
Chapter 3
Interpolation of Non-smooth Functions
and Anisotropic Polytopal Meshes

The solutions of boundary value problems may contain singularities and/or have
layers, where the solution changes rapidly. For such non-smooth functions, the
application of pointwise interpolation is not well defined and in the presence of
layers the use of regular and uniform meshes is not optimal in some sense. For
these reasons quasi-interpolation operators for non-smooth functions over polytopal
meshes are introduced and analysed in this chapter. In particular, operators of
Clément- and Scott–Zhang-type are studied. Furthermore, the notion of anisotropic
meshes is introduced. These meshes do not satisfy the classical regularity properties
used in the approximation theory and thus they have to be treated in a special way.
However, such meshes allow the accurate and efficient approximation of functions
featuring anisotropic behaviours near boundary or interior layers.

3.1 Preliminaries

In the theory of classical interpolation it is assumed that the interpolant is at least
in the Sobolev space H 2(Ω) or even smoother, such that point evaluations are well
defined. When talking about non-smooth functions, we have those in mind which
are only in H 1(Ω) and do not satisfy any further regularity. Such functions can be
solutions of boundary value problems according to existence and uniqueness theory,
cf. the Lax–Milgram Lemma given in Theorem 1.6. But, these functions do not fall
in the theory of Sect. 2.5 yielding optimal rates of convergence on sequences of
uniformly refined meshes. Instead of using pointwise values for the interpolation
of non-smooth functions, one has to exploit averages of the function over certain
neighbourhoods of the nodes.
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Fig. 3.1 Example of the neighbourhoods of nodes, edges and elements in two space dimensions

Let Kh be a polytopal mesh of a bounded domain Ω . For each node z ∈ Nh in
the mesh we consider its neighbourhoodωz defined by

ωz =
⋃

z∈N (K)

K , (3.1)

where N (K) denotes the set of all nodes belonging to the element K ∈ Kh.
Furthermore, we introduce the neighbourhoods of edges, faces and elements as

ωE =
⋃

z∈N (E)

ωz , ωF =
⋃

z∈N (F )

ωz , ωK =
⋃

z∈N (K)

ωz , (3.2)

cf. Fig. 3.1 for a visualization in two space dimensions. The neighbourhoods are
open sets which are constructed by agglomerating elements next to the correspond-
ing node, edge, face and element, respectively. The diameter of a neighbourhood ω

is denoted by hω. An important role plays the neighbourhood ωz. Its diameter hωz

is of comparable size to the diameter of K ⊂ ωz as shown in

Lemma 3.1 Let Kh be regular and stable mesh of a two- or three-dimensional
domain. The following properties hold:

1. Each element is covered by a uniformly bounded number of neighbourhoods of
elements, i.e. |{K ′ ∈ Kh : K ⊂ ωK ′ }| ≤ c, ∀K ∈ Kh.

2. For all z ∈ Nh and K ⊂ ωz, it is hωz ≤ chK .

The constants c > 0 only depend on σK , σF and cK .

Proof The first statement is seen easily. Let K ∈ Kh be fixed. Due to the above
constructions, the number of element neighbourhoods ωK ′ with K ⊂ ωK ′ is equal
to the number of elements contained in the neighbourhood ωK . Consequently, the
statement follows since

ωK =
⋃

z∈N (K)

ωz =
⋃

z∈N (K)

⋃

z∈N (K ′)
K ′ ,
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and the number of nodes per element as well as the number of elements containing
a node are bounded uniformly, see Lemmata 2.7 and 2.16 as well as Corollaries 2.6
and 2.15 for d = 2 and d = 3, respectively.

In order to see the second statement, we first recognize that

hωz ≤ 2 max
K ′⊂ωz

hK ′ .

Let the maximum be reached for some K ′. If K and K ′ share a common edge E,
the stability of the mesh, i.e. hK ′ ≤ cK hE ≤ cK hK , gives the desired estimate,
namely hωz ≤ 2cK hK . If K and K ′ do not share a common edge, we can construct
a sequence of elements Ki ⊂ ωz, i = 1, . . . , n such that K1 = K ′, Kn = K and Ki

and Ki+1 share a common edge. Arguing as above yields

hωz ≤ 2 (cK )n−1 hK .

Since the number of elements contained in ωz, and thus in particular n, is uniformly
bounded according to Corollaries 2.6 and 2.15, the statement is proven. ��

In the forthcoming sections, we treat the two- and three-dimensional cases with
d = 2, 3 simultaneously. Therefore, if we write F , Fh and so forth, we mean the
faces of the discretization for d = 3 and with some abuse of notation the edges
for d = 2. In this chapter, we restrict ourselves to the first order approximation
space V 1

h with k = 1 and we simply write Vh for shorter notation. In the three-
dimensional case we may use the simple generalization for the construction of Vh

introduced in Sect. 2.3.4 which relies on polyhedral elements with triangular faces.
The theory in this chapter is also valid for the case of polyhedral elements with
polygonal faces. The detailed description of the approximation space is discussed
in the later Sect. 6.2. At this point, however, we give a small outlook in order to
present the full theory for quasi-interpolation operators. The generalization of Vh to
polyhedral elements with polygonal faces reads

Vh =
{
v ∈ H 1(Ω) : �v

∣∣
K

= 0 ∀K ∈ Kh and v
∣∣
F

∈ Vh(F ) ∀F ∈ Fh

}
,

(3.3)

where Vh(F ) denotes the two-dimensional discretization space over the face F . The
nodal basis functions are constructed as in the two-dimensional case but they have
to satisfy additionally the Laplace equation in the linear parameter space of each
face.
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3.2 Trace Inequality and Best Approximation

Before we introduce quasi-interpolation operators and study error estimates, some
analytic auxiliary results are reviewed and extended. These include in particular
trace inequalities and approximation results for the L2-projection into the space of
constants over patches of elements. If no confusion arises, we write v for both the
function and the trace of the function on an edge and face, respectively.

In the two-dimensional setting, Lemma 2.4 guaranties the existence of the
isosceles triangles with common angles for non-convex elements in a regular
polygonal mesh. This is sufficient to guaranty the following lemma proven in [174].

Lemma 3.2 Let Kh be a regular mesh, v ∈ H 1(K) for K ∈ Kh and E ∈ E (K). It
holds

‖v‖L2(E) ≤ c
{
h

−1/2
E ‖v‖L2(T

iso
E ) + h

1/2
E |v|H 1(T iso

E )

}

with the isosceles triangle T iso
E ⊂ K from Lemma 2.4, where c only depends on αK ,

and thus, on the regularity parameter σK .

Under the additional assumption on the stability of the mesh, we can generalize
this trace inequality and state a similar result, which is valid for d = 2, 3. Remember
the convention that F denotes a face or edge depending on the considered
dimensions d .

Lemma 3.3 (Trace Inequality) Let Kh be a regular and stable mesh, v ∈ H 1(K)

for K ∈ Kh and F ∈ F (K). It holds

‖v‖L2(F ) ≤ c
(
h

−1/2
F ‖v‖L2(K) + h

1/2
F |v|H 1(K)

)
,

where c only depends on σK , σF and cK .

Proof Since Kh is regular and stable, we have an auxiliary discretization Th(K)

into tetrahedra such that each face F ∈ F (K) is decomposed into triangular facets
of these tetrahedra. According to Lemma 2.14 the discretization Th(K) is shape
regular in the sense of Ciarlet. It is well known, see [2, 40], that there is a constant
C only depending on the regularity parameters of the auxiliary discretization such
that for Ttet ∈ Th(K) and v ∈ H 1(Ttet) it holds

‖v‖2L2(∂Ttet)
≤ C
(
h−1

Ttet
‖v‖2L2(Ttet)

+ hTtet‖v‖2
H 1(Ttet)

)
.

Furthermore, it is hF /cK ≤ hTtet ≤ cK hF , cf. Sect. 2.2.2, and thus we obtain for
the triangle T ⊂ ∂Ttet ∩ F and v ∈ H 1(K) that

‖v‖2L2(T ) ≤ c
(
h−1

F ‖v‖2L2(Ttet)
+ hF ‖v‖2

H 1(Ttet)

)
.

Summing this inequality for all triangles which lie in F yields the desired result. ��
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Another important analytical tool is the approximation of functions in Sobolev
spaces by polynomials. We already applied such results over polytopal elements
in the proof of Theorem 2.27. Since these elements are star-shaped, the well
known results from [40, 69] are applicable. Next, we consider the polynomial
approximation over the neighbourhoods defined in (3.1) and (3.2) which are not
star-shaped in general, and therefore we have to extend the theory.

Lemma 3.4 Let Kh be a regular and stable mesh and k ∈ N0. There exists for every
function v ∈ Hk+1(ω) and every neighbourhood ω ∈ {ωz, ωF , ωK } a polynomial
p ∈ Pk(ω) such that

|v − p|H�(ω) ≤ C hk+1−�
ω |v|Hk+1(ω) for � = 0, . . . , k + 1 ,

where C only depends on σK , σF and cK as well as on k and the dimension d .

Proof Let ω ∈ {ωz, ωF , ωK }, since Kh is regular and stable, there is an auxiliary
discretization of ω into tetrahedra formed by Th(K) of all K ⊂ ω. This
discretization is shape regular in the sense of Ciarlet and the number of tetrahedra is
uniformly bounded because there are only finitely manyK with K ⊂ ω according to
Lemma 3.1 and each element is decomposed into a bounded number of tetrahedra
according to the Lemmata 2.7 and 2.16. Now, that we have a uniformly bounded
number of tetrahedra with uniformly bounded aspect ratios due to the regularity, we
can argue as in [8] adapting an iterative procedure already mentioned in [69]. We
skip the rest of the proof and refer the interested reader to the cited literature. ��

The previous result can be applied to obtain error estimates for the L2-projection.
We only consider the projection into the space of constants. For v ∈ H 1(ω) this
projection is given by

Πωv = 1

|ω|
∫

ω

v(x) dx .

It is known that the Poincaré constant

CP (ω) = sup
v∈H 1(ω)

‖v − Πωv‖L2(ω)

hω|v|H 1(ω)

< ∞ (3.4)

is finite and depends on the shape of ω, see [169]. Exploiting that

‖v − Πωv‖L2(ω) = min
q∈R ‖v − q‖L2(ω) ,

we deduce from Lemma 3.4 that the Poincaré constantCP (ω) is bounded uniformly
for the neighbourhoodsω ∈ {ωz, ωF , ωK } in a regular and stable mesh.

Lemma 3.5 Let Kh be a regular and stable mesh. There exists a uniform con-
stant c, which only depends on σK , σF and cK , such that for every neighbourhood
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ω ∈ {ωz, ωF , ωK } with z ∈ Nh, F ∈ Fh and K ∈ Kh, it holds

‖v − Πωv‖L2(ω) ≤ chω|v|H 1(ω) for v ∈ H 1(ω) .

