
Chapter 6
Developments of Mixed and
Problem-Adapted BEM-Based FEM

In the final chapter some extensions and improvements of the BEM-based FEM
are discussed which have not been addressed so far. In particular, the focus lies on
two topics: The use of the method within mixed finite element formulations and
the generalization of the construction of basis functions to polyhedral elements with
polygonal faces in 3D with an application to convection-dominated problems.

The challenge in the treatment of mixed formulations is the proper construc-
tion of a H(div)-conforming, vector valued approximation space over polytopal
discretizations. In contrast to the previous definitions of basis functions, the
construction involves local Neumann problems, which are treated in the numerical
realization by appropriate boundary element methods.

The forthcoming generalization to 3D gives a H 1-conforming discretization
once more which makes use of a hierarchical construction of basis functions. This
adapted construction shows in particular advantageous properties when applied
to convection-diffusion-reaction problems in the convection-dominated regime.
The experiments indicate an improved resolution of exponential layers at out-
flow boundaries for the proposed approach when compared to the Streamline
Upwind/Petrov-Galerkin (SUPG) method.

6.1 Mixed Formulations Treated by Means of BEM-Based
FEM

Mixed finite element methods have been instrumental in the development of flexible
and accurate approximations of elliptic problems with heterogeneous coefficient on
triangular and rectangular grids. The flexibility can even be improved when using
polygonal and polyhedral meshes. Such general cells are very desirable in many
applications, e.g. flows in heterogeneous porous media as models in hydrology and
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reservoir simulation. Therefore, a variety of approximation and solution methods on
general grids, such as mixed finite element methods [120], mimetic finite difference
methods [27] and the virtual element methods [29, 30, 42], have been considered,
studied, and tested in the last decade. This issue has also been addressed for
generalized barycentric coordinates, see [85, 166].

The goal of this section is to introduce a mixed formulation for the BEM-
based FEM which has been proposed in [73]. The key idea is to construct a
finite dimensional approximation space by implicitly defined basis functions which
satisfy certain Neumann boundary value problems on a local, element-by-element-
wise level. These problems are treated once more by means of boundary integral
formulations which are discretized by boundary element methods.

Since these ideas are applied to the mixed formulation of the problem, we need
a suitable discretization of the vector valued Sobolev space

H(div,Ω) = {v ∈ L2(Ω) : div v ∈ L2(Ω)}

on polytopal meshes. This is done by implicitly generating trial functions. A
construction of suitable trial function for the mixed FEM on polygonal meshes was
done by Kuznetsov and Repin in [120] by using subdivision of the polygonal cell
into triangular elements and subsequently generating the test functions locally by
mixed FEM. Also similar ideas were implemented in the mixed multiscale finite
element method [56, 72]. The novelty in our approach is that instead of treating the
local problem by the classical mixed FEM (as in [120]) or by the multiscale FEM
(as in [56]) the local problems are treated by means of boundary element methods.
Thus, we avoid an additional triangulation of the elements.

6.1.1 Mixed Formulation

We consider the classical model problem of Darcy flow in a porous medium in
two-dimensions. Let Ω ⊂ R

2 be a convex polygonal domain which is bounded,
and let n be the outer unit normal vector to its boundary Γ = ∂Ω . The boundary
Γ = ΓD ∪ ΓN is divided into ΓD (with non vanishing length) and ΓN , where
Dirichlet and Neumann data is prescribed, respectively. For a given source func-
tion f ∈ L2(Ω) and Dirichlet data gD ∈ H 1/2(ΓD), the boundary value problem
for the pressure variable p ∈ H 1(Ω) reads

− div(A∇p) = f in Ω ,

n · A∇p = 0 on ΓN ,

p = gD on ΓD ,

(6.1)
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where the tensor A ∈ L∞(Ω) represents the permeability of the medium. We
assume that A(·) ∈ R

2×2 is symmetric, positive definite with

0 < amin ≤ v�A(x)v
v�v

≤ amax ∀v ∈ R
2 \ {0} for almost all x ∈ Ω

for constants amin and amax, and piecewise constant with respect to the polygonal
mesh later on. Vector valued Lebesgue and Sobolev spaces are indicated by bold
letters. We further assume that every interior angle at any transient point between
the boundary ΓD and ΓN is less than π , so that the solution of (6.1) with A = I ,
f = 0 and gD = 0 is in the space Hs(Ω), s > 3

2 , see [87].
Next, a new unknown flux variable u = A∇p is introduced and the boundary

value problem is presented as a system of first order differential equations:

− div u = f in Ω ,

A∇p = u in Ω ,

n · u = 0 on ΓN ,

p = gD on ΓD .

(6.2)

This yields the following variational formulation in mixed form, which is actually a
saddle point problem:

Find (u, p) ∈ HN(div,Ω) × L2(Ω) :
a(u, v) + b(v, p) = (n · v, gD)L2(ΓD) ∀v ∈ HN(div,Ω) ,

b(u, q) = −(f, q)L2(Ω) ∀q ∈ L2(Ω) ,
(6.3)

where

a(u, v) = (A−1u, v)L2(Ω) , b(v, q) = (div v, q)L2(Ω)

and

HN(div,Ω) = {v ∈ L2(Ω) : div v ∈ L2(Ω) and n · v = 0 on ΓN } .

The space H(div,Ω) is equipped with the norm

‖v‖2H(div,Ω) = ‖v‖2L2(Ω) + ‖ div v‖2L2(Ω) .

It is easily seen that the bilinear forms a(·, ·) and b(·, ·) are bounded, i.e.

|a(u, v)| ≤ �1‖u‖H(div,Ω)‖v‖H(div,Ω) for u, v ∈ H(div,Ω) ,

|b(v, q)| ≤ �2‖v‖H(div,Ω)‖q‖L2(Ω) for v ∈ H(div,Ω), q ∈ L2(Ω) ,
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with some constants ρ1, ρ2 > 0. Let us set

Z = {v ∈ HN(div,Ω) : b(v, q) = 0 ∀q ∈ L2(Ω)} .

Obviously, we have for v ∈ Z that div v = 0 and hence, the bilinear form a(·, ·) is
Z-elliptic, i.e., there exists a constant α > 0 such that

a(v, v) ≥ α‖v‖2H(div,Ω) for v ∈ Z .

Furthermore, the form b(·, ·) satisfies the so called inf-sup condition, i.e., there exists
another constant β > 0 such that

inf
q∈L2(Ω)

sup
v∈HN(div,Ω)

b(v, q)

‖v‖H(div,Ω)‖q‖L2(Ω)

≥ β .

Consequently, the Babuska–Brezzi theory [43] is applicable and thus, the saddle
point problem (6.3) has a unique solution.

Next, we discuss the approximation of the mixed variational formulation (6.3)
with the help of BEM-based FEM on polygonal meshes. Therefore, we first need to
introduce a H(div)-conforming approximation space.

6.1.2 H(div)-Conforming Approximation Space

The construction of an approximation space for L2(Ω) is rather easy, later on we
use

Mh = {q ∈ L2(Ω) : q|K = const ∀K ∈ Kh} (6.4)

for this purpose. We concentrate in this section on the definition of a conforming
approximation space for H(div,Ω). We consider a regular and stable polygonal
meshKh according to Sect. 2.2. The finite dimensional subspace of H(div,Ω) that
serves as approximation space is defined through its basis. We restrict ourselves
to the lowest order method in which the basis functions are associated with edges
only. For E ∈ Eh, let nE be a unit normal vector, which is considered to be fixed
in the sequel. Furthermore, let K1 and K2 be the two adjacent elements sharing
the common edge E with the outer normal vectors nK1 and nK2 , respectively. The
function φE is defined implicitly as solution of the following local boundary value
problem

div(A∇φE) = κE(K)/|K| in K ∈ {K1,K2} ,

nE · A∇φE =
{

h−1
E on E ,

0 on all other edges ,

(6.5)
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Fig. 6.1 Adjacent elements
to E for the definition of φE

(left) and vector field ψE

(right)

nE

E

K2K1

see Fig. 6.1. Here, κE(K) = nE · nK = ±1, such that the solvability condition for
the Neumann problem is satisfied and (6.5) has a weak solution φE ∈ H 1(Ω) which
is unique up to an additive constant. For E ∈ E (K1) ∩ E (K2), we define

ψE(x) =
{

A∇φE(x) for x ∈ K1 ∪ K2 ,

0 else .
(6.6)

Due to this definition one easily concludes that

‖ψE‖L2(K1∪K2) = ‖∇φE‖L2(K1∪K2) ≤ c , (6.7)

cf. also [51]. By construction, ψE has continuous normal flux across E and zero
normal flux along all other internal edges of Ω so that ψE ∈ H(div,Ω). An edge
E ⊂ ΓD has only one neighbouring element K , and therefore the basis function is
constructed in the same way by considering problem (6.5) solely on K .

We set the finite dimensional approximation space as

Xh = span {ψE : E ∈ Eh} ⊂ H(div,Ω) ,

and the subspace with vanishing normal traces on ΓN as

Xh,N = span {ψE : E ∈ Eh \ Eh,N } ⊂ HN(div,Ω) . (6.8)

The corresponding vector valued interpolation operator

πh : H(div,Ω) → Xh

is defined by

πhv =
∑
E∈Eh

vE ψE , (6.9)

where

vE =
∫

E

nE · v dsx for E ∈ Eh .
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For v ∈ HN(div,Ω) and E ∈ Eh,N , we point out that vE = 0. Consequently, the
operator satisfies

πh : HN(div,Ω) → Xh,N .

Recall, that the space Xh in general does not consist of piecewise polynomial func-
tions. The approximation properties of the interpolation operator πh are established
below. First of all, we have the boundedness of this operator.

Lemma 6.1 Let Kh be a regular and stable polygonal mesh. The interpolation
operator πh : Hs(Ω) → Xh, s > 1

2 , defined by (6.9) is bounded in H
s(Ω). Namely,

there is a constant c > 0 independent of h = max{hK : K ∈ Kh} such that

‖πhv‖L2(Ω) ≤ c‖v‖Hs (Ω) for v ∈ Hs(Ω) . (6.10)

For the restriction of the interpolation operator onto an element K ∈ Kh it holds

‖πhv‖L2(K) ≤ c‖v‖Hs (K) for v ∈ Hs(K) .

Proof Since πh is defined locally, it is enough to show that this estimate is valid
over each element K ∈ Kh. Obviously, it holds

πhv|K =
∑

E∈E (K)

vEψE |K , vE =
∫

E

nE · v dsx ,

and we have

‖πhv‖2L2(K) ≤ c
∑

E∈E (K)

v2E ‖ψE‖2L2(K)

with a constant c depending on the number of edges |E (K)|, which is uniformly
bounded over all elements due to the stability of the mesh, see Lemma 2.7. By (6.7)
we have ‖ψE‖L2(K) ≤ c and to conclude the proof we need to bound vE .

