
Chapter 5
Adaptive BEM-Based Finite Element
Method

As long as the solutions of boundary value problems are sufficiently regular, the
refinement of the mesh size h and the increase of the approximation order k in the
discretization space V k

h yields an improvement in the accuracy. In particular, this
yields optimal convergence rates. But, in most applications the regularity of the
solution is restricted due to corners of the domain or jumping physical quantities.
Therefore, it is essential to adapt the solution process to the underlying problem
in order to retrieve optimal approximation properties. In this chapter, we deal
with a posteriori error estimates which can be used to drive an adaptive mesh
refinement procedure and we recover optimal rates of convergence for the adaptive
methods in the numerical experiments in the presence of singularities. For the error
estimation, we cover the classical residual based error estimator as well as goal-
oriented techniques on general polytopal meshes. Whereas, we derive reliability
and efficiency estimates for the first mentioned estimator, we discuss the benefits
and potentials of the second one for general meshes.

5.1 Preliminaries

In the following derivations we restrict ourselves to the model problem and the
BEM-based FEM formulation given in Chap. 2. Therefore, let Ω ⊂ R

d , d = 2, 3 be
a polygonal or polyhedral domain. Its boundaryΓ = ΓD∪ΓN is split into a Dirichlet
and a Neumann part, where we assume |ΓD| > 0. Given a source term f ∈ L2(Ω),
a Dirichlet datum gD ∈ H 1/2(ΓD) as well as a Neumann datum gN ∈ L2(ΓN), the
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problem reads

− div(a∇u) = f in Ω ,

u = gD on ΓD ,

a∇u · n = gN on ΓN .

Furthermore, we restrict ourselves for the presentation in this chapter to piecewise
constant diffusion coefficients which are aligned with the mesh, i.e.

a(x) = aK for x ∈ K and K ∈ Kh

for the initial mesh and consequently for all meshes in the refinement process. The
Galerkin as well as the corresponding discrete Galerkin formulation are given in
Sect. 2.5. We assume for simplicity, that the extension of the Dirichlet data gD can
be chosen in V k

h . The Galerkin formulations thus read

Find u ∈ gD + H 1
D(Ω) :

b(u, v) = (f, v)L2(Ω) + (gN , v)L2(ΓN ) ∀v ∈ H 1
D(Ω) ,

(5.1)

and

Find uh ∈ gD + V k
h,D :

b(uh, vh) = (f, vh)L2(Ω) + (gN , vh)L2(ΓN) ∀vh ∈ V k
h,D .

(5.2)

In Chap. 2, the approximation spaces are defined and we have derived a priori error
estimates for the Galerkin approximation uh ∈ V k

h of the form

‖u − uh‖H 1(Ω) ≤ c hk |u|Hk+1(Ω) for u ∈ Hk+1(Ω) . (5.3)

As already mentioned, the convergence rate k in these estimates is linked to, and
restricted by the regularity of the solution u ∈ Hk+1(Ω). Furthermore, the estimate
cannot be evaluated for computational purposes since it contains the unknown
solution u in the right hand side. The aim of an adaptive FEM is to retrieve the
convergence O(hk), k ∈ N of the error although the exact solution is not regular
at all, i.e. u 	∈ H 2(Ω). In order to achieve this, we need an error estimator that is
computable and can serve as an indicator for local refinement.We consider estimates
of the form

‖u − uh‖ ≤ c η for η2 =
∑

K∈Kh

η2K ,
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where η = η(uh) is desirable for practical considerations. Here, ‖ · ‖ denotes
some norm and η is a computable error estimator, which depends on the current
approximation uh but not on the unknown solution u explicitly. Therefore, the
inequality is called a posteriori error estimate. The values ηK , which are assigned
to the elements K ∈ Kh, serve as error indicator over the corresponding elements.
With their help, we can monitor the approximation quality over the single elements
and we can use this information for local mesh refinement.

The preceding considerations lead to an adaptive finite element strategy, which
is often abbreviated to AFEM in the literature. This scheme can be sketched as

SOLVE → ESTIMATE → MARK → REFINE → SOLVE → · · · .

First, the discrete boundary value problem is solved on a given mesh and the error
estimator η and the error indicators ηK are computed for all elements. If the desired
accuracy is reached according to η, we are done. If not, some elements are marked
for refinement. These elements are chosen on the basis of the error indicators ηK .
Next, the marked elements are refined, and thus we obtain a new mesh which is
adapted to the problem. Afterwards, we can solve the boundary value problem on
the refined mesh and continue this procedure until the desired accuracy is reached.

For triangular meshes and piecewise linear trial functions, the first convergence
proof for the adaptive finite element method applied to the Poisson problem can be
found in [67]. Here, the mesh has to satisfy some fineness assumption. In [129], this
condition is removed and the notion of data oscillation is introduced. A general
convergence result for conforming adaptive finite elements, which is valid for
several error estimates and for a class of problems, has been published 7 years
later in [130]. The first convergence rates are proven in [36], where an additional
coarsening step is introduced and the refinement is done in such a way that a new
node lies inside each marked element of the previous mesh. In [55], the authors
show a decay rate of the energy error plus data oscillation in terms of the number of
degrees of freedom without the additional assumptions on coarsening and refining.
A state of the art discussion and an axiomatic presentation of the proof of optimal
convergence rates of adaptive finite element methods can be found in [53].

Whereas the cited theory is done for triangular meshes, we state an adaptive finite
element method on regular and stable polygonal meshes. In the SOLVE step, we
approximate the solution of the boundary value problem on the current mesh Kh.
This is done as described in Chap. 2. Solving the discrete problem, we obtain an
approximation uh ∈ V k

h on the current mesh for a fixed order k.
The ESTIMATE part serves for the computation of the a posteriori error

estimator η and local error indicators ηK . There is a great variety of estimators
in the literature. The most classical one is the residual error estimate which goes
back to [15]. This estimator measures the jumps of the conormal derivative of the
approximation uh over the element boundaries. Other estimators are obtained by
solving local Dirichlet [16] or Neumann [19] problems on element patches. The
engineering community came up with an error indicator that uses the difference
between∇uh and its continuous approximation, see [183]. The equilibrated residual
error estimator [39] is obtained by post-processing of the approximation and belongs
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to the more general class of functional analytic error estimates [142]. Finally, we
mention the hierarchical [64] and the goal oriented [18] error estimates. For a
comparison of all these strategies see for instance [54].

After the computation of the estimator and the local error indicators, we have
to MARK several elements for refinement. There are different strategies in the
literature for this task. The most classical one is the maximum strategy which has
been proposed already in [16]. Here, all elements K ∈ Kh are marked which satisfy

ηK ≥ θ ηmax

for a given parameter 0 ≤ θ ≤ 1 and ηmax = max{ηK : K ∈ Kh}. So, the elements
with the largest error indicators are chosen for refinement. For large values of θ , the
strategy becomes more selective, whereas for small θ , we obtain almost a uniform
refinement. A similar idea is used by the modified equidistribution strategy. For a
given parameter 0 ≤ θ ≤ 1 and the global error estimator η, all elements K ∈ Kh

are marked which satisfy

ηK ≥ θ
η√|Kh| .

In this strategy one tries to reach a state where the error is distributed equally over
all elements. The parameter θ controls again the selectivity. This kind of strategy
has been used in Sect. 3.4.6 for the generation of anisotropically adapted meshes.
Finally, we mention Dörfler’s strategy, see [67]. Here, a set of elementsKM ⊂ Kh

is marked such that

( ∑

K∈KM

η2K

)1/2

≥ (1 − θ) η ,

where 0 ≤ θ < 1 is again a given parameter and η the global estimator. It is
advantageous to choose the set KM as small as possible. This can be achieved by
sorting the elements K ∈ Kh according to the value of their error indicators ηK .
Since every sorting algorithm is computationally expensive, Dörfler proposed
in [67] the following procedure with given parameter 0 < ν < 1, which is chosen
to be small.

sum = 0.0
μ = 1.0
while (sum < (1-θ)2 η2)
do

μ = μ - ν

for all K ∈ Kh

if (K is not marked)
if (ηK > μ ηmax)

mark K

sum = sum + η2K
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Dörfler’s marking strategy was one of the key points in the proofs of convergence
and convergence rates of AFEM in the literature mentioned above.

As the name of the last step REFINE already indicates, this is the time
where the marked elements are refined. Usually, this step is more complicated for
standard methods working on triangular or quadrangular meshes because of the
strict admissibility conditions on the mesh. In such cases, it has to be guaranteed
that no hanging nodes appear. Therefore, the mesh has to be completed in the sense
that neighbouring elements are refined until all hanging nodes disappear. In the
literature, one can find several strategies like red-green refinement or newest vertex
bisection with completion algorithms, see [36, 170]. Another possibility to handle
hanging nodes is to treat them as conditional degrees of freedom, i.e., to fix the value
of the finite element functions in these points to be a suitable interpolation of their
neighbouring regular nodes. Nevertheless, the first idea with completion spreads the
local refinement into a neighbourhood and the second one produces artificial nodes.
Both scenarios are somehow unpleasant for the numerical realization. Due to the
use of the BEM-based FEM, we are in the fortune situation to cope with arbitrary
polytopal meshes. Therefore, we do not have to worry about hanging nodes because
they are incorporated as ordinary nodes in the strategy and thus contribute to the
approximation accuracy. This behaviour is discussed more precisely in Sect. 5.2.3.
The refinement only affects the marked elements and is done as described in
Sect. 2.2.3. During this refinement process with the discussed bisection algorithm,
the stability of the sequence of meshes is not preserved automatically. Thus, we
might want to enforce this property explicitly in the mesh refinement.

