
Chapter 1
Introduction

The numerical solution of boundary value problems on polygonal and polyhedral
discretizations is an emerging topic, and the interest on it increased continuously
during the last few years. This work presents a self-contained and systematic
introduction, study and application of the BEM-based FEM with high-order approx-
imation spaces on general polytopal meshes in two and three space dimensions.
This approach makes use of local boundary integral formulations that will also be
discussed in more detail. The study of interpolation and approximation properties
over isotropic and anisoptropic polytopal discretizations build fundamental concepts
for the analysis and the development. The BEM-based FEM is applied to adaptive
FEM strategies, yielding locally refined meshes with naturally included hanging
nodes, and to convection-diffusion-reaction problems, showing stabilizing effects
while incorporating the differential equation into the approximation space. All the-
oretical considerations are substantiated with several numerical tests and examples.

1.1 Overview

Computer simulations play a crucial role in modern research institutes and devel-
opment departments of all areas. The simulations rely on physical models which
describe the underlying principles and the interplay of all components. Such proper-
ties are often modelled by differential equations and in particular by boundary value
problems in the mathematical framework. In order to realise these formulations on a
computer, discretizations have to be introduced such that the unknown quantities of
interest can be approximated accurately and efficiently. The probably most accepted
and most successful discretization strategy for boundary value problems in science
and engineering is the finite element method (FEM). Furthermore, there are the
discontinuous Galerkin (DG), the finite volume (FV) and the boundary element
methods (BEM), which all have their advantages in certain application areas.
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2 1 Introduction

Fig. 1.1 Polygonal and polyhedral meshes

Most of these approaches, and in particular the finite element method, rely on
the decomposition of the computational domain into simplicial elements, which
include triangles as well as quadrangles in two-dimensions and tetrahedra as well
as hexahedra in three-dimensions. These elements form the mesh of the domain
that is utilized in the discretization of the corresponding function spaces containing
the sought quantities. In high-performance computing and in applications needing
accurate and efficient results, the use of problem adapted meshes is essential. Such
meshes might be constructed using a priori knowledge or adaptive finite element
strategies, which successively and automatically refine the meshes in appropriate
regions. But in all these cases the meshes have to be admissible and satisfy some
regularity properties. Nowadays, there are efficient approaches, which deal with
these mesh requirements. Nevertheless, they still have to be considered in the
implementations. Such issues appear in contact problems and when some parts
of the computational domain are meshed independently. Obviously, the restrictive
nature is caused by the small variety of supported element shapes. This also results
in difficulties, when meshing complex geometries.

An enormous gain on flexibility is achieved by the use of polygonal (2D)
and polyhedral (3D) meshes in the discretizations, cf. Fig. 1.1. General polygonal
and polyhedral element shapes adapt more easily to complex situations. They
naturally include so called hanging nodes, for example, which cause additional
effort in classical meshes when dealing with adaptivity or non-matching meshes.
Already in 1975, Wachspress [172] proposed the construction of conforming
rational basis functions on convex polygons with any number of sides for the
finite element method. In that time, however, the construction was not attractive
for the realization in efficient computer codes, since the processing power was
too low. The advent of mean value coordinates [75] in 2003 was a turning
point in the sustained interest and further development of finite element methods
on polygonal meshes. Only recently, these meshes received a lot of attentions.
Several improved basis functions on polygonal elements have been introduced and
applied in linear elasticity for example, see [164, 165]. They are often referred to
generalized barycentric coordinates and polygonal finite elements. Beside of mean
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value coordinates [75, 101], there are maximum entropy coordinates [12, 102, 163]
and several others as described in the book Generalized Barycentric Coordinates
in Computer Graphics and Computational Mechanics, see [103]. These coordinates
are applied in computer graphics for character articulation [112, 126], for instance.
Amathematical discussion of properties and applications as well as an error analysis
can be found in [77, 84]. An up-to-date survey of barycentric coordinates is given
in [76, 103].