In the following, we give an alternative proof for the two-dimensional case
(d = 2) with ω = ωz. For convex ω, the authors of [136] showed CP (ω) < 1/π .
In our situation, however, ωz is a patch of non-convex elements which is itself non-
convex in general. We proceed as in [180]. The main tool in the forthcoming proof
is Proposition 2.10 (Decomposition) of [169]. As preliminary of this proposition, an
admissible decomposition {ωi}ni=1 of ω with pairwise disjoint domains ωi and

ω =
n⋃

i=1

ωi

is needed. Admissible means in this context, that there exist triangles {Ti}ni=1 such
that Ti ⊂ ωi and for every pair i, j of different indices, there is a sequence
i = k0, . . . , k� = j of indices such that for everym the triangles Tkm−1 and Tkm share
a complete side. Under these assumptions, the Poincaré constant of ω is bounded by

CP (ω) ≤ max
1≤i≤n

{
8(n − 1)

(
1 − min

1≤j≤n

|ωj |
|ω|
)(

C2
P (ωi) + 2CP (ωi)

) |ω| h2ωi

|Ti| h2ω

}1/2
.

(3.5)

Proof (Lemma 3.5, Alternative for d = 2 with ω = ωz) Before we prove
the estimate, we note that CP (K) < c for an element K which satisfies the
regularity and stability assumptions of Definitions 2.1 and 2.2. This follows by
remembering the construction of the auxiliary triangulation Th(K). K can be
interpreted as patch of triangles corresponding to the point zK . Thus, we choose
ωi = Ti , i = 1, . . . , n with {Ti}ni=1 = Th(K) for the admissible decomposition
of K . The integer n corresponds to the number of nodes in K and thus it is
uniformly bounded according to Lemma 2.7. Furthermore, it is CP (ωi) < 1/π ,
|K| < h2K and h2ωi

/|Ti | = h2Ti
/|Ti | ≤ c, because of the shape-regularity of the

auxiliary triangulation proven in Lemma 2.3. Consequently, the application of
Proposition 2.10 (Decomposition) from [169] yields CP (K) < c.

Now, we address the estimate for general ωz in the lemma. Therefore, we apply
once more Proposition 2.10 of [169]. For this reason, we construct a decomposition
{ωi}ni=1 and show that it is admissible by giving explicitly a set of triangles {Ti}ni=1
which satisfy the above mentioned properties. Furthermore, the terms in (3.5) are
estimated.

To simplify the construction, we first assume that the patch consists of only
one element, i.e. ωz = K ∈ Kh, and let E1, E2 ∈ E (K) with z = E1 ∩ E2.
We decompose ωz, or equivalently K , into ω1 and ω2 such that n = 2. The
decomposition is done by splitting K along the polygonal chain through the points
z, zK and z′, where z′ ∈ N (K) is chosen such that the angle β = � zzKz′ is



3.2 Trace Inequality and Best Approximation 71

E2

z
1

E1

z = K

zK
2z′

E2

z
1

E1

2
zK

T1

T2

z = K z

z

Fig. 3.2 Construction of admissible decomposition for K and ωz from Fig. 3.1

maximized, see Fig. 3.2 left. It is β ∈ (π/2, π], since K is star-shaped with respect
to a circle centered at zK . The triangles {Ti}ni=1 are chosen from the auxiliary
triangulation in Lemma 2.3 as Ti = TEi ∈ Th(K), cf. Fig. 3.2 middle. Obviously,
{ωi}ni=1 is an admissible decomposition. Next, we estimate the terms in (3.5) and
show that CP (ωi) ≤ c. The element K is star-shaped with respect to a circle
of radius ρK and we have split this circle into two circular sectors during the
construction of ωi , i = 1, 2. A small calculation shows that ωi is also star-shaped
with respect to a circle of radius

ρωi = ρK sin(β/2)

1 + sin(β/2)
,

which lies inside the mentioned circular sector and consequently satisfies the
relation ρK/(1 + √

2) < ρωi ≤ ρK/2, see Fig. 3.2 (left). Thus, the aspect ratio
of ωi is uniformly bounded, since

hωi

ρωi

≤ (1 + √
2)hK

ρK

≤ (1 + √
2)σK .

Furthermore, we observe that hωi ≤ hK ≤ σK ρK ≤ σK |zzK | and accordingly
hωi ≤ σK |z′zK |. Consequently, ωi , i = 1, 2 is a regular element in the sense of
Definition 2.1 and thus, we have already proven that CP (ωi) ≤ c. Additionally, we
obtain by (2.2) and by the regularity of the mesh that

h2ωi

|Ti | ≤ 2h2ωi

hEi ρK

≤ 2h2K
hEi ρK

≤ 2cK σK .

This yields together with |ωz| ≤ h2ωz
and Proposition 2.10 (Decomposition) of [169]

that

CP (ωz) ≤
(
16(n − 1)

(
c2 + 2c

)
cK σK

)1/2
,

and thus, a uniform bound in the case of ωz = K and n = 2.
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In the general case, the patch ωz is a union of several elements, see (3.1) and
Fig. 3.1. In this situation, we repeat the construction of ωi for all neighbouring
elements of the node z, see Fig. 3.2 (right). Consequently, n is two times the
number of neighbouring elements. This number is uniformly bounded according
to Lemma 2.7. The resulting decomposition {ωi}ni=1 is admissible and the estimate
of [169] yields CP (ωz) ≤ c, where c only depends on σK and cK . ��
Remark 3.6 More precisely, the previous proof yields the estimate

CP (ωz) ≤
(
16(n − 1)cK σK max

1≤i≤n

{
C2

P (ωi) + 2CP (ωi)
})1/2

,

where n is two times the number of elements in ωz that is usually a small number.
Consequently,CP (ωz) is controlled by CP (ωi), i = 1, . . . , n which only depend on
the chunkiness parameter hωi /ρωi according to [40].

3.3 Quasi-Interpolation of Non-smooth Functions

In the case of smooth functions like in H 2(Ω), it is possible to use nodal interpola-
tion. Such interpolation operators have been constructed and studied in Sect. 2.4,
and they yield optimal approximation error estimates. The goal of this section,
however, is to define interpolation for general functions in H 1(Ω). Consequently,
quasi-interpolation operators are applied, which utilizes certain neighbourhoods of
the nodes. Classical results on simplicial meshes go back to Clément [59] and to
Scott and Zhang [154]. They useL2-projections instead of point evaluations in order
to specify the expansion coefficients in the given basis.

For v ∈ H 1(Ω), we are interested in quasi-interpolation operators of the form

Iv =
∑

z∈N∗
(Πω(ψz)v)ψz ∈ Vh , (3.6)

where the set of nodes N∗ and the neighbourhoods ω(ψz), which depend on the
first order basis functions, have to be specified. The Clément and Scott–Zhang
interpolation operators differ in the choice of N∗ and ω(ψz). Furthermore, it is
desirable that homogeneous Dirichlet data is preserved such that Iv ∈ H 1

D(Ω) for
v ∈ H 1

D(Ω).

3.3.1 Clément-Type Interpolation

The Clément interpolation operator IC is defined as usual by (3.6), where we choose
N∗ = Nh \ Nh,D as all nodes which do not lie on the Dirichlet boundary, and
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ω(ψz) = ωz as neighbourhood of the nodes. Thus, the interpolation is given as a
linear combination of the basis functions ψz associated to the nodes in the interior
of Ω and the Neumann boundary ΓN . The expansion coefficients are chosen as
average over the neighbourhood of the corresponding nodes. For v ∈ H 1

D(Ω), it is
ICv ∈ H 1

D(Ω) by construction.

Theorem 3.7 Let Kh be a regular and stable mesh and let F ∈ Fh and K ∈ Kh.
The Clément interpolation operator satisfies for v ∈ H 1

D(Ω) the interpolation error
estimates

‖v − ICv‖L2(K) ≤ chK |v|H 1(ωK) and ‖v − ICv‖L2(F ) ≤ ch
1/2
F |v|H 1(ωF ) ,

where the constants c only depend on σK , σF and cK .

Proof The proof follows the arguments of [170, 174] with several modifications for
the treatment of polytopal meshes. We start with the first estimate. For K ∈ Kh, we
have the partition of unity property, i.e.

∑
z∈N (K) ψz = 1 on K and ‖ψz‖L∞(K) = 1

for z ∈ N (K). We distinguish two cases, let all nodes z ∈ N (K) of the element
K be located in the interior of Ω or in the interior of the boundary ΓN , i.e.
z ∈ Nh \ Nh,D . Applying the best approximation result Lemma 3.5, we obtain

‖v − ICv‖L2(K) ≤
∑

z∈N (K)

‖ψz(v − Πωzv)‖L2(K)

≤
∑

z∈N (K)

‖v − Πωzv‖L2(ωz)

≤
∑

z∈N (K)

chωz |v|H 1(ωz)

≤ chK |v|H 1(ωK) .

In the last step we used that the number of nodes in N (K) is uniformly bounded,
see Lemmata 2.7, 2.16, and 3.1, which gives hωz ≤ chK . In the case that at least
one node of the element K is on the Dirichlet boundary ΓD , i.e. z ∈ Nh,D , we write

v − ICv =
∑

z∈N (K)

ψzv −
∑

z∈N (K)\Nh,D

ψzΠωzv

=
∑

z∈N (K)

ψz(v − Πωzv) +
∑

z∈N (K)∩Nh,D

ψzΠωzv ,

and obtain

‖v −ICv‖L2(K) ≤
∑

z∈N (K)

‖ψz(v −Πωzv)‖L2(K) +
∑

z∈N (K)∩Nh,D

‖ψzΠωzv‖L2(K) .
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The first sum has already been treated and the term in the second sum can be
estimated by

‖ψzΠωzv‖L2(K) ≤ |Πωzv| ‖ψz‖L∞(K) |K|1/2 ≤ h
d/2
K |Πωzv| .

Because of z ∈ Nh,D , there is an element K ′ ⊂ ωz and a face F ′ ∈ F (K ′) in the
Dirichlet boundary, such that z ∈ N (F ′) and F ′ ∈ Fh,D . Therefore, v vanishes on
F ′ and we obtain with the trace inequality, see Lemma 3.3,

|Πωzv| = |F ′|−1/2 ‖v − Πωzv‖L2(F ′)

≤ c|F ′|−1/2h
1/2
F ′
{
h−1

F ′ ‖v − Πωzv‖L2(ωz) + |v|H 1(ωz)

}

≤ ch
1−d/2
K ′

{
h−1

ωz
‖v − Πωzv‖L2(ωz) + |v|H 1(ωz)

}
,

where we exploit hd−1
K ′ ≤ c|F ′|, see Remark 2.13, hF ′ ≤ hK ′ , and

hωz ≤ chK ′ ≤ chF ′ according to Lemma 3.1 and the stability of the mesh. The
best approximation, see Lemma 3.5, and the observations hK ≤ hωz ≤ chK ′ as well
as 1 − d/2 ≤ 0 gives

|Πωzv| ≤ ch
1−d/2
K |v|H 1(ωz)

. (3.7)

Putting all estimates together proves the first statement of the theorem.
To prove the second estimate of the theorem, we proceed in a similar manner.

