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Preface

The BEM-based finite element method has been developed within the last decade,
and it is one of the first methods designed for the approximation of boundary
value problems on polygonal and polyhedral meshes. This is possible due to the
use of implicitly defined ansatz functions which are treated locally by means of
boundary integral operators and are realized with the help of boundary element
methods (BEM) in the computations.

When I started my doctoral studies in 2009, it was an appealing but also a
somehow abstruse idea to generalize the well-known finite element method (FEM)
to polygonal and polyhedral meshes. To that time, I was not aware of any other
attempts in this direction. A few years later, the virtual element method came
up, and I learned about other approaches that just started in parallel to work
on general meshes. The discretization of differential equations on polygonal and
polyhedral meshes became a hot research area, and the amount of publications
and organized conferences is continuously increasing. The beauty of these ideas
caught my attention and shaped my research interests. My resulting theoretical
and computational contributions of the last 10 years have found their way into this
monograph which is based on my habilitation thesis.

The monograph presents an introduction, a mathematical analysis and applica-
tions of the BEM-based finite element approach. It is intended to researchers in
the field of numerics for partial differential equations in the wide community of
mathematicians and mathematically aware engineers using finite element methods
but also to advanced graduate students who are interested to deepen their knowledge
in the field.

After the discussion of polytopal meshes, the BEM-based FEM is introduced
for high-order approximation spaces over general elements, and its error analysis
is given on uniform meshes for smooth solutions (Chap. 2). The method is studied
for uniform, adaptive and anisotropic discretizations, where several error estimation
techniques and interpolation operators are derived and the notion of anisotropic
polytopal elements is introduced (Chap. 3). Beside these, the numerical treatment
of boundary integral equations is discussed (Chap. 4). Local error estimation tech-
niques give rise to adaptive mesh refinement as in classical finite element strategies.
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Here, the flexibility of polytopal meshes yields benefits in the refinement process
and in the application of post-processing operators as in goal-oriented techniques,
for instance (Chap. 5). Finally, some recent developments on mixed finite element
formulations and problem-adapted approximation spaces are highlighted (Chap. 6).
Throughout the monograph, all theoretical results are motivated and validated by
numerous numerical experiments and tests, which demonstrate the applicability and
the flexibility of the BEM-based FEM.

This monograph and the involved research could not have been realized without
the encouragement and support of various persons. Among all these friends in the
scientific community, I thank, in particular, Sergej Rjasanow and his research group
for their open-mindedness and helpfulness which created a great and stimulating
working atmosphere. My deepest gratitude, however, is reserved for my wife,
Anna Benz-Weißer, whose logical mind, sound and thoughtful advice, sympathetic
ear and unselfish support are of indispensable value for me.

Saarbrücken, Germany Steffen Weißer
April 2019
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Chapter 1
Introduction

The numerical solution of boundary value problems on polygonal and polyhedral
discretizations is an emerging topic, and the interest on it increased continuously
during the last few years. This work presents a self-contained and systematic
introduction, study and application of the BEM-based FEM with high-order approx-
imation spaces on general polytopal meshes in two and three space dimensions.
This approach makes use of local boundary integral formulations that will also be
discussed in more detail. The study of interpolation and approximation properties
over isotropic and anisoptropic polytopal discretizations build fundamental concepts
for the analysis and the development. The BEM-based FEM is applied to adaptive
FEM strategies, yielding locally refined meshes with naturally included hanging
nodes, and to convection-diffusion-reaction problems, showing stabilizing effects
while incorporating the differential equation into the approximation space. All the-
oretical considerations are substantiated with several numerical tests and examples.

1.1 Overview

Computer simulations play a crucial role in modern research institutes and devel-
opment departments of all areas. The simulations rely on physical models which
describe the underlying principles and the interplay of all components. Such proper-
ties are often modelled by differential equations and in particular by boundary value
problems in the mathematical framework. In order to realise these formulations on a
computer, discretizations have to be introduced such that the unknown quantities of
interest can be approximated accurately and efficiently. The probably most accepted
and most successful discretization strategy for boundary value problems in science
and engineering is the finite element method (FEM). Furthermore, there are the
discontinuous Galerkin (DG), the finite volume (FV) and the boundary element
methods (BEM), which all have their advantages in certain application areas.
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Fig. 1.1 Polygonal and polyhedral meshes

Most of these approaches, and in particular the finite element method, rely on
the decomposition of the computational domain into simplicial elements, which
include triangles as well as quadrangles in two-dimensions and tetrahedra as well
as hexahedra in three-dimensions. These elements form the mesh of the domain
that is utilized in the discretization of the corresponding function spaces containing
the sought quantities. In high-performance computing and in applications needing
accurate and efficient results, the use of problem adapted meshes is essential. Such
meshes might be constructed using a priori knowledge or adaptive finite element
strategies, which successively and automatically refine the meshes in appropriate
regions. But in all these cases the meshes have to be admissible and satisfy some
regularity properties. Nowadays, there are efficient approaches, which deal with
these mesh requirements. Nevertheless, they still have to be considered in the
implementations. Such issues appear in contact problems and when some parts
of the computational domain are meshed independently. Obviously, the restrictive
nature is caused by the small variety of supported element shapes. This also results
in difficulties, when meshing complex geometries.

An enormous gain on flexibility is achieved by the use of polygonal (2D)
and polyhedral (3D) meshes in the discretizations, cf. Fig. 1.1. General polygonal
and polyhedral element shapes adapt more easily to complex situations. They
naturally include so called hanging nodes, for example, which cause additional
effort in classical meshes when dealing with adaptivity or non-matching meshes.
Already in 1975, Wachspress [172] proposed the construction of conforming
rational basis functions on convex polygons with any number of sides for the
finite element method. In that time, however, the construction was not attractive
for the realization in efficient computer codes, since the processing power was
too low. The advent of mean value coordinates [75] in 2003 was a turning
point in the sustained interest and further development of finite element methods
on polygonal meshes. Only recently, these meshes received a lot of attentions.
Several improved basis functions on polygonal elements have been introduced and
applied in linear elasticity for example, see [164, 165]. They are often referred to
generalized barycentric coordinates and polygonal finite elements. Beside of mean
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value coordinates [75, 101], there are maximum entropy coordinates [12, 102, 163]
and several others as described in the book Generalized Barycentric Coordinates
in Computer Graphics and Computational Mechanics, see [103]. These coordinates
are applied in computer graphics for character articulation [112, 126], for instance.
A mathematical discussion of properties and applications as well as an error analysis
can be found in [77, 84]. An up-to-date survey of barycentric coordinates is given
in [76, 103].

Beside of the polygonal finite element methods, the finite volume methods are
successfully applied on polygonal and polyhedral meshes [57]. These methods
produce non-conforming approximations and they are popular in computational
fluid dynamics (CFD), where polyhedral meshes often yield more accurate results as
structured grids. Due to this advantage, the polyhedral meshes for CFD simulations
with finite volume approximations were integrated in software packages like
OpenFOAM, ANSYS Fluent and STAR-CD from CD-adapco. The mimetic finite
difference methods [124] are a related methodology, which have been initially
stated on orthogonal meshes and have then be transferred to general polyhedral
discretizations. A mathematical analysis on general meshes has been performed
in [46] and only a few years ago new insights enabled conforming and arbitrary
order approximations within mimetic discretizations [24]. A detailed discussion
and introduction can be found in the monograph [27]. The newly derived concept
gave rise to the development of the virtual element method (VEM), see [25]. The
analysis of VEM is performed in the finite element framework, which offers a rich
set of tools. Since 2013, the development of VEM spread fast into several areas
including linear elasticity [26, 81], the Helmholtz [138] and the Navier–Stokes
problem [32], mixed formulations [42], stabilizations for convection problems [33],
adaptivity [23, 31, 35, 50] and many more. Further non-conforming discretization
techniques, that are applied and analysed on polygonal and polyhedral meshes, are
the discontinuous Galerkin [66] and the recently introduced hybrid higher-order [65]
and weak Galerkin [173] methods.

Another conforming approximation scheme came up in parallel to VEM when
D. Copeland, U. Langer and D. Pusch proposed to study the boundary element
domain decomposition methods [106] in the framework of finite element methods
in [60]. This class of discretization methods uses PDE-harmonic shape functions
in every element of a polytopal mesh. Therefore, these methods can be considered
as local Trefftz FEM following the early work [168]. In order to generate the local
stiffness matrices efficiently, boundary element techniques are employed locally.
This is the reason why these non-standard finite element methods are called BEM-
based FEM. The papers [95] and [93] provide the a priori discretization error
analysis with respect to the energy and L2 norms, respectively, where homogeneous
diffusion problems serve as model problems. Fast FETI-type solvers for solving the
large linear systems arising from the BEM-based FEM discretization of diffusion
problems are studied in [97, 98]. Residual-type a posteriori discretization error esti-
mates are derived in a sequence of papers for adaptive versions of the BEM-based
FEM [174, 178–180, 182] and anisotropic polytopal elements are studied in [181].
Additionally, high-order trial functions are introduced in [145, 146, 175, 177], which
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open the development towards fully hp-adaptive strategies. Furthermore, the ideas
of BEM-based FEM are transferred into several other application areas. There are,
for instance, first results on vector valued, H(div)-conforming approximations [73]
and on time dependent problems [176]. Additionally, the notion of anisotropic poly-
topal elements has been applied to VEM [9]. The construction of PDE-harmonic
trial functions seems to be especially appropriate for convection-diffusion-reaction
problems. First results are presented in [96] and extended in [99] utilizing the
hierarchical construction discussed in [147].

One of the probably most attractive features of polygonal and polyhedral meshes
is their enormous flexibility, which has not been fully exploited in the literature
so far. In modern high-performance computations the use of problem adapted
meshes is one of the key ingredients for their success. The finite element method
is often combined with an adaptive strategy, where the mesh is successively adapted
to the problem. Error indicators gauge the approximation quality and steer a
local mesh refinement procedure. Refining classical elements like triangles and
tetrahedra affect their neighbouring elements in the mesh. After subdividing several
elements, the neighbours are not correctly aligned any more. Therefore, some
kind of post-processing is mandatory in order to maintain the mesh admissibility.
When polygonal and polyhedral elements are used, local refinements might affect
the neighbouring elements, but these elements are still polygonal and polyhedral
and are thus naturally supported. This effect solves the handling of so called
hanging nodes and it has been demonstrated in [174]. Although this is a fruitful
topic, there are only few results available on a posteriori error analysis and
adaptivity for conforming approximation methods on polygonal and polyhedral
meshes. For the virtual element method see [23, 31, 35, 50] and for the mimetic
discretization technique there are also only several references which are limited
to low order methods, compare the recent work [7]. Further analysis on quasi-
interpolation operators, residual-based error estimates and local mesh refinement
for polygonal elements has been performed in [174, 178] with applications to the
BEM-based FEM. Additionally, an extension to non-convex elements and high-
order approximations with upper and lower bounds for the residual-based error
estimator is derived in [180]. Beside of the classical residual-based error estimation
techniques, there exist goal-oriented error estimation [22]. Instead of considering the
energy error, goal-oriented strategies allow for adaptive refinement steered by some
quantity of interest. Thus, these methods are practical in engineering simulations.
First results on polygonal meshes have been obtained in [182].

Problem adapted meshes are also utilized in computations, where sharp layers
in the solution are expected. This appears in convection-dominated problems, for
instance. If the unknown solution changes rapidly in one direction but rather slowly
orthogonal to it, anisotropic meshes are beneficial in finite element computations.
These meshes contain anisotropic tetrahedral and hexahedral elements which are
stretched in one or two directions but thin in the others. In contrast to the usual,
isotropic meshes these stretched elements need special care in their analysis. The
anisotropy of the mesh has to be aligned with the anisotropy of the approximated
function in order to obtain satisfactory results [10]. The quality of the alignment
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is reflected in a posteriori error estimates [119]. Such estimates can be used
to steer an adaptive refinement strategy with anisotropic elements [11, 79]. In
comparison to adaptive, isotropic mesh refinement, less elements are required
and the efficiency is increased. Simplicial meshes with triangles and tetrahedra
or rectangles and hexahedra have often restrictions on their possible anisotropic
refinements. Therefore, the initial mesh should be aligned already with the sought
function. The use of polygonal and polyhedral elements simplifies the anisotropic
refinement, since they do not rely on any restricted direction for subdividing the
elements. These new opportunities have been exploited in [9, 181].

The BEM-based FEM has its advantageous not only in the treatment of general
meshes. It can be considered a local Trefftz method. This means that the shape
functions in the approximation space are build with accordance to the differential
equation in the underlying problem. These shape functions satisfy the homogeneous
differential equation locally and thus build in some features of the problem into the
approximation space. This behaviour has been studied numerically for convection-
dominated diffusion problems in [96]. Where conventional approaches without any
stabilization lead to oscillations in the solution, the BEM-based FEM remains stable
for increased Péclet numbers, i.e., in the convection-dominated regime. The results
have been improved in [99], where the idea of Trefftz approximations has been build
in on the level of polyhedral elements, their polygonal faces and on the edges of the
discretization. Comparisons with a stabilized FEM, the Streamline Upwind/Petrov-
Galerkin (SUPG) method [48], have shown an improved resolution of exponential
layers at outflow boundaries.

The use of local Trefftz-type approximation spaces is also studied in other areas.
One example is the plane wave approximation for the Helmholtz equation [91] or the
Trefftz-DG method for time-harmonic Maxwell equations [92]. The combination
and coupling of such innovative approaches is quite appealing in order to combine
the flexibility of polygonal and polyhedral meshes with problem adapted approx-
imation spaces. Just recently, plane waves have been combined with the virtual
element method [138]. All these quite new developments have a great potential and
might benefit from each other. Their interplay has been studied rarely and opens
opportunities for future developments.

1.2 Outline

The aim of this book is to give a systematic introduction, study and application of
the BEM-based FEM. The topics range from high-order approximation spaces on
isotropic as well as anisotropic polytopal meshes over a posteriori error estimation
and adaptive mesh refinement to specialized adaptations of approximation spaces
and interpolation operators. The chapters are organized as follows.

Chapter 2 contains a discussion of polygonal as well as polyhedral meshes
including regularity properties and their treatment in mesh refinement. Furthermore,
the construction of basis functions is carried out for an approximation space over
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these general meshes. They are applied in the formulation of the BEM-based
FEM, which is obtained by means of a Galerkin formulation. Its convergence and
approximation properties are analysed with the help of introduced interpolation
operators.

In Chap. 3, best approximation results and trace inequalities are given for
polytopal elements. By their application, quasi-interpolation operators for non-
smooth functions over polytopal meshes are introduced and analysed. In particular,
operators of Clément- and Scott–Zhang-type are studied. Furthermore, the notion of
anisotropic meshes is established for polytopal discretizations. These meshes do not
satisfy the classical regularity properties introduced in Chap. 2. Consequently, they
have to be treated in a special way.

The local problems in the definition of basis functions for the BEM-based FEM
are handled by means of boundary integral equations. Chapter 4 gives a short
introduction into this topic with a special emphasis on its application in the BEM-
based FEM. Therefore, the boundary integral operators for the Laplace problem
are reviewed in two- and three-dimensions and corresponding boundary integral
equations are derived. Their discretization is realized by a Galerkin boundary
element method and by an alternative approach that relies on the Nyström method.

In Chap. 5, adaptive mesh refinement strategies are applied to polytopal meshes
in the presence of singularities. In particular, a posteriori error estimates are derived
which are used to drive the adaptive procedure. For the error estimation, the classical
residual based error estimator as well as goal-oriented techniques are covered on
general polytopal meshes. Whereas, the reliability and efficiency estimates for the
first mentioned estimator are proved, the benefits and potentials of the second one
are discussed for general meshes.

In Chap. 6, some further developments and extensions are taken up. The intro-
duction ofH(div)-conforming approximation spaces in the sense of the BEM-based
FEM is highlighted. Additionally, a hierarchical construction of basis functions in
three-dimensions is discussed and applied to convection-diffusion-reaction prob-
lems. The presented strategy integrates the underlying differential equation into the
approximation space and yields therefore stabilizing properties.

Throughout the book, there are numerical examples, tests and experiments that
illustrate and substantiate the theoretical findings.

1.3 Mathematical Preliminaries

In the following, we summarize some mathematical preliminaries on variational
formulations and we give the definition of certain function spaces. For the precise
definitions, however, we refer to the specialized literature. The classical results on
Sobolev spaces can be found in Adams [1], and for Sobolev spaces of rational
exponent we refer to Grisvard [87]. A detailed discussion on Sobolev spaces
on manifolds and their application to boundary integral equations is given in
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McLean [128]. The experienced reader might skip the following sections and come
back to them if needed. This section serves as reference only and does not contain
all mathematical details.

1.3.1 Function Spaces and Trace Operators

In the study of boundary value problems, the solutions have to be specified in proper
function spaces. In the following, we give definitions of several spaces. For this
reason, let Ω be any measurable subset of Rd , d ∈ N with strictly positive Lebesgue
measure. The Banach spaces L1(Ω) and L2(Ω) are defined in the usual way with
the corresponding norms

‖u‖L1(Ω) =
∫

Ω

|u(x)| dx and ‖u‖L2(Ω) =
(

∫

Ω

|u(x)|2 dx
)1/2

,

respectively. Here, the symbol | · | denotes the absolute value. But in other contexts,
it might denote the Euclidean norm, the d or d− 1 dimensional measure or even the
cardinality of a discrete set. Furthermore, let the space of locally integrable functions
be labeled by

Lloc1 (Ω) = {u : u ∈ L1(K) for any compact K ⊂ Ω} .

The space L2(Ω) together with the inner product

(u, v)L2(Ω) =
∫

Ω

u(x)v(x) dx

becomes a Hilbert space. Additionally, we denote by L∞(Ω) the space of measur-
able and almost everywhere bounded functions. It is equipped with the norm

‖u‖L∞(Ω) = ess sup
x∈Ω

|u(x)| = inf
K⊂Ω,|K |=0

sup
x∈Ω\K

|u(x)| ,

where |K| is the d dimensional Lebesgue measure of K . For a d − 1 dimensional
manifoldΓ , the spaceL2(Γ ) is defined in an analog way. Here, the surface measure
is used instead of the volume measure.

The space of continuous functions over Ω is denoted by C0(Ω) and equipped
with the supremum norm

‖u‖C0(Ω) = sup
x∈Ω

|u(x)| .
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Let α = (α1, . . . , αd) ∈ N
d
0 be a multi-index, i.e., a d-tuple with non-negative

entries, and set

|α| = α1 + · · · + αd as well as ∂α =
(

∂

∂x1

)α1

· · ·
(

∂

∂xd

)αd

.

The order of the partial derivative ∂α is the number |α|. For any integer k ≥ 0 and
Ω open, we define

Ck(Ω) = {u : ∂αu exists and is continuous on Ω for |α| ≤ k} .

In the special case that k = 0, the space of continuous functions overΩ is recovered.
Furthermore, we define

Ck
0 (Ω) = {u ∈ Ck(Ω) : supp u ⊂ Ω} ,

where

supp u = {x ∈ Ω : u(x) = 0} ,

and set

C∞(Ω) =
⋂

k≥0

Ck(Ω) as well as C∞
0 (Ω) =

⋂

k≥0

Ck
0 (Ω) .

Finally, we review the space of Lipschitz functions

C0,1(Ω) = {u ∈ C0(Ω) : ∃L > 0 : |u(x)− u(y)| ≤ L|x − y| for x, y ∈ Ω}

and

Ck,1(Ω) = {u ∈ Ck(Ω) : ∂αu ∈ C0,1(Ω) for |α| = k}

for k ∈ N. The space of Hölder continuous functions is a straightforward
generalization. For κ ∈ (0, 1], it is

C0,κ (Ω) = {u ∈ C0(Ω) : ∃C > 0 : |u(x)− u(y)| ≤ C|x − y|κ for x, y ∈ Ω}

and

Ck,κ (Ω) = {u ∈ Ck(Ω) : ∂αu ∈ C0,κ (Ω) for |α| = k}

for k ∈ N.
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1.3.1.1 Sobolev Spaces

Let Ω be a non-empty open subset of Rd , d ∈ N. The Sobolev space Hk(Ω) of
order k ∈ N0 is defined by

Hk(Ω) = {u ∈ L2(Ω) : ∂αu ∈ L2(Ω) for |α| ≤ k} (1.1)

with the norm ‖ · ‖Hk(Ω) and the semi-norm | · |Hk(Ω), where

‖u‖Hk(Ω) =
(

∑

|α|≤k
‖∂αu‖2

L2(Ω)

)1/2

and |u|Hk(Ω) =
(

∑

|α|=k
‖∂αu‖2

L2(Ω)

)1/2

.

Here, the partial derivative ∂αu has to be understood in the weak sense. More
precisely, let the functional gα : C∞

0 (Ω) → R be the distributional derivative of
u with index α, i.e., gα satisfies

(u, ∂αϕ)L2(Ω) = (−1)|α|gα(ϕ)

for all ϕ ∈ C∞
0 (Ω). Furthermore, let gα have the representation

gα(ϕ) =
∫

Ω

ϕ(x) ∂αu(x) dx

for all ϕ ∈ C∞
0 (Ω) with some function ∂αu ∈ Lloc1 (Ω) which is defined uniquely

up to an equivalence class. In this case, ∂αu is called the weak derivative of u with
index α. The additional condition ∂αu ∈ L2(Ω) in (1.1) ensures that the weak
derivative can be chosen such that it is square integrable.

For the definition of Sobolev spaces with fractional order s ≥ 0, let s = k + μ

with k ∈ N0 and μ ∈ [0, 1). The Sobolev–Slobodekij norm is given by

‖u‖Hs(Ω) =
(

‖u‖2
Hk(Ω)

+
∑

|α|=k
|∂αu|2Hμ(Ω)

)1/2

,

where

|u|Hμ(Ω) =
(∫

Ω

∫

Ω

|u(x)− u(y)|2
|x − y|d+2μ

dx dy
)1/2

.

Therefore, we define

Hs(Ω) = {u ∈ Hk(Ω) : |∂αu|Hμ(Ω) < ∞ for |α| = k} .
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The Sobolev norm ‖ · ‖Hs(Ω) for arbitrary real s ≥ 0 is induced by the inner product

(u, v)Hs (Ω) = (u, v)Hk(Ω) +
∑

|α|=k
(∂αu, ∂αv)Hμ(Ω)

with

(u, v)Hk(Ω) =
∑

|α|≤k
(∂αu, ∂αv)L2(Ω)

and

(u, v)Hμ(Ω) =
∫

Ω

∫

Ω

(

u(x)− u(y)
)(

v(x)− v(y)
)

|x − y|d+2μ dx dy .

Hence, Hs(Ω) is a Hilbert space for all s ≥ 0.

1.3.1.2 Sobolev Spaces on the Boundary

For the definition of Sobolev spaces on the boundary of a domain, we have to restrict
the class of admitted domains. Therefore, let Ω ⊂ R

d , d ∈ N be a bounded open
set with boundary Γ . Additionally, we assume that Γ is non-empty and has an
overlapping cover that can be parametrized in the way

Γ =
p
⋃

i=1

Γi , Γi =
{

x ∈ R
d : x = χi(ξ) for ξ ∈ Ki ⊂ R

d−1
}

. (1.2)

With regard to the decomposition of Γ , let {ϕi}pi=1 be a partition of unity with non-
negative cut off functions ϕi ∈ C∞

0 (Rd) such that

p
∑

i=1

ϕi(x) = 1 for x ∈ Γ , ϕi(x) = 0 for x ∈ Γ \ Γi .

For a function u defined on Γ , we write

u(x) =
p
∑

i=1

u(x)ϕi(x) =
p
∑

i=1

ui(x) for x ∈ Γ ,

where ui(x) = u(x)ϕi(x). In the next step, x is replaced by the parametrisation
from (1.2) and we obtain

ui(x) = u(x)ϕi(x) = u(χi(ξ))ϕi(χi(ξ)) for ξ ∈ Ki ⊂ R
d−1, i = 1, . . . , p .
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The last expression is abbreviated to ũi(ξ). These functions are defined on bounded
subsets of Rd−1, and thus the Sobolev spaces from Sect. 1.3.1.1 can be used. To sat-
isfy ui ∈ Hs(Ki) for s > 0, the corresponding derivatives of the parametrisation χi
have to exist. For the definition of these derivatives of order up to s ≤ k, we have to
assume χi ∈ Ck−1,1(Ki).

For 0 ≤ s ≤ k, the Sobolev norm

‖u‖Hs(Γ ),χ =
( p
∑

i=1

‖ui‖2
Hs(Ki)

)1/2

,

which depends on the parametrisation of Γ , is defined. By the use of this norm the
Sobolev spaces Hs(Γ ) can be introduced. For a Lipschitz domain Ω and s ∈ (0, 1),
the Sobolev–Slobodekij norm

‖u‖Hs(Γ ) =
(

‖u‖2
L2(Γ )

+
∫

Γ

∫

Γ

|u(x)− u(y)|2
|x − y|d−1+2s dsx dsy

)1/2

is equivalent to ‖ · ‖Hs(Γ ),χ , and thus, the space Hs(Γ ) is independent of the
parametrisation chosen in (1.2). For s < 0, we define Hs(Γ ) as the dual space
of H−s(Γ ) and equip it with the norm

‖u‖Hs(Γ ) = sup
0 =v∈H−s (Γ )

|u(v)|
‖v‖H−s (Γ )

.

Additionally, we need some spaces which are only defined on a part of the boundary.
Let Γ0 be an open part of the sufficiently smooth boundary Γ . For s ≥ 0, we set the
Sobolev space

Hs(Γ0) = {u = ũ|Γ0 : ũ ∈ Hs(Γ )
}

with the norm

‖u‖Hs(Γ0) = inf
ũ∈Hs(Γ ):̃u|Γ0=u ‖ũ‖Hs(Γ ) .

Furthermore, let

˜Hs(Γ0) = {u = ũ|Γ0 : ũ ∈ Hs(Γ ), supp ũ ⊂ Γ0
}

,

and for s < 0, we set Hs(Γ0) as the dual space of ˜Hs(Γ0). Finally, we define a
Sobolev space over the boundary with piecewise regularity. Therefore, let

Γ =
p
⋃

i=1

Γ i , Γi ∩ Γj = ∅ for i = j ,
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and define

Hs
pw(Γ ) =

{

u ∈ Hmin{ d−1
2 , s}(Γ ) : u|Γi ∈ Hs(Γi), i = 1, . . . , p

}

.

This space is equipped with the norm

‖u‖Hs
pw(Γ )

=
( p
∑

i=1

‖u|Γi‖2
Hs(Γi)

)1/2

.

1.3.1.3 Properties of Sobolev Spaces

To state some properties of Sobolev spaces, we have to guarantee certain regularities
of the domain Ω and its boundary Γ . Therefore, we take from [87] the following
definition.

Definition 1.1 Let Ω be an open subset of R
d . We say that its boundary Γ

is continuous (respectively Lipschitz, continuously differentiable, of class
Ck,1, k times differentiable) if for every x ∈ Γ there exists a neighbourhood U

of x in R
d and new orthogonal coordinates {ξ1, . . . , ξd } such that

1. U is an hypercube in the new coordinates:

U = {(ξ1, . . . , ξd ) : −ci < ξi < ci, i = 1, . . . , d} ,

2. there exists a continuous (respectively Lipschitz, continuous differentiable, of
class Ck,1, k times continuously differentiable) function f , defined in

U ′ = {(ξ1, . . . , ξd−1) : −ci < ξi < ci, i = 1, . . . , d − 1} ,

and such that

|f (ξ ′)| ≤ cd/2 for every ξ ′ = (ξ1, . . . , ξd−1) ∈ U ′ ,

Ω ∩ U = {ξ = (ξ ′, ξd ) ∈ U : ξd < f (ξ ′)} ,
Γ ∩U = {ξ = (ξ ′, ξd ) ∈ U : ξd = f (ξ ′)} .

If Ω has a Lipschitz boundary, we call Ω a Lipschitz domain. From now on, we
restrict ourselves to bounded domains Ω . So, the boundary Γ is compact, and thus
there is a finite cover of Γ , which can be used to construct a parametrisation as given
in (1.2). We state the famous Sobolev embedding theorem, see, e.g., [1, 49].

Theorem 1.2 (Sobolev Embedding) Let Ω ⊂ R
d , d ∈ N be a bounded domain

with Lipschitz boundary and let 2k > d with k ∈ N. For u ∈ Hk(Ω), it is
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u ∈ C0(Ω) and there exists a constant CS > 0 such that

‖u‖C0(Ω) ≤ CS‖u‖Hk(Ω) for u ∈ Hk(Ω) .

Remark 1.3 In [49], it is shown that for convex domains Ω with diameter smaller
or equal to one, the constant in Theorem 1.2 has the form

CS = c |Ω |−1/2

with a constant c > 0 which only depends on d and k.

Next, we give some results for traces of functions in Sobolev spaces. For
sufficiently smooth functions u over Ω , we set the trace operator γ0 as restriction of
u to the boundary Γ , i.e.

γ0u = u
∣

∣

Γ
.

This operator has continuous extensions such that the following theorems taken
from [61] and [128] are valid.

Theorem 1.4 If the bounded subsetΩ ofRd has a boundary Γ of class Ck−1,1 and
if 1/2 < s ≤ k, then

γ0 : Hs(Ω) → Hs−1/2(Γ )

is a bounded linear operator, i.e.

‖γ0u‖Hs−1/2(Γ ) ≤ cT ‖u‖Hs(Ω) for u ∈ Hs(Ω) .

This operator has a continuous right inverse

E : Hs−1/2(Γ ) → Hs(Ω)

with γ0Ev = v for all v ∈ Hs−1/2(Γ ) and

‖Ev‖Hs(Ω) ≤ cIT ‖v‖Hs−1/2(Γ ) for v ∈ Hs−1(Γ ) .

Theorem 1.5 IfΩ ⊂ R
d is a bounded domain with Lipschitz boundary Γ , then the

trace operator γ0 is bounded for 1
2 < s < 3

2 .

1.3.2 Galerkin Formulations

At several places in this book, we are concerned with operator equations and in
particularly with weak formulations of differential equations. These are treated by
means of Galerkin formulations in the continuous as well as in the discretized



14 1 Introduction

versions. We also call these formulations variational problems. In the following,
we give a summary on this topic.

Let V be a Hilbert space with inner product (·, ·)V and corresponding induced
norm ‖ · ‖V = √

(·, ·)V . The abstract setting of a Galerkin formulation is

Find u ∈ V : a(u, v) = �(v) ∀v ∈ V , (1.3)

where a(·, ·) : V × V → R denotes a bilinear and �(·) : V → R a linear form.
The bilinear form is said to be continuous or bounded on V if there exists a constant
c1 > 0 such that

|a(u, v)| ≤ c1‖u‖V ‖v‖V for u, v ∈ V .

Furthermore, a(·, ·) is called V -elliptic if there is another constant c2 > 0 such that

a(v, v) ≥ c2‖v‖2
V for v ∈ V .

Analogously, �(·) is said to be continuous if

|�(v)| ≤ c�‖v‖V for v ∈ V ,

for a constant c� > 0. Hence, a continuous linear form is a bounded functional on V
and therefore, it belongs to the dual space of V .

Theorem 1.6 (Lax–Milgram Lemma) Let V be a Hilbert space, a(·, ·) : V ×
V → R be a continuousV -elliptic bilinear form, and let � : V → R be a continuous
linear form. The abstract variational problem (1.3) has one and only one solution.

In the proof of the Lax–Milgram Lemma, the Riesz representation theorem is
utilized, see, e.g., [58] or the original work [121].

Theorem 1.7 (Riesz Representation Theorem) Let V ′ be the dual space of V
equipped with the norm

‖�‖V ′ = sup
0 =v∈V

|�(v)|
‖v‖V .

For each � ∈ V ′, there exists a unique u ∈ V such that

(u, v)V = �(v) for v ∈ V

and

‖u‖V = ‖�‖V ′ .

In the numerics, it is not possible to work with the space V directly. Therefore,
a finite dimensional subspace Vh of V is introduced and the discrete Galerkin
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formulation

Find uh ∈ Vh : a(uh, vh) = �(vh) ∀vh ∈ Vh (1.4)

is considered. Since Vh ⊂ V , the method is said to be conforming. Due to the finite
dimension of Vh, we can introduce a basis Ψ with Vh = span Ψ and dimVh = n

for some n ∈ N. Next, we express uh as linear combination of basis functions

uh =
∑

ψ∈Ψ
uψψ ,

and we have to test (1.4) only with vh = ϕ for all ϕ ∈ Ψ . Consequently, we end
up with a system of linear equations to compute the unknown coefficients uψ of uh.
More precisely, let uh be the vector with components uψ , i.e. uh = (

uψ
)

ψ∈Ψ . We
obtain

Auh = b (1.5)

with

A = (a(ψ, ϕ))
ϕ,ψ∈Ψ ∈ R

n×n and b = (�(ϕ))
ϕ∈Ψ ∈ R

n .

The system matrix A is positive definite because of the V -ellipticity of the bilinear
form a(·, ·). Therefore, the n×n system of linear equations admits a unique solution.
If the system (1.5) of linear equations is small, we use an efficient direct solver of
LAPACK [6]. In case of large systems, however, iterative solvers are preferable.
For symmetric matrices we apply the conjugate gradient method (CG) [90] and for
non-symmetric matrices we utilize GMRES [150].

Nevertheless, the question remains how the Galerkin formulations (1.3) and (1.4)
are related to each other. Céa’s Lemma gives the answer. The discrete Galerkin
formulation (1.4) yields the quasi-best approximation of the solution of (1.3).

Lemma 1.8 (Céa’s Lemma) Let V be a Hilbert space and Vh ⊂ V a finite
dimensional subspace of V , let a(·, ·) : V × V → R be a continuous V -elliptic
bilinear form, and let � : V → R be a continuous linear form. Furthermore, let
u ∈ V be the solution of (1.3) and uh ∈ Vh be the solution of (1.4). The abstract
error estimate

‖u− uh‖V ≤ c1

c2
min
vh∈Vh

‖u− vh‖V (1.6)

holds.

Consequently, we can estimate the error of the Galerkin approximation by studying
interpolation properties of the finite dimensional subspace. More precisely, we can
estimate the minimum on the right hand side of (1.6) by inserting an interpolation
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of u in the space Vh. Thus, we have to introduce interpolation operators and to
prove interpolation error estimates. This yields error estimates for the Galerkin
approximation of the form

‖u− uh‖ ≤ c hs ‖|u‖|

with certain norms ‖ · ‖ and ‖| · ‖|, where s ∈ R and h corresponds either
to the characteristic mesh size h, defined later, or to the number of degrees of
freedom (DoF) in the system of linear Eq. (1.5). We say in this case that the error
in the norm ‖ · ‖ converges with order s with respect to h. In our computational
tests, we verify the theoretical orders of convergence. Therefore, let Vh and Vh∗ be
two approximation spaces with corresponding h and h∗. We compute the numerical
order of convergence (noc) as

log(‖u− uh‖)− log(‖u− uh∗‖)
log(h)− log(h∗)

, (1.7)

which is an approximation on s in the error model

‖u− uh‖ ≈ c hs ‖|u‖| .

