
Chapter 4
Boundary Integral Equations and Their
Approximations

The local problems in the definition of basis functions for the BEM-based FEM
are treated by means of boundary integral equations. This chapter gives a short
introduction into this topic with a special emphasis on its application in the BEM-
based FEM. Therefore, the boundary integral operators for the Laplace problem
are reviewed in two- and three-dimensions and corresponding boundary integral
equations are derived. Their discretization is realized by a Galerkin boundary
element method, which is used in the numerical examples and tests throughout
the book. However, we also give an alternative approach for the discretization of
boundary integral equations that relies on the Nyström method. The application of
these approaches as local solvers for the BEM-based FEM is discussed in details
and some comparisons highlighting advantageous and disadvantageous of these two
solvers are given.

4.1 Preliminaries

Boundary element methods (BEM) are alternative approaches to finite element
methods for the approximation of boundary value problems. They play an important
role in modern numerical computations in the applied and engineering sciences.
These methods rely on equivalent boundary integral equations of the corresponding
boundary value problems, which are known in many cases. The key ingredient is
the knowledge of a fundamental solution of the differential operator. Although the
existence of such functions can be guarantied for a wide class of partial differential
equations, see [100], the explicit construction is a more difficult task. However, the
fundamental solution is known for important operators with constant coefficients
such as for the Laplace and Helmholtz operators as well as for the system of
elasticity and for Stokes equations, for instance. These include the most important
applications of the boundary element methods. The advantage of the BEM over the
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FEM is that the d-dimensional problems are reduced to d − 1-dimensional ones on
the boundary of the underlying domain. Furthermore, due to the formulation on the
boundary, the BEM is naturally applicable for unbounded exterior domains, which
are of particular interest in scattering problems, for example. When discretizing
a boundary integral equation, we generally speak about a boundary element
method. But, if it is referred to BEM in this book, we usually mean a Galerkin
approach for the approximation of the boundary integral equation as described in
Sect. 4.3. The Galerkin methods perfectly fit to the variational formulation of these
integral equations. Their theoretical study is complete and provides a powerful
tool for the analysis. In the engineering community, collocation methods are often
preferred because of their easier practical implementation. However, the stability
and convergence theory for these methods is only available for two-dimensional
problems. Alternatively, a Nyström discretization of the boundary integral equation
can be chosen, where the integrals of the operators are replaced by appropriate
quadrature formulas. This strategy is discussed in Sect. 4.4. For more details on
the theory of integral and in particular boundary integral equations we refer to the
literature [13, 61, 105, 107, 118, 127, 128]. Galerkin boundary element methods
are studied and discussed in [151, 158, 159] for elliptic differential operators. The
collocation and Nyström approaches can be found beside others in [13, 118] and we
especially mention [117, 133] for the Nyström discretizations.

In the following presentation, we restrict ourselves to the pure Laplace problem

− �u = 0 in K , u = g on ∂K (4.1)

with Dirichlet boundary conditions on a bounded polytopal domain K in two-
and three-dimensions. Note that K will be a polytopal element and g a piecewise
polynomial function in our application later on. This problem setting is sufficient
for the approximation in the BEM-based FEM as seen in Sect. 4.5. The approach
is also applicable to the before mentioned differential operators and in particular
to convection-diffusion-reaction problems. Furthermore, other types of boundary
conditions can be incorporated when needed, for instance, in Neumann or mixed
boundary value problems. Some of the possible modifications are discussed in
Chap. 6.

4.2 Boundary Integral Formulations

Let K ⊂ R
d , d = 2, 3 be a bounded open domain with polygonal or polyhedral

boundary, and we consider the boundary value problem (4.1) with some given
function g ∈ H 1/2(∂K). For the following theory of boundary integral formulations,
we need the usual trace operator γ K

0 . For sufficiently smooth functions, it is given
as restriction of the function to the boundary. For Lipschitz domains, and thus
in particular for polytopal domains, the trace is a bounded linear operator with
γ K
0 : Hs(K) → Hs−1/2(∂K) for 1/2 < s ≤ 1 and it has a continuous right inverse.
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Here, the superscript indicates that the trace is taken with respect to the domain K .
Let v ∈ H 1(K) with �v in the dual of H 1(K). Due to Green’s first identity [128],
there exists a unique function γ K

1 v ∈ H−1/2(∂K) such that

∫
K

∇v(y) · ∇w(y) dy =
∫

∂K

γ K
1 v(y)γ K

0 w(y) dsy −
∫

K

w(y)�v(y) dy (4.2)

for w ∈ H 1(K). We call γ K
1 v the conormal derivative of v. If v is sufficiently

smooth, e.g. v ∈ H 2(K), we have

(γ K
1 v)(x) = nK(x) · (γ K

0 ∇v)(x) for x ∈ ∂K ,

where nK(x) denotes the outer normal vector of the domain K at x. The trace and
the conormal derivative are also called Dirichlet and Neumann trace for the Laplace
equation. Additionally, we make use of the fundamental solution of the Laplacian.
This singular function is given as

U∗(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

− 1

2π
ln |x − y| for x, y ∈ R

2 ,

1

4π |x − y| for x, y ∈ R
3 .

The fundamental solution satisfies the equation

−�yU
∗(x, y) = δ0(y − x)

in the distributional sense, where δ0 is the Dirac delta distribution. If we substitute
v(y) = U∗(x, y) in Green’s second identity
∫

K

(v(y)�u(y) − u(y)�v(y)) dy =
∫

∂K

(
γ K
0 v(y)γ K

1 u(y) − γ K
0 u(y)γ K

1 v(y)
)
dsy ,

see [128], we obtain a representation formula for the solution u in every point x ∈ K .
It reads

u(x) =
∫

∂K

U∗(x, y)γ K
1 u(y) dsy −

∫
∂K

γ K
1,yU

∗(x, y)γ K
0 u(y) dsy , (4.3)

where γ K
1,y denotes the conormal derivative operator with respect to the variable y.

By differentiation of (4.3), we obtain formulas for the derivatives of u. Conse-
quently, if the data γ K

0 u and γ K
1 u is known, it is possible to evaluate the function

u and its derivatives everywhere in the domain K . Furthermore, it is possible to
compute the Neumann data if the Dirichlet data is known as in (4.1). We apply the
trace and the conormal derivative operator to the representation formula and obtain
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a system of equations

(
γ K
0 u

γ K
1 u

)
=

(
(1 − ς)I − KK VK

DK ςI + K′
K

) (
γ K
0 u

γ K
1 u

)
, (4.4)

where

ς(x) = lim
ε→0

1

2(d − 1)π

1

εd−1

∫

y∈K :|y−x|=ε

dsy for x ∈ ∂K . (4.5)

The system (4.4) contains the standard boundary integral operators which are well
studied, see, e.g., [128, 151, 159]. For x ∈ ∂K , we have the single-layer potential
operator

(VKζ )(x) = γ K
0

∫
∂K

U∗(x, y)ζ(y) dsy for ζ ∈ H−1/2(∂K) ,

the double-layer potential operator

(KKξ)(x) = lim
ε→0

∫

y∈∂K :|y−x|≥ε

γ K
1,yU

∗(x, y)ξ(y) dsy for ξ ∈ H 1/2(∂K) ,

and the adjoint double-layer potential operator

(K′
Kζ )(x) = lim

ε→0

∫

y∈∂K :|y−x|≥ε

γ K
1,xU

∗(x, y)ζ(y) dsy for ζ ∈ H−1/2(∂K) ,

as well as the hypersingular integral operator

(DKξ)(x) = −γ K
1

∫
∂K

γ K
1,yU

∗(x, y)ξ(y) dsy for ξ ∈ H 1/2(∂K) .

These integral operators

VK : H−1/2+s(∂K) → H 1/2+s(∂K) ,

KK : H 1/2+s(∂K) → H 1/2+s(∂K) ,

K′
K : H−1/2+s(∂K) → H−1/2+s(∂K) ,

DK : H 1/2+s(∂K) → H−1/2+s(∂K)

are linear and continuous for s ∈ [−1/2, 1/2], see [61, 128]. The system (4.4)
can be utilized to derive the following relations between the boundary integral
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operators

VKDK = (ςI + K)((1 − ς)I − KK) ,

DKVK = (ςI + K′
K)((1 − ς)I − K′

K) ,

VKK′
K = KKVK ,

K′
KDK = DKKK .

Remark 4.1 The function u = 1 obviously satisfies the Laplace equation and it is
γ K
0 u = 1 and γ K

1 u = 0. Consequently, we obtain from the first equation in (4.4)
that

ς(x) = −
∫

∂K

γ K
1,yU

∗(x, y) dsy for x ∈ ∂K . (4.6)

If the boundary ∂K is smooth in a neighbourhood of the point x ∈ ∂K , i.e., it can
be represented locally by a differentiable parametrization, then (4.5) yields

ς(x) = 1

2
.

Thus, we have ς = 1/2 almost everywhere on ∂K for a polytopal domain K . On
the other hand, if x ∈ ∂K is on an edge in 3D or it is a vertex, then ς is related to
the interior angle of K at the point x. In the two-dimensional case K ⊂ R

2, it can
be shown that

ς(x) = α

2π

for a corner point x of a polygonal domain, where α ∈ (0, 2π) denotes the interior
angle of the polygon at x, see, e.g., [118].

