
Chapter 2
Finite Element Method on Polytopal
Meshes

The finite element method (FEM) is a powerful tool for the approximation of
boundary value problems, which is widely applied and accepted in science and
engineering. The approach relies on the decomposition of the underlying domain
into elements and the construction of a discrete approximation space over the given
discretization. The BEM-based finite element method can be seen as a generaliza-
tion in order to handle more general elements in the mesh. This chapter contains a
discussion of polygonal as well as polyhedral meshes and the construction of basis
functions for the approximation space over these general meshes. The formulation
of the BEM-based FEM is obtained by means of a Galerkin formulation and its
convergence and approximation properties are analysed with the help of introduced
interpolation operators. Numerical experiments confirm the theoretical findings.

2.1 Preliminaries

The approximation space in the BEM-based finite element method is defined in
accordance with the underlying differential equation of the considered boundary
value problem. For this presentation, we choose the diffusion problem with mixed
boundary conditions on a bounded polygonal/polyhedraldomainΩ ⊂ R

d , d = 2, 3.
Its boundary Γ = ΓD ∪ ΓN is split into a Dirichlet and a Neumann part, where
we assume |ΓD| > 0. Given a source term f ∈ L2(Ω), a Dirichlet datum
gD ∈ H 1/2(ΓD) as well as a Neumann datum gN ∈ L2(ΓN), the problem reads

− div(a∇u) = f in Ω ,

u = gD on ΓD ,

a∇u · n = gN on ΓN ,

(2.1)
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18 2 Finite Element Method on Polytopal Meshes

where a ∈ L∞(Ω) with 0 < amin ≤ a ≤ amax almost everywhere in Ω and n is
the outward unit normal vector on Γ . This boundary value problem is considered
in the week sense with the help of a Galerkin formulation. Thus, we seek a solution
u ∈ H 1(Ω), where we denote, as usual, the Sobolev spaces of order s ∈ R with
Hs(D) for some domain D ⊂ Ω , cf. Sect. 1.3. Furthermore, we utilize the space
of polynomials Pk(D) with degree smaller or equal k ∈ N0 with the convention
thatP−1(D) = {0}. Here, D might also be a one- or two-dimensional submanifold
of Ω . For simplicity, we assume in the first part that the diffusion coefficient a is
piecewise constant and its jumps are resolved by the meshes later on. Nevertheless,
we will also give a strategy for the more general situation of continuously varying
diffusion coefficients. Our goal is to introduce a H 1-conforming approximation
space of arbitrary order k ∈ Nwhich yields optimal rates of convergence in the finite
element framework. In all estimates, c denotes a generic constant that depends on the
mesh regularity and stability, the space dimension d and the approximation order k.
The following discrete approximation ofH 1(Ω) is constructed but not limited to the
diffusion equation. It can also be applied to other boundary value problems where
H 1-conforming approximations are desirable.

2.2 Polygonal and Polyhedral Meshes

For the finite element method, we have to introduce a discretization Kh of Ω . In
this section, we distinguish the two- and three-dimensional case Ω ⊂ R

d , d = 2, 3.
In contrast to classical conforming finite element methods, we allow meshes
with general polygonal and polyhedral elements which are bounded. Examples
of such meshes are given in Fig. 2.1. If we do not distinguish between the space
dimension d , we call the meshes and the elements polytopal. The elements K ∈ Kh

Fig. 2.1 Two examples for meshes with polygonal and polyhedral elements
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Fig. 2.2 Two examples of neighbouring elements with additional nodes on the straight boundary

are non-overlapping open sets such that

Ω =
⋃

K∈Kh

K .

The boundaries of the elements consist of nodes and edges in 2D as well as of
faces in 3D. An edge E = zbze is always located between two nodes, the one at the
beginning zb and the one at the end ze. These points are fixed once per edge and they
are the only nodes on E. In each corner of an element K , a node is located, but in
2D there could also be some nodes on straight lines of the polygonal boundary ∂K ,
cf. Fig. 2.2. We stress this fact more carefully. If we have a triangle with three nodes
and we add some nodes on the boundary, this triangle turns formally into a polygon.
These additional nodes enrich the approximation space in the finite element method.
In this context, nodes on straight lines are natural since they are just ordinary nodes
for polygons. In triangular or quadrilateral meshes these nodes appear as hanging
nodes which are undesirable and do not influence the accuracy of the approximation.
In classical finite element implementations, such hanging nodes have to be treated
in a special way as conditional nodes or by removing them. Methods working
on polygonal meshes include such nodes naturally. In 3D, hanging nodes appear
naturally on edges of the polyhedral elements and one may have hanging edges
on the polygonal faces. The polygonal faces are assumed to be flat and they are
surrounded by edges which are coplanar.

For the later analysis, we need some notation.Nh denotes the set of all nodes in
the meshKh. It isNh = Nh,Ω ∪Nh,D ∪Nh,N , whereNh,Ω ,Nh,D ,Nh,N contain
the nodes in the interior of Ω , on the Dirichlet boundary ΓD and on the interior of
the Neumann boundary ΓN , respectively. The transition points between ΓD and ΓN

belong to Nh,D . We denote the set of all edges of the mesh with Eh. In analogy to
the set of nodes, we decompose Eh = Eh,Ω ∪ Eh,D ∪ Eh,N , where Eh,Ω , Eh,D and
Eh,N contain all edges in the interior of Ω , on the Dirichlet boundary ΓD and on
the Neumann boundary ΓN , respectively. In 3D, we additionally have the set of all
faces Fh = Fh,Ω ∪ Fh,D ∪ Fh,N with subsets analogous as before. Moreover,
the sets N (K), N (E) and N (F ) contain all nodes which belong to the element
K ∈ Kh, the edge E ∈ Eh and the face F ∈ Fh, respectively. We denote the set of
edges which belong to the element K by E (K) and those which belong to a face F
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by E (F ). The set F (K) contains finally the faces of an element K . The union of
the boundaries of all elements

ΓS =
⋃

K∈Kh

∂K

is said to be the skeleton of the discretization.

2.2.1 Mesh Regularity and Properties in 2D

The length of an edge E and the diameter of an element K are denoted by hE and
hK = sup{|x − y| : x, y ∈ ∂K}, respectively.
Definition 2.1 (Regular Mesh in 2D) The family of meshes Kh is called regular
if it satisfies:

1. Each element K ∈ Kh is a star-shaped polygon with respect to a circle of
radius ρK and midpoint zK .

2. The aspect ratio is uniformly bounded from above by σK , i.e.
hK/ρK < σK for all K ∈ Kh.

The circle in the definition is chosen in such a way that its radius is maximal, cf.
Fig. 2.2. If the position of the circle is not unique, its midpoint zK is fixed once
per element. Additionally, we assume that hK < 1 for all elements K ∈ Kh.
This condition is no grievous restriction on the mesh since hK < 1 can always
be satisfied by scaling Ω . Nevertheless, it is necessary in the forthcoming local
boundary integral formulations in 2D.

For the analysis of local boundary element methods used in the BEM-based
FEM and some proofs in Chap. 5, the regularity of a mesh is not enough. Another
important property is that the diameter of an element is comparable to the length of
its shortest edge. This is ensured by the following definition.

Definition 2.2 (Stable Mesh in 2D) The family of meshes Kh is called stable if
there is a constant cK > 0 such that for all elements K ∈ Kh and all its edges
E ∈ E (K) it holds

hK ≤ cK hE.

When we consider convergence or error estimates with respect to the mesh size
h = max{hK : K ∈ Kh}, it is important that the constants in the definitions above
hold uniformly for the whole family of meshes. For conveniencewe only write mesh
and mean a whole family for h → 0.

In the following, we give some useful properties of regular meshes. An important
analytical tool is an auxiliary triangulation Th(K) of the elements K ∈ Kh. This
triangulation is constructed by connecting the nodes on the boundary of K with
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Fig. 2.3 Auxiliary
triangulation Th(K) of
star-shaped element K ,
altitude ha = alt(TE,E) of
triangle TE ∈ Th(K)

perpendicular to E and angle
β = 	 zKzbze as well as
triangle TE′ ∈ Th(K) with
isosceles triangle T iso

E′
zK
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E zb
ze
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TE

hTE
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the point zK of Definition 2.1, see Fig. 2.3. Consequently, Th(K) consists of the
triangles TE for E = zbze ∈ E (K), which are defined by the points zb, ze and zK .

Lemma 2.3 Let K be a polygonal element of a regular and stable mesh Kh. The
auxiliary triangulation Th(K) is shape-regular in the sense of Ciarlet [58], i.e.,
neighbouring triangles share either a common node or edge and the aspect ratio of
each triangle is uniformly bounded by some constant σT , which only depends on
σK and cK .

Proof Let TE ∈ Th(K) be a triangle with diameter hTE and let ρTE be the radius of
the incircle. It is known that the area of TE is given by |TE | = 1

2 |∂TE|ρTE , where
|∂TE| is the perimeter of TE . Obviously, it is |∂TE| ≤ 3hTE . On the other hand,
we have the formula |TE | = 1

2hEha , where ha = alt(TE,E) is the altitude of the
triangle perpendicular to E, see Fig. 2.3. Since the element K is star-shaped with
respect to a circle of radius ρK , the line through the side E ∈ Eh of the triangle does
not intersect this circle. Thus, ha ≥ ρK and we have the estimate |TE | ≥ 1

2hEρK .
Together with Definition 2.1, we obtain

hTE

ρTE

= |∂TE|hTE

2|TE| ≤ 3h2TE

hEρK

≤ 3cK σK
h2TE

h2K
≤ 3cK σK = σT .

�
In the previous proof, we discovered and applied the estimate

|TE| ≥ 1
2hEρK (2.2)

for the area of the auxiliary triangle. This inequality will be of importance once
more. We may also consider the auxiliary triangulation Th(Kh) of the whole
domain Ω which is constructed by gluing the local triangulations Th(K). Obvi-
ously,Th(Kh) is also shape-regular in the sense of Ciarlet. Furthermore, the angles
in the auxiliary triangulation Th(K) next to ∂K can be bounded from below. This
gives rise to the following result.
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Lemma 2.4 Let Kh be a regular polygonal mesh. There is an angle αK with
0 < αK ≤ π/3 such that for all elements K ∈ Kh and all its edges E ∈ E (K)

the isosceles triangle T iso
E with longest side E and two interior angles αK lies

inside TE ∈ Th(K) and thus inside the element K , see Fig. 2.3. The angle αK only
depends on σK .

Proof Let TE ∈ Th(K). We bound the angle β = 	 zKzbze in TE next to E = zbze

from below, see Fig. 2.3. Without loss of generality, we assume that β < π/2. Using
the projection y of zK onto the straight line through the edge E, we recognize

sin β = |y − zK |
|zb − zK | ≥ ρK

hK

≥ 1

σK
∈ (0, 1) . (2.3)

Consequently, it is β ≥ arcsin σ−1
K . Since this estimate is valid for all angles next

to ∂K of the auxiliary triangulation, the isosceles triangles T iso
E , E ∈ E (K) with

common angle αK = min{π/3, arcsin σ−1
K } lie inside the auxiliary triangles TE

and therefore inside K . �
Remark 2.5 The upper bound of αK is chosen in such a way that the longest side
of the isosceles triangle T iso

E is always the edge E. This fact is not important in the
previous lemma, but it simplifies forthcoming proofs.

Corollary 2.6 Let Kh be a regular mesh. Every node belongs to a uniformly
bounded number of elements, i.e. |{K ∈ Kh : z ∈ N (K)}| ≤ c, ∀z ∈ Nh. The
constant c > 0 only depends on σK .

Proof Due to the regularity of Kh, every interior angle of an element is bounded
from below by αK as we have seen in Lemma 2.4. This angle only depends on σK .
Therefore, we have

|{K ∈ Kh : z ∈ N (K)}| ≤
⌊
2π

αK

⌋
,

where the term on the right hand side denotes the biggest integer smaller than or
equal to 2π/αK . �

Conversely, we have a more restrictive result, which additionally assumes the
stability of the mesh.Without the stability, the lengths of the edges might degenerate
and thus a regular polygonal element can have arbitrarymany nodes on its boundary.