In certain algorithms and applications an additionalCOARSEN step is necessary
which reverses the local mesh refinement in some areas of the domain. This has been
introduced in [36] for theoretical reasons in order to prove convergence rates for
the adaptive algorithm. But also in time-dependent problems, this additional step is
meaningful if, for instance, the singularity of the solution travels through the spacial
domain. The coarsening often relies on the hierarchy of adaptive meshes obtained
during the refinement. For polytopal meshes, however, one might agglomerate
almost arbitrary elements in this step since the union of polytopes is a polytope.
This demonstrates once more the flexibility of these general meshes.

5.2 Residual Based Error Estimator

In this section, we consider one of the most classical a posteriori error estimators,
namely the residual based error estimator, and formulate it on polytopal meshes. For
the classical results on simplicial meshes see, e.g., [4, 170]. This a posteriori error
estimate bounds the difference of the exact solution and the Galerkin approximation
in the energy norm ‖ · ‖b associated to the symmetric and positive definite bilinear
form, i.e. ‖ · ‖2b = b(·, ·). Among others, the estimate contains the jumps of the
conormal derivatives over the element interfaces. Since we are dealing with the
three- and two-dimensional case simultaneously, F ∈ Fh denotes a face (d = 3) or
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edge (d = 2), respectively. Such a jump over an internal face F ∈ Fh,Ω is defined
by

�uh�F =
(
aKγ K

1 uh + aK ′γ K ′
1 uh

) ∣∣∣
F

,

where K,K ′ ∈ Kh are the neighbouring elements of F with F ∈ F (K) ∩ F (K ′).
The element residual is given by

RK = f + aK�uh for K ∈ Kh ,

and the face/edge residual by

RF =

⎧
⎪⎪⎨

⎪⎪⎩

0 for F ∈ Fh,D ,

gN − aKγ K
1 uh for F ∈ Fh,N with F ∈ F (K) ,

− 1
2 �uh�F for F ∈ Fh,Ω .

We can proceed as for the two-dimensional case in [174, 180] in order to formulate
the residual based error estimator and to prove its reliability and efficiency on
polytopal meshes. This estimator involves the previously defined element and face
residuals and gives an upper bound for the Galerkin error in the energy norm which
does not contain any unknown quantity.

Theorem 5.1 (Reliability) Let Kh be a regular and stable mesh. Furthermore,
let u ∈ gD + H 1

D(Ω) and uh ∈ gD + V k
h,D be the solutions of (5.1) and (5.2),

respectively. The residual based error estimate is reliable, i.e.

‖u − uh‖b ≤ c ηR with η2R =
∑

K∈Kh

η2K ,

where the error indicator is defined by

η2K = h2K‖RK‖2L2(K) +
∑

F∈F (K)

hF ‖RF ‖2L2(F ) .

The constant c > 0 only depends on the regularity and stability parameters of the
mesh, see Sect. 2.2, the approximation order k, the space dimension d and on the
diffusion coefficient a.

In this presentation it is assumed that we can compute γ K
1 uh analytically. However,

in the realization these terms are treated by means of boundary element methods
as discussed in Chap. 4. This approximation of the Neumann traces has been
incorporated in [180] and yields an additional term in the estimate.
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Fig. 5.1 Example of
modified neighbourhoods of
edges and elements in two
space dimensions, cf. Fig. 3.1

E ∗
E

K

∗
K

Whereas the reliability gives an upper bound for the error, the efficiency states
a local upper bound for the error indicator in terms of the approximation error and
the problem data. Beside of the neighbourhoods (3.2) of nodes, edges, faces and
elements defined in Sect. 3.1, we additionally need the following modified versions

ω∗
E =

⋃

K ′∈Kh:E∈E (K ′)
K ′ , ω∗

F =
⋃

K ′∈Kh:F∈F (K ′)
K ′ , ω∗

K =
⋃

F∈F (K)

ω∗
F , (5.4)

cf. Fig. 5.1. Furthermore, we introduce the notation ‖ · ‖b,ω for ω ⊂ Ω , which
means that the energy norm is only computed over the subset ω. More precisely, it
is ‖v‖2b,ω = (a∇v,∇v)L2(ω) for our model problem.

Theorem 5.2 (Efficiency) Under the assumptions of Theorem 5.1, the residual
based error indicator is efficient, i.e.

ηK ≤ c

(
‖u − uh‖2b,ω∗

K
+ h2K‖f − f̃ ‖2L2(ω

∗
K)

+
∑

F∈F (K)∩Fh,N

hF ‖gN − g̃N‖2L2(F ) + hK

∑

K ′⊂ω∗
K

‖γ K ′
1 uh − ˜γ K ′

1 uh‖2L2(∂K ′)

)1/2

,

where f̃ , g̃N and ˜γ K ′
1 uh are piecewise polynomial approximations of f , gN and

γ K ′
1 uh, respectively. The constant c > 0 only depends on the regularity and

stability parameters of the mesh, see Sect. 2.2, the approximation order k, the space
dimension d and on the diffusion coefficient a.

The terms involving the data approximation ‖f − f̃ ‖L2(ω
∗
K) and ‖gN − g̃N‖L2(F )

are often called data oscillations. They are usually of higher order. Additionally,

we have the term ‖γ K ′
1 uh − ˜γ K ′

1 uh‖L2(∂K ′) measuring oscillations in the Neumann
trace of the approximation uh on the boundaries of the elements. The piecewise

polynomial function ˜γ K ′
1 uh might be chosen as the approximation of the Neumann

trace obtained as solution of the derived boundary integral equation from Chap. 4.
Thus, known error estimates from the boundary element method can be applied in
order to bound this term further if needed.
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Remark 5.3 Under certain conditions on the diffusion coefficient it is possible to
get the estimates in Theorems 5.1 and 5.2 robust with respect to a, see, e.g., [139].

5.2.1 Reliability

We follow the classical lines in the proof of the reliability, see, e.g., [170]. However,
we have to take care on the polytopal elements and the quasi-interpolation operators.

Proof (Theorem 5.1) The bilinear form b(·, ·) is a inner product on V = H 1
D(Ω)

due to its boundedness and ellipticity, and thus, V is a Hilbert space together with
b(·, ·) and ‖ · ‖b. The Riesz representation theorem yields

‖u − uh‖b = sup
v∈V \{0}

|R(v)|
‖v‖b

with R(v) = b(u − uh, v) . (5.5)

Thus, in order to prove the theorem, we reformulate and estimate the term |R(v)|
in the following. Let vh ∈ V 1

h,D , the Galerkin orthogonality b(u − uh, vh) = 0 and
integration by parts over each element lead to

R(v) =
∑

K∈Kh

(
(RK, v − vh)L2(K) +

∑

F∈F (K)

(RF , v − vh)L2(F )

)
. (5.6)

The Cauchy–Schwarz inequality yields

|R(v)| ≤
∑

K∈Kh

(
‖RK‖L2(K)‖v − vh‖L2(K) +

∑

F∈F (K)

‖RF ‖L2(F )‖v − vh‖L2(F )

)
.

We choose vh = ICv, where IC is the Clément interpolation operator from
Sect. 3.3, which preserves the homogeneous boundary data on ΓD . Estimating the
L2-norms of v − ICv over the elements and faces with the help of Theorem 3.7, we
find

|R(v)| ≤ c
∑

K∈Kh

(
hK‖RK‖L2(K)|v|H 1(ωK) +

∑

F∈F (K)

h
1/2
F ‖RF ‖L2(F )|v|H 1(ωF )

)

≤ c
( ∑

K∈Kh

η2K

)1/2( ∑

K∈Kh

|v|2
H 1(ωK)

)1/2 ≤ c ηR |v|H 1(Ω) ,

where in the last two estimates we utilized several times Cauchy–Schwarz inequality
and the facts, that each element has a bounded number of faces, see Lemmata 2.7
and 2.16, and that it is covered by a uniformly bounded number of patches only, see
Lemma 3.1. Because of

√
a/amin > 1, it is |v|H 1(Ω) ≤ ‖v‖b/

√
amin and thus (5.5)

together with the previous inequality completes the proof. ��
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5.2.2 Efficiency

The classical proof of efficiency for the residual based error estimator makes use of
special bubble functions over the simplicial meshes. These functions have support
over single elements and are used to localize the residuals. We adapt the bubble
function technique to polytopal meshes. Therefore, let φT and φF be the usual
polynomial bubble functions over the auxiliary discretization Th(Kh) consisting
of triangles (d = 2) or tetrahedra (d = 3), see [4, 170]. Here, φT is a cubic (d = 2)
or quartic (d = 3) polynomial over the triangle/tetrahedron T ∈ Th(Kh), which
vanishes on Ω \T and in particular on ∂T . It is usually defined as the product of the
barycentric coordinates of the triangle and tetrahedron, respectively, and scaled such
that its maximum is one. The edge bubble φF is a piecewise quadratic (d = 2) or
cubic (d = 3) polynomial over the adjacent triangles/tetrahedra in Th(Kh), sharing
the common edge/face F , and it vanishes elsewhere. This bubble function can also
be defined as scaled product of barycentric coordinates.

At first glance, we might define the bubble functions over polytopes as product
of the first order basis functions defined in Sect. 2.3.1 or one might use the element
bubble functions defined in Sect. 2.3.2. However, in these cases the functions are
no polynomials that complicates their treatment in the analysis. In contrast, we
define the new bubble functions over the polytopal mesh with the help of the bubble
functions over the auxiliary discretization, namely

ϕK =
∑

T ∈Th(K)

φT and ϕF = φF

for K ∈ Kh and F ∈ Fh.