Let F ∈ Fh be an edge (d = 2) or a face (d = 3). We have
∑

z∈N (F ) ψz = 1 on

F and ‖ψz‖L∞(F ) = 1 for z ∈ N (F ). First, let F ∈ Fh be such that all its nodes
z ∈ N (F ) are located in the interior of Ω or in the interior of the boundary ΓN ,
i.e. z ∈ Nh \ Nh,D . Applying the trace inequality, see Lemma 3.3, with an element
K ′ ∈ Kh that satisfies K ′ ⊂ ωz and F ∈ F (K ′), as well as the best approximation,
see Lemma 3.5, we obtain as above

‖v − Ihv‖L2(F ) ≤
∑

z∈N (F )

‖v − Πωzv‖L2(F )

≤
∑

z∈N (F )

ch
1/2
F

{
h−1

F ‖v − Πωzv‖L2(ωz) + |v|H 1(ωz)

}

≤
∑

z∈N (F )

ch
1/2
F |v|H 1(ωz)

≤ ch
1/2
F |v|H 1(ωF ) .
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If at least one node of F is on ΓD , i.e. z ∈ Nh,D , we have

‖v − Ihv‖L2(F ) ≤
∑

z∈N (F )

‖ψz(v − Πωzv)‖L2(F ) +
∑

z∈N (F )∩Nh,D

‖ψzΠωzv‖L2(F ) .

The first sum is treated as before, so let us have a look at the second sum. For
z ∈ N (F ) ∩ Nh,D and some element K ′ ∈ Kh with F ∈ F (K ′), we have
according to (3.7)

‖ψzΠωzv‖L2(F ) ≤ |F |1/2 |Πωzv| ≤ c |F |1/2 h
1−d/2
K ′ |v|H 1(ωz)

≤ c h
1/2
F |v|H 1(ωz)

,

where in the last estimate we have used |F | ≤ hd−1
F and h

1−d/2
K ′ ≤ h

1−d/2
F . Putting

all estimates together and exploiting that the number of nodes per edge (d = 2) and
face (d = 3) is uniformly bounded, see Lemma 2.7 and Definition 2.10, yields the
second statement of the theorem and concludes the proof. ��

3.3.2 Scott–Zhang-Type Interpolation

The Scott–Zhang interpolation operator ISZ : H 1(Ω) → Vh is defined as usual
by (3.6), where we choose N∗ = Nh and ω(ψz) = Fz, where Fz ∈ Fh is an edge
(d = 2) or face (d = 3) with z ∈ F z and

Fz ⊂ ΓD if z ∈ Γ D and Fz ⊂ Ω ∪ ΓN if z ∈ Ω ∪ ΓN .

Thus, the interpolation is given as a linear combination of all basis functionsψz. The
expansion coefficients are chosen as average over edges and faces. By construction,
it is ISZv ∈ H 1

D(Ω) for v ∈ H 1
D(Ω), such that homogeneous Dirichlet data is

preserved. We have the following local stability result, which can be utilized to
derive interpolation error estimates.

Lemma 3.8 Let Kh be a regular and stable mesh and K ∈ Kh. The Scott–Zhang
interpolation operator satisfies for v ∈ H 1(Ω) the local stability

‖ISZv‖L2(K) ≤ c
(‖v‖L2(ωK) + hK |v|H 1(ωK)

)
,

where the constant c only depends on σK , σF and cK .

Proof The only non-vanishing basis functions ψz over K in the expansion of ISZv

are those with z ∈ N (K). Due to the stability of the L2-projection ΠFz we have
‖ΠFzv‖L2(Fz) ≤ ‖v‖L2(Fz). Furthermore, there exists Kz ∈ Kh with Fz ⊂ ∂Kz such
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that Kz ⊂ ωK . Therefore, we obtain with the trace inequality, see Lemma 3.3,

|ΠFzv| = |Fz|−1/2 ‖ΠFzv‖L2(Fz)

≤ c |Fz|−1/2h
−1/2
Fz

(‖v‖L2(Kz) + hFz |v|H 1(Kz)

)

≤ c |Kz|−1/2 (‖v‖L2(Kz) + hKz |v|H 1(Kz)

)
,

since |Kz| ≤ hd
Kz

≤ cd
K hd−1

Fz
hFz ≤ c|Fz|hFz and hFz ≤ hKz due to the regularity

and stability of the mesh. Utilizing this estimate and ‖ψz‖L∞(K) = 1 yields

‖ISZv‖L2(K) ≤
∑

z∈N (K)

‖(ΠFzv) ψz‖L2(K)

≤
∑

z∈N (K)

|(ΠFzv)| ‖ψz‖L∞(K) |K|1/2

≤ c
∑

z∈N (K)

( |K|
|Kz|
)1/2 (‖v‖L2(Kz) + hKz |v|H 1(Kz)

)
.

Furthermore, it is K,Kz ⊂ ωz and thus hKz ≤ hωz . Lemma 3.1 yields hωz ≤ chK

and consequently hKz ≤ chK . Additionally, we can bound |K|/|Kz| uniformly,
because of |K| ≤ hd

K ≤ chd
Kz

≤ cσd
K ρd

Kz
≤ c|Kz|, since the d-dimensional ball

of radius ρKz is inscribed in Kz. Exploiting that Kz ⊂ ωK and that the number of
nodes per element is uniformly bounded, see Lemmata 2.7 and 2.16, finishes the
proof. ��
Theorem 3.9 Let Kh be a regular and stable mesh and K ∈ Kh. The Scott–Zhang
interpolation operator satisfies for v ∈ H 1(Ω) the interpolation error estimate

‖v − ISZv‖L2(K) ≤ chK |v|H 1(ωK) ,

where the constant c only depends on σK , σF and cK .

Proof For p = ΠωK v ∈ R it is obviously p = ISZp and ∇p = 0. The estimate in
the theorem follows by Lemma 3.8 and the application of Lemma 3.4, since

‖v − ISZv‖L2(K) ≤ ‖v − p‖L2(K) + ‖ISZ(v − p)‖L2(K)

≤ c
(‖v − p‖L2(ωK) + hK |v|H 1(ωK)

)

≤ chK |v|H 1(ωK) .

��
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3.4 Anisotropic Polytopal Meshes

When dealing with highly anisotropic solutions of boundary value problems, it is
widely recognized that anisotropic mesh refinements have significant potential for
improving the efficiency of the solution process. Pioneering works for the analysis
of finite element methods on anisotropic meshes have been performed by Apel [10]
as well as by Formaggia and Perotto [78, 79]. The meshes usually consist of
triangular and quadrilateral elements in two-dimension as well as on tetrahedral and
hexahedral elements in three-dimension. First results on a posteriori error estimates
for driving adaptive mesh refinement with anisotropic elements have been derived
by Kunert [119] for triangular and tetrahedral meshes. For the mesh generation and
adaptation different concepts are available which rely on metric-based strategies,
see, e.g., [108, 125], or on splitting of elements, see [152] and the references
therein. The anisotropic splitting of classical elements, however, results in certain
restrictions why several authors combine this approach with additional strategies
like edge swapping, node removal and local node movement. These restrictions
come from the limited element shapes and the necessity to remove or handle hanging
nodes in the discretization. For three-dimensional elements the situation is even
more difficult. In contrast, anisotropic polytopal elements promise a high potential
in the accurate resolution of sharp layers in the solutions of boundary value problems
due to their enormous flexibility. An appropriate framework is developed in this
section.

3.4.1 Characterisation of Anisotropy and Regularity

Let K ⊂ R
d , d = 2, 3 be a bounded polytopal element. Furthermore, we assume

that K is not degenerated, i.e. |K| = measd(K) > 0. We define the center or mean
of K as

x̄K = 1

|K|
∫

K

x dx

and the covariance matrix of K as

MCov(K) = 1

|K|
∫

K

(x − x̄K)(x − x̄K)� dx ∈ R
d×d .

This matrix has already been used in Sect. 2.2.3 for the bisection of elements in
the discussion of mesh refinement. Obviously, MCov is real valued, symmetric and
positive definite since K is not degenerated. Therefore, it admits an eigenvalue
decomposition

MCov(K) = UKΛKU�
K
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with

U�
K = U−1

K and ΛK = diag (λK,1, . . . , λK,d ) .

Without loss of generality, let the eigenvalues satisfy λK,1 ≥ . . . ≥ λK,d > 0 and we
assume that the corresponding eigenvectors uK,1, . . . ,uK,d , collected in U , form a
basis of Rd with the same orientation for all considered elements K ∈ Kh.

The eigenvectors of MCov(K) give the characteristic directions of K . This fact
is, e.g., also used in the principal component analysis (PCA). The eigenvalue λK,j

is the variance of the underlying data in the direction of the corresponding eigen-
vector uK,j . Thus, the square root of the eigenvalues give the standard deviations in
a statistical setting. Consequently, if

MCov(K) = cI

for c > 0, there are no dominant directions in the element K . We characterise the
anisotropy with the help of the quotient λK,1/λK,d ≥ 1 and call an element

isotropic, if
λK,1

λK,d

≈ 1 ,

and anisotropic, if
λK,1

λK,d

� 1 .

For d = 3, we might even characterise whether the element is anisotropic in one or
more directions by comparing the different combinations of eigenvalues.

Exploiting the spectral information of the polytopal elements, we next introduce
a linear transformation of an anisotropic elementK onto a kind of reference element
K̂ . For each x ∈ K , we define the mapping by

x �→ x̂ = FK(x) = AKx with AK = αKΛ
−1/2
K U�

K , (3.8)

and αK > 0, which will be chosen later. K̂ = FK(K) is called reference
configuration later on.

Lemma 3.10 Under the above transformation, it holds

1. |K̂| = |K| | det(AK)| = αd
K |K|/

√∏d
j=1 λK,j ,

2. x̄K̂ = FK(x̄K),
3. MCov(K̂) = α2

KI .

Proof First, we recognize that

det(AK) = αd
K det(Λ−1/2

K U�
K ) = αd

K/
√
det(ΛK) = αd

K/

√∏d
j=1 λK,j .



3.4 Anisotropic Polytopal Meshes 79

Consequently, we obtain by the transformation

|K̂| =
∫

K̂

d̂x = |K| | det(AK)| = αd
K |K|/√det(MCov(K)) ,

that proves the first statement. For the center, we have

x̄K̂ = 1

|K̂|
∫

K̂

x̂ d̂x = | det(AK)|
|K̂| AK

∫

K

x dx = AK x̄K = FK(x̄K) .