Lemma 2.7 Let Kh be regular and stable. Every element contains a uniformly
bounded number of nodes and edges, i.e. |N (K)| = |E (K)| ≤ c, ∀K ∈ Kh.
The constant c > 0 only depends on σK and cK .
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Proof We exploit the regularity of the mesh. Let K ∈ Kh. In 2D it is obviously
|N (K)| = |E (K)|. With the help of (2.2), we obtain

h2K |N (K)| ≤ σK ρK hK |E (K)|
≤ σK ρK

∑

E∈E (K)

cK hE

≤ σK cK
∑

E∈E (K)

2|TE|

= 2σK cK |K|
≤ 2σK cK h2K .

Consequently, we have |N (K)| ≤ 2σK cK . �
The isosceles triangles and the auxiliary triangulation play an important role

in the analysis of error estimates later on. They are used in order to handle
polygonal elements and, in particular, to apply some results on interpolation of
functions over triangulations. Such results are applicable, if the polygonal mesh
is regular and stable, since then, the auxiliary triangulation is regular in the sense of
Ciarlet according to Lemma 2.3. However, in certain situations, we can weaken the
assumptions on the polygonal mesh and remove the stability. In [84], the following
result is proven with similar considerations as in the proof of Lemma 2.4 for convex
elements. However, the result is also valid in our more general case.

Lemma 2.8 For a regular mesh Kh, all angles of all triangles in the auxiliary
triangulation Th(Kh) are less than π − arcsin σ−1

K and, in particular, they are
strictly less than π .

Proof We proceed similar as in the proof of Lemma 2.4. Therefore, let K ∈ Kh

be an element with edge E = zbze and we consider the triangle TE ∈ Th(K). It
is sufficient to bound the angle 	 zbzKze and the larger angle of the others adjacent
to E, lets say 	 zbzezK . It is easily seen form (2.3) that

	 zbzKze ≤ π − 2 arcsinσ−1
K .

In order to bound 	 zbzezK we employ the point y once more which is the projection
of zK onto the line through E, see Fig. 2.3. Without loss of generality we assume
	 zbzezK > π/2 and thus y /∈ zbze. It is

sin(π − 	 zbzezK) = sin( 	 zKzey) = |y − zK |
|ze − zK | ≥ ρK

hK

≥ 1

σK
.

Applying arcsin yields 	 zbzezK ≤ π − arcsin σ−1
K and the result follows because of

arcsin σ−1
K > 0 due to σK > 0. �

An important consequence of this proposition is the following corollary.
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Corollary 2.9 Let K ∈ Kh be an element of a regular polygonal mesh Kh. The
auxiliary triangulations Th(K) and Th(Kh) satisfy a maximum angle condition,
i.e., every angle in the triangles of the mesh is uniformly bounded from above by a
constant which is strictly less than π . The maximum angle only depends on σK .

Therefore, several approximation properties of finite element interpolation for linear
as well as for higher order basis functions are valid on this auxiliary discretization,
see [14, 114]. The constants appearing in those estimates depend on the maximum
angle and thus, on the aspect ratio σK of the mesh Kh, but not on the stability
parameter cK .

2.2.2 Mesh Regularity and Properties in 3D

In addition to the diameter hK of an element K ∈ Kh and the edge length hE of
E ∈ Eh, we use the diameter hF of polygonal faces F ∈ Fh in the following.

Definition 2.10 (Regular Faces) A set of faces Fh is called regular if all faces
are flat polygons which are regular in the sense of Definition 2.1 with regularity
parameter σF . The radius of the inscribed circle of F ∈ Fh is denoted by ρF and
its center by zF .

Definition 2.11 (Regular Mesh in 3D) The family of meshesKh is called regular
if it satisfies:

1. The associated set of facesFh is regular.
2. Each element K ∈ Kh is a star-shaped polyhedron with respect to a ball of

radius ρK and midpoint zK .
3. The aspect ratio is uniformly bounded from above by σK , i.e.

hK/ρK < σK for all K ∈ Kh.

The ball in the definition is chosen in such a way that its radius is maximal and, if
its position is not unique, the midpoint zK is fixed once per element. In contrast to
the two-dimensional case, we do not impose the restriction on the diameter of the
elements.

Definition 2.12 (Stable Mesh in 3D) The family of meshes Kh is called stable if
there is a constant cK > 0 such that for all elements K ∈ Kh and all its edges
E ∈ E (K) it holds

hK ≤ cK hE.

When we consider convergence or error estimates with respect to the mesh size
h = max{hK : K ∈ Kh}, it is important that the constants in the definitions above
hold uniformly for the whole family of meshes. As in the two-dimensional case, we
only write mesh in the following and mean a whole family for h → 0. The stability
ensures that for an element the lengths of its edges, the diameters of its faces and
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the diameter of itself are comparable. It yields

hE ≤ hF ≤ hK ≤ cK hE ≤ cK hF

for K ∈ Kh and all F ∈ F (K) and E ∈ E (F ).

Remark 2.13 For a regular and stable meshKh, it holds

hd−1
K ≤ c |F | , (2.4)

for K ∈ Kh with F ∈ F (K). This is a direct generalization of the stability
condition in two-dimensions, cf. Definition 2.2. Thus, (2.4) is valid for d = 2, 3
if F is interpreted as edge and face, respectively. This inequality follows by

|F | ≥ πρ2
F ≥ π

h2F

σ 2
F

≥ π
h2K

c2K σ 2
F

.

In the derivation of interpolation and error estimates, an auxiliary discretization
into tetrahedra will be the counterpart to the constructed triangulation in 2D. We
employ the introduced auxiliary triangulation from Sect. 2.2.1 in order to discretize
the polygonal faces and denote it by T0(F ) for F ∈ Fh. Note, that we have
chosen an index 0 instead of h. We introduce a family Tl (F ) of triangulations,
where the meshes of level l ≥ 1 are defined recursively by splitting each triangle
of the previous level into four similar triangles, see Fig. 2.4. The set of nodes in the
triangular mesh is denoted by Ml (F ). Obviously, the discretizations of the faces
can be combined to a whole conforming surface mesh of an element K ∈ Kh by
setting

Tl (∂K) =
⋃

F∈F (K)

Tl (F ) and Ml(∂K) =
⋃

F∈F (K)

Mh(F ) .

Finally, the auxiliary tetrahedral mesh Tl (K) of the polyhedral element K ∈ Kh

is constructed by connecting the nodes of the triangular surface mesh Tl (∂K) with

Fig. 2.4 Polyhedral element with surface triangulations of level l = 0, 1, 2
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the point zK . The tetrahedra constructed this way are denoted by Ttet. Although,
this auxiliary discretization may contain needle-like tetrahedra, their regularity
can be controlled by the mesh regularity and stability of the polyhedral mesh.
Combining the tetrahedral discretizations of the polyhedral elements forms an
auxiliary discretization Tl (Kh) for the whole domain Ω . If the mesh level l is not
important in later proofs and l = 0 is sufficient, we also write Th(·) for T0(·) in
order to treat the two- and three-dimensional cases simultaneously.

Lemma 2.14 Let K be a polyhedral element of a regular and stable meshKh. The
auxiliary discretizations Tl (K) and Tl (Kh), l ≥ 0 are shape-regular in the sense
of Ciarlet [58], i.e., neighbouring tetrahedra share either a common node, edge or
triangular face and the aspect ratio of each tetrahedra is uniformly bounded by
some constant σT , which only depends on σK , σF , cK and the mesh level l in the
face discretization.

Proof The conformity of the auxiliary mesh is rather obvious. Thus, we only have
to bound the aspect ratio of the tetrahedra Ttet ∈ Tl (K), i.e., the ratio of the
diameter hTtet and the radius ρTtet of their insphere. For an arbitrary tetrahedron,
we have the relation

ρTtet = 3VTtet

ATtet

,

where VTtet is the volume and ATtet is the surface area of the tetrahedron.
This relation is seen as follows. VTtet is equal to the sum of the volumes
VTtet,i , i = 1, . . . , 4, of the four tetrahedra Ttet,i obtained by connecting the vertexes
with the center of the insphere. Each volume is computed as VTtet,i = 1

3ρTtet |Ti |,
where Ti is the triangle on the surface of the initial tetrahedron Ttet and ρTtet

corresponds to the hight of Ttet,i over Ti . Consequently, it holds

VTtet =
4∑

i=1

VTtet,i =
4∑

i=1

1

3
ρTtet |Ti | = 1

3
ρTtetATtet .

First, we study the case l = 0, where only one node per face is added for the
triangulation of the element surface. We consider the auxiliary discretization and
choose an arbitrary tetrahedron Ttet with corresponding triangle T ∈ Tl (F ) in some
face F ∈ F (K) and with an edge E ∈ E (F ) such that E ⊂ ∂T ∩ ∂F . A rough
estimate for the surface area of this tetrahedron is

ATtet =
4∑

i=1

|Ti | ≤
4∑

i=1

h2K

2
= 2h2K .
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Let alt(Ttet, T ) be the altitude of the tetrahedron Ttet over the side T and let alt(T ,E)

be the altitude of the triangle T over the edge E. For the volume of Ttet, we have

VTtet = 1

3
alt(Ttet, T )|T | = 1

6
alt(Ttet, T ) alt(T ,E) hE .

Since the faces of the element K and the element itself are star-shaped with respect
to circles and a ball according to Definitions 2.10 and 2.11, it holds ρF ≤ alt(T ,E)

as well as ρK ≤ alt(Ttet, T ) due to the construction of Ttet and T . Consequently, we
obtain

VTtet ≥ 1

6
ρKρF hE ≥ 1

6σK σF
hKhF hE ≥ 1

6σK σF
h3E .

This yields together with the stability, see Definition 2.12,

hTtet

ρTtet

= hTtetATtet

3VTtet

≤ 4σK σFh3K

h3E

≤ 4σK σF c3K .

In the case l ≥ 1, the volume VTtet gets smaller. The triangle T ⊂ F ∈ F (K) is
obtained by successive splitting of an initial triangle T0 of the mesh with level zero.
Due to the construction, these triangles are similar and the relation |T | = |T0|/4l

holds. Taking into account this relation in the considerations above gives the general
estimate

hTtet

ρTtet

≤ σtet with σtet = 4l+1σK σF c3K .

�
Similar to the two-dimensional case we obtain the following two results on the

object counts. In the corollary for three space dimensions, however, we additionally
assume the stability of the mesh in contrast to the lower dimensional setting.

Corollary 2.15 Let Kh be a regular and stable mesh. Every node belongs to a
uniformly bounded number of elements, i.e. |{K ∈ Kh : z ∈ N (K)}| ≤ c,
∀z ∈ Nh. The constant c > 0 only depends on σK , σF and cK .

Proof According to the previous Lemma 2.14, the auxiliary discretization T0(Kh)

is shape-regular in the sense of Ciarlet. Therefore, each node in the mesh Kh

belongs to a uniformly bounded number of auxiliary tetrahedra, and consequently
to a probably smaller uniformly bounded number of polyhedral elements. �
Lemma 2.16 Let Kh be a regular and stable mesh. Every element contains a
uniformly bounded number of nodes, edges and faces, i.e.

|N (K)| ≤ c , |E (K)| ≤ c , |F (K)| ≤ c , ∀K ∈ Kh .

