As a practical solution, avalanches are obtained by applying temporal binning to
the time series of events [7]. Any empty bin by definition separates one avalanche
from the next one. If binning is applied to a system that shows a STS, then the
specific choice of the bin size does not change the avalanche distribution for a wide
range of bin sizes [50, 68]. For neural recordings, however, an invariance of p(s)
or p(d) under changes in bin size is an exception [50, 70]. Most studies, including
the seminal study by John Beggs and Dietmar Plenz, observed clear changes with
changing the bin size [7, 8, 32, 67, 69, 70, 95]. The bin-size dependence does not only
complicate an unambiguous separation of avalanches, it also in principle contradicts
the SOC hypothesis. Therefore, a parsimonious solution is offered by assuming
a working-point of neural systems that is close to criticality, but in the subcritical
regime, which does not necessitate a STS. Inmore detail, the further a system is away
from the critical point, the less large avalanches it produce [36]. With the absence
of system-spanning avalanches, several avalanches can evolve in parallel, splitting
up, merging, and vanishing again. From this melange of avalanches, individual ones
cannot be distinguished anymore, but overall they can generate sustained activity
with large fluctuations, long correlations in time and space, and with a spike rate
as observed in vivo. In fact, in vivo spiking activity is very well approximated by
a model in a subcritical state, namely a branching model that is poised about 2%
away from criticality [70, 92, 93]. With keeping a 2% safety-margin to criticality,
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the brain not only avoids the necessary pauses in processing associated with a STS
and criticality, it also maintains a safety-margin from the supercritical state, which
has been associated with epilepsy [56, 58, 94]. Studies of visual processing also
demonstrated preference for the slightly subcritical state [85]. Thus overall, a distance
of about 2% to criticality may allow the brain to still profit from the computational
advantages associated with criticality, while avoiding instabilities that can occur
when tipping over to supercriticality.

Coarse sampledmeasures. Subsampling ismost prominentwhen recordings spikes.
When recording instead LFP, ECoG, BOLD or EEG signals, the coverage is much
better—but at the cost of spatial and temporal resolution.Rather than sampling spikes,
a summed signal of synaptic and membrane currents as well as glia, metabolic and
other contributions is recorded. Thus instead or in addition to subsampling, one ob-
tains a “coarse sampling” of the system. Again, because of the scale-free nature
of critical phenomena, it could be expected that the coarse sampled system should
have similar properties to the original one. For example when applying a specific
approach of coarse sampling to the Isingmodel at critical temperature, namely coarse
graining or block-spin renormalization, the estimated magnetization is unaffected.
Importantly, the invariance only holds when the system is critical, and it only holds
for a particular coarse graining scheme, i.e. one tiles the entire 2D Ising model into
adjacent subsets of k by k spins. k is typically a small number for numerical reasons,
and importantly the “tiles” are all non-overlapping and directly adjacent [65]. This
condition is violated when considering e.g. a LFP signal: The LFP also samples
the signals in its vicinity, but first of all not all neurons in the vicinity contribute
equally, and second two adjacent electrodes have typically overlapping sampling re-
gions (“field of view”). Thus even if all neural activity was independent, the overlap
of the field of view would introduce correlations between the LFP signals of two
electrodes [65]. As a consequence, correlations between LFP signals are in general
expected to be larger than correlations between the respective “blocked” signals.
The coarse-sampling-induced increase in correlation compared to the underlying
system obviously affects the observed avalanche distributions. Hence the intuition
that a “coarse sampled” critical system should have the same properties as the original
underlying system, does not hold. As a consequence, it is difficult to draw unambigu-
ous conclusions from a coarse-sampled system about the underlying dynamics. In
general, the measurement-correlations induced by coarse sampling (e.g. LFP, EEG,
BOLD) tends to make a system appear closer to critical then it truly is [65].

Nonstationary input. A common challenge one meets whenever assessing dynam-
ical properties of neural systems, is the challenge to deal with non-stationarities or
unknown common input. Both can lead to false-positive observations. For example,
false-positive transfer of information can be found between units that are not directly
coupled, but receive input from the same (unknown) source, potentiallywith different
delays or with different noise levels [89]. Two brain areas may seem to be coupled
by “cross-frequency coupling” simply because of common non-stationarities in their
activity [2], and when imposing the same long-range correlated input to uncoupled
neurons, then the spiking activity obviously is long-range correlated owing to the
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Fig. 1 Spuriously
scale-free avalanches.
Apparent scale-free
avalanches can appear by
pooling multiple
experiments. While
avalanche size distributions
of each experiment
individually are indicative of
the underlying subcritical
systems, the sum over all
experiments exhibits a
power-law. Figure
reproduced from [68]

1 10 102 103

avalanche size s

10-4

10-2

1

P(
s)

each experiment
combined 

(sum over experimentes)

drive [86]. Last but not least, if a brain areas would receive its main input from a
driving brain area that is in a critical state, one can expect that the receiving brain
area also shows signatures of criticality. Hence the nature of the input clearly mat-
ters. However, while it is clear that imposing long-range correlated drive to a system
can impose critical-like properties, the question is whether non-stationary input in
general can give rise to apparent criticality [68]. With Oren Shiki, we showed very
recently that already very mild conditions, e.g. a slow change in input strength by a
factor 10, can lead to approximate power-law distributions with slopes characteristic
for a critical branching process, i.e. −1.5 and −2 for the size and duration distri-
bution respectively [68]. In more detail, we modeled the neurons as independent
Poisson units with non-stationary rate. Assuming that the spike rate of all neurons
is changed by some stimulation or some neuromodulation between e.g. 1 and 10Hz
over the course of the recording, then the obtained avalanche distributions are not
approximate exponential, as expected for stationary Poisson neurons. Instead, they
show power-laws covering almost two orders of magnitude, and resemble the p(s)
and p(d) observed in many experiments. We also derived analytically how power
laws without cutoff could be obtained. However, such conditions cannot be realized
physiologically [68]. An important technical consequence is that the same power-
laws can arise when combining avalanche distributions from various experiments or
sessions. If the different sessions have different spike or event rate, and each session
individually would show “subcritical” distributions, then averaging over all these
sessions can generate power-law distributions (Fig. 1). The principle behind this is
that the sum of exponential distributions p(s) ∼ e−αs with different exponents α can
give rise to power-laws. In conclusion, non-stationary rates (or different rates across
recording sessions) can give rise to approximate power-laws with the expected expo-
nents. However, when taking into account further indications of criticality, such as the
relationship between mean avalanche size and duration, estimated spike count ratio
and so forth, apparent criticality can often be distinguished from true criticality [68].
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3 A Subsampling-Invariant Estimator for the Distance to
Criticality

In this section,we recapitulate the derivation a novel, subsampling invariant estimator
[92]. This multiple regression estimator is useful for the following reasons:

1. It is based on recordings of ongoing dynamics and therefore does not rely on a
separation of timescales, which seems unlikely in many applications.

2. It has analytically been shown to be invariant even under strong subsampling,
down to recordings of single units.

3. It is readily applicable to subsampled data, because it only requires a sufficiently
long time series, without even knowing the system size or the number of sampled
units n.

We will first introduce branching processes as a useful description of spike propa-
gation in neuronal networks. We will then review established estimators for these
branching processes and derive the novel, subsampling invariant estimator. Finally,
we will briefly discuss applications to two real-world systems: disease spread and
cortical dynamics.

3.1 Branching Process: A Minimal Model of Spike
Propagation

In this section, we first introduce an intuitive motivation of activity propagation, and
then we introduce the mathematical framework of the branching process formally.
We state the main results in the beginning of each section. We then show the detailed
derivation, marked by (*), which can be skipped by the reader not interested in these
details.

3.1.1 Approximating Activity Propagation on Neural Networks

To gain an intuitive understanding of our mathematical approach, make a thought
experiment in your favorite spiking network: apply one additional spike to an ex-
citatory neuron, in analogy to the approach by London and colleagues [53]. How
does the network respond to that perturbation? As a first order approximation, one
quantifies the number of spikes that are triggered by this perturbation additionally in
all postsynaptic neurons. This number may vary from trial to trial, depending on the
membrane potential of each postsynaptic neuron; however, what interests us most is
m, the mean number of spikes triggered by the one extra spike. Taking a mean-field
approximation and assuming that the perturbation indeed is small, any of these trig-
gered spikes in turn trigger spikes in their postsynaptic neurons in a similar manner,
and thereby the perturbation may cascade through the system. Mathematically, such
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cascades can be described by a branching process [36, 38, 61]. In the next step,
assume that perturbations are started continuously at rate h, for example through
afferent input from other brain areas or sensory modalities. As neurons presumably
do not distinguish whether a postsynaptic potential was elicited from a neuron from
within the network, or from afferent input, all spikes are assumed to have on average
the same impact on the network dynamics. Together, this leads to the mathematical
framework of a branching process [7, 34, 48, 69, 70, 75], which can generate dy-
namics spanning asynchronous irregular and critical states, and hence is well suited
to probe network dynamics in vivo. Most importantly, this framework allows to infer
m and other properties from the ongoing activity proper, because one treats any single
spike as a minimal perturbation on the background activity of the network. Math-
ematical approaches to infer m are long known if the full network is sampled [40,
88, 92]. Under subsampling, however, the estimate ofm can be strongly biased [92].
Below, we show how to infer m in an unbiased manner, even if only a tiny fraction
of neurons is sampled.

The novel estimator form is readily applicable to subsampled data, because it only
requires a sufficiently long time series of sampled activity at , and the assumption that
on expectation at is proportional to a total activity At . Hence, in general it suffices to
sample the system randomly, without even knowing the system size N , the number
of sampled units n, or any moments of the underlying process. Importantly, one can
obtain a consistent estimate ofm, evenwhen samplingonly a very small fraction of the
system, under homogeneity evenwhen sampling only one single unit. This robustness
makes the estimator readily applicable to any system that is well-approximated by a
branching process.

The framework of branching processes can be interpreted as a stochastic descrip-
tion of spike propagation on networks, as outlined above. It can alternatively be taken
as a strictly phenomenological approximation to network dynamics that enables us to
infer details of network statistics despite subsampling. Independent of the perspec-
tive, the dynamics of the network is mainly governed by m. If an action potential
only rarely brings any postsynaptic neuron above threshold (m ≈ 0), external per-
turbations quickly die out, and neurons spike independently and irregularly, driven
by external fluctuations h. In general, if one action potential causes less than one
subsequent action potential on average (m < 1), perturbations die out and the net-
work converges to a stable distribution, with increasing fluctuations and variance the
closer m is to unity. If m > 1, perturbations may grow infinitely, potentially leading
to instability. The critical state (m = mC = 1) separates the stable (subcritical) from
the unstable (supercritical) phase. When approaching this critical state from below,
the expected size 〈s〉 and duration 〈d〉 of individual cascades or avalanches diverge:
〈s〉 ∼ 1

mC−m . Therefore, especially close to criticality, a correct estimate ofm is vital
to assess the risk that the network develops large, potentially devastating cascades,
which have been linked to epileptic seizures [56], either generically or via a minor
increase in m.
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3.1.2 Branching Processes

The previouslymotivated approximation of spike propagationwill nowbe formalized
into the mathematical model of branching processes. After defining the branching
process, we then derive its three distinct stability regimes, its mean activity, and its
autocorrelogram.

Definition. In a branching process, we denote the number of neurons activated at
each time step t (in terms of bins of length Δt) by At . Every single active neuron
i activates a random number yi,t of neurons in the following time step. In addition,
the neurons become spontaneously active or are activated by external input ht with
mean h:

At+1 =
At∑

i=1

yt,i + ht , (1)

The random variables yi,t can take any value from zero to the number of postsynaptic
neurons. The precise distribution of yi,t does not impact the overall network dynamics
and stability, because the network stability is determined by m, the mean number of
neurons activated by a single extra spike: m = 〈yi,t〉, which is the control parameter
of the process.

Three stability regimes. We analyze the stability of the branching process by in-
vestigating its long-term behavior. To this end, we evaluate the expected evolution.
Given a current state At , the expected activity in the next time step is given by the
conditional expectation for At+1 in Eq. (1), which yields

〈At+1|At 〉 = mAt + h. (2)

To obtain the expected long-term behavior, we iterate this equation for k time steps
into the future:

〈At+k |At 〉 = mk At + h
mk − 1

m − 1
. (3)

From these equations, two central observations follow. First, the activity at the fol-
lowing time step is linear in the activity in the preceding time step, and second, the
same holds for k time steps into the future. The general linear factor for any k is mk .

Furthermore, Eq. (3) reveals three distinct regimes:

Subcritical, m < 1. In the subcritical regime, mk → 0 as k increases. Hence,
〈At+k |At 〉 → h/(1 − m), i.e. regardless of the current network state, activity is
expected to relax to an equilibrium h/(1 − m) when waiting long enough (we
will later show that this is in fact the mean activity of the process).

Critical, m = 1. When m = 1, the activity is expected to grow linearly at rate h,
〈At+k |At 〉 = At + k h by L’Hopital’s rule.

Supercritical, m > 1. Whenm > 1, the activity is expected to grow exponentially,
〈At+k |At 〉 ∝ mk . because this term dominates in Eq. (3).
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Therefore, the subcritical regime is stable and activity converges to a stationary
distribution. In contrast, the critical and supercritical regimes are unstable and non-
stationary, the activity increases infinitely, unless h = 0.

Mean activity. We find the mean activity of a branching process by searching a fixed
point of Eq. (2), i.e. a solution to 〈At+1|At 〉 = At . For the subcritical regime, this
fixed point is given by

〈At 〉 = h

1 − m
(4)

and determines the mean activity, which is proportional to the external input, and
increases when approaching the critical point atm = 1. In contrast, ifm ≥ 1, Eq. (2)
has no fixed point any more. Instead, the process grows from one step to the next
and is non-stationary. A mean firing rate does not exist any more.

Autocorrelogram of branching processes. We will now show that a branching
process in the subcritical regime m < 1, like any process with an autoregressive
representation in Eq. (2), has an exponential autocorrelogram with one single char-
acteristic timescale τ :

C(t Δt) = mk = exp

(
−kΔt

τ

)
, τ = − Δt

logm
. (5)

Here, we identified the characteristic timescale τ in terms of the branching ratio m.
It clearly diverges, i.e. τ → ∞, when approaching the critical point m → 1−.

(*) In order to calculate the autocorrelogram C(k Δt), we evaluate the Pearson
correlation coefficient rk for pairs At and At+k , rk = Cov[At , At+1]/sAt sAt+1 . In the
subcritical regime, stationarity dictates that the standard deviations sAt and sAt+k are
equal, such that the correlation becomes

C(k Δt) = rk = Cov[At , At+k]
Var[At ] . (6)

In order to calculate the covariance, we have to evaluate 〈At At+k〉. We do so using
the law of total expectation:

〈At At+k〉 = 〈〈At At+k | At 〉〉At ,

where the inner expectation is taken with respect to the joint distribution of At and
At+k and the outer one with respect to At . We can now make use of the known result
for the evolution of the branching process from Eq. (3). Substituting 〈At+k | At 〉 and
taking the expectation with respect to At gives
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〈At At+k〉 = 〈At

(
mk At + h

1 − mk

1 − m

)
〉At

= mk 〈A2
t 〉 + h

1 − mk

1 − m
〈At 〉

= mk 〈A2
t 〉 + h

1 − m
(1 − mk) 〈At 〉

= mk 〈A2
t 〉 + (1 − mk) 〈At 〉2, (7)

identifying 〈At 〉 according to Eq. (4) in the last step. Finally, we obtain an expression
for the covariance [31]:

Cov[At+k, At ] = 〈At+k At 〉 − 〈At+k〉〈At 〉
= mk 〈A2

t 〉 + (1 − mk) 〈At 〉2 − 〈At 〉2
= mk

(〈A2
t 〉 − 〈At 〉2

)

= mkVar[At ]. (8)

Inserting this evaluation of the covariance into the correlation coefficient fromEq. (6)
yields the exponential autocorrelogram in Eq. (5).

3.2 Estimating the Branching Parameter Under Full
Sampling

Under full sampling, estimation theory for the branching parameter has been well
established. In particular, a universal estimator which does not depend on the special
distribution of the triggered spikes yt,i is given by linear regression [40, 88].

Linear regression estimator. Equation2 directly indicates how to estimate the
branching parameter m from the activity time series At , namely by linear regres-
sion between pairs At and At+1. The slope of linear regression directly returns a
consistent estimate of m, for example by means of the least square estimator for the
regression slope:

m̂ = Cov[At , At+1]
Var[At ] . (9)

For the stationaryprocess (m < 1), this equals the correlationCov[At , At+1]/sAt sAt+1 ,
because the standard deviations of At and At+1 are equal. Hence, linear regression of
At and At+1 returns an estimate for the branching parameter m under full sampling.

Mean ratio estimator. This estimation of the branching parameter relates to the
one introduced by Beggs and Plenz [7]. They denoted the branching parameterm by
σ and estimated it as σBP = 〈 At+1

At
〉At>0, where the expected value is taken over all
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At > 0 to avoid division by zero. Using the same steps as before, we can evaluate

σBP = 〈 At+1

At
〉At>0 = 〈〈 At+1

At
| At 〉〉At>0

= 〈mAt + h

At
〉At>0

= m + 〈 h

At
〉At>0. (10)

Hence, if h → 0, i.e. under the condition of infinitesimal input, and if the system
shows non-zero activity, then the σBP and m are identical. Else, σBP returns larger
results than m. In particular, the estimate σBP will be close to the real value of m
if At 
 h. According to Eq. (4), this implies that the estimate tends to be valid if
the system is close to critical, whereas the overestimation is larger the greater the
distance from criticality.

3.3 Estimating the Branching Parameter Under Subsampling

In general, one cannot record the full activity At but only a subsampled time series
at (Fig. 2a). We first define an implementation of subsampling in our stochastic
framework. We then show that the established estimators fail to infer the correct
branching ratio under subsampling. Finally, we introduce a novel estimator, which
returns the correct m̂ even under subsampling.