An important analytical tool in order to prove interpolation error estimates is the
Bramble–Hilbert Lemma, see [58] and below. Beside of this, we extensively apply
the triangle and reverse triangle inequality,

‖x + y‖ ≤ ‖x‖ + ‖y‖ and | ‖x‖ − ‖y‖ | ≤ ‖x + y‖ ,

for all kinds of norms, as well as the Cauchy–Schwarz inequality

|(x, y)| ≤ ‖x‖‖y‖ ,

where the norm ‖ · ‖ is induced by the inner product (·, ·), i.e. ‖ · ‖ = √
(·, ·). Here,

x and y might refer to vectors, functions or vector valued functions depending on
the context of the inequality.

Theorem 1.9 (Bramble–Hilbert Lemma) Let Ω ⊂ R
d be a Lipschitz domain.

For some integer k ≥ 0, let f be a continuous linear form on the space Hk+1(Ω)

with the property that

f(p) = 0 ∀p ∈ Pk(Ω) .

There exists a constant C(Ω) such that

|f(v)| ≤ C(Ω) ‖f‖∗ |v|Hk+1(Ω) ,

where ‖ · ‖∗ is the norm in the dual space of Hk+1(Ω).



Chapter 2
Finite Element Method on Polytopal
Meshes

The finite element method (FEM) is a powerful tool for the approximation of
boundary value problems, which is widely applied and accepted in science and
engineering. The approach relies on the decomposition of the underlying domain
into elements and the construction of a discrete approximation space over the given
discretization. The BEM-based finite element method can be seen as a generaliza-
tion in order to handle more general elements in the mesh. This chapter contains a
discussion of polygonal as well as polyhedral meshes and the construction of basis
functions for the approximation space over these general meshes. The formulation
of the BEM-based FEM is obtained by means of a Galerkin formulation and its
convergence and approximation properties are analysed with the help of introduced
interpolation operators. Numerical experiments confirm the theoretical findings.

2.1 Preliminaries

The approximation space in the BEM-based finite element method is defined in
accordance with the underlying differential equation of the considered boundary
value problem. For this presentation, we choose the diffusion problem with mixed
boundary conditions on a bounded polygonal/polyhedraldomainΩ ⊂ R

d , d = 2, 3.
Its boundary Γ = ΓD ∪ ΓN is split into a Dirichlet and a Neumann part, where
we assume |ΓD| > 0. Given a source term f ∈ L2(Ω), a Dirichlet datum
gD ∈ H 1/2(ΓD) as well as a Neumann datum gN ∈ L2(ΓN), the problem reads

− div(a∇u) = f in Ω ,

u = gD on ΓD ,

a∇u · n = gN on ΓN ,

(2.1)
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where a ∈ L∞(Ω) with 0 < amin ≤ a ≤ amax almost everywhere in Ω and n is
the outward unit normal vector on Γ . This boundary value problem is considered
in the week sense with the help of a Galerkin formulation. Thus, we seek a solution
u ∈ H 1(Ω), where we denote, as usual, the Sobolev spaces of order s ∈ R with
Hs(D) for some domain D ⊂ Ω , cf. Sect. 1.3. Furthermore, we utilize the space
of polynomials Pk(D) with degree smaller or equal k ∈ N0 with the convention
that P−1(D) = {0}. Here, D might also be a one- or two-dimensional submanifold
of Ω . For simplicity, we assume in the first part that the diffusion coefficient a is
piecewise constant and its jumps are resolved by the meshes later on. Nevertheless,
we will also give a strategy for the more general situation of continuously varying
diffusion coefficients. Our goal is to introduce a H 1-conforming approximation
space of arbitrary order k ∈ N which yields optimal rates of convergence in the finite
element framework. In all estimates, c denotes a generic constant that depends on the
mesh regularity and stability, the space dimension d and the approximation order k.
The following discrete approximation ofH 1(Ω) is constructed but not limited to the
diffusion equation. It can also be applied to other boundary value problems where
H 1-conforming approximations are desirable.

2.2 Polygonal and Polyhedral Meshes

For the finite element method, we have to introduce a discretization Kh of Ω . In
this section, we distinguish the two- and three-dimensional case Ω ⊂ R

d , d = 2, 3.
In contrast to classical conforming finite element methods, we allow meshes
with general polygonal and polyhedral elements which are bounded. Examples
of such meshes are given in Fig. 2.1. If we do not distinguish between the space
dimension d , we call the meshes and the elements polytopal. The elements K ∈ Kh

Fig. 2.1 Two examples for meshes with polygonal and polyhedral elements
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K

zK
K

z

E = zbze

ze zb

Fig. 2.2 Two examples of neighbouring elements with additional nodes on the straight boundary

are non-overlapping open sets such that

Ω =
⋃

K∈Kh

K .

The boundaries of the elements consist of nodes and edges in 2D as well as of
faces in 3D. An edge E = zbze is always located between two nodes, the one at the
beginning zb and the one at the end ze. These points are fixed once per edge and they
are the only nodes on E. In each corner of an element K , a node is located, but in
2D there could also be some nodes on straight lines of the polygonal boundary ∂K ,
cf. Fig. 2.2. We stress this fact more carefully. If we have a triangle with three nodes
and we add some nodes on the boundary, this triangle turns formally into a polygon.
These additional nodes enrich the approximation space in the finite element method.
In this context, nodes on straight lines are natural since they are just ordinary nodes
for polygons. In triangular or quadrilateral meshes these nodes appear as hanging
nodes which are undesirable and do not influence the accuracy of the approximation.
In classical finite element implementations, such hanging nodes have to be treated
in a special way as conditional nodes or by removing them. Methods working
on polygonal meshes include such nodes naturally. In 3D, hanging nodes appear
naturally on edges of the polyhedral elements and one may have hanging edges
on the polygonal faces. The polygonal faces are assumed to be flat and they are
surrounded by edges which are coplanar.

For the later analysis, we need some notation. Nh denotes the set of all nodes in
the mesh Kh. It is Nh = Nh,Ω ∪Nh,D ∪Nh,N , where Nh,Ω , Nh,D , Nh,N contain
the nodes in the interior of Ω , on the Dirichlet boundary ΓD and on the interior of
the Neumann boundary ΓN , respectively. The transition points between ΓD and ΓN
belong to Nh,D . We denote the set of all edges of the mesh with Eh. In analogy to
the set of nodes, we decompose Eh = Eh,Ω ∪ Eh,D ∪ Eh,N , where Eh,Ω , Eh,D and
Eh,N contain all edges in the interior of Ω , on the Dirichlet boundary ΓD and on
the Neumann boundary ΓN , respectively. In 3D, we additionally have the set of all
faces Fh = Fh,Ω ∪ Fh,D ∪ Fh,N with subsets analogous as before. Moreover,
the sets N (K), N (E) and N (F ) contain all nodes which belong to the element
K ∈ Kh, the edge E ∈ Eh and the face F ∈ Fh, respectively. We denote the set of
edges which belong to the element K by E (K) and those which belong to a face F
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by E (F ). The set F (K) contains finally the faces of an element K . The union of
the boundaries of all elements

ΓS =
⋃

K∈Kh

∂K

is said to be the skeleton of the discretization.

2.2.1 Mesh Regularity and Properties in 2D

The length of an edge E and the diameter of an element K are denoted by hE and
hK = sup{|x − y| : x, y ∈ ∂K}, respectively.

Definition 2.1 (Regular Mesh in 2D) The family of meshes Kh is called regular
if it satisfies:

1. Each element K ∈ Kh is a star-shaped polygon with respect to a circle of
radius ρK and midpoint zK .

2. The aspect ratio is uniformly bounded from above by σK , i.e.
hK/ρK < σK for all K ∈ Kh.

The circle in the definition is chosen in such a way that its radius is maximal, cf.
Fig. 2.2. If the position of the circle is not unique, its midpoint zK is fixed once
per element. Additionally, we assume that hK < 1 for all elements K ∈ Kh.
This condition is no grievous restriction on the mesh since hK < 1 can always
be satisfied by scaling Ω . Nevertheless, it is necessary in the forthcoming local
boundary integral formulations in 2D.

For the analysis of local boundary element methods used in the BEM-based
FEM and some proofs in Chap. 5, the regularity of a mesh is not enough. Another
important property is that the diameter of an element is comparable to the length of
its shortest edge. This is ensured by the following definition.

Definition 2.2 (Stable Mesh in 2D) The family of meshes Kh is called stable if
there is a constant cK > 0 such that for all elements K ∈ Kh and all its edges
E ∈ E (K) it holds

hK ≤ cK hE.

When we consider convergence or error estimates with respect to the mesh size
h = max{hK : K ∈ Kh}, it is important that the constants in the definitions above
hold uniformly for the whole family of meshes. For convenience we only write mesh
and mean a whole family for h → 0.

In the following, we give some useful properties of regular meshes. An important
analytical tool is an auxiliary triangulation Th(K) of the elements K ∈ Kh. This
triangulation is constructed by connecting the nodes on the boundary of K with
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Fig. 2.3 Auxiliary
triangulation Th(K) of
star-shaped element K ,
altitude ha = alt(TE,E) of
triangle TE ∈ Th(K)

perpendicular to E and angle
β =  zKzbze as well as
triangle TE′ ∈ Th(K) with
isosceles triangle T iso

E′
zK

K

E zb
ze

ha
TE

hTE

K

y

T iso
E ′

TE ′
E ′

the point zK of Definition 2.1, see Fig. 2.3. Consequently, Th(K) consists of the
triangles TE for E = zbze ∈ E (K), which are defined by the points zb, ze and zK .

Lemma 2.3 Let K be a polygonal element of a regular and stable mesh Kh. The
auxiliary triangulation Th(K) is shape-regular in the sense of Ciarlet [58], i.e.,
neighbouring triangles share either a common node or edge and the aspect ratio of
each triangle is uniformly bounded by some constant σT , which only depends on
σK and cK .

Proof Let TE ∈ Th(K) be a triangle with diameter hTE and let ρTE be the radius of
the incircle. It is known that the area of TE is given by |TE | = 1

2 |∂TE|ρTE , where
|∂TE| is the perimeter of TE . Obviously, it is |∂TE| ≤ 3hTE . On the other hand,
we have the formula |TE | = 1

2hEha , where ha = alt(TE,E) is the altitude of the
triangle perpendicular to E, see Fig. 2.3. Since the element K is star-shaped with
respect to a circle of radius ρK , the line through the side E ∈ Eh of the triangle does
not intersect this circle. Thus, ha ≥ ρK and we have the estimate |TE | ≥ 1

2hEρK .
Together with Definition 2.1, we obtain

hTE

ρTE
= |∂TE|hTE

2|TE| ≤ 3h2
TE

hEρK
≤ 3cK σK

h2
TE

h2
K

≤ 3cK σK = σT .

��
In the previous proof, we discovered and applied the estimate

|TE| ≥ 1
2hEρK (2.2)

for the area of the auxiliary triangle. This inequality will be of importance once
more. We may also consider the auxiliary triangulation Th(Kh) of the whole
domain Ω which is constructed by gluing the local triangulations Th(K). Obvi-
ously, Th(Kh) is also shape-regular in the sense of Ciarlet. Furthermore, the angles
in the auxiliary triangulation Th(K) next to ∂K can be bounded from below. This
gives rise to the following result.
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Lemma 2.4 Let Kh be a regular polygonal mesh. There is an angle αK with
0 < αK ≤ π/3 such that for all elements K ∈ Kh and all its edges E ∈ E (K)
the isosceles triangle T iso

E with longest side E and two interior angles αK lies
inside TE ∈ Th(K) and thus inside the element K , see Fig. 2.3. The angle αK only
depends on σK .

Proof Let TE ∈ Th(K). We bound the angle β =  zKzbze in TE next to E = zbze
from below, see Fig. 2.3. Without loss of generality, we assume that β < π/2. Using
the projection y of zK onto the straight line through the edge E, we recognize

sin β = |y − zK |
|zb − zK | ≥ ρK

hK
≥ 1

σK
∈ (0, 1) . (2.3)

Consequently, it is β ≥ arcsin σ−1
K . Since this estimate is valid for all angles next

to ∂K of the auxiliary triangulation, the isosceles triangles T iso
E , E ∈ E (K) with

common angle αK = min{π/3, arcsin σ−1
K } lie inside the auxiliary triangles TE

and therefore inside K . ��
Remark 2.5 The upper bound of αK is chosen in such a way that the longest side
of the isosceles triangle T iso

E is always the edge E. This fact is not important in the
previous lemma, but it simplifies forthcoming proofs.

Corollary 2.6 Let Kh be a regular mesh. Every node belongs to a uniformly
bounded number of elements, i.e. |{K ∈ Kh : z ∈ N (K)}| ≤ c, ∀z ∈ Nh. The
constant c > 0 only depends on σK .

Proof Due to the regularity of Kh, every interior angle of an element is bounded
from below by αK as we have seen in Lemma 2.4. This angle only depends on σK .
Therefore, we have

|{K ∈ Kh : z ∈ N (K)}| ≤
⌊

2π

αK

⌋

,

where the term on the right hand side denotes the biggest integer smaller than or
equal to 2π/αK . ��

Conversely, we have a more restrictive result, which additionally assumes the
stability of the mesh. Without the stability, the lengths of the edges might degenerate
and thus a regular polygonal element can have arbitrary many nodes on its boundary.

Lemma 2.7 Let Kh be regular and stable. Every element contains a uniformly
bounded number of nodes and edges, i.e. |N (K)| = |E (K)| ≤ c, ∀K ∈ Kh.
The constant c > 0 only depends on σK and cK .
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Proof We exploit the regularity of the mesh. Let K ∈ Kh. In 2D it is obviously
|N (K)| = |E (K)|. With the help of (2.2), we obtain

h2
K |N (K)| ≤ σK ρK hK |E (K)|

≤ σK ρK
∑

E∈E (K)
cK hE

≤ σK cK
∑

E∈E (K)
2|TE|

= 2σK cK |K|
≤ 2σK cK h2

K .

Consequently, we have |N (K)| ≤ 2σK cK . ��
The isosceles triangles and the auxiliary triangulation play an important role

in the analysis of error estimates later on. They are used in order to handle
polygonal elements and, in particular, to apply some results on interpolation of
functions over triangulations. Such results are applicable, if the polygonal mesh
is regular and stable, since then, the auxiliary triangulation is regular in the sense of
Ciarlet according to Lemma 2.3. However, in certain situations, we can weaken the
assumptions on the polygonal mesh and remove the stability. In [84], the following
result is proven with similar considerations as in the proof of Lemma 2.4 for convex
elements. However, the result is also valid in our more general case.

Lemma 2.8 For a regular mesh Kh, all angles of all triangles in the auxiliary
triangulation Th(Kh) are less than π − arcsin σ−1

K and, in particular, they are
strictly less than π .

Proof We proceed similar as in the proof of Lemma 2.4. Therefore, let K ∈ Kh

be an element with edge E = zbze and we consider the triangle TE ∈ Th(K). It
is sufficient to bound the angle  zbzKze and the larger angle of the others adjacent
to E, lets say  zbzezK . It is easily seen form (2.3) that

 zbzKze ≤ π − 2 arcsinσ−1
K .

In order to bound  zbzezK we employ the point y once more which is the projection
of zK onto the line through E, see Fig. 2.3. Without loss of generality we assume
 zbzezK > π/2 and thus y /∈ zbze. It is

sin(π −  zbzezK) = sin(  zKzey) = |y − zK |
|ze − zK | ≥ ρK

hK
≥ 1

σK
.

Applying arcsin yields  zbzezK ≤ π − arcsin σ−1
K and the result follows because of

arcsin σ−1
K > 0 due to σK > 0. ��

An important consequence of this proposition is the following corollary.
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Corollary 2.9 Let K ∈ Kh be an element of a regular polygonal mesh Kh. The
auxiliary triangulations Th(K) and Th(Kh) satisfy a maximum angle condition,
i.e., every angle in the triangles of the mesh is uniformly bounded from above by a
constant which is strictly less than π . The maximum angle only depends on σK .

Therefore, several approximation properties of finite element interpolation for linear
as well as for higher order basis functions are valid on this auxiliary discretization,
see [14, 114]. The constants appearing in those estimates depend on the maximum
angle and thus, on the aspect ratio σK of the mesh Kh, but not on the stability
parameter cK .

2.2.2 Mesh Regularity and Properties in 3D

In addition to the diameter hK of an element K ∈ Kh and the edge length hE of
E ∈ Eh, we use the diameter hF of polygonal faces F ∈ Fh in the following.

Definition 2.10 (Regular Faces) A set of faces Fh is called regular if all faces
are flat polygons which are regular in the sense of Definition 2.1 with regularity
parameter σF . The radius of the inscribed circle of F ∈ Fh is denoted by ρF and
its center by zF .

Definition 2.11 (Regular Mesh in 3D) The family of meshes Kh is called regular
if it satisfies:

1. The associated set of faces Fh is regular.
2. Each element K ∈ Kh is a star-shaped polyhedron with respect to a ball of

radius ρK and midpoint zK .
3. The aspect ratio is uniformly bounded from above by σK , i.e.

hK/ρK < σK for all K ∈ Kh.

The ball in the definition is chosen in such a way that its radius is maximal and, if
its position is not unique, the midpoint zK is fixed once per element. In contrast to
the two-dimensional case, we do not impose the restriction on the diameter of the
elements.

Definition 2.12 (Stable Mesh in 3D) The family of meshes Kh is called stable if
there is a constant cK > 0 such that for all elements K ∈ Kh and all its edges
E ∈ E (K) it holds

hK ≤ cK hE.

When we consider convergence or error estimates with respect to the mesh size
h = max{hK : K ∈ Kh}, it is important that the constants in the definitions above
hold uniformly for the whole family of meshes. As in the two-dimensional case, we
only write mesh in the following and mean a whole family for h → 0. The stability
ensures that for an element the lengths of its edges, the diameters of its faces and
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the diameter of itself are comparable. It yields

hE ≤ hF ≤ hK ≤ cK hE ≤ cK hF

for K ∈ Kh and all F ∈ F (K) and E ∈ E (F ).

Remark 2.13 For a regular and stable mesh Kh, it holds

hd−1
K ≤ c |F | , (2.4)

for K ∈ Kh with F ∈ F (K). This is a direct generalization of the stability
condition in two-dimensions, cf. Definition 2.2. Thus, (2.4) is valid for d = 2, 3
if F is interpreted as edge and face, respectively. This inequality follows by

|F | ≥ πρ2
F ≥ π

h2
F

σ 2
F

≥ π
h2
K

c2
K σ 2

F

.

In the derivation of interpolation and error estimates, an auxiliary discretization
into tetrahedra will be the counterpart to the constructed triangulation in 2D. We
employ the introduced auxiliary triangulation from Sect. 2.2.1 in order to discretize
the polygonal faces and denote it by T0(F ) for F ∈ Fh. Note, that we have
chosen an index 0 instead of h. We introduce a family Tl (F ) of triangulations,
where the meshes of level l ≥ 1 are defined recursively by splitting each triangle
of the previous level into four similar triangles, see Fig. 2.4. The set of nodes in the
triangular mesh is denoted by Ml (F ). Obviously, the discretizations of the faces
can be combined to a whole conforming surface mesh of an element K ∈ Kh by
setting

Tl (∂K) =
⋃

F∈F (K)

Tl (F ) and Ml(∂K) =
⋃

F∈F (K)

Mh(F ) .

Finally, the auxiliary tetrahedral mesh Tl (K) of the polyhedral element K ∈ Kh

is constructed by connecting the nodes of the triangular surface mesh Tl (∂K) with

Fig. 2.4 Polyhedral element with surface triangulations of level l = 0, 1, 2
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the point zK . The tetrahedra constructed this way are denoted by Ttet. Although,
this auxiliary discretization may contain needle-like tetrahedra, their regularity
can be controlled by the mesh regularity and stability of the polyhedral mesh.
Combining the tetrahedral discretizations of the polyhedral elements forms an
auxiliary discretization Tl (Kh) for the whole domain Ω . If the mesh level l is not
important in later proofs and l = 0 is sufficient, we also write Th(·) for T0(·) in
order to treat the two- and three-dimensional cases simultaneously.

Lemma 2.14 Let K be a polyhedral element of a regular and stable meshKh. The
auxiliary discretizations Tl (K) and Tl (Kh), l ≥ 0 are shape-regular in the sense
of Ciarlet [58], i.e., neighbouring tetrahedra share either a common node, edge or
triangular face and the aspect ratio of each tetrahedra is uniformly bounded by
some constant σT , which only depends on σK , σF , cK and the mesh level l in the
face discretization.

Proof The conformity of the auxiliary mesh is rather obvious. Thus, we only have
to bound the aspect ratio of the tetrahedra Ttet ∈ Tl (K), i.e., the ratio of the
diameter hTtet and the radius ρTtet of their insphere. For an arbitrary tetrahedron,
we have the relation

ρTtet = 3VTtet

ATtet

,

where VTtet is the volume and ATtet is the surface area of the tetrahedron.
This relation is seen as follows. VTtet is equal to the sum of the volumes
VTtet,i , i = 1, . . . , 4, of the four tetrahedra Ttet,i obtained by connecting the vertexes
with the center of the insphere. Each volume is computed as VTtet,i = 1

3ρTtet |Ti |,
where Ti is the triangle on the surface of the initial tetrahedron Ttet and ρTtet

corresponds to the hight of Ttet,i over Ti . Consequently, it holds

VTtet =
4
∑

i=1

VTtet,i =
4
∑

i=1

1

3
ρTtet |Ti | = 1

3
ρTtetATtet .

First, we study the case l = 0, where only one node per face is added for the
triangulation of the element surface. We consider the auxiliary discretization and
choose an arbitrary tetrahedron Ttet with corresponding triangle T ∈ Tl (F ) in some
face F ∈ F (K) and with an edge E ∈ E (F ) such that E ⊂ ∂T ∩ ∂F . A rough
estimate for the surface area of this tetrahedron is

ATtet =
4
∑

i=1

|Ti | ≤
4
∑

i=1

h2
K

2
= 2h2

K .
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Let alt(Ttet, T ) be the altitude of the tetrahedron Ttet over the side T and let alt(T ,E)
be the altitude of the triangle T over the edge E. For the volume of Ttet, we have

VTtet = 1

3
alt(Ttet, T )|T | = 1

6
alt(Ttet, T ) alt(T ,E) hE .

Since the faces of the element K and the element itself are star-shaped with respect
to circles and a ball according to Definitions 2.10 and 2.11, it holds ρF ≤ alt(T ,E)
as well as ρK ≤ alt(Ttet, T ) due to the construction of Ttet and T . Consequently, we
obtain

VTtet ≥ 1

6
ρKρFhE ≥ 1

6σK σF
hKhFhE ≥ 1

6σK σF
h3
E .

This yields together with the stability, see Definition 2.12,

hTtet

ρTtet

= hTtetATtet

3VTtet

≤ 4σK σFh
3
K

h3
E

≤ 4σK σF c3
K .

In the case l ≥ 1, the volume VTtet gets smaller. The triangle T ⊂ F ∈ F (K) is
obtained by successive splitting of an initial triangle T0 of the mesh with level zero.
Due to the construction, these triangles are similar and the relation |T | = |T0|/4l

holds. Taking into account this relation in the considerations above gives the general
estimate

hTtet

ρTtet

≤ σtet with σtet = 4l+1σK σF c
3
K .

��
Similar to the two-dimensional case we obtain the following two results on the

object counts. In the corollary for three space dimensions, however, we additionally
assume the stability of the mesh in contrast to the lower dimensional setting.

Corollary 2.15 Let Kh be a regular and stable mesh. Every node belongs to a
uniformly bounded number of elements, i.e. |{K ∈ Kh : z ∈ N (K)}| ≤ c,
∀z ∈ Nh. The constant c > 0 only depends on σK , σF and cK .

Proof According to the previous Lemma 2.14, the auxiliary discretization T0(Kh)

is shape-regular in the sense of Ciarlet. Therefore, each node in the mesh Kh

belongs to a uniformly bounded number of auxiliary tetrahedra, and consequently
to a probably smaller uniformly bounded number of polyhedral elements. ��
Lemma 2.16 Let Kh be a regular and stable mesh. Every element contains a
uniformly bounded number of nodes, edges and faces, i.e.

|N (K)| ≤ c , |E (K)| ≤ c , |F (K)| ≤ c , ∀K ∈ Kh .

The constants c > 0 only depend on σK , σF and cK .
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Proof For the surface area of a polytopal element K ∈ Kh, we have due to the
regularity and stability of the mesh

|∂K| =
∑

F∈F (K)

|F | ≥ |F (K)|π h2
K

c2
K σ 2

F

,

see Remark 2.13. Using the auxiliary discretization into tetrahedra Ttet with
corresponding triangles T ∈ T0(∂K), for which |T | ≤ 3Vtet/ρK since
Vtet = 1

3 alt(Ttet, T )|T |, we obtain on the other hand

|∂K| =
∑

T ∈T0(∂K)

|T | ≤
∑

T ∈T0(∂K)

3Vtet

ρK
= 3|K|

ρK
≤ 3σK h2

K ,

due to |K| ≤ h3
K and the regularity. Thus, the number of faces is uniformly bounded,

namely |F (K)| ≤ 3σK c2
K σ 2

F /π . According to Lemma 2.7, each of these faces
has a uniformly bounded number of nodes and edges. Consequently, the number of
nodes and edges of the element K is also uniformly bounded. ��

If only the regularity of a polyhedral mesh is assumed, the auxiliary discretization
of tetrahedra is not necessarily regular. The edges might degenerate without the
stability and thus, the condition on the aspect ratio for the tetrahedra does not hold
anymore. But, the stability can be weakend such that the tetrahedral mesh still
satisfies a maximum angle condition.

Definition 2.17 (Weakly Stable Mesh in 3D) The family of meshes Kh is called
weakly stable if there is a constant cF > 0 such that for all polygonal faces F ∈ Fh

in the mesh and all its edges E ∈ E (F ) it holds

hF ≤ cFhE.

In contrast to stable meshes, the edges of elements in weakly stable meshes might
degenerate with respect to the element diameter. But, due to the weak stability,
small edges involve that adjacent faces are also small in their size. Thus, if an
edge degenerates to a point, the adjacent faces will degenerate to this point, too.
A consequence of this definition is, that the polygonal faces in a regular and weakly
stable mesh are regular and stable in the two-dimensional sense.

Lemma 2.18 LetK ∈ Kh be an element of a regular and weakly stable polyhedral
mesh Kh. The auxiliary discretization of tetrahedra Tl(K) and Tl (Kh) satisfy a
maximum angle condition, i.e., all dihedral angles between faces and all angles
within a triangular face are uniformly bounded from above by a constant which is
strictly less than π . The maximum angle only depends on σK , σF , cF and the mesh
level l in the face discretization.

Proof Similar as in the proof of Lemma 2.14, we only consider l = 0. The general
case l > 0 follows due to the fact that the triangles in the face triangulation Tl (F )
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are similar to those in T0(F ). Thus, the arguments turn over and the dependence
on l enters the constants. In order to prove the maximum angle condition for the
tetrahedral mesh, we distinguish several cases. First we show that the angles in the
surface triangles of the tetrahedra are bounded uniformly by a constant strictly less
than π . Afterwards, we bound the dihedral angles.

Let Ttet ∈ T0(K) be a tetrahedra and T one of its triangular faces. If T ∈ T0(F )

for a face F ∈ F (K), then all angles of T are bounded uniformly from above by a
constant strictly less than π depending only on σF according to Lemma 2.8, since
F is a regular polygon. On the other hand, if T ⊂ K , we consider the intersection
of the polyhedral element K with the plane in which T lies. The intersection is
obviously a polygon and we denote it by P . Since K is star-shaped with respect to
a ball of radius ρK and center zK , we easily see that P is star-shaped with respect
to the enclosed circle of radius ρK and center zK . Thus, P is a regular polygon
because of

hP

ρP
≤ hK

ρK
≤ σK .

Consequently, T is part of an auxiliary triangulation of a regular polygonal element
and thus its angles are bounded from above according to Lemma 2.8 by a constant
depending only on σK .

Next, we consider the dihedral angles of Ttet. Let Ti , i = 1, 2, 3, 4 be the
triangular faces of Ttet and Eij = Ti ∩ Tj be the edge shared by the triangles Ti
and Tj for i = j . Furthermore, let the triangles be numbered such that T1 ∈ T0(F )

for some face F ∈ F (K) and Ti ⊂ K for i = 2, 3, 4. We distinguish again two
cases. First, consider the dihedral angle between T1 ⊂ ∂K and Ti ⊂ K , i = 2, 3, 4.
We denote the dihedral angle by δ. It is given in the plane orthogonal to E1i as the
angle between the two planes spanned by T1 and Ti . Without loss of generality let
zK lie on the plane orthogonal to E1i and denote by y the intersection of all three
planes, see Fig. 2.5. For δ ≥ π/2, it is

δ = π

2
+ arccos

(

ha

|y − zK |
)

,

Fig. 2.5 The altitude
ha = alt(Ttet, T1),
intersection point y and
demonstration of dihedral
angle δ in plane orthogonal to
the edge Eij through zK
between the triangles T1 and
Ti as described in the proof of
Lemma 2.18 zK

T1

E1i

y

ha
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where ha = alt(Ttet, T1) is the altitude of the tetrahedron Ttet with respect to
the side T1, which corresponds to the distance of zK to the plane through T1.
Consequently, it is ha ≥ ρK due to the regularity of the polyhedral element K .
Furthermore, K is enclosed by a sphere of radius hK and center zK . Since y is the
orthogonal projection of zK onto the line through E1i , its distance to zK is smaller
than the distance of zK to the edge, thus |y − zK | ≤ hK . This yields

ha

|y − zK | ≥ ρK

hK
≥ 1

σK
,

because of the regularity. Since arc cosine is monotonically decreasing, we obtain

δ ≤ π

2
+ arccos

(

1

σK

)

< π .

It remains to bound the dihedral angle between triangular faces of the tetrahedra
with Ti, Tj ⊂ K . We denote the angle again by δ. According to Proposition 3.1
in [122], the volume VTtet of Ttet satisfy the relation

VTtet = 2

3hEij
|Ti | |Tj | sin δ .

On the other hand it is

VTtet = 1

3
alt(Ttet, T1) |T1| .

If we assume π/2 ≤ δ ≤ π , this yields

δ = π

2
+ arccos

(

hEij alt(Ttet, T1) |T1|
2|Ti| |Tj |

)

. (2.5)

The areas of the triangles are given by

|T�| = 1

2
hEij alt(T�,Eij ) for � = i, j .

Obviously, the altitude alt(T�,Eij ) is smaller than the edge shared by T� and T1 and
thus smaller than the diameter of T1. This yields

|T�| ≤ 1

2
hEij hE1� ≤ 1

2
hEij hT1 for � = i, j .
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Furthermore, it is alt(Ttet, T1) ≥ ρK and hEij ≤ hK . Consequently, we obtain for
the argument in the arc cosine in (2.5)

hEij alt(Ttet, T1) |T1|
2|Ti| |Tj | ≥ 2 alt(Ttet, T1) |T1|

hEij h
2
T1

≥ 2 ρK |T1|
hK h2

T1

≥ 2πρ2
T1

σK h2
T1

,

where we used the regularity of the mesh and the incircle of T1 with radius ρT1 ,
which gives |T1| ≥ πρ2

T1
, in the last step. Finally, we employ the weak stability

of the mesh, which ensures that the polygonal faces are regular and stable in the
two-dimensional sense. Therefore, the auxiliary triangulation of the polygonal faces
is regular in the sense of Ciarlet and it is hT1/ρT1 ≤ σT , where σT only depends
on σF and cF , see Lemma 2.3. Since the arc cosine is monotonically decreasing,
Eq. (2.5) yields with the previous considerations

δ ≤ π

2
+ arccos

(

2πρ2
T1

σK h2
T1

)

≤ π

2
+ arccos

(

2π

σK σ 2
T

)

< π .

In summary, all angles in the surface triangles of the tetrahedra and all dihedral
angles between faces are bounded by constants that are strictly less than π .
Taking the maximum of them proves the maximal angle condition for the auxiliary
discretization of tetrahedra. ��

2.2.3 Mesh Refinement

Although the use of polygonal and polyhedral meshes is quite interesting for
practical applications, only a few commercial mesh generators are able to create and
refine such general meshes. For the two-dimensional case there is the free MATLAB
tool PolyMesher available, see [167], and in three-dimensions one often exploits
either Voronoi meshes, see [70], or dual meshes to given tetrahedral discretizations.
In the following, we assume that a polygonal or polyhedral mesh is given and we
address the refinement of such meshes. We may perform uniform refinement, where
all elements of a mesh are refined, or adaptive refinement, where only a few elements
are refined according to some criterion. For polygonal and polyhedral meshes, there
is a great flexibility for the refinement process. We do not have to take care on
hanging nodes and edges, since they are naturally included in such meshes.

For the refinement process, we choose the bisection of elements. For the
description of the procedure, we focus on a single polygonal or polyhedral element
K ⊂ R

d , d = 2, 3. Furthermore, we assume that K is convex. The method might
be adapted to non-convex, star-shaped elements, but this would yield several special
cases which shall be omitted here. In order to obtain some geometrical information
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Fig. 2.6 Refinement of an element: element with center x̄K (left), element with eigenvector
(middle), two new elements (right)

of the element shape, we first compute the covariance matrix

MCov(K) = 1

|K|
∫

K

(x − x̄K)(x − x̄K)�dx ,

where

x̄K = 1

|K|
∫

K

x dx

is the barycenter of the element. The matrix MCov(K) ∈ R
d×d is symmetric

and positive definite due to construction. We compute its eigenvalues and the
corresponding eigenvectors. This principle component analysis provides some
information on the dimensions of the element. The square root of the eigenvalues
give the standard deviation in the direction of the corresponding eigenvector. Thus,
the eigenvector which belongs to the biggest eigenvalue points into the direction of
the longest extend of the element K . Consequently, we split the element orthogonal
to this eigenvector through the barycenter x̄K of K , see Fig. 2.6. Afterwards, two
new elements are obtained. This strategy actually works in any dimension d ∈ N.
Similar ideas are used in [144] to cluster point clouds which are used for matrix
approximation in fast boundary element methods.

Figure 2.7 shows the uniform refinement starting from a triangle. The meshes are
obtained after one, three, five and seven refinement steps. We recognize that even
a refinement of a triangle results in an unstructured polygonal mesh. Nevertheless,
the resulting sequence of meshes has a uniform character. A big advantage of the
introduced strategy can be seen in an adaptive context. It is possible to perform
local refinements within a few elements. Classical mesh refinement techniques for
triangular meshes, for example, suffer from the fact that local refinement propagates
into neighbouring regions. This behaviour is necessary since the resulting meshes
have to be admissible and thus the use of hanging nodes is very restricted or even
avoided.
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Fig. 2.7 Uniform refinement of a triangle after one, three, five and seven refinement steps

Finally, the question arises whether the regularity and the stability of a mesh is
preserved during the refinement. In general this is not possible with the prescribed
procedure. During the bisection of elements, small edges and thin faces might occur.
However, the aspect ratios for convex elements stay bounded, since the algorithm
tries to equilibrate the extend of the element in its characteristic directions. Thus,
the regularity is preserved for convex elements in two-dimensions. The stability,
however, has to be enforced during the refinement process if it is needed. The
introduced bisection strategy for mesh refinement is applied in most of the numerical
experiments presented in this book.