Beside of the polygonal finite element methods, the finite volume methods are
successfully applied on polygonal and polyhedral meshes [57]. These methods
produce non-conforming approximations and they are popular in computational
fluid dynamics (CFD), where polyhedralmeshes often yield more accurate results as
structured grids. Due to this advantage, the polyhedral meshes for CFD simulations
with finite volume approximations were integrated in software packages like
OpenFOAM, ANSYS Fluent and STAR-CD from CD-adapco. The mimetic finite
difference methods [124] are a related methodology, which have been initially
stated on orthogonal meshes and have then be transferred to general polyhedral
discretizations. A mathematical analysis on general meshes has been performed
in [46] and only a few years ago new insights enabled conforming and arbitrary
order approximations within mimetic discretizations [24]. A detailed discussion
and introduction can be found in the monograph [27]. The newly derived concept
gave rise to the development of the virtual element method (VEM), see [25]. The
analysis of VEM is performed in the finite element framework, which offers a rich
set of tools. Since 2013, the development of VEM spread fast into several areas
including linear elasticity [26, 81], the Helmholtz [138] and the Navier–Stokes
problem [32], mixed formulations [42], stabilizations for convection problems [33],
adaptivity [23, 31, 35, 50] and many more. Further non-conforming discretization
techniques, that are applied and analysed on polygonal and polyhedral meshes, are
the discontinuousGalerkin [66] and the recently introduced hybrid higher-order [65]
and weak Galerkin [173] methods.

Another conforming approximation scheme came up in parallel to VEM when
D. Copeland, U. Langer and D. Pusch proposed to study the boundary element
domain decomposition methods [106] in the framework of finite element methods
in [60]. This class of discretization methods uses PDE-harmonic shape functions
in every element of a polytopal mesh. Therefore, these methods can be considered
as local Trefftz FEM following the early work [168]. In order to generate the local
stiffness matrices efficiently, boundary element techniques are employed locally.
This is the reason why these non-standard finite element methods are called BEM-
based FEM. The papers [95] and [93] provide the a priori discretization error
analysis with respect to the energy and L2 norms, respectively, where homogeneous
diffusion problems serve as model problems. Fast FETI-type solvers for solving the
large linear systems arising from the BEM-based FEM discretization of diffusion
problems are studied in [97, 98]. Residual-type a posteriori discretization error esti-
mates are derived in a sequence of papers for adaptive versions of the BEM-based
FEM [174, 178–180, 182] and anisotropic polytopal elements are studied in [181].
Additionally, high-order trial functions are introduced in [145, 146, 175, 177], which
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open the development towards fully hp-adaptive strategies. Furthermore, the ideas
of BEM-based FEM are transferred into several other application areas. There are,
for instance, first results on vector valued, H(div)-conforming approximations [73]
and on time dependent problems [176]. Additionally, the notion of anisotropic poly-
topal elements has been applied to VEM [9]. The construction of PDE-harmonic
trial functions seems to be especially appropriate for convection-diffusion-reaction
problems. First results are presented in [96] and extended in [99] utilizing the
hierarchical construction discussed in [147].

One of the probably most attractive features of polygonal and polyhedral meshes
is their enormous flexibility, which has not been fully exploited in the literature
so far. In modern high-performance computations the use of problem adapted
meshes is one of the key ingredients for their success. The finite element method
is often combined with an adaptive strategy, where the mesh is successively adapted
to the problem. Error indicators gauge the approximation quality and steer a
local mesh refinement procedure. Refining classical elements like triangles and
tetrahedra affect their neighbouring elements in the mesh. After subdividing several
elements, the neighbours are not correctly aligned any more. Therefore, some
kind of post-processing is mandatory in order to maintain the mesh admissibility.
When polygonal and polyhedral elements are used, local refinements might affect
the neighbouring elements, but these elements are still polygonal and polyhedral
and are thus naturally supported. This effect solves the handling of so called
hanging nodes and it has been demonstrated in [174]. Although this is a fruitful
topic, there are only few results available on a posteriori error analysis and
adaptivity for conforming approximation methods on polygonal and polyhedral
meshes. For the virtual element method see [23, 31, 35, 50] and for the mimetic
discretization technique there are also only several references which are limited
to low order methods, compare the recent work [7]. Further analysis on quasi-
interpolation operators, residual-based error estimates and local mesh refinement
for polygonal elements has been performed in [174, 178] with applications to the
BEM-based FEM. Additionally, an extension to non-convex elements and high-
order approximations with upper and lower bounds for the residual-based error
estimator is derived in [180]. Beside of the classical residual-based error estimation
techniques, there exist goal-oriented error estimation [22]. Instead of considering the
energy error, goal-oriented strategies allow for adaptive refinement steered by some
quantity of interest. Thus, these methods are practical in engineering simulations.
First results on polygonal meshes have been obtained in [182].