The constants c > 0 only depend on σK , σF and cK .
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Proof For the surface area of a polytopal element K ∈ Kh, we have due to the
regularity and stability of the mesh

|∂K| =
∑

F∈F (K)

|F | ≥ |F (K)| π h2K

c2K σ 2
F

,

see Remark 2.13. Using the auxiliary discretization into tetrahedra Ttet with
corresponding triangles T ∈ T0(∂K), for which |T | ≤ 3Vtet/ρK since
Vtet = 1

3 alt(Ttet, T )|T |, we obtain on the other hand

|∂K| =
∑

T ∈T0(∂K)

|T | ≤
∑

T ∈T0(∂K)

3Vtet

ρK

= 3| K|
ρK

≤ 3σK h2K ,

due to |K| ≤ h3K and the regularity. Thus, the number of faces is uniformly bounded,
namely |F (K)| ≤ 3σK c2K σ 2

F /π . According to Lemma 2.7, each of these faces
has a uniformly bounded number of nodes and edges. Consequently, the number of
nodes and edges of the element K is also uniformly bounded. �

If only the regularity of a polyhedralmesh is assumed, the auxiliary discretization
of tetrahedra is not necessarily regular. The edges might degenerate without the
stability and thus, the condition on the aspect ratio for the tetrahedra does not hold
anymore. But, the stability can be weakend such that the tetrahedral mesh still
satisfies a maximum angle condition.

Definition 2.17 (Weakly Stable Mesh in 3D) The family of meshes Kh is called
weakly stable if there is a constant cF > 0 such that for all polygonal faces F ∈ Fh

in the mesh and all its edges E ∈ E (F ) it holds

hF ≤ cFhE.

In contrast to stable meshes, the edges of elements in weakly stable meshes might
degenerate with respect to the element diameter. But, due to the weak stability,
small edges involve that adjacent faces are also small in their size. Thus, if an
edge degenerates to a point, the adjacent faces will degenerate to this point, too.
A consequence of this definition is, that the polygonal faces in a regular and weakly
stable mesh are regular and stable in the two-dimensional sense.

Lemma 2.18 Let K ∈ Kh be an element of a regular and weakly stable polyhedral
mesh Kh. The auxiliary discretization of tetrahedra Tl(K) and Tl (Kh) satisfy a
maximum angle condition, i.e., all dihedral angles between faces and all angles
within a triangular face are uniformly bounded from above by a constant which is
strictly less than π . The maximum angle only depends on σK , σF , cF and the mesh
level l in the face discretization.

Proof Similar as in the proof of Lemma 2.14, we only consider l = 0. The general
case l > 0 follows due to the fact that the triangles in the face triangulation Tl (F )
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are similar to those in T0(F ). Thus, the arguments turn over and the dependence
on l enters the constants. In order to prove the maximum angle condition for the
tetrahedral mesh, we distinguish several cases. First we show that the angles in the
surface triangles of the tetrahedra are bounded uniformly by a constant strictly less
than π . Afterwards, we bound the dihedral angles.

Let Ttet ∈ T0(K) be a tetrahedra and T one of its triangular faces. If T ∈ T0(F )

for a face F ∈ F (K), then all angles of T are bounded uniformly from above by a
constant strictly less than π depending only on σF according to Lemma 2.8, since
F is a regular polygon. On the other hand, if T ⊂ K , we consider the intersection
of the polyhedral element K with the plane in which T lies. The intersection is
obviously a polygon and we denote it by P . Since K is star-shaped with respect to
a ball of radius ρK and center zK , we easily see that P is star-shaped with respect
to the enclosed circle of radius ρK and center zK . Thus, P is a regular polygon
because of

hP

ρP

≤ hK

ρK

≤ σK .

Consequently, T is part of an auxiliary triangulation of a regular polygonal element
and thus its angles are bounded from above according to Lemma 2.8 by a constant
depending only on σK .

Next, we consider the dihedral angles of Ttet. Let Ti , i = 1, 2, 3, 4 be the
triangular faces of Ttet and Eij = Ti ∩ Tj be the edge shared by the triangles Ti

and Tj for i 	= j . Furthermore, let the triangles be numbered such that T1 ∈ T0(F )

for some face F ∈ F (K) and Ti ⊂ K for i = 2, 3, 4. We distinguish again two
cases. First, consider the dihedral angle between T1 ⊂ ∂K and Ti ⊂ K , i = 2, 3, 4.
We denote the dihedral angle by δ. It is given in the plane orthogonal to E1i as the
angle between the two planes spanned by T1 and Ti . Without loss of generality let
zK lie on the plane orthogonal to E1i and denote by y the intersection of all three
planes, see Fig. 2.5. For δ ≥ π/2, it is

δ = π

2
+ arccos

(
ha

|y − zK |
)

,

Fig. 2.5 The altitude
ha = alt(Ttet, T1),
intersection point y and
demonstration of dihedral
angle δ in plane orthogonal to
the edge Eij through zK
between the triangles T1 and
Ti as described in the proof of
Lemma 2.18 zK

T1

E1i

y

ha
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where ha = alt(Ttet, T1) is the altitude of the tetrahedron Ttet with respect to
the side T1, which corresponds to the distance of zK to the plane through T1.
Consequently, it is ha ≥ ρK due to the regularity of the polyhedral element K .
Furthermore, K is enclosed by a sphere of radius hK and center zK . Since y is the
orthogonal projection of zK onto the line through E1i , its distance to zK is smaller
than the distance of zK to the edge, thus |y − zK | ≤ hK . This yields

ha

|y − zK | ≥ ρK

hK

≥ 1

σK
,

because of the regularity. Since arc cosine is monotonically decreasing, we obtain

δ ≤ π

2
+ arccos

(
1

σK

)
< π .

It remains to bound the dihedral angle between triangular faces of the tetrahedra
with Ti, Tj ⊂ K . We denote the angle again by δ. According to Proposition 3.1
in [122], the volume VTtet of Ttet satisfy the relation

VTtet = 2

3hEij

|Ti | |Tj | sin δ .

On the other hand it is

VTtet = 1

3
alt(Ttet, T1) |T1| .

If we assume π/2 ≤ δ ≤ π , this yields

δ = π

2
+ arccos

(
hEij alt(Ttet, T1) |T1|

2|Ti| |Tj |
)

. (2.5)

The areas of the triangles are given by

|T�| = 1

2
hEij alt(T�,Eij ) for � = i, j .

Obviously, the altitude alt(T�,Eij ) is smaller than the edge shared by T� and T1 and
thus smaller than the diameter of T1. This yields

|T�| ≤ 1

2
hEij hE1� ≤ 1

2
hEij hT1 for � = i, j .
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Furthermore, it is alt(Ttet, T1) ≥ ρK and hEij ≤ hK . Consequently, we obtain for
the argument in the arc cosine in (2.5)

hEij alt(Ttet, T1) |T1|
2|Ti| |Tj | ≥ 2 alt(Ttet, T1) |T1|

hEij h2T1

≥ 2 ρK |T1|
hK h2T1

≥ 2πρ2
T1

σK h2T1

,

where we used the regularity of the mesh and the incircle of T1 with radius ρT1 ,
which gives |T1| ≥ πρ2

T1
, in the last step. Finally, we employ the weak stability

of the mesh, which ensures that the polygonal faces are regular and stable in the
two-dimensional sense. Therefore, the auxiliary triangulation of the polygonal faces
is regular in the sense of Ciarlet and it is hT1/ρT1 ≤ σT , where σT only depends
on σF and cF , see Lemma 2.3. Since the arc cosine is monotonically decreasing,
Eq. (2.5) yields with the previous considerations

δ ≤ π

2
+ arccos

(
2πρ2

T1

σK h2T1

)
≤ π

2
+ arccos

(
2π

σK σ 2
T

)
< π .

In summary, all angles in the surface triangles of the tetrahedra and all dihedral
angles between faces are bounded by constants that are strictly less than π .
Taking the maximum of them proves the maximal angle condition for the auxiliary
discretization of tetrahedra. �

2.2.3 Mesh Refinement

Although the use of polygonal and polyhedral meshes is quite interesting for
practical applications, only a few commercial mesh generators are able to create and
refine such general meshes. For the two-dimensional case there is the freeMATLAB
tool PolyMesher available, see [167], and in three-dimensions one often exploits
either Voronoi meshes, see [70], or dual meshes to given tetrahedral discretizations.
In the following, we assume that a polygonal or polyhedral mesh is given and we
address the refinement of such meshes. We may perform uniform refinement, where
all elements of a mesh are refined, or adaptive refinement, where only a few elements
are refined according to some criterion. For polygonal and polyhedral meshes, there
is a great flexibility for the refinement process. We do not have to take care on
hanging nodes and edges, since they are naturally included in such meshes.

For the refinement process, we choose the bisection of elements. For the
description of the procedure, we focus on a single polygonal or polyhedral element
K ⊂ R

d , d = 2, 3. Furthermore, we assume that K is convex. The method might
be adapted to non-convex, star-shaped elements, but this would yield several special
cases which shall be omitted here. In order to obtain some geometrical information
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Fig. 2.6 Refinement of an element: element with center x̄K (left), element with eigenvector
(middle), two new elements (right)

of the element shape, we first compute the covariance matrix

MCov(K) = 1

|K|
∫

K

(x − x̄K)(x − x̄K)�dx ,

where

x̄K = 1

|K|
∫

K

x dx

is the barycenter of the element. The matrix MCov(K) ∈ R
d×d is symmetric

and positive definite due to construction. We compute its eigenvalues and the
corresponding eigenvectors. This principle component analysis provides some
information on the dimensions of the element. The square root of the eigenvalues
give the standard deviation in the direction of the corresponding eigenvector. Thus,
the eigenvector which belongs to the biggest eigenvalue points into the direction of
the longest extend of the element K . Consequently, we split the element orthogonal
to this eigenvector through the barycenter x̄K of K , see Fig. 2.6. Afterwards, two
new elements are obtained. This strategy actually works in any dimension d ∈ N.
Similar ideas are used in [144] to cluster point clouds which are used for matrix
approximation in fast boundary element methods.

Figure 2.7 shows the uniform refinement starting from a triangle. The meshes are
obtained after one, three, five and seven refinement steps. We recognize that even
a refinement of a triangle results in an unstructured polygonal mesh. Nevertheless,
the resulting sequence of meshes has a uniform character. A big advantage of the
introduced strategy can be seen in an adaptive context. It is possible to perform
local refinements within a few elements. Classical mesh refinement techniques for
triangular meshes, for example, suffer from the fact that local refinement propagates
into neighbouring regions. This behaviour is necessary since the resulting meshes
have to be admissible and thus the use of hanging nodes is very restricted or even
avoided.
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Fig. 2.7 Uniform refinement of a triangle after one, three, five and seven refinement steps

Finally, the question arises whether the regularity and the stability of a mesh is
preserved during the refinement. In general this is not possible with the prescribed
procedure. During the bisection of elements, small edges and thin faces might occur.
However, the aspect ratios for convex elements stay bounded, since the algorithm
tries to equilibrate the extend of the element in its characteristic directions. Thus,
the regularity is preserved for convex elements in two-dimensions. The stability,
however, has to be enforced during the refinement process if it is needed. The
introduced bisection strategy for mesh refinement is applied in most of the numerical
experiments presented in this book.

2.3 Trefftz-Like Basis Functions

Our goal is to introduce finite dimensional spaces V k
h over polygonal and polyhedral

discretizations of the domain Ω ⊂ R
d , d = 2, 3, which approximate the Sobolev

space H 1(Ω). The index k ∈ N denotes the order of the approximation space. In
this section, a more general strategy is presented which extends the original idea
in [146] to arbitrary order. The approximation space V k

h = span Ψ k
h is constructed

as span of some basis Ψ k
h . For d = 2, this basis is specified in the following and

consists of nodal, edge and element basis functions. These functions are indicated
by ψz, ψE and ψK , respectively. All of them have certain degrees and thus they
are marked and numbered by indices like ψE,i and ψK,i,j for some i, j . However,
for shorter notation, we will skip sometimes parts of the indices if the meaning is
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clear from the context and we just write ψ , ψi and ψi,j , for example. For the three-
dimensional case with d = 3, the ideas will be generalized and we have additional
face basis functions.