We rescale the finite element K to K̂ by using the mapping x �→ x̂ = h−1
K x,

cf. (2.22). Then using the trace inequality [87]

‖ŵ‖L2(Ê) ≤ c
(‖ŵ‖L2(K̂) + |ŵ|Hs (K̂)

)
for ŵ ∈ Hs(K̂) , s > 1

2
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on the scaled element, where Ê denotes an edge of K̂, we get

v2E ≤ hE

∫
E

|nE · v|2 dsx ≤ hE

∫
E

|v|2 dsx ≤ hEhK ‖̂v‖2L2(Ê)

≤ chEhK

(
‖̂v‖L2(K̂) + |̂v|Hs (K̂)

)2 ≤ c
(
‖v‖2L2(K) + h2sK |v|2Hs (K)

)
(6.11)

≤ c ‖v‖2Hs (K) ,

since hK ≤ 1. Thus, ‖πhv‖2L2(K) ≤ c ‖v‖2Hs (K) and after summing for K ∈ Kh we
get the desired bound. ��

Next, we discuss the approximation properties of the interpolation operator πh.

Lemma 6.2 Let Kh be a regular and stable mesh and v ∈ Hs (Ω), 1
2 < s ≤ 1. It

holds

‖v − πhv‖H(div,Ω) ≤ chs |v|Hs (Ω) + inf
qh∈Mh

‖ div v − qh‖L2(Ω)

with h = max{hK : K ∈ Kh}.
Proof On E ∈ Eh the interpolant πhv satisfies

nE · πhv
∣∣
E

= h−1
E

∫
E

nE · v dsx ,

and since nK = κE(K)nE for E ∈ E (K), we have according to the divergence
theorem∫

K

div πhv dx =
∫

∂K

nK · πhv dsx =
∫

∂K

nK · v dsx =
∫

K

div v dx .

Hence, div πhv is the L2-projection of div v into Mh. Therefore, it is

‖ div v − div πhv‖L2(Ω) = inf
qh∈Mh

‖ div v − qh‖L2(Ω) ,

and we obtain

‖v − πhv‖H(div,Ω) =
(
‖v − πhv‖2L2(Ω) + ‖ div(v − πhv)‖2L2(Ω)

)1/2
≤ ‖v − πhv‖L2(Ω) + inf

qh∈Mh

‖ div v − qh‖L2(Ω) .

It remains to estimate the error of the projection πh in theL2-norm.We consider this
term over the scaled element K̂ which is obtained by the mapping x �→ x̂ = h−1

K x,
cf. (2.22). All objects on the scaled element K̂ are indicated by a hat such as the
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gradient operator ∇̂ with respect to the variable x̂. Furthermore, it is ψ̂E (̂x) = ψE(x)
and ψÊ denotes the basis functions defined on K̂ for the edge Ê ∈ E (K̂) which
corresponds to E ∈ E (K). First, we show the identity π̂hv = π̂ĥv. To this end, we
observe that

ψE(x) = A∇φE(x) = A∇φ̂E(h−1
K x) = h−1

K A∇̂φ̂E(̂x) . (6.12)

Furthermore, φ̂E satisfies

d̂iv
(
A∇̂φ̂E

) = h2K div
(
A∇φE

) = κÊ(K̂)

|K̂| in K̂ ,

since |K̂| = |K|/h2K , and

nÊ · A∇̂φ̂E = nE · hKA∇φE = h−1
Ê

on Ê ,

since hÊ = hE/hK . The basis function ψÊ = A∇̂φÊ on the scaled element K̂ is
given according to (6.5) and (6.6). Obviously, φ̂E and φÊ are solutions of the same
Neumann problem on K̂ and consequently it is

φ̂E = φÊ + C

for a constant C ∈ R. Hence, (6.12) yields

ψ̂E = h−1
K ψÊ .

For the interpolation operator we thus get on each element K ∈ Kh

π̂hv =
∑

E∈E (K)

vEψ̂E =
∑

Ê∈E (K̂)

vEh−1
K ψÊ =

∑
Ê∈E (K̂)

vÊψÊ = π̂ĥv ,

because of

vE =
∫

E

nE · v dsx = hE

hÊ

∫
Ê

nÊ · v̂ dŝx = hK vÊ

due to hÊ = hE/hK .
With the help of Lemma 6.1 and exploiting the reverse triangle inequality, we

have for s > 1
2

‖̂v − π̂ĥv‖L2(K̂) ≤ c‖̂v‖Hs (K̂) . (6.13)
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Next, in order to apply the Bramble–Hilbert Lemma, see Theorem 1.9, to the
functional

f(̂v) = ‖̂v − π̂ĥv‖L2(K̂) ,

we further have to show that π̂hd = d if d = (d1, d2)
� ∈ R

2 is a constant vector.
By construction, it is π̂hd = ∇̂φ over K̂ , where φ is the solution of

− ̂φ = 0 in K̂ and nK̂ · ∇̂φ = nK̂ · d on ∂K̂ . (6.14)

The boundary data for this problem is compatible,

∫
∂K̂

nK̂ · d dŝx =
∫

K̂

d̂ivd d̂x = 0 ,

and therefore the problem has a unique solution up to an additive constant. Obvi-
ously, φ(̂x) = d1x̂1 + d2x̂2 + C satisfies (6.14) for C ∈ R and so π̂hd = ∇̂φ = d.

Finally, the scaling and the application of the Bramble–Hilbert Lemma to the
functional f yields

‖v − πhv‖L2(K) = hK ‖̂v − π̂ĥv‖L2(K̂) ≤ chK |̂v|Hs (K̂) = chs
K |v|Hs (K) ,

and after summation over all elements we obtain the desired bound. ��
Remark 6.3 The constant c in Lemmata 6.1 and 6.2 only depend on the regularity
and stability of the mesh. This can be seen as in [51], since the estimates in the
proofs, which might incorporate additional dependencies, have only been performed
on the scaled element.

6.1.3 Approximation of Mixed Formulation

By the use of the previously introduced spaces, the discrete version of the variational
formulation (6.3) reads:

Find (uh, ph) ∈ Xh,N × Mh :
a(uh, vh) + b(vh, ph) = (n · vh, gD)L2(ΓD) ∀vh ∈ Xh,N ,

b(uh, qh) = −(f, qh)L2(Ω) ∀qh ∈ Mh .
(6.15)

To prove unique solvability of the discrete problem, we use a fundamental theorem
in the mixed finite element analysis, see [43]. This theory relies on the space

Zh = {vh ∈ Xh,N : b(vh, qh) = 0 ∀qh ∈ Mh}
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and the following two assumptions.

A1: There exists a constant α∗ > 0 such that

a(vh, vh) ≥ α∗‖vh‖2H(div,Ω) for vh ∈ Zh .

A2: There exists a constant β∗ > 0 such that

inf
qh∈Mh

sup
vh∈Xh,N

b(vh, qh)

‖vh‖H(div,Ω)‖qh‖L2(Ω)

≥ β∗ .

Such assumptions hold in the continuous setting and they are used in order to prove
unique solvability of the mixed formulation (6.3). In the discrete case, however,
we have to verify these assumptions for the introduced approximation spaces.
Afterwards, the continuity of the bilinear forms a(·, ·) on Xh × Xh and b(·, ·) on
Xh ×Mh as well as A1 and A2 are sufficient for the existence and uniqueness of the
solution of the discrete problem (6.15), see [43]. Furthermore, this theory gives an
error estimate. Thus, Babuska–Brezzi theory yields the main result of this section.

Theorem 6.4 The problem (6.15) with Xh,N defined by (6.8) and Mh defined
by (6.4) has a unique solution (uh, ph) ∈ Xh,N × Mh. Furthermore, there exists
a constant c depending only on α∗, β∗, �1 and �2 as well as on the mesh regularity
and stability such that

‖u − uh‖H(div,Ω)+‖p − ph‖L2(Ω)

≤ c

{
inf

vh∈Xh

‖u − vh‖H(div,Ω) + inf
qh∈Mh

‖p − qh‖L2(Ω)

}
.

(6.16)

Proof To show existence and uniqueness we need to verify A1 and A2. Assump-
tion A1 is shown in a straightforward manner. Since div vh is constant on each
element it follows

Zh = {vh ∈ Xh,N : div vh = 0 in K ∈ Kh} , (6.17)

and therefore we get for vh ∈ Zh

a(vh, vh) =
∑

K∈Kh

∫
K

A−1vh · vh dx

≥ a−1
max

∑
K∈Kh

{
‖vh‖2L2(K) + ‖ div vh‖2L2(K)

}
= α∗ ‖vh‖2H(div,Ω) .

To verify A2 we use the interpolation operator πh defined by (6.9). We have
shown that πh satisfies (6.10). In the followingwe make use of an auxiliary problem.
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For given qh ∈ Mh, we consider φ as unique solution of the boundary value problem

φ = qh in Ω ,

n · ∇φ = 0 on ΓN ,

φ = 0 on ΓD .

(6.18)

Since we have assumed that Ω is convex, it is well known that if either ΓN or ΓD

is an empty set, then the solution of this problem belongs to H 2(Ω), see, e.g., [87].
The general case has been studied in details by Bacuta et al. [17] by the use of FEM
tools. If all angles between edges with Neumann and Dirichlet data are strictly less
than π , then there exists s > 1

2 such that

‖φ‖H 1+s (Ω) ≤ c‖qh‖L2(Ω) ,

cf. [17, Theorem 4.1]. Let w = ∇φ. Due to the construction, w has a piecewise
constant divergence and the normal trace of w vanishes on ΓN . On each E ∈ Eh the
function πhw satisfies

nE · πhw
∣∣
E

= h−1
E

∫
E

nE · w dsx ,

and since nK = κE(K)nE for E ∈ E (K), we have∫
K

div πhw dx =
∫

∂K

nK · πhw dsx =
∫

∂K

nK · w dsx =
∫

K

div w dx .

Therefore, it is

div w = div πhw = qh for K ∈ Kh .

Making use of the stability of the interpolation operator πh, see Lemma 6.1, we get

‖πhv‖L2(Ω) ≤ c‖v‖Hs (Ω) ≤ c‖φ‖H 1+s (Ω) ≤ c‖qh‖L2(Ω) , (6.19)

where c > 0 is a generic constant. Finally, we obtain

sup
vh∈Xh,N

b(vh, qh)

‖vh‖H(div,Ω)

≥ b(πhw, qh)

‖πhw‖H(div,Ω)

= ‖qh‖2L2(Ω)(
‖πhw‖2L2(Ω) + ‖ div(πhw)‖2L2(Ω)

)1/2

≥ ‖qh‖2L2(Ω)(
c2‖qh‖2L2(Ω) + ‖qh‖2L2(Ω)

)1/2 ≥ β∗‖qh‖L2(Ω) ,

that proves the inf-sup condition.
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Following standard arguments of Babuska and Brezzi utilizing A1 and A2, it is
easily shown that the discrete problem (6.15) has a unique solution and that the error
estimate (6.16) holds, see, e.g., [43]. ��

6.1.4 Realization and Numerical Examples

In contrast to (6.2), the following numerical examples are a little bit more general
and involve non-homogeneous Neumann data, i.e. n · u = gN on ΓN for
gN ∈ L2(ΓN). As usual, we seek the approximation uh = uh,N + uh,gN , where
uh,N ∈ Xh,N has homogeneous Neumann data and uh,gN ∈ Xh is an extension of
the given data gN in the discrete space, e.g.,

uh,gN =
∑

E∈Eh,N

∫
E

gN dsx ψE .