2.3 Trefftz-Like Basis Functions

Our goal is to introduce finite dimensional spaces V k
h over polygonal and polyhedral

discretizations of the domain Ω ⊂ R
d , d = 2, 3, which approximate the Sobolev

space H 1(Ω). The index k ∈ N denotes the order of the approximation space. In
this section, a more general strategy is presented which extends the original idea
in [146] to arbitrary order. The approximation space V k

h = span Ψ k
h is constructed

as span of some basis Ψ k
h . For d = 2, this basis is specified in the following and

consists of nodal, edge and element basis functions. These functions are indicated
by ψz, ψE and ψK , respectively. All of them have certain degrees and thus they
are marked and numbered by indices like ψE,i and ψK,i,j for some i, j . However,
for shorter notation, we will skip sometimes parts of the indices if the meaning is
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clear from the context and we just write ψ , ψi and ψi,j , for example. For the three-
dimensional case with d = 3, the ideas will be generalized and we have additional
face basis functions.

The basis functions are defined element-wise by local solutions of boundary
value problems in the spirit of Trefftz [168]. The diffusion equation in mind, we uti-
lize Laplace and Poisson equations over each element with Dirichlet boundary data
to construct the basis functions. Due to the local Dirichlet boundary conditions, the
traces of the basis functions will be continuous across element interfaces, i.e. they
are H 1-conforming. In the following, we first introduce the two-dimensional case
in the Sects. 2.3.1–2.3.3. Afterwards, a simple generalization to three-dimensions is
given in Sect. 2.3.4, which builds on the previous considerations.

2.3.1 Node and Edge Basis Functions

Let Kh be a polygonal mesh of a bounded domain Ω ⊂ R
2. The functions ψz

and ψE , which are assigned to nodes and edges, are defined to satisfy the Laplace
equation on each element. Their Dirichlet trace on the element boundaries is chosen
to be continuous and piecewise polynomial. Thus, we define for each node z ∈ Nh

the basis function ψz as unique solution of

−�ψz = 0 in K for all K ∈ Kh ,

ψz(x) =
{

1 for x = z ,

0 for x ∈ Nh \ {z} , (2.6)

ψz is linear on each edge of the mesh .

So, the function ψz is locally defined as solution of a boundary value problem over
each element. If the element K ∈ Kh is convex, the boundary value problem can
be understood in the classical sense and it is ψz ∈ C2(K) ∩ C0(K), see [82, 87].
However, we explicitly allow star-shaped elements within the discretization Kh of
the domain Ω . In this case, the boundary value problem is understood in the weak
sense and we obtain ψz ∈ H 1(K). Since the Dirichlet trace is continuous across
element interfaces, the local regularity of ψz yields ψz ∈ H 1(Ω). This will also be
true for the edge and element basis functions. In the following, the local problems
for the definition of basis functions are always understood in the classical or weak
sense depending on the shape of the elements. In contrast to [146], we only make use
of the fact that the nodal, edge and element basis functions satisfy ψ ∈ H 1(K) for
K ∈ Kh and we do not use a maximum principle [82, 140] for harmonic functions
which would require convex elements.
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In the case that Kh is an admissible triangulation without hanging nodes, the
basis functions turn out to be the standard hat functions of classical finite element
methods. This relation is quite obvious since the lowest order linear basis functions
satisfy the data on the boundary of each element and they are harmonic because of
their linearity. According to the unique solvability of the Dirichlet problem for the
Laplace equation the hat functions coincide with the basis functions defined here.
In this sense, the BEM-based FEM can be seen as a generalization of standard finite
element methods.

If Kh is a polygonal mesh containing only convex elements, another connection
can be recognized. For the model problem, we rediscover the so called harmonic
coordinates mentioned in several articles like [77, 84, 112, 126]. These harmonic
coordinates restricted to one element K ∈ Kh are a special type of barycentric
coordinates, i.e., they satisfy

ψz(x) ≥ 0 on K (2.7)

for z ∈ N (K) and it is

v =
∑

z∈N (K)

v(z)ψz (2.8)

for any linear function v on K according to [84]. Condition (2.7) follows directly
from the minimum-maximum principle [82, 140]. To verify (2.8), we observe that
both sides of the equation are harmonic and coincide on the boundary of K .
Therefore, the difference of both sides is harmonic and identical to zero on the
boundary. Using the minimum-maximal principle again shows that Eq. (2.8) is valid
in the whole element. In [76, 77], the authors have proven for any set of barycentric
coordinates and especially for the harmonic coordinates, which are considered in
this section, that they satisfy the estimate

0 ≤ Llow
z ≤ ψz ≤ L

up
z ≤ 1 on K

for z ∈ N (K). Here, Llow
z and L

up
z are piecewise linear functions defined as

follows. Both functions are equal to one at the node z and they are equal to zero at
every other node on the boundary of K . Additionally, Llow

z is linear on the triangle
constructed by connecting the node before and after z on the boundary, and zero
else, see Fig. 2.8. The function L

up
z is linear on each triangle that is obtained by

connecting z with all other nodes on the boundary of K .
To introduce the edge basis functions ψE , polynomial data is prescribed on the

element boundaries. Therefore, we first review a hierarchical polynomial basis over
the interval [0, 1]. We set

p0(t) = t and p1(t) = 1 − t for t ∈ [0, 1] ,
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Fig. 2.8 Triangles for construction of Llow
z (left) and Lup
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Fig. 2.9 Visualization of pi for i = 0, . . . , 4

and assign these functions to the points t0 = 0 and t1 = 1, respectively. Afterwards,
we define pi ∈ P i ([0, 1]), i ≥ 2 with exact degree i recursively as

pi = p̃i

p̃i(ti )
,

where p̃i ∈ P i ([0, 1]) \ {0} is a polynomial with p̃i (tj ) = 0 for j = 0, . . . , i − 1
and

ti = max{arg max
t∈[0,1]

|p̃i(t)|} .

The polynomial pi is well defined since p̃i is unique up to a multiplicative constant
and we obviously have ti = tj for j < i. In Fig. 2.9, the first polynomials are
visualized. One easily sees that these polynomials are linearly independent and that
for k ≥ 1

Pk([0, 1]) = span {pi : i = 0, . . . , k} .
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Fig. 2.10 Visualization of ψz, ψE,3 and ψK,1,0 over rectangular element with additional node on
straight line, nodes are marked with black dots

For the definition of edge basis functions ψE , we make use of a linear
parametrization of the corresponding edge. Let E ∈ Eh with E = zbze and

E : [0, 1] � t �→ FE(t) = zb + t (ze − zb) .

In contrast to nodal basis functions, we have more than one basis function per edge.
We define ψE,i for i = 2, . . . , k as unique solution of

−�ψE,i = 0 in K for all K ∈ Kh ,

ψE,i =
{

pi ◦ F−1
E on E ,

0 on Eh \ {E} ,

and we assign these functions to the points zE,i = FE(ti ). In Fig. 2.10, an
approximation of such a function is visualized over one rectangular element. As in
the case of nodal basis functions, we observe that the Dirichlet trace is continuous
along element boundaries. Thus, we have ψE,i ∈ H 1(K) for K ∈ Kh which yields
ψE,i ∈ H 1(Ω). With the conventions

ψE,0 = ψzb and ψE,1 = ψze ,

we find that

Pk(E) = span {ψE,i
∣

∣

E
: i = 0, . . . , k}

and

ψE,i(zE,j ) = δij for j = 0, . . . , i ,

where δij is the Kronecker symbol. According to the last property, the functions ψz
and ψE,i are linearly independent. So, we collect them in the basis

Ψ k
h,H = {ψz, ψE,i : z ∈ Nh,E ∈ Eh, i = 2, . . . , k} ,
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and we have

V k
h,H = span Ψ k

h,H ⊂ H 1
�(Kh) ⊂ H 1(Ω) .

Here, for k = 1, only nodal basis functions are used in Ψ k
h,H and for k ∈ N,

Hk
�(Kh) =

{

v ∈ Hk(Ω) : (∇v,∇w)L2(K) = 0 ∀w ∈ H 1
0 (K), ∀K ∈ Kh

}

(2.9)

is the space of piecewise weakly harmonic functions.

2.3.2 Element Basis Functions

Next, we address the definition of element basis functions over the polygonal
mesh Kh of a domain Ω ⊂ R

2. To motivate the procedure, we remember that
the nodal and edge basis functions satisfy the Laplace equation inside the elements
and are polynomial on the edges. The nodal functions ψz are linear on edges, and
thus they satisfy the one dimensional Laplace equation along edges: �1ψz = 0 on
E ∈ Eh. If we compute the 1D-Laplacian of the edge functionsψE along the edgeE,
we observe that�1ψE,i ∈ P i−2(E), i ≥ 2, and thus the edge basis functions satisfy
the Poisson equation with polynomial right hand side on each edge. Additionally, it
is easy to check that

Pk−2(E) = span {�1ψE,i : i = 2, . . . , k}

for k ≥ 2. From this point of view, we exchanged the Laplace equation for the
Poisson equation on the edges as we have made the step from nodal to edge basis
functions. The same is done for the element basis functions. Here, we exchange
the Laplace for the Poisson equation in the elements and we prescribe right
hand sides such that they form a basis of Pk−2(K). Thus, we define ψK,i,j for
K ∈ Kh, i = 0, . . . , k − 2 and j = 0, . . . , i as unique solution of

−�ψK,i,j = pK,i,j in K ,

ψK,i,j = 0 else ,
(2.10)

where

Pk−2(K) = span {pK,i,j : i = 0, . . . , k − 2 and j = 0, . . . , i} . (2.11)

Consequently, we have 1
2k(k − 1) element basis functions per element. The support

of such a function is limited to one element, i.e. supp ψK,i,j = K , and the function
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itself belongs to H 1
0 (K). Due to the local regularity, we obtain ψK,i,j ∈ H 1(Ω).

See Fig. 2.10 for a visualization of such an element basis function.

Remark 2.19 In the numerical experiments we will choose the polynomial basis as
shifted monomials, namely as

pK,i,j (x) = (x1 − zK,1
)i−j (

x2 − zK,2
)j
, x = (x1, x2

)� ∈ K ,

where zK = (

zK,1, zK,2
)�

is given in Definition 2.1. For i, j = 0, the element
bubble function from [146] is recovered, since pK,0,0 = 1.

We define the set of functions

Ψ k
h,B = {ψK,i,j : K ∈ Kh, i = 0, . . . , k − 2 and j = 0, . . . , i}

and the space

V k
h,B = span Ψ k

h,B ⊂ H 1(Ω) ,

which consists of element bubble functions that vanish on the skeleton of the mesh.
For k = 1, this means Ψ k

h,B = ∅. Furthermore, we point out that the definition of

element basis functions ψK,i,j ∈ Ψ k
h,B is equivalent to the variational formulation

Find ψK,i,j ∈ H 1
0 (K) :

(∇ψK,i,j ,∇w
)

L2(K)
= (pK,i,j , w

)

L2(K)
∀w ∈ H 1

0 (K).
(2.12)

Lemma 2.20 The functions in Ψ k
h,B are linearly independent.

Proof Since the support of an element basis function is restricted to one element,
the functions belonging to different elements are independent. Therefore, it is
sufficient to consider just functions over one element in this proof. Let αi,j ∈ R

for i = 0, . . . , k − 2 and j = 0, . . . , i and let
∑

i,j αi,jψi,j = 0. Consequently,
we have

∑

i,j αi,j∇ψi,j = 0. Due to this and since the element basis functions
ψi,j = ψK,i,j satisfy (2.12), we obtain

(
∑

i,j

αi,j pi,j , w
)

L2(K)
=
(
∑

i,j

αi,j∇ψi,j ,∇w
)

L2(K)
= 0 for w ∈ H 1

0 (K) .

The function space C∞
0 (K) is dense in H 1

0 (K) and thus the fundamental lemma
of the calculus of variations yields

∑

i,j αi,j pi,j = 0. Because of the choice of

pi,j as basis of Pk−2(K), it follows that αi,j = 0 for i = 0, . . . , k − 2 and
j = 0, . . . , i. ��
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2.3.3 Final Approximation Space

The final basis for the approximation space of H 1(Ω) is now defined as

Ψ k
h = Ψ k

h,H ∪ Ψ k
h,B ,

and combines the nodal, edge and element basis functions. All functions in Ψ k
h,H

locally satisfy the Laplace equation on each element and so, they are piecewise
harmonic in a weak sense. Different from the functions in Ψ k

h,H , the functions

in Ψ k
h,B are exactly those which are not locally harmonic. They obviously serve

the approximation of non-harmonic functions. Furthermore, we observe that

(∇ψ,∇ϕ)L2(K) = 0 for ψ ∈ Ψ k
h,H , ϕ ∈ Ψ k

h,B , (2.13)

since ψ ∈ H 1
�(Kh) and ϕ ∈ H 1

0 (K), cf. (2.9). Sometimes, we will consider the
basis functions restricted to a single element. For this reason, we define forK ∈ Kh

Ψ k
h

∣

∣

K
=
{

ψ
∣

∣

K
: ψ ∈ Ψ k

h

}

and Ψ k
h,H

∣

∣

K
as well as Ψ k

h,B

∣

∣

K
accordingly. The final approximation space is

conforming, i.e.

V k
h = span Ψ k

h ⊂ H 1(Ω) ,

and can be written as a direct sum of piecewise weakly harmonic functions and
element bubble functions. The space of element bubble functions can be further
decomposed into its contributions from the single elements, because of the zero
traces on the element boundaries. Thus, it is

V k
h = V k

h,H ⊕ V k
h,B with V k

h,B =
⊕

K∈Kh

V k
h,B

∣

∣

K
,

where the same notation holds for the restriction to a single element as above.
A simple counting argument shows that

dimV k
h

∣

∣

K
= k |N (K)| + 1

2k(k − 1) ,

since

dimV k
h,H

∣

∣

K
= k |N (K)| and dimV k

h,B

∣

∣

K
=
(

d + k − 2

d

)

= 1
2k(k − 1) .
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Due to the construction of the basis, it is easily seen that the approximation space
can be written in the following form

V k
h =

{

v ∈ H 1(Ω) : �v ∈ Pk−2(K) and v|∂K ∈ Pk
pw(∂K) ∀K ∈ Kh

}

with the convention P−1(K) = {0}. Thus, the functions in V k
h are polynomials of

degree k over each edge and their Laplacian over each element is a polynomial of
degree k − 2.

The virtual element method (VEM) in [25] also uses this approximation space.
Therefore, the BEM-based FEM and the VEM seek the approximation of the
solution of the boundary-value problem for the diffusion Eq. (2.1) in the same
discrete space. The VEM reduces all computations to carefully chosen degrees of
freedom and to local projections into polynomial spaces. The BEM-based FEM
in contrary makes use of the explicit knowledge of the basis functions and thus
enables the evaluation of the approximation inside the elements. Both methods rely
on clever reformulations to avoid volume integration. Since the BEM-based FEM
applies Trefftz-like basis functions, which are related to the differential equation of
the global problem, the discrete space for the BEM-based FEM and the VEM differ
as soon as more general boundary-value problems are considered.

2.3.4 Simple Generalization to 3D

This section gives a straight forward generalization to the three-dimensional case.
A more involved one is postponed to a later chapter. Let Kh be a polyhedral mesh of
a bounded domain Ω ⊂ R

3. We restrict ourselves here to polyhedral elements that
have triangular faces. This can be always achieved by triangulating the polygonal
faces of general polyhedra. For this purpose we may use the auxiliary triangulation
T0(∂K) introduced in Sect. 2.2.2 and reinterpretK as element with triangular faces.
Consequently, one additional node per face is introduced on the surface of the
polyhedral element K . Several constructed triangular faces meet in this node and
lie on a flat part of ∂K . However, the notion of polyhedral elements allows for such
degenerations. A more direct approach for the treatment of polygonal faces will be
discussed in Sect. 6.2.

Turning to the construction of the approximation space V k
h in three-dimensions,

we may recognize that it can be written down immediately as

V k
h =

{

v ∈ H 1(Ω) : �v ∈ Pk−2(K) and v|∂K ∈ Pk
pw(∂K) ∀K ∈ Kh

}

.

Thus, the only difference to the two-dimensional case is that the functions in V k
h are

now piecewise polynomial of degree k over the triangular faces of polyhedra instead
of piecewise polynomials over the edges of polygonal elements. Consequently, the
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considerations from the previous sections can be directly generalized to polyhedral
meshes Kh, for which the set of faces Fh consists of triangles only.

The space V k
h is again constructed as a direct sum of piecewise weakly harmonic

functions with polynomial traces on the faces of the mesh and element bubble
functions that vanish on the skeleton but have a polynomial Laplacian inside the
elements, i.e.

V k
h = V k

h,H ⊕ V k
h,B and V k

h,B =
⊕

K∈Kh

V k
h,B

∣

∣

K
.

Let vh = vh,H + vh,B ∈ V k
h with vh,H ∈ V k

h,H and vh,B ∈ V k
h,B . For each element

K ∈ Kh, it holds

−�vh,H = 0 in K and vh,H = p∂K on ∂K , (2.14)

as well as

−�vh,B = pK in K and vh,B = 0 on ∂K , (2.15)

for some p∂K ∈ Pk
pw(∂K) and pK ∈ Pk−2(K). Thus, vh,H and vh,B are uniquely

defined by the polynomial data p∂K and pK , respectively. Consequently, the basis
Ψ k
h of V k

h is constructed in an element-wise fashion respecting the direct sum, such
that

Ψ k
h

∣

∣

K
= Ψ k

h,H

∣

∣

K
∪ Ψ k

h,B

∣

∣

K
for V k

h

∣

∣

K
= V k

h,H

∣

∣

K
⊕ V k

h,B

∣

∣

K
.

We choose a basis for Pk
pw(∂K) and Pk−2(K). For each function in these sets

a harmonic basis function and an element basis function are obtained by (2.14)
and (2.15), respectively. Due to this construction, a simple counting argument shows
that

dimV k
h

∣

∣

K
= |N (K)|+(k−1)|E (K)|+ 1

2 (k−1)(k−2)|F (K)|+ 1
6k(k−1)(k+1) ,

since

dimV k
h,H

∣

∣

K
= |N (K)| + (k − 1)|E (K)| + 1

2 (k − 1)(k − 2)|F (K)|

and

dimV k
h,B

∣

∣

K
=
(

d + k − 2

d

)

= 1
6k(k − 1)(k + 1) .

In the previous sections on the two-dimensional case, this construction has been
carried out in more detail and we have given a precise choice of basis functions.
For the three-dimensional case we are content with the abstract setting and pass a



2.4 Interpolation Operators 43

detailed presentation. We point out, however, the important orthogonality property
given in (2.13), which still holds on K ∈ Kh, namely

(∇vh,H ,∇vh,B )L2(K) = 0 for vh,H ∈ V k
h,H , vh,B ∈ V k

h,B .

This is a consequence of the weakly harmonic functions, cf. (2.9), and the element
bubble functions that satisfy

V k
h,H ⊂ H 1

�(Kh) and V k
h,B ⊂

⊕

K∈Kh

H 1
0 (K) .

Remark 2.21 For the implementation and the numerical experiments it is important
to specify the choice of basis functions. As discussed above, the sets Ψ k

h,H and Ψ k
h,B

are constructed by choosing a basis for Pk
pw(∂K) and Pk−2(K), respectively. It is

convenient to choose the classic Lagrange elements over triangles, cf. [40, 151], for
the basis of Pk

pw(∂K), whereas the basis of Pk−2(K) might be chosen according
to the two-dimensional case as shifted monomials, for instance.

2.4 Interpolation Operators

In this section, we are concerned with the interpolation of function in H 2(Ω) by
functions in V k

h = V k
h,H ⊕V k

h,B . Due to the Sobolev embedding theorem it holds that

H 2(Ω) ⊂ C0(Ω), see [1], and the pointwise evaluation of such functions is well
defined. Thus, we may exploit nodal interpolation to some extend. The interpolation
of non-smooth functions inH 1(Ω) is postponed to later considerations, see Chap. 3.

Since V k
h is given as a direct sum of weakly harmonic and element bubble

functions, it is natural to decompose the interpolation into two corresponding
operators. Therefore, we study

Ikh = Ikh,H + Ikh,B : H 2(Ω) → V k
h ⊂ H 1(Ω)

with

Ikh,H : H 2(Ω) → V k
h,H ⊂ H 1

�(Kh) and Ikh,B : H 2(Ω) → V k
h,B ⊂

⊕

K∈Kh

H 1
0 (K) .

The interpolation operators Ikh,H and Ikh,B are discussed in the following. Further-
more, it is sufficient to introduce them over a single element, since the local nature
of the operators directly extend to their global definition. Thus, we restrict ourselves
to a single element of a regular polytopal mesh and denote the restrictions of the
operators with the same symbols.
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Fig. 2.11 Points for Lagrange interpolation into Pk(∂K) on triangles for k = 1, 2, 3

We start by the interpolation into the space of weakly harmonic functions. For
vh ∈ V k

h,H , it is �vh = 0 in K and v|∂K ∈ Pk
pw(∂K). Thus, for the definition of

Ikh,H : H 2(K) → V k
h,H

∣

∣

K
⊂ H 1

�(K) ,

we prescribe Ikh,H v|∂K to be equal to a standard nodal interpolation operator into

the space Pk
pw(∂K) on the boundary of the polytopal element K . Afterwards, we

extend this boundary data harmonically into K . By fixing a standard interpolation
operator on ∂K , the operator Ikh,H is uniquely defined. For this purpose, we
exploit the classical Lagrange interpolation on equidistant points along the edges
in the boundary of polygonal elements (d = 2) and on equidistributed points, see
Fig. 2.11, in the triangular faces in the boundary of polyhedral elements (d = 3).
Consequently, Ikh,H v is constructed in such a way that it coincides in k + 1 points

on each edge and in 1
2 (k + 1)(k + 2) points on each triangular face of the elements.

Remark 2.22 In 2D, we can alternatively follow the idea from [175] and choose
a different interpolation operator for k ≥ 2 on the boundary of the polygonal
elements. The introduced points zE,i from Sect. 2.3.1 can be used for the pointwise
interpolation. For v ∈ H 2(Ω), this yields

Ikh,H v =
∑

z∈Nh

vzψz +
∑

E∈Eh

k
∑

i=2

vE,iψE,i ,

where the coefficients are given as

vz = v(z) for z ∈ Nh

and

vE,i = v(zE,i)−
i−1
∑

j=0

vE,jψE,j (zE,j ) for E ∈ Eh, i = 2, . . . , k .

Next, we consider the definition of the interpolation operator into the space of
element bubble functions, namely

Ikh,B : H 2(K) → V k
h,B

∣

∣

K
⊂ H 1

0 (K) .
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Therefore, let

Ψ k
h,B

∣

∣

K
= {ψK,i : i = 1, . . . , n(k)} and {pK,i = −�ψK,i : i = 1, . . . , n(k)}

(2.16)

be the basis of V k
h,B

∣

∣

K
and the corresponding basis of Pk−2(K), respectively,

where n(k) = dimV k
h,B

∣

∣

K
is the number of basis functions. Compare the former

definition (2.10)–(2.11) in 2D and the construction (2.15) in 3D. For v ∈ H 2(K),
we have

Ikh,Bv =
n(k)
∑

i=1

vK,iψK,i ∈ V k
h,B

∣

∣

K
,

where the coefficients vK,i are defined such that Ikh,Bv is the orthogonal projection

of v − Ikh,H v into V k
h,B

∣

∣

K
with respect to the weighted inner product

(u, v)hH 1(K) = (u, v)L2(K) + h2
K(∇u,∇v)L2(K) . (2.17)

Thus, Ikh,Bv is uniquely defined by

(

Ikh,Bv,w
)

hH 1(K)
=
(

v − Ikh,H v,w
)

hH 1(K)
∀w ∈ V k

h,B

∣

∣

K
. (2.18)

The properties of the orthogonal projection yield

‖Ikh,Bv‖hH 1(K) ≤ ‖v − Ikh,H v‖hH 1(K) , (2.19)

where the weighted norm is given as ‖ · ‖2
hH 1(K)

= (·, ·)hH 1(K). If hK = 1
the weighted inner product and the weighted norm coincide with the usual ones
in H 1(K), which are denoted by (·, ·)H 1(K) and ‖ · ‖H 1(K), respectively.

In the following, we investigate the properties of the interpolation operators in
more details. For this purpose, let Kh be a regular polytopal mesh.

Lemma 2.23 The restrictions of the interpolation operators Ikh,H and Ikh onto an
element K ∈ Kh satisfy

Ikh,H p = p for p ∈ Pk(K) with �p = 0 in K ,

and

Ikh p = p for p ∈ Pk(K) .
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Proof Let p ∈ Pk(K) with �p = 0. According to the definition, Ikh,H p is given

as a classical, nodal interpolation into the space Pk
pw(∂K) on the boundary of the

element K . Since p ∈ Pk
pw(∂K) and polynomials are preserved by the classical

interpolation operators,p and Ikh,Hp are identical on the boundary of the elementK .
Furthermore, both functions satisfy the Laplace equation insideK . Thus, the unique
solvability of the Dirichlet problem for the Laplace equation yields Ikh,H p = p, the
first statement of the lemma.

Next, let p ∈ Pk(K) and therefore −�p ∈ Pk−2(K). Since the polynomials
pK,i form a basis of Pk−2(K), see (2.16), there are unique coefficients βK,i ∈ R

such that

−�p =
n(k)
∑

i=1

βK,ipK,i .

Furthermore, we define

p̃ = Ikh,H p +
n(k)
∑

i=1

βK,iψK,i . (2.20)

We observe that p as well as p̃ satisfy the boundary value problem

−�u =
n(k)
∑

i=1

βK,ipK,i in K ,

u = p on ∂K ,

at least in the weak sense, due to construction. Because of the unique solvability of
this problem, we conclude that p = p̃. By (2.20), we obtain

p − Ikh,H p =
n(k)
∑

i=1

βK,iψK,i ∈ V k
h,B

∣

∣

K
.

Since Ikh,B p is defined as orthogonal projection of p − Ikh,H p into V k
h,B

∣

∣

K
, it is

Ikh,B p = p − Ikh,H p and the second statement of the lemma follows. ��
A consequence of this lemma is that

Pk(K) ⊂ V k
h

∣

∣

K
,

i.e., the space of polynomials of degree k is locally embedded in the approximation
space over each element. Obviously, the element basis functions are essential to
capture the non-harmonic polynomials.
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Lemma 2.24 The restrictions of the interpolation operators Ikh,H and Ikh onto an
elementK ∈ Kh of a regular and stable polytopal meshKh with hK = 1 are linear
and continuous. Furthermore, there are constants c1 and c2, which only depend on
the regularity and stability parameters of the mesh, on k and on the dimension d ,
such that

‖Ikh,H v‖H 1(K) ≤ c1 ‖v‖H 2(K) and ‖Ikhv‖H 1(K) ≤ c2 ‖v‖H 2(K)

for all v ∈ H 2(K).

Proof The linearity of the operators is obvious, so we only have to prove the given
estimates which also ensure the continuity. Therefore, we make use of an auxiliary
discretization Th(K) of K into simplicial elements, i.e., into triangles (d = 2) and
tetrahedra (d = 3). In two-dimensions, we connect the nodes on the boundary of K
with the point zK and in three-dimensions we exploit T0(K) from Sect. 2.2.2. Since
Kh is regular and stable, these auxiliary meshes are shape-regular in the sense of
Ciarlet [58] according to Lemmata 2.3 and 2.14, respectively. Thus, neighbouring
simplices share either a common node, edge or face and the aspect ratio of each
simplex is uniformly bounded by some constant σT . Because the auxiliary mesh is
regular, we can use classical interpolation operators, see e.g. [58]. Let

IT : H 2(K) → Pk
pw(Th(K))

be such a classical operator with

‖v − IT v‖H 1(K) ≤ CT ,1hT |v|H 2(K) and ‖IT v‖H 1(K) ≤ CT ,2 ‖v‖H 2(K)

(2.21)

for v ∈ H 2(K), where hT = max{hT : T ∈ Th(K)} and

Pk
pw(Th(K)) =

{

p ∈ C0(K) : p
∣

∣

T
∈ Pk(T ) ∀T ∈ Th(K)

}

.

The constants CT ,1 and CT ,2 only depend on the approximation order k, the space
dimension d as well as on σT and thus on the regularity and stability parameters of
the polytopal mesh Kh.

Next, we prove the continuity of Ikh,H , i.e. the estimate

‖Ikh,H v‖H 1(K) ≤ c ‖v‖H 2(K) for v ∈ H 2(K) .

Let v ∈ H 2(K) be fixed. The interpolation Ikh,H v satisfies the boundary value
problem

−�u = 0 in K ,

u = gv on ∂K ,
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where gv = Ikh,H v
∣

∣

∂K
is a piecewise polynomial of degree k on the boundary ∂K .

We write u = u0 + ug with ug = IT v and obtain the Galerkin formulation

Find u0 ∈ H 1
0 (K) : (∇u0,∇w)L2(K) = −(∇ug,∇w)L2(K) ∀w ∈ H 1

0 (K) ,

which has a unique solution. Testing with w = u0 and applying the Cauchy–
Schwarz inequality yield

|u0|2H 1(K)
≤ |(∇ug,∇u0)L2(K)| ≤ |ug|H 1(K)|u0|H 1(K) ,

and consequently

|u0|H 1(K) ≤ ‖ug‖H 1(K) = ‖IT v‖H 1(K) .

Because of the piecewise smoothness of the boundary of K and since it can be
embedded into a square of side length hK , the Poincaré–Friedrichs inequality reads

‖w‖L2(K) ≤ hK |w|H 1(K) for w ∈ H 1
0 (K) ,

see e.g. [38]. By the use of the given estimates and hK = 1, we obtain

‖Ikh,H v‖H 1(K) ≤ ‖u0‖H 1(K) + ‖ug‖H 1(K)

=
(

‖u0‖2
L2(K)

+ |u0|2H 1(K)

)1/2 + ‖IT v‖H 1(K)

≤ √
2 |u0|H 1(K) + ‖IT v‖H 1(K)

≤
(√

2 + 1
)

‖IT v‖H 1(K)

≤ c ‖v‖H 2(K) .

Finally, we apply the continuity of Ikh,H as well as the property (2.19) of Ikh,B
with hK = 1 and we get

‖Ikhv‖H 1(K) ≤ ‖Ikh,H v‖H 1(K) + ‖Ikh,Bv‖H 1(K)

≤ ‖Ikh,H v‖H 1(K) + ‖v − Ikh,H v‖H 1(K)

≤ ‖v‖H 1(K) + 2‖Ikh,H v‖H 1(K)

≤ c ‖v‖H 2(K)

that concludes the proof. ��
Remark 2.25 The stability of the mesh Kh was only needed to ensure the shape-
regularity of the auxiliary mesh, such that classical interpolation results on triangular
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and tetrahedral meshes can be exploited. Thus, the stability of Kh can be relaxed as
long as the interpolation estimates (2.21) on the auxiliary mesh are guaranteed. This
yields the following variants:

1. In 2D, it is sufficient to assume the regularity of Kh. According to Corollary 2.9,
the auxiliary mesh Th(K) thus satisfy a maximum angle condition. Under these
assumptions the classical Lagrange interpolation operator fulfils the desired
estimates (2.21), see [110, 114].

2. In 3D, we may assume the regularity and weak stability of Kh, which ensures
a maximum angle condition for the tetrahedral auxiliary mesh T0(K), see
Lemma 2.18. For k = 1, this is sufficient to prove the interpolation esti-
mates (2.21) on T0(K), but it is still an open question whether these estimates
hold for k > 1, see [115].

According to the previous remark, the lemma stays valid even if the edges (d = 2)
and faces (d = 3) of the polytopal mesh degenerate in their size. Thus, the edge
length hE may decreases faster than the element diameter hK such that the uniform
estimate hK ≤ cK hE is violated in two- and three-dimensions.

The condition hK = 1 in Lemma 2.24 is not satisfied in general. Thus, we
introduce a scaling for the elements K ∈ Kh such that

̂K � x̂ �→ x = FK(̂x) = hK x̂ ∈ K . (2.22)

Consequently, h
̂K = 1 and we set v̂ = v ◦ FK . Simple calculations show that for

v ∈ H�(K), � ∈ N0 it is v̂ ∈ H�(̂K) and

|̂v|H�(̂K) = h
�−d/2
K |v|H�(K) . (2.23)

Additionally, it holds

(u, v)L2(K) = hdK (̂u, v̂)L2(̂K)
and (∇u,∇v)L2(K) = hd−2

K (̂∇û,̂∇v̂)L2(̂K)

for u, v ∈ H 1(K), where ̂∇ denotes the gradient with respect to x̂. According to the
definition of the weighted inner product, see (2.17), we obtain

(u, v)hH 1(K) = hdK (̂u, v̂)hH 1(̂K) . (2.24)

Lemma 2.26 The restrictions of the interpolation operators Ikh,H and Ikh onto an

element K ∈ Kh satisfy for v ∈ H 2(K)

̂Ikh,H v = ̂Ikh,H v̂ and ̂Ikhv = ̂Ikh v̂ ,

where ̂Ikh = ̂Ikh,B + ̂Ikh,H and ̂Ikh,H as well as ̂Ikh,B are the interpolation operators

with respect to the scaled element ̂K .
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Proof Due to the construction of Ikh,H by pointwise evaluations on the boundary

∂K and the harmonic extension, it is obvious that ̂Ikh,H v = ̂Ikh,H v̂. Therefore, we

only have to show ̂Ikh,Bv = ̂Ikh,B v̂ with ̂Ikh,B : H 2(̂K) → span {ψ
̂K,i}. Here, we

explicitly refer to the element basis functions ψK,i and ψ
̂K,i , cf. (2.16), in order to

emphasize the dependence on K and ̂K, respectively. Furthermore, it is sufficient to
prove

̂Ikh,Bv ∈ span {ψ
̂K,i}

and

(̂Ikh,Bv, ϕ)H 1(̂K) = (̂Ikh,Bv̂, ϕ)H 1(̂K) for ϕ ∈ span {ψ
̂K,i} ,

since for ϕ = ̂Ikh,Bv − ̂Ikh,B v̂, we obtain

‖̂Ikh,Bv − ̂Ikh,B v̂‖H 1(̂K) = 0 and thus ̂Ikh,Bv = ̂Ikh,B v̂ .