The basis functions are defined element-wise by local solutions of boundary
value problems in the spirit of Trefftz [168]. The diffusion equation in mind, we uti-
lize Laplace and Poisson equations over each element with Dirichlet boundary data
to construct the basis functions. Due to the local Dirichlet boundary conditions, the
traces of the basis functions will be continuous across element interfaces, i.e. they
are H 1-conforming. In the following, we first introduce the two-dimensional case
in the Sects. 2.3.1–2.3.3. Afterwards, a simple generalization to three-dimensions is
given in Sect. 2.3.4, which builds on the previous considerations.

2.3.1 Node and Edge Basis Functions

Let Kh be a polygonal mesh of a bounded domain Ω ⊂ R
2. The functions ψz

and ψE , which are assigned to nodes and edges, are defined to satisfy the Laplace
equation on each element. Their Dirichlet trace on the element boundaries is chosen
to be continuous and piecewise polynomial. Thus, we define for each node z ∈ Nh

the basis function ψz as unique solution of

−�ψz = 0 in K for all K ∈ Kh ,

ψz(x) =
{
1 for x = z ,

0 for x ∈ Nh \ {z} ,
(2.6)

ψz is linear on each edge of the mesh .

So, the function ψz is locally defined as solution of a boundary value problem over
each element. If the element K ∈ Kh is convex, the boundary value problem can
be understood in the classical sense and it is ψz ∈ C2(K) ∩ C0(K), see [82, 87].
However, we explicitly allow star-shaped elements within the discretization Kh of
the domain Ω . In this case, the boundary value problem is understood in the weak
sense and we obtain ψz ∈ H 1(K). Since the Dirichlet trace is continuous across
element interfaces, the local regularity of ψz yields ψz ∈ H 1(Ω). This will also be
true for the edge and element basis functions. In the following, the local problems
for the definition of basis functions are always understood in the classical or weak
sense depending on the shape of the elements. In contrast to [146], we only make use
of the fact that the nodal, edge and element basis functions satisfy ψ ∈ H 1(K) for
K ∈ Kh and we do not use a maximum principle [82, 140] for harmonic functions
which would require convex elements.
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In the case that Kh is an admissible triangulation without hanging nodes, the
basis functions turn out to be the standard hat functions of classical finite element
methods. This relation is quite obvious since the lowest order linear basis functions
satisfy the data on the boundary of each element and they are harmonic because of
their linearity. According to the unique solvability of the Dirichlet problem for the
Laplace equation the hat functions coincide with the basis functions defined here.
In this sense, the BEM-based FEM can be seen as a generalization of standard finite
element methods.

If Kh is a polygonal mesh containing only convex elements, another connection
can be recognized. For the model problem, we rediscover the so called harmonic
coordinates mentioned in several articles like [77, 84, 112, 126]. These harmonic
coordinates restricted to one element K ∈ Kh are a special type of barycentric
coordinates, i.e., they satisfy

ψz(x) ≥ 0 on K (2.7)

for z ∈ N (K) and it is

v =
∑

z∈N (K)

v(z)ψz (2.8)

for any linear function v on K according to [84]. Condition (2.7) follows directly
from the minimum-maximum principle [82, 140]. To verify (2.8), we observe that
both sides of the equation are harmonic and coincide on the boundary of K .
Therefore, the difference of both sides is harmonic and identical to zero on the
boundary. Using the minimum-maximal principle again shows that Eq. (2.8) is valid
in the whole element. In [76, 77], the authors have proven for any set of barycentric
coordinates and especially for the harmonic coordinates, which are considered in
this section, that they satisfy the estimate

0 ≤ Llow
z ≤ ψz ≤ L

up
z ≤ 1 on K

for z ∈ N (K). Here, Llow
z and L

up
z are piecewise linear functions defined as

follows. Both functions are equal to one at the node z and they are equal to zero at
every other node on the boundary of K . Additionally, Llow

z is linear on the triangle
constructed by connecting the node before and after z on the boundary, and zero
else, see Fig. 2.8. The function L

up
z is linear on each triangle that is obtained by

connecting z with all other nodes on the boundary of K .
To introduce the edge basis functions ψE , polynomial data is prescribed on the

element boundaries. Therefore, we first review a hierarchical polynomial basis over
the interval [0, 1]. We set

p0(t) = t and p1(t) = 1 − t for t ∈ [0, 1] ,
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Fig. 2.8 Triangles for construction of Llow
z (left) and L
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z (right)
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Fig. 2.9 Visualization of pi for i = 0, . . . , 4

and assign these functions to the points t0 = 0 and t1 = 1, respectively. Afterwards,
we define pi ∈ P i ([0, 1]), i ≥ 2 with exact degree i recursively as

pi = p̃i

p̃i(ti )
,

where p̃i ∈ P i ([0, 1]) \ {0} is a polynomial with p̃i (tj ) = 0 for j = 0, . . . , i − 1
and

ti = max{arg max
t∈[0,1]

|p̃i(t)|} .

The polynomial pi is well defined since p̃i is unique up to a multiplicative constant
and we obviously have ti 	= tj for j < i. In Fig. 2.9, the first polynomials are
visualized. One easily sees that these polynomials are linearly independent and that
for k ≥ 1

Pk([0, 1]) = span {pi : i = 0, . . . , k} .
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Fig. 2.10 Visualization of ψz, ψE,3 and ψK,1,0 over rectangular element with additional node on
straight line, nodes are marked with black dots

For the definition of edge basis functions ψE , we make use of a linear
parametrization of the corresponding edge. Let E ∈ Eh with E = zbze and

E : [0, 1] � t �→ FE(t) = zb + t (ze − zb) .

In contrast to nodal basis functions, we have more than one basis function per edge.
We define ψE,i for i = 2, . . . , k as unique solution of

−�ψE,i = 0 in K for all K ∈ Kh ,

ψE,i =
{

pi ◦ F−1
E on E ,

0 on Eh \ {E} ,

and we assign these functions to the points zE,i = FE(ti ). In Fig. 2.10, an
approximation of such a function is visualized over one rectangular element. As in
the case of nodal basis functions, we observe that the Dirichlet trace is continuous
along element boundaries. Thus, we have ψE,i ∈ H 1(K) for K ∈ Kh which yields
ψE,i ∈ H 1(Ω). With the conventions

ψE,0 = ψzb and ψE,1 = ψze ,

we find that

Pk(E) = span {ψE,i

∣∣
E

: i = 0, . . . , k}
and

ψE,i(zE,j ) = δij for j = 0, . . . , i ,

where δij is the Kronecker symbol. According to the last property, the functions ψz
and ψE,i are linearly independent. So, we collect them in the basis

Ψ k
h,H = {ψz, ψE,i : z ∈ Nh,E ∈ Eh, i = 2, . . . , k} ,
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and we have

V k
h,H = span Ψ k

h,H ⊂ H 1
�(Kh) ⊂ H 1(Ω) .

Here, for k = 1, only nodal basis functions are used in Ψ k
h,H and for k ∈ N,

Hk
�(Kh) =

{
v ∈ Hk(Ω) : (∇v,∇w)L2(K) = 0 ∀w ∈ H 1

0 (K), ∀K ∈ Kh

}

(2.9)

is the space of piecewise weakly harmonic functions.

2.3.2 Element Basis Functions

Next, we address the definition of element basis functions over the polygonal
mesh Kh of a domain Ω ⊂ R

2. To motivate the procedure, we remember that
the nodal and edge basis functions satisfy the Laplace equation inside the elements
and are polynomial on the edges. The nodal functions ψz are linear on edges, and
thus they satisfy the one dimensional Laplace equation along edges: �1ψz = 0 on
E ∈ Eh. If we compute the 1D-Laplacian of the edge functionsψE along the edgeE,
we observe that�1ψE,i ∈ P i−2(E), i ≥ 2, and thus the edge basis functions satisfy
the Poisson equation with polynomial right hand side on each edge. Additionally, it
is easy to check that

Pk−2(E) = span {�1ψE,i : i = 2, . . . , k}

for k ≥ 2. From this point of view, we exchanged the Laplace equation for the
Poisson equation on the edges as we have made the step from nodal to edge basis
functions. The same is done for the element basis functions. Here, we exchange
the Laplace for the Poisson equation in the elements and we prescribe right
hand sides such that they form a basis of Pk−2(K). Thus, we define ψK,i,j for
K ∈ Kh, i = 0, . . . , k − 2 and j = 0, . . . , i as unique solution of

−�ψK,i,j = pK,i,j in K ,

ψK,i,j = 0 else ,
(2.10)

where

Pk−2(K) = span {pK,i,j : i = 0, . . . , k − 2 and j = 0, . . . , i} . (2.11)

Consequently, we have 1
2k(k − 1) element basis functions per element. The support

of such a function is limited to one element, i.e. supp ψK,i,j = K , and the function
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itself belongs to H 1
0 (K). Due to the local regularity, we obtain ψK,i,j ∈ H 1(Ω).

See Fig. 2.10 for a visualization of such an element basis function.

Remark 2.19 In the numerical experiments we will choose the polynomial basis as
shifted monomials, namely as

pK,i,j (x) = (x1 − zK,1
)i−j (

x2 − zK,2
)j

, x = (x1, x2
)� ∈ K ,

where zK = (
zK,1, zK,2

)�
is given in Definition 2.1. For i, j = 0, the element

bubble function from [146] is recovered, since pK,0,0 = 1.

We define the set of functions

Ψ k
h,B = {ψK,i,j : K ∈ Kh, i = 0, . . . , k − 2 and j = 0, . . . , i}

and the space

V k
h,B = span Ψ k

h,B ⊂ H 1(Ω) ,

which consists of element bubble functions that vanish on the skeleton of the mesh.
For k = 1, this means Ψ k

h,B = ∅. Furthermore, we point out that the definition of

element basis functions ψK,i,j ∈ Ψ k
h,B is equivalent to the variational formulation

Find ψK,i,j ∈ H 1
0 (K) :

(∇ψK,i,j ,∇w
)
L2(K)

= (pK,i,j , w
)
L2(K)

∀w ∈ H 1
0 (K).

(2.12)

Lemma 2.20 The functions in Ψ k
h,B are linearly independent.

Proof Since the support of an element basis function is restricted to one element,
the functions belonging to different elements are independent. Therefore, it is
sufficient to consider just functions over one element in this proof. Let αi,j ∈ R

for i = 0, . . . , k − 2 and j = 0, . . . , i and let
∑

i,j αi,jψi,j = 0. Consequently,
we have

∑
i,j αi,j∇ψi,j = 0. Due to this and since the element basis functions

ψi,j = ψK,i,j satisfy (2.12), we obtain

(∑

i,j

αi,j pi,j , w
)

L2(K)
=
(∑

i,j

αi,j∇ψi,j ,∇w
)

L2(K)
= 0 for w ∈ H 1

0 (K) .

The function space C∞
0 (K) is dense in H 1

0 (K) and thus the fundamental lemma
of the calculus of variations yields

∑
i,j αi,j pi,j = 0. Because of the choice of

pi,j as basis of Pk−2(K), it follows that αi,j = 0 for i = 0, . . . , k − 2 and
j = 0, . . . , i. �
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2.3.3 Final Approximation Space

The final basis for the approximation space of H 1(Ω) is now defined as

Ψ k
h = Ψ k

h,H ∪ Ψ k
h,B ,

and combines the nodal, edge and element basis functions. All functions in Ψ k
h,H

locally satisfy the Laplace equation on each element and so, they are piecewise
harmonic in a weak sense. Different from the functions in Ψ k

h,H , the functions

in Ψ k
h,B are exactly those which are not locally harmonic. They obviously serve

the approximation of non-harmonic functions. Furthermore, we observe that

(∇ψ,∇ϕ)L2(K) = 0 for ψ ∈ Ψ k
h,H , ϕ ∈ Ψ k

h,B , (2.13)

since ψ ∈ H 1
�(Kh) and ϕ ∈ H 1

0 (K), cf. (2.9). Sometimes, we will consider the
basis functions restricted to a single element. For this reason, we define forK ∈ Kh

Ψ k
h

∣∣
K

=
{
ψ
∣∣
K

: ψ ∈ Ψ k
h

}

and Ψ k
h,H

∣∣
K

as well as Ψ k
h,B

∣∣
K

accordingly. The final approximation space is
conforming, i.e.