The covariance matrix has the form

MCov(K̂) = 1

|K̂|
∫

K̂

(̂x − x̄K̂ )(̂x − x̄K̂ )� d̂x

= | det(AK)|
|K̂|

∫

K

AK(x − x̄K) (AK(x − x̄K))� dx

= AKMCov(K)A�
K

= α2
K(Λ

−1/2
K U�

K )(UKΛKU�
K )(Λ

−1/2
K U�

K )�

= α2
K I ,

that finishes the proof. ��
According to the previous lemma, the reference configuration K̂ is isotropic,

since λK̂,1/λK̂,d = 1, and thus, it has no dominant direction. We can still choose
the parameter αK in the mapping. We might use αK = 1 such that the variance of
the element in every direction is equal to one. On the other hand, we can use the
parameter αK in order to normalise the volume of K̂ such that |K̂| = 1. This is
achieved by

αK =
(√

det(MCov(K))

|K|
)1/d

=
⎛

⎝

√∏d
j=1 λK,j

|K|

⎞

⎠
1/d

, (3.9)

see Lemma 3.10, and will be used in the following.

Example 3.11 The transformation (3.8) for αK according to (3.9) is demonstrated
for an anisotropic elementK ⊂ R

2, i.e. d = 2. The elementK is depicted in Fig. 3.3
(left). The eigenvalues of MCov(K) are

λK,1 ≈ 111.46 and λK,2 ≈ 1.18 ,

and thus

λK,1

λK,2
≈ 94.40 � 1 .
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Fig. 3.3 Demonstration of transformation (3.8): original anisotropic element (left) and trans-
formed element centered at the origin (right)

In Fig. 3.3, we additionally visualize the eigenvectors of MCov(K) scaled by the
square root of their corresponding eigenvalue and centered at the mean of the
element. The ellipse is the one given uniquely by the scaled vectors. In the right
picture of Fig. 3.3, the transformed element K̂ = FK(K) is given with the scaled
eigenvectors of its covariant matrix MCov(K̂). The computation verifies |K̂| = 1,
and we have

MCov(K̂) ≈
(

8.59 · 10−2 −3.93 · 10−17

−3.93 · 10−17 8.59 · 10−2

)
.

In view of the quasi-interpolation and interpolation operators and their approxi-
mation properties, the meshes have to guaranty certain requirements. In the previous
analysis of such operators, we made use of isotropic polytopal elements in regular
and stable meshes Kh. The corresponding definitions of Sect. 2.2 are summarized
in the following remark.

Remark 3.12 Let Kh be a polytopal mesh. Kh is called a regular and stable
(isotropic) mesh, if all elements K ∈ Kh satisfy:

1. K is a star-shaped polygon/polyhedron with respect to a circle/ball of radius ρK

and midpoint zK .
2. The aspect ratio is uniformly bounded from above by σK , i.e. hK/ρK < σK .
3. For the element K and all its edges E ∈ E (K) it holds hK ≤ cK hE .
4. In the case d = 3, all polygonal faces F ∈ F (K) of the polyhedral element K

are star-shaped with respect to a circle of radius ρF and midpoint zF and their
aspect ratio is uniformly bounded, i.e. hF /ρF < σF .

Obviously, these assumptions are not satisfied in the case of anisotropic meshes.
The aspect ratio of the element depicted in Fig. 3.3 (left) is very large and one of its
edges degenerates compared with the element diameter. In the definition of regular
and stable anisotropic meshes, we make use of the previously introduced reference
configuration.
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Definition 3.13 (Regular and Stable Anisotropic Mesh) Let Kh be a polytopal
mesh.Kh is called a regular and stable anisotropic mesh, if:

1. The reference configuration K̂ for all K ∈ Kh obtained by (3.8) is a regular and
stable polytopal element according to Sect. 2.2, see Remark 3.12.

2. Neighbouring elements behave similarly in their anisotropy. More precisely, for
two neighbouring elements K1 and K2, i.e. K1 ∩ K2 �= ∅, with covariance
matrices

MCov(K1) = UK1ΛK1U
�
K1

and MCov(K2) = UK2ΛK2U
�
K2

as defined above, we can write

ΛK2 = (I + ΔK1,K2)ΛK1 and UK2 = RK1,K2UK1

with

ΔK1,K2 = diag
(
δ
K1,K2
j : j = 1, . . . , d

)
,

and a rotation matrix RK1,K2 ∈ R
d×d such that for j = 1, . . . , d

0 ≤ |δK1,K2
j | < cδ < 1 and 0 ≤ ‖RK1,K2 − I‖2

(
λK1,1

λK1,d

)1/2
< cR

uniformly for all neighbouring elements, where ‖ · ‖2 denotes the spectral norm.

In the rest of the chapter, the generic constant c may also depend on cδ and cR .

Remark 3.14 For d = 2, the rotation matrix has the form

RK1,K2 =
(
cosφK1,K2 − sinφK1,K2

sin φK1,K2 cosφK1,K2

)
,

with an angle φK1,K2 . For the spectral norm ‖RK1,K2 − I‖2, we recognize that

(RK1,K2 − I)�(RK1,K2 − I) =
(
sin2 φK1,K2 + (1 − cosφK1,K2)2

)
I ,

and consequently

‖RK1,K2 − I‖2 =
(
sin2 φK1,K2 + (1 − cosφK1,K2)2

)1/2

= 2

∣∣∣∣sin
(

φK1,K2

2

)
− sin(0)

∣∣∣∣

≤ |φK1,K2 | ,
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according to the mean value theorem. The assumption on the spectral norm in
Definition 3.13 can thus be replaced by

|φK1,K2 |
(

λK1,1

λK1,2

)1/2
< cφ .

This implies that neighbouring highly anisotropic elements have to be aligned in
almost the same directions, whereas isotropic or moderately anisotropic elements
might vary in their characteristic directions locally.

Let us study the reference configuration K̂ ⊂ R
d , d = 2, 3 of K ∈ Kh, which is

regular and stable. Due to the scaling with αK , it is |K̂| = 1 and we obtain

1 = |K̂| ≤ hd

K̂
≤ σd

K ρd

K̂
= σd

K νπρd

K̂
/ (νπ) ≤ σd

K |K̂| / (νπ) = σd
K / (νπ) ,

where ν = 1 for d = 2 and ν = 4/3 for d = 3, since the circle/ball is inscribed the
element K̂ . Consequently, we obtain

1 ≤ hK̂ ≤ σK

(νπ)1/d
. (3.10)

Furthermore, for d = 3, let F̂ be a face of K̂ and denote by Ê one of its edges, i.e.,
Ê ∈ E (F̂ ). Due to the regularity and stability, we find

|F̂ | ≥ πρ2
F̂

≥ πh2
F̂
/σ 2

F ≥ πh2
Ê
/σ 2

F ≥ πh2
K̂

/(cK σ 2
F ) ,

and thus for d = 2, 3

hd−1
K̂

≤ c|F̂ | . (3.11)

A regular and stable anisotropic element can be mapped according to the
previous definition onto a regular and stable polytopal element in the usual sense.
In the definition of quasi-interpolation operators, we deal, however, with patches of
elements instead of single elements. Thus, we have to study the mapping of such
patches. These include in particular the patches ωz, ωF and ωK defined in Sect. 3.1.

Lemma 3.15 Let Kh be a regular and stable anisotropic mesh, ωz be the patch of
elements corresponding to the node z ∈ Nh, and K1,K2 ∈ Kh with K1,K2 ⊂ ωz.
The mapped element FK1(K2) is regular and stable in the sense of Sect. 2.2, see
Remark 3.12, with slightly perturbed regularity and stability parameters σ̃K and
c̃K depending only on the regularity and stability of Kh. Consequently, the mapped
patch FK(ωz) consists of regular and stable polytopal elements for all K ∈ Kh with
K ⊂ ωz.

Proof We verify Remark 3.12 for the mapped element K̃2 = FK1(K2).
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K2

˜K2

̂K2

K2

K1

K2 ◦ −1
K1 K1 ◦ −1

K2

Fig. 3.4 Anisotropic element K2 with mapped regular and stable element K̂2 (reference configu-
ration) and perturbed mapped element K̃2 = FK1 (K2)

First, we address 1. of Remark 3.12. K̂2 = FK2(K2) is regular and thus, star-
shaped with respect to a circle/ball B̂. If we transform K̂2 into K̃2 with the mapping
FK1 ◦ F−1

K2
, see Fig. 3.4, the circle/ball B̂ is transformed into an ellipse/ellipsoid

B̃ = FK1 ◦ F−1
K2

(B̂). Since the transformations are linear, the element K̃2 is star-

shaped with respect to the ellipse/ellipsoid B̃ and in particular with respect to the
circle/ball inscribed B̃.

Next, we address 2. of Remark 3.12 and we bound the aspect ratio. The
radius ρK̃2

of the inscribed circle/ball as above is equal to the smallest semi-axis
of the ellipse/ellipsoid B̃ . Let x̃1 and x̃2 be the intersection of B̃ and the inscribed
circle/ball. Thus, we obtain

2ρK̂2
= |FK2 ◦ F−1

K1
(̃x1 − x̃2)|

=
∣∣∣∣αK2Λ

−1/2
K2

U�
K2

1

αK1

UK1Λ
1/2
K1

(̃x1 − x̃2)

∣∣∣∣

= αK2

αK1

∣∣∣∣Λ
−1/2
K1

(I + ΔK1,K2)−1/2U�
K1

(
RK1,K2

)�
UK1Λ

1/2
K1

(̃x1 − x̃2)

∣∣∣∣

= αK2

αK1

∣∣∣∣(I + ΔK1,K2)−1/2
(

Λ
−1/2
K1

U�
K1

(
RK1,K2 − I

)�
UK1Λ

1/2
K1

+ I

)
(̃x1 − x̃2)

∣∣∣∣

≤ αK2

αK1

∥∥∥(I + ΔK1,K2)−1/2
∥∥∥
2

(
‖Λ−1/2

K1
‖2‖RK1,K2 − I‖2‖Λ1/2

K1
‖2 + 1

)
2ρK̃2

= αK2

αK1

max
j=1,...,d

{
(1 + δ

K1,K2
j )−1/2

}(
1 +
(

λK1,1

λK1,d

)1/2
‖RK1,K2 − I‖2

)
2ρK̃2

,
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since the spectral norm ‖ · ‖2 is invariant under orthogonal transformations
and, in particular, under rotations like UK1 . With similar arguments, we can
bound hK̃2

. Therefore, let x̃1, x̃2 ∈ ∂K̃2 be such that hK̃2
= |̃x1 − x̃2| and

x̂i = FK2 ◦ F−1
K1

(̃xi ) ∈ ∂K̂2, i = 1, 2. With similar considerations as above, we
obtain

hK̃2
= |FK1 ◦ F−1

K2
(̂x1 − x̂2)|

≤ αK1

αK2

max
j=1,...,d

{
(1 + δ

K1,K2
j )1/2

}(
1 +
(

λK1,1

λK1,d

)1/2
‖RK1,K2 − I‖2

)
hK̂2

.