4.2.1 Direct Approach for Dirichlet Problem

For K ⊂ R
2 with hK < 1 and K ⊂ R

3, the single-layer potential operator
induces a bilinear form (VK ·, ·)L2(∂K), which isH−1/2(∂K)-elliptic and continuous
on H−1/2(∂K), see [128, 159]. Here, the L2-inner product has to be interpreted as
duality pairing. According to the Lax–Milgram Lemma the single-layer potential
operator is invertible. Therefore, the first equation of system (4.4) yields a relation
between the Dirichlet and the Neumann trace, namely

γ K
1 u = SKγ K

0 u with SK = V−1
K

(
1
2I + KK

)
. (4.7)
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The operator

SK : H 1/2(∂K) → H−1/2(∂K)

is called Steklov–Poincaré operator and (4.7) is its non-symmetric representation.
This operator is linear and continuous due to its definition. With the help of the
second equation in the system (4.4), we find the symmetric representation

SK = DK +
(
1
2I + K′

K

)
V−1

K

(
1
2 I + KK

)
. (4.8)

The inversion of the single-layer potential operator is not desirable in the evaluation
of the Steklov–Poincaré operator. In order to compute the unknown Neumann data
t = γ K

1 u ∈ H−1/2(∂K) from given Dirichlet data g = γ K
0 u ∈ H 1/2(∂K), it is

more convenient to use the Galerkin formulation

Find t ∈ H−1/2(∂K) :
(VKt, ζ )L2(∂K) =

((
1
2I + KK

)
g, ζ

)
L2(∂K)

∀ζ ∈ H−1/2(∂K) .
(4.9)

This formulation admits a unique solution according to the Lax–Milgram Lemma
and is consequently equivalent to the evaluation of SK . Thus, in order to solve the
Dirichlet problem for the Laplace equation (4.1), we may choose the representation
formula (4.3) for u and compute its Neumann trace with the help of the Galerkin for-
mulation (4.9). The solution obtained this way satisfies u ∈ H 1(K), see [128, 159].
This is a direct approach since the Dirichlet and Neumann traces of the unknown
solution are either known or computed and used in the representation formula.

4.2.2 Indirect Approach for Dirichlet Problem

Alternatively, one may follow an indirect approach. Instead of computing traces of
the unknown function, the solution is sought as a potential of an unknown density.
It is known, see, e.g., [128, 151, 159], that the double-layer potential

u(x) =
∫

∂K

γ K
1,y U∗(x, y)ξ(y) dsy for x ∈ K (4.10)

with arbitrary density ξ ∈ H 1/2(∂K) satisfies the Laplace equation. Thus, the
density ξ has to be determined such that the Dirichlet boundary condition in (4.1)
is satisfied. Applying the trace operator to (4.10) yields the following boundary
integral equation of second kind

(1 − ς(x))ξ(x) − (KKξ)(x) = −g(x) for x ∈ ∂K . (4.11)
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It admits a unique solution ξ ∈ H 1/2(∂K) which is formally given as a Neumann
series

ξ(x) = −
∞∑

�=0

(ςI + KK)�g(x) for x ∈ ∂K .

Furthermore, the series is convergent since ςI + KK is a contraction in H 1/2(∂K),
see [160].

4.2.3 Direct Approach for Neumann Problem

Although this chapter focuses on the Dirichlet problem for the Laplace equation, we
briefly consider the Neumann problem:

−�u = 0 in K , γ K
1 u = t on ∂K ,

where t ∈ H−1/2(∂K) satisfies the solvability condition

∫
∂K

t dsx = 0 (4.12)

such that there exists a unique solution

u ∈ H 1∗ (K) = {v ∈ H 1(K) : (v, 1)L2(∂K) = 0} .

We follow a direct approach and derive a boundary integral equation for the
unknown Dirichlet data g = γ K

0 u ∈ H 1/2(∂K). Afterwards, the representation
formula (4.3) gives the solution of the boundary value problem.

In order to find a connection between the Dirichlet and Neumann traces we
consider this time the second equation in (4.4), which yields

DKγ K
0 u =

(
1
2 I − K′

K

)
γ K
1 u . (4.13)

The hypersingular integral operator DK is self-adjoint and has a non-trivial kernel
on H 1/2(∂K), namely it is kerDK = span {1} for a simply connected domain K .
Thus, we define the subspace

H
1/2∗ (∂K) = {ξ ∈ H 1/2(∂K) : (ξ, 1)L2(∂K) = 0}

of H 1/2(∂K), containing the functions with vanishing mean value, on which DK

is bounded and elliptic. H
1/2∗ (∂K) can be interpreted as trace space of H 1∗ (K).
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Consequently, (4.13) has a unique solution γ K
0 u in H

1/2∗ (∂K) for given data
t = γ K

1 u. With a slight abuse of notation, we denote by D−1
K the inverse of the

hypersingular integral operator on the subspace H
1/2∗ (∂K), and thus we can write

γ K
0 u = PKγ K

1 u with PK = D−1
K

(
1
2I − K′

K

)
(4.14)

on H
1/2∗ (∂K). The operator PK : H−1/2(∂K) → H

1/2∗ (∂K), which maps the
Neumann to the Dirichlet data, is called Poincaré–Steklov operator. (Depending
on the literature it is sometimes also called Steklov–Poincaré operator.) Employing
the properties of the boundary integral operators, the symmetric representation

PK = VK +
(
1
2I − KK

)
D−1

K

(
1
2I − K′

K

)
(4.15)

follows. To compute the unknown Dirichlet data g = γ K
0 u ∈ H

1/2∗ (∂K) from given
Neumann data t = γ K

1 u ∈ H−1/2(∂K), we apply a Galerkin formulation once
more, namely

Find g ∈ H
1/2∗ (∂K) :

(DKg, ξ)L2(∂K) =
(
( 12 I − K′

K)t, ξ
)

L2(∂K)
∀ξ ∈ H

1/2∗ (∂K) .
(4.16)

This problem is reformulated into a saddle point formulation, which reads

Find (g, λ) ∈ H 1/2(∂K) × R :
(DKg, ξ)L2(∂K) + λ(ξ, 1)L2(∂K) =

(
( 12I − K′

K)t, ξ
)

L2(∂K)
∀ξ ∈ H 1/2(∂K) ,

μ(g, 1)L2(∂K) = 0 ∀μ ∈ R .

For g ∈ H 1/2(∂K) \ H
1/2∗ (∂K), we write μ = λ/(g, 1)L2(∂K) − α with α ∈ R

and obtain from the second equation λ = α(g, 1)L2(∂K). The expression for the

Lagrange multiplier λ also holds for g ∈ H
1/2∗ (∂K), since testing the first equation

with ξ0 = 1 yields

λ(1, 1)L2(∂K) = 0

and thus λ = 0. Here, we employed

kerDK = ker
(
1
2I + KK

)
= span {1} ,
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DK is self-adjoint and the solvability condition (4.12), such that

(DKg, ξ0)L2(∂K) = (g,DKξ0)L2(∂K) = 0

and
(
( 12I − K′

K)t, ξ0

)
L2(∂K)

= (t, ξ0)L2(∂K) −
(
t, ( 12 I + KK)ξ0

)
L2(∂K)

= 0 .

Inserting λ = α(g, 1)L2(∂K) into the first equation of the saddle point formulation,
we obtain for fixed α the Galerkin formulation:

Find g ∈ H 1/2(∂K) :
(
D̃Kg, ξ

)
L2(∂K)

=
(
( 12I − K′

K)t, ξ
)

L2(∂K)
∀ξ ∈ H 1/2(∂K) ,

(4.17)

where

(
D̃Kϑ, ξ

)
L2(∂K)

= (DKϑ, ξ)L2(∂K) + α(ϑ, 1)L2(∂K)(ξ, 1)L2(∂K) .

For α > 0, the operator D̃K is bounded and elliptic on H 1/2(∂K) and consequently,
the Galerkin formulation has a unique solution g ∈ H 1/2(∂K). This solution even
belongs to H

1/2∗ (∂K) since plugging ξ0 = 1 into (4.17) yields with the same
arguments as above

(g, 1)L2(∂K)(1, 1)L2(∂K) = 0 .

Hence, the formulation (4.17) is equivalent to the initial variational formulation and
the solution g is independent of α because of the unique solvability.

4.3 Boundary Element Method

The aim of this section is to introduce discrete Galerkin formulations for the direct
approaches of the Dirichlet and Neumann problems derived in the previous section.
Thus, we discretize the variational formulations (4.9) and (4.17). For this reason,
we have to introduce approximation spaces for H 1/2(∂K) and H−1/2(∂K) as well
as in particular a discretization of ∂K . We follow standard approaches as described
in [144, 151, 159], for instance.

First, the boundary ∂K of the domain K is decomposed into non-overlapping
line segments in two-dimensions and triangles in three-dimensions, see Fig. 4.1,
such that the resulting boundary mesh, which is denoted by Bh, is regular. More
precisely, we assume that Bh is shape-regular in the sense of Ciarlet such that
neighbouring elements either share a common node or edge and the aspect ratio
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Fig. 4.1 A domain and its boundary mesh for d = 2 (left) and d = 3 (right)

of each triangle is uniformly bounded. In order to present approximation estimates
later on, we additionally assume a uniform boundary mesh in the sense that all
elements have comparable size. The elements of the mesh Bh are denoted by T .
For the approximations, we utilize standard spaces of piecewise polynomials. Let
k ∈ N be the desired approximation order in the boundary element method. We
discretize H−1/2(∂K) and thus the Neumann traces by piecewise polynomials of
degree smaller or equal k−1 which might be discontinuous over element interfaces.
This approximation space is given by

Pk−1
pw,d(Bh) =

{
ζ ∈ L2(∂K) : ζ

∣∣
T

∈ Pk−1(T ) ∀T ∈ Bh

}
. (4.18)

The space H 1/2(∂K) and thus the Dirichlet traces are discretized by piecewise
polynomials of degree smaller or equal k which are continuous over element
interfaces. This approximation space is given by

Pk
pw(Bh) = Pk

pw,d(Bh) ∩ C0(∂K) . (4.19)

The choice of spaces yields conforming Galerkin approximations since

Pk
pw(Bh) ⊂ H 1/2(∂K) and Pk−1

pw,d(Bh) ⊂ H−1/2(∂K) .