V k
h = span Ψ k

h ⊂ H 1(Ω) ,

and can be written as a direct sum of piecewise weakly harmonic functions and
element bubble functions. The space of element bubble functions can be further
decomposed into its contributions from the single elements, because of the zero
traces on the element boundaries. Thus, it is

V k
h = V k

h,H ⊕ V k
h,B with V k

h,B =
⊕

K∈Kh

V k
h,B

∣∣
K

,

where the same notation holds for the restriction to a single element as above.
A simple counting argument shows that

dimV k
h

∣∣
K

= k |N (K)| + 1
2k(k − 1) ,

since

dimV k
h,H

∣∣
K

= k |N (K)| and dimV k
h,B

∣∣
K

=
(

d + k − 2

d

)
= 1

2k(k − 1) .
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Due to the construction of the basis, it is easily seen that the approximation space
can be written in the following form

V k
h =

{
v ∈ H 1(Ω) : �v ∈ Pk−2(K) and v|∂K ∈ Pk

pw(∂K) ∀K ∈ Kh

}

with the conventionP−1(K) = {0}. Thus, the functions in V k
h are polynomials of

degree k over each edge and their Laplacian over each element is a polynomial of
degree k − 2.

The virtual element method (VEM) in [25] also uses this approximation space.
Therefore, the BEM-based FEM and the VEM seek the approximation of the
solution of the boundary-value problem for the diffusion Eq. (2.1) in the same
discrete space. The VEM reduces all computations to carefully chosen degrees of
freedom and to local projections into polynomial spaces. The BEM-based FEM
in contrary makes use of the explicit knowledge of the basis functions and thus
enables the evaluation of the approximation inside the elements. Both methods rely
on clever reformulations to avoid volume integration. Since the BEM-based FEM
applies Trefftz-like basis functions, which are related to the differential equation of
the global problem, the discrete space for the BEM-based FEM and the VEM differ
as soon as more general boundary-value problems are considered.

2.3.4 Simple Generalization to 3D

This section gives a straight forward generalization to the three-dimensional case.
A more involved one is postponed to a later chapter. LetKh be a polyhedral mesh of
a bounded domain Ω ⊂ R

3. We restrict ourselves here to polyhedral elements that
have triangular faces. This can be always achieved by triangulating the polygonal
faces of general polyhedra. For this purpose we may use the auxiliary triangulation
T0(∂K) introduced in Sect. 2.2.2 and reinterpretK as element with triangular faces.
Consequently, one additional node per face is introduced on the surface of the
polyhedral element K . Several constructed triangular faces meet in this node and
lie on a flat part of ∂K . However, the notion of polyhedral elements allows for such
degenerations. A more direct approach for the treatment of polygonal faces will be
discussed in Sect. 6.2.

Turning to the construction of the approximation space V k
h in three-dimensions,

we may recognize that it can be written down immediately as

V k
h =

{
v ∈ H 1(Ω) : �v ∈ Pk−2(K) and v|∂K ∈ Pk

pw(∂K) ∀K ∈ Kh

}
.

Thus, the only difference to the two-dimensional case is that the functions in V k
h are

now piecewise polynomial of degree k over the triangular faces of polyhedra instead
of piecewise polynomials over the edges of polygonal elements. Consequently, the
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considerations from the previous sections can be directly generalized to polyhedral
meshesKh, for which the set of facesFh consists of triangles only.

The space V k
h is again constructed as a direct sum of piecewise weakly harmonic

functions with polynomial traces on the faces of the mesh and element bubble
functions that vanish on the skeleton but have a polynomial Laplacian inside the
elements, i.e.

V k
h = V k

h,H ⊕ V k
h,B and V k

h,B =
⊕

K∈Kh

V k
h,B

∣∣
K

.

Let vh = vh,H + vh,B ∈ V k
h with vh,H ∈ V k

h,H and vh,B ∈ V k
h,B . For each element

K ∈ Kh, it holds

− �vh,H = 0 in K and vh,H = p∂K on ∂K , (2.14)

as well as

− �vh,B = pK in K and vh,B = 0 on ∂K , (2.15)

for some p∂K ∈ Pk
pw(∂K) and pK ∈ Pk−2(K). Thus, vh,H and vh,B are uniquely

defined by the polynomial data p∂K and pK , respectively. Consequently, the basis
Ψ k

h of V k
h is constructed in an element-wise fashion respecting the direct sum, such

that

Ψ k
h

∣∣
K

= Ψ k
h,H

∣∣
K

∪ Ψ k
h,B

∣∣
K

for V k
h

∣∣
K

= V k
h,H

∣∣
K

⊕ V k
h,B

∣∣
K

.

We choose a basis for Pk
pw(∂K) and Pk−2(K). For each function in these sets

a harmonic basis function and an element basis function are obtained by (2.14)
and (2.15), respectively. Due to this construction, a simple counting argument shows
that

dimV k
h

∣∣
K

= |N (K)|+(k−1)|E (K)|+ 1
2 (k−1)(k−2)|F (K)|+ 1

6k(k−1)(k+1) ,

since

dimV k
h,H

∣∣
K

= |N (K)| + (k − 1)|E (K)| + 1
2 (k − 1)(k − 2)|F (K)|

and

dimV k
h,B

∣∣
K

=
(

d + k − 2

d

)
= 1

6k(k − 1)(k + 1) .

In the previous sections on the two-dimensional case, this construction has been
carried out in more detail and we have given a precise choice of basis functions.
For the three-dimensional case we are content with the abstract setting and pass a
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detailed presentation. We point out, however, the important orthogonality property
given in (2.13), which still holds on K ∈ Kh, namely

(∇vh,H ,∇vh,B )L2(K) = 0 for vh,H ∈ V k
h,H , vh,B ∈ V k

h,B .

This is a consequence of the weakly harmonic functions, cf. (2.9), and the element
bubble functions that satisfy

V k
h,H ⊂ H 1

�(Kh) and V k
h,B ⊂

⊕

K∈Kh

H 1
0 (K) .

Remark 2.21 For the implementation and the numerical experiments it is important
to specify the choice of basis functions. As discussed above, the sets Ψ k

h,H and Ψ k
h,B

are constructed by choosing a basis forPk
pw(∂K) andPk−2(K), respectively. It is

convenient to choose the classic Lagrange elements over triangles, cf. [40, 151], for
the basis of Pk

pw(∂K), whereas the basis of Pk−2(K) might be chosen according
to the two-dimensional case as shifted monomials, for instance.

2.4 Interpolation Operators

In this section, we are concerned with the interpolation of function in H 2(Ω) by
functions in V k

h = V k
h,H ⊕V k

h,B . Due to the Sobolev embedding theorem it holds that

H 2(Ω) ⊂ C0(Ω), see [1], and the pointwise evaluation of such functions is well
defined. Thus, we may exploit nodal interpolation to some extend. The interpolation
of non-smooth functions in H 1(Ω) is postponed to later considerations, see Chap. 3.

Since V k
h is given as a direct sum of weakly harmonic and element bubble

functions, it is natural to decompose the interpolation into two corresponding
operators. Therefore, we study

Ik
h = Ik

h,H + Ik
h,B : H 2(Ω) → V k

h ⊂ H 1(Ω)

with

Ik
h,H : H 2(Ω) → V k

h,H ⊂ H 1
�(Kh) and Ik

h,B : H 2(Ω) → V k
h,B ⊂

⊕

K∈Kh

H 1
0 (K) .

The interpolation operators Ik
h,H and Ik

h,B are discussed in the following. Further-
more, it is sufficient to introduce them over a single element, since the local nature
of the operators directly extend to their global definition. Thus, we restrict ourselves
to a single element of a regular polytopal mesh and denote the restrictions of the
operators with the same symbols.
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Fig. 2.11 Points for Lagrange interpolation into Pk(∂K) on triangles for k = 1, 2, 3

We start by the interpolation into the space of weakly harmonic functions. For
vh ∈ V k

h,H , it is �vh = 0 in K and v|∂K ∈ Pk
pw(∂K). Thus, for the definition of

Ik
h,H : H 2(K) → V k

h,H

∣∣
K

⊂ H 1
�(K) ,

we prescribe Ik
h,H v|∂K to be equal to a standard nodal interpolation operator into

the space Pk
pw(∂K) on the boundary of the polytopal element K . Afterwards, we

extend this boundary data harmonically into K . By fixing a standard interpolation
operator on ∂K , the operator Ik

h,H is uniquely defined. For this purpose, we
exploit the classical Lagrange interpolation on equidistant points along the edges
in the boundary of polygonal elements (d = 2) and on equidistributed points, see
Fig. 2.11, in the triangular faces in the boundary of polyhedral elements (d = 3).
Consequently, Ik

h,H v is constructed in such a way that it coincides in k + 1 points

on each edge and in 1
2 (k + 1)(k + 2) points on each triangular face of the elements.

Remark 2.22 In 2D, we can alternatively follow the idea from [175] and choose
a different interpolation operator for k ≥ 2 on the boundary of the polygonal
elements. The introduced points zE,i from Sect. 2.3.1 can be used for the pointwise
interpolation. For v ∈ H 2(Ω), this yields

Ik
h,H v =

∑

z∈Nh

vzψz +
∑

E∈Eh

k∑

i=2

vE,iψE,i ,

where the coefficients are given as

vz = v(z) for z ∈ Nh

and

vE,i = v(zE,i) −
i−1∑

j=0

vE,j ψE,j (zE,j ) for E ∈ Eh, i = 2, . . . , k .

Next, we consider the definition of the interpolation operator into the space of
element bubble functions, namely

Ik
h,B : H 2(K) → V k

h,B

∣∣
K

⊂ H 1
0 (K) .
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Therefore, let

Ψ k
h,B

∣∣
K

= {ψK,i : i = 1, . . . , n(k)} and {pK,i = −�ψK,i : i = 1, . . . , n(k)}
(2.16)

be the basis of V k
h,B

∣∣
K

and the corresponding basis of Pk−2(K), respectively,

where n(k) = dimV k
h,B

∣∣
K

is the number of basis functions. Compare the former

definition (2.10)–(2.11) in 2D and the construction (2.15) in 3D. For v ∈ H 2(K),
we have

Ik
h,Bv =

n(k)∑

i=1

vK,iψK,i ∈ V k
h,B

∣∣
K

,

where the coefficients vK,i are defined such that Ik
h,Bv is the orthogonal projection

of v − Ik
h,H v into V k

h,B

∣∣
K
with respect to the weighted inner product

(u, v)hH 1(K) = (u, v)L2(K) + h2K(∇u,∇v)L2(K) . (2.17)

Thus, Ik
h,Bv is uniquely defined by

(
Ik

h,Bv,w
)

hH 1(K)
=
(
v − Ik

h,H v,w
)

hH 1(K)
∀w ∈ V k

h,B

∣∣
K

. (2.18)

The properties of the orthogonal projection yield

‖Ik
h,Bv‖hH 1(K) ≤ ‖v − Ik

h,H v‖hH 1(K) , (2.19)

where the weighted norm is given as ‖ · ‖2
hH 1(K)

= (·, ·)hH 1(K). If hK = 1
the weighted inner product and the weighted norm coincide with the usual ones
in H 1(K), which are denoted by (·, ·)H 1(K) and ‖ · ‖H 1(K), respectively.

In the following, we investigate the properties of the interpolation operators in
more details. For this purpose, let Kh be a regular polytopal mesh.

Lemma 2.23 The restrictions of the interpolation operators Ik
h,H and Ik

h onto an
element K ∈ Kh satisfy

Ik
h,H p = p for p ∈ Pk(K) with �p = 0 in K ,

and

Ik
h p = p for p ∈ Pk(K) .
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Proof Let p ∈ Pk(K) with �p = 0. According to the definition, Ik
h,H p is given

as a classical, nodal interpolation into the space Pk
pw(∂K) on the boundary of the

element K . Since p ∈ Pk
pw(∂K) and polynomials are preserved by the classical

interpolation operators,p and Ik
h,H p are identical on the boundary of the elementK .