3.3.1 Approximating Subsampling in Neural Networks

We introduced a plausible implementation of subsampling in our stochastic frame-
work. When n out of N neurons are sampled, one can approximate subsampling by
assuming that each spike is observed with a probability p = n / N . Then at each time
t the subsampled activity is a sample of a binomial distribution, at ∼ Bin(At , p).
From this, three important observations about our stochastic implementation of sub-
sampling follow: (i) If the activity at two different times is equal, At = At ′ , the
subsampled activities at and at ′ are samples of the same distribution, but do not nec-
essarily take the same value. (ii)Onaverage, at is proportional to At , 〈at | At 〉 = pAt .
(iii) Assuming a separation of timescales, the subsampled avalanche sizes follow the
same principles, ssub ∼ Bin(s, p) by the additivity of binomial distributions. This
observation is used in Sect. 5.
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Fig. 2 Subsampling and multiple regression estimator. a In complex networks, such as the
brain, often only a small subset of all units can be sampled (spatial subsampling); figure reproduced
from [92]. b In recurrent networks (BN, Bak–Tang–Wiesenfeld model (BTW)), the conventional
estimator (empty symbols) substantially underestimates the branching ratiom when less units n are
sampled, as theoretically predicted (dashed lines). The novel multistep regression (MR) estimator
(full symbols) always returns the correct estimate, even when sampling only 10 or 1 out of all N =
104 units. c MR estimation is exemplified for a subcritical branching process (m = 0.9, h = 10),
where active units are observed with probability α. Under subsampling (gray), the regression slopes
r1 are smaller than under full sampling (blue). d While conventional estimation of m relies on the
linear regression r1 and is biased under subsampling, MR estimation infers m̂ from the exponential
relation rk ∝ mk , which remains invariant under subsampling

3.3.2 The Established Estimators Are Biased Under Subsampling

We will now show that the linear regression estimator, which is consistent under
full sampling, strongly underestimates m under subsampling. Under subsampling
the linear regression estimator yields

m̂ = Cov[at , at+1]
Var[at ] = p2

Var[At ]
Var[at ] m = b m, with b = p2

Var[At ]
Var[at ] . (11)

The bias factor b depends on the details of the investigated system and subsampling
and is, in general, not known. Therefore, the subsampling bias is unknown and cannot
be directly corrected for (Fig. 2b, c). We then show that the estimator proposed by
Beggs and Plenz is also biased and overestimates m in the presence of input:

σBP = m + 〈 h

At
〉at>0. (12)
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Interestingly, the bias of this estimator is largely independent of subsampling. The
subsampling here only enters through the probability to observe at > 0, because the
average is only taken over such values. As before, the estimator is only reliable for
h = 0.

(*) In order to gauge the performance of linear regression under subsampling, we
need to evaluate the least square estimator Cov[at , at+k] /Var[at ] when applied to
the subsampled time series at . We do so using the law of total expectation:

〈at at+1〉 = 〈〈at at+1 | At , At+1〉〉At+1,At ,

with the inner expectation value being taken with respect to the joint distribution
of at+1 and at , and the outer with respect to the joint distribution of At+1 and At .
Conditioning on both At and At+1 makes (at | At ) and (at+1 | At+1) independent
because of our stochastic implementation of subsampling. Hence, the expectation
factorizes. By definition, 〈at | At = j〉 = p j and

〈at at+1〉 = 〈(pAt+1) (pAt )〉At+1,At

= p2〈At At+1〉. (13)

Recalling 〈At At+1〉 = m Var[At ] from Eq. (8), we find the linear regression estima-
tor in Eq. (11):

m̂ = Cov[at , at+1]
Var[at ] = p2

Var[At ]
Var[at ] m = b m, with b = p2

Var[At ]
Var[at ] .

We evaluate the estimator proposed by Beggs and Plenz by similar steps to those
before:

σBP = 〈at+1

at
〉at>0 = 〈〈at+1

at
| At , At+1〉〉at>0

= 〈 pAt+1

pAt
| At , At+1〉at>0

= 〈〈 At+1

At
| At 〉〉at>0

= 〈mAt + h

At
〉at>0

= m + 〈 h

At
〉at>0. (14)

3.3.3 Multistep Regression Estimator

We now introduce a novel estimator, which is unbiased even under subsampling
(Fig. 2b). Instead of a single linear regression, we treat the general case of linear
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regression between pairs at and at+k . The least square estimator for the slope of
this regression is denoted by r̂k . We show that each r̂k returns a biased slope b mk

under subsampling and not mk as expected from Eq. (3). However, even though b is
unknown, we showed that it is identical for all k. Therefore, the bias can be partialed
out as described below.

Definition of the estimator. Derived from these observations, we proposed the
following estimator:

1. Estimate multiple regression slopes r̂k of linear regression between pairs at and
at+k for different lags k = 1, . . . , kmax.

2. Fit these slopes to an exponential model r̂k = b̂ · m̂k in the parameters b̂ and m̂.
The resulting estimate m̂ is independent of the bias b̂ and therefore consistent
even under subsampling (Fig. 2b, d).

This estimator is called multiple regressions (MR) estimator.

Bias of individual regressions. We now explicitly derive that the biased slopes of
regression between at and at+k , which are at the core of MR estimation, are given
by

r̂k = Cov[at , at+k]
Var[at ] = p2

Var[At ]
Var[at ] mk, (15)

i.e. the bias factor is precisely b̂ = p2 Var[At ] /Var[at ]. Note that the special case
k = 1 corresponds to the conventional, biased linear regression estimator shown
before.

(*) In order to calculate the covariance,we evaluate 〈at at+k〉 and 〈at+k〉 separately.
Following the steps of Eqs. (7) and (13), we find

〈at at+k〉 = p2〈〈At At+k | At 〉〉At = p2
(
mk 〈A2

t 〉 + (1 − mk) 〈At 〉2
)

(16)

and similarly

〈at+k〉 = 〈at 〉 = 〈〈at | At 〉〉At = p〈At 〉 = p
h

1 − m
. (17)

Finally, we combine Eqs. (16) and (17) to obtain an expression for the covariance:

Cov[at+k, at ] = 〈at+k at 〉 − 〈at+k〉〈at 〉
= p2

(
mk 〈A2

t 〉 + (1 − mk) 〈At 〉2
) − p2〈At 〉2

= p2mkVar[At ]. (18)

Inserting this evaluation of the covariance into the definition of the least square
estimator for the regression slope yields the result from Eq. (15):
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Fig. 3 A branching process has an exponential autocorrelogram of the population activity with
decay time τ (blue dotted line). In contrast, the autocorrelogram of single neurons shows a sharp
drop from C(0) = 1 at lag δt = 0 s to the next lag C(±Δt) (gray solid line). We showed that this
drop is simply a subsampling-induced bias. When ignoring the zero-lag value, the autocorrelation
strength is decreased, but the autocorrelation time of the network activity is preserved in the activity
of single neurons (inset). Panel reproduced from [93]

r̂k = Cov[at , at+k]
Var[at ] = p2

Var[At ]
Var[at ] mk . (19)

Autocorrelogram under subsampling. As seen before, the linear regression slopes
are equal to the autocorrelogram in the subcritical case, C(k Δt) = r̂k . From the
derivation of the MR estimator, it becomes obvious that (Fig. 3)

1. In contrast to the exponential autocorrelation function C(k Δt) = exp
(− kΔt

τ

)
of

the fully sampled process, the autocorrelation of the subsampled activity typically
exhibits a sharp drop from zero lag (C(0) = 1) to the first bin (C(Δt) = b m,
b � 1).

2. Even though the autocorrelation strength is reduced by a factor b, the auto-
correlation time is conserved in the floor of the autocorrelogram, C(k Δt) =
b exp

(− kΔt
τ

)
for k = 0.

Overall, branching processes offer a well-understood approach to describing systems
on a continuous spectrum, including a critical phase transition, by a single control
parameterm. While estimatingm is straight-forward when the activity of all neurons
is known, established approaches fail under subsampling. The novel MR estimator
infers m even under strong subsampling. It relies on the fact that, even though the
autocorrelation strength is reduced, the autocorrelation time is preserved in the floor
of the autocorrelogram.

3.4 Application to Real-World Time Series

We demonstrated the bias of conventional estimation and the robustness of MR
estimation at the example of two real-world applications: epidemiological case counts
and cortical population activity [92].



216 V. Priesemann et al.

Fig. 4 In epidemic models, the reproductive number m can serve as an indicator for the infec-
tiousness of a disease within a population, and predict the risk of large incidence bursts. We have
estimated m̂ from incidence time series of measles in Germany, which can be assumed to be fully
sampled because of the clarity of symptoms and the strict reporting policies. When artificially
subsampling the measles recording (under-ascertainment), conventional estimation underestimates
m̂C, while MR estimation still returns the correct value. Both estimators return the same m̂ under
full sampling. Panel reproduced from [92]

3.4.1 Spread of Measles

We used the MR estimator to infer the “reproductive number” m from incidence
time series of different diseases [21]. Disease propagation represents a nonlinear,
complex, real-world system often approximated by branching processes [14, 25].
Here,m determines the disease spreading behavior and has been deployed to predict
the risk of epidemic outbreaks [27]. However, the problem of subsampling or under-
ascertainment has always posed a challenge [37, 63].

As a first step, we cross-validated the novel against the conventional estimator
using the spread of measles in Germany, surveyed by the Robert-Koch-Institute
(RKI). We chose this reference case, because we expected case reports to be almost
fully sampled owing to the strict reporting policy supported by child care facilities
and schools [39, 90], and to the clarity of symptoms. Indeed, the values for m̂
inferred with the conventional and with the novel estimator, coincided (Fig. 4). In
contrast, after applying artificial subsampling to the case reports, thereby mimicking
that each infection was only diagnosed and reported with probability p < 1, the
conventional estimator severely underestimated the spreading behavior, while MR
estimation always returned consistent values. This shows that the MR estimator
correctly infers the reproductive number m directly from subsampled time series,
without the need to know the degree of under-ascertainment α.



Assessing Criticality in Experiments 217

3.4.2 Cortical Spiking Activity

We applied theMR estimator to cortical spiking activity in vivo (Fig. 5). Analyzing in
vivo spiking activity fromMacaque monkey prefrontal cortex during a memory task,
anesthetized cat visual cortexwith no stimulus (Figs. 5a, b), and rat hippocampus dur-
ing a foraging task returned m̂ to be between 0.963 and 0.998 (median m̂ = 0.984,
Fig. 5d), corresponding to autocorrelation times between 100 and 2000ms. This
clearly suggests that spiking activity in vivo is neither AI-like (m = 0), nor consis-
tent with a critical state (m = 1), but in a reverberating state that shows autocorrela-
tion times of a few hundred milliseconds. We call this range of the dynamical states
reverberating, because input reverberates for a few hundred millisecond in the net-
work, and therefore enables integration of information [16, 41, 59, 91]. A branching
network set up in this reverberating regime reproduced experimental avalanche size
distributions better than AI-like or near-critical (m = 0.9999) networks (Fig. 5f).

When choosing random subsets of n neurons from the total of 50 recorded single
units, even for single neurons, MR estimation returned about the same median m̂
(Fig. 5c). In contrast, the conventional estimator misclassified neuronal activity by
strongly underestimating m̂: instead of m̂ = 0.984, it returned m̂C = 0.271 for the
activity of all 50 neurons.

4 Assessing Network Dynamics Using Neuronal Avalanches

The classical approach to test for criticality is to assess the distributions of neuronal
avalanches. Avalanche size and the duration distributions following a power law are
taken as strong evidence that the underlying system is indeed critical. This approach
to assess criticality has been inspired by the study of Peer Bak, Chao Tang and
Kurt Wiesenfeld, who demonstrated power-law distributed avalanches or cascades
in a simple cellular automaton model [4]. That cellular automaton approximated the
dynamics on the slope of a generic sand-pile: Adding a single grain could trigger
other grains to “topple”, and thereby a cascade or avalanche of activity spread over
the system. The sizes and the durations of the cascades are power-law distributed,
meaning that most avalanches only show one or maybe two topplings, and only very
few spread the entire system. However, there is no “typical” avalanche size, meaning
that mean and the variance are not sufficient to describe the distribution. Because
the emergence of these power laws is independent of initial conditions, they termed
the resulting dynamical state “self-organized critical”, stressing that the critical state
is an attractor. Finding that a critical state can be a stable attractor had major im-
pact, because it promised to explain the emergence of power laws in many very
diverse biological and physical systems, from earthquakes, to forest fires and solar
flares [5, 22, 54]. Potentially the first researches to point out that networks of (non-
leaky) integrate-and-fire neurons readily display criticality, were Swen Dunkelmann
and Günter Radons in 1994 [24]. They also revealed that the emerging long-range
correlations can be exploited to enhance computational properties. In the following
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Fig. 5 Animal spiking activity in vivo. In neuroscience, m denotes the mean number of spikes
triggered by one spike. We estimated m̂ from spiking activity recorded in vivo in monkey prefrontal
cortex, cat visual cortex, and rat hippocampus. a Raster spike plot and population rate at of 50
single units illustrated for cat visual cortex. b MR estimation based on the exponential decay of
the autocorrelation of rk of at . Inset: Comparison of conventional and MR estimation results for
single units (medians m̂C = 0.057 and m̂ = 0.954 respectively). c m̂ estimated from from further
subsampled cat recordings, estimated with the conventional and MR estimator. Error bars indicate
variability over 50 randomly subsampled n out of the recorded 50 channels. d Avalanche size
distributions for cat visual cortex (blue) and the networks with AI, reverberating and near-critical
dynamics in panel f. e For all simulations, MR estimation returned the correct distance to instability
(criticality) ε = 1 − m. In vivo spike recordings from rat, cat, and monkey, clearly differed from
critical (ε = 0) and AI (ε = 1) states (median m̂ = 0.98, error bars: 16–84% confidence intervals,
note that some confidence intervals are too small to be resolved). Opaque symbols indicate that MR
estimation was rejected. Green, red, and yellow arrows indicate ε for the dynamic states shown in
panel f. f Population activity and raster plots for AI activity, reverberating, in vivo-like, and near
critical networks. All three networks match the recording from cat visual cortex with respect to
number of recorded neurons and mean firing rate. Figure reproduced from [92]
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decade, a number of neural network models with increasing degrees of physiolog-
ical detail demonstrated criticality [12, 13, 17–19, 26, 42], soon followed by first
experimental evidence [52, 94]. The most prominent experimental demonstration
of criticality in neural networks is arguably the study by John Beggs and Dietmar
Plenz in 2003, who demonstrated that neural avalanches extracted from population
spikes in acute slices display clear power-laws for their sizes and durations [7]. Since
then, the analysis of neuronal avalanches has become a standard approach to test for
criticality in the brain.

Extracting neuronal avalanches from neuronal recordings is in principle straight-
forward. The binary data from all observed units is collapsed to one point process
and binned with the fixed bin width Δt . Units used for binning could be spikes [64],
thresholded LFPs [7], thresholded BOLD signal [83], or MEG activity [62]. Then
each empty bin signifies the pause between the avalanches. The sequence of the
non-empty bin surrounded by the empty ones is called an avalanche. The size of
the avalanche can be measured, for example, as the sum of all bin-values within the
avalanche. The duration is the number of bins that avalanche is occupying. Aswe see,
there is one main parameter, Δt that specifies how the avalanches will be defined. In
the ideal case, sizes and durations are invariant to the particular choice of Δt within
a certain (preferably, large) intervals. This situation will correspond to the time-scale
separation between process starting the avalanche and the propagation of activity
within the avalanche. However, often bin-size plays important role in defining the
avalanche distributions [7].

5 Subsampling Scaling: A Theory About Inferring the
Avalanche Distribution of the Full System

Spatial subsampling can alter the observed avalanche distribution, and inferring the
distribution of the full system can be very difficult (see Sect. 2). To overcome the bias,
the approach of “subsampling scaling” has been derived [50]. Subsampling scaling is
applicable to different observables, including distributions of neuronal avalanches, of
number of people infectedduring an epidemicoutbreak, andof nodedegrees. It allows
one to infer the “parent distribution”, i.e. the distributions of the full system, from the
subsampled one. It is applied to distinguish critical from subcritical systems, and to
disentangle subsampling and finite size effects. Last but not least, by analyzing spike
recordings from developing neural networks, we showed that only mature, but not
young networks follow power-law scaling, indicating self-organization to criticality
during development

Examples of subsampling biases, some of them dramatic, have already been
demonstrated in numerical studies. Subsampling has been shown to affect avalanche
distributions in various ways, which can make a critical system appear sub- or super-
critical [67, 69, 70, 75, 76, 92, 96]. When inferring not avalanches, but the topology
of networks, it has been derived that, contrary to common intuition, a subsample from
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a scale-free network is not itself scale-free [81]. Similarly, sampling from a locally
connected network can make the network appear “small-world” [29]. Importantly,
these biases are not due to limited statistics (which could be overcome by collect-
ing more data, e.g. acquiring longer recordings, or more independent subsamples of
a system), but genuinely originates from observing a small fraction of the system,
and then making inferences including unobserved parts. Although the existence of
subsampling effects are known, in the literature there is so far no general analytical
understanding of how to overcome them.

A derivation of subsampling effects for degree distributions of a network has
been conducted by Stumpf and colleagues, who provided a first analytical frame-
work, stating the problem of subsampling bias [81]. Interestingly, we could show
that these results in general can be translated to subsampling effects on avalanches,
and this allowed us to then derive an analytical framework that enables us to in-
fer the ‘parent distribution’, i.e. the avalanche distribution of the full system, from
the subsampled one [50]. The analytical approach is outline below, together with
numerical validations as well as applications to spike recordings of developing neu-
ral networks. Together, these results introduced a novel, rigorous approach to study
under-observed systems.

5.1 Theory of Subsampling Scaling

To derive how spatial subsampling affects the avalanche size distribution p, we de-
fine a minimal model of “mathematical subsampling”. The avalanche size s is the
total number of events or spikes within a cascade. In general, the cluster size is de-
scribed by a discrete, non-negative randomvariable X . Let X be distributed according
to a probability distribution P(X = s) = P(s). For subsampling, assume for each
avalanche that each of its events is independently observed with probability p (or
missed with probability 1 − p). Then Xsub is a random variable denoting the number
of observed events of an avalanche, and X − Xsub the number of missed events.
This subsampling scheme assumes that a random set of the neurons in the network
is sampled, and Xsub represents the number of all events generated by the observed
units within one avalanche on the full system. Note, that this definition translates one
cluster in the full system to exactly one cluster under subsampling (potentially of
size zero), and that this definition does not require explicit binning [50]. The prob-
ability distribution of Xsub is called in the following the “subsampled distribution”
Psub(s). Importantly, the framework does not only apply to (neural) avalanches, but
an analogous treatment can be applied to e.g. graphs. There a “cluster” represents
the set of (directed) connections of a specific node, and thus X is the degree of that
node. Under subsampling, i.e. considering a random subnetwork, only connections
between observed nodes are taken into account, resulting in the subsampled degree
Xsub.