Problem adapted meshes are also utilized in computations, where sharp layers
in the solution are expected. This appears in convection-dominated problems, for
instance. If the unknown solution changes rapidly in one direction but rather slowly
orthogonal to it, anisotropic meshes are beneficial in finite element computations.
These meshes contain anisotropic tetrahedral and hexahedral elements which are
stretched in one or two directions but thin in the others. In contrast to the usual,
isotropic meshes these stretched elements need special care in their analysis. The
anisotropy of the mesh has to be aligned with the anisotropy of the approximated
function in order to obtain satisfactory results [10]. The quality of the alignment
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is reflected in a posteriori error estimates [119]. Such estimates can be used
to steer an adaptive refinement strategy with anisotropic elements [11, 79]. In
comparison to adaptive, isotropic mesh refinement, less elements are required
and the efficiency is increased. Simplicial meshes with triangles and tetrahedra
or rectangles and hexahedra have often restrictions on their possible anisotropic
refinements. Therefore, the initial mesh should be aligned already with the sought
function. The use of polygonal and polyhedral elements simplifies the anisotropic
refinement, since they do not rely on any restricted direction for subdividing the
elements. These new opportunities have been exploited in [9, 181].

The BEM-based FEM has its advantageous not only in the treatment of general
meshes. It can be considered a local Trefftz method. This means that the shape
functions in the approximation space are build with accordance to the differential
equation in the underlying problem. These shape functions satisfy the homogeneous
differential equation locally and thus build in some features of the problem into the
approximation space. This behaviour has been studied numerically for convection-
dominated diffusion problems in [96]. Where conventional approaches without any
stabilization lead to oscillations in the solution, the BEM-based FEM remains stable
for increased Péclet numbers, i.e., in the convection-dominated regime. The results
have been improved in [99], where the idea of Trefftz approximations has been build
in on the level of polyhedral elements, their polygonal faces and on the edges of the
discretization. Comparisons with a stabilized FEM, the Streamline Upwind/Petrov-
Galerkin (SUPG) method [48], have shown an improved resolution of exponential
layers at outflow boundaries.

The use of local Trefftz-type approximation spaces is also studied in other areas.
One example is the plane wave approximation for the Helmholtz equation [91] or the
Trefftz-DG method for time-harmonic Maxwell equations [92]. The combination
and coupling of such innovative approaches is quite appealing in order to combine
the flexibility of polygonal and polyhedral meshes with problem adapted approx-
imation spaces. Just recently, plane waves have been combined with the virtual
element method [138]. All these quite new developments have a great potential and
might benefit from each other. Their interplay has been studied rarely and opens
opportunities for future developments.

1.2 Outline

The aim of this book is to give a systematic introduction, study and application of
the BEM-based FEM. The topics range from high-order approximation spaces on
isotropic as well as anisotropic polytopal meshes over a posteriori error estimation
and adaptive mesh refinement to specialized adaptations of approximation spaces
and interpolation operators. The chapters are organized as follows.

Chapter 2 contains a discussion of polygonal as well as polyhedral meshes
including regularity properties and their treatment in mesh refinement. Furthermore,
the construction of basis functions is carried out for an approximation space over
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these general meshes. They are applied in the formulation of the BEM-based
FEM, which is obtained by means of a Galerkin formulation. Its convergence and
approximation properties are analysed with the help of introduced interpolation
operators.

In Chap. 3, best approximation results and trace inequalities are given for
polytopal elements. By their application, quasi-interpolation operators for non-
smooth functions over polytopal meshes are introduced and analysed. In particular,
operators of Clément- and Scott–Zhang-type are studied. Furthermore, the notion of
anisotropic meshes is established for polytopal discretizations. These meshes do not
satisfy the classical regularity properties introduced in Chap. 2. Consequently, they
have to be treated in a special way.

The local problems in the definition of basis functions for the BEM-based FEM
are handled by means of boundary integral equations. Chapter 4 gives a short
introduction into this topic with a special emphasis on its application in the BEM-
based FEM. Therefore, the boundary integral operators for the Laplace problem
are reviewed in two- and three-dimensions and corresponding boundary integral
equations are derived. Their discretization is realized by a Galerkin boundary
element method and by an alternative approach that relies on the Nyström method.