Furthermore, both functions satisfy the Laplace equation insideK . Thus, the unique
solvability of the Dirichlet problem for the Laplace equation yields Ik

h,H p = p, the
first statement of the lemma.

Next, let p ∈ Pk(K) and therefore −�p ∈ Pk−2(K). Since the polynomials
pK,i form a basis of Pk−2(K), see (2.16), there are unique coefficients βK,i ∈ R

such that

−�p =
n(k)∑

i=1

βK,ipK,i .

Furthermore, we define

p̃ = Ik
h,H p +

n(k)∑

i=1

βK,iψK,i . (2.20)

We observe that p as well as p̃ satisfy the boundary value problem

−�u =
n(k)∑

i=1

βK,ipK,i in K ,

u = p on ∂K ,

at least in the weak sense, due to construction. Because of the unique solvability of
this problem, we conclude that p = p̃. By (2.20), we obtain

p − Ik
h,H p =

n(k)∑

i=1

βK,iψK,i ∈ V k
h,B

∣∣
K

.

Since Ik
h,B p is defined as orthogonal projection of p − Ik

h,H p into V k
h,B

∣∣
K
, it is

Ik
h,B p = p − Ik

h,H p and the second statement of the lemma follows. �
A consequence of this lemma is that

Pk(K) ⊂ V k
h

∣∣
K

,

i.e., the space of polynomials of degree k is locally embedded in the approximation
space over each element. Obviously, the element basis functions are essential to
capture the non-harmonic polynomials.
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Lemma 2.24 The restrictions of the interpolation operators Ik
h,H and Ik

h onto an
element K ∈ Kh of a regular and stable polytopal meshKh with hK = 1 are linear
and continuous. Furthermore, there are constants c1 and c2, which only depend on
the regularity and stability parameters of the mesh, on k and on the dimension d ,
such that

‖Ik
h,H v‖H 1(K) ≤ c1 ‖v‖H 2(K) and ‖Ik

hv‖H 1(K) ≤ c2 ‖v‖H 2(K)

for all v ∈ H 2(K).

Proof The linearity of the operators is obvious, so we only have to prove the given
estimates which also ensure the continuity. Therefore, we make use of an auxiliary
discretization Th(K) of K into simplicial elements, i.e., into triangles (d = 2) and
tetrahedra (d = 3). In two-dimensions, we connect the nodes on the boundary of K

with the point zK and in three-dimensions we exploitT0(K) from Sect. 2.2.2. Since
Kh is regular and stable, these auxiliary meshes are shape-regular in the sense of
Ciarlet [58] according to Lemmata 2.3 and 2.14, respectively. Thus, neighbouring
simplices share either a common node, edge or face and the aspect ratio of each
simplex is uniformly bounded by some constant σT . Because the auxiliary mesh is
regular, we can use classical interpolation operators, see e.g. [58]. Let

IT : H 2(K) → Pk
pw(Th(K))

be such a classical operator with

‖v − IT v‖H 1(K) ≤ CT ,1hT |v|H 2(K) and ‖IT v‖H 1(K) ≤ CT ,2 ‖v‖H 2(K)

(2.21)

for v ∈ H 2(K), where hT = max{hT : T ∈ Th(K)} and

Pk
pw(Th(K)) =

{
p ∈ C0(K) : p

∣∣
T

∈ Pk(T ) ∀T ∈ Th(K)
}

.

The constants CT ,1 and CT ,2 only depend on the approximation order k, the space
dimension d as well as on σT and thus on the regularity and stability parameters of
the polytopal meshKh.

Next, we prove the continuity of Ik
h,H , i.e. the estimate

‖Ik
h,H v‖H 1(K) ≤ c ‖v‖H 2(K) for v ∈ H 2(K) .

Let v ∈ H 2(K) be fixed. The interpolation Ik
h,H v satisfies the boundary value

problem

−�u = 0 in K ,

u = gv on ∂K ,
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where gv = Ik
h,H v

∣∣
∂K

is a piecewise polynomial of degree k on the boundary ∂K .
We write u = u0 + ug with ug = IT v and obtain the Galerkin formulation

Find u0 ∈ H 1
0 (K) : (∇u0,∇w)L2(K) = −(∇ug,∇w)L2(K) ∀w ∈ H 1

0 (K) ,

which has a unique solution. Testing with w = u0 and applying the Cauchy–
Schwarz inequality yield

|u0|2H 1(K)
≤ |(∇ug,∇u0)L2(K)| ≤ |ug|H 1(K)|u0|H 1(K) ,

and consequently

|u0|H 1(K) ≤ ‖ug‖H 1(K) = ‖IT v‖H 1(K) .

Because of the piecewise smoothness of the boundary of K and since it can be
embedded into a square of side length hK , the Poincaré–Friedrichs inequality reads

‖w‖L2(K) ≤ hK |w|H 1(K) for w ∈ H 1
0 (K) ,

see e.g. [38]. By the use of the given estimates and hK = 1, we obtain

‖Ik
h,H v‖H 1(K) ≤ ‖u0‖H 1(K) + ‖ug‖H 1(K)

=
(
‖u0‖2L2(K) + |u0|2H 1(K)

)1/2 + ‖IT v‖H 1(K)

≤ √
2 |u0|H 1(K) + ‖IT v‖H 1(K)

≤
(√

2 + 1
)

‖IT v‖H 1(K)

≤ c ‖v‖H 2(K) .

Finally, we apply the continuity of Ik
h,H as well as the property (2.19) of Ik

h,B

with hK = 1 and we get

‖Ik
hv‖H 1(K) ≤ ‖Ik

h,H v‖H 1(K) + ‖Ik
h,Bv‖H 1(K)

≤ ‖Ik
h,H v‖H 1(K) + ‖v − Ik

h,H v‖H 1(K)

≤ ‖v‖H 1(K) + 2‖Ik
h,H v‖H 1(K)

≤ c ‖v‖H 2(K)

that concludes the proof. �
Remark 2.25 The stability of the mesh Kh was only needed to ensure the shape-
regularity of the auxiliarymesh, such that classical interpolation results on triangular



2.4 Interpolation Operators 49

and tetrahedral meshes can be exploited. Thus, the stability ofKh can be relaxed as
long as the interpolation estimates (2.21) on the auxiliary mesh are guaranteed. This
yields the following variants:

1. In 2D, it is sufficient to assume the regularity ofKh. According to Corollary 2.9,
the auxiliary mesh Th(K) thus satisfy a maximum angle condition. Under these
assumptions the classical Lagrange interpolation operator fulfils the desired
estimates (2.21), see [110, 114].

2. In 3D, we may assume the regularity and weak stability of Kh, which ensures
a maximum angle condition for the tetrahedral auxiliary mesh T0(K), see
Lemma 2.18. For k = 1, this is sufficient to prove the interpolation esti-
mates (2.21) on T0(K), but it is still an open question whether these estimates
hold for k > 1, see [115].

According to the previous remark, the lemma stays valid even if the edges (d = 2)
and faces (d = 3) of the polytopal mesh degenerate in their size. Thus, the edge
length hE may decreases faster than the element diameter hK such that the uniform
estimate hK ≤ cK hE is violated in two- and three-dimensions.

The condition hK = 1 in Lemma 2.24 is not satisfied in general. Thus, we
introduce a scaling for the elements K ∈ Kh such that

K̂ � x̂ �→ x = FK(̂x) = hK x̂ ∈ K . (2.22)

Consequently, hK̂ = 1 and we set v̂ = v ◦ FK . Simple calculations show that for
v ∈ H�(K), � ∈ N0 it is v̂ ∈ H�(K̂) and

|̂v|H�(K̂) = h
�−d/2
K |v|H�(K) . (2.23)

Additionally, it holds

(u, v)L2(K) = hd
K (̂u, v̂)L2(K̂) and (∇u,∇v)L2(K) = hd−2

K (∇̂û, ∇̂v̂)L2(K̂)

for u, v ∈ H 1(K), where ∇̂ denotes the gradient with respect to x̂. According to the
definition of the weighted inner product, see (2.17), we obtain

(u, v)hH 1(K) = hd
K (̂u, v̂)hH 1(K̂) . (2.24)

Lemma 2.26 The restrictions of the interpolation operators Ik
h,H and Ik

h onto an

element K ∈ Kh satisfy for v ∈ H 2(K)

̂Ik
h,H v = Îk

h,H v̂ and Îk
hv = Îk

h v̂ ,

where Îk
h = Îk

h,B + Îk
h,H and Îk

h,H as well as Îk
h,B are the interpolation operators

with respect to the scaled element K̂ .
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Proof Due to the construction of Ik
h,H by pointwise evaluations on the boundary

∂K and the harmonic extension, it is obvious that ̂Ik
h,H v = Îk

h,H v̂. Therefore, we

only have to show ̂Ik
h,Bv = Îk

h,B v̂ with Îk
h,B : H 2(K̂) → span {ψK̂,i}. Here, we

explicitly refer to the element basis functions ψK,i and ψK̂,i , cf. (2.16), in order to
emphasize the dependence on K and K̂, respectively. Furthermore, it is sufficient to
prove

̂Ik
h,Bv ∈ span {ψK̂,i}

and

(̂Ik
h,Bv, ϕ)H 1(K̂) = (Îk

h,Bv̂, ϕ)H 1(K̂) for ϕ ∈ span {ψK̂,i} ,

since for ϕ = ̂Ik
h,Bv − Îk

h,B v̂, we obtain

‖̂Ik
h,Bv − Îk

h,B v̂‖H 1(K̂) = 0 and thus ̂Ik
h,Bv = Îk

h,B v̂ .

Here, we have skipped the range i = 1, . . . , n(k) for shorter notation. In the
definition of the element basis functions ψK,i , see (2.10), we have made no specific
choice of the polynomials pK,i . In the following, let the polynomials for the
functions ψK̂,i over K̂ be chosen in dependence of ψK,i as

pK̂,i = h2Kp̂K,i .

In consequence, we obtain for the scaled element function ψ̂K,i = ψK,i ◦ FK that

−�̂ψ̂K,i = h2Kp̂K,i = pK̂,i = −�̂ψK̂,i in K̂

and ψ̂K,i = ψK̂,i on ∂K , where �̂ denotes the Laplace operator with respect to x̂.
Due to the unique solvability of the Dirichlet problem for the Laplace equation, we
get ψK̂,i = ψ̂K,i and thus

̂Ik
h,Bv =

n(k)∑

i=1

vK,i ψ̂K,i ∈ span {ψK̂,i} .

Next, let ϕK̂ ∈ span {ψK̂,i} and set ϕK = ϕK̂ ◦ F−1
K ∈ span {ψK,i}. By the

definition of Ik
h,B , we have

(
Ik

h,Bv, ϕK

)

hH 1(K)
=
(
v − Ik

h,H v, ϕK

)

hH 1(K)
.
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Applying (2.24) to both sides of the equation yields

(̂Ik
h,Bv, ϕK̂)H 1(K̂) = ( ̂v − Ik

h,H v, ϕK̂)H 1(K̂)

= (̂v − Îk
h,H v̂, ϕK̂ )H 1(K̂)

= (Îk
h,B v̂, ϕK̂)H 1(K̂) ,

where the last equality comes from the definition of Îk
h,B and the fact that the inner

products (·, ·)hH 1(K̂) and (·, ·)H 1(K̂) coincide on the scaled element. Since ϕK̂ is
chosen arbitrarily, this equality concludes the proof. �
Theorem 2.27 Let Kh be a regular and stable polytopal mesh of the bounded
polytopal domain Ω ⊂ R

d , d = 2, 3. The interpolation operators Ik
h,H and Ik

h

satisfy

‖v − Ik
h,H v‖H�(Ω) ≤ c hk+1−� |v|Hk+1(Ω) for v ∈ Hk+1

� (Kh) ,

and

‖v − Ik
hv‖H�(Ω) ≤ c hk+1−� |v|Hk+1(Ω) for v ∈ Hk+1(Ω) ,

respectively, where h = max{hK : K ∈ Kh}, � = 0, 1 and the constant c only
depends on the mesh parameters, the dimension d and on k.