Lemma 5.4 Let K ∈ Kh and F ∈ F (K) of a regular and stable mesh Kh. The
bubble functions satisfy

supp ϕK = K , 0 ≤ϕK ≤ 1 ,

supp ϕF ⊂ ω∗
F , 0 ≤ϕF ≤ 1 ,

and fulfil for p ∈ Pk(K) the estimates

‖p‖2L2(K) ≤ c (ϕKp, p)L2(K) , |ϕKp|H 1(K) ≤ ch−1
K ‖p‖L2(K) ,

‖p‖2L2(F ) ≤ c (ϕFp, p)L2(F ) , |ϕFp|H 1(K) ≤ ch
−1/2
F ‖p‖L2(F ) ,

‖ϕF p‖L2(K) ≤ ch
1/2
F ‖p‖L2(F ) .

The constants c > 0 only depend on the regularity and stability parameters of the
mesh, see Sect. 2.2, the approximation order k and the space dimension d .
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Proof Similar estimates are valid for φT and φF on triangular and tetrahedral
meshes, see [4, 170]. By the use of Cauchy–Schwarz inequality and the properties
of the auxiliary discretization Th(Kh) the estimates translate to the new bubble
functions. The details of the proof are omitted. ��

With these ingredients the proof of Theorem5.2 can be addressed. The arguments
follow the line of [4].

Proof (Theorem 5.2) Let R̃K ∈ Pk(K) be a polynomial approximation of the
element residual RK for K ∈ Kh. For v = ϕKR̃K ∈ H 1

0 (K) and vh = 0 Eq. (5.6)
yields

b(u − uh, ϕKR̃K) = R(ϕKR̃K) = (RK, ϕKR̃K)L2(K) .

Lemma 5.4 gives

‖R̃K‖2L2(K) ≤ c (ϕKR̃K, R̃K)L2(K)

= c
(
(ϕKR̃K, R̃K − RK)L2(K) + (ϕKR̃K,RK)L2(K)

)

≤ c
(‖R̃K‖L2(K)‖R̃K − RK‖L2(K) + b(u − uh, ϕKR̃K)

)
,

and furthermore,

b(u−uh, ϕKR̃K) ≤ c |u−uh|H 1(K)|ϕKR̃K |H 1(K) ≤ ch−1
K ‖u−uh‖b,K‖R̃K‖L2(K) .

We thus get

‖R̃K‖L2(K) ≤ c
(
h−1

K ‖u − uh‖b,K + ‖R̃K − RK‖L2(K)

)
,

and by the reverse triangle inequality

‖RK‖L2(K) ≤ c
(
h−1

K ‖u − uh‖b,K + ‖R̃K − RK‖L2(K)

)
.

Next, we consider the face residual. Let R̃F ∈ Pk(F ) be an approximation
of RF , with F ∈ Fh,Ω . The case F ∈ Fh,N is treated analogously. For
v = ϕF R̃F ∈ H 1

0 (ω∗
F ) and vh = 0 Eq. (5.6) yields in this case

b(u−uh, ϕF R̃F ) = R(ϕF R̃F ) =
∑

K⊂ω∗
F

(
(RK, ϕF R̃F )L2(K) + (RF , ϕF R̃F )L2(F )

)
.
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Applying Lemma 5.4 and the previous formula leads to

‖R̃F ‖2L2(F ) ≤ c (ϕF R̃F , R̃F )L2(F )

= c
(
(ϕF R̃F , R̃F − RF )L2(F ) + (ϕF R̃F ,RF )L2(F )

)

≤ c
(‖R̃F ‖L2(F )‖R̃F − RF ‖L2(F ) + (ϕF R̃F ,RF )L2(F )

)
,

and

|(ϕF R̃F ,RF )L2(F )| = 1
2

∣∣∣∣b(u − uh, ϕF R̃F ) −
∑

K⊂ω∗
F

(RK, ϕF R̃F )L2(K)

∣∣∣∣

≤ c

(
|u − uh|H 1(ω∗

F )|ϕF R̃F |H 1(ω∗
F ) +

∑

K⊂ω∗
F

‖RK‖L2(K)‖ϕF R̃F ‖L2(K)

)

≤ c

(
h

−1/2
F ‖u − uh‖b,ω∗

F
+

∑

K⊂ω∗
F

h
1/2
F ‖RK‖L2(K)

)
‖R̃F ‖L2(F ) .

Therefore, it is

‖R̃F ‖L2(F ) ≤ c

(
h

−1/2
F ‖u−uh‖b,ω∗

F
+

∑

K⊂ω∗
F

h
1/2
F ‖RK‖L2(K) +‖R̃F −RF ‖L2(F )

)
.

By the reverse triangle inequality, h−1
K ≤ h−1

F and the previous estimate for
‖RK‖L2(K), we obtain

‖RF ‖L2(F ) ≤ c

(
h
−1/2
F

‖u−uh‖b,ω∗
F

+
∑

K⊂ω∗
F

h
1/2
F

‖R̃K −RK‖L2(K)+‖R̃F −RF ‖L2(F )

)
.

Let f̃ , g̃N and ˜γ K
1 uh be piecewise polynomial approximations of f , gN and γ K

1 uh,
respectively. We choose R̃K = f̃ + aK�uh for K ∈ Kh and

R̃F =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 for F ∈ Fh,D ,

g̃N − aK
˜
γ K
1 uh for F ∈ Fh,N with F ∈ F (K) ,

− 1
2

(
aK

˜
γ K
1 uh + aK ′ ˜γ K ′

1 uh

)
for F ∈ Fh,Ω with F ⊂ F (K) ∩ F (K ′) .

Consequently, we have R̃K ∈ Pk(K) and R̃F ∈ Pk(F ). Finally, the estimates for
‖RK‖L2(K) and ‖RF ‖L2(F ) yield after some applications of the Cauchy–Schwarz
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inequality and due to hF ≤ hK and |F (K)| ≤ c, see Lemmata 2.7 and 2.16,

η2K ≤ c

(
‖u − uh‖2

b,ω∗
K

+ h2K

∑

K ′⊂ω∗
K

‖R̃K ′ − RK ′ ‖2L2(K
′) +

∑

F∈F (K)

hF ‖R̃F − RF ‖2L2(F )

)

≤ c

(
‖u − uh‖2b,ω∗

K
+ h2K‖f − f̃ ‖2L2(ω

∗
K

)

+
∑

F∈F (K)∩Fh,N

hF ‖gN − g̃N‖2L2(F ) + hK

∑

K ′⊂ω∗
K

‖γ K ′
1 uh − ˜γ K ′

1 uh‖2L2(∂K ′)

)
.

��

5.2.3 Numerical Experiments

The residual based error estimate can be used as stopping criteria to check if the
desired accuracy is reached in a simulation on a sequence of meshes. However, it
is well known that residual based estimators overestimate the true error a lot. But,
because of the equivalence of the norms ‖ · ‖1,Ω and ‖ · ‖b on H 1

D(Ω), we can still
use ηR to verify numerically the convergence rates for uniform mesh refinement
when h → 0. On the other hand, we can utilize the error indicators in order to
gauge the approximation quality over the single elements and drive an adaptive
mesh refinement strategy with this information. The adaptive algorithm discussed
in Sect. 5.1, has been implemented with Dörfler’s marking strategy. During the
refinement of the mesh we enforce the stability condition. This is done by refining
elements that do not satisfy hK < cT hE for a threshold parameter cT .

In the following we present numerical examples in 2-dimensions on uniformly
and adaptively refined meshes. For the convergence analysis, we consider the
error with respect to the mesh size h = max{hK : K ∈ Kh} for uniform
refinement. For the adaptive BEM-based FEM, the convergence is studied with
respect to the number of degrees of freedom (DoF). On uniform meshes the relation
DoF = O(h−2) holds, whereas on adaptive meshes the mesh size does not decrease
uniformly.

Experiment 1: Uniform Refinement Strategy
Consider the Dirichlet boundary value problem

−�u = f in Ω = (0, 1)2 , u = 0 on Γ ,

where f ∈ L2(Ω) is chosen in such a way that u(x) = sin(πx1) sin(πx2) for x ∈ Ω

is the exact solution. The solution is smooth, and thus, we expect optimal rates of
convergence for uniform mesh refinement. The problem is treated with the BEM-
based FEM for different approximation orders k = 1, 2, 3 on a sequence of meshes
with L-shaped elements of decreasing diameter, see Fig. 5.2 left. In Fig. 5.3, we
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Fig. 5.2 Mesh with L-shaped elements for uniform refinement (left), initial mesh for adaptive
refinement (middle), adaptive refined mesh after 30 steps for k = 2 with solution having a
singularity in the origin of the coordinate system (right)
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Fig. 5.3 Convergence graph for sequence of uniform meshes with L-shaped elements and V k
h ,

k = 1, 2, 3, where ηR/|u|H 1(Ω) is given with respect to h in logarithmic scale

give the convergence graphs in logarithmic scale for the value ηR/|u|H 1(Ω), which
behaves like the relative H 1-error, with respect to the mesh size h. The example
confirms the theoretical rates of convergence stated in Sect. 2.5 on a sequence of
meshes with non-convexelements. The highly accurate computations for V 3

h involve
approximately 690,000 degrees of freedom. Due to the decoupling of the variational
formulation discussed in Sect. 2.5 into (2.31) and (2.32) the global system of linear
equations has about 540,000 unknowns and the remaining degrees of freedom are
determined by local projections.
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Experiment 2: Adaptive Refinement for Solution with Singularity
LetΩ = (−1, 1)2 ⊂ R

2 be split into two domains,Ω1 = Ω \Ω2 and Ω2 = (0, 1)2.
Consider the boundary value problem

− div (a∇u) = 0 in Ω , u = gD on Γ ,

where the coefficient a is given by

a =
{

1 in Ω1 ,

100 in Ω2 .