The mixed formulation for the approximation reads:

Find (uh,N , ph) ∈ Xh,N × Mh :
a(uh,N , vh) + b(vh, ph) = (n · vh, gD)L2(ΓD) − a(uh,gN , vh) ∀vh ∈ Xh,N ,

b(uh,N , qh) = −(f, qh)L2(Ω) − b(uh,gN , qh) ∀qh ∈ Mh .
(6.20)

It remains to discuss the computation of the involved terms. Afterwards, the system
of linear equations can be set up for the expansion coefficients of the approximations
uh and ph in the form

(
Ah B�

h

Bh 0

)(
uh

p
h

)
=
(

r1
r2

)
, (6.21)

where Ah and Bh are the matrices given by testing the bilinear forms a(·, ·) and
b(·, ·) with the basis functions of Xh,N and Mh, respectively. The vectors r1 and
r2 contain the corresponding right hand sides of (6.20). The system can be solved
with the favourite linear algebra algorithm. Alternatively, one might use the Schur
complement. The first equation in (6.21) yields

uh = A−1
h

(
r1 − B�

h p
h

)
,

and inserting into the second equation of (6.21) gives

BhA−1
h B�

h p
h

= BhA−1
h r1 − r2

for the computation of p
h
.
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6.1.4.1 Computational Realization

In this section we address the computational realization of the terms within the
mixed formulation (6.20). The integrals (f, qh)L2(Ω) and (n · vh, gD)L2(ΓD) are
rather standard. The first integral is split into its contribution over each polygonal
element and then a quadrature formula is applied over the auxiliary triangulation
as in (4.43). For the second integral we recognize that n · vh is constant over
each edge of the discretization. Consequently, we split the integral on ΓD into its
contributions over the single edges and apply Gaussian quadrature. We recall that
div vh is constant on each element for vh ∈ Xh. Therefore, the entries of Bh have
an analytic expression. For vh ∈ Xh and qh ∈ Mh, we obtain

b(vh, qh) =
∑

K∈Kh

|K| div vh

∣∣
K

qh .

In order to treat the bilinear form a(·, ·), we apply boundary element techniques.
We exploit the definition of the basis functions ψE in (6.6) with the help of φE .
Obviously, the function uh ∈ Xh can be expressed locally over each element
K ∈ Kh as

uh = A∇φu

where φu is the unique solution of

div(A∇φu) = fu in K ,

nK · A∇φu = gu on ∂K ,
(6.22)

with a constant fu and piecewise constant gu ∈ P0
pw,d(∂K). Furthermore, the

function φu is decomposed into φu = φu,0 + φu,f with

φu,f (x) = 1
4fu(x − x̄K)�A−1(x − x̄K) ∈ P2(K) ,

such that

div(A∇φu,f ) = fu in K , (6.23)

and hence, φu,0 is the solution of the Neumann problem

− div(A∇φu,0) = 0 in K ,

nK · A∇φu,0 = gu − nK · A∇φu,f on ∂K .
(6.24)

The function φu,0 is unique up to an additive constant. A small exercise shows that
gu − nK · A∇φu,f ∈ P0

pw,d(∂K), since the gradient of a quadratic function is
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linear and since the normal component of a linear function along a straight edge
is constant. In the case of a scalar valued diffusion coefficient A ∈ R, we apply
the discussed boundary element method from Chap. 4 for the Neumann problem of
the Laplace equation. But, there is also a boundary element method available for a
general, symmetric and positive definite matrix A ∈ R

2×2, see [151]. We comment
on this in Sect. 6.2.3.

Consequently, we have the tools to approximate the Dirichlet trace of φu,0 on ∂K

and we utilize the representation formula to evaluate φu,0 and its derivatives inside
the elements. This allows for a very accurate approximation of uh inside K . Thus,
we have different possibilities to treat the bilinear form a(·, ·) as in Sect. 4.5. Either
we use a numerical integration scheme over the polygonal elements and evaluate uh

and vh with the help of the representation formula in the quadrature nodes, or we
utilize partial integration locally in order to reformulate the volume integrals into
boundary integrals. The first strategy is analog to the volume quadrature in (4.43).
For the second strategy we write

uh = A∇φu and vh = A∇φv

with

φu = φu,0 + φu,f and φv = φv,0 + φv,f

as above. This decomposition and the symmetry of A yield

a(uh, vh) =
∑

K∈Kh

(
A−1uh, vh

)
L2(K)

=
∑

K∈Kh

(A∇φu,∇φv)L2(K)

=
∑

K∈Kh

{ (
A∇φu,0,∇φv,0

)
L2(K)

+ (A∇φu,f ,∇φv,f
)
L2(K)

+ (A∇φu,0,∇φv,f
)
L2(K)

+ (∇φu,f , A∇φv,0
)
L2(K)

}
=
∑

K∈Kh

{
I + II + III + IV

}
.

The terms I–IV are treated separately employing integration by parts and the
properties (6.23) and (6.24). We obtain

III = (nK · A∇φu,0, φv,f
)
L2(∂K)

and IV = (nK · A∇φv,0, φu,f

)
L2(∂K)

,

and consequently the terms are given as integrals of piecewise quadratic polynomi-
als over ∂K that are computed analytically. The same arguments yield

II = (nK · A∇φu,f , φv,f
)
L2(∂K)

− (fu, φv,f
)
L2(K)
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with an integral of a piecewise quadratic polynomial over the boundary ∂K and
an integral of a quadratic polynomial over K , since fu is constant. Both integrals
are computed analytically, where we apply the divergence theorem to transform the
volume integral to a boundary integral. Finally, I has the form

I = (nK · A∇φu,0, φv,0
)
L2(∂K)

after integration by parts. Here, nK ·A∇φu,0 is a piecewise constant function on ∂K

and φv,0 is treated by means of boundary element methods as discussed in Chap. 4.
For scalar valued diffusionA ∈ R, we obtain with the notation of trace and boundary
integral operators

I =
(
Aγ K

1 φu,0, γ
K
0 φv,0

)
L2(∂K)

= A
(
γ K
1 φu,0,PKγ K

1 φv,0

)
L2(∂K)

,

where PK denotes the Poincaré–Steklov operator (4.14), which maps the Neumann
to the Dirichlet trace. Hence, I is approximated utilizing the non-symmetric

Punsym
K,h = MK,hD̃

−1
K,h

(
1
2M

�
K,h − K�

K,h

)
or the symmetric

PK,h = VK,h +
(
1
2MK,h − KK,h

)
D̃−1

K,h

(
1
2M

�
K,h − K�

K,h

)
discretization of PK , see (4.14) as well as (4.15) and the more detailed discussion in
Sect. 4.5. For matrix valued diffusion A ∈ R

2×2, the Neumann trace is defined by

γ K
1 φu,0 = nK · A∇φu,0

for sufficiently regular functions and we can proceed analogously with the BEM.

6.1.4.2 Numerical Examples

To validate our theoretical findings, we give some numerical experiments for
the mixed formulation of the BEM-based FEM. In the realization, we set up
the matrix Ah with the brute force approach utilizing numerical integration over
polygonal elements, where the test and trial functions are evaluated with the help
of the representation formula. Furthermore, the system of linear equations (6.21) is
solved by means of GMRES [150].

Two model problems are posed on the domain Ω = (−1, 1)2 and we decompose
its boundary into

ΓD = {(x1,−1)� : −1 ≤ x1 ≤ 1} and ΓN = ∂Ω \ ΓD .
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In the first example, we choose the data gD and gN in such a way that the smooth
function p(x) = exp(2π(x1 − 0.3)) cos(2π(x2−0.3)), x ∈ R

2 is the exact solution
of

−p = 0 in Ω , n · ∇p = gN on ΓN , p = gD on ΓD .

Thus, (u, p) with u = ∇p solves the corresponding mixed formulation (6.20). For
the second example, we take p(x) = sin(πx1) sin(πx2), x ∈ R

2 as solution of

−p = f in Ω , n · ∇p = gN on ΓN , p = 0 on ΓD

with corresponding data f and gN . The BEM-based FEM is applied on a sequence
of honeycomb meshes consisting of hexahedral elements with decreasing mesh
size h, see Fig. 6.2. We analyse numerically the relative error

‖u − uh‖H(div,Ω) + ‖p − ph‖L2(Ω)

‖u‖H(div,Ω) + ‖p‖L2(Ω)

. (6.25)

According to Theorem 6.4, the interpolation error in Lemma 6.2 and known approx-
imation properties of the space Mh, cf. Lemma 3.4, we expect linear convergence of
the relative error (6.25) with respect to the mesh size h = max{hK : K ∈ Kh}. The
numerical experiments confirm this fact, see Fig. 6.3. In Fig. 6.4, the approximations
ph and uh of the primal and the flux variable are visualized for the second problem.

In the third and final example, we consider a problem with unknown solution.
Let Ω = (0, 1)2 and we prescribe Dirichlet data on the left edge of the square and
Neumann data else, such that

ΓD = {(0, x2)� : 0 ≤ x2 ≤ 1} and ΓN = ∂Ω \ ΓD .

We choose the Dirichlet data as

gD(x) = 1 − x2 for x ∈ ΓD ,

Fig. 6.2 Sequence of honeycomb meshes with hexahedral elements and decreasing mesh size h

from left to right
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Fig. 6.3 Relative error (6.25) with respect to h in logarithmic scale for first and second example

Fig. 6.4 Visualization of the approximation of the second example, the primal variable ph and the
flux unknown uh
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and the Neumann data such that we have an inflow in the left part of the upper edge
and an outflow in the lower part of the right edge, namely

gN(x) =

⎧⎪⎪⎨
⎪⎪⎩

−3 for 0 ≤ x1 ≤ 1/2, x2 = 1 ,

3 − 3x2 for x1 = 1, 0 ≤ x2 ≤ 1/2 ,

0 else on ΓN .

We consider the mixed boundary value problem

− div u = 0 in Ω ,

∇p = u in Ω ,

n · u = gN on ΓN ,

p = gD on ΓD

in the saddle point formulation (6.20) for the unknowns u and p. The approximation
obtained by BEM-based FEM strategies is visualized in Fig. 6.5 on a polygonal
mesh. The vector field uh behaves as expected, it points form the inflow boundary
towards the outflow boundary and it is almost parallel to the boundary with
homogeneous Neumann data.

Fig. 6.5 Visualization of the approximation of third example, the primal variable ph and the flux
unknown uh
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6.2 3D Generalization with Application
to Convection-Diffusion-Reaction Equation

In this section, we discuss a generalization of a variant of the BEM-based finite
element method studied so far. We address the definition of basis functions on
meshes with polyhedral elements having polygonal faces. These functions are
used to construct an approximation space Vh which can be utilized in the discrete
Galerkin formulation of the finite element method. The idea of the BEM-based FEM
is to define the basis functions implicitly on each element as local solutions of the
underlying differential equation and to treat the local problems by boundary element
methods. In the following, we push this idea one step further. As model problem,
we consider once more the diffusion equation (2.1) and in addition a general
convection-diffusion-reaction equation. In particular, the forthcoming construction
of Vh will improve the stability of the discretization method for convection-
dominated problems both when compared to a standard FEM and to previous
BEM-based FEM approaches. The experiments also show an improved resolution of
exponential layers at the outflow boundarieswhen the proposedmethod is compared
to the Streamline Upwind/Petrov-Galerkin (SUPG) method [48].