Here, we have skipped the range i = 1, . . . , n(k) for shorter notation. In the
definition of the element basis functions ψK,i , see (2.10), we have made no specific
choice of the polynomials pK,i . In the following, let the polynomials for the
functions ψ

̂K,i over ̂K be chosen in dependence of ψK,i as

p
̂K,i = h2

Kp̂K,i .

In consequence, we obtain for the scaled element function ̂ψK,i = ψK,i ◦ FK that

−̂�̂ψK,i = h2
Kp̂K,i = p

̂K,i = −̂�ψ
̂K,i in ̂K

and ̂ψK,i = ψ
̂K,i on ∂K , where ̂� denotes the Laplace operator with respect to x̂.

Due to the unique solvability of the Dirichlet problem for the Laplace equation, we
get ψ

̂K,i = ̂ψK,i and thus

̂Ikh,Bv =
n(k)
∑

i=1

vK,îψK,i ∈ span {ψ
̂K,i} .

Next, let ϕ
̂K ∈ span {ψ

̂K,i} and set ϕK = ϕ
̂K ◦ F−1

K ∈ span {ψK,i}. By the
definition of Ikh,B , we have

(

Ikh,Bv, ϕK
)

hH 1(K)
=
(

v − Ikh,H v, ϕK
)

hH 1(K)
.
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Applying (2.24) to both sides of the equation yields

(̂Ikh,Bv, ϕ̂K)H 1(̂K) = ( ̂v − Ikh,H v, ϕ̂K)H 1(̂K)

= (̂v − ̂Ikh,H v̂, ϕ̂K)H 1(̂K)

= (̂Ikh,B v̂, ϕ̂K)H 1(̂K) ,

where the last equality comes from the definition of ̂Ikh,B and the fact that the inner
products (·, ·)hH 1(̂K) and (·, ·)H 1(̂K) coincide on the scaled element. Since ϕ

̂K is
chosen arbitrarily, this equality concludes the proof. ��
Theorem 2.27 Let Kh be a regular and stable polytopal mesh of the bounded
polytopal domain Ω ⊂ R

d , d = 2, 3. The interpolation operators Ikh,H and Ikh
satisfy

‖v − Ikh,H v‖H�(Ω) ≤ c hk+1−� |v|Hk+1(Ω) for v ∈ Hk+1
� (Kh) ,

and

‖v − Ikhv‖H�(Ω) ≤ c hk+1−� |v|Hk+1(Ω) for v ∈ Hk+1(Ω) ,

respectively, where h = max{hK : K ∈ Kh}, � = 0, 1 and the constant c only
depends on the mesh parameters, the dimension d and on k.

Proof First, we consider the second estimate and the case � = 1. Let us start to
examine the error over one element K ∈ Kh. We scale this element in such a way
that its diameter becomes one, see (2.22). With the help of (2.23) and Lemma 2.26,
we obtain

‖v − Ikhv‖2
H 1(K)

= ‖v − Ikhv‖2
L2(K)

+ |v − Ikhv|2H 1(K)

≤ chdK ‖̂v −̂Ikhv̂‖2
L2(̂K)

+ chd−2
K |̂v −̂Ikhv̂|2H 1(̂K)

≤ chd−2
K ‖̂v −̂Ikhv̂‖2

H 1(̂K)

since hK ≤ 1. Let p̂ ∈ Pk(̂K) be the polynomial of the Bramble–Hilbert Lemma
for star-shaped domains, which closely approximates v̂, see [40]. It satisfies

|̂v − p̂|H�(̂K) ≤ C hk+1−�
̂K

|̂v|Hk+1(̂K) for � = 0, 1, . . . , k + 1 (2.25)
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with a constantC that only depends on σK , d and k. Due to the scaling h
̂K = 1 and

by the application of Lemmata 2.23 and 2.24, we obtain

‖̂v −̂Ikhv̂‖H 1(̂K) ≤ ‖̂v − p̂‖H 1(̂K) + ‖̂Ikh(̂v − p̂)‖H 1(̂K)

≤ (1 + c) ‖̂v − p̂‖H 2(̂K) (2.26)

≤ (1 + c)C |̂v|Hk+1(̂K) ,

where we have used (2.25) in the last step. Comparing the previous estimates and
transforming back to the element K yields

‖v − Ikhv‖2
H 1(K)

≤ ch2k
K |v|2

Hk+1(K)
.

Finally, we have to sum up this inequality over all elements of the mesh and apply
the square root to it. This gives

‖v − Ikhv‖H 1(Ω) ≤ c

⎛

⎝

∑

K∈Kh

h2k
K |v|2

Hk+1(K)

⎞

⎠

1/2

≤ c hk |v|Hk+1(K) ,

and finishes the proof for � = 1. The case � = 0 follows by

‖v − Ikhv‖L2(K) = h
d/2
K ‖̂v − ̂Ikhv̂‖L2(̂K)

≤ h
d/2
K ‖̂v − ̂Ikhv̂‖H 1(̂K) ,

and the same arguments as above.
The error estimate for Ikh,H follows in the same way. The case k = 1 is already

proven since I1
h,H = I1

h, thus let k ≥ 2. The main difference is in (2.25), where
we have to ensure that p̂ is harmonic. In the formulation of the Bramble–Hilbert
Lemma in [40], p̂ is chosen as Taylor polynomial of v̂ averaged over the inscribed
circle or ball of K given by the regularity of the mesh, cf. Definitions 2.1 and 2.11.
Furthermore, the commutativity is proven for the operator of the weak derivative and
the operator for the averaged Taylor polynomial for k ≥ 2. Thus, since v̂ ∈ H 2(̂K)

and ̂�v̂ = 0 in the weak sense, we obtain that the averaged Taylor polynomial p̂ is
harmonic. ��
Remark 2.28 The stability of the mesh Kh in the previous theorem is used only
in order to apply Lemma 2.24. This assumption can be weakened in certain cases,
see Remark 2.25. The statement of Theorem 2.27 still holds for d = 2 if solely the
regularity of the mesh is assumed, and for d = 3 with k = 1 if the mesh is regular
and weakly stable.
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2.5 Galerkin Formulation and Convergence Estimates

In the previous sections we have discussed the discretization of the Sobolev space
H 1(Ω) and investigated approximation properties. Thus, we come back to the
model problem (2.1) and formulate the finite element method with the use of the
introduced arbitrary order basis functions. Therefore, we consider in the following
a bounded polygonal or polyhedral domain Ω ⊂ R

d , d = 2, 3 which is meshed
by a regular polytopal mesh Kh. In the three-dimensional case d = 3, we restrict
ourselves to polyhedral elements with triangular faces as discussed in Sect. 2.3.4
and postpone the general case for later considerations.

In the case of inhomogeneous Dirichlet data gD , we extend this boundary data
into the interior of the domain. The extension is denoted by gD again, and we assume
that it can be chosen such that gD ∈ V k

h . Let

V k
h,D = V k

h ∩H 1
D(Ω) with H 1

D(Ω) = {v ∈ H 1(Ω) : v|ΓD = 0} .

The Galerkin formulation for the model problem (2.1) reads:

Find u ∈ gD +H 1
D(Ω) :

b(u, v) = (f, v)L2(Ω) + (gN , v)L2(ΓN) ∀v ∈ H 1
D(Ω) ,

(2.27)

and the corresponding discrete Galerkin formulation:

Find uh ∈ gD + V k
h,D :

b(uh, vh) = (f, vh)L2(Ω) + (gN , vh)L2(ΓN) ∀vh ∈ V k
h,D ,

(2.28)

where

b(uh, vh) = (a∇uh,∇vh)L2(Ω)

is the well known bilinear form for the diffusion problem. Due to the boundedness of
the diffusion coefficient, the bilinear form b(·, ·) is bounded and elliptic on H 1

D(Ω).
Because of the conforming approximation space V k

D ⊂ H 1
D(Ω), the Galerkin as

well as the discrete Galerkin formulation above admit a unique solution according
to the Lax–Milgram Lemma. Céa’s Lemma yields

‖u− uh‖H 1(Ω) ≤ c min
vh∈gD+V k

h,D

‖u− vh‖H 1(Ω) .

This quasi-best approximation gives rise to error estimates for the finite element
formulation. The minimum on the right hand side can be estimated from above by
setting vh = Ikhu. Thus, the interpolation estimates derived in Sect. 2.4 turn over to
the finite element approximation. By the use of the interpolation properties given
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in Theorem 2.27, we obtain the next result. Since the mesh assumptions are mainly
needed in order to apply the interpolation error estimates, these assumptions can be
relaxed in the following theorems in certain situations, see Remark 2.28.

Theorem 2.29 Let Kh be a regular and stable polytopal mesh of the bounded
domain Ω ⊂ R

d . The solution uh ∈ V k
h of the Galerkin formulation from above

satisfies

‖u− uh‖H 1(Ω) ≤ c hk |u|Hk+1(Ω) for u ∈ Hk+1(Ω) ,

where h = max{hK : K ∈ Kh} and the constant c only depends on the mesh
parameters, the dimension d and on k.

If we assume more regularity for the model problem, the Aubin–Nitsche trick
together with Theorem 2.29 can be used to prove an error estimate in the L2-norm,
see, e.g., [40].

Theorem 2.30 Let Kh be a regular and stable polytopal mesh of the bounded
domainΩ ⊂ R

d and let there be, for any g ∈ L2(Ω), a unique solution of

Find w ∈ H 1
D(Ω) : b(v,w) = (g, v)L2(Ω) ∀v ∈ H 1

D(Ω) ,

with w ∈ H 2(Ω) such that

|w|H 2(Ω) ≤ C ‖g‖L2(Ω) .

The solution uh ∈ V k
h of the Galerkin formulation from above satisfies

‖u− uh‖L2(Ω) ≤ c hk+1 |u|Hk+1(Ω) for u ∈ Hk+1(Ω) ,

where the constant c only depends on the mesh parameters, the dimension d and
on k.

Proof Since u− uh ∈ H 1
D(Ω) ⊂ L2(Ω), there is a unique w ∈ H 2(Ω) such that

b(v,w) = (u− uh, v)L2(Ω) for v ∈ H 1
D(Ω)

with

|w|H 2(Ω) ≤ C ‖u− uh‖L2(Ω) . (2.29)

The Galerkin orthogonality

b(u− uh, vh) = 0 for vh ∈ V k
h,D ⊂ H 1

D(Ω)
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and the continuity of the bilinear form yield for I1
hw ∈ V k

h,D

‖u− uh‖2
L2(Ω) = (u− uh, u− uh)L2(Ω) = b(u− uh,w)

= b(u− uh,w − I1
hw) ≤ c ‖u− uh‖H 1(Ω)‖w − I1

hw‖H 1(Ω) .

The first term on the right hand side is estimated using Theorem 2.29 and the second
by the use of Theorem 2.27. This yields

‖u− uh‖2
L2(Ω) ≤ chk+1 |u|Hk+1(Ω)|w|H 2(Ω) .

Applying (2.29) and dividing by ‖u− uh‖L2(Ω) gives the desired estimate. ��
If the boundary value problem (2.1) has vanishing right hand side, i.e. f = 0,

and thus the solution satisfies u ∈ H 1
�(Kh), we can seek the approximation uh

directly in the subspace V k
h,H = span Ψ k

h,H ⊂ V k
h . Consequently, we obtain a

reduced Galerkin formulation. The same arguments as above yield optimal rates
of convergence, when the interpolation operator Ikh,H is used instead of Ikh.

Theorem 2.31 Under the same assumptions as in Theorems 2.29 and 2.30, the
solution uh ∈ V k

h,H of the reduced Galerkin formulation with f = 0 satisfies

‖u− uh‖H�(Ω) ≤ c hk+1−� |u|Hk+1(Ω) for u ∈ Hk+1
� (Kh) ,

where � = 0, 1 and the constant c only depends on the mesh parameters, the
dimension d and on k as well as on �.

Remark 2.32 The stability of the mesh Kh in the previous theorems can be
weakened, cf. Remark 2.25. The statements still hold for d = 2 if solely the
regularity of the mesh is assumed, and for d = 3 with k = 1 if the mesh is regular
and weakly stable.

In the realization of the discrete Galerkin formulation (2.28), we have to address
the evaluation of the bilinear form applied to ansatz functions. Since the diffusion
coefficient is assumed to be constant on each element such that a(·) = aK ∈ R on
K , for K ∈ Kh, we have

b(ψ, ϕ) = (a∇ψ,∇ϕ)L2(Ω) =
∑

K∈Kh

aK(∇ψ,∇ϕ)L2(K) for ψ, ϕ ∈ Ψ k
h .

We remember that the basis Ψ k
h = Ψ k

h,H ∪ Ψ k
h,B consists of piecewise harmonic

functions and element basis functions which vanish on the element boundaries.
According to (2.13), it holds

b(ψ, ϕ) = 0 for ψ ∈ Ψ k
h,H , ϕ ∈ Ψ k

h,B , (2.30)
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and thus the discrete Galerkin formulation (2.28) decouples. If we split the unknown
function into

uh = uh,H + uh,B with uh,H ∈ V k
h,H and uh,B ∈ V k

h,B ,

and take gD ∈ V k
h,H , we obtain with V k

h,H,D = V k
h,H ∩H 1

D(Ω)

Find uh,H ∈ gD + V k
h,H,D :

b(uh,H , vh) = (f, vh)L2(Ω) + (gN , vh)L2(ΓN) ∀vh ∈ V k
h,H,D ,

(2.31)

and

Find uh,B ∈ V k
h,B : b(uh,B, vh) = (f, vh)L2(Ω) ∀vh ∈ V k

h,B . (2.32)

The problem (2.31) turns into a global system of linear equations with a symmetric
and positive definite matrix. Since the support of each element basis function lies
inside a single element, a closer look at (2.32) shows that the equation further
decouples. The element contributions uh,B

∣

∣

K
∈ H 1

0 (K), K ∈ Kh are given as
solution of

(∇uh,B
∣

∣

K
,∇vh)L2(K) = (f/aK, vh)L2(K) ∀vh ∈ V k

h,B

∣

∣

K

for each element K ∈ Kh. Thus, uh,B
∣

∣

K
is locally the orthogonal projection of

f/aK into V k
h,B

∣

∣

K
= span Ψ k

h,B

∣

∣

K
the space of element bubble functions with

respect to the scaler product (∇·,∇·)L2(K). Furthermore, uh,B is separated from
the global problem and can be computed via these local projections.

In Theorem 2.31, we already observed that in the case of a vanishing source
term, i.e. f = 0, it is sufficient to seek the approximation uh ∈ V k

h in the
subspace V k

h,H . This observation is confirmed by the decoupling of the Galerkin

formulation. Because of uh = uh,H + uh,B with uh,H ∈ V k
h,H , and since the part

uh,B ∈ V k
h,B is uniquely defined by (2.32), we get uh,B = 0 for f = 0 and thus

uh = uh,H .
Furthermore, the property (2.30) and, consequently, the decoupling of the system

is very practical from the computational point of view. The global system of linear
equations reduces to a system which only involves the degrees of freedom corre-
sponding to nodal and edge basis functions. The unknowns for the element basis
functions can be computed independently element-by-element in a preprocessing
step. Thus, there is no need for static condensation that is often used in high-order
methods to eliminate the element-local degrees of freedom.

The decoupling is also an advantage over the virtual element method in [25]. This
method has the same number of unknowns, but the system matrix does not decouple.
Thus, a larger system of linear equations has to be solved. Another advantage of the
presented strategy in this context is that the approximation uh can be evaluated,
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or at least be approximated, in every point inside the domain with the help of the
representation formula (4.3), see next section. The virtual element method, however,
needs some postprocessing for the evaluation in an arbitrary point.

Remark 2.33 In the construction of the approximation space V k
h , we have used

the same order k over all edges and elements. However, these Trefftz-like basis
functions can be used directly with variable order. There is no difficulty which has
to be addressed. This flexibility is advantageous in hp-adaptivity, see [63].

Remark 2.34 More details on the computational realization as well as on the local
treatment of the implicitly defined basis functions can be found in Chap. 4 and in
particular in Sect. 4.5.

In the case of a continuously varying diffusion coefficient in the model prob-
lem (2.1), it is possible to approximate the coefficient a by a piecewise con-
stant function ah. To analyse the impact of this approximation, the first Strang
Lemma [162] is used. Replacing the exact material coefficient in the bilinear
form b(·, ·) by an approximated one can be seen as an approximation bh(·, ·) of the
bilinear form. Let the approximation ah of a sufficiently regular diffusion coefficient
satisfy

0 < amin ≤ ah(x) ≤ amax for x ∈ Ω and h > 0 , (2.33)

and ah(x) = aK ∈ R for x ∈ K and K ∈ Kh. Therefore, the bilinear form bh(·, ·)
is uniformly elliptic as well as bounded on V k

h for h > 0, and the variational
formulation has a unique solution. The Strang Lemma taken from [58] gives the
error estimate

‖u− uh‖H 1(Ω) ≤ c inf
vh∈V k

h

⎧

⎨

⎩

‖u− vh‖H 1(Ω) + sup
wh∈V k

h

|b(vh,wh)− bh(vh,wh)|
‖wh‖H 1(Ω)

⎫

⎬

⎭

,

for the Galerkin approximation. Obviously, the error in the finite element method
is estimated by two terms. One which gives the quasi-best approximation error and
one which measures the error coming from the inexact bilinear form. The latter one
can be written and estimated in the form

sup
wh∈V k

h

|((a − ah)∇vh,∇wh)|
‖wh‖H 1(Ω)

≤ sup
wh∈V k

h

∑

K∈Kh

‖a − ah‖L∞(K)

|(∇vh,∇wh)K |
‖wh‖H 1(Ω)

.

If the constant values aK are chosen as averaged Tayler polynomials of order zero
over the inscribed circle and ball of Definitions 2.1 and 2.11, respectively, we have
‖a − ah‖L∞(K) ≤ chK‖a‖W 1∞(K), see [40], and we obtain after some arguments

sup
wh∈V k

h

|b(vh,wh)− bh(vh,wh)|
‖wh‖H 1(Ω)

≤ c h ‖a‖W 1∞(Ω)‖vh‖H 1(Ω) .



58 2 Finite Element Method on Polytopal Meshes

Choosing vh = Ikhu in the Strang estimate and applying Theorem 2.27 as well as
Lemma 2.24 for the interpolation operator yields

‖u− uh‖H 1(Ω) ≤ c hk |u|Hk+1(Ω) + c h ‖a‖W 1∞(Ω)‖u‖H 2(Ω) for u ∈ Hk+1(Ω) .

For high-order methods with k > 1, the convergence of the finite element error
is dominated by the second term, which comes from the piecewise constant
approximation of the diffusion coefficient.

In order to achieve the desired convergence rates, it is necessary to approximate
the diffusion coefficient more accurately. For a sufficient regular coefficient a, one
can use its interpolation Ik−1

h a, for example. For a more detailed discussion and for
implementation details, see [146]. The ideas given there can be generalized to k > 2
directly.

2.6 Numerical Examples

Finally, the theoretical results are verified by some computational experiments.
Theorems 2.29 and 2.30 are illustrated on a model problem. The BEM-based FEM
is applied on a sequence of uniformly refined polygonal meshes. In each step of the
refinement the boundary-value problem

− �u = f in Ω = (0, 1)2 , u = 0 on Γ (2.34)

is solved, where f is chosen such that u(x) = sin(πx1) sin(πx2) is the unique
solution. The initial mesh and some refinements are shown in Fig. 2.12. The
successively refined meshes are obtained by dividing each polygonal element as
described in Sect. 2.2.3. The Galerkin error ‖u − uh‖H�(Ω) is computed for the
H 1-norm (� = 1) and the L2-norm (� = 0). In Fig. 2.13, the relative errors are
plotted with respect to the mesh size h = max{hK : K ∈ Kh} on a logarithmic
scale. The slopes of the curves reflect the theoretical rates of convergence for the
approximation orders k = 1, 2, 3.

Next, we consider the model problem

−�u = 0 in Ω = (0, 1)2 , u = gD on Γ , (2.35)

where gD is chosen such that u(x) = exp(2π(x1 − 0.3)) cos(2π(x2 − 0.3)) is the
unique solution. According to Theorem 2.31, it is sufficient to seek the approxima-
tion uh in the space V k

h,H containing only piecewise weakly harmonic functions.
Therefore, the number of degrees of freedom is reduced in the computations. We
solve the reduced Galerkin formulation on a sequence of meshes produced by
the Matlab tool PolyMesher, see [167], and compute the Galerkin errors as in the
previous experiment. Some of the meshes are visualized in Fig. 2.14 and the relative
errors are plotted with respect to the mesh size h in Fig. 2.15. The theoretical orders
of convergence are achieved by the computations for k = 1, 2, 3.
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Fig. 2.12 Initial mesh (left), refined mesh after two steps (middle), refined mesh after four steps
(right)
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Fig. 2.13 Relative error in H 1-norm (left) and L2-norm (right) with respect to the mesh size h for
problem (2.34) with uh ∈ V k

h on meshes depicted in Fig. 2.12

Fig. 2.14 First (left), fourth (middle) and sixth mesh (right) in uniform sequence generated by
PolyMesher
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Fig. 2.15 Relative error in H 1-norm (left) and L2-norm (right) with respect to the mesh size h for
problem (2.35) with uh ∈ V k

h,H on meshes depicted in Fig. 2.14

Fig. 2.16 Second (left), third (middle) and fourth mesh (right) in uniform sequence consisting of
L-shaped elements and rectangles only

To demonstrate the applicability of the BEM-based FEM on polygonal meshes
with non-convex elements, we consider the previous example for the Laplace prob-
lem once more. The approach is applied to a sequence of meshes with decreasing
mesh size h consisting of L-shaped elements and rectangles only, see Fig. 2.16. On
each mesh, the relative error (err) measured in L2(Ω) and the numerical order of
convergence (noc) are computed, i.e.

err = ‖u− uh‖L2(Ω)

‖u‖L2(Ω)
and noc = log(‖u− u2h‖L2(Ω))− log(‖u− uh‖L2(Ω))

log 2
.

In Table 2.1, the computed values are given together with the degrees of freedom
in the trial space V k

h,H,D = V k
h,H ∩ HD(Ω) for k = 1, 2, 3. The results clearly

demonstrate the optimal rates of convergence according to Theorem 2.31, where in
the finest example for k = 3 saturation of accuracy is reached.
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Fig. 2.17 Relative error in
H 1-norm with respect to the
mesh size h for
problem (2.36) with uh ∈ V k

h

and different
approximations ah of the
diffusion coefficient a on
meshes depicted in Fig. 2.14
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In order to study the effects of the approximation of the diffusion coefficient we
consider the boundary value problem

− div

(

1

|x − x∗|∇u
)

= 0 in Ω = (0, 1)2, u = gD on Γ , (2.36)

where x∗ = (−0.1, 0.2)�. The Dirichlet boundary data gD is chosen in such a
way that u(x) = |x − x∗| is the exact solution. We apply the approach with the
approximation space V k

h on the uniform sequence generated by the PolyMesher,
cf. Fig. 2.14. In the case of a piecewise constant approximation of the diffusion
coefficient a(x) = |x − x∗|−1, the first order method for k = 1 converges with
optimal order in the H 1-norm, whereas the second order method for k = 2 has
a suboptimal convergence rate, see Fig. 2.17. This behaviour has been discussed
theoretically in Sect. 2.5, where we observed that the error in the piecewise constant
approximation of the diffusion coefficient dominates the convergence process for
k > 1. Approximating a by ah = Ik−1

h a, we recover the optimal rates, see Fig. 2.17.
For a discussion of the implementation we refer the interested reader to [146].

Finally, a three-dimensional boundary value problem is considered

− div (a∇u) = f in Ω = (0, 1)3, u = gD on Γ , (2.37)

where a(x) = 7
2 − x1 − x2 − x3 and f as well as gD are chosen such that the

exact solution is u(x) = cos(πx1) sin(2πx2) sin(3πx3). The diffusion coefficient
is approximated by a piecewise constant function. The boundary value problem is
solved on a uniform sequence of polyhedral meshes, the first one is depicted in
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Fig. 2.18 First mesh of unit
cube with tessellation of
hexahedral bricks and
triangular faces

Table 2.2 Degrees of freedom (DoF), relative error measured in the energy norm as well as in
the L2(Ω)-norm with numerical order of convergence (noc) for problem (2.37) with uh ∈ V 1

h on
meshes with triangulated faces, cf. Fig. 2.18

h DoF Energy err noc L2-err noc

4.23 × 10−1 152 1.43 × 100 – 5.09 × 10−1 –

2.17 × 10−1 1176 7.86 × 10−1 0.90 1.95 × 10−1 1.44

1.46 × 10−1 3936 5.40 × 10−1 0.95 9.61 × 10−2 1.79

1.10 × 10−1 9296 4.10 × 10−1 0.97 5.67 × 10−2 1.87

8.73 × 10−2 19,026 3.20 × 10−1 1.06 3.48 × 10−2 2.10

7.31 × 10−2 32,575 2.69 × 10−1 0.97 2.49 × 10−2 1.89

6.28 × 10−2 51,388 2.33 × 10−1 0.98 1.86 × 10−2 1.90

5.51 × 10−2 76,329 2.04 × 10−1 0.98 1.45 × 10−2 1.92

4.87 × 10−2 111,188 1.79 × 10−1 1.07 1.12 × 10−2 2.12

Theory: 1 2

Fig. 2.18. The meshes are constructed with the help of hexahedral bricks, where
the polygonal faces are triangulated in order to apply the simple generalization
for the three-dimensional approximation space in Sect. 2.3.4. The relative errors
in the energy norm ‖ · ‖b = √

b(·, ·) and the L2-norm are computed and given in
Table 2.2. Furthermore, we give the numerical orders of convergence (noc), cf. (1.7),
with respect to these norms. We observe linear convergence in the energy norm and
quadratic convergence in the L2-norm as predicted by the theory.



Chapter 3
Interpolation of Non-smooth Functions
and Anisotropic Polytopal Meshes

The solutions of boundary value problems may contain singularities and/or have
layers, where the solution changes rapidly. For such non-smooth functions, the
application of pointwise interpolation is not well defined and in the presence of
layers the use of regular and uniform meshes is not optimal in some sense. For
these reasons quasi-interpolation operators for non-smooth functions over polytopal
meshes are introduced and analysed in this chapter. In particular, operators of
Clément- and Scott–Zhang-type are studied. Furthermore, the notion of anisotropic
meshes is introduced. These meshes do not satisfy the classical regularity properties
used in the approximation theory and thus they have to be treated in a special way.
However, such meshes allow the accurate and efficient approximation of functions
featuring anisotropic behaviours near boundary or interior layers.

3.1 Preliminaries

In the theory of classical interpolation it is assumed that the interpolant is at least
in the Sobolev space H 2(Ω) or even smoother, such that point evaluations are well
defined. When talking about non-smooth functions, we have those in mind which
are only in H 1(Ω) and do not satisfy any further regularity. Such functions can be
solutions of boundary value problems according to existence and uniqueness theory,
cf. the Lax–Milgram Lemma given in Theorem 1.6. But, these functions do not fall
in the theory of Sect. 2.5 yielding optimal rates of convergence on sequences of
uniformly refined meshes. Instead of using pointwise values for the interpolation
of non-smooth functions, one has to exploit averages of the function over certain
neighbourhoods of the nodes.

© Springer Nature Switzerland AG 2019
S. Weißer, BEM-based Finite Element Approaches on Polytopal Meshes,
Lecture Notes in Computational Science and Engineering 130,
https://doi.org/10.1007/978-3-030-20961-2_3
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z

z E

E

K

K

Fig. 3.1 Example of the neighbourhoods of nodes, edges and elements in two space dimensions

Let Kh be a polytopal mesh of a bounded domain Ω . For each node z ∈ Nh in
the mesh we consider its neighbourhoodωz defined by

ωz =
⋃

z∈N (K)

K , (3.1)

where N (K) denotes the set of all nodes belonging to the element K ∈ Kh.
Furthermore, we introduce the neighbourhoods of edges, faces and elements as

ωE =
⋃

z∈N (E)

ωz , ωF =
⋃

z∈N (F )

ωz , ωK =
⋃

z∈N (K)

ωz , (3.2)

cf. Fig. 3.1 for a visualization in two space dimensions. The neighbourhoods are
open sets which are constructed by agglomerating elements next to the correspond-
ing node, edge, face and element, respectively. The diameter of a neighbourhood ω
is denoted by hω. An important role plays the neighbourhood ωz. Its diameter hωz

is of comparable size to the diameter of K ⊂ ωz as shown in

Lemma 3.1 Let Kh be regular and stable mesh of a two- or three-dimensional
domain. The following properties hold:

1. Each element is covered by a uniformly bounded number of neighbourhoods of
elements, i.e. |{K ′ ∈ Kh : K ⊂ ωK ′ }| ≤ c, ∀K ∈ Kh.

2. For all z ∈ Nh andK ⊂ ωz, it is hωz ≤ chK .

The constants c > 0 only depend on σK , σF and cK .

Proof The first statement is seen easily. Let K ∈ Kh be fixed. Due to the above
constructions, the number of element neighbourhoods ωK ′ with K ⊂ ωK ′ is equal
to the number of elements contained in the neighbourhood ωK . Consequently, the
statement follows since

ωK =
⋃

z∈N (K)

ωz =
⋃

z∈N (K)

⋃

z∈N (K ′)
K ′ ,
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and the number of nodes per element as well as the number of elements containing
a node are bounded uniformly, see Lemmata 2.7 and 2.16 as well as Corollaries 2.6
and 2.15 for d = 2 and d = 3, respectively.

In order to see the second statement, we first recognize that

hωz ≤ 2 max
K ′⊂ωz

hK ′ .

Let the maximum be reached for some K ′. If K and K ′ share a common edge E,
the stability of the mesh, i.e. hK ′ ≤ cK hE ≤ cK hK , gives the desired estimate,
namely hωz ≤ 2cK hK . If K and K ′ do not share a common edge, we can construct
a sequence of elements Ki ⊂ ωz, i = 1, . . . , n such that K1 = K ′, Kn = K and Ki

and Ki+1 share a common edge. Arguing as above yields

hωz ≤ 2 (cK )n−1 hK .

Since the number of elements contained in ωz, and thus in particular n, is uniformly
bounded according to Corollaries 2.6 and 2.15, the statement is proven. ��

In the forthcoming sections, we treat the two- and three-dimensional cases with
d = 2, 3 simultaneously. Therefore, if we write F , Fh and so forth, we mean the
faces of the discretization for d = 3 and with some abuse of notation the edges
for d = 2. In this chapter, we restrict ourselves to the first order approximation
space V 1

h with k = 1 and we simply write Vh for shorter notation. In the three-
dimensional case we may use the simple generalization for the construction of Vh
introduced in Sect. 2.3.4 which relies on polyhedral elements with triangular faces.
The theory in this chapter is also valid for the case of polyhedral elements with
polygonal faces. The detailed description of the approximation space is discussed
in the later Sect. 6.2. At this point, however, we give a small outlook in order to
present the full theory for quasi-interpolation operators. The generalization of Vh to
polyhedral elements with polygonal faces reads

Vh =
{

v ∈ H 1(Ω) : �v∣∣
K

= 0 ∀K ∈ Kh and v
∣

∣

F
∈ Vh(F ) ∀F ∈ Fh

}

,

(3.3)

where Vh(F ) denotes the two-dimensional discretization space over the face F . The
nodal basis functions are constructed as in the two-dimensional case but they have
to satisfy additionally the Laplace equation in the linear parameter space of each
face.
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3.2 Trace Inequality and Best Approximation

Before we introduce quasi-interpolation operators and study error estimates, some
analytic auxiliary results are reviewed and extended. These include in particular
trace inequalities and approximation results for the L2-projection into the space of
constants over patches of elements. If no confusion arises, we write v for both the
function and the trace of the function on an edge and face, respectively.

In the two-dimensional setting, Lemma 2.4 guaranties the existence of the
isosceles triangles with common angles for non-convex elements in a regular
polygonal mesh. This is sufficient to guaranty the following lemma proven in [174].

Lemma 3.2 LetKh be a regular mesh, v ∈ H 1(K) for K ∈ Kh and E ∈ E (K). It
holds

‖v‖L2(E) ≤ c
{

h
−1/2
E ‖v‖L2(T

iso
E ) + h

1/2
E |v|H 1(T iso

E )

}

with the isosceles triangle T iso
E ⊂ K from Lemma 2.4, where c only depends on αK ,

and thus, on the regularity parameter σK .

Under the additional assumption on the stability of the mesh, we can generalize
this trace inequality and state a similar result, which is valid for d = 2, 3. Remember
the convention that F denotes a face or edge depending on the considered
dimensions d .

Lemma 3.3 (Trace Inequality) Let Kh be a regular and stable mesh, v ∈ H 1(K)

for K ∈ Kh and F ∈ F (K). It holds

‖v‖L2(F ) ≤ c
(

h
−1/2
F ‖v‖L2(K) + h

1/2
F |v|H 1(K)

)

,

where c only depends on σK , σF and cK .

Proof Since Kh is regular and stable, we have an auxiliary discretization Th(K)

into tetrahedra such that each face F ∈ F (K) is decomposed into triangular facets
of these tetrahedra. According to Lemma 2.14 the discretization Th(K) is shape
regular in the sense of Ciarlet. It is well known, see [2, 40], that there is a constant
C only depending on the regularity parameters of the auxiliary discretization such
that for Ttet ∈ Th(K) and v ∈ H 1(Ttet) it holds

‖v‖2
L2(∂Ttet)

≤ C
(

h−1
Ttet

‖v‖2
L2(Ttet)

+ hTtet‖v‖2
H 1(Ttet)

)

.

Furthermore, it is hF /cK ≤ hTtet ≤ cK hF , cf. Sect. 2.2.2, and thus we obtain for
the triangle T ⊂ ∂Ttet ∩ F and v ∈ H 1(K) that

‖v‖2
L2(T )

≤ c
(

h−1
F ‖v‖2

L2(Ttet)
+ hF ‖v‖2

H 1(Ttet)

)

.

Summing this inequality for all triangles which lie in F yields the desired result. ��
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Another important analytical tool is the approximation of functions in Sobolev
spaces by polynomials. We already applied such results over polytopal elements
in the proof of Theorem 2.27. Since these elements are star-shaped, the well
known results from [40, 69] are applicable. Next, we consider the polynomial
approximation over the neighbourhoods defined in (3.1) and (3.2) which are not
star-shaped in general, and therefore we have to extend the theory.

Lemma 3.4 LetKh be a regular and stable mesh and k ∈ N0. There exists for every
function v ∈ Hk+1(ω) and every neighbourhood ω ∈ {ωz, ωF , ωK } a polynomial
p ∈ Pk(ω) such that

|v − p|H�(ω) ≤ C hk+1−�
ω |v|Hk+1(ω) for � = 0, . . . , k + 1 ,

where C only depends on σK , σF and cK as well as on k and the dimension d .