Using polar coordinates (r, φ) such that x = (r cosφ, r sin φ)�, we choose the
boundary data as restriction of the global function

gD(x) = rλ

{
cos(λ(φ − π/4)) for x ∈ R

2+,

β cos(λ(π − |φ − π/4|)) else,

with

λ = 4

π
arctan

(√
103

301

)
and β = −100

sin
(
λπ
4

)

sin
(
λ 3π

4

) .

This problem is constructed in such a way that u = gD is the exact solution in Ω .
Due to the ratio of the jumping coefficient, it is u 	∈ H 2(Ω) with a singularity in
the origin of the coordinate system. Consequently, uniform mesh refinement does
not yield optimal rates of convergence. Since f = 0, it suffices to approximate the
solution in V k

h,H with the variational formulation (2.31). Starting from an initial
polygonal mesh, see Fig. 5.2 middle, the adaptive BEM-based FEM produces a
sequence of locally refined meshes. The approach detects the singularity in the
origin of the coordinate system and polygonal elements appear naturally during the
local refinement, see Fig. 5.2 right. In Fig. 5.4, the energy error ‖u−uh‖b as well as
the error estimator ηR are plotted with respect to the number of degrees of freedom
in logarithmic scale. As expected by the theory the residual based error estimate
represents the behaviour of the energy error very well. Furthermore, the adaptive
approach yields optimal rates of convergence in the presence of a singularity, namely
a slope of −k/2 in the logarithmic plot.

Experiment 3: Adaptive Refinement, Closer Look
Using polar coordinates again, let Ω = {x ∈ R

2 : |r| < 1 and 0 < ϕ < 3π/2} and
the boundary data gD be chosen in such a way that

u(r cosφ, r sinφ) = r2/3 sin

(
2φ

3

)
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Fig. 5.4 Convergence graph for adaptive mesh refinement with V k
h,H , k = 1, 2, 3, the energy error

and the residual based error estimator are given with respect to the number of degrees of freedom
in logarithmic sale
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Fig. 5.5 Closer look at the error distribution |u−uh|2H 1(K)
for the first three meshes in the adaptive

refinement approach

is the solution of the boundary value problem

−Δu = 0 in Ω, u = gD on Γ.

The function u is constructed in such a way that its derivatives have a singularity at
the origin of the coordinate system. The boundary value problem is discretized using
the first order approximation space V 1

h and we analyse the first steps in the adaptive
refinement strategy in more detail. This will stress the use and the flexibility of
polygonalmeshes in adaptive computations. For this purpose the error distribution is
visualized in Fig. 5.5 for the first three meshes. Each elementK is colored according
to the value |u − uh|2H 1(K)

. The adaptive algorithm apparently marks and refines
the elements with the largest error contribution. The introduced nodes on straight
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edges (hanging nodes for classic meshes) are not resolved. Each of these nodes
corresponds to a degree of freedom in the finite element computation and thus,
improves the approximation within the neighbouring elements. For example, the
upper right triangle close to the reentrant corner in Fig. 5.5 is not refined. But,
the error reduces due to the additional nodes on the left edge, namely, the triangle
became a pentagon in the right most mesh.

Experiment 4: Solution with Strong Internal Layer
Let Ω = (0, 1)2 and f be chosen such that

u(x) = 16x1(1 − x1)x2(1 − x2) arctan(25x1 − 100x2 + 50) ,

is the exact solution of

−�u = f in Ω , u = 0 on Γ .

Since u is arbitrary smooth, we expect optimal rates of convergence in the case
of uniform mesh refinement in an asymptotic regime. Although the solution u is
smooth, it has a strong internal layer along the line x2 = 1/2+x1/4. The initial mesh
is visualized in Fig. 5.6 (left). Furthermore, the first uniform refined mesh is given
in the middle of Fig. 5.6. In the right most picture of Fig. 5.6 the adaptively refined
mesh for V 1

h and a relative error of approximately 0.2 is presented. This mesh has
been achieved after 19 refinement steps. It is seen that the adaptive strategy refines
along the internal layer of the exact solution.

In Fig. 5.7, we give the convergence graphs for the first, second and third order
method and for the uniform as well as the adaptive strategy. In all cases we
recover the optimal rates of convergence which correspond to a slope of −k/2.
But, for the uniform refinement, the internal layer has to be resolved sufficiently
before the optimal rates are achieved. Since the adaptive strategy resolves the layer

0 1
0

1

0 1
0

1

0 1
0

1

Fig. 5.6 Initial mesh (left), uniformly refined mesh (middle), adaptively refined mesh for k = 1
and ‖u − uh‖b/‖u‖b ≈ 0.2 (right) for the solution with an internal layer
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Fig. 5.7 Convergence of the relative energy error ‖u − uh‖b/‖u‖b with respect to the number of
degrees of freedom for the approximation orders k = 1, 2, 3 on uniformly and adaptively refined
meshes

automatically, the adaptive BEM-based FEM is much more accurate for the same
number of unknowns.

In Chap. 3, we have introduced the notion of anisotropic polytopal meshes. Such
meshes are especially suited for the approximation of functions with strong layers.
In Sect. 3.4.6, an algorithm has been given in order to adapt the mesh to the layers
of a function sought to be approximated. In this algorithm, it has been assumed
that the function and its derivatives are known. The anisotropic polytopal meshes
clearly outperformed the uniformly and adaptively refined meshes with isotropic
elements in that case. In this section, we have investigated an adaptive refinement
method that does not need the knowledge of the exact solution and the refinement is
done fully automatic. So the next step would be to combine the adaptive algorithm
driven by a posteriori error estimates with anisotropic mesh refinement for problems
containing strong layers in their solutions.

5.3 Goal-Oriented Error Estimation

In the previous section, the adaptive algorithm has been driven by an error indicator
penalizing the error measured in the energy norm. In engineering applications,
however, this quantity might not be of importance for the considered simulation.
In this case, goal-oriented error estimation techniques are advantages that enable
adaptive refinements with different emphases. The dual-weighted residual (DWR)
method allows for estimating the error u − uh between the exact solution of the
boundary value problem and its Galerkin approximation in terms of a general (error)
functionals J . These functionals can be norms but also more general expressions,
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like point-values, (local) averages or other quantities of interest. Error estimators
based on the DWR method always consist of residual evaluations, that are weighted
by (local) adjoint sensitivity measures. These sensitivities are the solution to adjoint
problems that measure the influence of the error functional J . The DWR technique
goes back to [21, 22] and is motivated by [74]. Important further developments in
the early stages have been accomplished in [3, 4, 18, 37, 83, 134, 137, 141].

In this section, we restrict ourselves to the two-dimensional case d = 2 although
the approach is applicable in general dimensions. Thus, let Ω ⊂ R

2 be a bounded
polygonal domain with boundary Γ = ΓD ∪ ΓN and |ΓD| > 0. Furthermore, we
only consider the Poisson problem, i.e. a ≡ 1,

−�u = f in Ω ,

u = 0 on ΓD ,

∇u · n = gN on ΓN ,

with source function f , homogeneous Dirichlet condition and Neumann data gN

for simplicity. This setting is sufficient to highlight the key concepts which can be
applied to more general problems.

5.3.1 DWR Method for Linear Goal Functionals

The DWRmethod is aimed to measure the error in an adaptive algorithm via certain
quantities of interest, i.e., goal functionals J (·). Although the theory is applicable for
non-linear goal functionals, see [22], we restrict ourselves to the linear case. Such
quantities of interest can be mean values of the solution and its derivatives or more
involved technical values such as drag or lift in fluid dynamics. These examples
include, for instance,

J (u) =
∫

Ω

u dx , J (u) =
∫

Γ

∇u · n ds , J (u) = u(x∗), x∗ ∈ Ω , (5.7)

that are a mean value, a line integral related to the stress values in elasticity and
a point value. If the exact solution u is unknown and only its approximation by a
discrete function uh is given, the question arises, whether we can bound the error

J (u) − J (uh) .

The DWR approach tackles this task by exploiting a dual problem

Find z ∈ H 1
D(Ω) : b(v, z) = J (v) ∀v ∈ H 1

D(Ω) , (5.8)
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where the bilinear form coincides for the Poisson equationwith the one in the primal
problem. The boundary conditions are of homogeneous Dirichlet and Neumann
type. The derivation of the dual (or better ‘adjoint’) problem follows the Lagrangian
formalism that is well-known in optimization. The original motivation is provided
in detail in [22]. The solvability and regularity theory for (5.8) follows standard
arguments. Thus, we may recognize that the last functional in (5.7), the point
evaluation, does not fall into this theory, since it is not defined for functions in
H 1(Ω). Consequently, one may regularize the point evaluation by a convolution
with a mollifier, i.e. with an appropriate smooth function having small local support.

Choosing v = u − uh in (5.8) and applying the Galerkin orthogonality, namely
b(u − uh, vh) = 0 for all vh ∈ V k

h,D , yields

b(u − uh, z − vh) = J (u − uh) .

This is a key point in the DWRmethod. Since vh is an arbitrary discrete test function,
we can, for instance, use an interpolation or projection vh = ihz to obtain an error
representation.