These spaces are equipped with the usual Lagrangian bases used in finite element
methods. In two-dimensions we might also apply the polynomial basis defined in
Sect. 2.3.1, cf. Fig. 2.9. The set of basis functions forPk

pw(Bh) andPk−1
pw,d(Bh) are

fixed once and they are denoted in the following by ΦD and ΦN , respectively.

4.3.1 Dirichlet Problem

In order to treat the Dirichlet problem (4.1) for the Laplace equation, we utilize the
direct approach and approximate the Galerkin formulation (4.9) for the unknown
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Neumann trace t = γ K
1 u ∈ H−1/2(∂K) from Sect. 4.2.1. This yields the discrete

Galerkin formulation

Find th ∈ Pk−1
pw,d(Bh) :

(VKth, ζ )L2(∂K) =
((

1
2I + KK

)
g, ζ

)
L2(∂K)

∀ζ ∈ Pk−1
pw,d(Bh) ,

(4.20)

where g is the given Dirichlet data. Since the bilinear form induced by the single-
layer potential operator is H−1/2(∂K)-elliptic as well as continuous on H−1/2(∂K)

and Pk−1
pw,d(Bh) ⊂ H−1/2(∂K), the variational formulation (4.20) admits a unique

solution according to the Lax–Milgram Lemma. Furthermore, Céa’s Lemma yields

‖t − th‖H−1/2(∂K) ≤ C inf
ζ∈Pk−1

pw,d(Bh)

‖t − ζ‖H−1/2(∂K) .

From known approximation properties of polynomials, see [151, Theorem 4.3.20],
we obtain

‖t − th‖H−1/2(∂K) ≤ C hs+1/2|t|Hs
pw(∂K) , (4.21)

when assuming t ∈ Hs
pw(∂K) and 0 ≤ s ≤ k. Here, h denotes the mesh size

in the boundary element mesh Bh. After the computation of th, we utilize it for
approximating the solution u(x) of the Dirichlet problem in an interior point x ∈ K

by the representation formula (4.3). This yields

ũ(x) =
∫

∂K

U∗(x, y)th(y) dsy −
∫

∂K

γ K
1,yU

∗(x, y)g(y) dsy , (4.22)

and under the assumption of sufficient regularity we obtain for k = 1 the pointwise
error estimate

|u(x) − ũ(x)| ≤ C(x) h3 |t|H 1
pw(∂K) (4.23)

for x ∈ K and in the H 1(K)-norm

‖u − ũ‖H 1(K) ≤ C h3/2 |t|H 1
pw(∂K) .

Because of x ∈ K , the integrands in (4.3) are non-singular and consequently
approximation formulas for the derivatives of u can be derived by simply differ-
entiating (4.22). These pointwise approximations of the derivatives converge with
the same order as the approximation ũ(x) of u(x). We point out, that the integrals
in (4.22) can be evaluated analytically for piecewise polynomial data th and g.
In our later application g is already piecewise polynomial. In the general case,
however, the Dirichlet data is approximated by its L2-projection gh ∈ Pk

pw(Bh)
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and the error analysis additionally relies on Strang-type arguments. Utilizing the
basis functions inΦD andΦN forPk

pw(Bh) andP
k−1
pw,d(Bh), respectively, we make

the ansatz

gh(x) =
∑

ϕ∈ΦD

gϕϕ(x) and th(x) =
∑

τ∈ΦN

tτ τ (x) , (4.24)

where x ∈ ∂K . Furthermore, we identify the approximations gh and th with their
vectors g

h
= (

gϕ

)
ϕ∈ΦD

and th = (tτ )τ∈ΦN
containing the expansion coefficients.

Due to the L2-projection, the coefficients in g
h
are given as solution of

∑
ϕ∈ΦD

gϕ(ϕ, ξ)L2(∂K) = (g, ξ)L2(∂K) ∀ξ ∈ Pk
pw(Bh) . (4.25)

The system of linear equations (4.25) involves the symmetric, positive definite mass
matrix

MDD
K,h = (

(ϕ, ξ)L2(∂K)

)
ξ∈ΦD,ϕ∈ΦD

.

Inserting the ansatz (4.24) into the discrete Galerkin formulation (4.20) yields a
system of linear equations for th, namely

VK,hth =
(
1
2MK,h + KK,h

)
g

h
, (4.26)

where the matrices are defined as

VK,h = (
(VKτ, ϑ)L2(∂K)

)
ϑ∈ΦN ,τ∈ΦN

and

MK,h = (
(ϕ, ϑ)L2(∂K)

)
ϑ∈ΦN,ϕ∈ΦD

, KK,h = (
(KKϕ, ϑ)L2(∂K)

)
ϑ∈ΦN ,ϕ∈ΦD

.

The system (4.26) is uniquely solvable since the matrix VK,h is symmetric and
positive definite due to the properties of the integral operator VK .

Remark 4.2 In the computational realization the matrices can be set up in different
ways. Either a semi-analytic integration scheme is utilized, which evaluates the
boundary integral operators applied to piecewise polynomial functions analytically
and approximates the outer integrals by numerical quadrature, or a fully numerical
integration scheme is applied. The semi-analytic scheme as well as the analytic
formulas are given in [144] and an appropriate fully numerical quadrature is
presented in [151] for the three-dimensional case. Corresponding formulas are also
available for the two-dimensional case.
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The approximation of the Dirichlet to Neumann map with the help of the system
of linear equations (4.26) corresponds to the representation (4.7) of the Steklov–
Poincaré operator. But, we have also derived a symmetric representation (4.8)
which can be utilized to define a symmetric approximation of the Steklov–Poincaré
operator. Since the Neumann trace satisfies

t = V−1
K

(
1
2I + KK

)
g ,

we use the previously derived approximation th and define

S̃Kg = DKg +
(
1
2I + K′

K

)
th . (4.27)

This yields the symmetric discretization of the Steklov–Poincaré operator

SK,h = DK,h + ( 1
2M

�
K,h + K�

K,h

)
V−1

K,h

( 1
2MK,h + KK,h

)
(4.28)

with the matrix entries

SK,h =
((̃
SKϕ, φ

)
L2(∂K)

)
φ∈ΦD,ϕ∈ΦD

,

where

DK,h = (
(DKϕ, φ)L2(∂K)

)
φ∈ΦD,ϕ∈ΦD

.

The matrix entries of DK,h can be assembled with the help of the single-layer
potential matrix VK,h. For piecewise smooth functions one can show that

(DKϕ, φ)L2(∂K) = (VK curl∂K ϕ, curl∂K φ)L2(∂K) ,

where curl∂K denotes the surface curl of a scalar valued function on ∂K . For more
details, we refer the interested reader to [144, 159].

Example 4.3 We demonstrate the performance of the boundary element method and
give the numerical orders of convergence, cf. (1.7), for a model problem. Let K be a
regular octagon centered at the origin with diameter 0.8, and consider the boundary
value problem

−�u = 0 in K , u = g on ∂K ,

where the Dirichlet data g is chosen such that the unique solution of the problem
is given as u(x) = exp(2π(x1 − 0.3)) cos(2π(x2 − 0.3)). The boundary element
method is applied on a sequence of meshes for the approximation orders k = 1, 2, 3.
The first mesh is defined to be the eight sides of the octagon and the following
meshes are constructed by subdividing each line segment of the previous mesh
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into two new line segments of the same length. In the following tables we
distinguish the meshes and the approximation orders by the number of degrees of
freedom (DoF) used to approximate the Neumann trace. In Table 4.1, we present
the convergence of the Neumann data in the L2-norm. The observed numerical
order of convergence (noc) is k that reflects the theoretical considerations, cf. (4.21).
Furthermore, we evaluate the approximation and its gradient with the help of the
representation formula (4.22) in the point (0.2, 0)� ∈ K and present the relative
errors as well as the numerical orders of convergence in Tables 4.2 and 4.3,
respectively. We observe that the pointwise evaluation of the approximation as well
as the evaluation of its gradient converge till numerical saturation is reached. For
k = 1, the pointwise errors converge with cubic order for the function evaluation as
well as for the gradient. This coincides with the estimate (4.23). For k = 2, 3, the
tables indicate numerical convergence orders of 4 and 5, respectively.

Table 4.1 Degrees of freedom (DoF), error ‖t − th‖L2(Ω) (err) and numerical order of conver-
gence (noc) for k = 1, 2, 3 in Example 4.3

k = 1 k = 2 k = 3

DoF err noc DoF err noc DoF err noc

8 3.22 × 10+0 – 16 8.06 × 10−1 – 24 1.53 × 10−1 –

16 9.90 × 10−1 1.70 32 2.21 × 10−1 1.87 48 1.76 × 10−2 3.13

32 5.37 × 10−1 0.88 64 5.98 × 10−2 1.89 96 2.01 × 10−3 3.12

64 2.63 × 10−1 1.03 128 1.56 × 10−2 1.93 192 2.42 × 10−4 3.05

128 1.29 × 10−1 1.03 256 3.96 × 10−3 1.98 384 2.97 × 10−5 3.03

256 6.40 × 10−2 1.02 512 9.89 × 10−4 2.00 768 3.68 × 10−6 3.02

512 3.18 × 10−2 1.01 1024 2.47 × 10−4 2.00 1536 4.57 × 10−7 3.01

1024 1.59 × 10−2 1.00 2048 6.17 × 10−5 2.00 3072 5.70 × 10−8 3.00

2048 7.92 × 10−3 1.00 4096 1.54 × 10−5 2.00 6144 8.01 × 10−9 2.83

Theory 1 2 3

Table 4.2 Degrees of freedom (DoF), relative error |u(x) − ũ(x)|/|u(x)| for the point evaluation
in x = (0.2, 0)� (err) and numerical order of convergence (noc) for k = 1, 2, 3 in Example 4.3