6.2.1 Generalization for Diffusion Problem

In a first step we consider the generalization to polyhedral elements with polygonal
faces for the diffusion problem (2.1). This problem reads

− div(a∇u) = f in Ω ,

u = gD on ΓD ,

a∇u · n = gN on ΓN ,

with the assumptions on the data as described in Chap. 2. Section 2.3 gives
a detailed construction of basis functions for the two-dimensional case and a
simple generalization for the three-dimensional case under the restriction that the
polyhedral elements only have triangular faces. These functions are not limited to
the diffusion equation, but they have been especially designed for that problem.
Here, we first examine the situation for the first order approximation space Vh and
give an alternative construction of its basis functions allowing polytopal elements
with polygonal faces directly. Afterwards, we present the general space V k

h yielding
k-th order approximations.

If we look again into the two-dimensional case and the definition of the nodal
basis functions (2.6), we observe that the values of the basis functions are fixed in
the nodes and extended uniquely along the edges by linear functions. This linear
extension is nothing else than a harmonic extension along the edge, and thus the
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Fig. 6.6 Stepwise construction of basis functions

basis functions are also defined on the edges according to the underlying differential
equation. Therefore, we propose a stepwise and hierarchical construction for the
basis functions in the case of polyhedral elements with polygonal faces as sketched
in Fig. 6.6. This approach has been first proposed in [147]. A similar idea has been
used in two-dimensions for the construction of multiscale finite elements in [104].

In order to get a nodal basis of Vh, we declare for each node z ∈ Nh a basis
function ψz which is equal to one in z and zero in all other nodes of the mesh.
Denoting the i-dimensional Laplace operator by i , we define the basis functionψz
as unique solution of

−3ψz = 0 in K for all K ∈ Kh ,

−2ψz = 0 in F for all F ∈ Fh ,

−1ψz = 0 in E for all E ∈ Eh ,

ψz(x) =
{
1 for x = z ,

0 for x ∈ Nh \ {z} ,

where the Laplace operators have to be understood in the corresponding linear
parameter spaces. The values in the nodes are prescribed. Afterwards, we solve
a Dirichlet problem for the Laplace equation on each edge. Then, we use the
computed data as Dirichlet datum for the Laplace problem on each face, and finally,
we proceed with the Laplace problem on each element, where the solutions on the
faces are used as boundary values. In the case of convex faces and elements, these
problems are understood in the classical sense and we haveψz ∈ C2(K)∩C0(K). In
the more general situation of non-convex elements, the weak solution is considered
such that we have at least ψz ∈ H 1(K).

Building the span of these nodal basis functions, we obtain a first order
approximation space Vh = V 1

h on general meshes containing polyhedral elements
with polygonal faces. In [147], this space has been analysed for its approximation
properties and an interpolation operator analog to the one defined in Sect. 2.4
has been studied. The discrete Galerkin formulation for the model problem (2.1)
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with the generalized approximation space applicable on polyhedral elements with
polygonal faces reads as in Sect. 2.5, see (2.28).

Having this hierarchical construction in mind for the definition of nodal basis
functions it is clear how to proceed with higher order basis functions. In the two-
dimensional setting we enriched the approximation space with element bubble
functions which have a polynomial Laplacian, see the motivation in Sect. 2.3.2.
Thus, instead of prescribing the Laplace equation on edges, faces and elements, we
use the Poisson equationwith polynomial right hand side. Consequently, the discrete
space V k

h consists of function that are polynomials along the edges, their restriction
onto a face F ∈ Fh lies in the two-dimensional approximation space V k

h (F ) defined
in Sect. 2.3.3, and they have a polynomial Laplacian inside the three-dimensional
element K ∈ Kh. More precisely, it is

V k
h =

{
v ∈ H 1(Ω) : v

∣∣
K

∈ Pk−2(K) ∀K ∈ Kh and v
∣∣
F

∈ V k
h (F ) ∀F ∈ Fh

}
.

We easily see that Pk(K) ⊂ V k
h

∣∣
K
, such that polynomials are contained in

the approximation space locally. This ensures the approximation properties of the
discrete space.

Remark 6.5 If the polyhedral elements have by chance only triangular faces, the
approximation space described above is equivalent to the simple generalization from
Sect. 2.3.4 for k = 1. In the case k > 1, however, the defined spaces differ between
each other. On each triangular face F it isPk(F ) � V k

h (F ) and whereas the simple
generalization thus has 1

2 (k − 1)(k − 2) internal degrees of freedom per face the
above generalization has 1

2k(k − 1).

6.2.2 Application to Convection-Diffusion-Reaction Problem

The general convection-diffusion-reaction problem in a bounded Lipschitz domain
Ω ⊂ R

3 is given by

L u = − div(A∇u) + b · ∇u + cu = 0 in Ω ,

u = gD on Γ ,
(6.26)

where we restrict ourselves to the pure Dirichlet problem for shorter notation. Here
A(x) ∈ R

3×3, b(x) ∈ R
3, and c(x) ∈ R are the coefficient functions of the partial

differential operator L, and gD ∈ H 1/2(Γ ) is the given Dirichlet data. We assume
that A(·) is symmetric and uniformly positive with minimal eigenvalue amin, and
that c(·) is non-negative. The corresponding Galerkin formulation reads as follows:

Find u ∈ gD + H 1
0 (Ω) :∫

Ω

(A∇u · ∇v + b · ∇u v + cuv) dx = 0 ∀ v ∈ H 1
0 (Ω) .

(6.27)
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We require that the coefficients A, b, c are L∞(Ω), and that there exists a unique
solution of (6.27). The unique solvability can be ensured under several well known
conditions. For example, if c − 1

2 div(b) ≥ 0, the bilinear form in (6.27) is
H 1

0 (Ω)-elliptic, which guarantees the existence of a unique solution for the Dirichlet
problem. Another sufficient condition is aminc > |b|2, see, e.g. [151]. Unique
solvability of the variational problem (6.27) can be shown under quite general
assumptions using results by Droniou [68].

For the application of the BEM-based FEM, we require that the coefficients
A(·), b(·), and c(·) are piecewise constant with respect to all geometrical objects
in the polyhedral meshKh. Since this is not the case in general, the coefficients are
approximated by piecewise constant ones over the edges, faces and elements of the
mesh. If the coefficients are smooth, we take their values in the center of mass of
the geometrical objects as constant approximations. This corresponds to a first order
approximation of the differential equation. If the coefficients are already piecewise
constant with respect to the elements, we obtain their values on the edges and faces
by computing averages over neighbouring elements. To simplify notation, we omit
new symbols for this approximation. The resulting Dirichlet problem is uniquely
solvable according to the before mentioned conditions in [68].

We restrict ourselves to the introduction of the first order approximation space.
If the polyhedral elements consists of triangular faces only, we can proceed as for
the simple generalization in Sect. 2.3.4. Consequently, the basis functions ψ are
defined to be piecewise linear and continuous over the surface triangulation and
satisfy the underlying differential equation inside each element, i.e., Lψ = 0
in K , ∀K ∈ Kh. This strategy has been introduced in [96] for the convection-
diffusion-reaction equation. We refer to it as the original approach. There is a close
relation between this original BEM-based FEMwith piecewise linear boundary data
and the so-called method of residual-free bubbles [41, 44, 45, 47, 80]. Indeed, it
has been shown in [94] that the BEM-based FEM, with exact evaluation of the
Steklov–Poincaré operator, is equivalent to the method of residual-free bubbles with
exactly computed bubbles. Since the latter has been shown to be a stable method
for convection-dominated problems, it seems clear that also the BEM-based FEM
should have advantageous stability properties. It should be noted that neither the
Steklov–Poincaré operator nor the computation of the residual-free bubbles can be
realized exactly in practice.

In this chapter we follow the idea of the previous Sect. 6.2.1 and define the basis
functions in a hierarchical fashion as in [99]. Thus, we obtain for each node z ∈ Nh

a basis function ψz as unique solution of

Lψz = 0 in K for all K ∈ Kh ,

LF ψz = 0 in F for all F ∈ Fh ,

LE ψz = 0 in E for all E ∈ Eh ,

ψz(x) =
{
1 for x = z ,

0 for x ∈ Nh \ {z} .
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The differential operators LE and LF are projections of the differential operator L
onto the edge E and the face F , respectively, see below for a precise description.
Thus, the functions ψz are defined implicitly as local solutions of boundary value
problems on edges, faces and elements of the decomposition. Equivalently, one can
say that these functions are defined via PDE-harmonic extensions. The nodal data
is first extended LE-harmonically along the edges and afterwards, the data on the
edges is extended into the faces with the help of a LF -harmonic operator and so on.

For the definition of LE and LF , let F ∈ Fh be a face and E ∈ Eh an edge on
the boundary of F . By rotation and translation of the coordinate system, we map
the face F into the (e1, e2)-plane and the edge E onto the e1-axis of the Euclidean
coordinate system (e1, e2, e3) such that one node of E lies in the origin. Thus, we
have an orthogonal matrix B ∈ R

3×3 and a vector d ∈ R
3 such that

x �→ x̂ = Bx + d and ψ̂ (̂x) = ψ(B−1x̂ − B−1d) ,

and the differential equation in (6.26) yields

−div(A∇ψ)+b·∇ψ+cψ = − div̂x(BAB�∇x̂ψ̂)+Bb·∇x̂ψ̂+cψ̂ = 0 . (6.28)

Here, the coefficients BAB�, Bb and c are constant on F and E, respectively,
since A, b and c are constant approximations on each geometrical object of the
original coefficients. Furthermore,we only consider tangential components to define
the operators LF and LE on the face and edge, respectively. This is equivalent to
setting

∂ψ̂

∂x̂3
= ∂2ψ̂

∂x̂2
3

= 0 in F and
∂ψ̂

∂x̂2
= ∂ψ̂

∂x̂3
= ∂2ψ̂

∂x̂2
2

= ∂2ψ̂

∂x̂2
3

= 0 on E

in (6.28). Therefore, the dependence in (6.28) reduces to two and one coordinate
directions such that LF and LE are defined as differential operators in two- and
one-dimensions using the described coordinate system. Overall, the basis functions
are constructed with the help of the convection-diffusion-reaction equation on the
edges, faces and elements, where the diffusion matrix and the convection vector are
adjusted in a proper way. All appearing one-, two- and three-dimensional boundary
value problems are uniquely solvable due to the global properties of A(·), which
carry over to BAB�, and since c − 1

2 div(Bb) = c ≥ 0 on F and E, respectively.
To simplify notation, we omit the coordinate transformation in the following

and abbreviate the transformed diffusion matrix BAB�, the convection vector Bb
and the reaction term c to AF , bF , cF and AE , bE , cE on the faces and edges,
respectively. Furthermore, we treat the basis functionsψz as functions of two or one
variable depending on the underlying domain F or E. For example, let us assume
thatE already lies in the e1-axis and corresponds to the interval (0, hE). In this case,
ψz only depends on x1 and the scalar valued coefficients AE , bE , and cE along E



200 6 Developments of Mixed and Problem-Adapted BEM-Based FEM

and the differential equation reads

AEψ ′′
z + bEψ ′

z + cEψz = 0 in (0, hE) , (6.29)

with some boundary data ψz(0) and ψz(hE) that is 0 or 1 depending on the
considered basis function.