Proof First, we consider the second estimate and the case � = 1. Let us start to
examine the error over one element K ∈ Kh. We scale this element in such a way
that its diameter becomes one, see (2.22). With the help of (2.23) and Lemma 2.26,
we obtain

‖v − Ik
hv‖2

H 1(K)
= ‖v − Ik

hv‖2L2(K) + |v − Ik
hv|2

H 1(K)

≤ chd
K ‖̂v − Îk

hv̂‖2
L2(K̂)

+ chd−2
K |̂v − Îk

hv̂|2
H 1(K̂)

≤ chd−2
K ‖̂v − Îk

hv̂‖2
H 1(K̂)

since hK ≤ 1. Let p̂ ∈ Pk(K̂) be the polynomial of the Bramble–Hilbert Lemma
for star-shaped domains, which closely approximates v̂, see [40]. It satisfies

|̂v − p̂|H�(K̂) ≤ C hk+1−�

K̂
|̂v|Hk+1(K̂) for � = 0, 1, . . . , k + 1 (2.25)
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with a constantC that only depends on σK , d and k. Due to the scaling hK̂ = 1 and
by the application of Lemmata 2.23 and 2.24, we obtain

‖̂v − Îk
hv̂‖H 1(K̂) ≤ ‖̂v − p̂‖H 1(K̂) + ‖̂Ik

h(̂v − p̂)‖H 1(K̂)

≤ (1 + c) ‖̂v − p̂‖H 2(K̂) (2.26)

≤ (1 + c)C |̂v|Hk+1(K̂) ,

where we have used (2.25) in the last step. Comparing the previous estimates and
transforming back to the element K yields

‖v − Ik
hv‖2

H 1(K)
≤ ch2kK |v|2

Hk+1(K)
.

Finally, we have to sum up this inequality over all elements of the mesh and apply
the square root to it. This gives

‖v − Ik
hv‖H 1(Ω) ≤ c

⎛

⎝
∑

K∈Kh

h2kK |v|2
Hk+1(K)

⎞

⎠
1/2

≤ c hk |v|Hk+1(K) ,

and finishes the proof for � = 1. The case � = 0 follows by

‖v − Ik
hv‖L2(K) = h

d/2
K ‖̂v − Îk

hv̂‖L2(K̂) ≤ h
d/2
K ‖̂v − Îk

hv̂‖H 1(K̂) ,

and the same arguments as above.
The error estimate for Ik

h,H follows in the same way. The case k = 1 is already

proven since I1h,H = I1h, thus let k ≥ 2. The main difference is in (2.25), where
we have to ensure that p̂ is harmonic. In the formulation of the Bramble–Hilbert
Lemma in [40], p̂ is chosen as Taylor polynomial of v̂ averaged over the inscribed
circle or ball of K given by the regularity of the mesh, cf. Definitions 2.1 and 2.11.
Furthermore, the commutativity is proven for the operator of the weak derivative and
the operator for the averaged Taylor polynomial for k ≥ 2. Thus, since v̂ ∈ H 2(K̂)

and �̂v̂ = 0 in the weak sense, we obtain that the averaged Taylor polynomial p̂ is
harmonic. �
Remark 2.28 The stability of the mesh Kh in the previous theorem is used only
in order to apply Lemma 2.24. This assumption can be weakened in certain cases,
see Remark 2.25. The statement of Theorem 2.27 still holds for d = 2 if solely the
regularity of the mesh is assumed, and for d = 3 with k = 1 if the mesh is regular
and weakly stable.
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2.5 Galerkin Formulation and Convergence Estimates

In the previous sections we have discussed the discretization of the Sobolev space
H 1(Ω) and investigated approximation properties. Thus, we come back to the
model problem (2.1) and formulate the finite element method with the use of the
introduced arbitrary order basis functions. Therefore, we consider in the following
a bounded polygonal or polyhedral domain Ω ⊂ R

d , d = 2, 3 which is meshed
by a regular polytopal mesh Kh. In the three-dimensional case d = 3, we restrict
ourselves to polyhedral elements with triangular faces as discussed in Sect. 2.3.4
and postpone the general case for later considerations.

In the case of inhomogeneous Dirichlet data gD , we extend this boundary data
into the interior of the domain. The extension is denoted by gD again, andwe assume
that it can be chosen such that gD ∈ V k

h . Let

V k
h,D = V k

h ∩ H 1
D(Ω) with H 1

D(Ω) = {v ∈ H 1(Ω) : v|ΓD = 0} .

The Galerkin formulation for the model problem (2.1) reads:

Find u ∈ gD + H 1
D(Ω) :

b(u, v) = (f, v)L2(Ω) + (gN , v)L2(ΓN) ∀v ∈ H 1
D(Ω) ,

(2.27)

and the corresponding discrete Galerkin formulation:

Find uh ∈ gD + V k
h,D :

b(uh, vh) = (f, vh)L2(Ω) + (gN , vh)L2(ΓN) ∀vh ∈ V k
h,D ,

(2.28)

where

b(uh, vh) = (a∇uh,∇vh)L2(Ω)

is the well known bilinear form for the diffusion problem.Due to the boundedness of
the diffusion coefficient, the bilinear form b(·, ·) is bounded and elliptic on H 1

D(Ω).
Because of the conforming approximation space V k

D ⊂ H 1
D(Ω), the Galerkin as

well as the discrete Galerkin formulation above admit a unique solution according
to the Lax–Milgram Lemma. Céa’s Lemma yields

‖u − uh‖H 1(Ω) ≤ c min
vh∈gD+V k

h,D

‖u − vh‖H 1(Ω) .

This quasi-best approximation gives rise to error estimates for the finite element
formulation. The minimum on the right hand side can be estimated from above by
setting vh = Ik

hu. Thus, the interpolation estimates derived in Sect. 2.4 turn over to
the finite element approximation. By the use of the interpolation properties given
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in Theorem 2.27, we obtain the next result. Since the mesh assumptions are mainly
needed in order to apply the interpolation error estimates, these assumptions can be
relaxed in the following theorems in certain situations, see Remark 2.28.

Theorem 2.29 Let Kh be a regular and stable polytopal mesh of the bounded
domain Ω ⊂ R

d . The solution uh ∈ V k
h of the Galerkin formulation from above

satisfies

‖u − uh‖H 1(Ω) ≤ c hk |u|Hk+1(Ω) for u ∈ Hk+1(Ω) ,

where h = max{hK : K ∈ Kh} and the constant c only depends on the mesh
parameters, the dimension d and on k.

If we assume more regularity for the model problem, the Aubin–Nitsche trick
together with Theorem 2.29 can be used to prove an error estimate in the L2-norm,
see, e.g., [40].

Theorem 2.30 Let Kh be a regular and stable polytopal mesh of the bounded
domain Ω ⊂ R

d and let there be, for any g ∈ L2(Ω), a unique solution of

Find w ∈ H 1
D(Ω) : b(v,w) = (g, v)L2(Ω) ∀v ∈ H 1

D(Ω) ,

with w ∈ H 2(Ω) such that

|w|H 2(Ω) ≤ C ‖g‖L2(Ω) .

The solution uh ∈ V k
h of the Galerkin formulation from above satisfies

‖u − uh‖L2(Ω) ≤ c hk+1 |u|Hk+1(Ω) for u ∈ Hk+1(Ω) ,

where the constant c only depends on the mesh parameters, the dimension d and
on k.

Proof Since u − uh ∈ H 1
D(Ω) ⊂ L2(Ω), there is a unique w ∈ H 2(Ω) such that

b(v,w) = (u − uh, v)L2(Ω) for v ∈ H 1
D(Ω)

with

|w|H 2(Ω) ≤ C ‖u − uh‖L2(Ω) . (2.29)

The Galerkin orthogonality

b(u − uh, vh) = 0 for vh ∈ V k
h,D ⊂ H 1

D(Ω)
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and the continuity of the bilinear form yield for I1hw ∈ V k
h,D

‖u − uh‖2L2(Ω) = (u − uh, u − uh)L2(Ω) = b(u − uh,w)

= b(u − uh,w − I1hw) ≤ c ‖u − uh‖H 1(Ω)‖w − I1hw‖H 1(Ω) .

The first term on the right hand side is estimated using Theorem 2.29 and the second
by the use of Theorem 2.27. This yields

‖u − uh‖2L2(Ω) ≤ chk+1 |u|Hk+1(Ω)|w|H 2(Ω) .

Applying (2.29) and dividing by ‖u − uh‖L2(Ω) gives the desired estimate. �
If the boundary value problem (2.1) has vanishing right hand side, i.e. f = 0,

and thus the solution satisfies u ∈ H 1
�(Kh), we can seek the approximation uh

directly in the subspace V k
h,H = span Ψ k

h,H ⊂ V k
h . Consequently, we obtain a

reduced Galerkin formulation. The same arguments as above yield optimal rates
of convergence, when the interpolation operator Ik

h,H is used instead of Ik
h.

Theorem 2.31 Under the same assumptions as in Theorems 2.29 and 2.30, the
solution uh ∈ V k

h,H of the reduced Galerkin formulation with f = 0 satisfies

‖u − uh‖H�(Ω) ≤ c hk+1−� |u|Hk+1(Ω) for u ∈ Hk+1
� (Kh) ,

where � = 0, 1 and the constant c only depends on the mesh parameters, the
dimension d and on k as well as on �.

Remark 2.32 The stability of the mesh Kh in the previous theorems can be
weakened, cf. Remark 2.25. The statements still hold for d = 2 if solely the
regularity of the mesh is assumed, and for d = 3 with k = 1 if the mesh is regular
and weakly stable.

In the realization of the discrete Galerkin formulation (2.28), we have to address
the evaluation of the bilinear form applied to ansatz functions. Since the diffusion
coefficient is assumed to be constant on each element such that a(·) = aK ∈ R on
K , for K ∈ Kh, we have

b(ψ, ϕ) = (a∇ψ,∇ϕ)L2(Ω) =
∑

K∈Kh

aK(∇ψ,∇ϕ)L2(K) for ψ, ϕ ∈ Ψ k
h .

We remember that the basis Ψ k
h = Ψ k

h,H ∪ Ψ k
h,B consists of piecewise harmonic

functions and element basis functions which vanish on the element boundaries.
According to (2.13), it holds

b(ψ, ϕ) = 0 for ψ ∈ Ψ k
h,H , ϕ ∈ Ψ k

h,B , (2.30)
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and thus the discrete Galerkin formulation (2.28) decouples. If we split the unknown
function into

uh = uh,H + uh,B with uh,H ∈ V k
h,H and uh,B ∈ V k

h,B ,

and take gD ∈ V k
h,H , we obtain with V k

h,H,D = V k
h,H ∩ H 1

D(Ω)

Find uh,H ∈ gD + V k
h,H,D :

b(uh,H , vh) = (f, vh)L2(Ω) + (gN , vh)L2(ΓN) ∀vh ∈ V k
h,H,D ,

(2.31)

and

Find uh,B ∈ V k
h,B : b(uh,B, vh) = (f, vh)L2(Ω) ∀vh ∈ V k

h,B . (2.32)

The problem (2.31) turns into a global system of linear equations with a symmetric
and positive definite matrix. Since the support of each element basis function lies
inside a single element, a closer look at (2.32) shows that the equation further
decouples. The element contributions uh,B

∣∣
K

∈ H 1
0 (K), K ∈ Kh are given as

solution of

(∇uh,B

∣∣
K

,∇vh)L2(K) = (f/aK, vh)L2(K) ∀vh ∈ V k
h,B

∣∣
K

for each element K ∈ Kh. Thus, uh,B

∣∣
K

is locally the orthogonal projection of
f/aK into V k

h,B

∣∣
K

= span Ψ k
h,B

∣∣
K

the space of element bubble functions with
respect to the scaler product (∇·,∇·)L2(K). Furthermore, uh,B is separated from
the global problem and can be computed via these local projections.