As each event is observed independently, the probability of Xsub = s is the sum
over probabilities of observing clusters of X = s + k events, where k denotes the
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missed events and s the sampled ones (binomial sampling):

Psub(s) = P(Xsub = s) =
∞∑

k=0

P(s + k)

(
s + k

s

)
ps(1 − p)k . (20)

This equation holds for any discrete P(s) defined on N0, the set of non-negative
integers. To infer P(s) from Psub(s), we develop in the following a novel “sub-
sampling scaling” that allows to parcel out the changes in P(s) originating from
spatial subsampling. A correct scaling ansatz collapses the Psub(s) for any sampling
probability p.

Two specific families of distributions are of particular importance in the con-
text of neuroscience, namely exponential distributions P(s) = Cλe−λs with λ > 0,
and power laws P(s) = Cγ s−γ with γ > 1. These two families are known to show
different behaviors under subsampling [81] (see also [50] for more details):

1. For exponential distributions, P(s) and Psub(s) belong to the same class of dis-
tributions, only their parameters change under subsampling. Notably, this result
generalizes to positive and negative binomial distributions, which include Poisson
distributions.

2. Power-laws or scale-free distributions, despite their name, are not invariant under
subsampling. Namely, if P(s) follows a power-law distribution, then Psub(s) is
not a power law but only approaching it in the limit of large cluster size (s → ∞).

In more detail, for exponential distributions, P(s) = Cλe−λs , s ∈ N0, subsampling
with probability p results in an exponential distributionwith decayparameterλsub that
can be expressed as a function of λ and p (full analytical derivation uses probability
generating function discussed in details in supplementary information of [50]):

λsub = ln

(
eλ + p − 1

p

)
⇔ λ = ln((eλsub − 1)p + 1). (21)

Likewise, changes in the normalizing constant Cλ = 1 − e−λ of P(s) are given by:

Cλ/Cλsub = 1 − e−λ + pe−λ = e−λsub + p − pe−λsub

p
. (22)

These two relations allow to derive explicitly a subsampling scaling for exponentials,
i.e. the relation between P(s) and Psub(s):

P(s) = Cλ

Cλsub

Psub

(
λ

λsub
s

)
= e−λsub + p − pe−λsub

p
Psub

⎛

⎝
ln

(
eλsub p − p + 1

)

λsub
s

⎞

⎠ (23)

=
(
1 − e−λ + pe−λ

)
Psub

⎛

⎜⎝
λ

ln
(
eλ+p−1

p

) s

⎞

⎟⎠ = G(p, λ)Psub(sF(p, λ)).
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Fig. 6 Mathematical subsampling of exponential and power-law distributions. a Subsamplings
of an exponential distribution with exponent λ = 0.001. b Collapse of subsampled exponen-
tial distributions by subsampling scaling derived in Eq. 23. Inset: same with p-scaling (Eq. 25).
c Subsampled power-law distributions with exponent γ = 1.5. d Collapse of the same distributions
by p-scaling (Eq. 25); inset: flattened version. Note the log-linear axes in a, b, and the double-
logarithmic axes in c, d. Solid lines are analytical results (Eq. 20), dots are numerical results from
subsampling 107 avalanches (realizations of the random variable X ) of the corresponding original
distribution. Colors indicate the sampling probability p

Thus given an exponential distribution P(s) of the full system, all distributions under
subsampling can be derived. Vice versa, given the observed subsampled distribution
Psub(s), the full distribution can be analytically derived if the sampling probability
p is known. Therefore, for exponentials, the scaling ansatz above allows to collapse
all distributions obtained under subsampling with any p (Fig. 6a, b).

The presented formalism is analogous to the one proposed by Stumpf et al. [81].
They studied which distributions changed and which preserved their classes under
subsampling. In the following we extend that study, and then develop a formalism
that allows to extrapolate the original distribution from the subsampling, also in the
case where an exact solution is not possible.

For power-law distributions of X , Xsub is not power-law distributed, but only
approaches a power law in the tail (s → ∞). An approximate scaling relation, how-
ever, collapses the tails of distributions as follows (mathematical derivation see in
supplementary information of [50]). For s → ∞, a power law P(s) = Cγ s−γ and
the distributions obtained under subsampling can be collapsed by:

P(s) = pa Psub(p
bs), for any a, b ∈ R with a − bγ = 1 − γ. (24)
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For any a, b satisfying the relation above, this scaling collapses the tails of power-law
distributions. The “heads”, however, deviate from the power law and hence cannot
be collapsed (see deviations at small s, Fig. 6d). These deviations decrease with
increasing p, and with γ → 1+ [81]. We call these deviations “hairs” because they
“grow” on the “heads” of the distribution as opposed to the tails of the distribution. In
fact, the hairs allow to infer the systemsize fromknowing the number of sampledunits
if the full systems exhibits a power-lawdistribution (for discussion see supplementary
information of [50]).

The different behavior of exponential and power-law distributions under subsam-
pling poses a considerable challenge if one aims at inferring the parent distribution
for neural avalanches. This is because avalanche distributions from neural data (but
also many other systems) are often characterized by a power law with an an expo-
nential tail, which represents finite-size effects or subcriticality [4, 23, 70, 80, 85].
The different subsampling behavior of the tail of the distribution (which is typically
exponential), and the head (which shows a power law) in principle hinders a joint
treatment. However, for the the case that is typical for finite size critical systems,
namely a power law that transits smoothly to an exponential around s = scutoff , we
could identify an approximate scaling ansatz, as follows.

Under subsampling, scutoffsub depends linearly on the sampling probability: scutoffsub =
p · scutoff . Hence, the only solution to the power-law scaling relation (Eq. 24) that
collapses (to the best possible degree), both, the power-law part of distributions and
the onsets of the cutoff is the one with a = b = 1:

P(s) ≈ pPsub(p · s). (25)

As this scaling is linear in p, we call it p-scaling. A priori, p-scaling is different
from the scaling for exponentials (Eq. 23). However, p-scaling is a limit case of
the scaling for exponentials under the assumption that λ � p [50]. Thus p-scaling
collapses power lawswith exponential tail ifλ is small, and alsomuch smaller than the
sampling probability. This condition is typically met in critical, but not in subcritical
systems. Indeed, when applying subsampling to critical models, p-scaling collapsed
the avalanche size distributions Psub(s) obtained under subsampling (Fig. 7a, b). This
is not the case for the Psub(s) obtained from sub-critical models (Fig. 7c). Thereby,
p-scaling promises to distinguish critical from non-critical systems in experiments
as well.

5.2 Assessing Criticality from Spike Recordings: Learning
More by Sampling Less

We applied p-scaling to neural recordings of developing networks in vitro to in-
vestigate whether their avalanches indicated a critical state. To this end, we evalu-
ated recordings from N = 58 multi-units (see Methods, [87]). This is only a small
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Fig. 7 Subsampling scaling in critical and subcritical models. The three columns show results
for the branching model (BM), the Bak–Tang–Wiesenfeld model (BTW) [4], and the BTW with
periodic boundary conditions (BTWC). a Avalanche size distribution Psub(s) for different degrees
of subsampling, as denoted in the legend. b Same distributions as in A, but with p-scaling. (Note that
scaling by N leads to a collapse equivalent to scaling by p = N/M at fixed system sizeM). c Scaled
distributions from subcritical versions of the models. Here, results for the BTWC are extremely
similar to those of the BTW and are thus omitted. Dashed lines indicate power-law slopes of −1.5
and −1.1 for the BM and BTW/BTWC, respectively, for visual guidance

fraction of the entire neural network, which comprised M ≈ 50,000 neurons. Thus
the avalanche size distribution obtained from the whole analyzed data is already a
subsampled distribution Psub(s). To apply p-scaling, we generated a family of dis-
tributions by further subsampling, i.e. evaluating a subset N ′ < N of the recorded
units. The intuition behind this approach is the following: When randomly sampling
the recording electrodes, we create different subsamples from the original system,
similar to what would happen if the recording system was smaller. If these artifi-
cially subsampled systems behave very different one from another and allow for no
scaling, we cannot argue about the distribution in the entire system even based on
the recording from the whole MEA. However, if any scaling collapses the family of
these subsampled arrays, we can extrapolate the distribution from what we recorded.
In particular, in critical systems, p-scaling is expected to collapse this family of
distributions if avalanches are defined unambiguously.
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Fig. 8 Avalanche size distributions c · Psub(s) (in absolute counts) of spiking activity of developing
neural networks in vitro. a: For young cultures, Psub(s) did not collapse under p-scaling, indicating
that the full network does not show a power-law distribution for Psub(s). b, cMore mature networks
show a good collapse, allowing to extrapolate the distribution of the full network. In panels a, b,
and c the bin size is 1 ms, and c is a total number of recorded avalanches in the full system, in a
c = 53,803, in b c = 307,908, in c c = 251,156. The estimated number of neurons in the cultures
is M ≈ 50, 000. d Psub(s) from sampling spikes from all electrodes but evaluated with different bin
sizes (see legend); the approximate invariance of Psub(s) against changes in the bin size indicates
a separation of time scales in the experimental preparation. Figure is reproduced from [50], for
distribution of all recording days of all experiments see SI of [50]

Interestingly, for early stages of neural development, p-scaling does not collapse
Psub(s), but for the more mature networks we found a clear collapse (Fig. 8). Thus
developing neural networks start off with collective dynamics that is not in a critical
state, but with maturation approach criticality [64, 84]. Some of the mature networks
show small bumps in Psub(s) at very large avalanche sizes (s ≈ 5000 ⇔ s/N ≈ 60).
These very large avalanches comprise only a tiny fraction of all avalanches (about
2 in 10,000). At first glance, the bumps are reminiscent of supercritical systems.
However, supercritical neural models typically show bumps at system or sampling
size (s = N ), not at those very large sizes. We suggest that the bumps are more likely
to originate from neurophysiological finite size effects [50, 97].

For the full, mature network, our results predict that P(s) would extend not only
over three orders of magnitude as here, but over six, because p ≈ 10−3. Our anal-
ysis of neural recordings illustrates how further spatial subsampling allows to infer
properties of the full system, even if only a tiny fraction of its collective dynamics
has been observed, simply by sampling even less (N ′ < N ) of the full system.

5.3 Subsampling Versus Finite Size Scaling

In the real world we are often confronted with data affected by both subsampling and
finite system size effects, i.e. observations originated from a small part of a large, but
not infinite system. Thus we need to deal with a combination of both: subsampling
effects as a result of incomplete data acquisition and finite-size effects inherited from
the full system. To disentangle influences from system size and system dynamics,
finite size scaling (FSS) has been introduced [49, 71]. It allows to infer the behavior
of an infinite system from a set of finite systems. At a first glance, finite size and
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subsampling effects may appear to be very similar. However, if they were, then
distributions obtained from sampling N units from any system with N ≤ M would
be identical, i.e. independent of M . This is not the case, as shown in [50].

Importantly, it is possible to combine FSS and subsampling scaling [50]: Consider
a critical system, where FSS is given by: Mβ P(sMν; M) = g(s), here g(s) is a
universal scaling function. Then FSS can be combined with subsampling scaling to
obtain a universal subsampling-finite-size scaling:

NMβ−1Psub(sNMν−1; M, N ) = g(s). (26)

Using Eq. 26 allows to infer the distribution for arbitrary subsampling (N ) of any
system size (M).

5.4 Open Questions

Subsampling scaling provided an understanding of how distributions of avalanches
change under spatial subsampling, and how to infer the distribution of the fully sam-
pled system from the subsampled one. To this end, it is essential that the avalanches
are extracted unambiguously, i.e. one avalanche in the full system translates to ex-
actly one avalanche (potentially of size zero) under subsampling. This condition is
fulfilled easily if the system shows a separation of time scales (STS), i.e. the pauses
between subsequent avalanches are much longer than the avalanches themselves.
Given a STS, temporal binning [7] can be used to unambiguously extract avalanches
under subsampling. However, the chosen bin size must neither be too small nor too
large: If too small, a single avalanche on the full system can be “cut” into multiple
ones when entering, leaving, and re-entering the recording set. This leads to steeper
Psub(s) with smaller bin size (Fig. 8d). In contrast, if the bin size is too large, sub-
sequent avalanches can be “merged” together. For a range of intermediate bin sizes,
however, Psub(s) is invariant to changes in the bin size. If a system, however, lacks a
STS, then Psub(s) is expected to change for any bin size. This may underlie the fre-
quently observed changes in Psub(s) in neural recordings [3, 7, 32, 67, 69, 75, 80],
as discussed in [70]. The first step toward relaxing a time-scale separation constrain
is to investigate systems where external input can be delivered during the avalanche,
but separation of avalanches is preserved. In this case power-law scaling remains, but
the exponent is changed [20]. Hence an important open question is how to cutting
and merging of avalanches affect subsampling scaling.

The present study analytically treats subsampling scaling for power laws (with
cutoff), exponential distributions, and negative and positive binomial distributions.
For all other distributions, utmost care has to be taken when aiming at inferences
about the full system from its subsampling. One potential approach is to identify a
scaling ansatz numerically, i.e. minimizing the distance between the different Psub(s)
numerically, in analogy to the approach for avalanche shape collapse [3, 28, 55, 69,
78]. We found that for our network simulations such a numerical approach identified
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the same scaling parameters as our analytic derivations. However, given the typical
noisiness of experimental observations, a purely numerical approach should be taken
with a grain of salt, as long as it is not backed up by a circular form analytical solution.

Our analytical derivations assumed annealed sampling, which in simulations was
well approximated by pre-choosing a random subset of neurons or nodes for sam-
pling. Any sampling from randomly connected networks is expected to lead to the
same approximation. However, in networks with e.g. local connectivity, numerical
results depend strongly on the choice of sampled units [67]. For example, for win-
dowed subsampling (i.e. sampling a local set of units) a number of studies reported
strong deviations from the expected power laws in critical systems or scale free
networks [29, 67, 75]. In contrast, random subsampling, as assumed here for our
analytical derivations, only leads to minor deviations from power laws (hairs). Thus
to diminish corruption of results by subsampling, future experimental studies on
criticality should aim at implementing random instead of the traditional windowed
sampling, e.g. by designing novel electrode arrays with pseudo-random placement
of electrodes on the entire area of the network. In this case, we predict deviations
from power laws to be minor, i.e. limited to the “hairs” and the cutoff.

We present here first steps towards a full understanding of subsampling. With our
analytical, mean-field-like approach to subsampling we treat two classes of distri-
butions and explore corresponding simulations. In future, extending the presented
approach to a window-like sampling, more general forms of correlated sampling,
and to further classes of distributions will certainly be of additional importance to
achieve unbiased inferences from experiments and real-world observations.
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The Role of Criticality in Flexible Visual
Information Processing

Nergis Tomen and Udo Ernst

Abstract Dynamical systems close to a critical state have the ability to sponta-
neously engage large numbers of units in collective events called avalanches–but
how can this property be actively employed by the brain in order to perform mean-
ingful computations under realistic circumstances? In our study we investigate this
question by focusing on the visual system which has to meet a major challenge:
to rapidly integrate information from a large number of single channels, and in a
flexible manner depending on behavioral and external context. In this framework
we are going to discuss two distinct examples, the first a bottom-up figure-ground
segregation scenario and the second a top-down enhancement of object discrim-
inability under selective attention. Both scenarios make explicit use of critical states
for information processing, while formally extending the concept of criticality to
inhomogeneous systems subject to a strong external drive.

1 Introduction

Complex systems with numerous nonlinear, coupled elements may perpetually self-
organize to a dynamical state close to a phase transition [2]. Such a system can
be described as a branching process and, at the critical state, is characterized by
power-law distributions of a variety of observables [76]. Considered a signature of
neuronal networks poised at criticality, scale-free organization of neuronal activity
has been observed in a wide range of data including in acute slices of rat cortex and
organotypic cultures [5, 17], dissociated cultures [48], awake monkeys [49], human
MEG and EEG [47, 63] and human intracranial depth recordings [52].

Neuronal networks operating at a critical state have been of interest to neuro-
scientists due to the proposed computational benefits [61]. It has been suggested
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that critical dynamics may play a functional role in supporting complex computa-
tions [6, 35], maximizing information diversity [46] and the number of metastable
states [25], and improving object representation [71] with favourable dynamic range
characteristics [20, 32, 62].

The abundance of power-law scaling in the brain, taken together with the theoret-
ical functional benefits of networks operating close to a critical state forms the basis
of the criticality hypothesis [4, 9, 29, 50], which suggests that critical dynamics is an
emergent property of cortical networks, supporting optimal information processing.

While the enhanced information processing capabilities close to a phase transi-
tion are an important argument for this hypothesis, demonstrations of them often rely
on rather ‘abstract’ theoretical measures, without realistic encoding or read-out sce-
narios in mind. Furthermore, such demonstrations employ relatively homogeneous
models without structured functional connectivity or strong external drive. This cre-
ates an exciting opportunity to explore more concrete links between the abstract
computational scenarios and the biologically realistic cortical dynamics under cog-
nitive load.

In addition, themajority of the experimental studies reporting avalanche dynamics
in neuronal networks analyze recordings of spontaneous activity in vitro or of the
resting state in vivo, although recent studies attempt to understand the emergence
of criticality in the cortex under sensory stimulation [1, 60]. Nevertheless, perfect
scale-free organization does not seem to emerge under all conditions, especially in
the strongly driven regime. Previous findings indicate that signatures of criticality are
progressively disturbed during sustained wakefulness [44] and may diminish with
increasing cognitive load [70].

Similarly, avalanche dynamics in vivo exhibit differences between wakefulness
and deep sleep [52] and seem to be poised at a slightly subcritical state [53].