Having the basis functions ψz at hand, we define the approximation spaces as

Vh = span {ψz : z ∈ Nh} and Vh,D = Vh ∩ H 1
0 (Ω) . (6.30)

The discrete Galerkin formulation thus reads:

Find uh ∈ gD + Vh,D ⊂ Vh :∫
Ω

(A∇uh · ∇vh + b · ∇uh vh + cuhvh) dx = 0 ∀ v ∈ Vh,D .
(6.31)

Remark 6.6 In order to define a high-order approximation space V k
h with k > 1,

we may proceed as in the previous Sect. 6.2.1. Consequently, additional edge,
face and element bubble functions are introduced which are defined to satisfy the
inhomogeneous convection-diffusion-reaction equation with polynomial right hand
side inside the edges, faces and elements, respectively.

6.2.3 Realization of the Basis Functions

Of course, the hierarchically defined basis functions do not have a closed analytical
form and they have to be treated numerically. In the following, we discuss this
issue in more detail, where we solve the boundary value problems on the edges
analytically, the problems on the faces with the help of a 2D FEM and the problems
on the elements by means of boundary integral equations. For this purpose, an
auxiliary discretization of the boundaries of the elements is needed. We apply
the construction of the triangular surface mesh discussed in Sect. 2.2.2, which
yields a conforming boundary discretization Tl (∂K) of level l. Here, first the
faces are discretized by connecting their vertices with the point zF and afterwards,
the resulting triangles are refined successively by splitting them into four similar
triangles. According to this construction, the triangulations on all faces can be glued
in a conforming manner to obtain a discretization of the whole boundary ∂K . In
particular, the strategy yields for l ≥ 1 a discretization of each edge in the mesh into
line segments, see Fig. 6.7.

The advantage of this line of action is, that the two-dimensional finite element
spaces on the faces of the elements fit exactly the approximation spaces utilized in
three-dimensional boundary element methods. Thus, a 2D FEM approximation on
the faces can directly be used in existing boundary element codes. Alternatively,
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Fig. 6.7 Stepwise approximation of basis functions using the auxiliary discretization with l = 1

one might treat the boundary value problems on the faces by a 2D BEM in order to
avoid the surface triangulation, but this would result in the need of a 3D BEM on
polygonal surface meshes. Hence, we stick with the 2D FEM and 3D BEM strategy
that is explained in more detail in the following. Furthermore, we restrict ourselves
to k = 1.

To be mathematically more precise, we choose a basis function ψz and consider
its approximation ψz,l on the edges and faces of K ∈ Kh with z ∈ N (K). Here, l
refers to the level of the surface triangulation and therefore to the mesh size of the
auxiliary discretization. We seek the approximation of ψz

∣∣
∂K

, namely the Dirichlet
data for the three-dimensional problem on K , as

g
(ψz)
l,∂K ∈ P1

pw(Tl (∂K)) , and set ψz,l
∣∣
∂K

= g
(ψz)
l,∂K .

The space of piecewise linear polynomials over Tl (∂K) has been endowed with a
basis ΦD in Sect. 4.3. We denote by g

(ψz)
l,∂K the vector with the expansion coefficients

of g
(ψz)
l,∂K in this basis. On all edges E ∈ E (K) with z /∈ N (E) and on all faces

F ∈ F (K) with z /∈ N (F ), the function ψz vanishes and it remains to consider
the edges and faces with z ∈ N (E) and z ∈ N (F ), respectively.

On Edges
For the pure diffusion problem, the basis functions are obviously linear along
the edges with prescribed data in the nodes, which is either zero or one. In the
convection-diffusion-reaction regime, however, LE describes an ordinary differen-
tial operator of second order with constant and scalar-valued coefficients, cf. (6.29).
Thus the boundary value problems on the edges are solved analytically and ψz can
be written in closed form on each edge E ∈ Eh. If cE = 0, for instance, a small
exercise shows

ψz(x1) = ψz(0) + (ψz(hE) − ψz(0)
)1 − exp

(
bE

AE
hEx1

)
1 − exp

(
bE

AE
hE

) for x1 ∈ [0, hE] .

(6.32)
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Here, we recognize how the data in the nodes for x1 = 0 and x1 = hE enter the
formula.

For the diffusion problem we can express the linear function ψz
∣∣
E
exact in the

trace space of P1
pw(Tl (∂K)) on E. For the convection-diffusion-reaction problem,

however, we make use of the induced discretization of E into line segments and
we interpolate ψz

∣∣
E
, cf. (6.32), by g

(ψz)
l,E in the space of piecewise linear functions

over the discretization of E. Finally, the functions g
(ψz)
l,E on the edges E ∈ E (F ) are

combined in order to obtain the Dirichlet data g
(ψz)
l,∂F on ∂F for the 2D problems on

the faces of the element.

On Faces
The variational formulation for ψz

∣∣
F
reads analog to (6.27). The non-homogeneous

Dirichlet data is treated as usual in the Galerkin formulation. Therefore, we interpret
g

(ψz)
l,∂F as extension into P1

pw(Tl(F )). Furthermore, we denote by ΦD,F the set of
basis functions from ΦD with support in F , such that

span ΦD,F = P1
pw(Tl (F )) ∩ H 1

0 (F ) .

In the case of the pure diffusion problem, the discrete Galerkin formulation for
the approximation of the basis functions on the faces F ∈ F (K) reads:

Find g
(ψz)
l,F ∈ g

(ψz)
l,∂F + span ΦD,F :

∫
F

∇g
(ψz)
l,F · ∇ϕ dsx = 0 ∀ϕ ∈ ΦD,F .

We point out that the boundary data on the edges is linear in this case. Hence, it is
represented exact in the space of piecewise polynomials. Furthermore, if the faces
F ∈ F (K) are already triangles, we recover the basis functions discussed in the
simple generalization to 3D in Sect. 2.3.4.

In the case of the convection-diffusion-reaction equation we might encounter
convection-dominated problems. Consequently, we propose to utilize a stabilized
FEM on the faces. We choose the Streamline Upwind/Petrov-Galerkin (SUPG)
method [48] such that the discrete formulation for the approximation of the basis
functions on the faces reads:

Find g
(ψz)
l,F ∈ g

(ψz)
l,∂F + span ΦD,F :∫

F

(AF ∇g
(ψz)
l,F · ∇ϕ + bF · ∇g

(ψz)
l,F ϕ + cF g

(ψz)
l,F ϕ) dsx (6.33)

+ δF

∫
F

(bF · ∇g
(ψz)
l,F bF · ∇ϕ + cF g

(ψz)
l,F bF · ∇ϕ) dsx = 0 ∀ϕ ∈ ΦD,F ,

where δF ≥ 0 is a stabilization parameter which is set to zero in the diffusion-
dominated case. The choice of δF is discussed in more detail in Sect. 6.2.6. On
all faces F ∈ Fh with z /∈ N (F ), it is g

(ψz)
l,F = 0. Here, we point out that the
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boundary data on the edges is not polynomial in general, cf. (6.32). Thus, g
(ψz)
l,∂F is

an approximation of the actual data.
Finally, the functions g

(ψz)
l,F on the faces F ∈ F (K) are combined in order to

obtain the Dirichlet data g
(ψz)
l,∂K ∈ P1

pw(Tl (∂K)) for the 3D problems on the whole
boundary of the element. This construction is well defined since the triangulations
of the faces form a conforming discretization of the surface ∂K , cf. Fig. 6.7.

On Elements
After we have computed the Dirichlet traces g

(ψz)
l of all the approximate basis

functions ψz,l on the skeleton of the discretization, i.e., on the boundaries of the
polyhedral elements, the three-dimensional local problems are treated by means of
boundary integral equations and they are approximated by the boundary element
method. For the pure diffusion problem we proceed as discussed in Chap. 4. Con-
sequently, we have the Steklov–Poincaré operator (4.7), which maps the Dirichlet
to the Neumann trace, and the representation formula (4.3) for the evaluation of
the approximation inside the elements. The approximation of the Steklov–Poincaré
operator and the representation formula are given in (4.20) and (4.22), respectively.
In particular, the approximation space in the 2D FEM on the faces has been chosen
in such a way that g

(ψz)
l,∂K ∈ P1

pw(Tl (∂K)) for ψz,l with z ∈ N (K) and K ∈ Kh.
Hence, we can apply directly the results of Sect. 4.3.

The boundary element method is not restricted to the Laplace equation. It
generalizes to a large class of problems where the corresponding fundamental
solutions are known. This is in particular true for the convection-diffusion-reaction
equation. Here, the fundamental solution depends on AK , bK as well as on cK

and consequently on the element K ∈ Kh. In R
3 and under the assumption

cK + ‖bK‖2
A−1

K

≥ 0, we have

U∗
K(x, y) = 1

4π
√
detAK

exp
(
b�

KA−1
K (x − y) − λ‖x − y‖

A−1
K

)
‖x − y‖

A−1
K

for x, y ∈ R
3 ,

where

‖x‖
A−1

K
=
√
x�A−1

K x and λ =
√

cK + ‖bK‖2
A−1

K

.

With the help of U∗
K(·, ·), which satisfies

Ly U∗
K(x, y) = δ0(y − x)

for the convection-diffusion-reaction operator L, where δ0 is the Dirac delta
distribution, we can formulate the boundary integral operators as in Sect. 4.2. Since
L is not a self-adjoint operator, we have to distinguish between the conormal
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derivative γ K
1 v, which is given for sufficiently smooth v as

(γ K
1 v)(x) = nK(x) · (γ K

0 AK∇v)(x) for x ∈ ∂K ,

and the modified conormal derivative

γ̃ K
1 v = γ K

1 v + (bK · nK)γ K
1 v , (6.34)

which is associated with the adjoint problem. The conormal derivative is also called
Neumann trace. For x ∈ ∂K , we have the single-layer potential operator

(VKζ )(x) = γ K
0

∫
∂K

U∗
K(x, y)ζ(y) dsy for ζ ∈ H−1/2(∂K) ,

the double-layer potential operator

(KKξ)(x) = lim
ε→0

∫
y∈∂K :|y−x|≥ε

γ̃ K
1,yU

∗
K(x, y)ξ(y) dsy for ξ ∈ H 1/2(∂K) ,

and the adjoint double-layer potential operator

(K′
Kζ )(x) = lim

ε→0

∫
y∈∂K :|y−x|≥ε

γ K
1,xU

∗
K(x, y)ζ(y) dsy for ζ ∈ H−1/2(∂K) ,

as well as the hypersingular integral operator

(DKξ)(x) = −γ K
1

∫
∂K

γ̃ K
1,yU

∗
K(x, y)ξ(y) dsy for ξ ∈ H 1/2(∂K) .