Exploiting the last two estimates yields

hK̃2

ρK̃2

≤
maxj=1,...,d

√
1 + δ

K1,K2
j

minj=1,...,d

√
1 + δ

K1,K2
j

(
1 +
(

λK1,1

λK1,d

)1/2
‖RK1,K2 − I‖2

)2
hK̂2

ρK̂2

≤
√
1 + cδ

1 − cδ

(1 + cR)2
hK̂2

ρK̂2

≤
√
1 + cδ

1 − cδ

(1 + cR)2 σK = σ̃K .

Obviously, the aspect ratio is uniformly bounded from above by a perturbed
regularity parameter σ̃K .

Finally we address 3. of Remark 3.12. Let Ẽ be an edge of K̃2 with endpoints x̃1
and x̃2. Furthermore, let Ê be the corresponding edge of K̂2 with endpoints x̂1 and
x̂2. In the penultimate equation we estimated hK̃2

by a term times hK̂2
. Due to the

stability it is hK̂2
≤ cK hÊ and, as in the estimate of ρK̂2

above, we find that

hÊ = |̂x1 − x̂2| = |FK2 ◦ F−1
K1

(̃x1 − x̃2)|

≤ αK2

αK1

max
j=1,...,d

{
(1 + δ

K1,K2
j )−1/2

}(
1 +
(

λK1,1

λK1,d

)1/2
‖RK1,K2 − I‖2

)
hẼ .

Summarizing, we obtain

hK̃2
≤
√
1 + cδ

1 − cδ

(1 + cR)2 cK hẼ = c̃K hẼ .

��
Remark 3.16 According to the previous proof, the perturbed regularity and stability
parameters are given by

σ̃K =
√
1 + cδ

1 − cδ

(1 + cR)2 σK and c̃K =
√
1 + cδ

1 − cδ

(1 + cR)2 cK .
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Proposition 3.17 Let K ∈ Kh be a polytopal element of a regular and stable
anisotropic mesh Kh and F ∈ Fh one of its edges (d = 2) or faces (d = 3).
The mapped patches FK(ωK) and FK(ωF ) consist of regular and stable polytopal
elements.

Proof The mapped patches FK(ωz), z ∈ N (K) consist of regular and stable
polytopal elements according to Lemma 3.15. Since ωK and ωF are given as union
of the neighbourhoodsωz, see (3.2), the statement of the proposition follows. ��
Proposition 3.18 Each node z ∈ Nh of a regular and stable anisotropic mesh Kh

belongs to a uniformly bounded number of elements and, vice versa, each element
K ∈ Kh has a uniformly bounded number of nodes on its boundary.

Proof Let ωz be the neighbourhood of the node z. According to Lemma 3.15, the
mapped neighbourhood ω̃z consists of regular and stable polytopal elements, which
admit a shape-regular decomposition into simplices (triangles or tetrahedra). The
mapped node z̃ therefore belongs to a uniformly bounded number of simplices and
thus to finitely many polytopal elements, cf. Sect. 2.2. Since ω̃z is obtained by a
linear transformation, we follow that z belongs to a uniformly bounded number of
anisotropic elements. With the same argument we see that K̃ and thus K has a
uniformly bounded number of nodes on its boundary. ��
Remark 3.19 In the publications of Apel and Kunert (see e.g. [10, 119]), it is
assumed that neighbouring triangles/tetrahedra behave similarly. More precisely,
they assume:

• The number of tetrahedra containing a node z is bounded uniformly.
• The dimension of adjacent tetrahedra must not change rapidly, i.e.

hi,T ∼ hi,T ′ ∀T , T ′ with T ∩ T ′ �= ∅, i = 1, 2, 3,

where h1,T ≥ h2,T ≥ h3,T are the heights of the tetrahedron T over its faces.

The first point is always satisfied in our setting according to the previous proposition.
The second point corresponds to our assumption that ΛK1 and ΛK2 differ moder-
ately for neighbouring elements K1 and K2, see Definition 3.13. The assumption
on UK1 and UK2 in the definition ensure that the heights are aligned in the same
directions, this is also hidden in the assumption of Apel and Kunert.

The regularity of the mapped patches has several consequences, which are
exploited in later proofs.

Lemma 3.20 Let K1,K2 be polytopal elements of a regular and stable anisotropic
mesh Kh, ωz and ωK1 be the neighbourhoods of the node z ∈ Nh and the
element K1, respectively. Furthermore, let K1,K2 ⊂ ωz. We have for the mapped
patch ω̃ ∈ {FK1(ωz),FK1(ωK1)} and the neighbouring elements, that

hω̃ ≤ c and
|K2|
|K1| ≤ c ,
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where the constants only depend on the regularity and stability parameters of the
mesh.

Proof According to Lemma 3.15 and Proposition 3.17 the patch ω̃ consists of
regular and stable polytopal elements. Obviously, it is hω̃ ≤ C max{hK̃ : K̃ ⊂ ω̃},
where the constant takes the value C = 2 for ω̃ = FK1(ωz) and C = 3 for
ω̃ = FK1(ωK1), respectively. Let us assume without loss of generality that the
maximum is reached for K̃ which shares a common edge Ẽ with K̃1. Otherwise
consider a sequence of polytopal elements in ω̃, cf. Lemma 3.1. Due to the regularity
and stability of the elements, it is

hω̃ ≤ 3hK̃ ≤ 3cK hẼ ≤ 3cK hK̃1
≤ 3cK σK

(νπ)1/d

according to (3.10), since K̃1 = FK1(K1) = K̂1.
In order to prove the second estimate, we observe that |K1| = |K̂1|/| det(AK1)|,

see Lemma 3.10. The same variable transform yields |K2| = |K̃2|/| det(AK1)|,
where K̃2 = FK1(K2). Thus, we obtain

|K2|
|K1| = |K̃2|

|K̂1| = |K̃2| ≤ |ω̃z| ≤ hd
ω̃z

≤ c

and finish the proof. ��

3.4.2 Approximation Space

The approximation space Vh is defined in such a way that the functions vh ∈ Vh are
harmonic on each element, cf. (3.3). This property originates from the definition of
basis functions ψ in Sect. 2.3 as local solutions of Laplace and Poisson problems
over the physical elements K ∈ Kh. In classical finite element methods, however,
the basis functions are usually introduced over a reference element. In order to
obtain the approximation space over a general physical element these basis functions
from the reference element are mapped to the physical one. This strategy has not
been addressed so far for polytopal elements due to the lack of an appropriate refer-
ence element. But, in the previous section we introduced a reference configuration K̂

for an element K . Thus, we can define basis functions ψ̂ on K̂ as in Sect. 2.3 which
are in the lowest order case harmonic and map them onto the physical element K

such that ψ ref = ψ̂ ◦ FK . In general, these functions are not harmonic anymore
on the physical elements, i.e. �ψ ref �= 0 in K . More precisely, we obtain by the
transformation (3.8)

div
(
MCov(K)∇ψ ref

)
= 0 in K .
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Hence, ψ ref is defined to fulfil an anisotropic diffusion equation on K . This is
consistent in the sense, that if K is already a reference configuration, i.e. K = K̂ ,
then it is �ψ ref = 0 because of MCov(K) = α2

KI , cf. Lemma 3.10. Thus, nodal
basis functions ψ ref

z constructed this way coincide with the nodal basis function ψz
defined by (2.6) in Sect. 2.3.1.

The approximation space constructed as described above is denoted by V ref
h

since the reference configuration is exploited. For the sake of simplicity we restrict
ourselves here to k = 1 as well as to the two-dimensional case and to the three-
dimensional case with solely triangular faces of the polyhedra. Then, we can also
write

V ref
h =

{
v ∈ H 1(Ω) : div (MCov(K)∇v)

∣∣
K

= 0 and v|∂K ∈ P1
pw(∂K) ∀K ∈ Kh

}
.

The spaces Vh and V ref
h share two important properties which are used in the

forthcoming proofs, namely

P1(K) ⊂ Vh

∣∣
K

, P1(K) ⊂ V ref
h

∣∣
K

and 0 ≤ ψz, ψ
ref
z ≤ 1, (3.12)

where ψz and ψ ref
z denote the corresponding nodal basis functions of Vh and V ref

h ,
respectively.

3.4.3 Anisotropic Trace Inequality and Best Approximation

In this section we transfer some of the results of Sect. 3.2 to the regime of anisotropic
meshes. Here, the mapping (3.8) is employed to transform a regular and stable
anisotropic element K onto its reference configuration K̂, which is regular and
stable in the sense of Sect. 2.2, see also Remark 3.12.

Lemma 3.21 (Anisotropic Trace Inequality) Let K ∈ Kh be a polytopal element
of a regular and stable anisotropic mesh Kh with edge (d = 2) or face (d = 3)
F ∈ Fh, F ⊂ ∂K . It holds

‖v‖2L2(F ) ≤ c
|F |
|K|
(
‖v‖2L2(K) + ‖A−�

K ∇v‖2L2(K)

)
,

where the constant c only depends on the regularity and stability parameters of the
mesh.

Proof In order to prove the estimate, we make use of the transformation (3.8) to the
reference configuration K̂ with v̂ = v◦F−1

K , a trace inequality on K̂ , see Lemma 3.3,
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as well as of (3.10), (3.11) and h−d

K̂
≤ |K̂|−1 = 1. These tools yield

‖v‖2L2(F ) = |F |
|F̂ | ‖̂v‖2

L2(F̂ )

≤ c
|F |
|F̂ |
(
h−1

K̂
‖̂v‖2

L2(K̂)
+ hK̂ |̂v|2

H 1(K̂)

)

≤ c|F |h−d

K̂

(
‖̂v‖2

L2(K̂)
+ h2

K̂
|̂v|2

H 1(K̂)

)

≤ c|F |
(
‖̂v‖2

L2(K̂)
+ ‖∇̂v̂‖2

L2(K̂)

)

= c
|F |
|K|
(
‖v‖2L2(K) + ‖A−�

K ∇v‖2L2(K)

)
.

��
Remark 3.22 If we plug in the definition of A = αKΛ

−1/2
K U�

K , we have the
anisotropic trace inequality

‖v‖2L2(F ) ≤ c
|F |
|K|
(
‖v‖2L2(K) + ‖α−1

K Λ
1/2
K U�

K ∇v‖2L2(K)

)
.

Obviously, the derivatives of v in the characteristic directions uK,j are scaled by

the characteristic lengths λ
1/2
j , j = 1, . . . , d of the element K . This seems to be

appropriate for functions with anisotropic behaviour which are aligned with the
mesh.

For later comparisons with other methods, we bound the term |F |/|K| in case
of F ⊂ ∂K . Let zK̂ be the midpoint of the circle/ball in Definitions 2.1 and 2.11,
respectively, of the regular and stable reference configuration K̂ . Obviously, it is
|K| ≥ |P | for the d-dimensional pyramid P with base side F and apex point
F−1

K (zK̂ ), since P ⊂ K due to the linearity of FK . Denote by hP,F the hight of
this pyramid, then it is |P | = 1

3 |F |hP,F and we obtain

|F |
|K| ≤ ch−1

P,F . (3.13)

In the derivation of approximation estimates, the Poincaré constant also plays a
crucial role on anisotropic meshes. This constant is given in (3.4).