Proof Let ω ∈ {ωz, ωF , ωK }, since Kh is regular and stable, there is an auxiliary
discretization of ω into tetrahedra formed by Th(K) of all K ⊂ ω. This
discretization is shape regular in the sense of Ciarlet and the number of tetrahedra is
uniformly bounded because there are only finitely manyK with K ⊂ ω according to
Lemma 3.1 and each element is decomposed into a bounded number of tetrahedra
according to the Lemmata 2.7 and 2.16. Now, that we have a uniformly bounded
number of tetrahedra with uniformly bounded aspect ratios due to the regularity, we
can argue as in [8] adapting an iterative procedure already mentioned in [69]. We
skip the rest of the proof and refer the interested reader to the cited literature. ��

The previous result can be applied to obtain error estimates for the L2-projection.
We only consider the projection into the space of constants. For v ∈ H 1(ω) this
projection is given by

Πωv = 1

|ω|
∫

ω

v(x) dx .

It is known that the Poincaré constant

CP (ω) = sup
v∈H 1(ω)

‖v −Πωv‖L2(ω)

hω|v|H 1(ω)

< ∞ (3.4)

is finite and depends on the shape of ω, see [169]. Exploiting that

‖v −Πωv‖L2(ω) = min
q∈R ‖v − q‖L2(ω) ,

we deduce from Lemma 3.4 that the Poincaré constantCP (ω) is bounded uniformly
for the neighbourhoodsω ∈ {ωz, ωF , ωK } in a regular and stable mesh.

Lemma 3.5 Let Kh be a regular and stable mesh. There exists a uniform con-
stant c, which only depends on σK , σF and cK , such that for every neighbourhood
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ω ∈ {ωz, ωF , ωK } with z ∈ Nh, F ∈ Fh and K ∈ Kh, it holds

‖v −Πωv‖L2(ω) ≤ chω|v|H 1(ω) for v ∈ H 1(ω) .

In the following, we give an alternative proof for the two-dimensional case
(d = 2) with ω = ωz. For convex ω, the authors of [136] showed CP (ω) < 1/π .
In our situation, however, ωz is a patch of non-convex elements which is itself non-
convex in general. We proceed as in [180]. The main tool in the forthcoming proof
is Proposition 2.10 (Decomposition) of [169]. As preliminary of this proposition, an
admissible decomposition {ωi}ni=1 of ω with pairwise disjoint domains ωi and

ω =
n
⋃

i=1

ωi

is needed. Admissible means in this context, that there exist triangles {Ti}ni=1 such
that Ti ⊂ ωi and for every pair i, j of different indices, there is a sequence
i = k0, . . . , k� = j of indices such that for everym the triangles Tkm−1 and Tkm share
a complete side. Under these assumptions, the Poincaré constant of ω is bounded by

CP (ω) ≤ max
1≤i≤n

{

8(n− 1)

(

1 − min
1≤j≤n

|ωj |
|ω|

)

(

C2
P (ωi)+ 2CP (ωi)

) |ω| h2
ωi

|Ti| h2
ω

}1/2

.

(3.5)

Proof (Lemma 3.5, Alternative for d = 2 with ω = ωz) Before we prove
the estimate, we note that CP (K) < c for an element K which satisfies the
regularity and stability assumptions of Definitions 2.1 and 2.2. This follows by
remembering the construction of the auxiliary triangulation Th(K). K can be
interpreted as patch of triangles corresponding to the point zK . Thus, we choose
ωi = Ti , i = 1, . . . , n with {Ti}ni=1 = Th(K) for the admissible decomposition
of K . The integer n corresponds to the number of nodes in K and thus it is
uniformly bounded according to Lemma 2.7. Furthermore, it is CP (ωi) < 1/π ,
|K| < h2

K and h2
ωi
/|Ti | = h2

Ti
/|Ti | ≤ c, because of the shape-regularity of the

auxiliary triangulation proven in Lemma 2.3. Consequently, the application of
Proposition 2.10 (Decomposition) from [169] yields CP (K) < c.

Now, we address the estimate for general ωz in the lemma. Therefore, we apply
once more Proposition 2.10 of [169]. For this reason, we construct a decomposition
{ωi}ni=1 and show that it is admissible by giving explicitly a set of triangles {Ti}ni=1
which satisfy the above mentioned properties. Furthermore, the terms in (3.5) are
estimated.

To simplify the construction, we first assume that the patch consists of only
one element, i.e. ωz = K ∈ Kh, and let E1, E2 ∈ E (K) with z = E1 ∩ E2.
We decompose ωz, or equivalently K , into ω1 and ω2 such that n = 2. The
decomposition is done by splitting K along the polygonal chain through the points
z, zK and z′, where z′ ∈ N (K) is chosen such that the angle β =  zzKz′ is
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z

Fig. 3.2 Construction of admissible decomposition for K and ωz from Fig. 3.1

maximized, see Fig. 3.2 left. It is β ∈ (π/2, π], since K is star-shaped with respect
to a circle centered at zK . The triangles {Ti}ni=1 are chosen from the auxiliary
triangulation in Lemma 2.3 as Ti = TEi ∈ Th(K), cf. Fig. 3.2 middle. Obviously,
{ωi}ni=1 is an admissible decomposition. Next, we estimate the terms in (3.5) and
show that CP (ωi) ≤ c. The element K is star-shaped with respect to a circle
of radius ρK and we have split this circle into two circular sectors during the
construction of ωi , i = 1, 2. A small calculation shows that ωi is also star-shaped
with respect to a circle of radius

ρωi = ρK sin(β/2)

1 + sin(β/2)
,

which lies inside the mentioned circular sector and consequently satisfies the
relation ρK/(1 + √

2) < ρωi ≤ ρK/2, see Fig. 3.2 (left). Thus, the aspect ratio
of ωi is uniformly bounded, since

hωi

ρωi
≤ (1 + √

2)hK
ρK

≤ (1 + √
2)σK .

Furthermore, we observe that hωi ≤ hK ≤ σK ρK ≤ σK |zzK | and accordingly
hωi ≤ σK |z′zK |. Consequently, ωi , i = 1, 2 is a regular element in the sense of
Definition 2.1 and thus, we have already proven that CP (ωi) ≤ c. Additionally, we
obtain by (2.2) and by the regularity of the mesh that

h2
ωi

|Ti | ≤ 2h2
ωi

hEi ρK
≤ 2h2

K

hEi ρK
≤ 2cK σK .

This yields together with |ωz| ≤ h2
ωz

and Proposition 2.10 (Decomposition) of [169]
that

CP (ωz) ≤
(

16(n− 1)
(

c2 + 2c
)

cK σK

)1/2
,

and thus, a uniform bound in the case of ωz = K and n = 2.
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In the general case, the patch ωz is a union of several elements, see (3.1) and
Fig. 3.1. In this situation, we repeat the construction of ωi for all neighbouring
elements of the node z, see Fig. 3.2 (right). Consequently, n is two times the
number of neighbouring elements. This number is uniformly bounded according
to Lemma 2.7. The resulting decomposition {ωi}ni=1 is admissible and the estimate
of [169] yields CP (ωz) ≤ c, where c only depends on σK and cK . ��
Remark 3.6 More precisely, the previous proof yields the estimate

CP (ωz) ≤
(

16(n− 1)cK σK max
1≤i≤n

{

C2
P (ωi)+ 2CP (ωi)

}

)1/2

,

where n is two times the number of elements in ωz that is usually a small number.
Consequently,CP (ωz) is controlled by CP (ωi), i = 1, . . . , n which only depend on
the chunkiness parameter hωi /ρωi according to [40].

3.3 Quasi-Interpolation of Non-smooth Functions

In the case of smooth functions like in H 2(Ω), it is possible to use nodal interpola-
tion. Such interpolation operators have been constructed and studied in Sect. 2.4,
and they yield optimal approximation error estimates. The goal of this section,
however, is to define interpolation for general functions in H 1(Ω). Consequently,
quasi-interpolation operators are applied, which utilizes certain neighbourhoods of
the nodes. Classical results on simplicial meshes go back to Clément [59] and to
Scott and Zhang [154]. They useL2-projections instead of point evaluations in order
to specify the expansion coefficients in the given basis.

For v ∈ H 1(Ω), we are interested in quasi-interpolation operators of the form

Iv =
∑

z∈N∗
(Πω(ψz)v)ψz ∈ Vh , (3.6)

where the set of nodes N∗ and the neighbourhoods ω(ψz), which depend on the
first order basis functions, have to be specified. The Clément and Scott–Zhang
interpolation operators differ in the choice of N∗ and ω(ψz). Furthermore, it is
desirable that homogeneous Dirichlet data is preserved such that Iv ∈ H 1

D(Ω) for
v ∈ H 1

D(Ω).

3.3.1 Clément-Type Interpolation

The Clément interpolation operator IC is defined as usual by (3.6), where we choose
N∗ = Nh \ Nh,D as all nodes which do not lie on the Dirichlet boundary, and
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ω(ψz) = ωz as neighbourhood of the nodes. Thus, the interpolation is given as a
linear combination of the basis functions ψz associated to the nodes in the interior
of Ω and the Neumann boundary ΓN . The expansion coefficients are chosen as
average over the neighbourhood of the corresponding nodes. For v ∈ H 1

D(Ω), it is
ICv ∈ H 1

D(Ω) by construction.

Theorem 3.7 Let Kh be a regular and stable mesh and let F ∈ Fh and K ∈ Kh.
The Clément interpolation operator satisfies for v ∈ H 1

D(Ω) the interpolation error
estimates

‖v − ICv‖L2(K) ≤ chK |v|H 1(ωK)
and ‖v − ICv‖L2(F ) ≤ ch

1/2
F |v|H 1(ωF )

,

where the constants c only depend on σK , σF and cK .

Proof The proof follows the arguments of [170, 174] with several modifications for
the treatment of polytopal meshes. We start with the first estimate. For K ∈ Kh, we
have the partition of unity property, i.e.

∑

z∈N (K) ψz = 1 on K and ‖ψz‖L∞(K) = 1
for z ∈ N (K). We distinguish two cases, let all nodes z ∈ N (K) of the element
K be located in the interior of Ω or in the interior of the boundary ΓN , i.e.
z ∈ Nh \ Nh,D . Applying the best approximation result Lemma 3.5, we obtain

‖v − ICv‖L2(K) ≤
∑

z∈N (K)

‖ψz(v −Πωzv)‖L2(K)

≤
∑

z∈N (K)

‖v −Πωzv‖L2(ωz)

≤
∑

z∈N (K)

chωz |v|H 1(ωz)

≤ chK |v|H 1(ωK)
.

In the last step we used that the number of nodes in N (K) is uniformly bounded,
see Lemmata 2.7, 2.16, and 3.1, which gives hωz ≤ chK . In the case that at least
one node of the element K is on the Dirichlet boundary ΓD , i.e. z ∈ Nh,D , we write

v − ICv =
∑

z∈N (K)

ψzv −
∑

z∈N (K)\Nh,D

ψzΠωzv

=
∑

z∈N (K)

ψz(v −Πωzv)+
∑

z∈N (K)∩Nh,D

ψzΠωzv ,

and obtain

‖v−ICv‖L2(K) ≤
∑

z∈N (K)

‖ψz(v−Πωzv)‖L2(K) +
∑

z∈N (K)∩Nh,D

‖ψzΠωzv‖L2(K) .
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The first sum has already been treated and the term in the second sum can be
estimated by

‖ψzΠωzv‖L2(K) ≤ |Πωzv| ‖ψz‖L∞(K) |K|1/2 ≤ h
d/2
K |Πωzv| .

Because of z ∈ Nh,D , there is an element K ′ ⊂ ωz and a face F ′ ∈ F (K ′) in the
Dirichlet boundary, such that z ∈ N (F ′) and F ′ ∈ Fh,D . Therefore, v vanishes on
F ′ and we obtain with the trace inequality, see Lemma 3.3,

|Πωzv| = |F ′|−1/2 ‖v −Πωzv‖L2(F ′)

≤ c|F ′|−1/2h
1/2
F ′
{

h−1
F ′ ‖v − Πωzv‖L2(ωz) + |v|H 1(ωz)

}

≤ ch
1−d/2
K ′

{

h−1
ωz

‖v −Πωzv‖L2(ωz) + |v|H 1(ωz)

}

,

where we exploit hd−1
K ′ ≤ c|F ′|, see Remark 2.13, hF ′ ≤ hK ′ , and

hωz ≤ chK ′ ≤ chF ′ according to Lemma 3.1 and the stability of the mesh. The
best approximation, see Lemma 3.5, and the observations hK ≤ hωz ≤ chK ′ as well
as 1 − d/2 ≤ 0 gives

|Πωzv| ≤ ch
1−d/2
K |v|H 1(ωz)

. (3.7)

Putting all estimates together proves the first statement of the theorem.
To prove the second estimate of the theorem, we proceed in a similar manner.

Let F ∈ Fh be an edge (d = 2) or a face (d = 3). We have
∑

z∈N (F ) ψz = 1 on

F and ‖ψz‖L∞(F ) = 1 for z ∈ N (F ). First, let F ∈ Fh be such that all its nodes
z ∈ N (F ) are located in the interior of Ω or in the interior of the boundary ΓN ,
i.e. z ∈ Nh \ Nh,D . Applying the trace inequality, see Lemma 3.3, with an element
K ′ ∈ Kh that satisfies K ′ ⊂ ωz and F ∈ F (K ′), as well as the best approximation,
see Lemma 3.5, we obtain as above

‖v − Ihv‖L2(F ) ≤
∑

z∈N (F )

‖v − Πωzv‖L2(F )

≤
∑

z∈N (F )

ch
1/2
F

{

h−1
F ‖v − Πωzv‖L2(ωz) + |v|H 1(ωz)

}

≤
∑

z∈N (F )

ch
1/2
F |v|H 1(ωz)

≤ ch
1/2
F |v|H 1(ωF )

.
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If at least one node of F is on ΓD , i.e. z ∈ Nh,D , we have

‖v − Ihv‖L2(F ) ≤
∑

z∈N (F )

‖ψz(v −Πωzv)‖L2(F ) +
∑

z∈N (F )∩Nh,D

‖ψzΠωzv‖L2(F ) .

The first sum is treated as before, so let us have a look at the second sum. For
z ∈ N (F ) ∩ Nh,D and some element K ′ ∈ Kh with F ∈ F (K ′), we have
according to (3.7)

‖ψzΠωzv‖L2(F ) ≤ |F |1/2 |Πωzv| ≤ c |F |1/2 h
1−d/2
K ′ |v|H 1(ωz)

≤ c h
1/2
F |v|H 1(ωz)

,

where in the last estimate we have used |F | ≤ hd−1
F and h1−d/2

K ′ ≤ h
1−d/2
F . Putting

all estimates together and exploiting that the number of nodes per edge (d = 2) and
face (d = 3) is uniformly bounded, see Lemma 2.7 and Definition 2.10, yields the
second statement of the theorem and concludes the proof. ��

3.3.2 Scott–Zhang-Type Interpolation

The Scott–Zhang interpolation operator ISZ : H 1(Ω) → Vh is defined as usual
by (3.6), where we choose N∗ = Nh and ω(ψz) = Fz, where Fz ∈ Fh is an edge
(d = 2) or face (d = 3) with z ∈ F z and

Fz ⊂ ΓD if z ∈ Γ D and Fz ⊂ Ω ∪ ΓN if z ∈ Ω ∪ ΓN .

Thus, the interpolation is given as a linear combination of all basis functionsψz. The
expansion coefficients are chosen as average over edges and faces. By construction,
it is ISZv ∈ H 1

D(Ω) for v ∈ H 1
D(Ω), such that homogeneous Dirichlet data is

preserved. We have the following local stability result, which can be utilized to
derive interpolation error estimates.

Lemma 3.8 Let Kh be a regular and stable mesh and K ∈ Kh. The Scott–Zhang
interpolation operator satisfies for v ∈ H 1(Ω) the local stability

‖ISZv‖L2(K) ≤ c
(‖v‖L2(ωK) + hK |v|H 1(ωK)

)

,

where the constant c only depends on σK , σF and cK .

Proof The only non-vanishing basis functions ψz over K in the expansion of ISZv

are those with z ∈ N (K). Due to the stability of the L2-projection ΠFz we have
‖ΠFzv‖L2(Fz) ≤ ‖v‖L2(Fz). Furthermore, there exists Kz ∈ Kh with Fz ⊂ ∂Kz such
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that Kz ⊂ ωK . Therefore, we obtain with the trace inequality, see Lemma 3.3,

|ΠFzv| = |Fz|−1/2 ‖ΠFzv‖L2(Fz)

≤ c |Fz|−1/2h
−1/2
Fz

(‖v‖L2(Kz) + hFz |v|H 1(Kz)

)

≤ c |Kz|−1/2 (‖v‖L2(Kz) + hKz |v|H 1(Kz)

)

,

since |Kz| ≤ hdKz
≤ cdK hd−1

Fz
hFz ≤ c|Fz|hFz and hFz ≤ hKz due to the regularity

and stability of the mesh. Utilizing this estimate and ‖ψz‖L∞(K) = 1 yields

‖ISZv‖L2(K) ≤
∑

z∈N (K)

‖(ΠFzv) ψz‖L2(K)

≤
∑

z∈N (K)

|(ΠFzv)| ‖ψz‖L∞(K) |K|1/2

≤ c
∑

z∈N (K)

( |K|
|Kz|

)1/2
(‖v‖L2(Kz) + hKz |v|H 1(Kz)

)

.

Furthermore, it is K,Kz ⊂ ωz and thus hKz ≤ hωz . Lemma 3.1 yields hωz ≤ chK
and consequently hKz ≤ chK . Additionally, we can bound |K|/|Kz| uniformly,
because of |K| ≤ hdK ≤ chdKz

≤ cσdK ρdKz
≤ c|Kz|, since the d-dimensional ball

of radius ρKz is inscribed in Kz. Exploiting that Kz ⊂ ωK and that the number of
nodes per element is uniformly bounded, see Lemmata 2.7 and 2.16, finishes the
proof. ��
Theorem 3.9 LetKh be a regular and stable mesh andK ∈ Kh. The Scott–Zhang
interpolation operator satisfies for v ∈ H 1(Ω) the interpolation error estimate

‖v − ISZv‖L2(K) ≤ chK |v|H 1(ωK)
,

where the constant c only depends on σK , σF and cK .

Proof For p = ΠωKv ∈ R it is obviously p = ISZp and ∇p = 0. The estimate in
the theorem follows by Lemma 3.8 and the application of Lemma 3.4, since

‖v − ISZv‖L2(K) ≤ ‖v − p‖L2(K) + ‖ISZ(v − p)‖L2(K)

≤ c
(‖v − p‖L2(ωK) + hK |v|H 1(ωK)

)

≤ chK |v|H 1(ωK)
.

��
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3.4 Anisotropic Polytopal Meshes

When dealing with highly anisotropic solutions of boundary value problems, it is
widely recognized that anisotropic mesh refinements have significant potential for
improving the efficiency of the solution process. Pioneering works for the analysis
of finite element methods on anisotropic meshes have been performed by Apel [10]
as well as by Formaggia and Perotto [78, 79]. The meshes usually consist of
triangular and quadrilateral elements in two-dimension as well as on tetrahedral and
hexahedral elements in three-dimension. First results on a posteriori error estimates
for driving adaptive mesh refinement with anisotropic elements have been derived
by Kunert [119] for triangular and tetrahedral meshes. For the mesh generation and
adaptation different concepts are available which rely on metric-based strategies,
see, e.g., [108, 125], or on splitting of elements, see [152] and the references
therein. The anisotropic splitting of classical elements, however, results in certain
restrictions why several authors combine this approach with additional strategies
like edge swapping, node removal and local node movement. These restrictions
come from the limited element shapes and the necessity to remove or handle hanging
nodes in the discretization. For three-dimensional elements the situation is even
more difficult. In contrast, anisotropic polytopal elements promise a high potential
in the accurate resolution of sharp layers in the solutions of boundary value problems
due to their enormous flexibility. An appropriate framework is developed in this
section.

3.4.1 Characterisation of Anisotropy and Regularity

Let K ⊂ R
d , d = 2, 3 be a bounded polytopal element. Furthermore, we assume

that K is not degenerated, i.e. |K| = measd(K) > 0. We define the center or mean
of K as

x̄K = 1

|K|
∫

K

x dx

and the covariance matrix of K as

MCov(K) = 1

|K|
∫

K

(x − x̄K)(x − x̄K)� dx ∈ R
d×d .

This matrix has already been used in Sect. 2.2.3 for the bisection of elements in
the discussion of mesh refinement. Obviously, MCov is real valued, symmetric and
positive definite since K is not degenerated. Therefore, it admits an eigenvalue
decomposition

MCov(K) = UKΛKU
�
K



78 3 Interpolation of Non-smooth Functions and Anisotropic Polytopal Meshes

with

U�
K = U−1

K and ΛK = diag (λK,1, . . . , λK,d ) .

Without loss of generality, let the eigenvalues satisfy λK,1 ≥ . . . ≥ λK,d > 0 and we
assume that the corresponding eigenvectors uK,1, . . . ,uK,d , collected in U , form a
basis of Rd with the same orientation for all considered elements K ∈ Kh.

The eigenvectors of MCov(K) give the characteristic directions of K . This fact
is, e.g., also used in the principal component analysis (PCA). The eigenvalue λK,j
is the variance of the underlying data in the direction of the corresponding eigen-
vector uK,j . Thus, the square root of the eigenvalues give the standard deviations in
a statistical setting. Consequently, if

MCov(K) = cI

for c > 0, there are no dominant directions in the element K . We characterise the
anisotropy with the help of the quotient λK,1/λK,d ≥ 1 and call an element

isotropic, if
λK,1

λK,d
≈ 1 ,

and anisotropic, if
λK,1

λK,d
� 1 .

For d = 3, we might even characterise whether the element is anisotropic in one or
more directions by comparing the different combinations of eigenvalues.

Exploiting the spectral information of the polytopal elements, we next introduce
a linear transformation of an anisotropic elementK onto a kind of reference element
̂K . For each x ∈ K , we define the mapping by

x �→ x̂ = FK(x) = AKx with AK = αKΛ
−1/2
K U�

K , (3.8)

and αK > 0, which will be chosen later. ̂K = FK(K) is called reference
configuration later on.

Lemma 3.10 Under the above transformation, it holds

1. |̂K| = |K| | det(AK)| = αdK |K|/
√

∏d
j=1 λK,j ,

2. x̄
̂K = FK(x̄K),

3. MCov(̂K) = α2
KI .

Proof First, we recognize that

det(AK) = αdK det(Λ−1/2
K U�

K ) = αdK/
√

det(ΛK) = αdK/

√

∏d
j=1 λK,j .
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Consequently, we obtain by the transformation

|̂K| =
∫

̂K

d̂x = |K| | det(AK)| = αdK |K|/√det(MCov(K)) ,

that proves the first statement. For the center, we have

x̄
̂K = 1

|̂K|
∫

̂K

x̂ d̂x = | det(AK)|
|̂K| AK

∫

K

x dx = AK x̄K = FK(x̄K) .

The covariance matrix has the form

MCov(̂K) = 1

|̂K|
∫

̂K

(̂x − x̄
̂K)(̂x − x̄

̂K)
� d̂x

= | det(AK)|
|̂K|

∫

K

AK(x − x̄K) (AK(x − x̄K))� dx

= AKMCov(K)A
�
K

= α2
K(Λ

−1/2
K U�

K )(UKΛKU
�
K )(Λ

−1/2
K U�

K )
�

= α2
K I ,

that finishes the proof. ��
According to the previous lemma, the reference configuration ̂K is isotropic,

since λ
̂K,1/λ̂K,d = 1, and thus, it has no dominant direction. We can still choose

the parameter αK in the mapping. We might use αK = 1 such that the variance of
the element in every direction is equal to one. On the other hand, we can use the
parameter αK in order to normalise the volume of ̂K such that |̂K| = 1. This is
achieved by

αK =
(√

det(MCov(K))

|K|
)1/d

=
⎛

⎝

√

∏d
j=1 λK,j

|K|

⎞

⎠

1/d

, (3.9)

see Lemma 3.10, and will be used in the following.

Example 3.11 The transformation (3.8) for αK according to (3.9) is demonstrated
for an anisotropic elementK ⊂ R

2, i.e. d = 2. The elementK is depicted in Fig. 3.3
(left). The eigenvalues of MCov(K) are

λK,1 ≈ 111.46 and λK,2 ≈ 1.18 ,

and thus

λK,1

λK,2
≈ 94.40 � 1 .
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Fig. 3.3 Demonstration of transformation (3.8): original anisotropic element (left) and trans-
formed element centered at the origin (right)

In Fig. 3.3, we additionally visualize the eigenvectors of MCov(K) scaled by the
square root of their corresponding eigenvalue and centered at the mean of the
element. The ellipse is the one given uniquely by the scaled vectors. In the right
picture of Fig. 3.3, the transformed element ̂K = FK(K) is given with the scaled
eigenvectors of its covariant matrix MCov(̂K). The computation verifies |̂K| = 1,
and we have

MCov(̂K) ≈
(

8.59 · 10−2 −3.93 · 10−17

−3.93 · 10−17 8.59 · 10−2

)

.

In view of the quasi-interpolation and interpolation operators and their approxi-
mation properties, the meshes have to guaranty certain requirements. In the previous
analysis of such operators, we made use of isotropic polytopal elements in regular
and stable meshes Kh. The corresponding definitions of Sect. 2.2 are summarized
in the following remark.

Remark 3.12 Let Kh be a polytopal mesh. Kh is called a regular and stable
(isotropic) mesh, if all elements K ∈ Kh satisfy:

1. K is a star-shaped polygon/polyhedron with respect to a circle/ball of radius ρK
and midpoint zK .

2. The aspect ratio is uniformly bounded from above by σK , i.e. hK/ρK < σK .
3. For the element K and all its edges E ∈ E (K) it holds hK ≤ cK hE .
4. In the case d = 3, all polygonal faces F ∈ F (K) of the polyhedral element K

are star-shaped with respect to a circle of radius ρF and midpoint zF and their
aspect ratio is uniformly bounded, i.e. hF /ρF < σF .

Obviously, these assumptions are not satisfied in the case of anisotropic meshes.
The aspect ratio of the element depicted in Fig. 3.3 (left) is very large and one of its
edges degenerates compared with the element diameter. In the definition of regular
and stable anisotropic meshes, we make use of the previously introduced reference
configuration.
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Definition 3.13 (Regular and Stable Anisotropic Mesh) Let Kh be a polytopal
mesh. Kh is called a regular and stable anisotropic mesh, if:

1. The reference configuration ̂K for all K ∈ Kh obtained by (3.8) is a regular and
stable polytopal element according to Sect. 2.2, see Remark 3.12.

2. Neighbouring elements behave similarly in their anisotropy. More precisely, for
two neighbouring elements K1 and K2, i.e. K1 ∩ K2 = ∅, with covariance
matrices

MCov(K1) = UK1ΛK1U
�
K1

and MCov(K2) = UK2ΛK2U
�
K2

as defined above, we can write

ΛK2 = (I +ΔK1,K2)ΛK1 and UK2 = RK1,K2UK1

with

ΔK1,K2 = diag
(

δ
K1,K2
j : j = 1, . . . , d

)

,

and a rotation matrix RK1,K2 ∈ R
d×d such that for j = 1, . . . , d

0 ≤ |δK1,K2
j | < cδ < 1 and 0 ≤ ‖RK1,K2 − I‖2

(

λK1,1

λK1,d

)1/2

< cR

uniformly for all neighbouring elements, where ‖ · ‖2 denotes the spectral norm.

In the rest of the chapter, the generic constant c may also depend on cδ and cR .

Remark 3.14 For d = 2, the rotation matrix has the form

RK1,K2 =
(

cosφK1,K2 − sinφK1,K2

sin φK1,K2 cosφK1,K2

)

,

with an angle φK1,K2 . For the spectral norm ‖RK1,K2 − I‖2, we recognize that

(RK1,K2 − I)�(RK1,K2 − I) =
(

sin2 φK1,K2 + (1 − cosφK1,K2)2
)

I ,

and consequently

‖RK1,K2 − I‖2 =
(

sin2 φK1,K2 + (1 − cosφK1,K2)2
)1/2

= 2

∣

∣

∣

∣

sin

(

φK1,K2

2

)

− sin(0)

∣

∣

∣

∣

≤ |φK1,K2 | ,
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according to the mean value theorem. The assumption on the spectral norm in
Definition 3.13 can thus be replaced by

|φK1,K2 |
(

λK1,1

λK1,2

)1/2

< cφ .

This implies that neighbouring highly anisotropic elements have to be aligned in
almost the same directions, whereas isotropic or moderately anisotropic elements
might vary in their characteristic directions locally.

Let us study the reference configuration ̂K ⊂ R
d , d = 2, 3 of K ∈ Kh, which is

regular and stable. Due to the scaling with αK , it is |̂K| = 1 and we obtain

1 = |̂K| ≤ hd
̂K

≤ σdK ρd
̂K

= σdK νπρd
̂K
/ (νπ) ≤ σdK |̂K| / (νπ) = σdK / (νπ) ,

where ν = 1 for d = 2 and ν = 4/3 for d = 3, since the circle/ball is inscribed the
element ̂K . Consequently, we obtain

1 ≤ h
̂K ≤ σK

(νπ)1/d
. (3.10)

Furthermore, for d = 3, let ̂F be a face of ̂K and denote by ̂E one of its edges, i.e.,
̂E ∈ E (̂F). Due to the regularity and stability, we find

|̂F | ≥ πρ2
̂F

≥ πh2
̂F
/σ 2

F ≥ πh2
̂E
/σ 2

F ≥ πh2
̂K
/(cK σ 2

F ) ,

and thus for d = 2, 3

hd−1
̂K

≤ c|̂F | . (3.11)

A regular and stable anisotropic element can be mapped according to the
previous definition onto a regular and stable polytopal element in the usual sense.
In the definition of quasi-interpolation operators, we deal, however, with patches of
elements instead of single elements. Thus, we have to study the mapping of such
patches. These include in particular the patches ωz, ωF and ωK defined in Sect. 3.1.

Lemma 3.15 Let Kh be a regular and stable anisotropic mesh, ωz be the patch of
elements corresponding to the node z ∈ Nh, and K1,K2 ∈ Kh with K1,K2 ⊂ ωz.
The mapped element FK1(K2) is regular and stable in the sense of Sect. 2.2, see
Remark 3.12, with slightly perturbed regularity and stability parameters σ̃K and
c̃K depending only on the regularity and stability ofKh. Consequently, the mapped
patch FK(ωz) consists of regular and stable polytopal elements for allK ∈ Kh with
K ⊂ ωz.

Proof We verify Remark 3.12 for the mapped element ˜K2 = FK1(K2).
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K2

˜K2

̂K2

K2

K1

K2 ◦ −1
K1 K1 ◦ −1

K2

Fig. 3.4 Anisotropic element K2 with mapped regular and stable element ̂K2 (reference configu-
ration) and perturbed mapped element ˜K2 = FK1 (K2)

First, we address 1. of Remark 3.12. ̂K2 = FK2(K2) is regular and thus, star-
shaped with respect to a circle/ball ̂B. If we transform ̂K2 into ˜K2 with the mapping
FK1 ◦ F−1

K2
, see Fig. 3.4, the circle/ball ̂B is transformed into an ellipse/ellipsoid

˜B = FK1 ◦ F−1
K2
(̂B). Since the transformations are linear, the element ˜K2 is star-

shaped with respect to the ellipse/ellipsoid ˜B and in particular with respect to the
circle/ball inscribed ˜B.

Next, we address 2. of Remark 3.12 and we bound the aspect ratio. The
radius ρ

˜K2
of the inscribed circle/ball as above is equal to the smallest semi-axis

of the ellipse/ellipsoid ˜B . Let x̃1 and x̃2 be the intersection of ˜B and the inscribed
circle/ball. Thus, we obtain

2ρ
̂K2

= |FK2 ◦ F−1
K1
(̃x1 − x̃2)|

=
∣

∣

∣

∣

αK2Λ
−1/2
K2

U�
K2

1

αK1

UK1Λ
1/2
K1

(̃x1 − x̃2)

∣

∣

∣

∣

= αK2

αK1

∣

∣

∣

∣

Λ
−1/2
K1

(I +ΔK1,K2)−1/2U�
K1

(

RK1,K2
)�

UK1Λ
1/2
K1

(̃x1 − x̃2)

∣

∣

∣

∣

= αK2

αK1

∣

∣

∣

∣

(I +ΔK1,K2)−1/2
(

Λ
−1/2
K1

U�
K1

(

RK1,K2 − I
)�

UK1Λ
1/2
K1

+ I

)

(̃x1 − x̃2)

∣

∣

∣

∣

≤ αK2

αK1

∥

∥

∥(I +ΔK1,K2)−1/2
∥

∥

∥

2

(

‖Λ−1/2
K1

‖2‖RK1,K2 − I‖2‖Λ1/2
K1

‖2 + 1
)

2ρ
˜K2

= αK2

αK1

max
j=1,...,d

{

(1 + δ
K1,K2
j )−1/2

}

(

1 +
(

λK1,1

λK1,d

)1/2
‖RK1,K2 − I‖2

)

2ρ
˜K2

,
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since the spectral norm ‖ · ‖2 is invariant under orthogonal transformations
and, in particular, under rotations like UK1 . With similar arguments, we can
bound h

˜K2
. Therefore, let x̃1, x̃2 ∈ ∂ ˜K2 be such that h

˜K2
= |̃x1 − x̃2| and

x̂i = FK2 ◦ F−1
K1
(̃xi ) ∈ ∂ ̂K2, i = 1, 2. With similar considerations as above, we

obtain

h
˜K2

= |FK1 ◦ F−1
K2
(̂x1 − x̂2)|

≤ αK1

αK2

max
j=1,...,d

{

(1 + δ
K1,K2
j )1/2

}

(

1 +
(

λK1,1

λK1,d

)1/2

‖RK1,K2 − I‖2

)

h
̂K2
.

Exploiting the last two estimates yields

h
˜K2

ρ
˜K2

≤
maxj=1,...,d

√

1 + δ
K1,K2
j

minj=1,...,d

√

1 + δ
K1,K2
j

(

1 +
(

λK1,1

λK1,d

)1/2

‖RK1,K2 − I‖2

)2
h
̂K2

ρ
̂K2

≤
√

1 + cδ

1 − cδ
(1 + cR)

2 h
̂K2

ρ
̂K2

≤
√

1 + cδ

1 − cδ
(1 + cR)

2 σK = σ̃K .

Obviously, the aspect ratio is uniformly bounded from above by a perturbed
regularity parameter σ̃K .

Finally we address 3. of Remark 3.12. Let ˜E be an edge of ˜K2 with endpoints x̃1
and x̃2. Furthermore, let ̂E be the corresponding edge of ̂K2 with endpoints x̂1 and
x̂2. In the penultimate equation we estimated h

˜K2
by a term times h

̂K2
. Due to the

stability it is h
̂K2

≤ cK h
̂E and, as in the estimate of ρ

̂K2
above, we find that

h
̂E = |̂x1 − x̂2| = |FK2 ◦ F−1

K1
(̃x1 − x̃2)|

≤ αK2

αK1

max
j=1,...,d

{

(1 + δ
K1,K2
j )−1/2

}

(

1 +
(

λK1,1

λK1,d

)1/2

‖RK1,K2 − I‖2

)

h
˜E .