Proposition 5.5 For the Galerkin approximation of the above bilinear form, we
have the a posteriori error identity:

J (u − uh) = b(u − uh, z − ihz) . (5.9)

We cannot simply evaluate the error identity because z is only analytically known in
very special cases. Consequently, in order to obtain a computable error representa-
tion, z is approximated through a discrete function z∗

h, that is, as the primal problem
itself, obtained from solving a discretized version of (5.8).

Proposition 5.6 Let z∗
h be the discrete dual function. For the Galerkin approxima-

tion of the above bilinear form, we have the a posteriori error representation

J (u − uh) ≈ b(u − uh, z
∗
h − ihz∗

h) .

The straight forward choice of z∗
h = zh ∈ V k

h,D as solution of

b(vh, zh) = J (vh) ∀vh ∈ V k
h,D

is not applicable. Since zh − ihzh ∈ V k
h,D and due to the Galerkin orthogonality this

choice yields

J (u − uh) ≈ b(u − uh, zh − ihzh) = 0 .

For the evaluation of the error in the form (5.9), we have to calculate approximations
z∗
h − ihz∗

h of the interpolation errors z − ihz. This approximation is the critical part
in the DWR framework that limits strict reliability [132]. A remedy is only given by



160 5 Adaptive BEM-Based Finite Element Method

spending sufficient effort on the estimation of these weights on fine meshes [22, 52]
or an additional control of the approximation error in z − ihz, see [132]. As just
mentioned, it is well-known that the discrete approximation of z − ihz must be finer
than the trial space for the primal variable as the residual is orthogonal on V k

h,D .
On triangular and quadrilateral meshes there are basically two main strategies in the
literature.

• Global more accurate approximation: The dual problem is either treated on the
same mesh with a higher order approximation space or on a finer mesh with the
same order approximation space. Both variants are quite expensive [22].

• Local more accurate reconstruction: The primal and dual problem are treated on
the same mesh with the same approximation space, but, the dual approximation
is post-processed locally using a patch-mesh structure [22]. This is a cheaper
alternative, but needs an agglomeration of elements.

Both strategies are applicable on polygonal meshes. However, we even propose a
new approach which is based on a local post-processing using a single element.
This enables the treatment of the primal and dual problem with the same mesh and
approximation space followed by an element-wise higher order reconstruction in
order to obtain z∗

h. Detailed explanations of this variant are provided in Sect. 5.3.3.2.
In order to obtain an error estimator, the right hand side of (5.9) is either estimated

or approximated by some η(uh, z). The quality of this error estimator with respect
to the true error is measured in terms of the effectivity index Ieff with

Ieff(uh, z) =
∣∣∣∣

η(uh, z)

J (u − uh)

∣∣∣∣ → 1 for h → 0 . (5.10)

In many applications, the asymptotic sharpness 1 cannot be achieved, but it should
be emphasized that even overestimations of a factor 2 or 4 still yield a significant
reduction of the computational cost in order to obtain a desired accuracy for the
goal functional J (u). The residual based error estimator studied in Sect. 5.2 is
known to have a bad effectivity. In the numerical experiments in Sect. 5.2.3 the
error estimator ηR overestimated the true error by a factor between 5 and 10 in the
problemwith singular solution and by a factor between 7 and 22 in the problemwith
smooth solution containing an internal layer. The DWR method produces sharper
estimates.

In the following sections, we explain the realization of the dual-weighted residual
method for goal-oriented error estimation on polygonal discretizations. We first
introduce special meshes and then recall various strategies to discretize the primal
and dual problems. In particular, we introduce an element-based post-processing
of the dual solution. The above mentioned error estimator η(uh, z) is the basis for
the derivation of a posteriori error estimates. In order to use this formulation from
Proposition 5.5 for mesh refinement, we need to localize the error contributions on
each element. Therefore, two error representations are finally recapitulated: using
the classical method with strong forms of the differential operator, and secondly,
using a partition of unity for the variational form.
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5.3.2 Preparation for Post-processing: Special Meshes

The local post-processing of the dual solution might be done on coarsened meshes
obtained by agglomerating polygonal elements in a classical way. However, on these
general meshes we might alternatively use novel kinds of hierarchies. In the later
described post-processing of the dual solution, we exploit this possibility. Therefore,
we do not allow general polygonal meshes Kh as described in Sect. 2.2. Here, we
restrict ourselves to regular and stable meshes Kh with polygonal elements having
an even number of nodes, such that every second node lies on an straight part
of the boundary of the element. Furthermore, we assume that by removing these
nodes from the mesh we obtain a coarsened polygonal mesh K2h which is still
regular. In Fig. 5.8, we visualize such meshes Kh in the middle column and their
corresponding coarsened meshes K2h in the left column. Using these meshes we
define the approximation spaces V k

h and V k
2h, respectively.

The condition on the node count for Kh is not a real restriction. We can always
introduce some additional nodes in the mesh to ensure the requirements. This is also
done when we refine some given meshes. The middle column of Fig. 5.8 shows a
sequence of uniform refined meshes which are used in later numerical experiments
in Sect. 5.3.5. In the refinement procedure each element in the meshKh is bisected
as described in Sect. 2.2.3. This yields a mesh which does not satisfy the requirement
on the node count for each element in general, see Fig. 5.8 right. However, we can
ensure the required structure of the mesh by introducing some additional nodes.
This can be observed by comparing the refined, but inappropriate mesh, in the
right column of Fig. 5.8 with the next mesh in the sequence depicted in the middle
column.

5.3.3 Approximation of the Primal and Dual Solution

The primal and dual problems are approximated on polygonal meshes as described
in Chap. 2. For this reason, letΩ ⊂ R

2 be a bounded polygonal domain meshed into
polygonal elements satisfying the regularity and stability assumption and, in most
experiments, the requirement on the node count as described above. The primal
variable u is approximated by uh ∈ V k

h , which is given by the decoupled weak
formulation (2.31) as well as (2.32) and reads in this setting for uh = uh,H + uh,B

with uh,H ∈ V k
h,H and uh,B ∈ V k

h,B :

Find uh,H ∈ V k
h,H,D :

b(uh,H , vh) = (f, vh)L2(Ω) + (gN , vh)L2(ΓN) ∀vh ∈ V k
h,H,D ,

(5.11)
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Fig. 5.8 Each row corresponds to the mesh in one FEM simulation, the middle column corre-
sponds to the actual mesh Kh, the left column shows the mesh K2h after coarsening and the right
column shows the mesh after refinement before the nodes are added to ensure the condition on the
node count
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and

Find uh,B ∈ V k
h,B : b(uh,B, vh) = (f, vh)L2(Ω) ∀vh ∈ V k

h,B . (5.12)

For the approximation of the dual solution z we have a corresponding decoupling
and we focus on two strategies. Either we use globally a higher order for the
approximation, which is, however, practically expensive, or we apply a local post-
processing to zh ∈ V k

h . The local post-processing is especially attractive for the
approximation space of the BEM-based FEM, since there is no need for local
agglomerations of elements as we see in the next sections.

5.3.3.1 Dual Solution with Globally Higher Order Discretization

A brute-force strategy to obtain an approximation of the dual solution, which is
suited for error estimation, is to solve the discrete variational formulation with
higher accuracy. To track the approximation order, we write uh = u

(k)
h ∈ V k

h for
the approximation of the primal solution. The dual solution can be approximated by
z
(k+1)
h ∈ V k+1

h on the same mesh. The choice z∗
h = z

(k+1)
h is applicable for the error

representation, cf. (5.9). Here, we do not need the restriction on the node count for
the mesh Kh. As we already mentioned, this strategy is computationally expensive
in practical applications. However, it serves as a good starting point to verify the
performance of the dual-weighted residual method on polygonal meshes.

5.3.3.2 Dual Solution Exploiting Local Post-Processing

A more convenient and efficient strategy is to approximate the dual solution by
zh = z

(k)
h ∈ V k

h on the same mesh with the same approximation order as the
primal solution. Afterwards z∗

h is chosen as a post-processed version of zh on a
coarsened mesh with higher approximation order. This strategy is well discussed
in the literature for simplicial meshes, see [143] and the references therein. In fact,
this has already been introduced in the early studies [22]. The key point is, how
the meshes, and especially the coarse meshes, are chosen. Since polygonal meshes
are very flexible and inexpensive for coarsening and refining, they are well suited
for this task. It is possible to just agglomerate two or more neighbouring elements
to construct a coarsened mesh and to proceed in a classical way for the local post-
processing.

In the following we describe a slightly different strategy that does not need the
agglomeration of elements and is applicable on single elements. We use the meshes
Kh and K2h discussed in Sect. 5.3.2 satisfying the requirement on the node count.
The approach relies on two key ingredients: the hierarchy of the discretization of the
element boundaries ∂K in these two meshes and the decoupling of the dual problem
analogously to (5.11) and (5.12) for the primal problem.
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Let zh ∈ V k
h be the approximation of the dual problem over the mesh Kh.

We construct z∗
h ∈ V k+1

2h as locally post-processed function over the mesh K2h.