Lemma 3.23 Let Kh be a regular and stable anisotropic mesh, ωz and ωK be
neighbourhoods as described in Sect. 3.1, and K ∈ Kh with K ⊂ ωz. The Poincaré
constants CP (ω̃z) and CP (ω̃K) for the mapped patches ω̃z = FK(ωz) as well as
ω̃K = FK(ωK), can be bounded uniformly depending only on the regularity and
stability parameters of the mesh.
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Proof According to Lemma 3.15 and Proposition 3.17, the patches ω̃z and ω̃K

consist of regular and stable polytopal elements. Thus, we utilize Lemma 3.5 on
the mapped patches and the statement follows. ��

Next, we derive a best approximation result on patches of anisotropic elements.

Lemma 3.24 Let Kh be a regular and stable anisotropic mesh with node z ∈ Nh

and element K ∈ Kh. Furthermore, let ωz and ωK be the neighbourhood of z
and K , respectively, and we assume K ⊂ ωz. For ω ∈ {ωz, ωK } it holds

‖v − Πωv‖L2(ω) ≤ c ‖A−�
K ∇v‖L2(ω) ,

and furthermore

‖v − Πωv‖L2(ω) ≤ c

⎛

⎝
∑

K ′∈Kh:K ′⊂ω

‖A−�
K ′ ∇v‖2L2(K ′)

⎞

⎠
1/2

,

where the constant c only depends on the regularity and stability parameters of the
mesh.

Proof We make use of the mapping (3.8) and indicate the objects on the mapped
geometry with a tilde, e.g., ω̃ = FK(ω). Furthermore, we exploited that the mapped
L2-projection coincides with the L2-projection on the mapped patch, consequently
Π̃ωv = Πω̃ṽ. This yields together with Lemma 3.23

‖v − Πωv‖L2(ω) = |K|1/2 ‖̃v − Πω̃ṽ‖L2(ω̃)

≤ chω̃|K|1/2 |̃v|H 1(ω̃)

= chω̃|K|1/2 ‖∇̃ṽ‖L2(ω̃)

= chω̃ ‖A−�
K ∇v‖L2(ω) .

The term hω̃ is uniformly bounded according to Lemma 3.20, and thus the first
estimate is proven.

In order to prove the second estimate, we employ the first one and write

‖v − Πωv‖2L2(ω) ≤ c ‖A−�
K ∇v‖2L2(ω) = c

∑

K ′∈Kh:K ′⊂ω

‖A−�
K ∇v‖2L2(K ′) .

Therefore, it remains to estimate ‖A−�
K ∇v‖L2(K ′) by ‖A−�

K ′ ∇v‖L2(K ′) for any ele-
mentK ′ ⊂ ω. We make use of the mesh regularity and stability, see Definition 3.13,
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and proceed similar as in the proof of Lemma 3.15.

‖A−�
K ∇v‖L2(K ′) = αK ′

αK

‖α−1
K ′ ((I + ΔK ′,K)ΛK ′)1/2(RK ′,KUK ′)�∇v‖L2(K ′)

= αK ′

αK

‖α−1
K ′ (I + ΔK ′,K)1/2Λ

1/2
K ′ U�

K ′(RK ′,K)�∇v‖L2(K ′)

= αK ′

αK

‖α−1
K ′ (I + ΔK ′,K)1/2Λ

1/2
K ′ U�

K ′(RK ′,K)�UK ′Λ−1/2
K ′ Λ

1/2
K ′ U�

K ′∇v‖L2(K ′)

≤ αK ′

αK

‖(I + ΔK ′,K)1/2Λ
1/2
K ′ U�

K ′(RK ′,K)�UK ′Λ−1/2
K ′ ‖2‖A−�

K ′ ∇v‖L2(K ′) ,

where we substituted A−�
K = α−1

K ′ Λ
1/2
K ′ U�

K ′ . Finally, we have to bound the ratio
αK ′/αK and the matrix norm. According to the choice (3.9) and Lemma 3.20, it is

(
αK ′

αK

)2
=

|K|
√∏d

j=1 λK ′,j

|K ′|
√∏d

j=1 λK,j

=
|K|
√∏d

j=1(1 + δ
K,K ′
j )λK,j

|K ′|
√∏d

j=1 λK,j

≤ (1 + cδ)
d/2 |K|

|K ′| ≤ c ,

and for the matrix norm, we have

‖(I + ΔK ′,K)1/2Λ
1/2
K ′ U�

K ′(RK ′,K)�UK ′Λ−1/2
K ′ ‖2

≤ ‖(I + ΔK ′,K)1/2‖2‖Λ1/2
K ′ U�

K ′(RK ′,K − I)�UK ′Λ−1/2
K ′ + I‖2

≤ √1 + cδ(1 + cR) ,

that finishes the proof. ��
Remark 3.25 In the previous proof, we have seen in particular that for neighbouring
elements K,K ′ ⊂ ωK , it is

‖A−�
K ∇v‖L2(K ′) ≤ c ‖A−�

K ′ ∇v‖L2(K ′)

with a constant depending only on the regularity and stability of the mesh.

3.4.4 Quasi-Interpolation of Anisotropic Non-smooth
Functions

In this section, we consider the quasi-interpolation operators from Sect. 3.3 on
anisotropic polygonal and polyhedral meshes. The analysis relies on the mapping to
the reference configuration of regular and stable anisotropic polytopal elements as
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in [181]. Earlier results for quasi-interpolation operators on anisotropic simplicial
meshes can be found in [10, 79, 119], for example. Some comparisons are also
drawn in the following.

The general form of the Clément and to Scott–Zhang operator is given in (3.6)
for v ∈ H 1(Ω), namely

Iv =
∑

z∈N∗
(Πω(ψz)v)ψz ∈ Vh ,

where the set of nodes N∗ and the neighbourhoods ω(ψz) are chosen accordingly.
We point out, that the results of this section stay valid if we replace the basis
functions ψz by ψ ref

z , which have been discussed in Sect. 3.4.2. In this case the
quasi-interpolation operator maps into the approximation space defined with the
help of the reference configurations, i.e. I : H 1(Ω) → V ref

h . In the forthcoming
proofs, we only employ the properties (3.12) which are shared by Vh and V ref

h .

3.4.4.1 Clément-Type Interpolation

The Clément interpolation operator IC is defined by (3.6) with N∗ = Nh \ Nh,D

and ω(ψz) = ωz, see Sect. 3.3.1 for details. For v ∈ H 1
D(Ω), it is ICv ∈ H 1

D(Ω)

by construction.

Theorem 3.26 Let Kh be a regular and stable anisotropic mesh and K ∈ Kh.
The Clément interpolation operator satisfies for v ∈ H 1

D(Ω) the interpolation error
estimate

‖v − ICv‖L2(K) ≤ c ‖A−�
K ∇v‖L2(ωK) ,

and for an edge/face F ∈ F (K) \ Fh,D

‖v − ICv‖L2(F ) ≤ c
|F |1/2
|K|1/2 ‖A−�

K ∇v‖L2(ωF ) ,

where the constants c only depend on the regularity and stability parameters of the
mesh.

Proof We can follow classical arguments as for isotropic meshes, cf. Theorem 3.7.
The main ingredients are the observation that the basis functions ψz form a
partition of unity on K, and that they are bounded by one. Furthermore, anisotropic
approximation estimates, see Lemma 3.24, the anisotropic trace inequality in
Lemmata 3.21 and 3.20 and Remark 3.25 are employed. We only sketch the proof
of the second estimate.

The partition of unity property is used, which also holds on each edge/face F ,
i.e.
∑

z∈N (F ) ψz = 1 on F . We distinguish two cases, first letN (F ) ∩Nh,D = ∅.
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With the help of Lemmata 3.21 and 3.24, we obtain

‖v − ICv‖L2(F ) =
∑

z∈N (F )

‖ψz(v − Πωzv)‖L2(F ) ≤
∑

z∈N (F )

‖v − Πωzv‖L2(F )

≤ c
∑

z∈N (F )

|F |1/2
|K|1/2

(
‖v − Πωzv‖2L2(K) + ‖A−�

K ∇v‖2L2(K)

)1/2

≤ c
∑

z∈N (F )

|F |1/2
|K|1/2 ‖A−�

K ∇v‖L2(ωz).

For the second case withN (F ) ∩ Nh,D �= ∅, we find

‖v − ICv‖L2(F ) ≤
∑

z∈N (F )

‖ψz(v − Πωzv)‖L2(F ) +
∑

z∈N (F )∩Nh,D

‖ψzΠωzv‖L2(F ) .

(3.14)

The first sum has already been estimated, thus we consider the term in the second
sum. For z ∈ N (F ) ∩ Nh,D , i.e. z ∈ Γ D , there is an element K ′ ⊂ ωz and an
edge/face F ′ ∈ F (K ′) such that z ∈ N (F ′) and F ′ ∈ Fh,D . Since v vanishes on
F ′, Lemmata 3.21 and 3.24 as well as Remark 3.25 yield

|Πωzv| = |F ′|−1/2 ‖v − Πωzv‖L2(F ′) ≤ c |K ′|−1/2 ‖A−�
K ∇v‖L2(ωz) .

Because |K ′|/|K| is uniformly bounded according to Lemma 3.20, we obtain

‖ψzΠωzv‖L2(F ) ≤ |Πωzv| ‖ψz‖L∞(F ) |F |1/2 ≤ c
|F |1/2
|K|1/2 ‖A−�

K ∇v‖L2(ωz) .

Finally, since the number of nodes per element is uniformly bounded according to
Proposition 3.18, this estimate as well as the one derived in the first case applied
to (3.14) yield the second interpolation error estimate in the theorem. ��
Remark 3.27 In the case of an isotropic polytopal element K with edge/face F it is

λ1 ≈ . . . ≈ λd ∼ h2K , and thus αK ∼ 1 .

Therefore, we obtain from Theorem 3.26 with A−�
K = α−1

K Λ
1/2
K U�

K that

‖v − ICv‖L2(K) ≤ chK ‖U�
K ∇v‖L2(ωK) = chK |v|H 1(ωK ) ,

and

‖v − ICv‖L2(F ) ≤ c
hK |F |1/2
|K|1/2 ‖U�

K ∇v‖L2(ωF ) ≤ ch
1/2
F |v|H 1(ωF ) ,
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since |F | ≤ hd−1
F as well as |K| ≥ chd

K and hK ≤ chF in consequence of
the regularity and stability, cf. Remark 3.12. Obviously, we recover the classical
interpolation error estimates for the Clément interpolation operator, cf. Theorem 3.7.