These operators have the same mapping properties as the corresponding integral
operators for the Laplace operator. We point out that they differ in the fundamental
solution U∗

K(·, ·) and the use of the modified conormal derivative. As in Chap. 4,
we have a representation formula and two representations of the Steklov–Poincaré
operator, which maps the Dirichlet to the Neumann trace

γ K
1 u = SKγ K

0 u ,

in terms of the boundary integral operators:

SK = V−1
K ( 12I + KK) = DK + ( 12I + K′

K)V−1
K ( 12 I + KK) , (6.35)

provided thatVK is invertible. The invertibility of the single-layer potential operator
VK is shown for some special cases, like the Laplace operator or when the material
parameters satisfy amincK > |bK |2, where amin is the minimal eigenvalue of AK ,
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see [151]. For general elliptic operators as in (6.26) with constant coefficients,
Costabel [61] has shown that the single-layer potential is a strongly elliptic operator
and thus satisfies a Gårding inequality. The discretization of these boundary integral
operators follows the line of Sect. 4.3, where the boundary mesh Bh is chosen to
be Tl (∂K). Hence, we obtain the corresponding boundary element matrices VK,l ,
MK,l , KK,l and so on.

6.2.4 Fully Discrete Galerkin Formulation

We consider the convection-diffusion-reaction equation only, since it includes the
pure diffusion problem, and we restrict ourselves for shorter notation to Dirichlet
boundary conditions and a vanishing source term as in (6.26). Instead of applying
the approximation space (6.30) with the implicitly defined basis functions on edges,
faces and elements, we use the spaces

Vh,l = span {ψz,l : z ∈ Nh} and Vh,l,D = Vh,l ∩ H 1
0 (Ω) ,

which are spanned by the approximated basis function ψz,l as described in the
previous Sect. 6.2.3. This approximation space is conforming, i.e. Vh,l ⊂ H 1(Ω),
due to the continuity of the functions in Vh,l over edges as well as faces and because
of the regularity of the local problems defining the basis functions. The discrete
Galerkin formulation reads:

Find uh,l ∈ gD + Vh,l,D : b(uh,l, vh,l) = 0 ∀vh,l ∈ Vh,l,D , (6.36)

with bilinear form

b(uh,l, vh,l ) =
∫

Ω

(
A∇uh,l · ∇vh,l + b · ∇uh,l vh,l + c uh,lvh,l

)
dx .

For the realization of the bilinear form, we proceed as in Sect. 4.5. Integration by
parts and the properties of Vh,l yield

b(uh,l, vh,l) =
∑

K∈Kh

∫
K

(
AK∇uh,l · ∇vh,l + bK · ∇uh,l vh,l + cK uh,lvh,l

)
dx

=
∑

K∈Kh

∫
∂K

γ K
1 uh,l γ

K
0 vh,l dsx +

∫
K

L uh,l vh,l dx

=
∑

K∈Kh

∫
∂K

SKγ K
0 uh,l γ

K
0 vh,l dsx .
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Next, we replace the Steklov–Poincaré operator by its non-symmetric or symmetric
representation, cf. (6.35), and approximate it by means of boundary element meth-
ods in analog to Sect. 4.5. Let g(u)

l,∂K
and g(v)

l,∂K
be the vectors with the expansion

coefficients of γ K
0 uh,l and γ K

0 vh,l in P1
pw(Tl (∂K)), respectively. These vectors

are given as linear combinations of the coefficient vectors g
(ψz)
l,∂K from the basis

functions ψz computed in Sect. 6.2.3 on the faces. Consequently, we obtain for
b(·, ·) the approximation

bl(uh,l, vh,l ) =
∑

K∈Kh

(g(v)

l,∂K
)�SK,l g(u)

l,∂K
,

where SK,l ∈ R
|Ml (∂K)|×|Ml (∂K)| is either

SunsymK,l = M�
K,lV

−1
K,l

(
1
2MK,l + KK,l

)
,

when using the non-symmetric representation, or

SK,l = DK,l + ( 12M�
K,l + K�

K,l

)
V−1

K,l

( 1
2MK,l + KK,l

)
,

when using the symmetric representation of the Steklov–Poincaré operator. Here,
the matrices in bold letters are the corresponding boundary element matrices for
the convection-diffusion-reactionoperator defined in Sect. 6.2.3. For this differential
operator, however, the hypersingular integral operator DK is not self-adjoint and
hence, DK,l is non-symmetric. Consequently, the symmetric representation of the
Steklov–Poincaré operator yields a non-symmetric matrix SK,l .

Finally, the fully discrete Galerkin formulation reads:

Find uh,l ∈ gD + Vh,l,D : bl(uh,l, vh,l) = 0 ∀vh,l ∈ Vh,l,D . (6.37)

The assembling of the global FEM matrix is performed as usual by adding up the
local element-wise contributions. Therefore, let DK ∈ R

|Ml (∂K)|×|N (K)| be the
matrix obtained by gathering the vectors g

(ψz)
l,∂K ∈ R

|Ml (∂K)|, z ∈ N (K) with the

expansion coefficients of γ K
0 ψz,l in P1

pw(Tl (∂K)) computed in Sect. 6.2.3. The
matrix

D�
KSK,lDK ∈ R

|N (K)|×|N (K)|

with either SK,l = SunsymK,l or SK,l = SK,l serves as local stiffness matrix in the
BEM-based FEM simulation. At this point we emphasize that the local auxiliary
triangulationsTl (∂K) are used only to compute the element stiffness matrices. The
level of refinement l chosen for them has no influence on the size of the global FEM
system.
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6.2.5 Numerical Experiments: Diffusion Problem

In the setup of the local boundary element matrices, we use a semi analytical
integration scheme. The inner integral in the Galerkin matrices is evaluated
analytically and the outer one is approximated by Gaussian quadrature. For the
assembling of the global FEM system matrix we use locally the stiffness matrices
resulting from the non-symmetric representation of the Steklov–Poincaré operator,
see Sect. 6.2.4. Since this formulation yields non-symmetric local stiffness matrices
although the bilinear form is symmetric, we apply a symmetrization in order to
retain the symmetry. We write

b(uh,l, vh,l ) =
∑

K∈Kh

∫
K

aK∇uh,l · ∇vh,ldx

=
∑

K∈Kh

aK

2

( ∫
∂K

γ K
1 uh,l γ

K
0 vh,l dsx +

∫
∂K

γ K
1 vh,l γ

K
0 uh,l dsx

)
,

and use the approximation

bl(uh,l, vh,l) =
∑

K∈Kh

aK

2
(g(v)

l,∂K
)�
(
SunsymK,l + (SunsymK,l )�

)
g(u)

l,∂K
,

which yields locally the symmetric stiffness matrix

aK

2
D�

K

(
SunsymK,l + (SunsymK,l )�

)
DK ∈ R

|N (K)|×|N (K)| .

The symmetric systems of linear equations arising on the faces and in the global
FEM system are solved by the conjugate gradient method [90] without any pre-
conditioning. Of course, for larger problems a more efficient solver is of particular
interest. It is possible to use FETI-type strategies, for instance. The application of
such solvers to the BEM-based FEM has been studied in [94, 97].

The first numerical example in this section is formulated on the unit cube. We
utilize Voronoi meshes which are a particular example of polyhedral meshes. In
Fig. 6.8, the first three meshes of the sequence are visualized which are used for the
convergence experiments. We see that the elements are non-trivial polyhedra with
arbitrary polygonal faces. The meshes have been produced by generating random
points according to [71] and constructing the corresponding Voronoi diagram in
accordance with [70]. It is assumed that the mesh generator provides the points zK

and zF from the Definitions 2.10 and 2.11. However, for convex elements and faces
we may use the center of mass instead which is computable.

In Table 6.1, we sketch the number of elements |Kh| and the number of
nodes |Nh| in the different Voronoi meshes. The proposed strategy approximates
the solution by a linear combination of as many basis function as nodes are in
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Fig. 6.8 Sequence of Voronoi meshes

Table 6.1 Total number of nodes and elements when working with triangulated surfaces of
different mesh levels l

|Kh| |Nh| l = 0 l = 1 l = 2

9 46 98 424 1790

76 416 905 4170 18,011

712 4186 9081 42,446 184,170

1316 7850 17,013 79,676 345,903

5606 34,427 74,457 349,663 1,519,143

26,362 164,915 356,189 1,675,171 7,280,603

the mesh. Therefore, the number of degrees of freedom in the BEM-based FEM
is |Nh| minus the number of nodes on the Dirichlet boundary ΓD . The simple
generalization for the first order method from Sect. 2.3.4, initially proposed in [60],
needs to triangulate the surfaces of the elements and the number of basis functions
corresponds to the total number of nodes after the triangulation. In Table 6.1, this
total number of nodes is listed in the case that the faces are triangulated with the
level l = 0, 1, 2, cf. Fig. 6.9. We recognize that in this situation much more basis
functions and thus degrees of freedom are required in the global computations.
Roughly speaking, the number of nodes doubles if the coarsest discretization of
the faces is used. If a finer triangulation is needed, the number of nodes and thus the
number of degrees of freedom increase 10 times for l = 1 and even more than forty
times for l = 2. Since the diameter of the elements are equal in all four situations,
the approximation errors of the finite element computations are of the same order
for fixed l. However, the constant in [60] might be better than the one obtained
for the presented strategy for vanishing right hand side in the differential equation.
This is due to the fact that if h is fixed and only l is increased, the method in [60]
still converges since it is equivalent to a boundary element domain decomposition
approach [106]. The hierarchical construction proposed in this chapter gives for
small l comparable approximations while requiring a minimal set of degrees of
freedoms.

In the following, we investigate the influence of the face discretization. These
triangulations of the faces are utilized to define the approximated basis functions
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Fig. 6.9 Polyhedral element with surface triangulations of level l = 0, 1, 2

Table 6.2 Number of nodes
|Ml (∂K)| and number of
triangles |Tl (∂K)| in the
surface discretization of the
element in Fig. 6.9 for
different levels

|N (K)| l |Ml (∂K)| |Tl (∂K)|
12 0 20 36

1 74 144

2 290 576

3 1154 2304

4 4610 9216

ψz,l on the faces with the help of local, two-dimensional finite element methods.
The finer the discretization is chosen the better we approximate the original basis
functions ψz. Even though, the face discretization does not blow up the global
system matrix, the computational effort for the local problems increases if the
discretization level l is raised. As one example, we pick the elementK from Fig. 6.9
and list the number of nodes |Ml(∂K)| and the number of triangles |Tl(∂K)| in the
surface discretization of K for different levels l in Table 6.2. The main tasks in the
local problems are the evaluation of the boundary element matrix entries and the
inversion of the single-layer potential matrix VK,l , which gives a local complexity
of O(|Tl(∂K)|3).

Next, the rates of convergence are analysed for different values of l. Therefore,
consider the Dirichlet boundary value problem

−u = 0 in Ω = (0, 1)3 , u = gD on Γ ,

on the sequence of Voronoi meshes, where gD is chosen such that

u(x) = exp(2
√
2π(x1 − 0.3)) cos(2π(x2 − 0.3)) sin(2π(x3 − 0.3)) (6.38)

is the exact solution. The relative errors in the energy and L2-norm, i.e.