We write the mapping zh = z
(k)
h �→ z∗

h ∈ V k+1
2h also in operator notation with

Pk+1
2h : V k

h → V k+1
2h such that z∗

h = Pk+1
2h z

(k)
h . It is sufficient to define the post-

processing on a single element K ∈ Kh, since it directly generalizes to the entire
mesh. By construction, each element K = Kh ∈ Kh has a corresponding element
K2h ∈ K2h, which is obtained by skipping every second node on the boundary ∂Kh.
Thus, the shapes of these elements coincide and they only differ in the number
of nodes on the boundary. Consequently, ∂Kh can be interpreted as a refinement
of ∂K2h, or in other words, ∂Kh and ∂K2h are one-dimensional patched meshes of
the element boundary. Therefore, it is Pk

pw(∂K2h) ⊂ Pk
pw(∂Kh). In terms of the

approximation space we set V k
2h(Kh) = V k

h (K2h) ⊂ V k
h (Kh). Since it is clear from

the approximation space which element is meant, we skip the index h and 2h again.
Suppose we would approximate the dual problem globally in V k+1

2h . Then, the
weak formulation decouples into a global system of linear equations in order
to compute the expansion coefficients of the harmonic basis functions and into
a projection of the error functional into the space of element bubble functions.
We similarly proceed with the post-processing. Exploiting the hierarchy of the
boundary, we construct z∗

h = z∗
h,H + z∗

h,B ∈ V k+1
2h (K) = V k+1

2h,H (K) ⊕ V k+1
2h,B(K)

from the approximation zh = zh,H + zh,B ∈ V k
h (K) in the following way: We set

z∗
h,H ∈ V k+1

2h,H (K) as interpolation of zh,H ∈ V k
h,H (K) (5.13)

and

z∗
h,B ∈ V k+1

2h,B(K) as solution of: (∇z∗
h,B,∇ϕ)L2(K) = J (ϕ) ∀ϕ ∈ V k+1

2h,B(K) .

(5.14)

The interpolation process in (5.13) is equivalent to an interpolation of a function in
Pk

pw(∂Kh) by a function inPk+1
pw (∂K2h). Thus, a standard point-wise interpolation

procedure is applied. The definition of z∗
h,B is exactly the projection of the error

functional into the space of element bubble functions. Both operations are local
over a single element and are thus suited for a computationally inexpensive post-
processing.

Remark 5.7 The first idea might be to use the interpolation operator Ik
h studied in

Sect. 2.4 and to set z∗
h = Ik+1

2h z
(k)
h . But, this strategy does not work. The interpolation

affecting the harmonic basis functions yields the same results as described above.
However, the transition from the lower order element bubble functions to the higher
order ones is not well suited. Since there is no agglomeration of elements and
the process is kept on a single element, there is no additional information in the
interpolation using higher order element bubble functions. This is reflected by
the fact that V k

h,B(K) = V k
2h,B(K). The choice (5.14) overcomes this deficit and

includes the required information for the element bubble functions by exploiting the
dual problem.
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5.3.4 The Localized Error Estimators

In this section, we discuss the localization of the error representation derived in
Sect. 5.3.1 on polygonal meshes. The representation involves the adjoint sensitivity
measure z−ihz with ih : V → V k

h . Since the dual solution is not known in general, it
is approximated in the numerical tests as discussed in Sect. 5.3.3. In the realization,
we replace z in the error estimates by z∗

h. The operator ih is realized in the following
with the help of the interpolation operator Ik

h, which is given and studied in Sect. 2.4.

5.3.4.1 The Classical Way of Localization

The error identity in Proposition 5.5 is realized in the classical way by using the
concrete problem, followed by integration by parts on every mesh elementK ∈ Kh,
yielding

J (u − uh) =
∑

K∈Kh

((
f + �uh, z − ihz

)
L2(K)

− (
γ K
1 uh, (z − ihz)

)
L2(∂K)

)

+ (
gN, (z − ihz)

)
L2(ΓN)

.

Following the usual procedure for residual based error estimators as in Sect. 5.2.1,
we combine each two boundary integrals over element edges to a normal jump and
proceed with the Cauchy–Schwarz inequality to derive an upper bound of the error.

Proposition 5.8 For the BEM-based FEM approximation of the Poisson equation,
we have the a posteriori error estimate based on the classical localization:

|J (u − uh)| ≤ ηCL =
∑

K∈Kh

ηCLK (5.15)

with

ηCLK = ‖RK‖L2(K) ‖z − ihz‖L2(K) +
∑

E∈E (K)

‖RE‖L2(E) ‖z − ihz‖L2(E) , (5.16)

where RK and RE are the element and edge residuals defined in Sect. 5.2, namely

RK = f + �uh for K ∈ Kh ,

and

RE =

⎧
⎪⎪⎨

⎪⎪⎩

0 for E ∈ Eh,D ,

gN − γ K
1 uh for E ∈ Eh,N with E ∈ E (K) ,

− 1
2�uh�E for E ∈ Eh,Ω .
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According to the definition of the trial space we have �uh ∈ Pk−2(K) in each
K ∈ Kh. Since most of the basis functions are harmonic, �uh is directly obtained
by the expansion coefficients of uh corresponding to the element bubble functions.
The term γ K

1 uh is treated by means of boundary element methods in the realization
and therefore it is approximated in Pk−1

pw,d(∂K).
The local error indicator (5.16) is usually estimated in order to separate it into

two parts such that ηCLK ≤ rK(uh)wK(z), see, e.g., [4, 18, 21, 22, 143]. The first
part rK(uh) contains the residual with the discrete solution uh and the problem data
and the second part wK(z) contains the adjoint sensitivity measure z − ihz. The
separation is obtained by further applications of the Cauchy–Schwarz inequality
and reads in our notation

|J (u − uh)| ≤
∑

K∈Kh

(‖RK‖L2(K) + h
−1/2
K ‖RE‖L2(∂K)

)
︸ ︷︷ ︸

=rK(uh)

· (‖z − ihz‖L2(K) + h
1/2
K ‖z − ihz‖L2(∂K)

)
︸ ︷︷ ︸

=wK(z)

. (5.17)

In order to incorporate the polygonal structure of the elements and in particular the
different numbers and lengths of their edges, we propose to split the L2-norms over
the boundaries of the elements. This refined manipulation yields

|J (u − uh)| ≤
∑

K∈Kh

(
‖RK‖2L2(K) +

∑

E∈E (K)

h−1
E ‖RE‖2L2(E)

)1/2

︸ ︷︷ ︸
=rK(uh)

·
(
‖z − ihz‖2L2(K) +

∑

E∈E (K)

hE‖z − ihz‖2L2(E)

)1/2

︸ ︷︷ ︸
=wK(z)

. (5.18)

The powers of hK and hE in (5.17) and (5.18) are chosen in such a way that the
volume and boundary terms contribute in the right proportion. This weighting of
the norms implicitly makes use of hE ∼ hK , which is guaranteed by the stability of
the polygonal meshes. For triangular and quadrilateral meshes the terms hE and hK

only differ by a small multiplicative factor. (For quadrilaterals it is hK = √
2hE .)

In polygonal meshes, however, the ratio hK/hE < cK can be large and it might
even blow up in the numerical tests, if the stability is not enforced. Due to these
reasons, it seems to be natural to weight directly the volume term ‖RK‖L2(K) with
‖z− ihz‖L2(K) and the edge term ‖RE‖L2(E) with ‖(z− ihz)‖L2(E) which gives rise
to Proposition 5.8.
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5.3.4.2 A Variational Error Estimator with PU Localization

We use a new localization approach [143] based on the variational formulation.
Localization is simply based on introducing a partition of unity (PU) into the
global error representation Proposition 5.5. In the case of triangular or quadrilateral
meshes, the (bi-)linear basis functions are usually utilized, which are associated
with nodes. The same is possible for polygonal meshes and the corresponding
nodal basis functions, cf. Sect. 2.3.1, which satisfy the partition of unity property.
However, this yields a node-wise error indicator, whereas the adaptive refinement
is an element-wise procedure. Therefore, we define an element-wise partition of
unity in order to obtain directly an element-wise indicator. For this reason, let
n(z) = |{K ∈ Kh : z ∈ N (K)}| be the number of neighbouring elements to
the node z ∈ Nh. We can write

1 =
∑

z∈Nh

ψz =
∑

K∈Kh

∑

z∈N (K)

1

n(z)
ψz =

∑

K∈Kh

χK on Ω ,

and thus obtain a new partition of unity employing the element-wise functions

χK =
∑

z∈N (K)

1

n(z)
ψz . (5.19)

The support of χK is local and covers the neighbouring elements of K , namely

suppχK = {x ∈ K ′ : K ′ ∈ Kh,K ∩ K ′ 	= ∅} = ωK .

Inserting the partition of unity into the global error representation Proposition 5.5
yields

J (u − uh) =
∑

K∈Kh

b
(
u − uh, (z − ihz)χK

)
.

Consequently, when we refer from now on to the PU-based localization technique,
we mean the following error representation.

Proposition 5.9 For the BEM-based FEM approximation of the Poisson equation,
we have the element-wise PU-DWR a posteriori error representation and estimate

J (u − uh) = ηPU =
∑

K∈Kh

ηPUK and |J (u − uh)| ≤ ηPUabs =
∑

K∈Kh

|ηPUK | ,

(5.20)

respectively, with

ηPUK = (
f, (z−ihz)χK

)
L2(Ω)

+(
gN, (z−ihz)χK

)
L2(ΓN )

−(∇uh,∇((z−ihz)χK)
)
L2(Ω)

.
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We finish this section by a comment on the practical realization. Even if high-
order approximations are used for the primal and dual problems, the PU can be
realized using a lowest order method involving the nodal basis functions only.

5.3.5 Numerical Tests

In this section, we substantiate our formulations of the dual-weighted residual
estimator and the treatment of the dual solution with several different numerical
tests and various goal functionals. In the first example, we consider the standard
Poisson problem with a regular goal functional. The second example considers a
norm-based goal functional. In the third example we study adaptivity in detail. In all
examples, we compare the classical and PU localization techniques. Moreover, we
compare as previously mentioned different ways to approximate the dual solution.