Summarizing, we obtain

h
˜K2

≤
√

1 + cδ

1 − cδ
(1 + cR)

2 cK h
˜E = c̃K h

˜E .

��
Remark 3.16 According to the previous proof, the perturbed regularity and stability
parameters are given by

σ̃K =
√

1 + cδ

1 − cδ
(1 + cR)

2 σK and c̃K =
√

1 + cδ

1 − cδ
(1 + cR)

2 cK .
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Proposition 3.17 Let K ∈ Kh be a polytopal element of a regular and stable
anisotropic mesh Kh and F ∈ Fh one of its edges (d = 2) or faces (d = 3).
The mapped patches FK(ωK) and FK(ωF ) consist of regular and stable polytopal
elements.

Proof The mapped patches FK(ωz), z ∈ N (K) consist of regular and stable
polytopal elements according to Lemma 3.15. Since ωK and ωF are given as union
of the neighbourhoodsωz, see (3.2), the statement of the proposition follows. ��
Proposition 3.18 Each node z ∈ Nh of a regular and stable anisotropic mesh Kh

belongs to a uniformly bounded number of elements and, vice versa, each element
K ∈ Kh has a uniformly bounded number of nodes on its boundary.

Proof Let ωz be the neighbourhood of the node z. According to Lemma 3.15, the
mapped neighbourhood ω̃z consists of regular and stable polytopal elements, which
admit a shape-regular decomposition into simplices (triangles or tetrahedra). The
mapped node z̃ therefore belongs to a uniformly bounded number of simplices and
thus to finitely many polytopal elements, cf. Sect. 2.2. Since ω̃z is obtained by a
linear transformation, we follow that z belongs to a uniformly bounded number of
anisotropic elements. With the same argument we see that ˜K and thus K has a
uniformly bounded number of nodes on its boundary. ��
Remark 3.19 In the publications of Apel and Kunert (see e.g. [10, 119]), it is
assumed that neighbouring triangles/tetrahedra behave similarly. More precisely,
they assume:

• The number of tetrahedra containing a node z is bounded uniformly.
• The dimension of adjacent tetrahedra must not change rapidly, i.e.

hi,T ∼ hi,T ′ ∀T , T ′ with T ∩ T ′ = ∅, i = 1, 2, 3,

where h1,T ≥ h2,T ≥ h3,T are the heights of the tetrahedron T over its faces.

The first point is always satisfied in our setting according to the previous proposition.
The second point corresponds to our assumption that ΛK1 and ΛK2 differ moder-
ately for neighbouring elements K1 and K2, see Definition 3.13. The assumption
on UK1 and UK2 in the definition ensure that the heights are aligned in the same
directions, this is also hidden in the assumption of Apel and Kunert.

The regularity of the mapped patches has several consequences, which are
exploited in later proofs.

Lemma 3.20 Let K1,K2 be polytopal elements of a regular and stable anisotropic
mesh Kh, ωz and ωK1 be the neighbourhoods of the node z ∈ Nh and the
element K1, respectively. Furthermore, let K1,K2 ⊂ ωz. We have for the mapped
patch ω̃ ∈ {FK1(ωz),FK1(ωK1)} and the neighbouring elements, that

hω̃ ≤ c and
|K2|
|K1| ≤ c ,
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where the constants only depend on the regularity and stability parameters of the
mesh.

Proof According to Lemma 3.15 and Proposition 3.17 the patch ω̃ consists of
regular and stable polytopal elements. Obviously, it is hω̃ ≤ C max{h

˜K : ˜K ⊂ ω̃},
where the constant takes the value C = 2 for ω̃ = FK1(ωz) and C = 3 for
ω̃ = FK1(ωK1), respectively. Let us assume without loss of generality that the
maximum is reached for ˜K which shares a common edge ˜E with ˜K1. Otherwise
consider a sequence of polytopal elements in ω̃, cf. Lemma 3.1. Due to the regularity
and stability of the elements, it is

hω̃ ≤ 3h
˜K ≤ 3cK h

˜E ≤ 3cK h
˜K1

≤ 3cK σK

(νπ)1/d

according to (3.10), since ˜K1 = FK1(K1) = ̂K1.
In order to prove the second estimate, we observe that |K1| = |̂K1|/| det(AK1)|,

see Lemma 3.10. The same variable transform yields |K2| = |˜K2|/| det(AK1)|,
where ˜K2 = FK1(K2). Thus, we obtain

|K2|
|K1| = |˜K2|

|̂K1| = |˜K2| ≤ |ω̃z| ≤ hdω̃z
≤ c

and finish the proof. ��

3.4.2 Approximation Space

The approximation space Vh is defined in such a way that the functions vh ∈ Vh are
harmonic on each element, cf. (3.3). This property originates from the definition of
basis functions ψ in Sect. 2.3 as local solutions of Laplace and Poisson problems
over the physical elements K ∈ Kh. In classical finite element methods, however,
the basis functions are usually introduced over a reference element. In order to
obtain the approximation space over a general physical element these basis functions
from the reference element are mapped to the physical one. This strategy has not
been addressed so far for polytopal elements due to the lack of an appropriate refer-
ence element. But, in the previous section we introduced a reference configuration ̂K
for an element K . Thus, we can define basis functions ̂ψ on ̂K as in Sect. 2.3 which
are in the lowest order case harmonic and map them onto the physical element K
such that ψ ref = ̂ψ ◦ FK . In general, these functions are not harmonic anymore
on the physical elements, i.e. �ψ ref = 0 in K . More precisely, we obtain by the
transformation (3.8)

div
(

MCov(K)∇ψ ref
)

= 0 in K .
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Hence, ψ ref is defined to fulfil an anisotropic diffusion equation on K . This is
consistent in the sense, that if K is already a reference configuration, i.e. K = ̂K ,
then it is �ψ ref = 0 because of MCov(K) = α2

KI , cf. Lemma 3.10. Thus, nodal
basis functions ψ ref

z constructed this way coincide with the nodal basis function ψz
defined by (2.6) in Sect. 2.3.1.

The approximation space constructed as described above is denoted by V ref
h

since the reference configuration is exploited. For the sake of simplicity we restrict
ourselves here to k = 1 as well as to the two-dimensional case and to the three-
dimensional case with solely triangular faces of the polyhedra. Then, we can also
write

V ref
h =

{

v ∈ H 1(Ω) : div (MCov(K)∇v)
∣

∣

K
= 0 and v|∂K ∈ P1

pw(∂K) ∀K ∈ Kh

}

.

The spaces Vh and V ref
h share two important properties which are used in the

forthcoming proofs, namely

P1(K) ⊂ Vh
∣

∣

K
, P1(K) ⊂ V ref

h

∣

∣

K
and 0 ≤ ψz, ψ

ref
z ≤ 1, (3.12)

where ψz and ψ ref
z denote the corresponding nodal basis functions of Vh and V ref

h ,
respectively.

3.4.3 Anisotropic Trace Inequality and Best Approximation

In this section we transfer some of the results of Sect. 3.2 to the regime of anisotropic
meshes. Here, the mapping (3.8) is employed to transform a regular and stable
anisotropic element K onto its reference configuration ̂K, which is regular and
stable in the sense of Sect. 2.2, see also Remark 3.12.

Lemma 3.21 (Anisotropic Trace Inequality) Let K ∈ Kh be a polytopal element
of a regular and stable anisotropic mesh Kh with edge (d = 2) or face (d = 3)
F ∈ Fh, F ⊂ ∂K . It holds

‖v‖2
L2(F )

≤ c
|F |
|K|

(

‖v‖2
L2(K)

+ ‖A−�
K ∇v‖2

L2(K)

)

,

where the constant c only depends on the regularity and stability parameters of the
mesh.

Proof In order to prove the estimate, we make use of the transformation (3.8) to the
reference configuration ̂K with v̂ = v◦F−1

K , a trace inequality on ̂K , see Lemma 3.3,
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as well as of (3.10), (3.11) and h−d
̂K

≤ |̂K|−1 = 1. These tools yield

‖v‖2
L2(F )

= |F |
|̂F | ‖̂v‖

2
L2(̂F)

≤ c
|F |
|̂F |

(

h−1
̂K

‖̂v‖2
L2(̂K)

+ h
̂K |̂v|2

H 1(̂K)

)

≤ c|F |h−d
̂K

(

‖̂v‖2
L2(̂K)

+ h2
̂K
|̂v|2

H 1(̂K)

)

≤ c|F |
(

‖̂v‖2
L2(̂K)

+ ‖̂∇v̂‖2
L2(̂K)

)

= c
|F |
|K|

(

‖v‖2
L2(K)

+ ‖A−�
K ∇v‖2

L2(K)

)

.

��
Remark 3.22 If we plug in the definition of A = αKΛ

−1/2
K U�

K , we have the
anisotropic trace inequality

‖v‖2
L2(F )

≤ c
|F |
|K|

(

‖v‖2
L2(K)

+ ‖α−1
K Λ

1/2
K U�

K∇v‖2
L2(K)

)

.

Obviously, the derivatives of v in the characteristic directions uK,j are scaled by

the characteristic lengths λ1/2
j , j = 1, . . . , d of the element K . This seems to be

appropriate for functions with anisotropic behaviour which are aligned with the
mesh.

For later comparisons with other methods, we bound the term |F |/|K| in case
of F ⊂ ∂K . Let z

̂K be the midpoint of the circle/ball in Definitions 2.1 and 2.11,
respectively, of the regular and stable reference configuration ̂K . Obviously, it is
|K| ≥ |P | for the d-dimensional pyramid P with base side F and apex point
F−1
K (z

̂K), since P ⊂ K due to the linearity of FK . Denote by hP,F the hight of
this pyramid, then it is |P | = 1

3 |F |hP,F and we obtain

|F |
|K| ≤ ch−1

P,F . (3.13)

In the derivation of approximation estimates, the Poincaré constant also plays a
crucial role on anisotropic meshes. This constant is given in (3.4).

Lemma 3.23 Let Kh be a regular and stable anisotropic mesh, ωz and ωK be
neighbourhoods as described in Sect. 3.1, andK ∈ Kh with K ⊂ ωz. The Poincaré
constants CP (ω̃z) and CP (ω̃K) for the mapped patches ω̃z = FK(ωz) as well as
ω̃K = FK(ωK), can be bounded uniformly depending only on the regularity and
stability parameters of the mesh.
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Proof According to Lemma 3.15 and Proposition 3.17, the patches ω̃z and ω̃K
consist of regular and stable polytopal elements. Thus, we utilize Lemma 3.5 on
the mapped patches and the statement follows. ��

Next, we derive a best approximation result on patches of anisotropic elements.

Lemma 3.24 Let Kh be a regular and stable anisotropic mesh with node z ∈ Nh

and element K ∈ Kh. Furthermore, let ωz and ωK be the neighbourhood of z
andK , respectively, and we assume K ⊂ ωz. For ω ∈ {ωz, ωK } it holds

‖v −Πωv‖L2(ω) ≤ c ‖A−�
K ∇v‖L2(ω) ,

and furthermore

‖v −Πωv‖L2(ω) ≤ c

⎛

⎝

∑

K ′∈Kh:K ′⊂ω
‖A−�

K ′ ∇v‖2
L2(K ′)

⎞

⎠

1/2

,

where the constant c only depends on the regularity and stability parameters of the
mesh.

Proof We make use of the mapping (3.8) and indicate the objects on the mapped
geometry with a tilde, e.g., ω̃ = FK(ω). Furthermore, we exploited that the mapped
L2-projection coincides with the L2-projection on the mapped patch, consequently
˜Πωv = Πω̃ṽ. This yields together with Lemma 3.23

‖v −Πωv‖L2(ω) = |K|1/2 ‖̃v −Πω̃ṽ‖L2(ω̃)

≤ chω̃|K|1/2 |̃v|H 1(ω̃)

= chω̃|K|1/2 ‖˜∇ṽ‖L2(ω̃)

= chω̃ ‖A−�
K ∇v‖L2(ω) .

The term hω̃ is uniformly bounded according to Lemma 3.20, and thus the first
estimate is proven.

In order to prove the second estimate, we employ the first one and write

‖v −Πωv‖2
L2(ω)

≤ c ‖A−�
K ∇v‖2

L2(ω)
= c

∑

K ′∈Kh:K ′⊂ω
‖A−�

K ∇v‖2
L2(K ′) .

Therefore, it remains to estimate ‖A−�
K ∇v‖L2(K ′) by ‖A−�

K ′ ∇v‖L2(K ′) for any ele-
mentK ′ ⊂ ω. We make use of the mesh regularity and stability, see Definition 3.13,
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and proceed similar as in the proof of Lemma 3.15.

‖A−�
K ∇v‖L2(K ′) = αK ′

αK
‖α−1

K ′ ((I +ΔK ′,K)ΛK ′)1/2(RK ′,KUK ′)�∇v‖L2(K ′)

= αK ′

αK
‖α−1

K ′ (I +ΔK ′,K)1/2Λ
1/2
K ′ U�

K ′(RK ′,K)�∇v‖L2(K ′)

= αK ′

αK
‖α−1

K ′ (I +ΔK ′,K)1/2Λ
1/2
K ′ U�

K ′(RK ′,K)�UK ′Λ−1/2
K ′ Λ

1/2
K ′ U�

K ′∇v‖L2(K ′)

≤ αK ′

αK
‖(I + ΔK ′,K)1/2Λ

1/2
K ′ U�

K ′(RK ′,K)�UK ′Λ−1/2
K ′ ‖2‖A−�

K ′ ∇v‖L2(K ′) ,

where we substituted A−�
K = α−1

K ′ Λ
1/2
K ′ U�

K ′ . Finally, we have to bound the ratio
αK ′/αK and the matrix norm. According to the choice (3.9) and Lemma 3.20, it is

(

αK ′

αK

)2

=
|K|
√

∏d
j=1 λK ′,j

|K ′|
√

∏d
j=1 λK,j

=
|K|
√

∏d
j=1(1 + δ

K,K ′
j )λK,j

|K ′|
√

∏d
j=1 λK,j

≤ (1 + cδ)
d/2 |K|

|K ′| ≤ c ,

and for the matrix norm, we have

‖(I +ΔK ′,K)1/2Λ
1/2
K ′ U�

K ′(RK ′,K)�UK ′Λ−1/2
K ′ ‖2

≤ ‖(I +ΔK ′,K)1/2‖2‖Λ1/2
K ′ U�

K ′(RK ′,K − I)�UK ′Λ−1/2
K ′ + I‖2

≤ √1 + cδ(1 + cR) ,

that finishes the proof. ��
Remark 3.25 In the previous proof, we have seen in particular that for neighbouring
elements K,K ′ ⊂ ωK , it is

‖A−�
K ∇v‖L2(K ′) ≤ c ‖A−�

K ′ ∇v‖L2(K ′)

with a constant depending only on the regularity and stability of the mesh.

3.4.4 Quasi-Interpolation of Anisotropic Non-smooth
Functions

In this section, we consider the quasi-interpolation operators from Sect. 3.3 on
anisotropic polygonal and polyhedral meshes. The analysis relies on the mapping to
the reference configuration of regular and stable anisotropic polytopal elements as
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in [181]. Earlier results for quasi-interpolation operators on anisotropic simplicial
meshes can be found in [10, 79, 119], for example. Some comparisons are also
drawn in the following.

The general form of the Clément and to Scott–Zhang operator is given in (3.6)
for v ∈ H 1(Ω), namely

Iv =
∑

z∈N∗
(Πω(ψz)v)ψz ∈ Vh ,

where the set of nodes N∗ and the neighbourhoods ω(ψz) are chosen accordingly.
We point out, that the results of this section stay valid if we replace the basis
functions ψz by ψ ref

z , which have been discussed in Sect. 3.4.2. In this case the
quasi-interpolation operator maps into the approximation space defined with the
help of the reference configurations, i.e. I : H 1(Ω) → V ref

h . In the forthcoming
proofs, we only employ the properties (3.12) which are shared by Vh and V ref

h .

3.4.4.1 Clément-Type Interpolation

The Clément interpolation operator IC is defined by (3.6) with N∗ = Nh \ Nh,D

and ω(ψz) = ωz, see Sect. 3.3.1 for details. For v ∈ H 1
D(Ω), it is ICv ∈ H 1

D(Ω)

by construction.

Theorem 3.26 Let Kh be a regular and stable anisotropic mesh and K ∈ Kh.
The Clément interpolation operator satisfies for v ∈ H 1

D(Ω) the interpolation error
estimate

‖v − ICv‖L2(K) ≤ c ‖A−�
K ∇v‖L2(ωK) ,

and for an edge/face F ∈ F (K) \ Fh,D

‖v − ICv‖L2(F ) ≤ c
|F |1/2

|K|1/2 ‖A−�
K ∇v‖L2(ωF ) ,

where the constants c only depend on the regularity and stability parameters of the
mesh.

Proof We can follow classical arguments as for isotropic meshes, cf. Theorem 3.7.
The main ingredients are the observation that the basis functions ψz form a
partition of unity on K, and that they are bounded by one. Furthermore, anisotropic
approximation estimates, see Lemma 3.24, the anisotropic trace inequality in
Lemmata 3.21 and 3.20 and Remark 3.25 are employed. We only sketch the proof
of the second estimate.

The partition of unity property is used, which also holds on each edge/face F ,
i.e.
∑

z∈N (F ) ψz = 1 on F . We distinguish two cases, first let N (F )∩Nh,D = ∅.
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With the help of Lemmata 3.21 and 3.24, we obtain

‖v − ICv‖L2(F ) =
∑

z∈N (F )

‖ψz(v −Πωzv)‖L2(F ) ≤
∑

z∈N (F )

‖v −Πωzv‖L2(F )

≤ c
∑

z∈N (F )

|F |1/2

|K|1/2

(

‖v −Πωzv‖2
L2(K)

+ ‖A−�
K ∇v‖2

L2(K)

)1/2

≤ c
∑

z∈N (F )

|F |1/2

|K|1/2
‖A−�

K ∇v‖L2(ωz).

For the second case with N (F ) ∩ Nh,D = ∅, we find

‖v − ICv‖L2(F ) ≤
∑

z∈N (F )

‖ψz(v −Πωzv)‖L2(F ) +
∑

z∈N (F )∩Nh,D

‖ψzΠωzv‖L2(F ) .

(3.14)

The first sum has already been estimated, thus we consider the term in the second
sum. For z ∈ N (F ) ∩ Nh,D , i.e. z ∈ Γ D , there is an element K ′ ⊂ ωz and an
edge/face F ′ ∈ F (K ′) such that z ∈ N (F ′) and F ′ ∈ Fh,D . Since v vanishes on
F ′, Lemmata 3.21 and 3.24 as well as Remark 3.25 yield

|Πωzv| = |F ′|−1/2 ‖v − Πωzv‖L2(F ′) ≤ c |K ′|−1/2 ‖A−�
K ∇v‖L2(ωz) .

Because |K ′|/|K| is uniformly bounded according to Lemma 3.20, we obtain

‖ψzΠωzv‖L2(F ) ≤ |Πωzv| ‖ψz‖L∞(F ) |F |1/2 ≤ c
|F |1/2

|K|1/2
‖A−�

K ∇v‖L2(ωz) .

Finally, since the number of nodes per element is uniformly bounded according to
Proposition 3.18, this estimate as well as the one derived in the first case applied
to (3.14) yield the second interpolation error estimate in the theorem. ��
Remark 3.27 In the case of an isotropic polytopal element K with edge/face F it is

λ1 ≈ . . . ≈ λd ∼ h2
K , and thus αK ∼ 1 .

Therefore, we obtain from Theorem 3.26 with A−�
K = α−1

K Λ
1/2
K U�

K that

‖v − ICv‖L2(K) ≤ chK ‖U�
K∇v‖L2(ωK) = chK |v|H 1(ωK )

,

and

‖v − ICv‖L2(F ) ≤ c
hK |F |1/2

|K|1/2 ‖U�
K∇v‖L2(ωF ) ≤ ch

1/2
F |v|H 1(ωF )

,
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since |F | ≤ hd−1
F as well as |K| ≥ chdK and hK ≤ chF in consequence of

the regularity and stability, cf. Remark 3.12. Obviously, we recover the classical
interpolation error estimates for the Clément interpolation operator, cf. Theorem 3.7.

In the following, we rewrite our results in order to compare them with
the work of Formaggia and Perotto [79]. It is A−�

K = α−1
K Λ

1/2
K U�

K with
UK = (uK,1, . . . ,uK,d). Thus, we observe

‖A−�
K ∇v‖2

L2(ωK)
= α−2

K

d
∑

j=1

λK,j ‖uK,j · ∇v‖2
L2(ωK)

,

and since uK,j · ∇v : Rd → R, we obtain

‖uK,j · ∇v‖2
L2(ωK)

=
∑

K ′⊂ωK

∫

K ′
u�
K,j∇v(∇v)�uK,j dx = u�

K,j GK(v) uK,j

with

GK(v) =
∑

K ′⊂ωK

(∫

K ′
∂v

∂xi

∂v

∂xj
dx
)d

i,j=1
∈ R

d×d , x = (x1, . . . , xd)
� .

Therefore, we can deduce from Theorem 3.26 an equivalent formulation.

Proposition 3.28 Let Kh be a regular and stable anisotropic mesh and K ∈ Kh.
The Clément interpolation operator satisfies for v ∈ H 1

D(Ω) the interpolation error
estimate

‖v − ICv‖L2(K) ≤ c α−1
K

⎛

⎝

d
∑

j=1

λK,j u�
K,j GK(v) uK,j

⎞

⎠

1/2

,

and for an edge/face F ∈ F (K) \ Fh,D

‖v − ICv‖L2(F ) ≤ c α−1
K

|F |1/2

|K|1/2

⎛

⎝

d
∑

j=1

λK,j u�
K,j GK(v) uK,j

⎞

⎠

1/2

,

where the constant c only depends on the regularity and stability parameters of the
mesh.

Now we are ready to compare the interpolation error estimates with the ones
derived by Formaggia and Perotto. These authors considered the case of anisotropic
triangular meshes in two-dimensions, i.e. d = 2. The inequalities in Proposi-
tion 3.28 correspond to the derived estimates (2.12) and (2.15) in [79] but they are
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valid on much more general meshes. When comparing these estimates to the results
of Formaggia and Perotto, one has to take care on the powers of the lambdas. The
triangular elements in their works are scaled with λi,K , i = 1, 2 in the characteristic

directions whereas the scaling in this section is λ1/2
K,i , i = 1, 2.

Obviously, the first inequality of the previous proposition corresponds to the
derived estimate (2.12) in [79] up to the scaling factor α−1

K . However, for convex
elements the assumption

αK ∼ 1 , i.e., |K| ∼ √λK,1λK,2 ,

seems to be convenient, since this means that the area |K| of the element is
proportional to the area π

√

λK,1
√

λK,2 of the inscribed ellipse, which is given by
the scaled characteristic directions of the element.

In order to recognize the relation of the second inequality under these assump-
tions, we estimate the term |F |/|K| by (3.13) and by applying hP,F ≥ λ

1/2
K,2. This

yields

‖v − ICv‖L2(F ) ≤ c

⎛

⎝

1

λ
1/2
K,2

⎞

⎠

1/2
(

λK,1 u
�
K,1 GK(v) uK,1 + λK,2 u

�
K,2 GK(v) uK,2

)1/2
,

and shows the correspondence to [79], since hK and λ1,K are proportional in the
referred work.

3.4.4.2 Scott–Zhang-Type Interpolation

The Scott–Zhang interpolation operator ISZ : H 1(Ω) → Vh is defined by (3.6)
with N∗ = N and ω(ψz) = Fz, where Fz ∈ Fh is an edge (d = 2) or face (d = 3)
with z ∈ F z and

Fz ⊂ ΓD if z ∈ Γ D and Fz ⊂ Ω ∪ ΓN if z ∈ Ω ∪ ΓN .

By construction, it is ISZv ∈ H 1
D(Ω) for v ∈ H 1

D(Ω), such that homoge-
neous Dirichlet data is preserved. We have the following local stability result on
anisotropic meshes.

Lemma 3.29 Let Kh be a regular and stable anisotropic mesh and K ∈ Kh. The
Scott–Zhang interpolation operator satisfies for v ∈ H 1(Ω) the local stability

‖ISZv‖L2(K) ≤ c
(

‖v‖L2(ωK) + ‖A−�
K ∇v‖L2(ωK)

)

,

where the constant c only depends on the regularity and stability parameters of the
mesh.
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Proof The proof is analog to the isotropic version in Lemma 3.8. The difference
is that the anisotropic trace inequality Lemmata 3.21 and 3.20, Remark 3.25 and
Proposition 3.18 are used. For details see [181]. ��
Theorem 3.30 LetKh be a regular and stable anisotropic mesh andK ∈ Kh. The
Scott–Zhang interpolation operator satisfies for v ∈ H 1(Ω) the interpolation error
estimate

‖v − ISZv‖L2(K) ≤ ‖A−�
K ∇v‖L2(ωK) ,

where the constant c only depends on the regularity and stability parameters of the
mesh.

Proof For p = ΠωKv ∈ R it is obviously p = ISZp and ∇p = 0. The estimate in
the theorem follows by Lemma 3.29 and the application of Lemma 3.24, since

‖v − ISZv‖L2(K) ≤ ‖v − p‖L2(K) + ‖ISZ(v − p)‖L2(K)

≤ c
(

‖v − p‖L2(ωK) + ‖A−�
K ∇v‖L2(ωK )

)

≤ c ‖A−�
K ∇v‖L2(ωK ) .

��

3.4.5 Interpolation of Anisotropic Smooth Functions

In the previous section, we considered quasi-interpolation of functions in H 1(Ω).
However, we may also address classical interpolation employing point evaluations
in the case that the function to be interpolated is sufficiently regular as in Sect. 2.4.
This is possible for functions in H 2(Ω). In the following, we consider the pointwise
interpolation of lowest order with k = 1 into the approximation space V ref

h on
anisotropic meshes. V ref

h has been discussed in Sect. 3.4.2 and its basis functions
ψ ref
z are constructed such that ̂ψ ref

z coincide on the reference configuration ̂K with
the usual harmonic basis functions from Sect. 2.3. The interpolation operator is
given as

Ihv =
∑

z∈Nh

v(z) ψ ref
z ∈ V ref

h (3.15)

for v ∈ H 2(Ω), on anisotropic meshes. In the analysis, it is sufficient to study the
restriction of Ih : H 2(Ω) → V ref

h onto a single element K ∈ Kh and we denote
this restriction by the same symbol

Ih : H 2(K) → V ref
h |K .
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Furthermore, we make use of the mapping to and from the reference configuration,
cf. (3.8). As earlier, we mark the operators and functions defined over the reference
configuration by a hat, as, for instance, v̂ = v ◦ F−1

K : ̂K → K . We have already

used ∇v = αKUKΛ
−1/2
K

̂∇v̂, and by employing some calculus we find

̂H(̂v) = α−2
K Λ

1/2
K U�

KH(v)UKΛ
1/2
K , (3.16)

where H(v) denotes the Hessian matrix of v ∈ H 2(Ω) and ̂H(̂v) the corresponding
Hessian on the reference configuration. Additionally, we observe the relation
between the interpolation Ihv transferred to the reference configuration ̂K and the
interpolation̂Ihv̂ defined directly on ̂K . Namely, it is

̂Ihv =̂Ihv̂ , (3.17)

since only function evaluations in the nodes are involved and the mapped basis
functions coincide with the basis functions defined directly on ̂K , see Sect. 3.4.2.
Furthermore, the interpolation ̂Ih coincides with the pointwise interpolation in
Sect. 2.4 since the functions ̂ψ ref

z are harmonic. Thus, we can apply known results
for the interpolation error on the reference configuration.

First, we consider the scaling of the H 1-seminorm when K is mapped to ̂K .

Lemma 3.31 Let K ∈ Kh be a polytopal element of a regular and stable
anisotropic meshKh. For v ∈ H 1(K), it is

√

∏d
j=2 λK,j

λK,1
|̂v|2

H 1(̂K)
≤ |v|2

H 1(K)
≤
√

√

√

√

∏d−1
j=1 λK,j

λK,d
|̂v|2

H 1(̂K)
.

Proof Applying the transformation to the reference configuration yields

|v|2
H 1(K)

= ‖∇v‖2
L2(K)

= |K| ‖αKUKΛ
−1/2
K

̂∇v̂‖2
L2(̂K)

= |K|α2
K ‖Λ−1/2

K
̂∇v̂‖2

L2(̂K)
= |K|α2

K

d
∑

j=1

λ−1
K,j

∥

∥

∥

∥

∂v̂

∂x̂j

∥

∥

∥

∥

2

L2(̂K)

.

Since λK,1 ≥ . . . ≥ λK,d , we obtain

|K|α2
K

λK,1
|̂v|2

H 1(̂K)
≤ |v|2

H 1(K)
≤ |K|α2

K

λK,d
|̂v|2

H 1(̂K)
.

Due to the choice (3.9) for αK , it is |K|α2
K =

√

∏d
j=1 λK,j , that completes the

proof. ��
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Next, we address the interpolation error. Therefore, we use the convention that
H 0(K) = L2(K).

Theorem 3.32 Let K ∈ Kh be a polytopal element of a regular and stable
anisotropic meshKh. For v ∈ H 2(Ω), it is

|v − Ihv|2H�(K)
≤ cα−4

K S�(K)

d
∑

i,j=1

λK,iλK,jLK(uK,i,uK,j ; v)

with

S�(K) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, for � = 0,

1

|K|

√

√

√

√

∏d−1
j=1 λK,j

λK,d
, for � = 1,

where

LK(uK,i,uK,j ; v) =
∫

K

(

u�
K,iH(v)uK,j

)2
dx for i, j = 1, . . . , d .

and the constant c only depends on the regularity and stability parameters of the
mesh.

Proof Property (3.17) together with the scaling to the reference configuration and
Lemma 3.31 as well as (3.10) yield for � = 0, 1

|v − Ihv|2H�(K)
≤ |K| S�(K) |̂v −̂Ihv̂|2H�(̂K)

≤ ch
2(2−�)
̂K

|K| S�(K) |̂v|2
H 2(̂K)

≤ c|K| S�(K) |̂v|2
H 2(̂K)

,

where the interpolation estimate in Theorem 2.27 has been applied on ̂K. Next, we
transform the H 2-semi-norm back to the element K . Employing the mapping and
the relation (3.16) gives

|̂v|2
H 2(̂K)

=
∫

̂K

‖̂H(̂v)‖2
F d̂x

= α−4
K

|K|
∫

K

‖Λ1/2
K U�

KH(v)UKΛ
1/2
K ‖2

F dx ,
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where ‖ · ‖F denotes the Frobenius norm of a matrix. A small exercise yields

‖Λ1/2
K U�

KH(v)UKΛ
1/2
K ‖2

F =
d
∑

i,j=1

λK,iλK,j

(

u�
K,iH(v)uK,j

)2
,

and consequently

|̂v|2
H 2(̂K)

= α−4
K

|K|
d
∑

i,j=1

λK,iλK,jLK(uK,i,uK,j ; v) .

Combining the derived results yields the desired estimates. ��
For the comparison with the work of Formaggia and Perotto developed in two-

dimensions, we remember that their lambdas behave like λi,K ∼ √

λK,i , i = 1, 2.
Employing the assumption αK ∼ 1 raised in the comparison of Sect. 3.3.1, we find

√

λK,1/λK,2

|K| ∼ 1

λK,2
.

Therefore, we recognize that the estimates in Theorem 3.32 match the results of
Lemma 2 in [79], but on much more general meshes.

3.4.6 Numerical Assessment of Anisotropic Meshes

In the introduction of Sect. 3.4, we already mentioned that polygonal and polyhedral
meshes are much more flexible in meshing than classical finite element shapes. This
is in particular true for the generation of anisotropic meshes. In this section we give
a first numerical assessment on polytopal anisotropic mesh refinement. We propose
a bisection approach that does not rely on any initially prescribed direction and
which is applicable in two- and three-dimensions. Classical bisection approaches
for triangular and tetrahedral meshes do not share this versatility and they have to
be combined with additional strategies like edge swapping, node removal and local
node movement, see [152].

Starting from the local interpolation error estimate in Theorem 3.26, we obtain
the global version

‖v − ICv‖L2(Ω) ≤ c

⎛

⎝

∑

K∈Kh

‖A−�
K ∇v‖2

L2(K)

⎞

⎠

1/2
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by exploiting Remark 3.25 and Proposition 3.18. As in the derivation of Proposi-
tion 3.28, we easily see that

η =
√

∑

K∈Kh

η2
K with η2

K = α−2
K

d
∑

j=1

λK,j u�
K,j G

∗
K(v) uK,j

and

G∗
K(v) =

(∫

K

∂v

∂xi

∂v

∂xj
dx
)d

i,j=1
∈ R

d×d , x = (x1, . . . , xd)
�

is a good error measure and the local values ηK may serve as error indicators
over the polytopal elements. This estimate also remains meaningful on isotropic
polytopal meshes, cf. Remark 3.27. In the case that v ∈ H 1(Ω) and its derivatives
are known, we can thus apply the following adaptive mesh refinement algorithm:

1. Let K0 be a given initial mesh and � = 0.
2. Compute the error indicators ηK and η with the knowledge of the exact function v

and its derivatives.
3. Mark all elements K for refinement which satisfy ηK > 0.95η/

√|K�|, where
|K�| is the number of elements in the current mesh.

4. Refine the marked elements as described below in order to obtain a refined mesh
K�+1.

5. Go to 2.

In step 3, we have chosen a equidistribution strategy which marks all elements for
refinement whose error indicator is larger than the mean value. The factor 0.95 has
been chosen for stabilizing reasons in the computations when the error is almost
uniformly distributed. For the refinement in step 4, we have a closer look at the first
term in the sum of ηK , which reads

λK,1
u�
K,1 G

∗
K(v) uK,1

u�
K,1 uK,1

,

because of |uK,1| = 1. Since λK,1 � λK,d for anisotropic elements, the refinement
process should try to minimize the quotient such that the whole term does not
dominate the error over K . Obviously, we are dealing here with the Rayleigh
quotient, which is minimal if uK,1 is the eigenvector to the smallest eigenvalue of
G∗
K(v). As consequence, the longest stretching of the polytopal element K should

be aligned with the direction of this eigenvector. In order to achieve the correct
alignment for the next refined mesh, we may bisect the polytopal element orthogonal



100 3 Interpolation of Non-smooth Functions and Anisotropic Polytopal Meshes

to the eigenvector which belongs to the largest eigenvalue of G∗
K(v). Thus, we

propose the following refinement strategies:

ISOTROPIC The elements are bisected as introduced in Sect. 2.2.3, i.e., they are
split orthogonal to the eigenvector corresponding to the largest eigenvalue of
MCov(K).