k = 1 k = 2 k = 3

DoF err noc DoF err noc DoF err noc

8 3.46 × 10−2 – 16 2.55 × 10−4 – 24 1.57 × 10−4 –

16 9.94 × 10−4 5.12 32 3.80 × 10−5 2.75 48 4.45 × 10−6 5.14

32 1.12 × 10−4 3.15 64 9.06 × 10−7 5.39 96 1.19 × 10−7 5.22

64 1.62 × 10−5 2.79 128 1.21 × 10−7 2.91 192 3.02 × 10−9 5.31

128 2.03 × 10−6 2.99 256 8.17 × 10−9 3.89 384 7.46 × 10−11 5.34

256 2.54 × 10−7 2.99 512 4.70 × 10−10 4.12 768 1.83 × 10−12 5.35

512 3.22 × 10−8 2.98 1024 2.53 × 10−11 4.22 1536 3.52 × 10−14 5.70

1024 4.09 × 10−9 2.98 2048 1.28 × 10−12 4.31 3072 4.51 × 10−14 –

2048 5.20 × 10−10 2.98 4096 1.69 × 10−13 2.92 6144 1.21 × 10−13 –
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Table 4.3 Degrees of freedom (DoF), relative error |∇u(x) − ∇ũ(x)|/|∇u(x)| for the point
evaluation of the gradient in x = (0.2, 0)� (err) and numerical order of convergence (noc) for
k = 1, 2, 3 in Example 4.3

k = 1 k = 2 k = 3

DoF err noc DoF err noc DoF err noc

8 2.29 × 10−1 – 16 6.68 × 10−3 – 24 3.56 × 10−4 –

16 1.53 × 10−2 3.90 32 5.64 × 10−5 6.89 48 2.24 × 10−6 7.31

32 5.23 × 10−4 4.87 64 2.09 × 10−6 4.75 96 5.15 × 10−8 5.45

64 5.58 × 10−5 3.23 128 8.13 × 10−8 4.69 192 1.46 × 10−9 5.14

128 6.84 × 10−6 3.03 256 5.14 × 10−9 3.98 384 3.72 × 10−11 5.29

256 8.42 × 10−7 3.02 512 3.06 × 10−10 4.07 768 9.43 × 10−13 5.30

512 1.04 × 10−7 3.01 1024 1.66 × 10−11 4.20 1536 5.04 × 10−14 4.22

1024 1.30 × 10−8 3.01 2048 7.57 × 10−13 4.46 3072 1.13 × 10−13 –

2048 1.62 × 10−9 3.00 4096 7.73 × 10−13 – 6144 8.21 × 10−13 –

4.3.2 Neumann Problem

The Neumann problem (4.2.3) is treated along the same lines as the Dirichlet
problem in the previous section. We utilize the direct approach and approximate the
Galerkin formulation (4.17) for the unknown Dirichlet trace g = γ K

0 u ∈ H 1/2(∂K)

from Sect. 4.2.3. This yields the discrete Galerkin formulation

Find gh ∈ Pk
pw(Bh) :

(
D̃Kgh, ξ

)
L2(∂K)

=
(
( 12I − K′

K)t, ξ
)

L2(∂K)
∀ξ ∈ Pk

pw(Bh) ,
(4.29)

where t is the given Neumann data with
∫
∂K t dsx = 0. Since D̃K is bounded

as well as elliptic on H 1/2(∂K) and Pk
pw(Bh) ⊂ H 1/2(∂K), the discrete

Galerkin formulation has a unique solution according to the Lax–Milgram Lemma.
Furthermore, Céa’s Lemma yields

‖g − gh‖H 1/2(∂K) ≤ C inf
ξ∈Pk

pw(Bh)
‖g − ξ‖H 1/2(∂K) ,

where known approximation properties of polynomials, see [151, Theorem 4.3.22],
can be applied once more, such that

‖g − gh‖H 1/2(∂K) ≤ C hs−1/2‖g‖Hs(∂K) (4.30)

for 1/2 ≤ s ≤ k + 1, when assuming g ∈ Hs(∂K). Arguing as in Sect. 4.2.3,
we even see that gh ∈ H

1/2∗ (∂K) since ξ0 ∈ Pk
pw(∂K). Inserting gh into the
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representation formula (4.3), we obtain for x ∈ K the pointwise approximation

ũ(x) =
∫

∂K

U∗(x, y)t (y) dsy −
∫

∂K

γ K
1,yU

∗(x, y)gh(y) dsy

for the solution u(x) of the Neumann problem. Under the assumption of sufficient
regularity the approximation satisfies for k = 1 and x ∈ K the error estimate

|u(x) − ũ(x)| ≤ C(x) h3 |g|H 2(∂K) . (4.31)

As in the Dirichlet problem we may approximate the given Neumann trace t by its
L2-projection th ∈ Pk−1

pw,d(∂K). Utilizing the ansatz (4.24) yields the coefficient
vector th and therefore the approximation th as unique solution of

∑
τ∈ΦN

tτ (τ, ζ )L2(∂K) = (t, ζ )L2(∂K) ∀ζ ∈ Pk−1
pw,d(Bh) . (4.32)

The system of linear equations (4.32) involves the symmetric, positive definite mass
matrix

MNN
K,h = (

(τ, ζ )L2(∂K)

)
ζ∈ΦN ,τ∈ΦN

.

The solvability condition
∫
∂K thdsx = 0 is retained since span {1} ⊂ Pk−1

pw,d(Bh).
Inserting the ansatz (4.24) into the discrete Galerkin formulation (4.29) yields a
system of linear equations for g

h
, namely

D̃K,hgh
=

(
1
2M

�
K,h − K�

K,h

)
th , (4.33)

where

D̃K,h = DK,h + α dK,h d�
K,h ,

with α > 0 and

DK,h = (
(DKϕ, φ)L2(∂K)

)
φ∈ΦD,ϕ∈ΦD

, dK,h = (
(ϕ, 1)L2(∂K)

)
ϕ∈ΦD

.

The system (4.33) is uniquely solvable since the matrix D̃K,h is symmetric and
positive definite due to the properties of the integral operator DK .

Example 4.4 We demonstrate the performance of the boundary element method
for the Neumann problem. Let K be a regular octagon centered at the origin with
diameter 0.8 as in Example 4.3, and consider the boundary value problem

−�u = 0 in K , γ K
1 u = t on ∂K ,
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where the Neumann data t is chosen such that the unique solution of the problem
in H 1∗ (K) is given as u(x) = exp(2π(x1 − 0.3)) cos(2π(x2 − 0.3)) − C with
C ∈ R such that (γ K

1 u, 1)L2(∂K) = 0. The boundary element method is applied
on a sequence of meshes for the approximation orders k = 1, 2. The first mesh is
defined to be the eight sides of the octagon and the followingmeshes are constructed
by subdividing each line segment of the previous mesh into two new line segments
of the same length. In Table 4.4 we give the results for k = 1 and in Table 4.5
those for k = 2. The meshes are distinguished by the number of degrees of
freedom (DoF) used to approximate the Dirichlet trace. From (4.30) we expect
that the error ‖g − gh‖L2(∂K) of the Dirichlet trace in the L2-norm converges with
order k+1. This is verified by the numerical order of convergence (noc) in the tables.
For the point evaluation, it has been shown in [159] that for k = 1 the optimal error
estimate (4.31) is not achieved when the Neumann data has to be approximated

Table 4.4 Degrees of freedom (DoF) and errors ‖g − gh‖L2(Ω), |u(x) − ũ(x)|/|u(x)| as well as
|∇u(x) − ∇ũ(x)|/|∇u(x)| for x = (0.2, 0)� and numerical orders of convergence (noc) for k = 1
in Example 4.4

‖g − gh‖L2(Ω) |u(x) − ũ(x)|/|u(x)| |∇u(x) − ∇ũ(x)|/|∇u(x)|
DoF err noc err noc err noc

8 3.23 × 10−1 – 2.25 × 10−1 – 1.60 × 10−1 –

16 7.57 × 10−2 2.09 4.49 × 10−2 2.32 3.90 × 10−2 2.04

32 1.67 × 10−2 2.18 9.92 × 10−3 2.18 8.97 × 10−3 2.12

64 3.85 × 10−3 2.12 2.41 × 10−3 2.04 2.21 × 10−3 2.02

128 9.19 × 10−4 2.07 5.98 × 10−4 2.01 5.51 × 10−4 2.01

256 2.24 × 10−4 2.04 1.49 × 10−4 2.01 1.38 × 10−4 2.00

512 5.52 × 10−5 2.02 3.71 × 10−5 2.00 3.44 × 10−5 2.00

1024 1.37 × 10−5 2.01 9.28 × 10−6 2.00 8.59 × 10−6 2.00

2048 3.41 × 10−6 2.01 2.32 × 10−6 2.00 2.15 × 10−6 2.00

Table 4.5 Degrees of freedom (DoF) and errors ‖g − gh‖L2(Ω), |u(x) − ũ(x)|/|u(x)| as well as
|∇u(x) − ∇ũ(x)|/|∇u(x)| for x = (0.2, 0)� and numerical orders of convergence (noc) for k = 2
in Example 4.4

‖g − gh‖L2(Ω) |u(x) − ũ(x)|/|u(x)| |∇u(x) − ∇ũ(x)|/|∇u(x)|
DoF err noc err noc err noc

16 3.46 × 10−2 – 2.57 × 10−3 – 2.45 × 10−2 –

32 4.52 × 10−3 2.94 4.88 × 10−4 2.40 5.24 × 10−4 5.55

64 6.06 × 10−4 2.90 9.06 × 10−5 2.43 2.06 × 10−5 4.67

128 8.02 × 10−5 2.92 2.18 × 10−5 2.06 9.46 × 10−7 4.45

256 1.04 × 10−5 2.95 5.61 × 10−6 1.96 5.56 × 10−8 4.09

512 1.34 × 10−6 2.95 1.44 × 10−6 1.96 4.15 × 10−9 3.74

1024 1.79 × 10−7 2.91 3.65 × 10−7 1.98 3.16 × 10−10 3.72

2048 2.66 × 10−8 2.75 8.99 × 10−8 2.02 2.30 × 10−11 3.78

4096 4.58 × 10−9 2.54 2.04 × 10−8 2.14 8.61 × 10−13 4.74
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by (4.32). Instead, only

|u(x) − ũ(x)| ≤ C(x) h2 |g|H 2(∂K)

is obtained. This theoretical result is confirmed in Table 4.4. Furthermore, the
quadratic convergence also holds for k = 2 in the numerical experiment, see
Table 4.5. For the pointwise convergence of the gradient, the tables indicate
numerical convergence orders of 2 and 4 for k = 1 and k = 2, respectively.