In an attempt to unify these points, in this chapter we explore the idea that flexible
and dynamic information processing in the cortex, which requires fast responses to
both incoming sensory input as well as rapid top-down modulations due to changing
task requirements, may be boosted by critical dynamics. We investigate the hypoth-
esis that in the active brain engaged in a cognitive task not all subpopulations are
tuned to a perfect critical state at all times. Instead, the local activity regime can be
actively modulated by properties of the external input or changing task demands.

In order to make a concrete link to cortical function, we will focus specifically on
the visual system and investigate how critical dynamics may offer functional benefits
based on established experimental scenarios. In general, we will present a paradigm
in which avalanche dynamics of local subnetworks, heavily involved in processing
of a sensory stimulus, may be actively tuned towards the critical point, ultimately
contributing to the detection or discrimination of the stimulus by higher visuocortical
areas.
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2 Collective Dynamics and Information Integration
in the Visual System

In this section, we will present a brief introduction to the visual system, its dynamics,
and the typical computational problems it has to solve, as well as establish the
general concepts and terminology which will be relevant for the detailed examples
demonstrating how critical dynamics might support cortical function.

Visual scenes. A visual scene is usually composed of a multitude of ‘objects’ such
as four animals in front of a house with a window (Fig. 1). However, their repre-
sentations on the retina or the primary visual cortex is distributed and fragmented:
Every neuron has access to only a tiny part of the visual field (small blue circles),
while objects typically occupy a much larger region (large blue frame). Hence for
making sense of a visual scene, the brain has to process these elementary pieces

Fig. 1 A natural scene from northern Germany. For segmenting this image into meaningful parts,
our brain has to integrate local feature information into global figure representations: For example,
orientation-selective cells in V1 might detect the presence of horizontally oriented bars inside their
classical receptive fields (blue circles), which are then linked into a representation of the whole
window (blue rectangle) by subsequent stages in visual cortex. Thereby representations of different
“figures” (such as the dog and donkey) might share subsets of features (contours, outlined in dark
and bright red). More complex feature combinations such as whole shapes can only be successfully
integrated if attention is directed towards the corresponding location in the visual field (dashed blue
circles, head of dog and cat) [40]
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of information in relation to each other, thus enabling perception and, ultimately, a
successful interaction with the environment.

Nevertheless, information integration in vision is computationally demanding.
Objects in a scene might be partially occluded or possess fragmented outlines, thus
complicating the integration process. Scenes can be cluttered, requiring to search
for the behaviorally relevant information in a background of noise. Low level repre-
sentation of an object (e.g. in pixels) can vary dramatically, for example trees seem
different when viewed from varying angles or under different lighting conditions,
however, they still belong to the same class of objects.Moreover, scenes are dynamic:
their content can change rapidly, making a continuous and fast reassessment of the
current visual input necessary. Realizing these different computational functions
requires many different neuronal processes to contribute, and despite the amazing
progress on deep convolutional neural networks in machine vision it is still largely
unclear how the human visual system solves all of these challenges. But above all
details, there emerges a fundamental need for two dynamic capabilities in cortical
networks: the ability to engage a very large number of neurons in dependence on
external evidence and behavioral context, and to do this very quickly and flexibly—a
promising ‘application’ for critical networks.

Feature integration. Physiological studies have established that, apart from the rel-
atively local processing in the retina and LGN, information integration is mainly
performed in the cortical domain. Single neurons in the primary visual cortex (the
first cortical area processing an incoming visual stimulus) preferentially respond to
certain basic features of a local image patch, such as its orientation or spatial fre-
quency [10, 30]. Since these neurons thus signal the presence or absence of specific
features in a visual scene, information integration in vision is also termed feature
integration. In general, perceptual grouping of visual features take place based on
classical Gestalt principles, where factors such as proximity, similarity or good con-
tinuation of features determinewhether theywill collectively be processed as belong-
ing together [75], thus leading to a salient percept. Salient figures in a cluttered scene
are robustly and easily segregated from the background, in what is termed a “pop-
out” effect [33]. For example in contour integration, fragmented outlines of potential
object boundaries are bound into coherent percepts [15]. Such enhanced processing
of features due to stimulus properties is often described as a bottom-up effect [77].

So what might be the neuronal correlate of feature integration? In many different
settings, feature integration is accompanied by firing rate modulations (e.g., see [8,
51, 55]). Neurons which are stimulated with their preferred feature centered inside
their classical receptive field (cRF) have been shown to exhibit lower or higher fir-
ing rates in dependence on a surrounding, contextual stimulus outside their cRF [37,
64]—in particularwhen the center-surround configurationmatchesGestalt principles
such as colinearity of oriented line segments [38]. The caveat of these rate modula-
tions serving as an explanation for feature integration is both their magnitude and
their temporal characteristics: for example, in contour integration the rate enhance-
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ment is often small [3], and occurs with a large latency (150 ms) after stimulus onset
[21]. In contrast, other experiments show that human image classification can be
extremely rapid, leading to consistent differences in EEG traces in an animal/no-
animal discrimination task (where contour integration would only be one of the first
steps in a chain of multiple processing stages) after only 150 ms [69].

As an alternative, information integration might rely on the relative timing of
action potentials: Spatially and temporally correlated neuronal activity has long been
hypothesized as a putative mechanism for representing parts or features of an object
which belong together [27, 41]. In general, mutual synchronization between two
neurons tends to become stronger if the stimulus components within their receptive
fields aremore likely to belong to one object [34].Models using oscillatory synchrony
for binding features have been proposed [16, 54], but establishing oscillations takes
time and the emerging neural activity is too regular in comparison to synchronization
observed in physiological studies of the visual system [66].

Selective processing. To address the problem that a visual scene typically contains a
substantial amount of information at any given time, the visual system dynamically
and flexibly allocates its limited resources, in a context and task-dependent man-
ner. For example, attentional mechanisms may selectively enhance the processing of
information about specific features or locations in the visual field. Electrophysiolog-
ical studies have shown that rate modulations can gradually boost the representation
of behaviourally relevant stimuli at the expense of irrelevant stimuli (e.g., see [39,
45, 73]). Furthermore, it was observed that such enhancements are accompanied by
an increase in oscillatory cortical activity in the γ -band [19, 67]. In this context,
γ -oscillations have been proposed to be the essential mechanism for information
routing regulated by attention [18, 22]. Such oscillation based modulations provide
the cortex with an effective mechanism capable of efficiently gating information
flows [26] which would be difficult to achieve with the often much weaker rate mod-
ulations [23]. In contrast to feature integration, mechanisms of selective attention
such as the enhancement of stimulus representations and the preferential routing of
information are top-down effects [68].

In this chapter, we are going to focus on the general idea that near-critical dynam-
ics may promote rapid and robust processing of dynamically modulated information
streams. In order not to be constrained by the specifics of a certain mechanism, we
are going to discuss two distinct examples, the first a bottom-up figure-ground seg-
regation scenario and the second a top-down enhancement of object discriminability
under selective attention (Fig. 2). We are going to argue that regardless of the spe-
cific mechanism, local emergence of critical dynamics in the active brain, either in
a stimulus driven manner or through attentional modulations, may assist in selec-
tively improved processing of local information. This is broadly achieved by the
activity of local subnetworks, representing different objects in the visual field, being
pushed towards a critical point and away from a subcritical regime. This framework
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Fig. 2 Critical dynamics exhibited by local cortical subnetworks may be instrumental in flexible
modulations of object representation. aBottom-upmodulation of the neuronal response:A complete
set of featureswhich constitute an object in the visual field is amore salient stimulus than the random
co-occurrence of a few of its features. A subnetwork poised at the critical point will display scale-
free dynamics over the full system size, only if all of its units are externally driven (red circles
and links). Similarly, power spectral distribution of local population activity will display stronger
oscillatory dynamics when the stimulus is more salient. b Top-down modulation of the neuronal
response. According to changing behavioural needs, mechanisms such as selective visual attention
may dynamically shift the subnetwork towards or away from the critical point. A shift towards the
ordered regime is accompanied by enhanced oscillatory power, potentially assisting in enhancing
the communication between different areas

brings together the concepts of oscillations in population activity, synchronization
at the spiking level and phase transitions, and suggests a universal functional role
for correlated activity: flexible processing of information in a dynamically changing
world.
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3 Critical Subnetworks and Figure-Ground Segregation

In this section we will investigate the idea that the correlations in the activity of local,
functionally connected subpopulations of cortical neurons may be modulated in a
bottom-up manner by the presence of objects in the visual field. In particular we will
focus on how critical dynamics may emerge in a subnetwork with the presentation of
a salient stimulus, contributing to enhanced figure-ground segregation performance
when using a coincidence detector as a read-out mechanism.

3.1 A Critical Model of Feature Integration

Motivation. As described in Sect. 2, particular feature combinations (‘figures’) are
processed by our visual system selectively, or in a privileged manner, even in the
absence of top-down instructions to do so. Such stimuli are commonly accompanied
by a “pop-out” effect, making these feature combinations highly salient in perception
even if they are embedded into a “background” of distractor elements (for an exam-
ple, see Fig. 3a). “Pop-out” is generally described as a stimulus-directed bottom-up
effect. For example, a single local feature, such as a line segment whose orientation
deviates from all other segments present in a scenewill “pop-out” to an observer [72].
Interestingly, evidence suggests that both context [31] as well as the global stimu-
lus structure [33] play a role in modulating the processing of an object by low-level,
local feature detectors, thus requiring rapid co-processing and integration of multiple
streams of information on different spatial scales.

Considering both the general notion that a dynamical regime close to a phase tran-
sition may boost the capacity of a network to sustain rapid and efficient modulations,
as well as the dependence of perceptual grouping tasks on integration of spatially
extended information, we hypothesize that spatially and temporally correlated neu-
ronal activity may be conducive to bottom-up “pop-out” effects, which are helpful
in figure-ground segregation.

How local features are integrated to form global percepts, in order to segregate rel-
evant figures from a background, is extensively studied, especially in psychophysical
investigations on Gestalt perception [75]. For example, research on contour integra-
tion focuses on how the visual system identifies the outlines of shapes or figures
by grouping colinearly or cocircularly aligned edge elements into coherent percepts
(Fig. 1, blue circles and red outlines). For illustrating ourmodeling paradigm, wewill
use contour integration as a proxy for all processes where binding of local features
ultimately contributes to visual perception.

A typical visual stimulus employed in psychophysical contour integration exper-
iments consists of oriented Gabor patches. Other than a large number of randomly
oriented distractor elements in the background, a stimulus may contain a target
contour made up of appropriately placed and mutually aligned edge elements [15]
(Fig. 3a). Due to the adherence of the Gabor patches to cRF shapes reflecting the
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Fig. 3 a A typical stimulus from a contour integration experiment. It contains one figure consisting
of colinearly aligned, oriented Gabor patches, which are hidden among randomly oriented back-
ground elements. b The coupling matrix for the network model. This example consists of Nsub = 7
subnetworks of N mutually excitatorily coupled EHE units each (regions shaded in red). Every
subnetwork shares Nshr units with its two nearest neighbors. The stimulus externally drives all
N units in one subnetwork (filled red circles) and N − Nshr background units randomly selected
from the remaining subnetworks (filled gray circles). Optionally, one can add inhibitory synaptic
connections between subnetworks sharing units (regions shaded in blue). In our investigations, we
consider both, purely excitatory and mixed excitatory-inhibitory networks. In the dynamics of the
model (Eq. 2), the value of wji displayed in this example is scaled with the coupling strength α,
meaning that the absolute efficacies of all excitatory and inhibitory connections are equal

orientation selectivity of neurons in the early visual system, we think of each edge
element as driving a population of local feature detectors. Contour integration has
been shown to be an efficient and fast process, which is robust within a large range of
stimulus parameters both in humans [12, 28] and in animal experiments [42]. Over-
all, the speed and accuracy with which contours can be detected in psychophysical
experiments lead us to believe that a quick spread of activity and a subsequent swift
employment of a large number of feature detectors which are involved in encoding
the figure (or alternatively a swift suppression of background units) is necessary for
effective contour integration. Therefore, we next investigate whether and how large
scale avalanches spanning subnetworks processing a figure input may be beneficial
in figure-ground segregation tasks.

Model dynamics. As model system, we adapt the Ernst–Herrmann–Eurich (EHE)
model, which is an analytically well-understood network model displaying critical
dynamics [13]. The units in the original network are globally connected (wji = 1
∀ j, i) non-leaky integrators and the coupling strength α between the units determines
the distance of the dynamics from the critical state (see [13] for details).
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In particular, each unit i = 1, . . . , N is described by a state variable ui ∈ [0, 1).
At each discrete time step k, a randomly selected unit ui is perturbed by external
input Δu:

ui (k + 1) = ui (k) + Δu. (1)

If its state variable ui exceeds a threshold, in this case 1, then unit i is reset, and
all units j in the network including i receive recurrent input, scaled by the weight
matrix wji and the coupling strength α:

ui (k) ≥ 1 ⇐⇒ ui → ui − 1

u j → u j + αwji

N . (2)

If any unit j then exceeds the threshold succeeding the recurrent input, the procedure
in Eq. 2 is iterated until the avalanche terminates. Here we assume a separation of
time scales, such that an avalanche of spikes is infinitely fast compared to the time
scale on which the external, driving input arrives. This means that each avalanche
is initiated by a single unit firing due to external input, and is completed within one
discrete simulation time step. Such an implementation allows us to precisely quantify
the avalanche size and duration distributions.

Couplings and subnetworks. For studying feature integration, we now assume that
each unit represents a feature detector. If the corresponding feature, for example an
oriented line segment, is present in a visual stimulus, the unit is activated by some
external input. Detectors for features not present in the current visual stimulus receive
no external drive. A figure is defined by an ensemble of features, which is a subset of
all features represented in the network. We further require our network to be able to
represent multiple figures, and that different figures might share subsets of features
(Fig. 3b).

Unlike in the original model [13], we use a systematically structured coupling
matrix for representing figures in network topology. We begin with a zero matrix of
size M × M and successively embed Nsub subnetworks, each containing N mutually
and excitatorily coupled units. We posit that each subnetwork overlaps with exactly
two other subnetworks by sharing Nshr units (feature detectors), which yields a cou-
pling structure resembling a one-dimensional figure ‘chain’ with periodic bound-
ary conditions (Fig. 3b, regions shaded in red color), with a total network size of
M = Nsub · (N − Nshr ) units. In this scheme, the units in each subnetwork collec-
tively encode the presence of a figure in the visual field (such as a well-defined
contour line as in Fig. 3a), and neighboring subnetworks may be activated by figures
which share local features in their neuronal representation (Fig. 1, red contours).

Network activity. In order for the network to perform a figure detection task, we
present it with a stimulus containing one whole figure and random background ele-
ments. Such a stimulus drives the N units of one subnetwork, and N − Nshr randomly
selected units from the remaining M − N units with external input (filled circles at
top of Fig. 3b). All other units receive no driving input. The single unit i which
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receives the external drive according to Eq. 1 is selected with uniform probability
from the Nact = 2N − Nshr externally activated units which make up the figure and
background subpopulations.

For evaluating the dynamics of different subpopulations, we separately record
the activity of a ‘target’ and a ‘distractor’ ensemble with N units each. The target
ensemble is composed of the N activated figure units. The distractor ensemble is
composed of the N − Nshr externally activated background units plus Nshr units of
the currently activated figure which are shared with one of the other, not activated
figures. This is in consideration of the idea that units which belong to more than one
figure may also be sampled as part of the background by higher areas.

Since in a setting with shared figure representations we expect some degree of
activity to spread from externally driven units to the rest of the network, we would
ideally like to assess the extent to which it would affect network dynamics, and
ultimately task performance. To address this point, we extend our paradigm by intro-
ducing inhibitory connections between neighboring subnetworks (Fig. 3b, regions
shaded in blue color), with the intention to alleviate cross-talk between them through
the shared units, and compare the results to our original setup.

3.2 Results

For the results presented here, we use Nsub = 7 subnetworks, each consisting of
N = 225 EHE units, and we drive the network with an external input ofΔu = 0.022
for a total of K = 107 time steps. The spiking activity of the network is recorded, and
the dynamics of different populations characterized as we vary the overlap between
the subnetworks Nshr in addition to the coupling strength α. This gives us an idea
about the plausibility of such a network topology under increasingly heavy load (i.e.
where many units need to be shared between internal representations of different
figures) as well as about the robustness of dynamics as wemove closer to and beyond
the critical state.

Synchronization and avalanches. When we investigate the avalanche dynamics in
the purely excitatory model, we find, trivially, that the activity of the target ensemble
becomes critical and subsequently supercritical with increasing α. Eventually, firing
rates grow without bound and the network gets stuck in a regime of infinitely long
avalanches. We identify the α for which subnetwork activity is critical by finding
the avalanche size distributions for which the Kolmogorov–Smirnov (KS) statistic
is minimized (Fig. 4a, white circles). For calculating the KS statistic [65], we used a
reference power-law distribution with exponent−1.43. This was the exponent which
yielded the minimum KS distance for a control network: a globally connected EHE
network of size N , simulated for a total of K time steps.

For very small Nshr , the presentation of a stimulus with one complete figure
embedded into random background elements splits the network into two distinct
groups: the dynamics of the subnetwork representing the target figure quickly become
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synchronous as we increase the coupling strength, whereas the dynamics of the rest
of the network as well as the distractor population lag slightly behind the target
population in the sense that they comparatively lack large avalanches and highly
correlated activity. Background activity instead exhibits a slightly larger amount of
small sized avalanches (Fig. 4b).

As mentioned before, due to our choice of sampling of target and distractor activ-
ity, the dynamics of the two populations converge naturally as Nshr approaches N .
Therefore, any existing discriminability of target avalanche activity from distractor
activity is quickly diminished with increasing Nshr (Fig. 4b–d). However, this con-
vergence is bolstered by runaway activity, or activity spreading out from the strongly
synchronous target units. This cross-talk between the subnetworks is also a factor in
why the critical value of α decreases as we increase Nshr .