In the following, we rewrite our results in order to compare them with
the work of Formaggia and Perotto [79]. It is A−�

K = α−1
K Λ

1/2
K U�

K with
UK = (uK,1, . . . ,uK,d). Thus, we observe

‖A−�
K ∇v‖2L2(ωK) = α−2

K

d∑

j=1

λK,j ‖uK,j · ∇v‖2L2(ωK) ,

and since uK,j · ∇v : Rd → R, we obtain

‖uK,j · ∇v‖2L2(ωK) =
∑

K ′⊂ωK

∫

K ′
u�

K,j∇v(∇v)�uK,j dx = u�
K,j GK(v) uK,j

with

GK(v) =
∑

K ′⊂ωK

(∫

K ′
∂v

∂xi

∂v

∂xj

dx
)d

i,j=1
∈ R

d×d , x = (x1, . . . , xd)� .

Therefore, we can deduce from Theorem 3.26 an equivalent formulation.

Proposition 3.28 Let Kh be a regular and stable anisotropic mesh and K ∈ Kh.
The Clément interpolation operator satisfies for v ∈ H 1

D(Ω) the interpolation error
estimate

‖v − ICv‖L2(K) ≤ c α−1
K

⎛

⎝
d∑

j=1

λK,j u�
K,j GK(v) uK,j

⎞

⎠
1/2

,

and for an edge/face F ∈ F (K) \ Fh,D

‖v − ICv‖L2(F ) ≤ c α−1
K

|F |1/2
|K|1/2

⎛

⎝
d∑

j=1

λK,j u�
K,j GK(v) uK,j

⎞

⎠
1/2

,

where the constant c only depends on the regularity and stability parameters of the
mesh.

Now we are ready to compare the interpolation error estimates with the ones
derived by Formaggia and Perotto. These authors considered the case of anisotropic
triangular meshes in two-dimensions, i.e. d = 2. The inequalities in Proposi-
tion 3.28 correspond to the derived estimates (2.12) and (2.15) in [79] but they are



94 3 Interpolation of Non-smooth Functions and Anisotropic Polytopal Meshes

valid on much more general meshes. When comparing these estimates to the results
of Formaggia and Perotto, one has to take care on the powers of the lambdas. The
triangular elements in their works are scaled with λi,K , i = 1, 2 in the characteristic

directions whereas the scaling in this section is λ
1/2
K,i , i = 1, 2.

Obviously, the first inequality of the previous proposition corresponds to the
derived estimate (2.12) in [79] up to the scaling factor α−1

K . However, for convex
elements the assumption

αK ∼ 1 , i.e., |K| ∼ √λK,1λK,2 ,

seems to be convenient, since this means that the area |K| of the element is
proportional to the area π

√
λK,1
√

λK,2 of the inscribed ellipse, which is given by
the scaled characteristic directions of the element.

In order to recognize the relation of the second inequality under these assump-
tions, we estimate the term |F |/|K| by (3.13) and by applying hP,F ≥ λ

1/2
K,2. This

yields

‖v − ICv‖L2(F ) ≤ c

⎛

⎝ 1

λ
1/2
K,2

⎞

⎠
1/2 (

λK,1 u
�
K,1 GK(v) uK,1 + λK,2 u

�
K,2 GK(v) uK,2

)1/2
,

and shows the correspondence to [79], since hK and λ1,K are proportional in the
referred work.

3.4.4.2 Scott–Zhang-Type Interpolation

The Scott–Zhang interpolation operator ISZ : H 1(Ω) → Vh is defined by (3.6)
withN∗ = N and ω(ψz) = Fz, where Fz ∈ Fh is an edge (d = 2) or face (d = 3)
with z ∈ F z and

Fz ⊂ ΓD if z ∈ Γ D and Fz ⊂ Ω ∪ ΓN if z ∈ Ω ∪ ΓN .

By construction, it is ISZv ∈ H 1
D(Ω) for v ∈ H 1

D(Ω), such that homoge-
neous Dirichlet data is preserved. We have the following local stability result on
anisotropic meshes.

Lemma 3.29 Let Kh be a regular and stable anisotropic mesh and K ∈ Kh. The
Scott–Zhang interpolation operator satisfies for v ∈ H 1(Ω) the local stability

‖ISZv‖L2(K) ≤ c
(
‖v‖L2(ωK) + ‖A−�

K ∇v‖L2(ωK)

)
,

where the constant c only depends on the regularity and stability parameters of the
mesh.
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Proof The proof is analog to the isotropic version in Lemma 3.8. The difference
is that the anisotropic trace inequality Lemmata 3.21 and 3.20, Remark 3.25 and
Proposition 3.18 are used. For details see [181]. ��
Theorem 3.30 Let Kh be a regular and stable anisotropic mesh and K ∈ Kh. The
Scott–Zhang interpolation operator satisfies for v ∈ H 1(Ω) the interpolation error
estimate

‖v − ISZv‖L2(K) ≤ ‖A−�
K ∇v‖L2(ωK) ,

where the constant c only depends on the regularity and stability parameters of the
mesh.

Proof For p = ΠωK v ∈ R it is obviously p = ISZp and ∇p = 0. The estimate in
the theorem follows by Lemma 3.29 and the application of Lemma 3.24, since

‖v − ISZv‖L2(K) ≤ ‖v − p‖L2(K) + ‖ISZ(v − p)‖L2(K)

≤ c
(
‖v − p‖L2(ωK) + ‖A−�

K ∇v‖L2(ωK )

)

≤ c ‖A−�
K ∇v‖L2(ωK ) .

��

3.4.5 Interpolation of Anisotropic Smooth Functions

In the previous section, we considered quasi-interpolation of functions in H 1(Ω).
However, we may also address classical interpolation employing point evaluations
in the case that the function to be interpolated is sufficiently regular as in Sect. 2.4.
This is possible for functions in H 2(Ω). In the following, we consider the pointwise
interpolation of lowest order with k = 1 into the approximation space V ref

h on
anisotropic meshes. V ref

h has been discussed in Sect. 3.4.2 and its basis functions
ψ ref
z are constructed such that ψ̂ ref

z coincide on the reference configuration K̂ with
the usual harmonic basis functions from Sect. 2.3. The interpolation operator is
given as

Ihv =
∑

z∈Nh

v(z) ψ ref
z ∈ V ref

h (3.15)

for v ∈ H 2(Ω), on anisotropic meshes. In the analysis, it is sufficient to study the
restriction of Ih : H 2(Ω) → V ref

h onto a single element K ∈ Kh and we denote
this restriction by the same symbol

Ih : H 2(K) → V ref
h |K .



96 3 Interpolation of Non-smooth Functions and Anisotropic Polytopal Meshes

Furthermore, we make use of the mapping to and from the reference configuration,
cf. (3.8). As earlier, we mark the operators and functions defined over the reference
configuration by a hat, as, for instance, v̂ = v ◦ F−1

K : K̂ → K . We have already

used ∇v = αKUKΛ
−1/2
K ∇̂v̂, and by employing some calculus we find

Ĥ (̂v) = α−2
K Λ

1/2
K U�

K H(v)UKΛ
1/2
K , (3.16)

where H(v) denotes the Hessian matrix of v ∈ H 2(Ω) and Ĥ (̂v) the corresponding
Hessian on the reference configuration. Additionally, we observe the relation
between the interpolation Ihv transferred to the reference configuration K̂ and the
interpolation Îhv̂ defined directly on K̂ . Namely, it is

Îhv = Îhv̂ , (3.17)

since only function evaluations in the nodes are involved and the mapped basis
functions coincide with the basis functions defined directly on K̂ , see Sect. 3.4.2.
Furthermore, the interpolation Îh coincides with the pointwise interpolation in
Sect. 2.4 since the functions ψ̂ ref

z are harmonic. Thus, we can apply known results
for the interpolation error on the reference configuration.

First, we consider the scaling of the H 1-seminorm when K is mapped to K̂ .

Lemma 3.31 Let K ∈ Kh be a polytopal element of a regular and stable
anisotropic mesh Kh. For v ∈ H 1(K), it is

√∏d
j=2 λK,j

λK,1
|̂v|2

H 1(K̂)
≤ |v|2

H 1(K)
≤
√√√√
∏d−1

j=1 λK,j

λK,d
|̂v|2

H 1(K̂)
.

Proof Applying the transformation to the reference configuration yields

|v|2
H 1(K)

= ‖∇v‖2L2(K) = |K| ‖αKUKΛ
−1/2
K ∇̂v̂‖2

L2(K̂)

= |K|α2
K ‖Λ−1/2

K ∇̂v̂‖2
L2(K̂)

= |K|α2
K

d∑

j=1

λ−1
K,j

∥∥∥∥
∂v̂

∂x̂j

∥∥∥∥
2

L2(K̂)

.

Since λK,1 ≥ . . . ≥ λK,d , we obtain

|K|α2
K

λK,1
|̂v|2

H 1(K̂)
≤ |v|2

H 1(K)
≤ |K|α2

K

λK,d

|̂v|2
H 1(K̂)

.

Due to the choice (3.9) for αK , it is |K|α2
K =

√∏d
j=1 λK,j , that completes the

proof. ��
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Next, we address the interpolation error. Therefore, we use the convention that
H 0(K) = L2(K).

Theorem 3.32 Let K ∈ Kh be a polytopal element of a regular and stable
anisotropic mesh Kh. For v ∈ H 2(Ω), it is

|v − Ihv|2
H�(K)

≤ cα−4
K S�(K)

d∑

i,j=1

λK,iλK,jLK(uK,i,uK,j ; v)

with

S�(K) =

⎧
⎪⎪⎨

⎪⎪⎩

1, for � = 0,

1

|K|

√√√√
∏d−1

j=1 λK,j

λK,d

, for � = 1,

where

LK(uK,i,uK,j ; v) =
∫

K

(
u�

K,iH(v)uK,j

)2
dx for i, j = 1, . . . , d .

and the constant c only depends on the regularity and stability parameters of the
mesh.

Proof Property (3.17) together with the scaling to the reference configuration and
Lemma 3.31 as well as (3.10) yield for � = 0, 1

|v − Ihv|2
H�(K)

≤ |K| S�(K) |̂v − Îhv̂|2
H�(K̂)

≤ ch
2(2−�)

K̂
|K| S�(K) |̂v|2

H 2(K̂)

≤ c|K| S�(K) |̂v|2
H 2(K̂)

,

where the interpolation estimate in Theorem 2.27 has been applied on K̂. Next, we
transform the H 2-semi-norm back to the element K . Employing the mapping and
the relation (3.16) gives

|̂v|2
H 2(K̂)

=
∫

K̂

‖Ĥ (̂v)‖2F d̂x

= α−4
K

|K|
∫

K

‖Λ1/2
K U�

K H(v)UKΛ
1/2
K ‖2F dx ,
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where ‖ · ‖F denotes the Frobenius norm of a matrix. A small exercise yields

‖Λ1/2
K U�

K H(v)UKΛ
1/2
K ‖2F =

d∑

i,j=1

λK,iλK,j

(
u�

K,iH(v)uK,j

)2
,

and consequently

|̂v|2
H 2(K̂)

= α−4
K

|K|
d∑

i,j=1

λK,iλK,jLK(uK,i,uK,j ; v) .