ANISOTROPIC In order to respect the anisotropic nature of v, we split the
elements orthogonal to the eigenvector corresponding to the largest eigenvalue
of G∗

K(v).

Both refinement strategies do not guaranty the regularity of the meshes since there
is no control on the edge lengths due to the naive bisection. This might be imposed
additionally in the realization, but the approach also works well in the forthcoming
tests without this extra control.

For the numerical experiments we consider Ω = (0, 1)2 and the function

v(x1, x2) = tanh(60x2)− tanh(60(x1 − x2)− 30) , (3.18)

taken from [109], which has two sharp layers: one along the x1-axis and one along
the line given by x2 = x1 − 1/2. The function as well as the initial mesh is depicted
in Fig. 3.5. We apply the BEM-based FEM as usual, although the local BEM solver
is not tailored for the anisotropic elements. For the details on the realization see
Chap. 4.

Test 1: Mesh Refinement
In the first test we generate several sequences of polygonal meshes starting from
an initial grid, see Fig. 3.5 right. These meshes contain naturally hanging nodes and
their element shapes are quite general. First, the initial mesh is refined uniformly,

Fig. 3.5 Visualization of function with anisotropic behaviour (left) and initial mesh (right)
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Fig. 3.6 Mesh after six uniform refinement steps using the ISOTROPIC strategy and zoom-in

i.e., all elements of the discretization are bisected in each refinement step. Here, the
ISOTROPIC strategy is performed for the bisection. The mesh after six refinements
as well as a zoom-in is depicted in Fig. 3.6. The uniform refinement clearly generates
a lot of elements in regions where the function (3.18) is flat and where only a few
elements would be sufficient for the approximation.

Next, we perform the adaptive refinement algorithm as described above for the
different bisection strategies. The generated meshes after 6 refinement steps are
visualized in Figs. 3.7 and 3.8 together with a zoom-in of the region where the two
layers of the function (3.18) meet. Both strategies detect the layers and adapt the
refinement to the underlying function. The adaptive strategies clearly outperform
the uniform refinement with respect to the number of nodes which are needed to
resolve the layers. Whereas the ISOTROPIC strategy in Fig. 3.7 keeps the aspect
ratio of the polygonal elements bounded, the ANISOTROPIC bisection produces
highly anisotropic elements, see Fig. 3.8. These anisotropic elements coincide with
the layers of the function very well.

Finally, we compare the error measure η for the different strategies. This value
is given with respect to the number of degrees of freedom, which coincides with
the number of nodes, in a double logarithmic plot in Fig. 3.9. The error measure
decreases most rapidly for the ANISOTROPIC strategy and consequently these
meshes are most appropriate for the approximation of the function (3.18). The
convergence order for η has not been studied analytically, however, we observe
faster decrease for the ANISOTROPIC refinement in this test for the considered
range. This behaviour might result from a pre-asymptotic regime. A slope of 1/2
for d = 2 corresponds to linear convergence in finite element analysis.
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Fig. 3.7 Mesh after six adaptive refinement steps for the ISOTROPIC strategy and zoom-in
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Fig. 3.8 Mesh after six adaptive refinement steps for the ANISOTROPIC strategy and zoom-in

Test 2: Mesh Properties
We analyse the meshes more carefully. For this purpose we pick the 13th mesh
of the sequence generated with the ISOTROPIC and the ANISOTROPIC adaptive
refinement strategy. In Sect. 3.4.1, we have introduced the ratio λK,1/λK,2 for the
characterisation of the anisotropy of an element. In Fig. 3.10, we give this ratio
with respect to the element ids for the two chosen meshes. For the ISOTROPIC
refined mesh the ratio is clearly bounded by 10 and therefore the mesh consists of
isotropic elements according to our characterisation. In the ANISOTROPIC refined
mesh, however, the ratio varies in a large interval. The mesh consists of several
isotropic elements, but there are mainly anisotropic polygons. The ratio of the most
anisotropic elements exceeds 105 in this example.
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Fig. 3.9 Convergence graph
of the anisotropic error
measure η with respect to the
number of degrees of
freedom for the different
refinement strategies
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Fig. 3.10 Quotient
λK,1/λK,2 for all elements in
the 13th mesh of the sequence
with ISOTROPIC and
ANISOTROPIC adaptive
refinement

100

101

102

103

104

105

106

0 200 400 600 800 1000 1200 1400 1600 1800

K
,1
/

K
,2

element id

ISOTROPIC
ANISOTROPIC

Next we address the scaling parameter αK in these meshes. In the comparison of
the derived estimates with those of Formaggia and Perotto [79], it has been assumed
that αK ∼ 1. In Fig. 3.11, we present a histogram for the distribution of αK in
the two selected meshes. As expected the values stay bounded for the ISOTROPIC
refined mesh. Furthermore, αK stays in the same range for the ANISOTROPIC
refinement. In our example, all values lie in the interval (0.28, 0.32) although we
are dealing with elements of quite different aspect ratios, cf. Fig. 3.10.

Test 3: Interpolation Error
In the final test we apply the pointwise interpolation into the space Vh to the
function (3.18) over the meshes generated in this section. The convergence of the
interpolation is studied numerically for the different sequences. We consider the
interpolation error in the L2-norm. In Fig. 3.12, we give ‖v − Ihv‖L2(Ω) with
respect to the number of degrees of freedom in a double logarithmic plot, where
Ih : H 2(Ω) → Vh is defined as in Sect. 2.4. Since v ∈ H 2(Ω) in this experiment,
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Fig. 3.11 Histogram for the
distribution of αK for the
13th mesh in the sequence
with ISOTROPIC and
ANISOTROPIC adaptive
refinement
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Fig. 3.12 Convergence graph
of the L2-error of pointwise
interpolation with respect to
the number of degrees of
freedom for the different
refinement strategies
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we expect quadratic convergence with respect to the mesh size on the sequence of
uniformly refined meshes. This convergence rate corresponds to a slope of one in the
double logarithmic plot in two-dimensions. In Fig. 3.12, we observe that the uniform
refinement reaches indeed quadratic convergence after a pre-asymptotic regime.
The optimal rate of convergence is achieved as soon as the layers are resolved
in the mesh. On the adaptively generated meshes, however, the interpolation error
converges with optimal rates from the beginning. We can even recognize in Fig. 3.12
that the ANISOTROPIC refined meshes outperform the others. The layers are
captured within a few refinement steps. Therefore, the error reduces faster than for
the ISOTROPIC refined meshes before it reaches the optimal convergence rate.
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Let us compare the seventh meshes in the sequences which are obtained after six
refinements and which are visualized in Figs. 3.6, 3.7, and 3.8. For the uniformly
refined mesh we have 2709 nodes and it is ‖v − Ihv‖L2(Ω) ≈ 3.17 × 10−2.
The adaptively refined mesh using ISOTROPIC bisection contains only 363 nodes
but yields a comparable error ‖v − Ihv‖L2(Ω) ≈ 3.49 × 10−2. The most
accurate approximation is achieved on the ANISOTROPIC refined mesh with
‖v − Ihv‖L2(Ω) ≈ 2.04 × 10−2 and only 189 nodes. A comparable interpolation
error to the other refinement strategies is obtained on the fifth mesh of the sequence
of ANISOTROPIC refined meshes. This mesh consists of 108 nodes only.



Chapter 4
Boundary Integral Equations and Their
Approximations

The local problems in the definition of basis functions for the BEM-based FEM
are treated by means of boundary integral equations. This chapter gives a short
introduction into this topic with a special emphasis on its application in the BEM-
based FEM. Therefore, the boundary integral operators for the Laplace problem
are reviewed in two- and three-dimensions and corresponding boundary integral
equations are derived. Their discretization is realized by a Galerkin boundary
element method, which is used in the numerical examples and tests throughout
the book. However, we also give an alternative approach for the discretization of
boundary integral equations that relies on the Nyström method. The application of
these approaches as local solvers for the BEM-based FEM is discussed in details
and some comparisons highlighting advantageous and disadvantageous of these two
solvers are given.

4.1 Preliminaries

Boundary element methods (BEM) are alternative approaches to finite element
methods for the approximation of boundary value problems. They play an important
role in modern numerical computations in the applied and engineering sciences.
These methods rely on equivalent boundary integral equations of the corresponding
boundary value problems, which are known in many cases. The key ingredient is
the knowledge of a fundamental solution of the differential operator. Although the
existence of such functions can be guarantied for a wide class of partial differential
equations, see [100], the explicit construction is a more difficult task. However, the
fundamental solution is known for important operators with constant coefficients
such as for the Laplace and Helmholtz operators as well as for the system of
elasticity and for Stokes equations, for instance. These include the most important
applications of the boundary element methods. The advantage of the BEM over the
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FEM is that the d-dimensional problems are reduced to d − 1-dimensional ones on
the boundary of the underlying domain. Furthermore, due to the formulation on the
boundary, the BEM is naturally applicable for unbounded exterior domains, which
are of particular interest in scattering problems, for example. When discretizing
a boundary integral equation, we generally speak about a boundary element
method. But, if it is referred to BEM in this book, we usually mean a Galerkin
approach for the approximation of the boundary integral equation as described in
Sect. 4.3. The Galerkin methods perfectly fit to the variational formulation of these
integral equations. Their theoretical study is complete and provides a powerful
tool for the analysis. In the engineering community, collocation methods are often
preferred because of their easier practical implementation. However, the stability
and convergence theory for these methods is only available for two-dimensional
problems. Alternatively, a Nyström discretization of the boundary integral equation
can be chosen, where the integrals of the operators are replaced by appropriate
quadrature formulas. This strategy is discussed in Sect. 4.4. For more details on
the theory of integral and in particular boundary integral equations we refer to the
literature [13, 61, 105, 107, 118, 127, 128]. Galerkin boundary element methods
are studied and discussed in [151, 158, 159] for elliptic differential operators. The
collocation and Nyström approaches can be found beside others in [13, 118] and we
especially mention [117, 133] for the Nyström discretizations.

In the following presentation, we restrict ourselves to the pure Laplace problem

−�u = 0 in K , u = g on ∂K (4.1)

with Dirichlet boundary conditions on a bounded polytopal domain K in two-
and three-dimensions. Note that K will be a polytopal element and g a piecewise
polynomial function in our application later on. This problem setting is sufficient
for the approximation in the BEM-based FEM as seen in Sect. 4.5. The approach
is also applicable to the before mentioned differential operators and in particular
to convection-diffusion-reaction problems. Furthermore, other types of boundary
conditions can be incorporated when needed, for instance, in Neumann or mixed
boundary value problems. Some of the possible modifications are discussed in
Chap. 6.

4.2 Boundary Integral Formulations

Let K ⊂ R
d , d = 2, 3 be a bounded open domain with polygonal or polyhedral

boundary, and we consider the boundary value problem (4.1) with some given
function g ∈ H 1/2(∂K). For the following theory of boundary integral formulations,
we need the usual trace operator γK0 . For sufficiently smooth functions, it is given
as restriction of the function to the boundary. For Lipschitz domains, and thus
in particular for polytopal domains, the trace is a bounded linear operator with
γK0 : Hs(K) → Hs−1/2(∂K) for 1/2 < s ≤ 1 and it has a continuous right inverse.
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Here, the superscript indicates that the trace is taken with respect to the domain K .
Let v ∈ H 1(K) with �v in the dual of H 1(K). Due to Green’s first identity [128],
there exists a unique function γK1 v ∈ H−1/2(∂K) such that

∫

K

∇v(y) · ∇w(y) dy =
∫

∂K

γK1 v(y)γ K0 w(y) dsy −
∫

K

w(y)�v(y) dy (4.2)

for w ∈ H 1(K). We call γK1 v the conormal derivative of v. If v is sufficiently
smooth, e.g. v ∈ H 2(K), we have

(γ K1 v)(x) = nK(x) · (γ K0 ∇v)(x) for x ∈ ∂K ,

where nK(x) denotes the outer normal vector of the domain K at x. The trace and
the conormal derivative are also called Dirichlet and Neumann trace for the Laplace
equation. Additionally, we make use of the fundamental solution of the Laplacian.
This singular function is given as

U∗(x, y) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

− 1

2π
ln |x − y| for x, y ∈ R

2 ,

1

4π |x − y| for x, y ∈ R
3 .

The fundamental solution satisfies the equation

−�yU
∗(x, y) = δ0(y − x)

in the distributional sense, where δ0 is the Dirac delta distribution. If we substitute
v(y) = U∗(x, y) in Green’s second identity

∫

K

(v(y)�u(y)− u(y)�v(y)) dy =
∫

∂K

(

γK0 v(y)γ K1 u(y)− γK0 u(y)γ K1 v(y)
)

dsy ,

see [128], we obtain a representation formula for the solution u in every point x ∈ K .
It reads

u(x) =
∫

∂K

U∗(x, y)γ K1 u(y) dsy −
∫

∂K

γK1,yU
∗(x, y)γ K0 u(y) dsy , (4.3)

where γK1,y denotes the conormal derivative operator with respect to the variable y.
By differentiation of (4.3), we obtain formulas for the derivatives of u. Conse-
quently, if the data γK0 u and γK1 u is known, it is possible to evaluate the function
u and its derivatives everywhere in the domain K . Furthermore, it is possible to
compute the Neumann data if the Dirichlet data is known as in (4.1). We apply the
trace and the conormal derivative operator to the representation formula and obtain
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a system of equations

(

γK0 u

γK1 u

)

=
(

(1 − ς)I − KK VK

DK ςI + K′
K

)(

γK0 u

γK1 u

)

, (4.4)

where

ς(x) = lim
ε→0

1

2(d − 1)π

1

εd−1

∫

y∈K :|y−x|=ε
dsy for x ∈ ∂K . (4.5)

The system (4.4) contains the standard boundary integral operators which are well
studied, see, e.g., [128, 151, 159]. For x ∈ ∂K , we have the single-layer potential
operator

(VKζ )(x) = γK0

∫

∂K

U∗(x, y)ζ(y) dsy for ζ ∈ H−1/2(∂K) ,

the double-layer potential operator

(KKξ)(x) = lim
ε→0

∫

y∈∂K :|y−x|≥ε
γ K1,yU

∗(x, y)ξ(y) dsy for ξ ∈ H 1/2(∂K) ,

and the adjoint double-layer potential operator

(K′
Kζ )(x) = lim

ε→0

∫

y∈∂K :|y−x|≥ε
γ K1,xU

∗(x, y)ζ(y) dsy for ζ ∈ H−1/2(∂K) ,

as well as the hypersingular integral operator

(DKξ)(x) = −γK1
∫

∂K

γK1,yU
∗(x, y)ξ(y) dsy for ξ ∈ H 1/2(∂K) .

These integral operators

VK : H−1/2+s(∂K) → H 1/2+s(∂K) ,
KK : H 1/2+s(∂K) → H 1/2+s(∂K) ,
K′
K : H−1/2+s(∂K) → H−1/2+s(∂K) ,

DK : H 1/2+s(∂K) → H−1/2+s(∂K)

are linear and continuous for s ∈ [−1/2, 1/2], see [61, 128]. The system (4.4)
can be utilized to derive the following relations between the boundary integral
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operators

VKDK = (ςI + K)((1 − ς)I − KK) ,

DKVK = (ςI + K′
K)((1 − ς)I − K′

K) ,

VKK′
K = KKVK ,

K′
KDK = DKKK .

Remark 4.1 The function u = 1 obviously satisfies the Laplace equation and it is
γK0 u = 1 and γK1 u = 0. Consequently, we obtain from the first equation in (4.4)
that

ς(x) = −
∫

∂K

γK1,yU
∗(x, y) dsy for x ∈ ∂K . (4.6)

If the boundary ∂K is smooth in a neighbourhood of the point x ∈ ∂K , i.e., it can
be represented locally by a differentiable parametrization, then (4.5) yields

ς(x) = 1

2
.

Thus, we have ς = 1/2 almost everywhere on ∂K for a polytopal domain K . On
the other hand, if x ∈ ∂K is on an edge in 3D or it is a vertex, then ς is related to
the interior angle of K at the point x. In the two-dimensional case K ⊂ R

2, it can
be shown that

ς(x) = α

2π

for a corner point x of a polygonal domain, where α ∈ (0, 2π) denotes the interior
angle of the polygon at x, see, e.g., [118].

4.2.1 Direct Approach for Dirichlet Problem

For K ⊂ R
2 with hK < 1 and K ⊂ R

3, the single-layer potential operator
induces a bilinear form (VK ·, ·)L2(∂K), which isH−1/2(∂K)-elliptic and continuous
on H−1/2(∂K), see [128, 159]. Here, the L2-inner product has to be interpreted as
duality pairing. According to the Lax–Milgram Lemma the single-layer potential
operator is invertible. Therefore, the first equation of system (4.4) yields a relation
between the Dirichlet and the Neumann trace, namely

γK1 u = SKγK0 u with SK = V−1
K

(

1
2I + KK

)

. (4.7)
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The operator

SK : H 1/2(∂K) → H−1/2(∂K)

is called Steklov–Poincaré operator and (4.7) is its non-symmetric representation.
This operator is linear and continuous due to its definition. With the help of the
second equation in the system (4.4), we find the symmetric representation

SK = DK +
(

1
2I + K′

K

)

V−1
K

(

1
2 I + KK

)

. (4.8)

The inversion of the single-layer potential operator is not desirable in the evaluation
of the Steklov–Poincaré operator. In order to compute the unknown Neumann data
t = γK1 u ∈ H−1/2(∂K) from given Dirichlet data g = γK0 u ∈ H 1/2(∂K), it is
more convenient to use the Galerkin formulation

Find t ∈ H−1/2(∂K) :
(VKt, ζ )L2(∂K)

=
((

1
2I + KK

)

g, ζ
)

L2(∂K)
∀ζ ∈ H−1/2(∂K) .

(4.9)

This formulation admits a unique solution according to the Lax–Milgram Lemma
and is consequently equivalent to the evaluation of SK . Thus, in order to solve the
Dirichlet problem for the Laplace equation (4.1), we may choose the representation
formula (4.3) for u and compute its Neumann trace with the help of the Galerkin for-
mulation (4.9). The solution obtained this way satisfies u ∈ H 1(K), see [128, 159].
This is a direct approach since the Dirichlet and Neumann traces of the unknown
solution are either known or computed and used in the representation formula.

4.2.2 Indirect Approach for Dirichlet Problem

Alternatively, one may follow an indirect approach. Instead of computing traces of
the unknown function, the solution is sought as a potential of an unknown density.
It is known, see, e.g., [128, 151, 159], that the double-layer potential

u(x) =
∫

∂K

γK1,yU
∗(x, y)ξ(y) dsy for x ∈ K (4.10)

with arbitrary density ξ ∈ H 1/2(∂K) satisfies the Laplace equation. Thus, the
density ξ has to be determined such that the Dirichlet boundary condition in (4.1)
is satisfied. Applying the trace operator to (4.10) yields the following boundary
integral equation of second kind

(1 − ς(x))ξ(x)− (KKξ)(x) = −g(x) for x ∈ ∂K . (4.11)
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It admits a unique solution ξ ∈ H 1/2(∂K) which is formally given as a Neumann
series

ξ(x) = −
∞
∑

�=0

(ςI + KK)
�g(x) for x ∈ ∂K .

Furthermore, the series is convergent since ςI + KK is a contraction in H 1/2(∂K),
see [160].

4.2.3 Direct Approach for Neumann Problem

Although this chapter focuses on the Dirichlet problem for the Laplace equation, we
briefly consider the Neumann problem:

−�u = 0 in K , γK1 u = t on ∂K ,

where t ∈ H−1/2(∂K) satisfies the solvability condition

∫

∂K

t dsx = 0 (4.12)

such that there exists a unique solution

u ∈ H 1∗ (K) = {v ∈ H 1(K) : (v, 1)L2(∂K) = 0} .

We follow a direct approach and derive a boundary integral equation for the
unknown Dirichlet data g = γK0 u ∈ H 1/2(∂K). Afterwards, the representation
formula (4.3) gives the solution of the boundary value problem.

In order to find a connection between the Dirichlet and Neumann traces we
consider this time the second equation in (4.4), which yields

DKγ
K
0 u =

(

1
2 I − K′

K

)

γK1 u . (4.13)

The hypersingular integral operator DK is self-adjoint and has a non-trivial kernel
on H 1/2(∂K), namely it is kerDK = span {1} for a simply connected domain K .
Thus, we define the subspace

H
1/2∗ (∂K) = {ξ ∈ H 1/2(∂K) : (ξ, 1)L2(∂K) = 0}

of H 1/2(∂K), containing the functions with vanishing mean value, on which DK

is bounded and elliptic. H 1/2∗ (∂K) can be interpreted as trace space of H 1∗ (K).
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Consequently, (4.13) has a unique solution γK0 u in H
1/2∗ (∂K) for given data

t = γK1 u. With a slight abuse of notation, we denote by D−1
K the inverse of the

hypersingular integral operator on the subspace H 1/2∗ (∂K), and thus we can write

γK0 u = PKγK1 u with PK = D−1
K

(

1
2I − K′

K

)

(4.14)

on H
1/2∗ (∂K). The operator PK : H−1/2(∂K) → H

1/2∗ (∂K), which maps the
Neumann to the Dirichlet data, is called Poincaré–Steklov operator. (Depending
on the literature it is sometimes also called Steklov–Poincaré operator.) Employing
the properties of the boundary integral operators, the symmetric representation

PK = VK +
(

1
2I − KK

)

D−1
K

(

1
2I − K′

K

)

(4.15)

follows. To compute the unknown Dirichlet data g = γK0 u ∈ H
1/2∗ (∂K) from given

Neumann data t = γK1 u ∈ H−1/2(∂K), we apply a Galerkin formulation once
more, namely

Find g ∈ H
1/2∗ (∂K) :

(DKg, ξ)L2(∂K)
=
(

( 1
2 I − K′

K)t, ξ
)

L2(∂K)
∀ξ ∈ H

1/2∗ (∂K) .
(4.16)

This problem is reformulated into a saddle point formulation, which reads

Find (g, λ) ∈ H 1/2(∂K)× R :
(DKg, ξ)L2(∂K)

+ λ(ξ, 1)L2(∂K) =
(

( 1
2I − K′

K)t, ξ
)

L2(∂K)
∀ξ ∈ H 1/2(∂K) ,

μ(g, 1)L2(∂K) = 0 ∀μ ∈ R .

For g ∈ H 1/2(∂K) \ H 1/2∗ (∂K), we write μ = λ/(g, 1)L2(∂K) − α with α ∈ R

and obtain from the second equation λ = α(g, 1)L2(∂K). The expression for the

Lagrange multiplier λ also holds for g ∈ H
1/2∗ (∂K), since testing the first equation

with ξ0 = 1 yields

λ(1, 1)L2(∂K) = 0

and thus λ = 0. Here, we employed

kerDK = ker
(

1
2I + KK

)

= span {1} ,
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DK is self-adjoint and the solvability condition (4.12), such that

(DKg, ξ0)L2(∂K)
= (g,DKξ0)L2(∂K)

= 0

and
(

( 1
2I − K′

K)t, ξ0

)

L2(∂K)
= (t, ξ0)L2(∂K)

−
(

t, ( 1
2 I + KK)ξ0

)

L2(∂K)
= 0 .

Inserting λ = α(g, 1)L2(∂K) into the first equation of the saddle point formulation,
we obtain for fixed α the Galerkin formulation:

Find g ∈ H 1/2(∂K) :
(

˜DKg, ξ
)

L2(∂K)
=
(

( 1
2I − K′

K)t, ξ
)

L2(∂K)
∀ξ ∈ H 1/2(∂K) ,

(4.17)

where

(

˜DKϑ, ξ
)

L2(∂K)
= (DKϑ, ξ)L2(∂K)

+ α(ϑ, 1)L2(∂K)(ξ, 1)L2(∂K) .

For α > 0, the operator˜DK is bounded and elliptic on H 1/2(∂K) and consequently,
the Galerkin formulation has a unique solution g ∈ H 1/2(∂K). This solution even
belongs to H

1/2∗ (∂K) since plugging ξ0 = 1 into (4.17) yields with the same
arguments as above

(g, 1)L2(∂K)(1, 1)L2(∂K) = 0 .

Hence, the formulation (4.17) is equivalent to the initial variational formulation and
the solution g is independent of α because of the unique solvability.

4.3 Boundary Element Method

The aim of this section is to introduce discrete Galerkin formulations for the direct
approaches of the Dirichlet and Neumann problems derived in the previous section.
Thus, we discretize the variational formulations (4.9) and (4.17). For this reason,
we have to introduce approximation spaces for H 1/2(∂K) and H−1/2(∂K) as well
as in particular a discretization of ∂K . We follow standard approaches as described
in [144, 151, 159], for instance.

First, the boundary ∂K of the domain K is decomposed into non-overlapping
line segments in two-dimensions and triangles in three-dimensions, see Fig. 4.1,
such that the resulting boundary mesh, which is denoted by Bh, is regular. More
precisely, we assume that Bh is shape-regular in the sense of Ciarlet such that
neighbouring elements either share a common node or edge and the aspect ratio
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Fig. 4.1 A domain and its boundary mesh for d = 2 (left) and d = 3 (right)

of each triangle is uniformly bounded. In order to present approximation estimates
later on, we additionally assume a uniform boundary mesh in the sense that all
elements have comparable size. The elements of the mesh Bh are denoted by T .
For the approximations, we utilize standard spaces of piecewise polynomials. Let
k ∈ N be the desired approximation order in the boundary element method. We
discretize H−1/2(∂K) and thus the Neumann traces by piecewise polynomials of
degree smaller or equal k−1 which might be discontinuous over element interfaces.
This approximation space is given by

Pk−1
pw,d(Bh) =

{

ζ ∈ L2(∂K) : ζ ∣∣
T

∈ Pk−1(T ) ∀T ∈ Bh

}

. (4.18)

The space H 1/2(∂K) and thus the Dirichlet traces are discretized by piecewise
polynomials of degree smaller or equal k which are continuous over element
interfaces. This approximation space is given by

Pk
pw(Bh) = Pk

pw,d(Bh) ∩ C0(∂K) . (4.19)

The choice of spaces yields conforming Galerkin approximations since

Pk
pw(Bh) ⊂ H 1/2(∂K) and Pk−1

pw,d(Bh) ⊂ H−1/2(∂K) .

These spaces are equipped with the usual Lagrangian bases used in finite element
methods. In two-dimensions we might also apply the polynomial basis defined in
Sect. 2.3.1, cf. Fig. 2.9. The set of basis functions for Pk

pw(Bh) and Pk−1
pw,d(Bh) are

fixed once and they are denoted in the following by ΦD and ΦN , respectively.

4.3.1 Dirichlet Problem

In order to treat the Dirichlet problem (4.1) for the Laplace equation, we utilize the
direct approach and approximate the Galerkin formulation (4.9) for the unknown



4.3 Boundary Element Method 117

Neumann trace t = γK1 u ∈ H−1/2(∂K) from Sect. 4.2.1. This yields the discrete
Galerkin formulation

Find th ∈ Pk−1
pw,d(Bh) :

(VKth, ζ )L2(∂K)
=
((

1
2I + KK

)

g, ζ
)

L2(∂K)
∀ζ ∈ Pk−1

pw,d(Bh) ,
(4.20)

where g is the given Dirichlet data. Since the bilinear form induced by the single-
layer potential operator is H−1/2(∂K)-elliptic as well as continuous on H−1/2(∂K)

and Pk−1
pw,d(Bh) ⊂ H−1/2(∂K), the variational formulation (4.20) admits a unique

solution according to the Lax–Milgram Lemma. Furthermore, Céa’s Lemma yields

‖t − th‖H−1/2(∂K) ≤ C inf
ζ∈Pk−1

pw,d(Bh)

‖t − ζ‖H−1/2(∂K) .

From known approximation properties of polynomials, see [151, Theorem 4.3.20],
we obtain

‖t − th‖H−1/2(∂K) ≤ C hs+1/2|t|Hs
pw(∂K)

, (4.21)

when assuming t ∈ Hs
pw(∂K) and 0 ≤ s ≤ k. Here, h denotes the mesh size

in the boundary element mesh Bh. After the computation of th, we utilize it for
approximating the solution u(x) of the Dirichlet problem in an interior point x ∈ K

by the representation formula (4.3). This yields

ũ(x) =
∫

∂K

U∗(x, y)th(y) dsy −
∫

∂K

γK1,yU
∗(x, y)g(y) dsy , (4.22)

and under the assumption of sufficient regularity we obtain for k = 1 the pointwise
error estimate

|u(x)− ũ(x)| ≤ C(x) h3 |t|H 1
pw(∂K)

(4.23)

for x ∈ K and in the H 1(K)-norm

‖u− ũ‖H 1(K) ≤ C h3/2 |t|H 1
pw(∂K)

.

Because of x ∈ K , the integrands in (4.3) are non-singular and consequently
approximation formulas for the derivatives of u can be derived by simply differ-
entiating (4.22). These pointwise approximations of the derivatives converge with
the same order as the approximation ũ(x) of u(x). We point out, that the integrals
in (4.22) can be evaluated analytically for piecewise polynomial data th and g.
In our later application g is already piecewise polynomial. In the general case,
however, the Dirichlet data is approximated by its L2-projection gh ∈ Pk

pw(Bh)
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and the error analysis additionally relies on Strang-type arguments. Utilizing the
basis functions inΦD andΦN for Pk

pw(Bh) and Pk−1
pw,d(Bh), respectively, we make

the ansatz

gh(x) =
∑

ϕ∈ΦD

gϕϕ(x) and th(x) =
∑

τ∈ΦN

tτ τ (x) , (4.24)

where x ∈ ∂K . Furthermore, we identify the approximations gh and th with their
vectors g

h
= (

gϕ
)

ϕ∈ΦD
and th = (tτ )τ∈ΦN

containing the expansion coefficients.
Due to the L2-projection, the coefficients in g

h
are given as solution of

∑

ϕ∈ΦD

gϕ(ϕ, ξ)L2(∂K) = (g, ξ)L2(∂K) ∀ξ ∈ Pk
pw(Bh) . (4.25)

The system of linear equations (4.25) involves the symmetric, positive definite mass
matrix

MDD
K,h = ((ϕ, ξ)L2(∂K)

)

ξ∈ΦD,ϕ∈ΦD
.

Inserting the ansatz (4.24) into the discrete Galerkin formulation (4.20) yields a
system of linear equations for th, namely

VK,hth =
(

1
2MK,h + KK,h

)

g
h
, (4.26)

where the matrices are defined as

VK,h = ((VKτ, ϑ)L2(∂K)

)

ϑ∈ΦN ,τ∈ΦN

and

MK,h = ((ϕ, ϑ)L2(∂K)

)

ϑ∈ΦN,ϕ∈ΦD
, KK,h = ((KKϕ, ϑ)L2(∂K)

)

ϑ∈ΦN ,ϕ∈ΦD
.

The system (4.26) is uniquely solvable since the matrix VK,h is symmetric and
positive definite due to the properties of the integral operator VK .

Remark 4.2 In the computational realization the matrices can be set up in different
ways. Either a semi-analytic integration scheme is utilized, which evaluates the
boundary integral operators applied to piecewise polynomial functions analytically
and approximates the outer integrals by numerical quadrature, or a fully numerical
integration scheme is applied. The semi-analytic scheme as well as the analytic
formulas are given in [144] and an appropriate fully numerical quadrature is
presented in [151] for the three-dimensional case. Corresponding formulas are also
available for the two-dimensional case.
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The approximation of the Dirichlet to Neumann map with the help of the system
of linear equations (4.26) corresponds to the representation (4.7) of the Steklov–
Poincaré operator. But, we have also derived a symmetric representation (4.8)
which can be utilized to define a symmetric approximation of the Steklov–Poincaré
operator. Since the Neumann trace satisfies

t = V−1
K

(

1
2I + KK

)

g ,

we use the previously derived approximation th and define

˜SKg = DKg +
(

1
2I + K′

K

)

th . (4.27)

This yields the symmetric discretization of the Steklov–Poincaré operator

SK,h = DK,h + ( 1
2M

�
K,h + K�

K,h

)

V−1
K,h

( 1
2MK,h + KK,h

)

(4.28)

with the matrix entries

SK,h =
(

(

˜SKϕ, φ
)

L2(∂K)

)

φ∈ΦD,ϕ∈ΦD

,

where

DK,h = ((DKϕ, φ)L2(∂K)

)

φ∈ΦD,ϕ∈ΦD
.

The matrix entries of DK,h can be assembled with the help of the single-layer
potential matrix VK,h. For piecewise smooth functions one can show that

(DKϕ, φ)L2(∂K)
= (VK curl∂K ϕ, curl∂K φ)L2(∂K)

,

where curl∂K denotes the surface curl of a scalar valued function on ∂K . For more
details, we refer the interested reader to [144, 159].

Example 4.3 We demonstrate the performance of the boundary element method and
give the numerical orders of convergence, cf. (1.7), for a model problem. Let K be a
regular octagon centered at the origin with diameter 0.8, and consider the boundary
value problem

−�u = 0 in K , u = g on ∂K ,

where the Dirichlet data g is chosen such that the unique solution of the problem
is given as u(x) = exp(2π(x1 − 0.3)) cos(2π(x2 − 0.3)). The boundary element
method is applied on a sequence of meshes for the approximation orders k = 1, 2, 3.
The first mesh is defined to be the eight sides of the octagon and the following
meshes are constructed by subdividing each line segment of the previous mesh
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into two new line segments of the same length. In the following tables we
distinguish the meshes and the approximation orders by the number of degrees of
freedom (DoF) used to approximate the Neumann trace. In Table 4.1, we present
the convergence of the Neumann data in the L2-norm. The observed numerical
order of convergence (noc) is k that reflects the theoretical considerations, cf. (4.21).
Furthermore, we evaluate the approximation and its gradient with the help of the
representation formula (4.22) in the point (0.2, 0)� ∈ K and present the relative
errors as well as the numerical orders of convergence in Tables 4.2 and 4.3,
respectively. We observe that the pointwise evaluation of the approximation as well
as the evaluation of its gradient converge till numerical saturation is reached. For
k = 1, the pointwise errors converge with cubic order for the function evaluation as
well as for the gradient. This coincides with the estimate (4.23). For k = 2, 3, the
tables indicate numerical convergence orders of 4 and 5, respectively.