Addition of inhibition. One way to circumvent runaway activity and alleviate the
co-activation of background populations is to employ inhibitory interactions. Indeed,
in the network with structured inhibition, we find that the coupling strength for which
the target activity is critical is now robust against changes in Nshr (Fig. 5a), as well
as against the number of subnetworks embedded in the network Nsub (not shown) up
to an overlap of Nshr = N/2. After this point, non-neighboring subnetworks begin
to share units, which is an effect our choice of inhibitory topology cannot offset.
We can verify that the cross-talk between subnetworks is negligible by plotting the
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Fig. 5 a The KS statistic of the avalanche size distributions in the target population as a function of
the subnetwork overlap Nshr and the coupling strength α, in the network with mixed excitation and
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analytical value of the critical α for a globally connected, stand-alone network of N
units in comparison to the KS statistic minima (Fig. 5a, red line).

The reduction in activity spill-over from the target population as well as the sup-
pression of the externally activated distractor units is also apparent in the correspond-
ing avalanche size distributions (Fig. 5b–d). In comparison to the dynamics in the
absence of inhibition, we find that synchrony in the distractor population is further
quenchedwhile overall background activity levels are lowered. This across-the-board
decrease in background activity also contributes to the formation of a larger buffer
region of supercriticality between the critical point, and the transition to the infinite
avalanche regime. While an average α increase of about 4% is sufficient to bring the
purely excitatory network from critical dynamics into the infinite avalanche regime,
an average increase of about 8% in α is required for the network with inhibition.

Task performance. The discrepancy between the synchronization levels of target
and distractor populations seems promising for putative read-out mechanisms to
successfully perform figure-ground segregation. To capitalize on this finding, we
use two leaky integrate-and-fire (LIF) neurons, acting as coincidence detectors, for
distinguishing between figure and background. We feed the population activity of
the target population to one LIF neuron, and activity of the distractor population to
a second LIF neuron. In order to employ the LIF neurons as coincidence detectors
and exclude information contained in the firing rates, we normalize the total input
to each LIF neuron over the duration of a trial by its sum (Eq. 4). Specifically, the
membrane potentials Vtar (t) and Vdis(t) of the respective read-out neurons evolve
according to
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τ
dVp(t)

dt
= −Vp(t) + f

K∑

k=1

s̄p(k) δ(t − kΔt) (3)

where p ∈ {tar, dis}, τ is a time constant with τ = 10ms, and f denotes an arbitrary
gain factor. The ODE was numerically integrated using the Euler method, with the
spiking threshold at Vθ = 1.

Inputs s̄p(k) are derived from the discrete population spike time series sp(k)which
contain the size of the avalanche which took place in population p at simulation time
step k = 1 . . . K of the discretized dynamics (Eq. 1). The avalanche size is defined
as the number of units which elicited a spike in the same time step k due to recurrent
input. Since we separately record the population activity of the target and distractor
populations, star (k) and sdis(k), respectively, and each population contains N units
in total, s assumes integer values in the interval [0, N ]. As mentioned before, in order
to eliminate a performance increase due to rate differences between the populations,
s̄p(k) is obtained by normalizing the population activity by its sum over time.

s̄p(k) = sp(k)∑K
k ′=1 sp(k

′)
(4)

where once again p ∈ {tar, dis}. For feeding the network outputs s̄p(k) into the
LIF neurons, we choose the width of our simulation time step Δt = 0.02 ms, such
that the average firing rate of a target figure unit, when the whole figure subnet-
work was activated at the critical point, was approximately 40–50 Hz (depending
on Nshr ). This choice of Δt additionally revealed a periodic activity of large sized
avalanches, or oscillatory behaviour, in the γ -frequency range—a realistic setup for
a local subnetwork in the visual cortex [11].

Figure detection performance Pf ig is then defined as the difference between the
output rates of the two read-out neurons, which in addition to α and Nshr depend on
the gain factor f . In other words, how the task performance behaves, and where in
the phase space it exhibits a maximum, changes depending on the value of f .

In order to isolate the effects of Nshr andα on performance, we first assesswhether
a global maximum can be located for the performance as a function of f . This is
carried out by first computing the task performance Pf ig(Nshr , α, f ) in the whole
phase space spanned by Nshr and α for a given value of f , and then computing
the maximum �per f ( f ) = max

Nshr ,α
[Pf ig(Nshr , α, f )] for each f . We then locate the

factor fopt at which �per f ( f ) reaches its maximum. To achieve the desired degree
of precision with lower computation time, we implement a golden section search on
the function �per f ( f ) in the interval f ∈ [0, 0.02].

Within this range, we found that �per f ( f ) has a clear global maximum at fopt
(Fig. 6a). Typically the performance maxima are found at smallest values of Nshr and
large, supercritical values of α, where target activity is high and distractor activity is
almost completely suppressed (see e.g. Fig. 6b). The global maximum shown here
is close to a rate difference of 150 Hz, but the value of the performance will vary
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depending on Nshr and read-out parameters such as the time constant τ of the LIF
neurons (see Sect. 5.1 for a more in-depth discussion).

The value of f which maximizes�per f ( f ) appears to be relatively robust against
changes in other parameters such as the number of externally driven background
units and the read-out neuron time constant τ , when chosen within a biologically
plausible range (seeSect. 5.1). Interestingly,when adopting the value f = fopt , figure
detection performance in the phase space peaks close to the critical α for most
medium-sized values of Nshr (Fig. 6b). We find, as would be expected, that for a
small number of shared units between subnetworks, where the risk of activity leak is
low, it is most advantageous for the local figure population to display supercritical,
strongly synchronous activity, in order to maximize coincidence detection. As Nshr ,
along with the overlap of the target and distractor populations, increases, figure
detection performance Pf ig drops and the location of the peak shifts towards the
critical α. These findings suggest that the critical state provides the optimal regime
in which to perform feature integration in our model for a range of medium to large
subnetwork overlap Nshr .

3.3 Summary

In this sectionwehave inspected the dynamics of an analyticallywell-understood net-
work of EHE units, where mutually excitatorily coupled subnetworks are embedded
into the coupling matrix. Each subnetwork can be interpreted as representing a visual
object, or figure, defined by an ensemble of local features. As soon as these features
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are collectively present in a stimulus, the subnetwork will engage in synchronous
activity, thus enabling coincidence detectors to optimally signal the presence of the
figure when the dynamics are poised close to the critical point. Implementing struc-
tured inhibition between subnetworks which share units efficiently prevents cross-
talk between neighboring populations, and makes the critical value of our control
parameter α robust against changes in the number of shared units Nshr as well as
the total number of subnetworks Nsub. Thus inhibition serves to make computation
with critical dynamics structurally invariant, since little to no changes in the existing
network topology would be necessary as the network expands and scales up.

Taken together, our results suggest that a task requiring fast and accurate integra-
tion of spatially extended information may benefit from figure representations in the
form of critical subnetworks. When individual feature detectors in such subnetworks
are simultaneously driven by a stimulus, large avalanches can cascade through them
rapidly and in a synchronous manner. Capitalizing on this, our findings indicate that
the critical state will provide the best figure-ground segregation results in a syn-
chrony coding scenario, given realistic resource constraints such as a limited number
of neurons. Overall, these results imply that bottom-up, stimulus-driven modulations
of visual information processing, and well-known psychophysical phenomena such
as the “pop-out” of more salient stimuli and suppression of distractors, may benefit
from local subnetworks operating close to the critical state.

4 Attentional Modulations of Oscillatory States

In this section, we will talk about how operating close to a phase transition may
benefit top-down modulations of information processing. In a specific example, we
will focus on how the experimentally observed phenomena accompanying visual
selective attention may be reproduced in a simple network model poised close to a
transition boundary.Wewill also discuss howsuch anoperational regimemay support
rapid and flexible enhancement of stimulus representation, as well as represent the
information entropy maxima given certain read-out restrictions.

4.1 Selective Attention Improves Object Representation

Motivation. As described in Sect. 2, selective visual attentional mechanisms are
associated with the emergence of γ -oscillations in visuocortical areas. In addition,
attention modulated increases in γ -band power have also been observed accompany-
ing increases in spike-field coherence [19], supporting our hypothesis that cascades
of rapid spiking activity may play a role in mechanisms underlying selective visual
attention. In particular, a top-down modulation of spike time correlation seems to be
necessary to dynamically resolve which information will be gated in and which will
be gated out by downstream visual areas [18, 23].
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In this section we will probe in which ways improved synchrony in the γ -band
under selective attentionmay contribute to an improvement in information processing
in the visual cortex, and how such an improvement may coincide with a phase
transition boundary in system dynamics.

Our model is motivated by an electrophysiology experiment [67] where a rhesus
monkey (Macaca mulatta) had to perform a demanding delayed-match-to-sample
task on one of two simultaneously presented, dynamic visual stimuli. These stimuli
consisted of morphing shape sequences covering about 4o × 4o of visual angle (for
examples see Fig. 7). The monkey was instructed to attend to one of the stimuli,
memorize the initial shape, and release a lever as soon as the initial shape reappeared
in the morphing sequence. In parallel to this task, local field potential (LFP) record-
ings were performed with an epidural multielectrode array implanted over visual
areas V1 and V4.

For three reasons, this experiment is interesting for our framework: First, rec-
ognizing the target shape required the monkey’s visual system to integrate local
information into a global percept. This had to be done rapidly and continuously,
since the shapes were morphing and the target could appear at different times during
a trial. Second, neural activity was recorded in an area (V4) which is believed to be
central for shape perception, and with a method (epidural recordings) where a single
electrode has access to a large population of neurons and is especially sensitive to
large synchronous events. Third, the task was cognitively demanding and was not
possible to perform without directing attention towards the behaviourally relevant
stimulus.

Indeed the LFPs exhibited strong synchronization in the γ -band, which became
even strongerwhen the stimulus inside the RF of the corresponding neural population
was attended [67]. Although LFP recordings have a coarse spatial resolution, the γ -
activity proved to be specific enough to successfully be employed in discriminating
between different shapes in the RF [56]. Under attention, differences in synchronous
activity between shapes were enhanced, hence improving classification performance
of different visual stimuli [56].

This prompted us to ask: can these observations of neural representations of
complex shapes and their modulation by selective attentional mechanisms be linked
to correlated activity in the form of neuronal avalanches?

Model setup and dynamics. To answer this question we built a minimalistic model,
where recurrently coupled local networks of leaky integrate-and-fire (LIF) neurons
process the individual shapes (Fig. 7, for details of model setup and data analysis
please refer to [71]). We assume that the epidural recording electrode averages over
a large population of M neurons. Each of these neurons can be, as described and
illustrated in the previous chapter (see Fig. 3), part of a subnetwork specialized in
the processing of a particular shape. Presentation of a visual stimulus S will activate
a subset of N < M neurons (Fig. 7b) responding to the presence of the particular
features contained in a specific shape, while the neurons representing features not
contained in the current shape will remain silent. For simplicity, our simulations only
consider the subpopulation of N neurons currently activated by the stimulus, and for
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Fig. 7 aArandomly coupled recurrent network ofmixed excitatory (80%) and inhibitory (20%)LIF
neurons (left) generates action potentials which are observed by an (epidural) electrode, yielding
local field potentials (LFPs) modeled as a sum over the pre- and postsynaptic network activity
convolved with an exponentially decaying kernel. b Different stimuli in the visual field (shapes, on
the left) activate different neuronal units according to their receptive field properties. The activated
units select stimulus-specific subnetworksW A orWB (all of size N andwith connection probability
p, examples in blue and red), whose coupling structures differ slightly in graph theoretical measures

each shape we assume to have a different random coupling matrix WS describing
only the recurrent interactions among the currently activated subpopulation.

The shape-specific couplings WS were generated with a sparse connection prob-
ability of p = 0.05 (Erdős–Rényi graph). With a finite N , such randomly generated
couplings yield different graph theoretical parameters, such as mean in-degrees,
mean out-degrees, mean betweenness centrality etc. The varying properties of the
different subnetworks give rise to different dynamics, and are responsible for dif-
ferent stimuli producing different LFP spectra in our model (Fig. 7b). Neurons are
driven externally by Poissonian input spike trains with constant rate fmax = 10 kHz.
In order to analyze the activity of the subnetworks in a way similar to the analysis of
the experimental data, we construct an LFP time series by smoothing the sum of the
input and output spikes with an exponential filter. Spectral power of each time series
is obtained, as in the experimental papers [56, 67], using a wavelet time-frequency
decomposition. Attention is simulated by multiplicative modulation of the gain of
all neurons.

As before (Sect. 3.1), we employ a separation of time scales, which allows us to
record the size and duration of distinct avalanches exactly.
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4.2 Results

The most important parameters determining the network’s dynamics are the average
excitatory and inhibitory synaptic input strengths Jexc and Jinh . We define Jexc as
the absolute strength of an excitatory synapse and Jinh = jinh · ε, where jinh is the
absolute strength of an inhibitory synapse and ε is the ratio of the number of inhibitory
neurons to the number of excitatory neurons.We investigated the model behaviour in
the phase space spanned by these parameters, and quantified the discriminability of
the LFP spectra of different subnetworks in short, single trials. Simultaneously, we
determined the phase transition boundary of the network based on neuronal avalanche
size distributions.

Avalanches and gamma-oscillations. As one would expect, by independently
increasing the strength of the excitatory synapses, or by decreasing the strength of the
inhibitory synapses, we can induce synchronization in each subnetwork (Fig. 8). The
power spectra display a characteristic peak at γ -range frequencies, which grows with
enhanced synchrony, as well as a 1/ f offset, characteristic of neuronal background
activity.

This transition to more synchronous activity is well reflected in the avalanche
dynamics of the network. If we look at subnetworks with high inhibition and low
excitation, we have exponential avalanche size distributions (blue curve in Fig. 9a),
signifying, on average, small avalanche sizes and low overall correlated activity.
As we increase excitation or decrease inhibition in the subnetwork, we observe
supercritical size distributions (red curve in Fig. 9a), characterized by a large bump
at large avalanche sizes, signifying highly correlated activity. A similarly abrupt
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Fig. 8 a LFP time series generated by the model. We increase neural gain in the model in order
to enhance synchrony under the attended condition. b Trial-averaged power spectra of the LFP
signals during presentation of different shapes (indicated by different color shades) obtained from
the model in comparison to the experimental data. For the model, different shapes are represented
by the trial- and time-averaged power from different subnetworks. Experimental data shown is
courtesy of Dr. Andreas Kreiter, Dr. Sunita Mandon and Katja Taylor [67]
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Fig. 9 a Avalanche size
distributions for three
different synaptic strength
values producing
asynchronous to
synchronous spiking activity.
Corresponding parameter
values in phase space are
marked in matching colors in
panel b. b The γ -measure as
a function of the excitatory
and inhibitory coupling
strengths. In the regions with
〈γ 〉 = 1 all subnetworks,
representing all stimuli, are
displaying supercritical
dynamics, and in regions
with 〈γ 〉 = 0 all
subnetworks are displaying
asynchronous, typically
subcritical activity. The blue
and red curves indicate the
upper and lower boundaries
of the transition region. c
Discriminability index based
on the LFP spectra of each
stimulus, as a function of
excitatory and inhibitory
coupling strengths. Stimulus
representation based on the
oscillatory power of
subnetworks peaks rapidly in
a narrow region of the phase
space. The transition region
identified in b is indicated by
the blue and red curves.
Upper left triangular region
in gray: parameter
combinations not assessed in
simulations (highly
asynchronous regime). The
dotted gray line in b, c marks
parameter combinations with
perfect balance between
excitation and inhibition
(Jexc = Jinh)
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transition in dynamics is also apparent in the distributions of avalanche duration, and
average avalanche size for a given duration [71].

We next identified where exactly in phase space model dynamics transition from
asynchronous to regular oscillatory activity, using the avalanche distributions. We
achieve this by using the γ -measure, which is a function of the relative weight of the
tail of the size distributions close to the system size N . If this relative weight exceeds
a given threshold, the γ -measure assumes the value of one, signifying supercritical
dynamics, otherwise it is zero [71].

If we plot the γ -measure averaged over all subnetworks 〈γ 〉 for each point in the
phase space, we can visualize what percentage of the subnetworks have transitioned
to the supercritical regime (Fig. 9b). This shows that between excitation-dominated
and inhibition-dominated dynamics, there is a narrow transition region inwhich some
subnetworks are already supercritical while others exhibit asynchronous dynamics.
But how does this transition relate to network function?

Stimulus discriminability. To answer this question, we wanted to understand how
well stimulus identity is represented in the synchronous activity of each subnetwork
in our model. For this purpose, we quantified the discriminability of each stimulus
based on the difference between the trial-averaged LFP spectra of different stimuli,
normalized by the trial-to-trial variance of the spectra for each, individual stimu-
lus [71]. In essence, this gives us a measure (discriminability index) of how much
the LFP spectra vary between presentations of different stimuli as compared to how
much the spectra vary between different trials using the same stimulus. Displayed in
the recurrent coupling phase space, we see that stimulus discriminability increases
dramatically in the small region where the network dynamics transition rapidly from
asynchronous to synchronous regimes (Fig. 9c, area between the blue and red curves).

These results suggest that networks operating close to the transition boundary are
capable of rapidly enhancing stimulus representation in their dynamics, with only
small modulations to the neuronal input gain. If true, this means that flexible tuning
of information processing by attentional mechanisms is optimal when the network
employs a ‘ground state’ close to or within the transition region.

However, these findings raise two important points to consider:

1. In our model it is so far not clear how or whether downstream visual areas can
make use of the stimulus information contained in the LFP spectral power repre-
sentation, and,

2. while the slope of the stimulus discriminability index is favorable for rapid mod-
ulations of object representation at the boundaries of the transition region, its
absolute magnitude is maximized within the transition region. However, within
the transition region, a large number of subnetworks already display supercrit-
ical activity, which is strongly synchronous and exhibits a high degree of cor-
relations. Ideally, we would like to have a better understanding of the trade-off
between enhanced stimulus discriminability, and the loss of information at the
single spike level due to increasing correlations, within and around the transition
boundaries.
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Spike pattern diversity. To address these points, we proceeded to compute the
information entropy [59] within the coupling space, in order to assess the diversity of
the spike patterns generated in response to stimuli. In doing so, we consider different
scales of observation on which read-out of these patterns by neurons in downstream
areas might take place. At the finest scale of observation, parametrized by K = 1,
the read-out mechanism has access to complete information about the subnetwork
spiking activity. In this case, it can discriminate between spikes originating from
distinct neurons. At the coarsest observation scale, K = N , the read-out mechanism
is not capable of observing every individual neuron, but rather integrates the spiking
activity of all neurons at each discrete simulation time step (please see [71] for
details).