4.4 Nyström Approach

The Nyström method is an alternative approach for the approximation of integral
equations. It was initially designed for domains with globally parametrized and
smooth boundaries and was later adapted to domains with corners. Here, we restrict
ourselves to the two-dimensional case and we utilize the indirect approach for the
Dirichlet problem discussed in Sect. 4.2.2. The main idea is to replace the integral by
a suitable quadrature formula and to approximate the resulting equation by means
of collocation.

First of all, we seek the solution of the Laplace equation in the form (4.10)
such that the unknown density ξ has to be approximated. In the case of the two-
dimensional Laplace equation we have

γ K
1,yU

∗(x, y) = (x − y) · nK(y)
2π |x − y|2 (4.34)

almost everywhere, where nK(y) denotes the outer normal vector ofK in the bound-
ary point y ∈ ∂K . The density ξ satisfies the boundary integral equation (4.11).

4.4.1 Domains with Smooth Boundary

If the boundary of the domain is smooth, i.e. C2, and there is a global parametriza-
tion x(θ) such that

∂K =
{
x(θ) ∈ R

2 : θ0 ≤ θ ≤ θ1

}

with |x′(θ)| �= 0 for all θ ∈ [θ0, θ1], then (4.34) holds for all x, y ∈ ∂K with a
removable singularity at x = y. Furthermore, let the parametric curve be given as
x(θ) = (x1(θ), x2(θ))� in counter-clockwise orientation. Hence, the outer normal
vector can be expressed as nK(x(θ)) = (x ′

2(θ),−x ′
1(θ))�/|x′(θ)|. Respecting
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Remark 4.1, the integral equation (4.11) for the density ξ now reads

1
2ξ(x(θ))+

∫ θ1

θ0

κ(x(θ), x(τ ))ξ(x(τ )) dτ = −g(x(θ)) for θ ∈ [θ0, θ1] , (4.35)

with the integral kernel

κ(x(θ), x(τ )) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

2π

x ′
1(τ )(x2(θ) − x2(τ )) − x ′

2(τ )(x1(θ) − x1(τ ))

(x1(θ) − x1(τ ))2 + (x2(θ) − x2(τ ))2
, for θ �= τ ,

1

4π

x ′
1(τ )x ′′

2 (τ ) − x ′
2(τ )x ′′

1 (τ )

(x ′
1(τ ))2 + (x ′

2(τ ))2
, for θ = τ .

Next, we apply the composite trapezoidal rule to the integral with N + 1 uniformly
placed quadrature points xj , j = 0, . . . , N and weights. Since ξ is periodic on the
closed boundary, this quadrature rule is especially suited for the integration, see [62].
Furthermore, we have ξ(xN) = ξ(x0). The resulting equation cannot hold for all
θ ∈ [θ0, θ1] and therefore we enforce its validity by collocation in the quadrature
notes. Consequently, we find due to the periodicity the following system of linear
equations for the unknown values ξi = ξ(xi ) of the density:

1
2ξi +

N∑
j=1

κ(xi , xj )ξjωj = −g(xi ) for i = 1, . . . , N , (4.36)

where the quadrature points and weights are given by

xj = x
(

θ0 + j
θ1 − θ0

N

)
and ωj = θ1 − θ0

N
.

It is known that this trapezoidal Nyström method converges with order O(1/Nq) in
the maximum norm, where q ≥ 0 is related to the smoothness of the boundary ∂K

as well as to the smoothness of ξ , see, e.g. [118]. Having the values ξi at hand we
can approximate u(x) for x ∈ K with the help of (4.10) and the trapezoidal rule by

ũ(x) = −
N∑

j=1

κ(x, xj )ξjωj for x ∈ K . (4.37)

Since the integrand in (4.10) is smooth for x ∈ K , differentiation and integration can
be interchanged. Thus, we obtain an approximation of the gradient of the solution
∇u(x) as

∇ũ(x) = −
N∑

j=1

∇κ(x, xj )ξjωj for x ∈ K . (4.38)
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Fig. 4.2 Domain in
Example 4.5 which is given
by a globally smooth curve
describing its boundary
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The gradient of the integral kernel can be computed analytically by a small exercise
and does not involve any difficulties.

Example 4.5 We consider the boundary value problem

−�u = 0 in K , u = g on ∂K ,

where g is chosen such that u(x) = ln |x − x∗| with x∗ = (3, 3)� �∈ K is the exact
solution. The domainK is given by its boundary that is defined as a globally smooth
curve with parametrization

x(θ) = (2 + cos(3θ))

(
cos(θ)

sin(θ)

)
for 0 ≤ θ < 2π ,

see Fig. 4.2. In Table 4.6, the convergence of the approximation (4.37) as well as
of its gradient (4.38) is presented in the point (1.5, 0)� for an increasing number of
quadrature points (QP) which is equal N in this setting. Furthermore, the numerical
order of convergence (noc) is given with respect to 1/N . Obviously, the Nyström
approach converges very fast till machine precision for domains with smooth
boundaries.

4.4.2 Domains with Corners

Often, boundary value problems are considered on domains whose boundaries are
not given as a globally smooth parametric curves and which may contain corners.
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Table 4.6 Number of quadrature points (QP= N), pointwise error of approximation and its gra-
dient in the point x= (1.5, 0)� as well as numerical order of convergence (noc) for Example 4.5

QP |u(x) − ũ(x)|/|u(x)| noc |∇u(x) − ∇ũ(x)|/|∇u(x)| noc

4 5.12 × 10−1 – 1.59 × 10+0 –

8 1.71 × 10−1 1.58 2.47 × 10+0 −0.64

16 6.80 × 10−3 4.65 1.86 × 10−1 3.73

32 1.92 × 10−5 8.47 1.64 × 10−3 6.83

64 2.69 × 10−8 9.48 2.38 × 10−7 12.75

128 5.80 × 10−14 18.82 4.12 × 10−13 19.14

256 1.83 × 10−16 8.31 5.27 × 10−16 9.61

Consequently, we consider domains with piecewise smooth boundaries next. Thus,
the boundary ∂K is decomposed into boundary segments such that each can be
parametrized by a smooth curve. Without loss of generality, we concatenate these
parametrizations to a piecewise smooth and globally given parametrization which
is oriented counter-clockwise. Therefore, let M ∈ N be the number of boundary
segments, we write

∂K =
{
x(θ) ∈ R

2 : θ� ≤ θ ≤ θ�+1, � = 0, . . . ,M − 1
}

.

Here, |x′(θ)| �= 0 for all θ ∈ (θ�, θ�+1), � = 0, . . . ,M − 1 and z� = x(θ�) are the
corner points or vertices of the domain. Since the boundary is closed we obviously
have x(θ0) = x(θM). A special case are the polygonal domains which are used
throughout this book. In this situation the boundary segments are given as straight
lines and x′(θ) is constant on each interval (θ�, θ�+1). Furthermore, the vertices z�

coincide with the nodes of the polygonal elements.
In order to derive the Nyström approximation we consider once more the

boundary integral equation (4.11). But, since the boundary of the domain is not
smooth in the points z�, we have to take care on ς(z�) which depends on the
interior angle of the domain. This dependency is resolved by using (4.6) and
reformulating (4.11) to

ξ(x) + ξ(z)
2

−
∫

∂K

γ K
1,yU

∗(x, y)(ξ(y) − ξ(z)) dsy = −g(x) for x ∈ ∂K ,

where z is the closest vertex z� to x. Next, the boundary integral is split into its
contributions over the single boundary segments. The parametrization and the outer
normal vector are treated within each smooth segment as in the previous section.
This yields

ξ(x(θ)) + ξ(z)
2

+
M−1∑
�=0

∫ θ�+1

θ�

κ(x(θ), x(τ ))(ξ(x(τ )) − ξ(z)) dτ = −g(x(θ))
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for θ ∈ [θ0, θM ]. If θ = θ�, � = 0, . . . ,M , i.e. x(θ) = z�, there is a singularity in
the integral kernel and the formula of the previous section for κ(z�, z�) is actually
not well defined. Instead of applying the composite trapezoidal rule directly, Kress
proposed to perform a sigmoidal change-of-variables first, which copes with the
singularity, see [117]. This variable transformation η(�) : [0, 1] → [θ�, θ�+1] is
strictly monotonic increasing and it is defined by

η(�)(t) = θ� +
(
c(t)

)p
(θ�+1 − θ�)(

c(t)
)p + (

1 − c(t)
)p ,

where c : [0, 1] → [0, 1] with

c(t) =
(
1

2
− 1

p

)
(2t − 1)3 + 1

p
(2t − 1) + 1

2

and p ≥ 2 is an integer. It is straight-forward to see that
(
η(�)

)′
has a root of order

p−1 at each endpoint of the interval [0, 1]. Thus, we obtain with sufficiently large p

and the composite trapezoidal rule on each boundary segment

∫ θ�+1

θ�

κ(x(θ), x(τ ))(ξ(x(τ )) − ξ(z)) dτ ≈
N−1∑
j=1

κ
(
x(θ), x(�)

j

) (
ξ
(
x(�)
j

) − ξ(z)
)

ω
(�)
j

where the quadrature points and weights are given by

x(�)
j = x

(
η(�)(j/N)

)
and ω

(�)
j =

(
η(�)

)′
(j/N)

N
,

j = 0, . . . , N . The summands for j = 0, N vanish because of the roots of
(
η(�)

)′.
A careful convergence analysis of this quadrature is given in [117], showing that it
is convergent for the kinds of integrands we encounter here of increasingly higher
order in N as p is increased.