In Theorem 2.31, we already observed that in the case of a vanishing source
term, i.e. f = 0, it is sufficient to seek the approximation uh ∈ V k

h in the
subspace V k

h,H . This observation is confirmed by the decoupling of the Galerkin

formulation. Because of uh = uh,H + uh,B with uh,H ∈ V k
h,H , and since the part

uh,B ∈ V k
h,B is uniquely defined by (2.32), we get uh,B = 0 for f = 0 and thus

uh = uh,H .
Furthermore, the property (2.30) and, consequently, the decoupling of the system

is very practical from the computational point of view. The global system of linear
equations reduces to a system which only involves the degrees of freedom corre-
sponding to nodal and edge basis functions. The unknowns for the element basis
functions can be computed independently element-by-element in a preprocessing
step. Thus, there is no need for static condensation that is often used in high-order
methods to eliminate the element-local degrees of freedom.

The decoupling is also an advantage over the virtual element method in [25]. This
method has the same number of unknowns, but the systemmatrix does not decouple.
Thus, a larger system of linear equations has to be solved. Another advantage of the
presented strategy in this context is that the approximation uh can be evaluated,
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or at least be approximated, in every point inside the domain with the help of the
representation formula (4.3), see next section. The virtual element method, however,
needs some postprocessing for the evaluation in an arbitrary point.

Remark 2.33 In the construction of the approximation space V k
h , we have used

the same order k over all edges and elements. However, these Trefftz-like basis
functions can be used directly with variable order. There is no difficulty which has
to be addressed. This flexibility is advantageous in hp-adaptivity, see [63].

Remark 2.34 More details on the computational realization as well as on the local
treatment of the implicitly defined basis functions can be found in Chap. 4 and in
particular in Sect. 4.5.

In the case of a continuously varying diffusion coefficient in the model prob-
lem (2.1), it is possible to approximate the coefficient a by a piecewise con-
stant function ah. To analyse the impact of this approximation, the first Strang
Lemma [162] is used. Replacing the exact material coefficient in the bilinear
form b(·, ·) by an approximated one can be seen as an approximation bh(·, ·) of the
bilinear form. Let the approximation ah of a sufficiently regular diffusion coefficient
satisfy

0 < amin ≤ ah(x) ≤ amax for x ∈ Ω and h > 0 , (2.33)

and ah(x) = aK ∈ R for x ∈ K and K ∈ Kh. Therefore, the bilinear form bh(·, ·)
is uniformly elliptic as well as bounded on V k

h for h > 0, and the variational
formulation has a unique solution. The Strang Lemma taken from [58] gives the
error estimate

‖u − uh‖H 1(Ω) ≤ c inf
vh∈V k

h

⎧
⎨

⎩‖u − vh‖H 1(Ω) + sup
wh∈V k

h

|b(vh,wh) − bh(vh,wh)|
‖wh‖H 1(Ω)

⎫
⎬

⎭ ,

for the Galerkin approximation. Obviously, the error in the finite element method
is estimated by two terms. One which gives the quasi-best approximation error and
one which measures the error coming from the inexact bilinear form. The latter one
can be written and estimated in the form

sup
wh∈V k

h

|((a − ah)∇vh,∇wh)|
‖wh‖H 1(Ω)

≤ sup
wh∈V k

h

∑

K∈Kh

‖a − ah‖L∞(K)

|(∇vh,∇wh)K |
‖wh‖H 1(Ω)

.

If the constant values aK are chosen as averaged Tayler polynomials of order zero
over the inscribed circle and ball of Definitions 2.1 and 2.11, respectively, we have
‖a − ah‖L∞(K) ≤ chK‖a‖W 1∞(K), see [40], and we obtain after some arguments

sup
wh∈V k

h

|b(vh,wh) − bh(vh,wh)|
‖wh‖H 1(Ω)

≤ c h ‖a‖W 1∞(Ω)‖vh‖H 1(Ω) .
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Choosing vh = Ik
hu in the Strang estimate and applying Theorem 2.27 as well as

Lemma 2.24 for the interpolation operator yields

‖u − uh‖H 1(Ω) ≤ c hk |u|Hk+1(Ω) + c h ‖a‖W 1∞(Ω)‖u‖H 2(Ω) for u ∈ Hk+1(Ω) .

For high-order methods with k > 1, the convergence of the finite element error
is dominated by the second term, which comes from the piecewise constant
approximation of the diffusion coefficient.

In order to achieve the desired convergence rates, it is necessary to approximate
the diffusion coefficient more accurately. For a sufficient regular coefficient a, one
can use its interpolation Ik−1

h a, for example. For a more detailed discussion and for
implementation details, see [146]. The ideas given there can be generalized to k > 2
directly.

2.6 Numerical Examples

Finally, the theoretical results are verified by some computational experiments.
Theorems 2.29 and 2.30 are illustrated on a model problem. The BEM-based FEM
is applied on a sequence of uniformly refined polygonal meshes. In each step of the
refinement the boundary-value problem

− �u = f in Ω = (0, 1)2 , u = 0 on Γ (2.34)

is solved, where f is chosen such that u(x) = sin(πx1) sin(πx2) is the unique
solution. The initial mesh and some refinements are shown in Fig. 2.12. The
successively refined meshes are obtained by dividing each polygonal element as
described in Sect. 2.2.3. The Galerkin error ‖u − uh‖H�(Ω) is computed for the
H 1-norm (� = 1) and the L2-norm (� = 0). In Fig. 2.13, the relative errors are
plotted with respect to the mesh size h = max{hK : K ∈ Kh} on a logarithmic
scale. The slopes of the curves reflect the theoretical rates of convergence for the
approximation orders k = 1, 2, 3.

Next, we consider the model problem

− �u = 0 in Ω = (0, 1)2 , u = gD on Γ , (2.35)

where gD is chosen such that u(x) = exp(2π(x1 − 0.3)) cos(2π(x2 − 0.3)) is the
unique solution. According to Theorem 2.31, it is sufficient to seek the approxima-
tion uh in the space V k

h,H containing only piecewise weakly harmonic functions.
Therefore, the number of degrees of freedom is reduced in the computations. We
solve the reduced Galerkin formulation on a sequence of meshes produced by
the Matlab tool PolyMesher, see [167], and compute the Galerkin errors as in the
previous experiment. Some of the meshes are visualized in Fig. 2.14 and the relative
errors are plotted with respect to the mesh size h in Fig. 2.15. The theoretical orders
of convergence are achieved by the computations for k = 1, 2, 3.
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Fig. 2.12 Initial mesh (left), refined mesh after two steps (middle), refined mesh after four steps
(right)
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Fig. 2.13 Relative error in H 1-norm (left) and L2-norm (right) with respect to the mesh size h for
problem (2.34) with uh ∈ V k

h on meshes depicted in Fig. 2.12

Fig. 2.14 First (left), fourth (middle) and sixth mesh (right) in uniform sequence generated by
PolyMesher
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Fig. 2.15 Relative error in H 1-norm (left) and L2-norm (right) with respect to the mesh size h for
problem (2.35) with uh ∈ V k

h,H on meshes depicted in Fig. 2.14

Fig. 2.16 Second (left), third (middle) and fourth mesh (right) in uniform sequence consisting of
L-shaped elements and rectangles only

To demonstrate the applicability of the BEM-based FEM on polygonal meshes
with non-convex elements, we consider the previous example for the Laplace prob-
lem once more. The approach is applied to a sequence of meshes with decreasing
mesh size h consisting of L-shaped elements and rectangles only, see Fig. 2.16. On
each mesh, the relative error (err) measured in L2(Ω) and the numerical order of
convergence (noc) are computed, i.e.

err = ‖u − uh‖L2(Ω)

‖u‖L2(Ω)
and noc = log(‖u − u2h‖L2(Ω)) − log(‖u − uh‖L2(Ω))

log 2
.

In Table 2.1, the computed values are given together with the degrees of freedom
in the trial space V k

h,H,D = V k
h,H ∩ HD(Ω) for k = 1, 2, 3. The results clearly

demonstrate the optimal rates of convergence according to Theorem 2.31, where in
the finest example for k = 3 saturation of accuracy is reached.
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Fig. 2.17 Relative error in
H 1-norm with respect to the
mesh size h for
problem (2.36) with uh ∈ V k

h

and different
approximations ah of the
diffusion coefficient a on
meshes depicted in Fig. 2.14
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In order to study the effects of the approximation of the diffusion coefficient we
consider the boundary value problem

− div

(
1

|x − x∗|∇u

)
= 0 in Ω = (0, 1)2, u = gD on Γ , (2.36)

where x∗ = (−0.1, 0.2)�. The Dirichlet boundary data gD is chosen in such a
way that u(x) = |x − x∗| is the exact solution. We apply the approach with the
approximation space V k

h on the uniform sequence generated by the PolyMesher,
cf. Fig. 2.14. In the case of a piecewise constant approximation of the diffusion
coefficient a(x) = |x − x∗|−1, the first order method for k = 1 converges with
optimal order in the H 1-norm, whereas the second order method for k = 2 has
a suboptimal convergence rate, see Fig. 2.17. This behaviour has been discussed
theoretically in Sect. 2.5, where we observed that the error in the piecewise constant
approximation of the diffusion coefficient dominates the convergence process for
k > 1. Approximating a by ah = Ik−1

h a, we recover the optimal rates, see Fig. 2.17.
For a discussion of the implementation we refer the interested reader to [146].

Finally, a three-dimensional boundary value problem is considered

− div (a∇u) = f in Ω = (0, 1)3, u = gD on Γ , (2.37)

where a(x) = 7
2 − x1 − x2 − x3 and f as well as gD are chosen such that the

exact solution is u(x) = cos(πx1) sin(2πx2) sin(3πx3). The diffusion coefficient
is approximated by a piecewise constant function. The boundary value problem is
solved on a uniform sequence of polyhedral meshes, the first one is depicted in
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Fig. 2.18 First mesh of unit
cube with tessellation of
hexahedral bricks and
triangular faces

Table 2.2 Degrees of freedom (DoF), relative error measured in the energy norm as well as in
the L2(Ω)-norm with numerical order of convergence (noc) for problem (2.37) with uh ∈ V 1

h on
meshes with triangulated faces, cf. Fig. 2.18

h DoF Energy err noc L2-err noc

4.23 × 10−1 152 1.43 × 100 – 5.09 × 10−1 –

2.17 × 10−1 1176 7.86 × 10−1 0.90 1.95 × 10−1 1.44

1.46 × 10−1 3936 5.40 × 10−1 0.95 9.61 × 10−2 1.79

1.10 × 10−1 9296 4.10 × 10−1 0.97 5.67 × 10−2 1.87

8.73 × 10−2 19,026 3.20 × 10−1 1.06 3.48 × 10−2 2.10

7.31 × 10−2 32,575 2.69 × 10−1 0.97 2.49 × 10−2 1.89

6.28 × 10−2 51,388 2.33 × 10−1 0.98 1.86 × 10−2 1.90

5.51 × 10−2 76,329 2.04 × 10−1 0.98 1.45 × 10−2 1.92

4.87 × 10−2 111,188 1.79 × 10−1 1.07 1.12 × 10−2 2.12

Theory: 1 2

Fig. 2.18. The meshes are constructed with the help of hexahedral bricks, where
the polygonal faces are triangulated in order to apply the simple generalization
for the three-dimensional approximation space in Sect. 2.3.4. The relative errors
in the energy norm ‖ · ‖b = √

b(·, ·) and the L2-norm are computed and given in
Table 2.2. Furthermore,we give the numerical orders of convergence (noc), cf. (1.7),
with respect to these norms. We observe linear convergence in the energy norm and
quadratic convergence in the L2-norm as predicted by the theory.
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