This is implemented by calculating the information entropy H(X) of the spike
patterns X, where each state Xi is based on a binary word of length N formed by the
spiking activity at a given time step. For K = 1, the state variable X consists of N
channels: each channel assumes a value of 1 if the corresponding neuron generated
an action potential at time t , and 0 otherwise. The scale parameter K then reduces a
spike pattern comprising spikes from N neurons to a representation of N/K channels
with each channel containing the summed activity of K neurons (Fig. 10a).

Quantified this way, we find that information entropy declines drastically within
the transition region for all K (Fig. 10b–c). As we increase K , however, the entropy
maxima in the phase space are shifted towards the transition region and to higher
coupling strengths (compare Fig. 10, panels b and c).

4.3 Summary

In this section we have shown that in a network of leaky IAF neurons, the tran-
sition region between asynchronous and highly correlated dynamics, identified on
the basis of neuronal avalanches, correlates well with a peak in stimulus discrim-
inability. However, such enhancement of object representation comes at the cost of
dramatically reduced information entropy in spike patterns as a larger number of
subnetworks begin to display supercritical dynamics with increasing relative exci-
tation. This dynamical effect implies the existence of an optimum between linking
features together and losing detailed stimulus information. How far this optimal
working point for the brain is from criticality strongly depends on the nature of the
function being computed, and the corresponding read-out mechanisms. In particular
in a passive cognitive state, the cortex might be further from criticality, but ready for
top-down mechanisms of selective attention to kick in and rapidly enhance object
representation as necessary.
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Fig. 10 a Information
entropy of the spike patterns
is calculated using state
variables Xi . At the finest
observation scale (K = 1),
Xi consist of N -dimensional
binary vectors, which
represent whether each
neuron fired a spike (1) or
not (0) at a given point in
time. For larger K , the
activity of K adjacent cells is
summed to construct Xi . b
Information entropy in
coupling space for the finest
observation scale (K = 1). c
Information entropy in
coupling space for the
coarsest observation scale
(K = N ). For both b and c,
the results are averaged over
all subnetworks. Regions
where entropy is largest,
namely 90 and 95% of the
maximum entropy, are
indicated by thin and thick
red lines, respectively. Solid
black lines mark the
transition region and the
dashed gray line the perfect
weight balance as in Fig. 9c
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5 Discussion

In this chapter we have investigated a specific role for critical dynamics in the cortex,
namely, the rapid dynamic modulation of visual information processing. In order to
demonstrate the versatility of our approach, we have focused on two distinct exam-
ples: one where changing stimulus salience modulates local subnetwork dynamics
in a bottom-up manner, and one where top-down selective attentional mechanisms
regulate oscillatory activity in local circuits. In both cases we have shown that system
dynamics transition rapidly as networks get closer to a critical point, and thus being
poised at the critical state provides us with an optimal regime in which to flexibly
modulate network activity, with either small modifications of stimulus properties or
changing task demands.

In particular, we have shown that both an increase in stimulus salience and atten-
tional shifts may push local subnetworks processing a behaviourally relevant figure
or object in the visual field towards a critical state. In the bottom-up scenario, such
a push is accompanied by an improvement in figure detection task performance
(Fig. 6) and in the top-down example by an enhancement of object representation in
the oscillatory dynamics of these subnetworks (Fig. 9). Taken together, the two dis-
tinct scenarios, both benefiting from critical dynamics, hint at a generic correlation
between fast and flexible information processing and an operating regime close to
a phase transition, which is not restricted to a single mechanism. Importantly, these
results provide us with concrete examples of how local emergence of criticality may
play a functional role in thoroughly studied visuocortical phenomena.

In light of these findings we argue that the active cortex is not globally operating
in a critical regime at all times but that the differential in correlations, both over
time and space, is an effective tool for the cortex to selectively enhance the pro-
cessing of relevant sensory information. In general, our findings imply that selective,
preferential or otherwise dynamic processing of visual information in a continuously
changing visual environment may be supported by local subnetworks operating close
to a critical state, and our results show that in models under realistic constraints, the
critical state may yield optimal performance for downstream read-out mechanisms.

5.1 Robustness of Results

We limited the models presented in this chapter to minimalistic systems capable
of demonstrating the relevant effects. The resulting lack of a large number of free
parameters facilitated confirming that our results don’t critically depend on a very
specific choice of parameter combinations among many.

In the feature integrationmodel, we have run parameter scans overmost of the free
parameters. We have confirmed that the robustness of the critical coupling parameter
against subnetwork overlap Nshr in the network with inhibition does not depend on
the number of externally activated units Nact , subnetwork size N or the number of
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subnetworks Nsub. Concerning the read-out results, we have checked that varying
the LIF neuron time constant τ within a biologically plausible range (5–20 ms) does
not alter our conclusions qualitatively. However, we found the position of the task
performance maxima in the phase space spanned by Nshr and α to strongly depend
on our choice ofΔt , whenΔt is varied in isolation. Nevertheless, changes inΔt also
heavily influence the value of fopt . Therefore, repeating the golden section search
and using the appropriate value of fopt for a given Δt , we observed the performance
maxima always close to the critical point (within the range Δt = 0.01–0.02 ms).

We have used the non-leaky integrator units due to the analytical understand-
ing of how the coupling strength modulates the avalanche size distributions. More
complex neuron models (e.g. the addition of leak currents or conductances) may
lead to varying results, although network behaviour may be reproduced qualitatively
given small leaks and adjusted parameters [13]. Nevertheless, with the appropriate
choice of network topology, which ensures synchronous activity in subnetworks and
properly structured inhibition to abate cross-talk between subnetworks, we would
expect similar results for the task performance. Our specific choice of the read-out
mechanism (LIF with normalized input) is arbitrary and we believe any coincidence
detector scheme should produce a similar effect.

In the attention model, our conclusions depend mainly on the facts that in our
model: (1) the emergence of synchronous spiking activity can be described by a
phase transition as a function of an excitability parameter, and (2) synchronizability
of the network depends implicitly on the topography of its connections. Therefore,we
believe that as long as these requirements are met, discriminability enhancement will
correlate with a narrow choice of parameters which generate near-critical dynamics.

5.2 Physiological Plausibility

In this chapter we restricted ourselves to relatively simple models in order to ensure
the demonstrated effects do not require fine-tuning of a large number of free parame-
ters. In general, many modelling studies which similarly put forward computational
benefits of criticality rely on comparatively abstract measures or are restricted to
homogeneous or slowly-driven networks [6, 32, 35, 61]. In order to better under-
stand the dynamics of the awake, active cortex, where such computational benefits
will presumably be most conspicuous, we explore the dynamics of highly struc-
tured (Sect. 3), strongly-driven (Sect. 4) networks, performing realistic tasks, with
biologically plausible read-out mechanisms.

As a read-out mechanism in the feature integration model, we used coincidence
detection. We normalized the inputs into the read-out neurons such that the input
from the neuronal population processing a figure and the input from the neuronal
population processing the distractors in the background would be indistinguishable
using simply the rate information. This is equivalent to adjusting stimulus contrast,
which contour detection performance is known to be resistant against [28]. In addi-
tion, although firing rate is a good discriminator in our specific, simple model, in
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other models which incorporate higher biological complexity, such as detailed bal-
ance [74] or inhibitory normalization [7], rates might carry little to no information
useful for figure detection. Taken together with our results, this may imply that the
cortex transmits local stimulus information using rates, and retains information about
global object configurations in the time domain, thus implementing a multiplexed
coding scheme.

In the brain, variability in connectivity of neurons in a local population is not ran-
dom or homogeneous, but signifies a highly structured global network. As such, the
biological cortex is not a random graph as was used in our attention model. However,
the model captures the general idea that local feature detectors collectively process
an object in the visual field, and that in an electrophysiology experiment the activ-
ity of a random selection of such local detectors is represented in the recordings.
Furthermore, the fact that different subnetworks have different critical points in our
phase space originates from modest topological differences between the randomly
generated coupling matrices. This means that the demonstrated transition region
shrinks and ultimately approaches a transition ‘line’ at the limit N → ∞, while dis-
criminability decreases to chance level. One may alternatively choose to extend the
model to encompass a more structured topology established, for example, by a bio-
logically inspired learning rule. Hence, enhancing topological differences between
subnetworks in the attention model would increase the size of the transition region
and make our results more robusts against increasing system size. In addition, the
general effects observed in our attention model are compatible with other tentative
mechanisms relating to how attention may intervene with feedforward processing
such as rate increases [18, 67].

For the feature integration model, the 1-dimensional and symmetric coupling
structure may be replaced by a more random assignment of units to multiple sub-
networks or learned dynamical attractors with strong recurrent excitation within a
subnetwork. With this altered topology, we would still expect a coincidence detector
to display high performance around the critical point, as long as there’s mutual inhi-
bition between units belonging to different subnetworks. This is because the most
important ingredient for the maximized figure detection performance with coinci-
dence detection is synchronous activity within a target subnetwork which is absent
between random background units.

Finally, our investigations raise one important question: Is our scheme only useful
for a single stage of processing, or would it still be applicable in a multilayer model?
This was not explored in this chapter, however, one important theoretical property
of critical networks is their branching parameter being unity, often thought of as
being beneficial for dynamics where activity should neither die out nor explode over
time. This idea is reinforced by recent investigations which show that arbitrarily deep
neural networks may only be trained close to criticality [58].
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5.3 Critical Dynamics, Structure, and Function

Currently, there is a growing interest in bridging the gap between the abstract con-
cepts surrounding critical phenomena in the thermodynamical sense and biological
concepts such as structure and function which are of interest to neuroscientists. For
example, new studies are aiming to establish links between more subtle effects of
different connectivity structures on criticality [43] as well as investigating the capac-
ity of networks to support replay of learned spatio-temporal patterns near a phase
transition [57].

In our work, we intend to contribute to this growing body of literature, by provid-
ing examples which directly relate to experimental settings at the behavioural level.
We suggest that critical dynamics may be favorable for supporting rapid changes in
network activity, necessary for flexibly modulating information processing based on
changing stimulus properties and task requirements. In order to achieve this flexi-
bility, one factor plays a crucial role in our models: that the active cortex, strongly
stimulated by sensory input, is not globally and constantly at a critical point. Similar
observations were made previously, demonstrating progressive disturbance of crit-
ical dynamics with sustained wakefulness [44] and cognitive load [70]. Similarly,
it has been suggested that avalanche dynamics in vivo display differences between
wakefulness and deep sleep [52] andmay be poised at a slightly subcritical state [53].
In an attempt to explain many of these observations, we suggest the tuning of local
subnetworks towards and away from criticality as a generic mechanism to modulate
sensory information processing.

Some recent literature suggests that a shift in neuronal dynamics away from the
critical state may be linked to focused attention as well as active preparation for stim-
ulus processing, seemingly at odds with our predictions. For example, it has been
shown that a scale-free distribution of neuronal activity cascades in human EEG is
associated with the resting state while focused attention shifts the dynamics towards
a subcritical regime [14]. The conclusions we present in this chapter, however, are
based on dynamics of local subnetworks, spanning much smaller spatial and tem-
poral scales than a whole-brain EEG. Furthermore, cascade analysis of continuous
data, such as EEG signals, typically depends on a thresholding of the signal in time
domain, and will mainly capture the high amplitude oscillatory activity in the lower
frequency bands, such as α-waves, which are known to decrease with more vigilant
mental states. Similarly, power-law distributions in spiking data have been linked
in awake monkeys with eye closure and asynchronous dynamic states have been
observed when the subjects had their eyes open in a dark setting [24]. However, due
to the lack of stimulus evoked activity in the experimental paradigm, the presented
dataset lacked discernible oscillations in the γ -band, which is the dominant synchro-
nization frequency in our models. Therefore, we do not believe these results are in
contradiction with our predictions. In fact, inhibitory suppression of cortical subnet-
works which are irrelevant for the processing of a visual stimulus is a fundamental
part of our feature integration model, which may be related to the asynchronous
dynamics observed in these studies.
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From an experimental perspective, we hypothesize that signatures of criticality in
stimulus-evoked activity and under attention may be readily and consistently found
in vivo only when analyzing the activity of functionally connected subnetworks,
during the presentation of a suitable stimulus. Currently, both subsampling of relevant
populations as well as the separation of avalanche and external drive time scales
present challenges for experimental tests of this hypothesis. However, we believe that
both the efforts to correct for subsampling effects in data analysis [36] and emerging
developments in multielectrode recording techniques and optogenetic methods will
be instrumental in advancing our understanding of critical dynamics in the cortex.
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Statistical Models of Neural Activity,
Criticality, and Zipf’s Law

Martino Sorbaro, J. Michael Herrmann and Matthias Hennig

Abstract We discuss the connections between the observations of critical dynamics
in neuronal networks and themaximum entropymodels that are often used as statisti-
cal models of neural activity, focusing in particular on the relation between statistical
and dynamical criticality. We present examples of systems that are critical in one
way, but not in the other, exemplifying thus the difference of the two concepts. We
then discuss the emergence of Zipf laws in neural activity, verifying their presence
in retinal activity under a number of different conditions. In the second part of the
chapter we review connections between statistical criticality and the structure of the
parameter space, as described by Fisher information. We note that the model-based
signature of criticality, namely the divergence of specific heat, emerges indepen-
dently of the dataset studied; we suggest this is compatible with previous theoretical
findings.

1 Introduction

The debate about criticality in neural systems began with the observation of power
laws in a number of experimentally measured variables related to neural activity.
The first experimental observation of neuronal avalanches [6] found that their size
distribution follows a power law with exponent of about −3/2, and their duration
distribution follows one of exponent near−2 in cortical slices. These values are com-
patible with the exponents expected in critical branching processes—a well-studied
topic in the field of complex systems physics [2]. Similar observations have been
consistently reported in literature; moreover, the presence of power-law avalanche
statistics was found to be theoretically justified by functional arguments on numerous
occasions [5, 12, 42, 43, 49], and was shown to differ in different brain states [15,
39]. For an excellent high-level discussion of the topic, see [7].
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An equally interesting instance of a power law is the finding that, in the population
statistics of a neural network’s activity, the rank of a state (the first being the most
frequently observed, and so on) and its frequency are inversely proportional. This
phenomenon, known as Zipf’s law, was first observed by Auerbach in 1913: “If one
sorts individuals by a given property in a descending fashion and stops doing so
at rank n1, or at n2, or generally at rank nx , where the property has gone down to
values p1, p2, px , then a certain law exists between nx and px . In our case, this law
is especially simple, it is expressed by the formula: nx · px = constant” [3]. This
author already alluded to the possibility of more complex forms of the same law
(e.g. for the distribution of wealth), but did not speculate why it assumes its simplest
form in the studied data. In the mid-1930s, the American linguist George Kingsley
Zipf discovered that the frequency of occurrence of words in Joyce’s Ulysses and
American newspapers follows the same law [52],which is today calledZipf’s law: the
frequency of eachword decays as a power law of its frequency rank.AfterAuerbach’s
original example, city sizes [10, 22], Zipf’s law was confirmed in a variety of fields,
including citation counts in scientific literature [40], earthquake magnitudes, wealth,
solar flare size, number of emails and phone calls received, and many others [33].

Over the years several attempts have been made to understand Zipf’s law. Zipf
himself explains it by the principle of least effort: If words are stored in a linear
array, then the low-frequency items are optimally located in a more distant place
than more often used ones. The product of distance and frequency can be considered
as a measure of the effort necessary to retrieve the word which he claims to be a
constant. However, the assumption of an array, where the effort needed for retrieving
an item is linear, which is necessary in order to obtain an inverse relationship rather
than a general power law, seems unnatural when considering how items are stored
in a neural network.

Another potential cause for the law can be seen in the idea of preferential attach-
ment [4]. If, for example, the probability to move to or away from a city is assumed to
be independent of its size, then Zipf’s law for city sizes emerges. Other assumptions
have been discussed and been shown to provide a better match for the distribution of
city sizes [50], but again this may not easily carry over to states in a neural network.

Li [26] demonstrated that the words of an artificial language that simply consists
of randomly chosen letters including a space sign tend to obey Zipf’s law. However,
the ‘space’ sign, which separates words in Li’s approach, plays no such role in the
analysis of neural data.

The authors of Ref. [1] aim at an explanation of Zipf’s law by the existence of
latent variables. Differently from the above attempts, this study is directly relevant
for the analysis of neural activity. It also subsumes the scheme proposed by Li [26].

Although all of these attempts have their interest, there is some agreement that a
deeper understanding is still lacking. In addition, there seems to be no clear justifi-
cation on why criticality in the statistical sense and Zipf’s law have been observed
in neural data, or what brain function might benefit from it. It is interesting in this
context that Zipf’s law is a system property, i.e. it depends on the number of elements
in the system and does not automatically apply to subset or unions of Zipfian sets. It
can not be reduced to the mere presence of a particular probability distribution (such
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as P(x) ∼ x−2), but requires a conditional sampling procedure to be reproduced in
a simulation [8]. The observations in neural data as well as a number of unsolved
problems with this subject make it a very interesting subject of further investigation.

In what follows, we will discuss the connections between the observations of
critical dynamics and maximum entropy models that are often used as statistical
models of neural activity, reviewing the recent literature on the matter, and debate the
possible relationship between this statistical concept of criticality and the dynamical
criticality related to avalanche statistics. First, we will illustrate the concept of Zipf’s
distribution, its origin, and its applicability to neural data. In Sect. 2, wewill introduce
maximum entropy models, and show their connection to criticality and Zipf’s law.
In Sect. 3, we will make three observations that emphasise the difference between
statistical and dynamical criticality: (Sect. 3.1) a system that shows dynamical, but
not statistical criticality, (Sect. 3.2) the process of fitting an energy-based model, and
(Sect. 3.3) the application of the theory of a large-scale corpus of biological data,
where Zipf’s law appears to hold, although the system is not dynamically critical. In
Sect. 4, we will show connections between statistical criticality and the structure of
the parameter space, as described by Fisher information. Finally, in Sect. 5, we will
return to the question debate whether there is a relationship between statistical and
dynamical criticality and conclude with an outlook on the problem.