In Chap. 5, adaptive mesh refinement strategies are applied to polytopal meshes
in the presence of singularities. In particular, a posteriori error estimates are derived
which are used to drive the adaptive procedure. For the error estimation, the classical
residual based error estimator as well as goal-oriented techniques are covered on
general polytopal meshes. Whereas, the reliability and efficiency estimates for the
first mentioned estimator are proved, the benefits and potentials of the second one
are discussed for general meshes.

In Chap. 6, some further developments and extensions are taken up. The intro-
duction of H(div)-conforming approximation spaces in the sense of the BEM-based
FEM is highlighted. Additionally, a hierarchical construction of basis functions in
three-dimensions is discussed and applied to convection-diffusion-reaction prob-
lems. The presented strategy integrates the underlying differential equation into the
approximation space and yields therefore stabilizing properties.

Throughout the book, there are numerical examples, tests and experiments that
illustrate and substantiate the theoretical findings.

1.3 Mathematical Preliminaries

In the following, we summarize some mathematical preliminaries on variational
formulations and we give the definition of certain function spaces. For the precise
definitions, however, we refer to the specialized literature. The classical results on
Sobolev spaces can be found in Adams [1], and for Sobolev spaces of rational
exponent we refer to Grisvard [87]. A detailed discussion on Sobolev spaces
on manifolds and their application to boundary integral equations is given in
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McLean [128]. The experienced reader might skip the following sections and come
back to them if needed. This section serves as reference only and does not contain
all mathematical details.

1.3.1 Function Spaces and Trace Operators

In the study of boundary value problems, the solutions have to be specified in proper
function spaces. In the following, we give definitions of several spaces. For this
reason, let Ω be any measurable subset ofRd , d ∈ N with strictly positive Lebesgue
measure. The Banach spaces L1(Ω) and L2(Ω) are defined in the usual way with
the corresponding norms

‖u‖L1(Ω) =
∫

Ω

|u(x)| dx and ‖u‖L2(Ω) =
( ∫

Ω

|u(x)|2 dx
)1/2

,

respectively. Here, the symbol | · | denotes the absolute value. But in other contexts,
it might denote the Euclidean norm, the d or d − 1 dimensional measure or even the
cardinality of a discrete set. Furthermore, let the space of locally integrable functions
be labeled by

Lloc
1 (Ω) = {u : u ∈ L1(K) for any compact K ⊂ Ω} .

The space L2(Ω) together with the inner product

(u, v)L2(Ω) =
∫

Ω

u(x)v(x) dx

becomes a Hilbert space. Additionally, we denote by L∞(Ω) the space of measur-
able and almost everywhere bounded functions. It is equipped with the norm

‖u‖L∞(Ω) = ess sup
x∈Ω

|u(x)| = inf
K⊂Ω,|K |=0

sup
x∈Ω\K

|u(x)| ,

where |K| is the d dimensional Lebesgue measure of K . For a d − 1 dimensional
manifoldΓ , the spaceL2(Γ ) is defined in an analog way. Here, the surface measure
is used instead of the volume measure.

The space of continuous functions over Ω is denoted by C0(Ω) and equipped
with the supremum norm

‖u‖C0(Ω) = sup
x∈Ω

|u(x)| .
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Let α = (α1, . . . , αd) ∈ N
d
0 be a multi-index, i.e., a d-tuple with non-negative

entries, and set

|α| = α1 + · · · + αd as well as ∂α =
(

∂

∂x1

)α1

· · ·
(

∂

∂xd

)αd

.

The order of the partial derivative ∂α is the number |α|. For any integer k ≥ 0 and
Ω open, we define

Ck(Ω) = {u : ∂αu exists and is continuous on Ω for |α| ≤ k} .

In the special case that k = 0, the space of continuous functions overΩ is recovered.
Furthermore, we define

Ck
0 (Ω) = {u ∈ Ck(Ω) : supp u ⊂ Ω} ,

where

supp u = {x ∈ Ω : u(x) �= 0} ,

and set

C∞(Ω) =
⋂
k≥0

Ck(Ω) as well as C∞
0 (Ω) =

⋂
k≥0

Ck
0 (Ω) .