Applying the sigmoidal transform and the trapezoidal rule as above to the
modified boundary integral equation and using collocation in the quadrature points
yields the following system of linear equations with unknowns ξ

(k)
i = ξ(x(k)

i ):

ξ
(k)
i + ξ̃

(k)
i

2
+

M−1∑
�=0

N−1∑
j=1

κ
(
x(k)
i , x(�)

j

) (
ξ

(�)
j − ξ̃

(k)
i

)
ω

(�)
j = −g

(
x(k)
i

)
(4.39)

for i = 0, . . . , N − 1, k = 0, . . . ,M − 1, where ξ̃
(k)
i is either ξ

(k)
0 or ξ

(k)
N depending

which point x(k)
0 or x(k)

N is closer to x(k)
i . After we have solved the system, the

function value u(x) can be approximated for x ∈ K with the help of (4.10) and
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the quadrature by

ũ(x) = −
M−1∑
�=0

N∑
j=1

κ
(
x, x(�)

j

)
ξ

(�)
j ω

(�)
j for x ∈ K . (4.40)

Analogously, we obtain for the gradient ∇u(x) the approximation

∇ũ(x) = −
M−1∑
�=0

N∑
j=1

∇κ
(
x, x(�)

j

)
ξ

(�)
j ω

(�)
j for x ∈ K . (4.41)

Example 4.6 We consider the boundary value problem

−�u = 0 in K , u = g on ∂K ,

where g is chosen such that u(x) = ln |x − x∗| with x∗ = (6, 8)� �∈ K is the
exact solution. The domain K is given by its boundary that is defined globally as a
curve which is piecewise smooth. More precisely, we use the parametrization of an
epicycloid that is

x(θ) =
(
8 cos(θ) − cos(8θ)

8 sin(θ) − sin(8θ)

)
for 0 ≤ θ < 2π ,

with corners for θ = θ� = 2π�/7, � = 0, . . . , 7, see Fig. 4.3. The Nyström approach
is applied with the parameter p = 4 in the sigmoidal change-of-variable. Each of
the M = 7 smooth parts of the boundary is decomposed into N segments and thus
N + 1 quadrature points. In Table 4.7, the convergence of the approximation (4.40)

Fig. 4.3 Domain in
Example 4.6 with piecewise
smooth boundary which is
given as parametrization of an
epicycloid
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Table 4.7 Number of quadrature points (QP= MN), pointwise error of approximation and
its gradient in the point x = (5.6, 0)� as well as numerical order of convergence (noc) for
Example 4.6 with parameter p = 4

QP |u(x) − ũ(x)|/|u(x)| noc |∇u(x) − ∇ũ(x)|/|∇u(x)| noc

28 3.79 × 10−2 – 3.41 × 10−1 –

56 7.18 × 10−5 9.04 3.19 × 10−2 3.42

112 9.03 × 10−6 2.99 6.54 × 10−5 8.93

224 8.00 × 10−10 13.46 2.26 × 10−7 8.18

448 1.73 × 10−12 8.85 6.89 × 10−10 8.36

896 1.28 × 10−15 10.40 3.43 × 10−13 10.97

1792 8.54 × 10−16 0.58 1.36 × 10−15 7.98

as well as of its gradient (4.41) is presented in the point (5.6, 0)� for an increasing
number of quadrature points (QP) which is equal MN in total. Furthermore, the
numerical order of convergence (noc) is given with respect to 1/QP. Obviously, the
Nyström approach also converges very fast till machine precision for domains with
piecewise smooth boundaries when the singularities at the corners are treated with
an appropriate quadrature scheme.

4.5 Application in BEM-Based FEM

Throughout this book all numerical experiments and test have been performed with
the help of a local BEM solver as described in the following. However, we also
give a brute-force application of a local Nyström solver and discuss its potential
advantageous and disadvantageous in the next sections for a test problem.

4.5.1 Incorporation of Local Solvers and Quadrature
on Polytopes

Before we discuss details of the realization of the BEM-based FEM and the
incorporation of the local BEM and Nyström solvers, we recapitulate the problem
setting. An isotropic diffusion equation with mixed boundary data and a non-
vanishing source term is considered as model problem (2.1) on a domain Ω ⊂ R

d ,
d = 2, 3 with boundaryΓ = ΓD∪ΓN . The domainΩ is decomposed into polytopal
elements and the discrete Galerkin formulation (2.28) reads:

Find uh ∈ gD + V k
h,D :

b(uh, vh) = (f, vh)L2(Ω) + (gN , vh)L2(ΓN) ∀vh ∈ V k
h,D ,



4.5 Application in BEM-Based FEM 131

where b(uh, vh) = (a∇uh,∇vh)L2(Ω), and the approximation space admits the
decomposition V k

h,D = V k
h,H,D ⊕ V k

h,B into two types of functions. The first
ones are harmonic on each element and have piecewise polynomial data on the
skeleton of the discretization, whereas the second ones vanish on the skeleton and
have a polynomial Laplacian on each element. In particular, the discrete Galerkin
formulation decouples for these kinds of functions as given in (2.31) and (2.32) in
the case of a piecewise constant diffusion coefficient.

It remains to discuss the realization of the different terms in the discrete Galerkin
formulation with the help of the local boundary element method and the local
Nyström solver from this chapter. First of all, we recognize that every function
vh ∈ V k

h,D is given uniquely over each element K ∈ Kh by the local boundary
value problem

−�vh = pK in K and vh = p∂K on ∂K

with prescribed data pK ∈ Pk−2(K) and p∂K ∈ Pk
pw(∂K), cf. (2.14) and (2.15).

Since pK is a polynomial, we can write vh = vh,H + q with q ∈ Pk(K) such that

− �vh,H = 0 in K and vh,H = p∂K − q on ∂K (4.42)

with p∂K −q ∈ Pk
pw(∂K). Therefore, it was sufficient to consider the pure Laplace

problem in the previous sections for the local solvers. A constructive approach for
finding q is presented in [113]. For a homogeneous polynomial p ∈ Pm(Rd) of
degree m, i.e. p(cx) = cmp(x), the polynomial

q(x) =
�m/2�∑
�=0

(−1)��(d/2 + m − �)

�(d/2 + m + 1)(� + 1)!
( |x|2

4

)�+1

��p(x) ∈ Pm+2(K)

satisfies �q = p, where �m/2� denotes the integer part of m/2 and �(·) the
gamma function, see [113, Theorem 2]. For non-homogeneous polynomials p the
construction can be applied on the representation of p in the monomial basis, whose
basis functions are homogeneous.

Let us focus on the two terms (f, vh)L2(Ω) and (gN , vh)L2(ΓN ). The latter one
does not cause any difficulties. The Neumann boundary ΓN is given as collection
of line segments (d = 2) or triangles (d = 3) and the restrictions of the functions
vh ∈ V k

h,D onto ΓN are piecewise polynomials. Consequently, we apply Gaussian
quadrature on each segment or standard numerical integration on each triangle in
order to approximate the integral value of the product of the given Neumann data gN

and the piecewise polynomial data of vh overΓN . We also have to apply a quadrature
scheme to approximate (f, vh)L2(Ω) since no additional information on f is given
in general. For this reason, we decompose the integral first into its contribution
over the elements K ∈ Kh and afterwards we decompose it even further to its
contributions over the triangles (d = 2) and tetrahedra (d = 3) of the auxiliary
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triangulationTh(K), i.e.

(f, vh)L2(Ω) =
∑

K∈Kh

(f, vh)L2(K) =
∑

K∈Kh

∑
T ∈Th(K)

(f, vh)L2(T ) . (4.43)

Now, we apply Gaussian quadrature over each triangle/tetrahedron T . Instead of
utilizing the auxiliary discretization Th(K) introduces in Sect. 2.2, we may also
triangulate the elements with some software tool like triangle or TetGen,
see [155, 157]. This strategy has been especially performed in the numerical tests
in order to compute accurate errors in the L2- and H 1-norm. The evaluation of
vh inside the elements is realized by means of the reformulation vh = vh,H + q

with (4.42) and the approximated representation formulas (4.22) and (4.40), respec-
tively. This natural idea to apply a quadrature rule over a subtriangulation in order
to approximate an integral over a polygonal domain has been applied in [164] for
instance. An alternative approach is presented in [131], where quadrature points and
weights for fixed polygonal domains are precomputed.

In order to treat the bilinear form we have different possibilities. We assume here
that the diffusion coefficient is constant on each element and we split the integral
into its contributions over the single elements

b(uh, vh) = (a∇uh,∇vh)L2(Ω) =
∑

K∈Kh

aK(∇uh,∇vh)L2(K) .

A brute-force approach would be to approximate the term (∇uh,∇vh)L2(K) by a
quadrature as described above using the representation formulas for the evaluation
of ∇uh and ∇vh in the quadrature points. Alternatively, we may use Green’s first
identity (4.2) on each element such that

(∇uh,∇vh)L2(K) = (γ K
1 uh, γ

K
0 vh)L2(∂K) − (�uh, vh)L2(K) .

Obviously, if either uh or vh is harmonic, the volume integral vanishes and we end
up with a boundary integral solely, where the product of a Dirichlet and a Neumann
trace has to be integrated. Since the approximation space V k

h,D = V k
h,H,D ⊕ V k

h,B is
given as a direct sum, we distinguish three cases:

1. uh, vh ∈ V k
h,H,D: We end up with solely boundary integrals

(∇uh,∇vh)L2(K) = (γ K
1 uh, γ

K
0 vh)L2(∂K) .