2 Statistical Description of Spike Trains

2.1 Zipf’s Law in Neural Data

For the specific case of neural activity, Zipf’s law refers to the rank-probability law
for the occurrence of each possible pattern of activity, which has been observed to
follow a power law in the same sense as for words in the English language [48]. To
understand what we mean by pattern or state, we need to adopt a simplified way of
representing spike trains that we can call digital: discretising time in bins of equal
size δt , we can define a Boolean variable

σn(t) =
{
1 if neuron n spikes between t and t + δt

0 otherwise.
(1)

At any given time, then, the population activity is described by a codeword

σ (t) = (σ1(t), . . . , σN (t))

which describes, up to a precision of δt , the spiking state of the N neurons considered
(Fig. 1). Modelling the system statistically, in this framework, means giving a full
account of the probability of each possible codeword to appear. Note that, typically,
we are not concerned with the dynamics of the system, and we disregard temporal
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Fig. 1 Digitisation of spike
trains from 10 neurons into a
boolean matrix with bin size
δt = 20 ms. Each row
corresponds to the spike train
of an individual neuron, with
spikes represented as bars.
Vertical gray lines indicate
the boundaries of each bin.
On the right, the resulting
boolean matrix

0  0  0  1  1
0  0  0  0  0
0  0  1  1  0
1  1  1  0  0
0  0  0  1  0
1  0  0  0  0
1  0  1  0  1
1  1  0  0  1
0  0  1  0  0
0  1  0  0  1

correlations on scales larger than δt : this approach is suited to describe short-time
correlations across space or properties of the encoding. Needless to say, the choice of
δt can have important consequences on the results: in the limit of very large bin size,
the pattern where all neurons fire simultaneously will be the only one to be observed;
in the opposite limit of small δt , the silent pattern will be the most common, patterns
with a single active neuron arbitrarily rare, and multi-neuron patterns absent. The
results we discuss hold for bin sizes of the order of 5–20 ms, i.e. of the same order of
magnitude as the typical correlation length between neurons; this value is commonly
adopted in the literature [41].

To understand why Zipf laws are considered a signature of criticality, we will now
illustrate the relationship, exposed by recent literature, between them and the critical
points of models that have been used to describe neural activity, and are well known
in physics.

2.2 Statistical Modelling

The activity patterns of individual neurons and neural networks invariably display
stochastic characteristics. A common approach, which we can call top-down, of
modelling the nature of this activity is to make (simplifying) assumptions on the
actualworkings of neurons, synapses, andnetworks, in order to set up a computational
model the results of which can then be compared with experimental observations.
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A large part, perhaps the largest, of computational neuroscience is based on this
paradigm, predominantly by simulations of spiking neural networks.

Here, on the contrary, we are concerned with what we call bottom-up modelling,
which seeks to infer properties of neural activity in an entirely data-driven way.
Understanding the correlation structure, the distribution of firing rates, or the rep-
etition of identical patterns from experimental data are examples of this approach.
In other words, the data is described in terms of probabilities and other statistical
descriptors, instead of parameters directly implied by the biological or physical the-
ory.

In the bottom-up approach, a very broad family of models is available. We will
restrict ourselves to energy-based statistical models, a number of models developed
in the last decade which adopt a log-linear relation between probability and state
variables. In an energy-based model probabilities are expressed in terms of an energy
function E , in analogy with statistical physics:

P(σ ) = 1

Z
e−E(σ ),

where Z is the relevant normalisation factor. Many energy-based models used in
neuroscience adopt the aforementioned digital description of spike trains in terms of
binary variables: we will focus on these. In this case, for N neurons, σ can take 2N

different values, and determining the full population probability distribution requires
specifying 2N probabilities, which is an unrealistic task even for modest population
sizes. Assumptions on the analytical form of the distribution are therefore required
in order to infer a complete distribution from a relatively small number of samples.

2.3 Maximum Entropy Models

The first, and perhaps more elegant, strategy developed to this end is to adopt a
maximum entropy approach [21], in which one first selects what features of the data
should be exactly reproduced, and determines then the highest-entropy probability
distribution consistent with those constraints. Schneidman et al. [41] and Shlens
et al. [44] first applied this approach to neural data, using a Pairwise Maximum
Entropy (PME) model, which exactly fits all 〈σi 〉 and 〈σiσ j 〉, i.e. firing rates and
pairwise correlations. Indeed, the question behind that research was primarily related
to the importance of correlations in the vertebrate retina, including the study of
higher-order interactions.

The PME probability distribution over all codewords has the following form:

P(σ ) = 1

Z(h, J )
exp

⎛
⎝ N∑

i=1

hiσi +
∑
i �= j

Ji jσiσ j

⎞
⎠ . (2)
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The expression above is mathematically identical, in statistical physics, to that of the
canonical ensemble for the Ising model with arbitrary couplings, a generalisation of
the model originally used to describe ferromagnetism in solids [20].

By definition, a successful fit of a PME model correctly reproduces all firing
rates and pairwise correlations present in the data from the considered neural popu-
lation. Fitting based solely on second-order statistics does not imply that third-order
correlations and other statistical measures are correctly reproduced. Reports that
higher-order correlations are largely irrelevant were thus very surprising [41, 44,
46], although these observation may be restricted to low activity and high pairwise
correlations [51]. Assessing whether a maximum entropy model can capture addi-
tional statistics of the data provides a source of interpretability: If, say, a PMEmodel
can account for third-order correlations, then the latter are not constrained further
by the data. If, conversely, third-order correlations diverge from the PME prediction,
we learn that the neural activity uses higher-order statistics to encode information.
Whether this is the case depends on the system and on the distance between the
neurons considered [37].

Several attempts have been made at improving the quality of the fit of statistical
models, using different features as known statistics. The generalisation of Eq. (2)

P(σ ) = 1

Z(h, J )
exp

⎛
⎝ N∑

i=1

hiσi +
∑
i, j

J (2)
i j σiσ j +

∑
i, j,k

J (3)
i jk σiσ jσk + . . .

⎞
⎠

can describe any probability distribution of binary variables exactly.However, finding
the values of J (n) is computationally expensive and the benefits typically do not
outweigh the costs for n ≥ 3.

As a different way to assess at least some aspects of the higher-order statistics,
we can consider, for instance, the probability distribution of the number of neurons
firing in a time bin, p(K ), where K (t) = ∑N

i=1 σi , was used as a target. This can be
introduced as a further constraint in a maximum entropy model in combination with
firing rates and pairwise correlations, leading to the K -pairwise model [31, 47]. It
typically produces significantly better fits than a pure PME, and is much less compu-
tationally expensive than attempting to fit higher order cumulants. Another related
approach, the population tracking model, fits p(K ) together with the conditional
probabilities P(σi = 1|K ) of each neuron firing, given the current population firing
rate, providing a lightweight and interpretable model [36].

An example of an energy-based model which does not rely on the maximum
entropy principle, finally, is to use a restricted or semi-restricted Boltzmann machine
(RBM/sRBM). Despite not directly aiming at fitting correlations, p(K ), and cumu-
lants, as a maximum-entropy model would, RBMs were shown to perform at least
comparablywell in fitting all these aspects [24]. An advantage is that their complexity
can be tuned, offering a choice of various degrees of accuracy and the correspond-
ing computational costs. Additionally, contrastive divergence, the algorithm used
for fitting, is an approximate but relatively fast and reliable algorithm, which lets
one fit the simultaneous activity of a large number of units (up to several hundreds,
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whereas the exact learning algorithm for a PME model is not usable in practice over
N ≈ 40, although more efficient methods have been studied). Finally, RBMs can be
interpretable models, specifically by studying the roles taken by hidden units.

Although a detailed discussion is beyond the scope of this chapter, we should
at least mention the efforts to reproduce the time dynamics of the system, so that
the statistical model fits both the distribution of single-time bin patterns and the
conditional distribution of the pattern given the pattern in the previous time bin [11,
28, 32].

2.4 Phase Transitions in Models

Although this may initially seem less relevant from the point of view of research
in neuroscience, we should remind ourselves that the Ising model is one of the
earliest and most commonly studied paradigms of a phase transition. To understand
its behaviour, let us make the temperature dependence of Eq. (2) explicit:

PT (σ ) = 1

Z(h/T, J/T )
exp

⎛
⎝ 1

T

⎡
⎣ N∑

i=1

hiσi +
∑
i �= j

Ji jσiσ j

⎤
⎦

⎞
⎠ (3)

Note that, in the high temperature limit, this converges to a uniform probability:

PT→∞(σ ) = 1

2N
, ∀ σ .

Conversely, when T → 0, only a small number of states with non-zero probability
survive, the others becoming infinitely rare. If a system that obeys PT→0(σ ) is per-
turbed in any way, it will eventually converge to this stable set, under any reasonable
dynamics. In other words, the distribution becomes, in the zero temperature limit,
a finite set of stable attractors, the same as the stationary distribution of a Hopfield
network [19], where the attractors play the role of memory patterns.

Clearly, neither of the two limiting cases can be a realistic description of neural
statistics, and the truth lays in between them, in a regime where the model is much
more informative. The physics literature shows that there is sharp phase transition
between a disordered phase and a spin glass phase, with the exact location of the
critical point depending on the statistics of h and J [34]. It is then a natural question
to ask whether the Ising model that results from a fit to neural activity is in one of
the two phases, or poised near the critical point, and whether this relates to other
concepts of criticality in neural systems.

The divergence of specific heat, also called heat capacity, in a macroscopic system
is a classic signature of discontinuity in the properties of the system upon variation
of a single parameter, typically temperature (generalisations of this idea will be
discussed in the next section). The most classic example is the case of a change in
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the state of matter—solid to liquid, liquid to gas, etc.—where an infinitesimal change
in temperature through the critical point requires a finite amount of energy (the latent
heat). This is equally true for spin systems of the form we examined above. Tkačik
et al. [48] fitted a model of the form (2) to binned spike trains from recordings of
the salamander retina subjected to movies of naturalistic stimuli. They varied the
temperature of the model around T = 1 (this value corresponding to the fit to neural
data), and studied the specific heat as a function of T for an increasing number of
neurons.

Their result clearly showed a peak in the specific heat of their models, with the
peak temperature approaching T = 1 as N is increased. This is evidence that T = 1
coincides with the critical point, and therefore, the model is poised at criticality
for parameter values exactly corresponding to those that fit the neural data. Similar
observations were independently repeated, e.g. in [15, 31, 35], generating a debate
on the nature of this observation and its biological interpretation, as will be discussed
in later sections.

2.5 Model Criticality and Zipf’s Law

Zipf laws can be related to statistical criticality in the sense of models, as shown
in [48] (supplementary information), as follows. Call p1, ..., pk, ..., p2N the prob-
ability of occurrence for each of the 2N possible codewords. In statistical physics,
microcanonical entropy can be defined as S = logΩ , where Ω = Ω(E) is the num-
ber of states with energy lower than E . On the other hand, the energy level associated
with a pattern is a function of its probability:

Ek = − log pk + const.

Now, Zipf’s law states that, for every pattern, its rank rk ∝ 1/pk . In the notation
used above, note that rk = Ω(Ek). Therefore, Zipf’s law implies

log pk = − log rk + const.

Ek = Sk + const. (4)

If the above linear relation holds, then d2S/dE2 = 0. Since both specific heat and
the variance of energy are inversely proportional to d2S/dE2, these thermodynamic
quantities diverge. This is the classic signature of a second order phase transition.

The rank-probability relation defined by Zipf’s law, therefore, is a model-inde-
pendent way of showing criticality in this statistical sense. Its appearance guarantees
the divergence of the specific heat of a PME model fit to the same data, but does not
require complex and computationally expensive fitting procedures, and relies only
on the statistical properties of the data.
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3 Statistical and Dynamical Criticality

As we have mentioned, most energy-based models do not account for dynamics, as
they are concerned only with fitting a single-time bin distribution. The formulation
of the Ising model in physics describes a stationary distribution and does not include
any dynamics. Transition probabilities from a state to another can be added through
additional assumptions about the dynamics of the system. For instance, Glauber
dynamics [13] generates a Markov chain whose stationary distribution coincides
with the distribution (2). This is useful, for example, when sampling states from
that probability distribution. Avalanches can be observed in high-dimensional Ising
systemswhen they are driven out of stationarity by a change in temperature or applied
magnetic field. Therefore, it is not expected that maximum entropymodels reproduce
any aspect related to avalanche dynamics.

It is not clear a priori, then, whether the observation of Zipf laws and diverging
specific heats should be related to power-laws in the dynamics. In fact, finding a
connection between the two concepts seems challenging. In the next sections, we
will provide examples of how the two might be entirely distinct, which prompts
questions on the nature, meaning, and relevance of statistical criticality.

3.1 The Eurich Model Is Dynamically, But Not Statistically
Critical

For a discussion of the relationship between the two concepts of criticality, it is
interesting to consider the Eurich model for neural avalanches as a “testbed” [9].
It is mathematically well-understood and can be conveniently tuned, because the
parameter values for (quasi-)critical as well as sub- or super-critical behaviour are
known analytically (even for finite systems). The very definition of the model is such
that all neurons have identical properties, and the same for pairs, triplets, etc., of
neurons. As a consequence, all N patterns with exactly one active neuron appear
with the same frequency; all N (N − 1)/2 patterns with exactly two active neurons
appearwith the same frequency, and so on, giving the rank-probability plot a step-like
appearance, which cannot follow a Zipf law (Fig. 2).

It is tempting to consider the tail of the rank distribution. Although the number of
states increases with the activity (for neurally plausible activity levels), their prob-
ability decreases strongly if the firing rate (per time bin) is low. Therefore, steps
will disappear for higher ranks, which may or may not produce a power-law-like
behaviour. However, in the statistical approach, typically small values of Nδt (see
Eq. 1) are used, such that the potentially Zipf-like tail (Fig. 2, right) will be statisti-
cally irrelevant. It has also been claimed that the statistical approach is most likely
restricted to low-activity patterns [51].

Note that the rank curve would be less step-like if some form of heterogeneity is
introduced, as opposed to the complete symmetry between neurons that characterises
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Fig. 2 Avalanche statistics compared to Zipf law for the Eurich model in different regimes [9].
Here N = 100, and the critical point is at αc = 0.90: in this case, the avalanche size and duration
distributions most closely approach a power law with exponent −3/2, except for a cutoff due to
the finite size. The subcritical case (blue), on the other hand, shows short-tailed distributions, and
the supercritical cases (green and red) exhibit respectively one or many peaks at large values. In all
cases, the Zipf plot does not show power-law dependence. Note that the smoothing of the step-like
function is due to the finite sample size

the Eurichmodel. However, this would amount to an additional assumption that is, as
the Eurich model shows, not necessary for criticality. In particular, we would need to
assume that the patterns with a single active neuron already follow Zipf’s law. This is
a particular, but not unreasonable assumption, as this can be expected, for example,
in a scale-free neural network. In fact, we cannot rule out that a Zipf profile, or at least
an approximation, could be found just by tuning the distribution of firing rates, even
in the absence of correlations. Such a finding would entirely rule out any relation
to dynamical criticality, which appears exclusively as a consequence of emergent
phenomena deriving from complex interactions. However, it would still require a
specific distribution of firing rates among the neurons, an assumption that in itself
would prompt questions about its functional reasons. Firing rate distributions have
been studied extensively [30], and found to be highly skewed, with a small fraction
of neurons responsible for the majority of emitted spikes. A clear theory on why
this is an advantage for the encoding is still missing. In Sect. 3.3, we will consider
a case in which the Zipf relation holds even when correlations are destroyed, which
suggests the long-tailed firing rate distribution is sufficient for it to hold.

3.2 Fitting Energy-Based Models to Critical Activity

A natural way of checking if dynamical and statistical criticality are related could
involvefitting a statisticalmodel to neuralmodels that exhibit various kinds of dynam-
ics, and can be tuned to a supercritical (noisy), subcritical or critical regime. This
was one of the goals of in Ref. [15]. The authors identified five different dynamical
states of the cat and monkey cortex, studied their avalanche statistics, and evaluated
the temperatures corresponding to peak specific heats of Ising models fitted to each
dataset. The results did show a small but significant relationship between avalanche
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Fig. 3 RBM specific heats peak when fitted to a variety of datasets, with the peak approaching the
temperature of the fit as the model size increases. RBMs were fitted to simulated data with different
avalanche statistics: supercritical (left), critical (centre) and subcritical (right)

dynamics and specific heat peak location. However, it should be noted that some of
the results in this work were obtained with small datasets of six neurons only, which
may not offer insight on what happens in the thermodynamic limit.

We attempted a similar task fitting Bernoulli RBMs to the activity generated
by a tunable model of a neural network, similar to the binary, non-leaky, integrate
and fire model used by [12]. In this model, the strength of inhibition can be tuned,
leading to a network with low, random-looking activity and a short-tailed avalanche
distribution (high inhibition); or a network generating activity in large bursts (low
or no inhibition). The critical regime lies in between the two. Details about the
implementation of the model are given below.

We found that although the absolute value of the peak does depend on the cor-
relations of the data, its location is always at a temperature near T = 1 (which is
the value corresponding to the original fit), and further approaches this temperature
as the number of units increases, i.e. in the thermodynamic limit (Fig. 3). These
results are compatible with what was shown by [35], using a different dataset, for
the K -pairwise model.

It seems, then, not only that the statistical model that we fitted does not accurately
detect criticality in the dynamical sense, but it also exhibits statistical criticality no
matter the dataset it was fitted to. This implies, on the one hand, that the dynamical
criticality of a dataset and the statistical criticality of a model fitted to it are unrelated,
and, on the other hand, that a model fitted to datasets of very different nature all tend
to exhibit statistical criticality. This is compatible with an argument that was put
forward by theoreticians [29], as will be discussed in Sect. 4.2.