Combining the derived results yields the desired estimates. ��
For the comparison with the work of Formaggia and Perotto developed in two-

dimensions, we remember that their lambdas behave like λi,K ∼ √λK,i , i = 1, 2.
Employing the assumption αK ∼ 1 raised in the comparison of Sect. 3.3.1, we find

√
λK,1/λK,2

|K| ∼ 1

λK,2
.

Therefore, we recognize that the estimates in Theorem 3.32 match the results of
Lemma 2 in [79], but on much more general meshes.

3.4.6 Numerical Assessment of Anisotropic Meshes

In the introduction of Sect. 3.4, we alreadymentioned that polygonal and polyhedral
meshes are much more flexible in meshing than classical finite element shapes. This
is in particular true for the generation of anisotropic meshes. In this section we give
a first numerical assessment on polytopal anisotropic mesh refinement. We propose
a bisection approach that does not rely on any initially prescribed direction and
which is applicable in two- and three-dimensions. Classical bisection approaches
for triangular and tetrahedral meshes do not share this versatility and they have to
be combined with additional strategies like edge swapping, node removal and local
node movement, see [152].

Starting from the local interpolation error estimate in Theorem 3.26, we obtain
the global version

‖v − ICv‖L2(Ω) ≤ c

⎛

⎝
∑

K∈Kh

‖A−�
K ∇v‖2L2(K)

⎞

⎠
1/2
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by exploiting Remark 3.25 and Proposition 3.18. As in the derivation of Proposi-
tion 3.28, we easily see that

η =
√ ∑

K∈Kh

η2K with η2K = α−2
K

d∑

j=1

λK,j u�
K,j G∗

K(v) uK,j

and

G∗
K(v) =

(∫

K

∂v

∂xi

∂v

∂xj

dx
)d

i,j=1
∈ R

d×d , x = (x1, . . . , xd)�

is a good error measure and the local values ηK may serve as error indicators
over the polytopal elements. This estimate also remains meaningful on isotropic
polytopal meshes, cf. Remark 3.27. In the case that v ∈ H 1(Ω) and its derivatives
are known, we can thus apply the following adaptive mesh refinement algorithm:

1. Let K0 be a given initial mesh and � = 0.
2. Compute the error indicators ηK and η with the knowledge of the exact function v

and its derivatives.
3. Mark all elements K for refinement which satisfy ηK > 0.95η/

√|K�|, where
|K�| is the number of elements in the current mesh.

4. Refine the marked elements as described below in order to obtain a refined mesh
K�+1.

5. Go to 2.

In step 3, we have chosen a equidistribution strategy which marks all elements for
refinement whose error indicator is larger than the mean value. The factor 0.95 has
been chosen for stabilizing reasons in the computations when the error is almost
uniformly distributed. For the refinement in step 4, we have a closer look at the first
term in the sum of ηK , which reads

λK,1
u�

K,1 G∗
K(v) uK,1

u�
K,1 uK,1

,

because of |uK,1| = 1. Since λK,1 � λK,d for anisotropic elements, the refinement
process should try to minimize the quotient such that the whole term does not
dominate the error over K . Obviously, we are dealing here with the Rayleigh
quotient, which is minimal if uK,1 is the eigenvector to the smallest eigenvalue of
G∗

K(v). As consequence, the longest stretching of the polytopal element K should
be aligned with the direction of this eigenvector. In order to achieve the correct
alignment for the next refinedmesh, we may bisect the polytopal element orthogonal
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to the eigenvector which belongs to the largest eigenvalue of G∗
K(v). Thus, we

propose the following refinement strategies:

ISOTROPIC The elements are bisected as introduced in Sect. 2.2.3, i.e., they are
split orthogonal to the eigenvector corresponding to the largest eigenvalue of
MCov(K).

ANISOTROPIC In order to respect the anisotropic nature of v, we split the
elements orthogonal to the eigenvector corresponding to the largest eigenvalue
of G∗

K(v).

Both refinement strategies do not guaranty the regularity of the meshes since there
is no control on the edge lengths due to the naive bisection. This might be imposed
additionally in the realization, but the approach also works well in the forthcoming
tests without this extra control.

For the numerical experiments we consider Ω = (0, 1)2 and the function

v(x1, x2) = tanh(60x2) − tanh(60(x1 − x2) − 30) , (3.18)

taken from [109], which has two sharp layers: one along the x1-axis and one along
the line given by x2 = x1 − 1/2. The function as well as the initial mesh is depicted
in Fig. 3.5. We apply the BEM-based FEM as usual, although the local BEM solver
is not tailored for the anisotropic elements. For the details on the realization see
Chap. 4.

Test 1: Mesh Refinement
In the first test we generate several sequences of polygonal meshes starting from
an initial grid, see Fig. 3.5 right. These meshes contain naturally hanging nodes and
their element shapes are quite general. First, the initial mesh is refined uniformly,

Fig. 3.5 Visualization of function with anisotropic behaviour (left) and initial mesh (right)
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Fig. 3.6 Mesh after six uniform refinement steps using the ISOTROPIC strategy and zoom-in

i.e., all elements of the discretization are bisected in each refinement step. Here, the
ISOTROPIC strategy is performed for the bisection. The mesh after six refinements
as well as a zoom-in is depicted in Fig. 3.6. The uniform refinement clearly generates
a lot of elements in regions where the function (3.18) is flat and where only a few
elements would be sufficient for the approximation.

Next, we perform the adaptive refinement algorithm as described above for the
different bisection strategies. The generated meshes after 6 refinement steps are
visualized in Figs. 3.7 and 3.8 together with a zoom-in of the region where the two
layers of the function (3.18) meet. Both strategies detect the layers and adapt the
refinement to the underlying function. The adaptive strategies clearly outperform
the uniform refinement with respect to the number of nodes which are needed to
resolve the layers. Whereas the ISOTROPIC strategy in Fig. 3.7 keeps the aspect
ratio of the polygonal elements bounded, the ANISOTROPIC bisection produces
highly anisotropic elements, see Fig. 3.8. These anisotropic elements coincide with
the layers of the function very well.

Finally, we compare the error measure η for the different strategies. This value
is given with respect to the number of degrees of freedom, which coincides with
the number of nodes, in a double logarithmic plot in Fig. 3.9. The error measure
decreases most rapidly for the ANISOTROPIC strategy and consequently these
meshes are most appropriate for the approximation of the function (3.18). The
convergence order for η has not been studied analytically, however, we observe
faster decrease for the ANISOTROPIC refinement in this test for the considered
range. This behaviour might result from a pre-asymptotic regime. A slope of 1/2
for d = 2 corresponds to linear convergence in finite element analysis.
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Fig. 3.7 Mesh after six adaptive refinement steps for the ISOTROPIC strategy and zoom-in
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Fig. 3.8 Mesh after six adaptive refinement steps for the ANISOTROPIC strategy and zoom-in

Test 2: Mesh Properties
We analyse the meshes more carefully. For this purpose we pick the 13th mesh
of the sequence generated with the ISOTROPIC and the ANISOTROPIC adaptive
refinement strategy. In Sect. 3.4.1, we have introduced the ratio λK,1/λK,2 for the
characterisation of the anisotropy of an element. In Fig. 3.10, we give this ratio
with respect to the element ids for the two chosen meshes. For the ISOTROPIC
refined mesh the ratio is clearly bounded by 10 and therefore the mesh consists of
isotropic elements according to our characterisation. In the ANISOTROPIC refined
mesh, however, the ratio varies in a large interval. The mesh consists of several
isotropic elements, but there are mainly anisotropic polygons. The ratio of the most
anisotropic elements exceeds 105 in this example.
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Fig. 3.9 Convergence graph
of the anisotropic error
measure η with respect to the
number of degrees of
freedom for the different
refinement strategies
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Fig. 3.10 Quotient
λK,1/λK,2 for all elements in
the 13th mesh of the sequence
with ISOTROPIC and
ANISOTROPIC adaptive
refinement
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Next we address the scaling parameter αK in these meshes. In the comparison of
the derived estimates with those of Formaggia and Perotto [79], it has been assumed
that αK ∼ 1. In Fig. 3.11, we present a histogram for the distribution of αK in
the two selected meshes. As expected the values stay bounded for the ISOTROPIC
refined mesh. Furthermore, αK stays in the same range for the ANISOTROPIC
refinement. In our example, all values lie in the interval (0.28, 0.32) although we
are dealing with elements of quite different aspect ratios, cf. Fig. 3.10.

Test 3: Interpolation Error
In the final test we apply the pointwise interpolation into the space Vh to the
function (3.18) over the meshes generated in this section. The convergence of the
interpolation is studied numerically for the different sequences. We consider the
interpolation error in the L2-norm. In Fig. 3.12, we give ‖v − Ihv‖L2(Ω) with
respect to the number of degrees of freedom in a double logarithmic plot, where
Ih : H 2(Ω) → Vh is defined as in Sect. 2.4. Since v ∈ H 2(Ω) in this experiment,
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Fig. 3.11 Histogram for the
distribution of αK for the
13th mesh in the sequence
with ISOTROPIC and
ANISOTROPIC adaptive
refinement
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Fig. 3.12 Convergence graph
of the L2-error of pointwise
interpolation with respect to
the number of degrees of
freedom for the different
refinement strategies
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we expect quadratic convergence with respect to the mesh size on the sequence of
uniformly refinedmeshes. This convergence rate corresponds to a slope of one in the
double logarithmic plot in two-dimensions. In Fig. 3.12, we observe that the uniform
refinement reaches indeed quadratic convergence after a pre-asymptotic regime.
The optimal rate of convergence is achieved as soon as the layers are resolved
in the mesh. On the adaptively generated meshes, however, the interpolation error
convergeswith optimal rates from the beginning.We can even recognize in Fig. 3.12
that the ANISOTROPIC refined meshes outperform the others. The layers are
captured within a few refinement steps. Therefore, the error reduces faster than for
the ISOTROPIC refined meshes before it reaches the optimal convergence rate.
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Let us compare the seventh meshes in the sequences which are obtained after six
refinements and which are visualized in Figs. 3.6, 3.7, and 3.8. For the uniformly
refined mesh we have 2709 nodes and it is ‖v − Ihv‖L2(Ω) ≈ 3.17 × 10−2.
The adaptively refined mesh using ISOTROPIC bisection contains only 363 nodes
but yields a comparable error ‖v − Ihv‖L2(Ω) ≈ 3.49 × 10−2. The most
accurate approximation is achieved on the ANISOTROPIC refined mesh with
‖v − Ihv‖L2(Ω) ≈ 2.04 × 10−2 and only 189 nodes. A comparable interpolation
error to the other refinement strategies is obtained on the fifth mesh of the sequence
of ANISOTROPIC refined meshes. This mesh consists of 108 nodes only.
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