Finally, we review the space of Lipschitz functions

C0,1(Ω) = {u ∈ C0(Ω) : ∃ L > 0 : |u(x) − u(y)| ≤ L|x − y| for x, y ∈ Ω}

and

Ck,1(Ω) = {u ∈ Ck(Ω) : ∂αu ∈ C0,1(Ω) for |α| = k}

for k ∈ N. The space of Hölder continuous functions is a straightforward
generalization. For κ ∈ (0, 1], it is

C0,κ (Ω) = {u ∈ C0(Ω) : ∃ C > 0 : |u(x) − u(y)| ≤ C|x − y|κ for x, y ∈ Ω}

and

Ck,κ (Ω) = {u ∈ Ck(Ω) : ∂αu ∈ C0,κ (Ω) for |α| = k}

for k ∈ N.
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1.3.1.1 Sobolev Spaces

Let Ω be a non-empty open subset of Rd , d ∈ N. The Sobolev space Hk(Ω) of
order k ∈ N0 is defined by

Hk(Ω) = {u ∈ L2(Ω) : ∂αu ∈ L2(Ω) for |α| ≤ k} (1.1)

with the norm ‖ · ‖Hk(Ω) and the semi-norm | · |Hk(Ω), where

‖u‖Hk(Ω) =
( ∑

|α|≤k

‖∂αu‖2L2(Ω)

)1/2

and |u|Hk(Ω) =
( ∑

|α|=k

‖∂αu‖2L2(Ω)

)1/2

.

Here, the partial derivative ∂αu has to be understood in the weak sense. More
precisely, let the functional gα : C∞

0 (Ω) → R be the distributional derivative of
u with index α, i.e., gα satisfies

(u, ∂αϕ)L2(Ω) = (−1)|α|gα(ϕ)

for all ϕ ∈ C∞
0 (Ω). Furthermore, let gα have the representation

gα(ϕ) =
∫

Ω

ϕ(x) ∂αu(x) dx

for all ϕ ∈ C∞
0 (Ω) with some function ∂αu ∈ Lloc

1 (Ω) which is defined uniquely
up to an equivalence class. In this case, ∂αu is called the weak derivative of u with
index α. The additional condition ∂αu ∈ L2(Ω) in (1.1) ensures that the weak
derivative can be chosen such that it is square integrable.

For the definition of Sobolev spaces with fractional order s ≥ 0, let s = k + μ

with k ∈ N0 and μ ∈ [0, 1). The Sobolev–Slobodekij norm is given by

‖u‖Hs(Ω) =
(

‖u‖2
Hk(Ω)

+
∑
|α|=k

|∂αu|2Hμ(Ω)

)1/2

,

where

|u|Hμ(Ω) =
( ∫

Ω

∫
Ω

|u(x) − u(y)|2
|x − y|d+2μ

dx dy
)1/2

.

Therefore, we define

Hs(Ω) = {u ∈ Hk(Ω) : |∂αu|Hμ(Ω) < ∞ for |α| = k} .
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The Sobolev norm ‖ · ‖Hs(Ω) for arbitrary real s ≥ 0 is induced by the inner product

(u, v)Hs (Ω) = (u, v)Hk(Ω) +
∑
|α|=k

(∂αu, ∂αv)Hμ(Ω)

with

(u, v)Hk(Ω) =
∑
|α|≤k

(∂αu, ∂αv)L2(Ω)

and

(u, v)Hμ(Ω) =
∫

Ω

∫
Ω

(
u(x) − u(y)

)(
v(x) − v(y)

)
|x − y|d+2μ dx dy .

Hence, Hs(Ω) is a Hilbert space for all s ≥ 0.

1.3.1.2 Sobolev Spaces on the Boundary

For the definition of Sobolev spaces on the boundary of a domain, we have to restrict
the class of admitted domains. Therefore, let Ω ⊂ R

d , d ∈ N be a bounded open
set with boundary Γ . Additionally, we assume that Γ is non-empty and has an
overlapping cover that can be parametrized in the way

Γ =
p⋃

i=1

Γi , Γi =
{
x ∈ R

d : x = χi(ξ) for ξ ∈ Ki ⊂ R
d−1

}
. (1.2)

With regard to the decomposition of Γ , let {ϕi}pi=1 be a partition of unity with non-
negative cut off functions ϕi ∈ C∞

0 (Rd) such that

p∑
i=1

ϕi(x) = 1 for x ∈ Γ , ϕi(x) = 0 for x ∈ Γ \ Γi .