Methods: network model

The binary neuron model used for the simulations is similar to the one presented by
[12]. In this model, each neuron has a probability of firing given by aweighted sum of
its inputs, divided by a factor dependent on its own firing history. A fifth of all neurons
are inhibitory, while the rest are excitatory; the value of inhibition was tuned to 0.0,
1.0, or 2.0, to enforce different regimes, corresponding to different correlations and
avalanche statistics. While in the original work the connectivity was all-to-all, with
weights drawn from a uniform distribution, we modified it to identical couplings, but
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set on a network with scale-free degree distribution. This enforced larger variability
of firing rates between neurons; both experimental evidence and the theory in [25]
suggest this choice does not affect the location of the critical point. We simulated
1000 neurons, from which we took subsets of the sizes required for analysis, for 1
million time steps (conventionally taken to equal 1 ms). The resulting activity was
re-binned in 5 ms bins, to reduce sparseness.

Methods: RBM specific heats

As we will argue in Sect. 4.2, the direction that best indicates the critical point
coincides with the fist eigenvector (the one corresponding to the largest eigenvalue)
of the Fisher information tensor. However, in practice, this is never orthogonal to
the direction of increasing/decreasing temperature: thus, varying temperature is an
acceptable way to look for a phase transition.

In statistical physics, the general expression for the probability of a pattern in an
energy-based model at temperature T is

PT (x) = 1

Z(T )
e−E(x)/T .

The expression for the energy in the case of RBMs is

E(v, h) = −aᵀv − bᵀh − vᵀ Jh.

where v and h are vectors of visible and hidden binary variables respectively. Since
this expression is linear in the parameters ai , b j and Ji j for all i, j , changing the
temperature of a model coincides with rescaling these parameters by a linear factor
β = 1/T . In the following, we have adopted the standard strategy of fitting an RBM
to neural data, obtaining values for its parameters, and then rescaling them—this
means T = 1 (no rescaling) coincides with the parameters as they were fitted, the
values corresponding to a model that correctly reproduces the given data. Fits were
obtained by 1-step persistent contrastive divergence.

We can then compute the specific heats at different temperatures. The marginal
probability of v is

PT (v) = 1

Z

∑
h1...N=0,1

e
1
T (aᵀv+bᵀh+vᵀ Jh) = eaᵀv/T

Z

Nh∏
j=1

(
1 + eb j /T+(vᵀ J ) j /T

)

Disregarding an additive constant, the energy of a visible pattern can be expressed
as the logarithm:

ET (v) = aᵀv
T

+
Nh∑
j=1

log
(
1 + eb j /T+(vᵀ J ) j /T

)

In accordance with statistical physics, we can define
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c(T ) = Var(ET )

NvT 2
.

This quantity can be computed from a sample. For each temperature value, in each
dataset, we extracted 20 chains of 2000 samples, taken every 10 steps in order to
reduce spurious correlations, and computed c(T ) by the expression above.

3.3 Retinal Activity Obeys Zipf’s Law, But Is Not
Dynamically Critical

The mammalian retina, a system that is often chosen when studying the statistics of
neural activity, and whose encoding and dynamical properties are well known, is an
example of the opposite case: It was the first system in which statistical criticality
was observed, but it does not exhibit dynamical criticality.

Avalanches arise in the mammalian retina only during the period of development:
for mice, in the first few days after birth, before eye opening, when the retina does
not respond to light and the network activates spontaneously. During this stage, the
activity of the retina consists of the so-called retinal waves, which are effectively
power-law distributed avalanches. Direct comparison with a computational model
showed that these are indeed the signature of a critical state between locally and
globally connected activity [16]. However, these disappear in a functional retina:
Fig. 4 shows the statistics of a 20-min recording of an untreated, adult mouse retina
under an uncorrelated black-and-white checkerboard stimulation. It is evident that
the avalanche statistics is short-tailed, and, at the same time, the probability-rank
plot of pattern frequencies is well compatible with a Zipf law. Note that correlations
between the activities of retinal ganglion cells change significantly with the statistics

Fig. 4 Avalanche statistics compared to Zipf law in the neural activity of a healthy, adult (postnatal
day 91) mouse retina stimulated by projection of a white noise checkerboard pattern. The detection
of avalanches and the pattern count were repeated over 30 sets of 100 neighbouring neurons, each
of which was recorded for 20 min. The sets may overlap. The solid lines are medians over these
sets; the shaded area is delimited by the first and third quartiles. The grey line in the rightmost plot
is for comparison with Zipf’s law. The data were made available by G. Hilgen and E. Sernagor,
University of Newcastle. We refer to [18] for experimental and data analysis methods
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of the stimulus, and the avalanche statistics will consequently appear different. The
example of adult retinas is complementary to Sect. 3.1 in the sense that, here, a
system that does not show dynamical criticality can well obey Zipf’s law.

It is worth mentioning that the observation of Zipf law in retinas is very robust
to a number of external factors. We found no significant differences in the rank-
frequency plots of patterns observed when the retina was treated with bicuculline
(a GABA blocker) compared to a control; analogously for retinas under stimuli
characterised by very different level of spatial correlations.

If Zipf’s laws have a functional role, there is no expectation this phenomenon
would survive in a non functioning neural system, such as a retina that has been
pharmacologically treated in a way that breaks its normal operative mode. Here, we
took data from the same mouse retina, before and after treatment with a 20 µM
solution of bicuculline, which is a gabaA antagonist. The results are shown in Fig.
6 (left): as it is evident, there is no clear difference between the two rank-probability
plots. Of course, the only strong argument against the functional role of Zipf laws
would be finding a functional retina in which this law is broken, which is not the case
here. However, we can notice that even an intervention that significantly disrupts the
retina’s activity, by blocking inhibitory interactions, doesn’t prevent this phenomenon
to arise. This is despite the large change in the correlation between neurons induced
by bicuculline.

Likewise, one may expect a dependence of pattern frequency-rank statistics
on stimulus statistics. The retina, after all, is a neural system design to encode a
stimulus—and the correlation structure of its neurons’ activity strongly depends
on the correlations in the stimulus. However, we found no significant difference in
Zipf laws under different stimulations. Figure 6 (centre) shows a single group of
100 neurons selected in a retina that was stimulated with light patterns of differ-
ent kinds. All stimulus presentations consisted of black-and-white random checker-
boards, which are binarised versions of random noise of given frequency spectrum
f −a with a = 0.5, 1.0, 1.5, 2.0 in space and time: from near-white noise to the statis-
tics of natural images (Fig. 5).

The independence from correlations is evident in the right panel of Fig. 6: here,
the “control” curve is the same as in the left panel, and is compared with the

Fig. 5 Examples of stimulation frames. Correlations increase from left to right (dataset ID 0 to
3): the frequency spectra follow f −a with a = 0.5, 1.0, 1.5, 2.0, i.e. from noise to the statistics of
natural images. The correlation statistics extend to time
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Fig. 6 Left: Zipf plots, before and after treatment with bicuculline. 30 groups of 100 neurons,
selected as explained in the Methods paragraph. Centre: Zipf plots for a unique group of 100
neurons under stimuli of different statistics; the difference between datasets 0–3 consist in the
different spatial frequency—from near-white noise to natural stimulus statistics. Right: the same
data as in the left panel (control), and its shuffled version, where correlations have been destroyed,
while keeping the same firing rates. The red dashed lines correspond to 1/x laws

rank-probability plot for a “shuffled” version of the same data, where the firing
rates were kept the same, but spikes were moved in time in order to cancel neuron-
neuron correlations. The difference between the two curves is clearly not significant.

Fig. 7 All spike clusters in a dataset (P91mouse retina underwhite noise checkerboard stimulation),
arranged spatially. For Zipf analysis, a random cluster was selected, and the 100 nearest ones picked
along it (coloured patches on the figure are examples) to form a 100-neuron group. The process
was repeated 30 times to study error intervals. The size of the dot scales with the number of spikes
in the cluster. Even if this image only represents detected spikes, the optic disc is noticeable at the
bottom end; other inactive areas corresponds to cuts in the retina, unavoidable when placing it on
a flat surface
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This demonstrates how a firing rate distribution which is long-tailed (approximately
log-normal) can in itself produce a Zipf-like plot. More research is needed to show
whether this holds in general.

Methods

The handling of the retinas, experimental apparatus, and the first part of the data
analysis pipeline were performed as illustrated in [18]. Starting from detected and
sorted spikes, we removed those with very low amplitudes, by selecting a threshold
corresponding roughly to the lowest 10%. This was to ensure only good-quality
eventswere left. Then,we selected, for eachZipf plot, N = 100 clusters all pertaining
to the same area of the retina (Fig. 7).

At this stage, spikes were binarised into a N × T matrix S of boolean variables,
with S(n, t) = 1 if neuron n spiked between times t and t + δt and S(n, t) = 0
otherwise. When multiple spikes from the same neuron occurred in a single time
bin, the extra spikes were disregarded. For recordings shown in this chapter, T =
120,000 or more, and δt = 10 ms, implying at least 20 min of neural activity were
recorded.

4 Parametric Sensitivity

The basic fitting procedure of a maximum entropy model minimises the quadratic
difference between the data moments and the moments predicted by the model.
During fitting, any model is updated by exploring the parameter space, following
a direction given by the loss function. When a model admits a phase transition,
the parameter space is characterised by (at least) two regions, corresponding to the
phases, separated by a critical surface. From a theoretical point of view, asking why
a model is poised at criticality coincides with asking why the fitting process tends to
lead towards the critical surface in the parameter space. This has been discussed by
[29]; before introducing their argument, we provide some theoretical background.

4.1 Model Distance

Intuitively, a phase transition occurs at a location (the critical point or critical surface)
where an arbitrarily small change in the parameters yields a sharp, qualitative change
in the behaviour of the model. In this section, we will formalise this idea, and link the
notion of model distance to the statistical physics framework that we have introduced
above.

A common measure of the distance (in model space) of a probability distribution
p from a given one q, both defined on a set S, is the Kullback-Leibler divergence

DKL(p; q) =
∫
S
p(x) log

p(x)

q(x)
dx .
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It measures the amount of information that is lost when approximating p by q. The
name divergence stresses that this quantity does not have themathematical properties
of a distance, namely not being symmetric. If the model space is parametrised by θ ,
and p and q are close to each other in this space, so that q = Pθ and p = Pθ+δθ , at
second order in δθ , the divergence can be approximated as

DKL(Pθ+δθ ; Pθ ) ≈ 1

2
δθT F(θ)δθ,

where F is called Fisher information tensor (FIT) which is given by

Fi j (θ) = −
∫

Pθ (x)
∂ log Pθ (x)

∂θi

∂ log Pθ (x)

∂θ j
dx .

Fisher information is here expressed as a statistical quantity, but it has an important
relation to the physics of statistical models. Consider a Hamiltonian model, where
the probability distribution is given by

Pθ (x) = e−Hθ (x)

Zθ

, Hθ (x) =
n∑

k=1

θk fk(x), (5)

which is an obvious generalisation of maximum entropy models. Calculating the
Fisher information for this form of P (5), we retrieve the direct connection between
the covariance (with respect to Pθ ) of the physical quantities f and the FIT that is
characteristic for probability distributions of the exponential type:

Fi j (θ) = Cov[ fi (x), f j (x)].

Thismeans that the FIT characterises the variances and correlations of the functions f
which are now considered as stochastic variables and depend on the state x of the
system.

Additionally, note that changing the temperature in the traditional canonical
ensemble corresponds to scaling the Hamiltonian by a factor β = 1/T , similarly
to Eq. (3). In the formulation above (5), this is equivalent to scaling all the θi by β.
Given a point θ on the parameter manifold, the direction ∂/∂β can be expressed as

∂

∂β
= 1

n

n∑
k=1

∂

∂θk

which is just a linear combination. The specific heat is given by

c(β) = β2

N
Var[E].
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Thus, we can arrange for the specific heat to be one of the entries of the Fisher
information matrix, with a change of basis, which includes the β direction as a base
vector togetherwith othern − 1 linearly independent ones.Analogous considerations
can be made for the magnetic field and magnetic susceptibility. In this sense, the
Fisher information tensor is a generalisation of specific heats and susceptibilities.

4.2 Fisher Information and Criticality

We can now look at the relationship between statistical criticality and the model’s
parameter space. Suppose any generalised susceptibility (i.e. a component of the
Fisher tensor) diverges at a point θ0. Then an eigenvalue of the Fisher informa-
tion, say λk , diverges at θ0. Call vk the corresponding normalised eigenvector. For
small α,

DKL(Pθ0+αvk ; Pθ0) ≈ α2

2
vTk F(θ0)vk = α2

2
λk,

and the r.h.s. diverges. This means that, moving from θ0 in the vk direction by an
arbitrarily small step yields a model Pθ0+αvk that is completely different from Pθ0 , as
indicated by an infinite KL divergence.

We introduced this description in terms of Fisher information in order to give
an interpretation of criticality from the point of view of modelling. A model is at a
critical pointwhenever there is a direction in parameter space that leads to an infinitely
different model by a finite change in parameters. This, incidentally, shows that the
best way ofmeasuring the distance from a critical point is not to vary temperature, but
to use the first eigenvalue of the FIT and move in the direction of the corresponding
eigenvector. Temperature is not always the most relevant control parameter.

Mastromatteo and Marsili [29] have argued that, because of this special property
critical points have in the parameter space, they are particularly favoured by model
fitting. In particular, they show that distinguishable models accumulate near critical
points, whereas models farther away from these are largely indistinguishable. Their
argument, in brief, goes a follows. Two models are considered indistinguishable if
their Kullback-Leibler divergence is less than a given value ε. For small ε, DKL is
approximated by Fisher information, and the volume of parameter space occupied by
models indistinguishable from θ0 turns out to be proportional to (det F(θ0))

− 1
2 . This

quantity diverges at critical points due to the first eigenvalue diverging as explained
above. Thus, most models actually are poised near a critical point, according to this
metric. They conclude that criticality may be a feature induced by the inference
process, rather than one intrinsic to the real system being studied by the model. This
may be the reason why statistical models seem to be poised at a critical point, for a
variety of training datasets, as we showed in Sect. 3.2. However, it does not affect
Zipf laws, which are directly observed in the data.
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4.3 Criticality and Parameter ‘Sloppiness’

It is well known that the parameter spaces of many models often show only a small
number of directions (linear combinations of parameter changes) along which the
overall properties of the model strongly change (“stiff”), and a large number of
directions which have little influence on the model (“sloppy”). This phenomenon,
termed “model sloppiness”, has been observed in a wide number of cases in systems
science [14, 27].

For the specific case of neuronal networks, in Ref. [38], although for small num-
bers of neurons, “stiff” dimensions corresponding to large FIT eigenvalues were
identified. The remaining “sloppy” dimensions, on the other hand, can change with-
out much effect on the goodness of fit of the model. A further development of this
approach has been reported in Ref. [17], where it was shown that about half of the
dimensions in the data manifold are irrelevant for the modelling. As shown in para-
graph 4.2, near a critical point, the direction pointing towards the critical surface has
a diverging FIT eigenvalue, while the others are smaller. This hints there may be a
connection between sloppiness and criticality, which, at the moment, we can only
leave at the level of speculation.

Additionally, however, sloppiness indicates that a fitting algorithm for the data
may be improved if different dimensions are differently weighted during the opti-
misation process. We can then ask whether using a natural gradient in the fitting
procedure would lead to a different result while evaluating model criticality. In nat-
ural gradient optimisation, the components of the gradient are compensated by the
inverse Fisher information, i.e. the divergence near a critical point of themodel would
disappear, at least theoretically when the Fisher information is exactly known. As
a result, the fitting procedure is not homogeneous with respect to the set of the
parameters, but with respect to the space of the parameters, taking into account its
geometrical properties, and parameters can be identified equally well in all regions.
In this way, the problem discussed in Ref. [29] may disappear—more research will
be needed in order to verify this.

5 Discussion

Neuronal avalanches are an experimentally well-studied phenomenon, that can be
explained as a consequence of the optimisation of information processing in the brain.
It should be noted that an understanding of how the potential functional benefits of
this “dynamical” criticality are realised is missing [42]—however, it has been shown
that the maximisation of the dynamical range happens at criticality [23].

Statistical criticality is an equally complex phenomenon to explain theoretically.
Like dynamical criticality, it can be taken to indicate the complexity of the neural data
and the relevance of higher-order correlations or latent variables, but its functional
implications are less clear. In this chapter, we have reviewed the concept, both in
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the context of fitted statistical models, and as a direct observation of Zipf laws in
neural population data. Through experiments on restricted Boltzmann machines,
we suggested that the divergence of model specific heat is not a reliable way to
infer properties of the data. We mentioned how Fisher information provides the
correct description of the parameter space and the critical surfaces, and reviewed a
possible explanation of why statistical models tend to poise themselves at a critical
point. Then, we tried to describe the connection between statistical and dynamical
criticality, and argued there is no clear connection, by showing examples where one
of the two was present without the other. Further insight on this matter might come
from models that are capable of both, provided they can reproduce not only the
equilibrium distribution of the data, but also the dynamics. A multi-time maximum
entropy model might provide a starting point for this work.

Of course, it maywell be that the observation of Zipf laws is simply a consequence
of problems related to how we describe the data—these include the typically small
sets of observables, the choice of binning size, failure to account for the real dynamics,
and biases introduced by sampling. However, the ubiquity of Zipf laws in complex
systems means its emergence in biological neural networks should not surprise us,
and it could be explained in terms of mechanisms such as the one described by [1],
or perhaps with preferential attachment. Conversely, an important open problem is
an explanation on whether statistical criticality is something that is actively sought
by the system because of some functional relevance. On this matter, we tried to
analyse the Zipf profile of retinal activity under various conditions (various stimulus
statistics, pharmacological treatment), but we found no significant differences in the
cases examined. Interestingly, it seems to be possible to generate a Zipf profile simply
by enforcing a long-tailed firing rate distribution, despite the absence of correlations.
Even if this observation were confirmed, the question would simply shift towards
finding a reason for such a skewed distribution of firing rates, which has not yet found
a justification in terms of function.

Notably, recent research has started showing how Zipf laws appear in different
kinds of parametric models, including “deep” ones, as soon as learning occurs. It
has been shown that the Zipf property arises to different degrees in different layers
of a deep network, and is maximal in the layers that attain an optimal trade-off
between resolution and accuracy in generating samples [45]. This is a starting point
in linking statistical criticality to function. It is not known whether similar principles
are relevant in the case of biological neural networks, and finding such a link could
be an interesting direction of future research.
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