In analyzing our results, we notice that the tables and graphs are given with
respect to the number of degrees of freedom (DoF) in the following. This highlights
the fact that the considered sequences of meshes may have the same shapes of
elements, but have different numbers of degrees of freedom. This behaviour is due
to the mesh requirement for the local post-processing involving additional nodes on
the boundaries of the elements. The degrees of freedom are also the usual criterion
for adaptive refined meshes.

The adaptive algorithm discussed in Sect. 5.1 has been realized in a slightly
adjusted way. In the SOLVE step, we additionally have to compute the approximate
(higher order) dual solution z∗

h. For the error estimator we now distinguish between
η = ∑

K ηK and ηabs = ∑
K |ηK | in ESTIMATE. Note that ηCLabs = ηCL but

ηPUabs 	= ηPU. This also influences the formulation in the marking later on since
the error indicators are not squared here. In the MARK step, we utilize this
time the equidistribution strategy such that all elements K are marked that have
values |ηK | above the average θηabs/|Kh|. Furthermore, we point out that not all
theoretical assumptions on the regularity and stability of the mesh from Sect. 2.2
are enforced in REFINE for the following tests. During the refinement, the edge
lengths may degenerate with respect to the element diameter. If not otherwise stated,
all appearing volume integrals are treated by numerical quadrature over polygonal
elements as described in Sect. 4.5.1.

Problem 1: Verification in Terms of a Domain Goal Functional
Let Ω = (0, 1)2. We consider the boundary value problem

−�u = 1 in Ω , u = 0 on Γ ,

on two uniform sequences of meshes depicted in Fig. 5.8 (left and middle columns).
With a little abuse of notation we denote the sequence of meshes byK2h andKh for
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the left and middle column in Fig. 5.8, respectively. The goal functional is chosen as

J (v) =
∫

Ω

v dx ,

such that the dual and primal problems coincide. The regularity of the solutions is
only limited by the corners of the domain and consequently, it is u, z ∈ H 3−ε(Ω) for
arbitrary small ε > 0. We use the reference value J (u) ≈ 0.03514425375± 10−10

taken from [143] for the convergence analysis.
In the first experiment, we compare the different representations of the classical

localization technique given in Sect. 5.3.4.1. Here we detect a significant difference
depending on the partition into residual terms and dual weights of the classical
estimator. The primal solution is approximated in V 1

h and the dual solution is

treated by globally higher order, i.e. z∗
h = z

(2)
h . For this choice, we do not need

the requirement on the node count for the meshes. Therefore, we perform the
computations on the mesh sequence K2h of the unite square Ω . The effectivity
index Ieff is presented in Table 5.1. For comparisons, we also provide results
computed on a sequence of structured meshes with rectangular elements. Obviously,
the sharpened estimate (5.18) performs better than the usual form (5.17) of the
estimator. We observe, however, that the effectivity index is indeed closest to one
for the estimate (5.15) which does not separate the residual part from the sensitivity
measure. Therefore, we only apply (5.15) in the following experiments for the
classical localization. Furthermore, the comparison with structured meshes indicate
that the polygonal shapes of the elements do not influence the effectivity on these
uniform refined meshes.

Next, we compare the effectivity index for the PU-based and the classical
localization with (5.15). The problems are approximatedwith k = 1, 2. In Table 5.2,
we show Ieff for the choice z∗

h = z
(k+1)
h on a sequence of meshes K2h. The

Table 5.1 Problem 1 approximated with uh ∈ V 1
h , and dual solution treated by globally higher

order, i.e. z∗
h = z

(2)
h ; comparison of effectivity for different representations of the classic

localization on a mesh sequence K2h and on structured meshes

Polygonal-meshes Quad-meshes

DoF J
(
u − u

(1)
h

)
ICLeff (5.15) ICLeff (5.17) ICLeff (5.18) DoF J

(
u − u

(1)
h

)
ICLeff (5.15)

4 5.52 × 10−3 3.01 6.30 3.31 9 2.56 × 10−3 2.91

8 3.48 × 10−3 2.21 6.56 4.03 49 6.51 × 10−4 2.93

13 4.30 × 10−3 1.74 4.83 2.59 121 2.90 × 10−4 2.93

25 2.33 × 10−3 2.02 5.42 2.98 225 1.64 × 10−4 2.92

57 1.32 × 10−3 1.99 5.89 3.37 361 1.05 × 10−4 2.92

129 5.36 × 10−4 2.29 6.47 3.64 529 7.27 × 10−5 2.92

289 2.63 × 10−4 2.34 6.73 3.84 729 5.35 × 10−5 2.92

620 1.17 × 10−4 2.65 7.45 4.28 961 4.09 × 10−5 2.92

1297 5.67 × 10−5 2.66 7.48 4.24 1225 3.23 × 10−5 2.92
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Table 5.2 Problem 1 approximated with uh ∈ V k
h , k = 1, 2 and dual solution treated by

globally higher order, i.e. z∗
h = z

(k+1)
h ; comparison of effectivity for PU localization and classical

localization with (5.15) on mesh sequence K2h

DoF J
(
u − u

(1)
h

)
ICLeff (5.15) IPUeff DoF J

(
u − u

(2)
h

)
ICLeff (5.15) IPUeff

8 3.48 × 10−3 2.21 1.16 35 1.76 × 10−4 2.09 1.30

13 4.30 × 10−3 1.74 0.99 65 7.36 × 10−5 1.59 1.24

25 2.33 × 10−3 2.02 1.00 129 1.41 × 10−5 1.65 1.30

57 1.32 × 10−3 1.99 1.01 273 4.00 × 10−6 1.60 1.27

129 5.36 × 10−4 2.29 1.03 577 7.80 × 10−7 1.68 1.34

289 2.63 × 10−4 2.34 1.04 1217 1.93 × 10−7 1.66 1.34

620 1.17 × 10−4 2.65 1.07 2519 3.63 × 10−8 1.80 1.41

1297 5.67 × 10−5 2.66 1.07 5153 4.95 × 10−9 3.62 2.90

Table 5.3 Problem 1 approximated with uh ∈ V k
h , k = 1, 2 and dual solution treated by local

post-processing, i.e. z∗
h = Pk+1

2h z
(k)
h ; comparison of effectivity for classical with (5.15) and PU

localization on mesh sequence Kh

DoF J
(
u − u

(1)
h

)
ICLeff (5.15) IPUeff DoF J

(
u − u

(2)
h

)
ICLeff (5.15) IPUeff

25 3.41 × 10−3 1.40 0.92 69 1.21 × 10−5 1.20 0.57

45 1.76 × 10−3 1.96 0.96 129 1.07 × 10−5 1.27 0.86

89 9.17 × 10−4 2.05 0.95 257 8.69 × 10−7 1.19 0.68

193 4.63 × 10−4 2.36 0.96 545 6.76 × 10−7 1.50 1.08

465 2.31 × 10−4 1.99 0.93 1249 4.36 × 10−8 1.34 0.79

953 1.14 × 10−4 2.10 0.95 2545 2.65 × 10−8 1.56 1.14

2069 5.66 × 10−5 2.12 0.95 5417 1.50 × 10−9 2.01 1.39

4269 2.83 × 10−5 2.09 0.96 11,097 <10−9 – –

effectivity index for the PU localization is close to one whereas the classical
localization lacks on effectivity for the first order approximation k = 1. For k = 2
the effectivity ICL

eff is improved.

Furthermore, in Table 5.3, we applied the local post-processing of z
(k)
h in order to

construct z∗
h = Pk+1

2h z
(k)
h and therefore the computations are done on the sequence

of meshesKh, which satisfy the condition on the node count. Although the elements
have the same shapes in the sequences of meshes, the number of degrees of freedom
is larger in Kh than in K2h. Both localization strategies show good effectivity in
Table 5.3. Due to the local post-processing instead of the globally higher order
approximation for the dual solution, the computational cost is significantly reduced
compared to the experiments for Table 5.2. We finally remark that for obtaining
errors of similar order in the case of k = 2, the meshes in Table 5.2 are one times
more refined in comparison to the method presented in Table 5.3. However, as just
explained, the mesh itself is coarser but the number of degrees of freedom is higher
on the other hand when using the local post-processing of z

(k)
h .
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Problem 2: A Norm-Based Goal Functional
In our second example, let again Ω = (0, 1)2. We consider the boundary value
problem

−�u = f in Ω , u = 0 on Γ ,

where f is chosen such that u(x) = sin(πx1) sin(πx2) is the analytical solution. As
in the previous problem, we compare the different localization techniques and the
two choices of z∗

h. The computations are done solely on the sequence of meshes
satisfying the node count condition, which is depicted in Fig. 5.8 in the middle
column. The error functional is chosen as

J (v) = (u − uh, v)L2(Ω)

‖u − uh‖L2(Ω)

,

such that J (u−uh) = ‖u−uh‖L2(Ω). Our results of the effectivity indices are shown
in the Tables 5.4 and 5.5. All indices are close to one and behave similar to those
of the previous Problem 1. IPU

eff is hardly effected by the different approximations
of the dual solution and also the classical localization shows comparable effectivity.
Consequently, the computationally less expensive post-processing is to favor over
the higher order approximation of the dual solution in practical applications.