For a function u defined on Γ , we write

u(x) =
p∑

i=1

u(x)ϕi(x) =
p∑

i=1

ui(x) for x ∈ Γ ,

where ui(x) = u(x)ϕi(x). In the next step, x is replaced by the parametrisation
from (1.2) and we obtain

ui(x) = u(x)ϕi(x) = u(χi(ξ))ϕi(χi(ξ)) for ξ ∈ Ki ⊂ R
d−1, i = 1, . . . , p .
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The last expression is abbreviated to ũi(ξ). These functions are defined on bounded
subsets of Rd−1, and thus the Sobolev spaces from Sect. 1.3.1.1 can be used. To sat-
isfy ui ∈ Hs(Ki) for s > 0, the corresponding derivatives of the parametrisation χi

have to exist. For the definition of these derivatives of order up to s ≤ k, we have to
assume χi ∈ Ck−1,1(Ki).

For 0 ≤ s ≤ k, the Sobolev norm

‖u‖Hs(Γ ),χ =
( p∑

i=1

‖ui‖2Hs(Ki)

)1/2

,

which depends on the parametrisation of Γ , is defined. By the use of this norm the
Sobolev spaces Hs(Γ ) can be introduced. For a Lipschitz domain Ω and s ∈ (0, 1),
the Sobolev–Slobodekij norm

‖u‖Hs(Γ ) =
(

‖u‖2L2(Γ ) +
∫

Γ

∫
Γ

|u(x) − u(y)|2
|x − y|d−1+2s dsx dsy

)1/2

is equivalent to ‖ · ‖Hs(Γ ),χ , and thus, the space Hs(Γ ) is independent of the
parametrisation chosen in (1.2). For s < 0, we define Hs(Γ ) as the dual space
of H−s(Γ ) and equip it with the norm

‖u‖Hs(Γ ) = sup
0 �=v∈H−s (Γ )

|u(v)|
‖v‖H−s (Γ )

.

Additionally, we need some spaces which are only defined on a part of the boundary.
Let Γ0 be an open part of the sufficiently smooth boundary Γ . For s ≥ 0, we set the
Sobolev space

Hs(Γ0) = {
u = ũ|Γ0 : ũ ∈ Hs(Γ )

}

with the norm

‖u‖Hs(Γ0) = inf
ũ∈Hs(Γ ):̃u|Γ0=u

‖ũ‖Hs(Γ ) .

Furthermore, let

H̃ s(Γ0) = {
u = ũ|Γ0 : ũ ∈ Hs(Γ ), supp ũ ⊂ Γ0

}
,

and for s < 0, we set Hs(Γ0) as the dual space of H̃ s(Γ0). Finally, we define a
Sobolev space over the boundary with piecewise regularity. Therefore, let

Γ =
p⋃

i=1

Γ i , Γi ∩ Γj = ∅ for i �= j ,
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and define

Hs
pw(Γ ) =

{
u ∈ Hmin{ d−1

2 , s}(Γ ) : u|Γi ∈ Hs(Γi), i = 1, . . . , p
}

.

This space is equipped with the norm

‖u‖Hs
pw(Γ ) =

( p∑
i=1

‖u|Γi ‖2Hs(Γi)

)1/2

.

1.3.1.3 Properties of Sobolev Spaces

To state some properties of Sobolev spaces, we have to guarantee certain regularities
of the domain Ω and its boundary Γ . Therefore, we take from [87] the following
definition.

Definition 1.1 Let Ω be an open subset of R
d . We say that its boundary Γ

is continuous (respectively Lipschitz, continuously differentiable, of class
Ck,1, k times differentiable) if for every x ∈ Γ there exists a neighbourhood U

of x in Rd and new orthogonal coordinates {ξ1, . . . , ξd } such that
1. U is an hypercube in the new coordinates:

U = {(ξ1, . . . , ξd ) : −ci < ξi < ci, i = 1, . . . , d} ,

2. there exists a continuous (respectively Lipschitz, continuous differentiable, of
class Ck,1, k times continuously differentiable) function f , defined in

U ′ = {(ξ1, . . . , ξd−1) : −ci < ξi < ci, i = 1, . . . , d − 1} ,

and such that

|f (ξ ′)| ≤ cd/2 for every ξ ′ = (ξ1, . . . , ξd−1) ∈ U ′ ,

Ω ∩ U = {ξ = (ξ ′, ξd ) ∈ U : ξd < f (ξ ′)} ,

Γ ∩ U = {ξ = (ξ ′, ξd ) ∈ U : ξd = f (ξ ′)} .