‖u − uh,l‖b

‖u‖b

and
‖u − uh,l‖L2(Ω)

‖u‖L2(Ω)

,

are given in Fig. 6.10 with respect to h = max{hK : K ∈ Kh} in logarithmic
scale for different discretization levels l = 0, 1, 2. This example shows that
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Fig. 6.10 Relative error in ‖ · ‖b (•) and ‖ · ‖L2(Ω) (�) with respect to h for levels l = 0, 1, 2 in
the example with solution (6.38)

the discretization level of the faces does not influence the rates of convergence
as proofed in [147]. Additionally, Fig. 6.10 indicates that the constant in the
error estimate can be chosen to be independent of the level l. The coarsest face
discretization with l = 0 is sufficient to analyse the convergence rates in the
forthcoming numerical experiments. Due to this choice, the local complexity in the
two-dimensional finite element method on the faces F ∈ Fh and the local boundary
element methods on the elementsK ∈ Kh is rather small. Furthermore, in Fig. 6.10,
we recognize linear convergence for the approximation error measured in the energy
norm and quadratic convergence if the error is measured in theL2-norm as expected,
see [147].

Finally, we consider the model problem on a L-shaped domain with a singular
solution such that u /∈ H 2(Ω), but u ∈ H 5/3(Ω). Due to the theory of interpolation
spaces, see, e.g., [34], we expect a convergence order of 2/3. With the help of
cylindrical coordinates (r, φ, x3), where r ≥ 0, φ ∈ [π/2, 2π] and x3 ∈ R, the
function

u(r cosφ, r sinφ, x3) = r2/3 sin( 23 (φ − π
2 )) ∈ H 5/3(Ω) (6.39)

satisfies the Laplace equation in the L-shaped domain

Ω = ((−1, 1) × (−1, 1) × (0, 1)
) \ [0, 1]3

with appropriate Dirichlet data. The boundary value problem is solved by means
of the BEM-based FEM on a sequence of polyhedral meshes made of polygonal
bricks, i.e., the meshes contain as elements prisms having general polygonal ends.
In Fig. 6.11, we give the initial mesh of the domain Ω with hanging nodes and
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Fig. 6.11 L-shaped domain with polyhedral mesh made of bricks and Dirichlet data (left) and
relative error ‖u − uh,l‖b/‖u‖b with respect to h for l = 0 in the example with solution (6.39)
(right)

edges. Additionally, we show the relative error ‖u − uh,l‖b/‖u‖b with respect to
h = max{hK : K ∈ Kh} in logarithmic scale. As expected, we obtain the reduced
order of convergence for a sequence of uniform refinedmeshes. To recover the linear
convergence in the energy norm for singular solutions, it is necessary to perform
adaptive mesh refinement strategies as discussed in Chap. 5.

6.2.6 Numerical Experiments: Convection-Diffusion Problem

In this section, we give some implementation details as well as numerical exper-
iments for the convection-diffusion problem. The computations are done on tetra-
hedral and polyhedral meshes. For the sake of simplicity, we restrict ourselves to
the case of scalar valued diffusion coefficients, i.e., A = αI for some α > 0,
and a vanishing reaction term c = 0. Furthermore, the experiments are carried out
with constant and continuously varying convection vector b. Remember, that we
have to approximate the coefficients α and b by constants on each geometrical
object for the BEM-based FEM, see Sect. 6.2.2. The method is studied for the
case of decreasing diffusion α → 0. Standard numerical schemes like the finite
elementmethod become unstable when applied to this type of convection-dominated
problems. Typically, the issue manifests itself in the form of spurious oscillations.
The critical quantity here is the mesh Péclet number

PeK = hK |bK |
αK

, K ∈ Kh ,

which should be bounded by 2 for standard finite element methods. In the numerical
experiments, we give Peh = max{PeK : K ∈ Kh}. When decreasing the diffusion
for fixed h, the mesh Péclet number increases and we expect oscillations. This is
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due to the fact that the boundary value problem gets closer to a transport equation
and thus, boundary layers appear near the outflow boundary.

In addition to stability, we study the number of GMRES iterations, which are
used to compute the approximate solution of the resulting system of linear equa-
tions, and we compare the presented approach with a 3D SUPG implementation.

Implementation Details
All computations regarding the convection-adapted basis functions can be done in a
preprocessing step. In the case of non-constant convection, diffusion and reaction,
these terms are first projected into the space of piecewise constant functions over
the edges, faces and elements of the mesh. Afterwards, the Dirichlet traces of the
basis functions are computed on the edges and faces. Here, an analytic formula is
utilized on each edge E ∈ Eh, and subsequently, the two-dimensional convection-
diffusion-reaction problems are treated separately on each face F ∈ Fh according
to the SUPG formulation (6.33). Let the local Péclet number be defined by

PeF,T = hT |bF |
αF

for T ∈ Tl(F ) .

The stabilization parameter δF in the SUPG method is chosen to be piecewise
constant over the auxiliary triangulationTl (F ) on each face F ∈ Fh. The choice

δF,T =
{

c1hT /2 for PeF,T > 2 ,

c2h
2
T /αF else ,

leads to the best possible convergence rate of the discrete solution with respect to
the streamline diffusion norm on F , see [149]. However, an ‘optimal’ choice of
the constants c1 and c2 is not known. Since we aim to omit additional user defined
parameters, the choice

δF,T = hT

2|bF |
(

1

tan(PeF,T )
− 1

PeF,T

)
, (6.40)

is preferred in the numerical realization, see [111].
The auxiliary triangulationsTl (F ) of level l ∈ N0 are constructed as described in

Sect. 2.2 and visualized in Figs. 2.4 and 6.9, for example. But, in case of convection-
dominated problems on the faces, we decided to move the midpoint zF of the mesh,
created in T0(F ), into the direction of the projected convection vector bF , see
Fig. 6.12 (middle). If κ > 0 is such that zF + κbF ∈ ∂F , then the translation
can be chosen as

zF �→ zF + (1−ϑ)κbF , with transition point ϑ = min
{1
2
,

αF

|bF | log(l + 1)
}

.
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Fig. 6.12 Adaptation of auxiliary triangulation T2(F ) and projected convection vector: without
adaptation (left), by moving the midpoint (middle), as layered mesh (right)

Consequently, the auxiliary meshes get adapted to the local problems. This adap-
tation is inspired by Shishkin-meshes [156], see also [116, 123, 149], which are
graded in such a way that boundary layers are resolved. Another mesh adaptation
is to construct layered meshes. This can be achieved as follows. We compute again
the point zF + (1 − ϑ)κbF , but this time, we move the edges created in T1(F )

that are parallel to ∂F towards the boundary ∂F such that all edges have the same
distance to ∂F and one edge lies on the computed point, see Fig. 6.12 (right). In the
numerical realization, we set ϑ = 0.25 independent of the local Péclet numbers.
Otherwise, the auxiliary triangulations Tl (F ) degenerate in the computations for
small l = 1, 2, 3 and large Péclet numbers. Furthermore, we only present the results
for the first mentioned mesh adaptation technique since the computed values in the
experiments differ slightly.

The solutions of the resulting systems of linear equations, coming from the SUPG
formulation, with non-symmetric, sparse matrices are approximated with the help
of the GMRES method, see [150]. As the stopping criterion, we use the reduction
of the norm of the initial residual by a factor of 10−10.

Another preprocessing step is the computation of the matrices arising from the
local boundary integral formulations. Here, we use the BEM code developed in
the PhD thesis by Hofreither [94], which is based on a fully numerical integration
scheme described in [151]. The inversions of the local single-layer potential
matrices VK,l are performed with an efficient LAPACK [6] routine.

The assembling of the global stiffness matrix is performed element-wise as
described in Sect. 6.2.4 utilizing the non-symmetric representation of the Steklov–
Poincaré operator in the local stiffness matrices. The resulting system of linear
equations, which is again sparse and non-symmetric, is solved by GMRES. For
the global problem, however, we use the reduction of the norm of the initial residual
by a factor of 10−6 as the stopping criterion. In our numerical experiments, the
GMRES iterations are carried out without preconditioning in general. However, we
also implemented a simple diagonal preconditioner, namely a geometric row scaling
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(GRS) preconditioner, see [86], with matrix

C−1 = diag(1/‖Bj‖p) ,

where by Bj we mean the j -th row of the global stiffness matrix, and we choose the
vector norm with p = 1.

The proposed method is highly parallelizable, especially the preprocessing
steps. The two-dimensional convection-diffusion-reaction problems on the faces
are independent of each other, and can thus be treated in parallel. The subsequent
setup of the boundary integral matrices and of D�

KSK,lDK can be parallelized on an
element level as well. Even the computations of the single entries of each boundary
integral matrix are independent of each other.

In the implementation we use another observation to reduce the computational
complexity. In the case of constant convection, diffusion and reaction terms, the
local boundary integral matrices and the problems on the edges and faces are
identical for elements which differ by some translation only. Therefore, we build a
lookup table in a preprocessing step such that redundant computations are avoided.

Experiment 1
In the first numerical experiment, a problem with constant convection and diffusion
terms is studied. Let Ω = (0, 1)3, and let us consider the boundary value problem

−αu + b · ∇u = 0 in Ω , u = gD on Γ ,

where b = (1, 0, 0)� and gD(x) = x1 + x2 + x3. The domain Ω is discretized with
tetrahedral elements, see Fig. 6.13. The discretization is constructed with the help of
a uniformmesh with 8×8×8 small cubes where each cube is split into 6 tetrahedra.
Thus, the mesh consists of 3072 elements, 6528 faces, 4184 edges and 729 nodes

Fig. 6.13 Visualisation of tetrahedral mesh and Dirichlet data for Experiment 1
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of which 343 nodes lie in the interior of Ω . Consequently, the number of degrees
of freedom in the BEM-based FEM is equal to 343 in this example. The maximal
element diameter is h ≈ 0.22. The mesh is chosen rather coarse, but it is well suited
for the study of stability.

Since the convection and diffusion parameters are constant over the whole
domain, the lookup table is applied to speed up the computations. Instead of the
before mentioned numbers of geometrical object, we only have to treat 6 elements,
12 faces and 7 edges in the preprocessing step, where the traces of the basis
functions are computed and the local stiffness matrices are set up.

To handle the Dirichlet boundary condition, we apply pointwise interpolation of
the data gD to obtain an extension into Ω . The interpolant is bounded by 0 from
below and by 3 from above on Γ . The convection-diffusion problem satisfies the
maximum principle [82, 140], and therefore, we know that 0 ≤ u ≤ 3 everywhere
for the exact solution. To study stability of the BEM-based FEM, the maximum
principle is checked for the approximate solution uh,l ∈ Vh,l obtained by (6.37).
Since the basis functions satisfy convection-diffusion problems on the faces and
edges and since the maximum principle is also valid there, the maximal values of
uh,l should by reached in the nodes of the mesh. However, because of oscillations
coming from the SUPG method on the faces, the maximal values might be found at
some auxiliary node. Consequently, the maximum principle is tested on the whole
skeleton ΓS .