Problem 3: Adaptivity
Finally, let Ω = (−1, 1) × (−1, 1) \ [0, 1] × [−1, 0] be an L-shaped domain and
its boundary is split into ΓD = {(x1, x2) ∈ R

2 : x1 ∈ [0, 1], x2 = 0 or x1 = 0,
x2 ∈ [−1, 0]} and ΓN = ∂Ω \ ΓD . We consider the mixed boundary value problem

−�u = 0 in Ω , u = 0 on ΓD , ∇u · n = gN on ΓN ,

Table 5.4 Problem 2 approximated with uh ∈ V k
h , k = 1, 2 and dual solution treated by

globally higher order, i.e. z∗
h = z

(k+1)
h ; comparison of effectivity for PU localization and classical

localization with (5.15) on mesh sequence Kh

DoF J
(
u − u

(1)
h

)
ICLeff (5.15) IPUeff DoF J

(
u − u

(2)
h

)
ICLeff (5.15) IPUeff

25 3.80 × 10−2 1.76 0.92 69 5.64 × 10−3 1.38 0.95

45 2.10 × 10−2 1.99 0.98 129 2.90 × 10−3 1.26 0.95

89 1.05 × 10−2 1.91 0.81 257 8.48 × 10−4 1.27 0.97

193 5.34 × 10−3 2.05 0.83 545 3.57 × 10−4 1.29 0.96

465 2.59 × 10−3 1.98 0.82 1249 1.17 × 10−4 1.46 0.93

953 1.35 × 10−3 2.06 0.83 2545 4.04 × 10−5 1.35 0.98

2069 6.75 × 10−4 2.11 0.82 5417 1.59 × 10−5 1.37 0.99

4269 3.38 × 10−4 2.04 0.84 11,097 5.26 × 10−6 1.36 1.05
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Table 5.5 Problem 2 approximated with uh ∈ V k
h , k = 1, 2 and dual solution treated by local

post-processing, i.e. z∗
h = Pk+1

2h z
(k)
h ; comparison of effectivity for classical with (5.15) and PU

localization on mesh sequence Kh

DoF J
(
u − u

(1)
h

)
ICLeff (5.15) IPUeff DoF J

(
u − u

(2)
h

)
ICLeff (5.15) IPUeff

25 3.80 × 10−2 1.65 0.83 69 5.64 × 10−3 1.26 0.95

45 2.10 × 10−2 1.79 0.86 129 2.90 × 10−3 1.28 0.96

89 1.05 × 10−2 2.29 0.84 257 8.48 × 10−4 1.28 0.97

193 5.34 × 10−3 2.16 0.80 545 3.57 × 10−4 1.30 0.95

465 2.59 × 10−3 2.24 0.82 1249 1.17 × 10−4 1.29 0.89

953 1.35 × 10−3 2.20 0.82 2545 4.04 × 10−5 1.32 0.97

2069 6.75 × 10−4 2.25 0.82 5417 1.59 × 10−5 1.33 0.97

4269 3.38 × 10−4 2.19 0.82 11,097 5.26 × 10−6 1.34 1.01

Fig. 5.9 Initial mesh of the L-shaped domain in Problem 3 with triangular elements (left) and
adaptive meshes for k = 2 after 10 refinements for classical (middle) and PU (right) localization,
where the dual problem is treated by globally higher order, i.e. z∗

h = z
(k+1)
h

where gN is chosen with the help of polar coordinates (r, φ), such that

u(r cosφ, r sin φ) = r2/3 sin
(
2
3φ

)

is the exact solution. This is a classical problem for mesh adaptivity, since the
gradient of the solution inherits a singularity at the reentrant corner in the origin
of the coordinate system. It holds u ∈ H 5/3(Ω). The considered goal functional is
a point evaluation

J (v) = v(x∗) ,

where x∗ is chosen as the upper right node inside the domain, which is adjacent to
six elements of the initial mesh, see Fig. 5.9 (left). We apply the adaptive strategy
and compare the resulting meshes for the different localization techniques and
approximations of the dual solution.
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Fig. 5.10 Zoom into L-shaped domain in Problem 3 with adaptive meshes for k = 2 after 10
refinements for classical (left) and PU (right) localization, where the dual problem is treated by
globally higher order, i.e. z∗

h = z
(k+1)
h

Fig. 5.11 Initial mesh of the L-shaped domain in Problem 3 with triangular elements (left), which
are actually degenerated hexagons, and adaptive meshes for k = 2 after 10 refinements for classical
(middle) and PU (right) localization, where the dual problem is treated by local post-processing,
i.e. z∗

h = Pk+1
2h z

(k)
h

In Fig. 5.9, we display the initial mesh and the adaptively refined meshes for
k = 2 after 10 refinement steps for the classical and the PU localization. A zoom-
in highlighting the resulting shapes of adaptively refined elements is provided in
Fig. 5.10. The dual problem is treated by a globally higher order discretization, i.e.
z∗
h = z

(k+1)
h . This experiment has been carried out on sequences of meshes, which

do not satisfy the condition on the node count. The elements in the initial mesh are
triangles. The adaptive process, however, produces naturally polygonal elements
during the local refinements. These refinements are located in the expected regions.

The resulting meshes for the experiments with local post-processing for the
dual solution, i.e. z∗

h = Pk+1
2h z

(k)
h , are visualized in Fig. 5.11. As before, a zoom-

in highlighting the resulting shapes of adaptively refined elements is provided
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Fig. 5.12 Zoom into L-shaped domain in Problem 3 with adaptive meshes for k = 2 after 10
refinements for classical (left) and PU (right) localization, where the dual problem is treated by
local post-processing, i.e. z∗

h = Pk+1
2h z

(k)
h

in Fig. 5.12. This strategy is carried out on a sequence of meshes satisfying the
condition on the node count, and thus, the triangular elements in the initial mesh
are actually degenerated hexagons. The refinement pattern is similar to the one in
Fig. 5.9. But we observe that there are less refinements far from the singularity
and the point x∗ after 10 steps. Due to the additional nodes on the boundary of
the elements, there are more degrees of freedom per element. Consequently, the
approximation over the degenerated hexagonal elements (with triangular shape) is
more accurate compared to the corresponding triangular elements in Fig. 5.9.

In order to study convergence, we plot the absolute values of the errors and
the estimators with respect to the number of degrees of freedom on a logarithmic
scale. The abbreviation e = u − uh is used in the key of the plots. If we run the
computations on a sequence of uniform refinedmeshes, the convergence slows down
due to the singularity located at the reentrant corner. The tests are performed on a
uniform sequence K2h, which does not satisfy the condition on the node count,
and on a uniform sequence Kh, which satisfies this condition. The initial meshes
are visualized in Figs. 5.9 and 5.11, respectively. The corresponding convergence
graphs are given in Fig. 5.13 for k = 1, 2. In these graphs, the error estimator ηPU is
given additionally, which clearly reflects the behaviour of the true error J (e).

Next, we apply the adaptive refinement strategy. The following computations
are run on meshes satisfying the condition on the node count only. We have
performed 25 adaptive refinement steps for the different localization techniques and
the two choices of z∗

h. Since f = 0 in this test, we directly obtain from (5.12)
that uh,B = 0 and thus uh = uh,H ∈ V k

h,H . Consequently, we can reduce the
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Fig. 5.13 Convergence of uniform refinement strategy with respect to the number of degrees of
freedom for Problem 3 with PU localization and z∗

h = z
(k+1)
h

volume integral in ηPU to the boundaries of the elements. Let K ′ ∈ Kh with
K ′ ⊂ ωK = supp χK , it is

(∇uh,∇((z − ihz)χK)
)
L2(K ′) = (

γ K ′
1 uh, γ

K ′
0 ((z − ihz)χK)

)
L2(∂K ′)

according to Green’s first identity. This reformulation improved the accuracy of
the numerical results. The convergence graphs are given in Fig. 5.14 for the PU
localization and in Fig. 5.15 for the classical localization stated in Prop. 5.8. In
contrast to the uniform refinement strategy, we recover higher convergence rates,
which are not limited by the regularity of the primal solution. Both localization
techniques show comparable performance in Figs. 5.14 and 5.15, respectively. The
PU localization, however, has a better effectivity while less computational effort
is spent for the dual problem. Furthermore, we point out that the convergence is
actually faster than expected. Indeed for finite elements, L∞ regularity results for
irregular meshes have been established in [153] and further references to regular
meshes are cited therein. In particular, assuming enough regularity, we would expect
for k = 2 a behaviour like O(DoF−3/2). For k = 1 we would expect O(DoF−1)

including a logarithm term [153]. However in our computations, we observe for
k = 2 a behaviour like O(DoF−3). For k = 1 the error J (e) seems to converge
with O(DoF−2) rather than with O(DoF−1) indicated by the estimators ηPU and
ηCL. These effects might be caused by the special meshes, which include additional



176 5 Adaptive BEM-Based Finite Element Method

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102 103 104 105

DoF−1

DoF−3

degrees of freedom

PU localization (k = 1)

| PU |, z∗h = k+1
2h z(k)h

|J(e)|, z∗h = k+1
2h z(k)h

| PU |, z∗h = z(k+1)
h

|J(e)|, z∗h = z(k+1)
h

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102 103 104 105

DoF−1

DoF−3

degrees of freedom

PU localization (k = 2)

| PU |, z∗h = k+1
2h z(k)h

|J(e)|, z∗h = k+1
2h z(k)h

| PU |, z∗h = z(k+1)
h

|J(e)|, z∗h = z(k+1)
h

Fig. 5.14 Convergence of adaptive refinement strategy with respect to the number of degrees of
freedom for Problem 3 with PU localization
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Fig. 5.15 Convergence of adaptive refinement strategy with respect to the number of degrees of
freedom for Problem 3 with classic localization

nodes in order to satisfy the condition on the node count during the refinement.
Furthermore, the implementation allows edge degeneration, that is excluded in the
current theory of most polygonal discretization techniques, but which might be
beneficial. These observations rise open questions for future research.
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