If Ω has a Lipschitz boundary, we call Ω a Lipschitz domain. From now on, we
restrict ourselves to bounded domains Ω . So, the boundary Γ is compact, and thus
there is a finite cover of Γ , which can be used to construct a parametrisation as given
in (1.2). We state the famous Sobolev embedding theorem, see, e.g., [1, 49].

Theorem 1.2 (Sobolev Embedding) Let Ω ⊂ R
d , d ∈ N be a bounded domain

with Lipschitz boundary and let 2k > d with k ∈ N. For u ∈ Hk(Ω), it is
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u ∈ C0(Ω) and there exists a constant CS > 0 such that

‖u‖C0(Ω) ≤ CS‖u‖Hk(Ω) for u ∈ Hk(Ω) .

Remark 1.3 In [49], it is shown that for convex domains Ω with diameter smaller
or equal to one, the constant in Theorem 1.2 has the form

CS = c |Ω |−1/2

with a constant c > 0 which only depends on d and k.

Next, we give some results for traces of functions in Sobolev spaces. For
sufficiently smooth functions u over Ω , we set the trace operator γ0 as restriction of
u to the boundary Γ , i.e.

γ0u = u
∣∣
Γ

.

This operator has continuous extensions such that the following theorems taken
from [61] and [128] are valid.

Theorem 1.4 If the bounded subsetΩ ofRd has a boundary Γ of class Ck−1,1 and
if 1/2 < s ≤ k, then

γ0 : Hs(Ω) → Hs−1/2(Γ )

is a bounded linear operator, i.e.

‖γ0u‖Hs−1/2(Γ ) ≤ cT ‖u‖Hs(Ω) for u ∈ Hs(Ω) .

This operator has a continuous right inverse

E : Hs−1/2(Γ ) → Hs(Ω)

with γ0Ev = v for all v ∈ Hs−1/2(Γ ) and

‖Ev‖Hs(Ω) ≤ cIT ‖v‖Hs−1/2(Γ ) for v ∈ Hs−1(Γ ) .

Theorem 1.5 If Ω ⊂ R
d is a bounded domain with Lipschitz boundary Γ , then the

trace operator γ0 is bounded for
1
2 < s < 3

2 .

1.3.2 Galerkin Formulations

At several places in this book, we are concerned with operator equations and in
particularly with weak formulations of differential equations. These are treated by
means of Galerkin formulations in the continuous as well as in the discretized



14 1 Introduction

versions. We also call these formulations variational problems. In the following,
we give a summary on this topic.

Let V be a Hilbert space with inner product (·, ·)V and corresponding induced
norm ‖ · ‖V = √

(·, ·)V . The abstract setting of a Galerkin formulation is

Find u ∈ V : a(u, v) = �(v) ∀v ∈ V , (1.3)

where a(·, ·) : V × V → R denotes a bilinear and �(·) : V → R a linear form.
The bilinear form is said to be continuous or bounded on V if there exists a constant
c1 > 0 such that

|a(u, v)| ≤ c1‖u‖V ‖v‖V for u, v ∈ V .

Furthermore, a(·, ·) is called V -elliptic if there is another constant c2 > 0 such that

a(v, v) ≥ c2‖v‖2V for v ∈ V .

Analogously, �(·) is said to be continuous if

|�(v)| ≤ c�‖v‖V for v ∈ V ,

for a constant c� > 0. Hence, a continuous linear form is a bounded functional on V

and therefore, it belongs to the dual space of V .

Theorem 1.6 (Lax–Milgram Lemma) Let V be a Hilbert space, a(·, ·) : V ×
V → R be a continuousV -elliptic bilinear form, and let � : V → R be a continuous
linear form. The abstract variational problem (1.3) has one and only one solution.

In the proof of the Lax–Milgram Lemma, the Riesz representation theorem is
utilized, see, e.g., [58] or the original work [121].

Theorem 1.7 (Riesz Representation Theorem) Let V ′ be the dual space of V

equipped with the norm

‖�‖V ′ = sup
0 �=v∈V

|�(v)|
‖v‖V

.

For each � ∈ V ′, there exists a unique u ∈ V such that

(u, v)V = �(v) for v ∈ V

and

‖u‖V = ‖�‖V ′ .