2. uh, vh ∈ V k
h,B : Let vh = vh,H + q with (4.42), where p∂K = 0, then

(∇uh,∇vh)L2(K) = −(�uh, vh)L2(K) = (γ K
1 uh, γ

K
0 vh,H )L2(∂K) − (�uh, q)L2(K) .
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3. uh ∈ V k
h,H,D, vh ∈ V k

h,B or vice versa: As we have seen in (2.30), it is

(∇uh,∇vh)L2(K) = 0 .

The only volume integral which is left is (�uh, vh)L2(K). Since �uh ∈ Pk−2(K),
the integrand is a polynomial of degree smaller or equal 2k − 2. The integral can
thus be computed exactly by the quadrature over the auxiliary discretization or
alternatively by applying the divergence theorem followed by a quadrature over the
boundary of the element.

Local BEM Solver
The local BEM solver, which is used throughout this book, makes use of the
reformulation of the bilinear form in order to reduce the volume integrals to integrals
over the skeleton of the domain. More precisely, we end up with integrals over
the element boundaries, where we have to integrate the product of a Dirichlet and
Neumann trace of functions in V k

h . This setting nicely fits into the boundary element
strategy. The Dirichlet trace of the functions is known whereas their Neumann trace
have to be approximated. Here, we proceed as described in Sect. 4.3.

Let K ∈ Kh andBh be an appropriate boundary element mesh of ∂K consisting
of line segments (d = 2) or triangles (d = 3). Furthermore, we denote by ΦD and
ΦN the basis ofPk

pw(Bh) andP
k−1
pw,d(Bh), which are used as approximation spaces

for H 1/2(∂K) and H−1/2(∂K), respectively. Since γ K
0 uh is already polynomial

of degree k over each edge/face of K , the trace is represented exactly in the
basis ΦD such that in the notation of Sect. 4.3 it is g

(u)
h = γ K

0 uh ∈ Pk
pw(Bh).

The Neumann trace γ K
1 uh is approximated by t

(u)
h ∈ Pk−1

pw,d(Bh) according to the
discrete Galerkin formulation (4.20) with the ansatz (4.24). With the help of the
Steklov–Poincaré operator we write

(γ K
1 uh, γ

K
0 vh)L2(∂K) = (SKγ K

0 uh, γ K
0 vh)L2(∂K) .

Next, we may either use the non-symmetric, see (4.7), or the symmetric, see (4.8),
representation of the Steklov–Poincaré operator. According to (4.26), the non-
symmetric representation leads to

(γ K
1 uh, γ K

0 vh)L2(∂K) ≈ (t
(u)
h , g

(v)
h )L2(∂K) = (g(v)

h
)�M�

K,h t
(u)
h = (g(v)

h
)�SunsymK,h g(u)

h

with

SunsymK,h = M�
K,hV

−1
K,h

(
1
2MK,h + KK,h

)
.

On the other hand, the symmetric representation with (4.27) leads to

(γ K
1 uh, γ

K
0 vh)L2(∂K) ≈ (̃SKg

(u)
h , g

(v)
h )L2(∂K) = (g(v)

h
)�SK,h g(u)

h
.
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Both matrices SunsymK,h and SK,h originate from the same symmetric bilinear form.

Whereas SunsymK,h is a non-symmetric matrix, SK,h retains the symmetry because of
its Definition (4.28).

Without saying, we have already linked the approximation order in the BEMwith
the one of the global FEM formulation naturally. For V k

h in the BEM-based FEM,
we have chosenPk

pw(Bh) andPk−1
pw,d(Bh)with the same degree k in the local BEM

solver. This choice is appropriate, since the trace of functions in V k
h on the boundary

of an element lies in the used boundary element space. Furthermore, we point out
that Pk(K) ⊂ V k

h

∣∣
K

and for a polynomial p ∈ Pk(K) it is γ K
0 p ∈ Pk

pw(∂K)

and, in particular, γ K
1 p ∈ Pk−1

pw,d(∂K). Thus, the local BEM solver is exact, up to

quadrature errors, for all polynomials contained in V k
h . The choice of the boundary

mesh Bh, however, is still open. It turns out that Bh = Th(∂K) is an adequate
choice, i.e., the naturally given boundary mesh consisting of edges (d = 2) and
triangular faces (d = 3) of the polytopal elements. This mesh is also the coarsest
possible one to discretize ∂K .

The boundary element matrices only depend on the geometry and on the
discretization of ∂K , but they are independent of the basis functions of the BEM-
based FEM. Thus, the matrices are precomputed once per element and they are used
throughout the simulation for the setup of the global FEM matrix as well as for
the evaluation of all functions of V k

h insight elements and for the approximation of
their Neumann traces on the skeleton of the domain. If the mesh Kh consists of
a few element types only, it is possible to compute the BEM matrices solely for
the representative elements since they are invariant under translation and rotation.
Consequently, a kind of lookup table can be used to reduce the computational
cost by using the same matrices for several elements, see Sect. 6.2.6. Beside this
improvement, we point out that the boundary element matrices in our application
are rather small because of the coarse meshes Bh = Th(∂K) and the fact that the
number of nodes and the number of edges/faces is uniformly bounded, cf. Sect. 2.2.

Finally, the assembling of the global FEMmatrix is performed as usual by adding
up the local element-wise contributions. Here, the matrix

SunsymK,h or SK,h

serves as a local stiffness matrix in the BEM-based FEM simulation.

Remark 4.7 The 2D implementation of the BEM-based FEM, used in all numerical
examples in this book, utilizes SK,h as local stiffness matrix. The entries of the
boundary element matrices are computed by means of a fully numeric integration
routine involving adaptive quadratures techniques. The 3D implementation, in
contrary, is set up on a semi-analytic integration technique for the computation
of the boundary element matrices and the assembling of the global FEM matrix
is performed using SunsymK,h as local stiffness matrix. In both cases, the represen-
tation formulas are evaluated with analytic expressions. As already mentioned,
the boundary element matrices are rather small. Therefore, no additional matrix



4.5 Application in BEM-Based FEM 135

compression techniques like the Adaptive Cross Approximation (ACA) have been
applied, cf. [20, 144, 148]. Furthermore, the inversion of the single-layer potential
matrix VK,h is done with the help of an efficient LAPACK [6] routine.

Local Nyström Solver
We restrict ourselves to two-dimensions and proceed as in Sect. 4.4. The bound-
ary ∂K of a polygonal element is prescribed as a union of straight lines and can
thus be parametrized by a piecewise smooth curve easily. The number of boundary
segmentsM corresponds to the number of edges, and the vertices z� are given by the
nodes of the element. For the approximation of the bilinear form of the global FEM
formulation, we proceed with the local volume integrals (∇uh,∇vh)L2(K), since
the Neumann trace γ K

1 uh is not accessible directly by the Nyström approximation.
Consequently, the elements are subdivided into triangles and a quadrature rule is
applied on each of them, where the evaluations of ∇uh and ∇vh are realized by
means of (4.41).

The Nyström approximation has to be performed for each basis function. This
involves the solution of a system of linear equations (4.39) each. In contrast, the
local BEM solver only inverts one matrix per element. Furthermore, an effective
generalization of the Nyström approximation to 3D is not obvious and the use of
volume quadrature is unpleasant. But, the implementation of a Nyström code is
much easier than the appropriate numerical approximation of the BEM matrices.
Furthermore, due to the sigmoidal change-of-variables the Nyström approximation
copes with singularities that appear at reentrant corners. The BEM, which is
applied on the coarsest possible mesh, might need additional attention on this, see
Sect. 4.5.2.2.

In order to bypass the unpleasant volume integration in the evaluation of the
global FEM bilinear form using the local Nyström solver, it is possible to apply
an advanced strategy. In [135], the authors have proposed a Nyström discretization
using harmonic conjugates which directly gives access to the Neumann trace of
the approximation. Consequently, this approach can be applied to approximate the
boundary integrals (γ K

1 uh, γ
K
0 vh)L2(∂K) in the reformulation of the FEM bilinear

form such that volume integrals are avoided. Beside this, the Nyström approach
relies on a piecewise smooth boundary curve only and therefore, it opens the
developments towards polygonal elements with curved edges, see [5].

4.5.2 Numerical Examples and Comparison

In this section we substantiate our considerations on the local solvers. Numerical
examples for the Nyström approximation as well as for the BEM have been
presented in the previous sections. Furthermore, the whole book contains examples
for the BEM-based FEM using the local BEM solver. Therefore, we restrict
ourselves here to demonstrate the applicability of the local Nyström solver and
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discuss a comparison of the two solvers in the case of the presence of singularities
in the approximation space V k

h .

4.5.2.1 Interpolation with Local Nyström Solver

To demonstrate the interpolation properties, we first interpolate the smooth function

v(x) = sin(2πx1) sin(2πx2) for x ∈ Ω = (0, 1)2

on two different families of meshes which have already been used in a former exam-
ple. The first family has been generated by the software package PolyMesher [167],
and consists of convex polygons that are primarily pentagons and hexagons. The
second family consist of rectangles and L-shaped elements, and has been chosen to
illustrate that the presence of non-convex elements does not negatively impact the
interpolation properties of the associated local spaces. The meshes with the convex
and L-shaped elements are depicted in Figs. 2.14 and 2.16, respectively. The relative
interpolation errors for

Ik
h : H 2(Ω) → V k

h

in the H 1- as well as in the L2-norm are presented with respect to the mesh size h

in logarithmic scale in Fig. 4.4 for different approximation orders k. The results for
the meshes generated by PolyMesher are visualized with a solid line whereas the
results for the meshes with L-shaped elements are given with a dashed line. We
observe optimal rates of convergence for both families of meshes as expected from
the theory developed in Chap. 2.
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Fig. 4.4 Relative interpolation error in H 1-norm (left) and L2-norm (right) with respect to the
mesh size h on meshes produced by PolyMesher (lines, cf. Fig. 2.14) and meshes with L-shaped
elements (dashed, cf. Fig. 2.16), for k = 1, 2, 3 and local Nyström solver
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4.5.2.2 Comparison of Local Solvers for L-Domain

In a second example, we make use of polar coordinates x = (r cosφ, r sin φ)�. The
function

v(x) = r2/3 sin(2(φ − π/2)/3) for x ∈ Ω = (−1, 1)2 \ [0, 1]2

is interpolated in the space V 1
h . This function exhibits the typical singularity at

the reentrant corner, which is located in the origin of the coordinate system. We
compare the L2-interpolation error for three families of meshes, see Fig. 4.5, using
the local Nyström solver. Afterwards, we compare the Nyström solver with a naive
application of the local BEM solver and we discuss improvements.