Table 6.3 gives a comparison of the classical finite element method with
continuous piecewise linear basis functions and without stabilization, the original
BEM-based FEM proposed in [96] with linear basis functions on the faces and
the hierarchical, convection-adapted BEM-based FEM with l = 2 discussed in
this chapter. The classical FEM satisfies the discrete maximum principle until

Table 6.3 Verifying maximum principle in Experiment 1

Classic FEM BEM-based FEM

Original [96] Hierarchical, l = 2

α Peh umin umax umin umax umin umax

1.0 × 10−1 2 0.00 3.00 0.00 3.00 0.00 3.00

5.0 × 10−2 4 0.00 3.00 0.00 3.00 0.00 3.00

2.5 × 10−2 9 0.00 3.00 0.00 3.00 0.00 3.00

1.0 × 10−2 22 −0.55 3.00 0.00 3.00 −0.01 3.00

5.0 × 10−3 43 −1.14 3.00 0.00 3.00 −0.01 3.00

2.5 × 10−3 87 −1.85 3.07 0.00 3.00 −0.01 3.00

1.0 × 10−3 217 0.00 3.00 −0.01 3.00

5.0 × 10−4 433 0.00 3.00 −0.01 3.00

2.5 × 10−4 866 −142.89 399.06 −0.01 3.00

1.0 × 10−4 2165 −68.85 41.00 −0.01 3.00

5.0 × 10−5 4330 −0.01 3.08

2.5 × 10−5 8660 −0.01 14.72
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α = 2.5 × 10−2, which corresponds to a Péclet number of 9. The BEM-based
strategies, which incorporate the behaviour of the differential operator into the
approximation space, are more stable. The method in [96] passes the test up to
α = 5.0 × 10−4, which corresponds to Peh = 433. In the new, proposed method
we might have oscillations occurring in the approximation of the basis functions
satisfying convection-dominated problems on the faces. If we neglect these small
deviations in the third digit after the decimal point, the proposed method reaches
even α = 1.0× 10−4, i.e. Peh = 2165, for l = 2 without violation of the maximum
principle.

Next, we study the influence of the auxiliary triangulations of the faces on
the convection-adapted BEM-based FEM. In Table 6.4, the minimal and maximal
values umin and umax of the approximate solution are listed for different levels l

of the auxiliary meshes. The higher l is chosen, the longer the discrete maximum
principle is valid. For l = 3, we even have stability until α = 2.5 × 10−5, i.e.
Peh = 8660. The enhanced stability can be explained by the improved approxi-
mations of the boundary value problems on the edges and faces used to construct
the basis functions. Obviously, the local oscillations in the construction of basis
functions are reduced such that they have less effect to the global approximation.

In Table 6.4, the number of GMRES iterations are given without preconditioning.
The GMRES solver for the proposed BEM-based FEM converges faster than for the
preceding scheme. For increasing l the convergence slightly improves. Furthermore,
the iteration numbers stay bounded without the help of any preconditioning until the
maximum principle is violated.

Experiment 2
In this numerical experiment, we compare the convection-adaptedBEM-based FEM
with a well established method for convection-dominated problems, namely the
Streamline Upwind/Petrov–Galerkin (SUPG) finite element method. The three-
dimensional SUPG formulation is analogous to (6.33) and the stabilization param-
eter is chosen according to (6.40). The implementation has been done in the
software FreeFem++, see [89]. For the comparison, we solve again the problem
given in Experiment 1 with the BEM-based FEM and the SUPG method on the
coarse tetrahedral discretization. Both approximations have 343 degrees of freedom.
Furthermore, a reference solution is computed by the SUPG method on a fine
tetrahedral mesh constructed with the help of 128 × 128 × 128 cubes.

Having a closer look at the considered problem, we decompose the boundary of
Ω = (0, 1)3 into the inflow boundary, the outflow boundary and the characteristic
boundary which are given by

Γin = {0}×(0, 1)×(0, 1) , Γout = {1}×(0, 1)×(0, 1) , Γch = ∂Ω\(Γin∪Γout) ,

respectively. It is known, that the solution has an exponential layer near Γout
and a characteristic/parabolic layer near Γch in the convection-dominated regime,
see [149]. The hierarchical construction of the basis functions for the BEM-based
FEM is adapted to the exponential layers but not necessarily to the parabolic
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Fig. 6.14 Comparison of convection-adapted BEM-based FEM and SUPG approximation

layer because of the following reason: When we derived the local boundary value
problems on the edges, faces and elements, we incorporate the behaviour in the
direction of the convection, but we neglect the behaviour orthogonal to the faces,
and thus, along the characteristic layer. Consequently, we should study exponential
layers to see the advantages of the BEM-based FEM. Therefore, we compare the
approximations along the line s �→ (s, 5/8, 1/2)� for s ∈ [0, 1], which is far from
the characteristic boundary and which is aligned with edges of the discretization.

In Fig. 6.14, we give the approximations of the BEM-based FEM for different
levels of the auxiliary triangulations of the faces, the SUPG approximation and
the reference solution for α = 10−3 (Peh = 217) and α = 10−4 (Peh = 2165).
The degrees of freedom are visualized by marks. The SUPG method shows no
oscillations, but the layer in the solution is smeared out due to the stabilization. The
SUPG approximations for α = 10−3 and α = 10−4 hardly differ although the layer
in the solution changes. The convection-adapted BEM-based FEM has no explicit
stabilization, and thus, we recognize some oscillations near the exponential layer.
However, the layer is resolved much better with the same number of degrees of
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freedom. Additionally, we have the possibility to improve the accuracy of the shape
functions within the BEM-based FEM by increasing the level l, i.e., by refining the
auxiliary triangulations of the faces. Doing this, the oscillations near the exponential
layer are reduced and we obtain very accurate solutions for the global problem with
only a few degrees of freedom. If we have a closer look at the plots in the right
column of Fig. 6.14 with the details near the exponential layer, the curves indicate
that the layer of the solution is already smeared out for the reference solution
computed with the SUPG method on a very fine mesh.

Experiment 3
In the final numerical experiment, we consider a convection-diffusion problem
with non-constant convection vector. In order to compare the experiments, let
Ω = (0, 1)3. We solve

−αu + b · ∇u = 0 in Ω , u = gD on Γ ,

where

b(x) = 0.85√
(1 − x1)2 + (1 − x3)2

⎛
⎝ x3 − 1

0
1 − x1

⎞
⎠

and gD is chosen such that it is piecewise bilinear and continuous with 0 ≤ gD ≤ 3
on one side of the unit cube and zero on all others, see Fig. 6.15. The convection
vector b is scaled in such a way that the Péclet numbers in the computations are
comparable with those of Experiment 1. The convection is a rotating field around
the upper edge of the unit cube Ω , which lies in the front when looking at Fig. 6.15.

Fig. 6.15 Visualisation of polyhedral mesh and Dirichlet data for Experiment 3



220 6 Developments of Mixed and Problem-Adapted BEM-Based FEM

Consequently, we expect that the non-zero Dirichlet data is transported towards the
upper side of the cube for low diffusion.

This time, the domain Ω is decomposed into prisms having general polygonal
ends, see Fig. 6.15. The polyhedral mesh consists of 350 elements, 1450 faces,
1907 edges and 808 nodes of which 438 nodes lie in the interior of Ω . Thus, the
number of degrees of freedom in the BEM-based FEM is equal to 438. The maximal
diameter of the elements is h ≈ 0.25 and the discretization was chosen such that h
is approximately the same as in Experiment 1.

In our experiment, the polyhedral mesh has less elements, faces and edges
than the tetrahedral discretization. This is beneficial concerning the computations
in the preprocessing step. Less local problems have to be solved on edges and
faces and there are less boundary element matrices which have to be set up.
Furthermore, polyhedral discretizations admit a high flexibility while meshing
complex geometries. In Table 6.5, we list the minimal and maximal values of the
approximation uh,l on the skeleton for l = 2 to verify the discrete maximum
principle. Furthermore, the number of GMRES iterations are given with and without
GRS preconditioning.

The first observation is that the number of GMRES iterations increases when the
diffusion α tends to zero. Thus, the iteration count is not bounded in this experiment.
However, this behaviour correlates with the violation of the maximum principle and
is therefore the result of inaccuracies. Already with the help of the simple geometric
row scaling preconditioner, we overcome the increase of the iteration number.

A more detailed discussion is needed for the discrete maximum principle. In
Table 6.5, we observe that this principle is violated in a relatively early stage for
α = 2.5 × 10−2, which corresponds to Peh = 9. However, the increase of umax and
the decrease of umin is fairly slow for increasing Péclet number.

Table 6.5 Verifying maximum principle in Experiment 3 for l = 2 and number of iterations
with/without preconditioning

α Peh umin umax Iter. Iter. (prec.)

1.0 × 10−1 2 0.00 3.00 20 20

5.0 × 10−2 4 0.00 3.00 20 21

2.5 × 10−2 9 0.00 3.04 20 21

1.0 × 10−2 22 0.00 3.07 23 22

5.0 × 10−3 43 −0.01 3.26 29 23

2.5 × 10−3 86 −0.04 3.37 42 24

1.0 × 10−3 216 −0.10 3.38 45 23

5.0 × 10−4 431 −0.13 3.45 48 22

2.5 × 10−4 863 −0.15 3.51 51 21

1.0 × 10−4 2157 −0.15 3.53 52 21

5.0 × 10−5 4313 −0.16 3.57 58 23

2.5 × 10−5 8627 −0.25 4.38 69 28
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Fig. 6.16 Approximations of basis functions on polygonal face, projected convection vector and
auxiliary triangulation with appropriately (left) and not appropriately (right) resolved boundary
layer

Here, one has to point out that the computations are done on a polyhedral mesh
with a globally continuous approximation uh,l . This, by itself, is a current field of
research even without dominant convection, see [28]. The geometry of polygonal
faces is more complex than the triangles in Experiment 1, and thus, the computations
on the faces are more involved.

Figure 6.16 presents the approximation of two different basis functions over
the same polygonal face, the auxiliary triangulation and the projected convection
vector. We can see how the local mesh has been adapted to the underlying
differential operator, namely by moving the node, which lay initially in the center
of the polygon, into the direction of the convection. In certain constellations, the
boundary layers are not resolved appropriately. In the left picture of Fig. 6.16, the
approximation of the basis function is satisfactory. In the right picture, however,
oscillations occur in the lower right corner due to the relatively large triangles near
the boundary. In many cases these situations are already resolved quite well by the
simple mesh adaptation. When we introduced the moving of the auxiliary nodes in
the implementation, the numerical results improved. Thus, we expect that a better
adaptation of the local meshes, and consequently a better approximation of the local
problems, improves the stability of the BEM-based FEM such that we would obtain
comparable results to Experiment 1 for the discrete maximum principle.

Finally, in Fig. 6.17, the approximation uh,l is visualized for l = 2 and two
different values of diffusion α = 2.5×10−2 and α = 5.0×10−5. The domainΩ has
been cut through, such that the approximation is visible on a set of polygonal faces
which lie in the interior of the domain. The expected behaviour of the solution can
be observed. The Dirichlet data is transported into the interior of the domain along
the convection vector. In the case of the convection-dominated problem, oscillations
appear near the outflow boundary.
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Fig. 6.17 Cut through the domain Ω = (0, 3)3 and visualisation of the approximation in
Experiment 3 for α = 2.5 × 10−2 (left) and α = 5.0 × 10−5 (right)

Conclusion on Convection-Adapted BEM-Based FEM
We have derived convection-adapted BEM-based FEM discretization schemes for
convection-diffusion-reaction boundary value problems that considerably extend
the range of applicability with respect to the strength of convection. The numerical
results have not only confirmed this enhanced stability property of the discretization
scheme, but have also indicated faster convergence of the GMRES solver in
comparison with the original BEM-based FEM scheme presented in [94, 96]. When
compared to the SUPGmethod, our proposedmethod shows an improved resolution
of the exponential layer at the outflow boundary.
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