In the numerics, it is not possible to work with the space V directly. Therefore,
a finite dimensional subspace Vh of V is introduced and the discrete Galerkin
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formulation

Find uh ∈ Vh : a(uh, vh) = �(vh) ∀vh ∈ Vh (1.4)

is considered. Since Vh ⊂ V , the method is said to be conforming. Due to the finite
dimension of Vh, we can introduce a basis Ψ with Vh = span Ψ and dimVh = n

for some n ∈ N. Next, we express uh as linear combination of basis functions

uh =
∑
ψ∈Ψ

uψψ ,

and we have to test (1.4) only with vh = ϕ for all ϕ ∈ Ψ . Consequently, we end
up with a system of linear equations to compute the unknown coefficients uψ of uh.
More precisely, let uh be the vector with components uψ , i.e. uh = (

uψ

)
ψ∈Ψ

. We
obtain

Auh = b (1.5)

with

A = (
a(ψ, ϕ)

)
ϕ,ψ∈Ψ

∈ R
n×n and b = (

�(ϕ)
)
ϕ∈Ψ

∈ R
n .

The system matrix A is positive definite because of the V -ellipticity of the bilinear
form a(·, ·). Therefore, the n×n system of linear equations admits a unique solution.
If the system (1.5) of linear equations is small, we use an efficient direct solver of
LAPACK [6]. In case of large systems, however, iterative solvers are preferable.
For symmetric matrices we apply the conjugate gradient method (CG) [90] and for
non-symmetric matrices we utilize GMRES [150].

Nevertheless, the question remains how the Galerkin formulations (1.3) and (1.4)
are related to each other. Céa’s Lemma gives the answer. The discrete Galerkin
formulation (1.4) yields the quasi-best approximation of the solution of (1.3).

Lemma 1.8 (Céa’s Lemma) Let V be a Hilbert space and Vh ⊂ V a finite
dimensional subspace of V , let a(·, ·) : V × V → R be a continuous V -elliptic
bilinear form, and let � : V → R be a continuous linear form. Furthermore, let
u ∈ V be the solution of (1.3) and uh ∈ Vh be the solution of (1.4). The abstract
error estimate

‖u − uh‖V ≤ c1

c2
min
vh∈Vh

‖u − vh‖V (1.6)

holds.

Consequently, we can estimate the error of the Galerkin approximation by studying
interpolation properties of the finite dimensional subspace. More precisely, we can
estimate the minimum on the right hand side of (1.6) by inserting an interpolation
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of u in the space Vh. Thus, we have to introduce interpolation operators and to
prove interpolation error estimates. This yields error estimates for the Galerkin
approximation of the form

‖u − uh‖ ≤ c hs ‖|u‖|

with certain norms ‖ · ‖ and ‖| · ‖|, where s ∈ R and h corresponds either
to the characteristic mesh size h, defined later, or to the number of degrees of
freedom (DoF) in the system of linear Eq. (1.5). We say in this case that the error
in the norm ‖ · ‖ converges with order s with respect to h. In our computational
tests, we verify the theoretical orders of convergence. Therefore, let Vh and Vh∗ be
two approximation spaces with corresponding h and h∗. We compute the numerical
order of convergence (noc) as

log(‖u − uh‖) − log(‖u − uh∗‖)
log(h) − log(h∗)

, (1.7)

which is an approximation on s in the error model

‖u − uh‖ ≈ c hs ‖|u‖| .

An important analytical tool in order to prove interpolation error estimates is the
Bramble–Hilbert Lemma, see [58] and below. Beside of this, we extensively apply
the triangle and reverse triangle inequality,

‖x + y‖ ≤ ‖x‖ + ‖y‖ and | ‖x‖ − ‖y‖ | ≤ ‖x + y‖ ,

for all kinds of norms, as well as the Cauchy–Schwarz inequality

|(x, y)| ≤ ‖x‖‖y‖ ,

where the norm ‖ · ‖ is induced by the inner product (·, ·), i.e. ‖ · ‖ = √
(·, ·). Here,

x and y might refer to vectors, functions or vector valued functions depending on
the context of the inequality.

Theorem 1.9 (Bramble–Hilbert Lemma) Let Ω ⊂ R
d be a Lipschitz domain.

For some integer k ≥ 0, let f be a continuous linear form on the space Hk+1(Ω)

with the property that

f(p) = 0 ∀p ∈ Pk(Ω) .

There exists a constant C(Ω) such that

|f(v)| ≤ C(Ω) ‖f‖∗ |v|Hk+1(Ω) ,

where ‖ · ‖∗ is the norm in the dual space of Hk+1(Ω).
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