We specify the meshes by a discretization parameter n ∼ h−1 instead of the mesh
size h. The first family is denoted byK 1

n and the nth mesh consists of one L-shaped
element, (−1/3, 1/3)2 \[0, 1/3]2, and 24n2 squares of size (3n)−1 × (3n)−1. Thus,
K 1

n has (2n + 1)(12n + 1) + 1 vertices. The second family K 2
n solely consists

of congruent squares of size (3n)−1 × (3n)−1 such that, the nth mesh has 27n2

elements. The third family K 3
n is obtained from K 2

n by agglomerating the three
squares that have the origin as a vertex. The vertices in the meshes coincide with the
nodes in the corresponding FEM discretization. For all square elements in either
mesh, the local spaces are the bilinear functions. If K is the L-shaped element
in K 1

n , then it contains 6n + 2 nodes, i.e. degrees of freedom, on its boundary
and V 1

h

∣∣
K
contains functions having the correct singular behaviour at the reentrant

Fig. 4.5 First four meshes of first family K 1
n (top), second family K 2

n (middle), and third
familyK 3

n (bottom)



138 4 Boundary Integral Equations and Their Approximations

Table 4.8 Relative L2-error (err) for interpolation in V 1
h for the three families of meshes depicted

in Fig. 4.5, and numerical order of convergence (noc) with respect to the number of degrees of
freedom (DoF)

First family Second family Third family

DoF err noc DoF err noc DoF err noc

40 3.24 × 10−3 – 40 1.26 × 10−2 – 40 3.24 × 10−3 –

126 8.02 × 10−4 1.22 133 4.00 × 10−3 0.96 133 1.12 × 10−3 0.89

260 3.55 × 10−4 1.12 280 2.04 × 10−3 0.90 280 5.87 × 10−4 0.86

442 1.99 × 10−4 1.09 408 1.46 × 10−3 0.89 408 4.25 × 10−4 0.86

672 1.27 × 10−4 1.07 833 7.85 × 10−4 0.87 833 2.32 × 10−4 0.85

950 8.79 × 10−5 1.06 1045 6.45 × 10−4 0.86 1045 1.92 × 10−4 0.84

1276 6.44 × 10−5 1.05 1281 5.42 × 10−4 0.86 1281 1.61 × 10−4 0.84

corner. If K is the L-shaped element in K 3
n , then it contains only 8 nodes, i.e.

degrees of freedom, on the boundary and V 1
h

∣∣
K
also contains functions having the

correct singular behaviour at the reentrant corner.
In Table 4.8, the relative interpolation error in the L2-norm is given for all

three sequences of meshes, maintaining comparable numbers of degrees of freedom
between the spaces. Furthermore, the numerical order of convergence (noc) is given.
This is an estimate of the exponent q in the error model C DoF−q . Standard bilinear
interpolation theory for functions v ∈ H 1+s(Ω) on the second family of meshes
yields ‖v − I1hv‖L2(Ω) = O(DoF−(1+s)/2), i.e. q = (1+ s)/2. Since v ∈ H 1+s(Ω)

for any s < 2/3, we expect to see essentially q = 5/6 for the second family, which
is what the experiments indicate.

For the first family of meshes, we achieve O(DoF−1) convergence, and we
explain why this is expected. Let K denote the L-shaped element in Kn,1. Since
v − I1hv is harmonic in K , its extreme values occur on ∂K , where I1hv is piecewise
linear and agrees with v at the vertices. We note that v − I1hv = 0 on the two (long)
edges touching the origin, so ‖v − I1hv‖L∞(K) = ‖v − I1hv‖L∞(∂KI ), where ∂KI

is ∂K \ ∂Ω . Let E be an edge of ∂KI , having length h = 1/(3n). Standard 1D
interpolation estimates imply that ‖v − I1hv‖L∞(E) ≤ h2‖∂2v/∂t2‖L∞(E), where
the derivatives are taken in the tangential direction. We deduce that

‖v−I1hv‖2L2(K) ≤ |K|‖v−I1hv‖2L∞(K) ≤ h4|K|‖∂2v/∂t2‖2L∞(∂KI ) ≤ 1
3h4|v|2

W 2∞(Ω\K)
.

For each square element K ′, essentially the same argument yields

‖v − I1hv‖2L2(K
′) ≤ h6|v|2

W 2∞(Ω\K)
.
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From this, we determine that

‖v−I1hv‖2L2(Ω) ≤
(
1
3h

4 + h6(|K 1
n | − 1)

)
|v|2

W 2∞(Ω\K)
=

(
1
3h

4 + 8
3h

4
)

|v|2
W 2∞(Ω\K)

.

In other words, ‖v − I1hv‖L2(Ω) = O(h2) = O(DoF−1).
Now suppose that K is the L-shaped element in K 3

n with edge length h. Since
the maximal interpolation error happens on the boundary ∂K , we estimate it directly
by computing the linear interpolant on each edge, and comparing it with v on that
edge. We determine that

‖v−I1hv‖2L2(K) ≤ 3h2‖v−I1hv‖2L∞(K) ≤ 3h2(0.023201h2/3)2 ≤ 0.0016149h10/3 .

For comparison, we estimate the interpolation error for the three h × h squares in
K 2

n that touch the origin, namely for K1 = [−h, 0] × [0, h], K2 = [0, h] × [−h, 0]
and for K3 = [−h, 0] × [−h, 0], noting that K = K1 ∪ K2 ∪ K3. Since v is
most naturally expressed in polar coordinates, we convert the bilinear interpolant
I1hv to polar coordinates on each square, and compute upper and lower bounds on
‖v − I1hv‖L2(Kj ),

‖v − I1hv‖L2(Dj ) ≤ ‖v − I1hv‖L2(Kj ) ≤ ‖v − I1hv‖L2(D̂j ) ,

where Dj, D̂j are sectors of disks centered at the origin, having radii h and
√
2h

respectively, and satisfying Dj ⊂ Kj ⊂ D̂j . These bounds are

0.172h5/3 ≤ ‖v − I1hv‖L2(K1) = ‖v − I1hv‖L2(K2) ≤ 0.364h5/3 ,

0.571h5/3 ≤ ‖v − I1hv‖L2(K3) ≤ 0.941h5/3 .

This explains why the interpolation error for the third family, while being of the
same order as that of the second family, is slightly smaller.

Finally, for the first family of meshes, only the local interpolant on the (fixed)
L-shaped element K , has to be approximated numerically. For the results above
in Table 4.8, we used the Nyström approach. For comparison, we repeat the
interpolation error experiment for the first family, using instead three versions of the
local BEM solver to treat I1hv on K . For the first version (large edges), the boundary
element mesh is precisely that suggested by K itself, consisting of two edges of
length 1/3 touching the origin, and 6n edges of length h = 1/(3n), cf. Fig. 4.6
(left). For the second version, the two long edges are each partitioned into n sub-
edges of length h, cf. Fig. 4.6 (middle). As seen in Table 4.9, the convergence for the
first version stagnates almost immediately, whereas the convergence for the second
version is similar to what has been seen for the second and third families above. So,
we see that the BEM discretization error dominates the interpolation error in these
cases, but the Nyström discretization error does not. Recalling that the BEM integral
formulation is attempting to compute γ K

1 v on ∂K , and γ K
1 v(x) = − 2

3r
−1/3 on both
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Fig. 4.6 Zoom of L-shaped element for different BEM discretizations with two large edges (left),
small edges (middle) and a graded mesh (right)

Table 4.9 Relative L2-error (err) for interpolation in V 1
h for the first family of meshes depicted

in Fig. 4.5, and numerical order of convergence (noc) with respect to the number of degrees of
freedom (DoF) with three versions of the local BEM solver

Version 1 (large edges) Version 2 (small edges) Version 3 (graded mesh)

DoF err noc DoF err noc DoF err noc

40 6.65 × 10−3 – 40 6.65 × 10−3 – 40 6.65 × 10−3 –

126 4.88 × 10−3 0.27 128 2.16 × 10−3 0.97 128 1.29 × 10−3 1.41

260 4.56 × 10−3 0.09 264 1.10 × 10−3 0.93 264 5.26 × 10−4 1.23

442 4.45 × 10−3 0.05 448 7.09 × 10−4 0.83 448 2.64 × 10−4 1.31

672 4.39 × 10−3 0.03 680 5.06 × 10−4 0.81 680 1.60 × 10−4 1.20

950 4.36 × 10−3 0.02 960 3.83 × 10−4 0.81 960 1.08 × 10−4 1.15

1276 4.34 × 10−3 0.02 1288 3.02 × 10−4 0.82 1288 7.75 × 10−5 1.12

of the edges touching the origin, it is not surprising that the BEM struggles in its
discretization. This challenge is mitigated for the local BEM solver by employing
the a priori knowledge of the singular behaviour or by a self-adaptive procedure.We
prescribe an appropriate graded mesh along the two large edges, cf. Fig. 4.6 (right),
which copes with the singularity in the Neumann trace. The underlying regularity
theory and the construction of graded meshes for the boundary element method has
been studied in [88, 161, 171]. We repeat the convergence test with the adapted
BEM discretization on the first family and retrieve the optimal rates of convergence
for the interpolation error in Table 4.9.
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