Table 4.1 Degrees of freedom (DoF), error ‖t − th‖L2(Ω) (err) and numerical order of conver-
gence (noc) for k = 1, 2, 3 in Example 4.3

k = 1 k = 2 k = 3

DoF err noc DoF err noc DoF err noc

8 3.22 × 10+0 – 16 8.06 × 10−1 – 24 1.53 × 10−1 –

16 9.90 × 10−1 1.70 32 2.21 × 10−1 1.87 48 1.76 × 10−2 3.13

32 5.37 × 10−1 0.88 64 5.98 × 10−2 1.89 96 2.01 × 10−3 3.12

64 2.63 × 10−1 1.03 128 1.56 × 10−2 1.93 192 2.42 × 10−4 3.05

128 1.29 × 10−1 1.03 256 3.96 × 10−3 1.98 384 2.97 × 10−5 3.03

256 6.40 × 10−2 1.02 512 9.89 × 10−4 2.00 768 3.68 × 10−6 3.02

512 3.18 × 10−2 1.01 1024 2.47 × 10−4 2.00 1536 4.57 × 10−7 3.01

1024 1.59 × 10−2 1.00 2048 6.17 × 10−5 2.00 3072 5.70 × 10−8 3.00

2048 7.92 × 10−3 1.00 4096 1.54 × 10−5 2.00 6144 8.01 × 10−9 2.83

Theory 1 2 3

Table 4.2 Degrees of freedom (DoF), relative error |u(x) − ũ(x)|/|u(x)| for the point evaluation
in x = (0.2, 0)� (err) and numerical order of convergence (noc) for k = 1, 2, 3 in Example 4.3

k = 1 k = 2 k = 3

DoF err noc DoF err noc DoF err noc

8 3.46 × 10−2 – 16 2.55 × 10−4 – 24 1.57 × 10−4 –

16 9.94 × 10−4 5.12 32 3.80 × 10−5 2.75 48 4.45 × 10−6 5.14

32 1.12 × 10−4 3.15 64 9.06 × 10−7 5.39 96 1.19 × 10−7 5.22

64 1.62 × 10−5 2.79 128 1.21 × 10−7 2.91 192 3.02 × 10−9 5.31

128 2.03 × 10−6 2.99 256 8.17 × 10−9 3.89 384 7.46 × 10−11 5.34

256 2.54 × 10−7 2.99 512 4.70 × 10−10 4.12 768 1.83 × 10−12 5.35

512 3.22 × 10−8 2.98 1024 2.53 × 10−11 4.22 1536 3.52 × 10−14 5.70

1024 4.09 × 10−9 2.98 2048 1.28 × 10−12 4.31 3072 4.51 × 10−14 –

2048 5.20 × 10−10 2.98 4096 1.69 × 10−13 2.92 6144 1.21 × 10−13 –
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Table 4.3 Degrees of freedom (DoF), relative error |∇u(x) − ∇ũ(x)|/|∇u(x)| for the point
evaluation of the gradient in x = (0.2, 0)� (err) and numerical order of convergence (noc) for
k = 1, 2, 3 in Example 4.3

k = 1 k = 2 k = 3

DoF err noc DoF err noc DoF err noc

8 2.29 × 10−1 – 16 6.68 × 10−3 – 24 3.56 × 10−4 –

16 1.53 × 10−2 3.90 32 5.64 × 10−5 6.89 48 2.24 × 10−6 7.31

32 5.23 × 10−4 4.87 64 2.09 × 10−6 4.75 96 5.15 × 10−8 5.45

64 5.58 × 10−5 3.23 128 8.13 × 10−8 4.69 192 1.46 × 10−9 5.14

128 6.84 × 10−6 3.03 256 5.14 × 10−9 3.98 384 3.72 × 10−11 5.29

256 8.42 × 10−7 3.02 512 3.06 × 10−10 4.07 768 9.43 × 10−13 5.30

512 1.04 × 10−7 3.01 1024 1.66 × 10−11 4.20 1536 5.04 × 10−14 4.22

1024 1.30 × 10−8 3.01 2048 7.57 × 10−13 4.46 3072 1.13 × 10−13 –

2048 1.62 × 10−9 3.00 4096 7.73 × 10−13 – 6144 8.21 × 10−13 –

4.3.2 Neumann Problem

The Neumann problem (4.2.3) is treated along the same lines as the Dirichlet
problem in the previous section. We utilize the direct approach and approximate the
Galerkin formulation (4.17) for the unknown Dirichlet trace g = γK0 u ∈ H 1/2(∂K)

from Sect. 4.2.3. This yields the discrete Galerkin formulation

Find gh ∈ Pk
pw(Bh) :

(

˜DKgh, ξ
)

L2(∂K)
=
(

( 1
2I − K′

K)t, ξ
)

L2(∂K)
∀ξ ∈ Pk

pw(Bh) ,
(4.29)

where t is the given Neumann data with
∫

∂K t dsx = 0. Since ˜DK is bounded
as well as elliptic on H 1/2(∂K) and Pk

pw(Bh) ⊂ H 1/2(∂K), the discrete
Galerkin formulation has a unique solution according to the Lax–Milgram Lemma.
Furthermore, Céa’s Lemma yields

‖g − gh‖H 1/2(∂K) ≤ C inf
ξ∈Pk

pw(Bh)
‖g − ξ‖H 1/2(∂K) ,

where known approximation properties of polynomials, see [151, Theorem 4.3.22],
can be applied once more, such that

‖g − gh‖H 1/2(∂K) ≤ C hs−1/2‖g‖Hs(∂K) (4.30)

for 1/2 ≤ s ≤ k + 1, when assuming g ∈ Hs(∂K). Arguing as in Sect. 4.2.3,
we even see that gh ∈ H

1/2∗ (∂K) since ξ0 ∈ Pk
pw(∂K). Inserting gh into the
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representation formula (4.3), we obtain for x ∈ K the pointwise approximation

ũ(x) =
∫

∂K

U∗(x, y)t (y) dsy −
∫

∂K

γK1,yU
∗(x, y)gh(y) dsy

for the solution u(x) of the Neumann problem. Under the assumption of sufficient
regularity the approximation satisfies for k = 1 and x ∈ K the error estimate

|u(x)− ũ(x)| ≤ C(x) h3 |g|H 2(∂K) . (4.31)

As in the Dirichlet problem we may approximate the given Neumann trace t by its
L2-projection th ∈ Pk−1

pw,d(∂K). Utilizing the ansatz (4.24) yields the coefficient
vector th and therefore the approximation th as unique solution of

∑

τ∈ΦN

tτ (τ, ζ )L2(∂K) = (t, ζ )L2(∂K) ∀ζ ∈ Pk−1
pw,d(Bh) . (4.32)

The system of linear equations (4.32) involves the symmetric, positive definite mass
matrix

MNN
K,h = ((τ, ζ )L2(∂K)

)

ζ∈ΦN ,τ∈ΦN
.

The solvability condition
∫

∂K thdsx = 0 is retained since span {1} ⊂ Pk−1
pw,d(Bh).

Inserting the ansatz (4.24) into the discrete Galerkin formulation (4.29) yields a
system of linear equations for g

h
, namely

˜DK,hgh
=
(

1
2M

�
K,h − K�

K,h

)

th , (4.33)

where

˜DK,h = DK,h + α dK,h d�
K,h ,

with α > 0 and

DK,h = ((DKϕ, φ)L2(∂K)

)

φ∈ΦD,ϕ∈ΦD
, dK,h = ((ϕ, 1)L2(∂K)

)

ϕ∈ΦD
.

The system (4.33) is uniquely solvable since the matrix ˜DK,h is symmetric and
positive definite due to the properties of the integral operator DK .

Example 4.4 We demonstrate the performance of the boundary element method
for the Neumann problem. Let K be a regular octagon centered at the origin with
diameter 0.8 as in Example 4.3, and consider the boundary value problem

−�u = 0 in K , γK1 u = t on ∂K ,
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where the Neumann data t is chosen such that the unique solution of the problem
in H 1∗ (K) is given as u(x) = exp(2π(x1 − 0.3)) cos(2π(x2 − 0.3)) − C with
C ∈ R such that (γ K1 u, 1)L2(∂K) = 0. The boundary element method is applied
on a sequence of meshes for the approximation orders k = 1, 2. The first mesh is
defined to be the eight sides of the octagon and the following meshes are constructed
by subdividing each line segment of the previous mesh into two new line segments
of the same length. In Table 4.4 we give the results for k = 1 and in Table 4.5
those for k = 2. The meshes are distinguished by the number of degrees of
freedom (DoF) used to approximate the Dirichlet trace. From (4.30) we expect
that the error ‖g − gh‖L2(∂K) of the Dirichlet trace in the L2-norm converges with
order k+1. This is verified by the numerical order of convergence (noc) in the tables.
For the point evaluation, it has been shown in [159] that for k = 1 the optimal error
estimate (4.31) is not achieved when the Neumann data has to be approximated

Table 4.4 Degrees of freedom (DoF) and errors ‖g − gh‖L2(Ω), |u(x) − ũ(x)|/|u(x)| as well as
|∇u(x)− ∇ũ(x)|/|∇u(x)| for x = (0.2, 0)� and numerical orders of convergence (noc) for k = 1
in Example 4.4

‖g − gh‖L2(Ω) |u(x)− ũ(x)|/|u(x)| |∇u(x)− ∇ũ(x)|/|∇u(x)|
DoF err noc err noc err noc

8 3.23 × 10−1 – 2.25 × 10−1 – 1.60 × 10−1 –

16 7.57 × 10−2 2.09 4.49 × 10−2 2.32 3.90 × 10−2 2.04

32 1.67 × 10−2 2.18 9.92 × 10−3 2.18 8.97 × 10−3 2.12

64 3.85 × 10−3 2.12 2.41 × 10−3 2.04 2.21 × 10−3 2.02

128 9.19 × 10−4 2.07 5.98 × 10−4 2.01 5.51 × 10−4 2.01

256 2.24 × 10−4 2.04 1.49 × 10−4 2.01 1.38 × 10−4 2.00

512 5.52 × 10−5 2.02 3.71 × 10−5 2.00 3.44 × 10−5 2.00

1024 1.37 × 10−5 2.01 9.28 × 10−6 2.00 8.59 × 10−6 2.00

2048 3.41 × 10−6 2.01 2.32 × 10−6 2.00 2.15 × 10−6 2.00

Table 4.5 Degrees of freedom (DoF) and errors ‖g − gh‖L2(Ω), |u(x) − ũ(x)|/|u(x)| as well as
|∇u(x)− ∇ũ(x)|/|∇u(x)| for x = (0.2, 0)� and numerical orders of convergence (noc) for k = 2
in Example 4.4

‖g − gh‖L2(Ω) |u(x)− ũ(x)|/|u(x)| |∇u(x)− ∇ũ(x)|/|∇u(x)|
DoF err noc err noc err noc

16 3.46 × 10−2 – 2.57 × 10−3 – 2.45 × 10−2 –

32 4.52 × 10−3 2.94 4.88 × 10−4 2.40 5.24 × 10−4 5.55

64 6.06 × 10−4 2.90 9.06 × 10−5 2.43 2.06 × 10−5 4.67

128 8.02 × 10−5 2.92 2.18 × 10−5 2.06 9.46 × 10−7 4.45

256 1.04 × 10−5 2.95 5.61 × 10−6 1.96 5.56 × 10−8 4.09

512 1.34 × 10−6 2.95 1.44 × 10−6 1.96 4.15 × 10−9 3.74

1024 1.79 × 10−7 2.91 3.65 × 10−7 1.98 3.16 × 10−10 3.72

2048 2.66 × 10−8 2.75 8.99 × 10−8 2.02 2.30 × 10−11 3.78

4096 4.58 × 10−9 2.54 2.04 × 10−8 2.14 8.61 × 10−13 4.74
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by (4.32). Instead, only

|u(x)− ũ(x)| ≤ C(x) h2 |g|H 2(∂K)

is obtained. This theoretical result is confirmed in Table 4.4. Furthermore, the
quadratic convergence also holds for k = 2 in the numerical experiment, see
Table 4.5. For the pointwise convergence of the gradient, the tables indicate
numerical convergence orders of 2 and 4 for k = 1 and k = 2, respectively.

4.4 Nyström Approach

The Nyström method is an alternative approach for the approximation of integral
equations. It was initially designed for domains with globally parametrized and
smooth boundaries and was later adapted to domains with corners. Here, we restrict
ourselves to the two-dimensional case and we utilize the indirect approach for the
Dirichlet problem discussed in Sect. 4.2.2. The main idea is to replace the integral by
a suitable quadrature formula and to approximate the resulting equation by means
of collocation.

First of all, we seek the solution of the Laplace equation in the form (4.10)
such that the unknown density ξ has to be approximated. In the case of the two-
dimensional Laplace equation we have

γK1,yU
∗(x, y) = (x − y) · nK(y)

2π |x − y|2 (4.34)

almost everywhere, where nK(y) denotes the outer normal vector ofK in the bound-
ary point y ∈ ∂K . The density ξ satisfies the boundary integral equation (4.11).

4.4.1 Domains with Smooth Boundary

If the boundary of the domain is smooth, i.e. C2, and there is a global parametriza-
tion x(θ) such that

∂K =
{

x(θ) ∈ R
2 : θ0 ≤ θ ≤ θ1

}

with |x′(θ)| = 0 for all θ ∈ [θ0, θ1], then (4.34) holds for all x, y ∈ ∂K with a
removable singularity at x = y. Furthermore, let the parametric curve be given as
x(θ) = (x1(θ), x2(θ))

� in counter-clockwise orientation. Hence, the outer normal
vector can be expressed as nK(x(θ)) = (x ′

2(θ),−x ′
1(θ))

�/|x′(θ)|. Respecting
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Remark 4.1, the integral equation (4.11) for the density ξ now reads

1
2ξ(x(θ))+

∫ θ1

θ0

κ(x(θ), x(τ ))ξ(x(τ )) dτ = −g(x(θ)) for θ ∈ [θ0, θ1] , (4.35)

with the integral kernel

κ(x(θ), x(τ )) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1

2π

x ′
1(τ )(x2(θ)− x2(τ ))− x ′

2(τ )(x1(θ)− x1(τ ))

(x1(θ)− x1(τ ))2 + (x2(θ)− x2(τ ))2
, for θ = τ ,

1

4π

x ′
1(τ )x

′′
2 (τ )− x ′

2(τ )x
′′
1 (τ )

(x ′
1(τ ))

2 + (x ′
2(τ ))

2
, for θ = τ .

Next, we apply the composite trapezoidal rule to the integral with N + 1 uniformly
placed quadrature points xj , j = 0, . . . , N and weights. Since ξ is periodic on the
closed boundary, this quadrature rule is especially suited for the integration, see [62].
Furthermore, we have ξ(xN) = ξ(x0). The resulting equation cannot hold for all
θ ∈ [θ0, θ1] and therefore we enforce its validity by collocation in the quadrature
notes. Consequently, we find due to the periodicity the following system of linear
equations for the unknown values ξi = ξ(xi ) of the density:

1
2ξi +

N
∑

j=1

κ(xi , xj )ξjωj = −g(xi ) for i = 1, . . . , N , (4.36)

where the quadrature points and weights are given by

xj = x
(

θ0 + j
θ1 − θ0

N

)

and ωj = θ1 − θ0

N
.

It is known that this trapezoidal Nyström method converges with order O(1/Nq) in
the maximum norm, where q ≥ 0 is related to the smoothness of the boundary ∂K
as well as to the smoothness of ξ , see, e.g. [118]. Having the values ξi at hand we
can approximate u(x) for x ∈ K with the help of (4.10) and the trapezoidal rule by

ũ(x) = −
N
∑

j=1

κ(x, xj )ξjωj for x ∈ K . (4.37)

Since the integrand in (4.10) is smooth for x ∈ K , differentiation and integration can
be interchanged. Thus, we obtain an approximation of the gradient of the solution
∇u(x) as

∇ũ(x) = −
N
∑

j=1

∇κ(x, xj )ξjωj for x ∈ K . (4.38)
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Fig. 4.2 Domain in
Example 4.5 which is given
by a globally smooth curve
describing its boundary
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The gradient of the integral kernel can be computed analytically by a small exercise
and does not involve any difficulties.

Example 4.5 We consider the boundary value problem

−�u = 0 in K , u = g on ∂K ,

where g is chosen such that u(x) = ln |x − x∗| with x∗ = (3, 3)� ∈ K is the exact
solution. The domainK is given by its boundary that is defined as a globally smooth
curve with parametrization

x(θ) = (2 + cos(3θ))

(

cos(θ)
sin(θ)

)

for 0 ≤ θ < 2π ,

see Fig. 4.2. In Table 4.6, the convergence of the approximation (4.37) as well as
of its gradient (4.38) is presented in the point (1.5, 0)� for an increasing number of
quadrature points (QP) which is equal N in this setting. Furthermore, the numerical
order of convergence (noc) is given with respect to 1/N . Obviously, the Nyström
approach converges very fast till machine precision for domains with smooth
boundaries.

4.4.2 Domains with Corners

Often, boundary value problems are considered on domains whose boundaries are
not given as a globally smooth parametric curves and which may contain corners.
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Table 4.6 Number of quadrature points (QP =N), pointwise error of approximation and its gra-
dient in the point x= (1.5, 0)� as well as numerical order of convergence (noc) for Example 4.5

QP |u(x)− ũ(x)|/|u(x)| noc |∇u(x)− ∇ũ(x)|/|∇u(x)| noc

4 5.12 × 10−1 – 1.59 × 10+0 –

8 1.71 × 10−1 1.58 2.47 × 10+0 −0.64

16 6.80 × 10−3 4.65 1.86 × 10−1 3.73

32 1.92 × 10−5 8.47 1.64 × 10−3 6.83

64 2.69 × 10−8 9.48 2.38 × 10−7 12.75

128 5.80 × 10−14 18.82 4.12 × 10−13 19.14

256 1.83 × 10−16 8.31 5.27 × 10−16 9.61

Consequently, we consider domains with piecewise smooth boundaries next. Thus,
the boundary ∂K is decomposed into boundary segments such that each can be
parametrized by a smooth curve. Without loss of generality, we concatenate these
parametrizations to a piecewise smooth and globally given parametrization which
is oriented counter-clockwise. Therefore, let M ∈ N be the number of boundary
segments, we write

∂K =
{

x(θ) ∈ R
2 : θ� ≤ θ ≤ θ�+1, � = 0, . . . ,M − 1

}

.

Here, |x′(θ)| = 0 for all θ ∈ (θ�, θ�+1), � = 0, . . . ,M − 1 and z� = x(θ�) are the
corner points or vertices of the domain. Since the boundary is closed we obviously
have x(θ0) = x(θM). A special case are the polygonal domains which are used
throughout this book. In this situation the boundary segments are given as straight
lines and x′(θ) is constant on each interval (θ�, θ�+1). Furthermore, the vertices z�
coincide with the nodes of the polygonal elements.

In order to derive the Nyström approximation we consider once more the
boundary integral equation (4.11). But, since the boundary of the domain is not
smooth in the points z�, we have to take care on ς(z�) which depends on the
interior angle of the domain. This dependency is resolved by using (4.6) and
reformulating (4.11) to

ξ(x)+ ξ(z)
2

−
∫

∂K

γK1,yU
∗(x, y)(ξ(y)− ξ(z)) dsy = −g(x) for x ∈ ∂K ,

where z is the closest vertex z� to x. Next, the boundary integral is split into its
contributions over the single boundary segments. The parametrization and the outer
normal vector are treated within each smooth segment as in the previous section.
This yields

ξ(x(θ))+ ξ(z)
2

+
M−1
∑

�=0

∫ θ�+1

θ�

κ(x(θ), x(τ ))(ξ(x(τ ))− ξ(z)) dτ = −g(x(θ))



128 4 Boundary Integral Equations and Their Approximations

for θ ∈ [θ0, θM ]. If θ = θ�, � = 0, . . . ,M , i.e. x(θ) = z�, there is a singularity in
the integral kernel and the formula of the previous section for κ(z�, z�) is actually
not well defined. Instead of applying the composite trapezoidal rule directly, Kress
proposed to perform a sigmoidal change-of-variables first, which copes with the
singularity, see [117]. This variable transformation η(�) : [0, 1] → [θ�, θ�+1] is
strictly monotonic increasing and it is defined by

η(�)(t) = θ� +
(

c(t)
)p
(θ�+1 − θ�)

(

c(t)
)p + (1 − c(t)

)p ,

where c : [0, 1] → [0, 1] with

c(t) =
(

1

2
− 1

p

)

(2t − 1)3 + 1

p
(2t − 1)+ 1

2

and p ≥ 2 is an integer. It is straight-forward to see that
(

η(�)
)′

has a root of order
p−1 at each endpoint of the interval [0, 1]. Thus, we obtain with sufficiently large p
and the composite trapezoidal rule on each boundary segment

∫ θ�+1

θ�

κ(x(θ), x(τ ))(ξ(x(τ ))− ξ(z)) dτ ≈
N−1
∑

j=1

κ
(

x(θ), x(�)j
)

(

ξ
(

x(�)j
)− ξ(z)

)

ω
(�)
j

where the quadrature points and weights are given by

x(�)j = x
(

η(�)(j/N)
)

and ω
(�)
j =

(

η(�)
)′
(j/N)

N
,

j = 0, . . . , N . The summands for j = 0, N vanish because of the roots of
(

η(�)
)′.

A careful convergence analysis of this quadrature is given in [117], showing that it
is convergent for the kinds of integrands we encounter here of increasingly higher
order in N as p is increased.

Applying the sigmoidal transform and the trapezoidal rule as above to the
modified boundary integral equation and using collocation in the quadrature points
yields the following system of linear equations with unknowns ξ(k)i = ξ(x(k)i ):

ξ
(k)
i + ξ̃

(k)
i

2
+

M−1
∑

�=0

N−1
∑

j=1

κ
(

x(k)i , x(�)j
)

(

ξ
(�)
j − ξ̃

(k)
i

)

ω
(�)
j = −g(x(k)i

)

(4.39)

for i = 0, . . . , N − 1, k = 0, . . . ,M − 1, where ξ̃ (k)i is either ξ(k)0 or ξ(k)N depending

which point x(k)0 or x(k)N is closer to x(k)i . After we have solved the system, the
function value u(x) can be approximated for x ∈ K with the help of (4.10) and
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the quadrature by

ũ(x) = −
M−1
∑

�=0

N
∑

j=1

κ
(

x, x(�)j
)

ξ
(�)
j ω

(�)
j for x ∈ K . (4.40)

Analogously, we obtain for the gradient ∇u(x) the approximation

∇ũ(x) = −
M−1
∑

�=0

N
∑

j=1

∇κ(x, x(�)j
)

ξ
(�)
j ω

(�)
j for x ∈ K . (4.41)

Example 4.6 We consider the boundary value problem

−�u = 0 in K , u = g on ∂K ,

where g is chosen such that u(x) = ln |x − x∗| with x∗ = (6, 8)� ∈ K is the
exact solution. The domain K is given by its boundary that is defined globally as a
curve which is piecewise smooth. More precisely, we use the parametrization of an
epicycloid that is

x(θ) =
(

8 cos(θ)− cos(8θ)
8 sin(θ)− sin(8θ)

)

for 0 ≤ θ < 2π ,

with corners for θ = θ� = 2π�/7, � = 0, . . . , 7, see Fig. 4.3. The Nyström approach
is applied with the parameter p = 4 in the sigmoidal change-of-variable. Each of
the M = 7 smooth parts of the boundary is decomposed into N segments and thus
N + 1 quadrature points. In Table 4.7, the convergence of the approximation (4.40)

Fig. 4.3 Domain in
Example 4.6 with piecewise
smooth boundary which is
given as parametrization of an
epicycloid
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Table 4.7 Number of quadrature points (QP= MN), pointwise error of approximation and
its gradient in the point x = (5.6, 0)� as well as numerical order of convergence (noc) for
Example 4.6 with parameter p = 4

QP |u(x)− ũ(x)|/|u(x)| noc |∇u(x)− ∇ũ(x)|/|∇u(x)| noc

28 3.79 × 10−2 – 3.41 × 10−1 –

56 7.18 × 10−5 9.04 3.19 × 10−2 3.42

112 9.03 × 10−6 2.99 6.54 × 10−5 8.93

224 8.00 × 10−10 13.46 2.26 × 10−7 8.18

448 1.73 × 10−12 8.85 6.89 × 10−10 8.36

896 1.28 × 10−15 10.40 3.43 × 10−13 10.97

1792 8.54 × 10−16 0.58 1.36 × 10−15 7.98

as well as of its gradient (4.41) is presented in the point (5.6, 0)� for an increasing
number of quadrature points (QP) which is equal MN in total. Furthermore, the
numerical order of convergence (noc) is given with respect to 1/QP. Obviously, the
Nyström approach also converges very fast till machine precision for domains with
piecewise smooth boundaries when the singularities at the corners are treated with
an appropriate quadrature scheme.

4.5 Application in BEM-Based FEM

Throughout this book all numerical experiments and test have been performed with
the help of a local BEM solver as described in the following. However, we also
give a brute-force application of a local Nyström solver and discuss its potential
advantageous and disadvantageous in the next sections for a test problem.

4.5.1 Incorporation of Local Solvers and Quadrature
on Polytopes

Before we discuss details of the realization of the BEM-based FEM and the
incorporation of the local BEM and Nyström solvers, we recapitulate the problem
setting. An isotropic diffusion equation with mixed boundary data and a non-
vanishing source term is considered as model problem (2.1) on a domain Ω ⊂ R

d ,
d = 2, 3 with boundaryΓ = ΓD∪ΓN . The domainΩ is decomposed into polytopal
elements and the discrete Galerkin formulation (2.28) reads:

Find uh ∈ gD + V k
h,D :

b(uh, vh) = (f, vh)L2(Ω) + (gN , vh)L2(ΓN) ∀vh ∈ V k
h,D ,
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where b(uh, vh) = (a∇uh,∇vh)L2(Ω), and the approximation space admits the
decomposition V k

h,D = V k
h,H,D ⊕ V k

h,B into two types of functions. The first
ones are harmonic on each element and have piecewise polynomial data on the
skeleton of the discretization, whereas the second ones vanish on the skeleton and
have a polynomial Laplacian on each element. In particular, the discrete Galerkin
formulation decouples for these kinds of functions as given in (2.31) and (2.32) in
the case of a piecewise constant diffusion coefficient.

It remains to discuss the realization of the different terms in the discrete Galerkin
formulation with the help of the local boundary element method and the local
Nyström solver from this chapter. First of all, we recognize that every function
vh ∈ V k

h,D is given uniquely over each element K ∈ Kh by the local boundary
value problem

−�vh = pK in K and vh = p∂K on ∂K

with prescribed data pK ∈ Pk−2(K) and p∂K ∈ Pk
pw(∂K), cf. (2.14) and (2.15).

Since pK is a polynomial, we can write vh = vh,H + q with q ∈ Pk(K) such that

−�vh,H = 0 in K and vh,H = p∂K − q on ∂K (4.42)

with p∂K −q ∈ Pk
pw(∂K). Therefore, it was sufficient to consider the pure Laplace

problem in the previous sections for the local solvers. A constructive approach for
finding q is presented in [113]. For a homogeneous polynomial p ∈ Pm(Rd) of
degree m, i.e. p(cx) = cmp(x), the polynomial

q(x) =
�m/2�
∑

�=0

(−1)�#(d/2 + m− �)

#(d/2 +m+ 1)(�+ 1)!
( |x|2

4

)�+1

��p(x) ∈ Pm+2(K)

satisfies �q = p, where �m/2� denotes the integer part of m/2 and #(·) the
gamma function, see [113, Theorem 2]. For non-homogeneous polynomials p the
construction can be applied on the representation of p in the monomial basis, whose
basis functions are homogeneous.

Let us focus on the two terms (f, vh)L2(Ω) and (gN , vh)L2(ΓN ). The latter one
does not cause any difficulties. The Neumann boundary ΓN is given as collection
of line segments (d = 2) or triangles (d = 3) and the restrictions of the functions
vh ∈ V k

h,D onto ΓN are piecewise polynomials. Consequently, we apply Gaussian
quadrature on each segment or standard numerical integration on each triangle in
order to approximate the integral value of the product of the given Neumann data gN
and the piecewise polynomial data of vh overΓN . We also have to apply a quadrature
scheme to approximate (f, vh)L2(Ω) since no additional information on f is given
in general. For this reason, we decompose the integral first into its contribution
over the elements K ∈ Kh and afterwards we decompose it even further to its
contributions over the triangles (d = 2) and tetrahedra (d = 3) of the auxiliary
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triangulation Th(K), i.e.

(f, vh)L2(Ω) =
∑

K∈Kh

(f, vh)L2(K) =
∑

K∈Kh

∑

T ∈Th(K)

(f, vh)L2(T ) . (4.43)

Now, we apply Gaussian quadrature over each triangle/tetrahedron T . Instead of
utilizing the auxiliary discretization Th(K) introduces in Sect. 2.2, we may also
triangulate the elements with some software tool like triangle or TetGen,
see [155, 157]. This strategy has been especially performed in the numerical tests
in order to compute accurate errors in the L2- and H 1-norm. The evaluation of
vh inside the elements is realized by means of the reformulation vh = vh,H + q

with (4.42) and the approximated representation formulas (4.22) and (4.40), respec-
tively. This natural idea to apply a quadrature rule over a subtriangulation in order
to approximate an integral over a polygonal domain has been applied in [164] for
instance. An alternative approach is presented in [131], where quadrature points and
weights for fixed polygonal domains are precomputed.

In order to treat the bilinear form we have different possibilities. We assume here
that the diffusion coefficient is constant on each element and we split the integral
into its contributions over the single elements

b(uh, vh) = (a∇uh,∇vh)L2(Ω) =
∑

K∈Kh

aK(∇uh,∇vh)L2(K) .

A brute-force approach would be to approximate the term (∇uh,∇vh)L2(K) by a
quadrature as described above using the representation formulas for the evaluation
of ∇uh and ∇vh in the quadrature points. Alternatively, we may use Green’s first
identity (4.2) on each element such that

(∇uh,∇vh)L2(K) = (γ K1 uh, γ
K
0 vh)L2(∂K) − (�uh, vh)L2(K) .

Obviously, if either uh or vh is harmonic, the volume integral vanishes and we end
up with a boundary integral solely, where the product of a Dirichlet and a Neumann
trace has to be integrated. Since the approximation space V k

h,D = V k
h,H,D ⊕ V k

h,B is
given as a direct sum, we distinguish three cases:

1. uh, vh ∈ V k
h,H,D: We end up with solely boundary integrals

(∇uh,∇vh)L2(K) = (γ K1 uh, γ
K
0 vh)L2(∂K) .

2. uh, vh ∈ V k
h,B : Let vh = vh,H + q with (4.42), where p∂K = 0, then

(∇uh,∇vh)L2(K) = −(�uh, vh)L2(K) = (γ K1 uh, γ
K
0 vh,H )L2(∂K) − (�uh, q)L2(K) .
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3. uh ∈ V k
h,H,D, vh ∈ V k

h,B or vice versa: As we have seen in (2.30), it is

(∇uh,∇vh)L2(K) = 0 .

The only volume integral which is left is (�uh, vh)L2(K). Since �uh ∈ Pk−2(K),
the integrand is a polynomial of degree smaller or equal 2k − 2. The integral can
thus be computed exactly by the quadrature over the auxiliary discretization or
alternatively by applying the divergence theorem followed by a quadrature over the
boundary of the element.

Local BEM Solver
The local BEM solver, which is used throughout this book, makes use of the
reformulation of the bilinear form in order to reduce the volume integrals to integrals
over the skeleton of the domain. More precisely, we end up with integrals over
the element boundaries, where we have to integrate the product of a Dirichlet and
Neumann trace of functions in V k

h . This setting nicely fits into the boundary element
strategy. The Dirichlet trace of the functions is known whereas their Neumann trace
have to be approximated. Here, we proceed as described in Sect. 4.3.

Let K ∈ Kh and Bh be an appropriate boundary element mesh of ∂K consisting
of line segments (d = 2) or triangles (d = 3). Furthermore, we denote by ΦD and
ΦN the basis of Pk

pw(Bh) and Pk−1
pw,d(Bh), which are used as approximation spaces

for H 1/2(∂K) and H−1/2(∂K), respectively. Since γK0 uh is already polynomial
of degree k over each edge/face of K , the trace is represented exactly in the
basis ΦD such that in the notation of Sect. 4.3 it is g(u)h = γK0 uh ∈ Pk

pw(Bh).

The Neumann trace γK1 uh is approximated by t(u)h ∈ Pk−1
pw,d(Bh) according to the

discrete Galerkin formulation (4.20) with the ansatz (4.24). With the help of the
Steklov–Poincaré operator we write

(γ K1 uh, γ
K
0 vh)L2(∂K) = (SKγK0 uh, γ

K
0 vh)L2(∂K) .

Next, we may either use the non-symmetric, see (4.7), or the symmetric, see (4.8),
representation of the Steklov–Poincaré operator. According to (4.26), the non-
symmetric representation leads to

(γ K1 uh, γ
K
0 vh)L2(∂K) ≈ (t

(u)
h , g

(v)
h )L2(∂K) = (g(v)

h
)�M�

K,h t
(u)
h = (g(v)

h
)�Sunsym

K,h g(u)
h

with

Sunsym
K,h = M�

K,hV
−1
K,h

(

1
2MK,h + KK,h

)

.

On the other hand, the symmetric representation with (4.27) leads to

(γ K1 uh, γ
K
0 vh)L2(∂K) ≈ (˜SKg

(u)
h , g

(v)
h )L2(∂K) = (g(v)

h
)�SK,h g(u)h

.
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Both matrices Sunsym
K,h and SK,h originate from the same symmetric bilinear form.

Whereas Sunsym
K,h is a non-symmetric matrix, SK,h retains the symmetry because of

its Definition (4.28).
Without saying, we have already linked the approximation order in the BEM with

the one of the global FEM formulation naturally. For V k
h in the BEM-based FEM,

we have chosen Pk
pw(Bh) and Pk−1

pw,d(Bh)with the same degree k in the local BEM

solver. This choice is appropriate, since the trace of functions in V k
h on the boundary

of an element lies in the used boundary element space. Furthermore, we point out
that Pk(K) ⊂ V k

h

∣

∣

K
and for a polynomial p ∈ Pk(K) it is γK0 p ∈ Pk

pw(∂K)

and, in particular, γK1 p ∈ Pk−1
pw,d(∂K). Thus, the local BEM solver is exact, up to

quadrature errors, for all polynomials contained in V k
h . The choice of the boundary

mesh Bh, however, is still open. It turns out that Bh = Th(∂K) is an adequate
choice, i.e., the naturally given boundary mesh consisting of edges (d = 2) and
triangular faces (d = 3) of the polytopal elements. This mesh is also the coarsest
possible one to discretize ∂K .

The boundary element matrices only depend on the geometry and on the
discretization of ∂K , but they are independent of the basis functions of the BEM-
based FEM. Thus, the matrices are precomputed once per element and they are used
throughout the simulation for the setup of the global FEM matrix as well as for
the evaluation of all functions of V k

h insight elements and for the approximation of
their Neumann traces on the skeleton of the domain. If the mesh Kh consists of
a few element types only, it is possible to compute the BEM matrices solely for
the representative elements since they are invariant under translation and rotation.
Consequently, a kind of lookup table can be used to reduce the computational
cost by using the same matrices for several elements, see Sect. 6.2.6. Beside this
improvement, we point out that the boundary element matrices in our application
are rather small because of the coarse meshes Bh = Th(∂K) and the fact that the
number of nodes and the number of edges/faces is uniformly bounded, cf. Sect. 2.2.

Finally, the assembling of the global FEM matrix is performed as usual by adding
up the local element-wise contributions. Here, the matrix

Sunsym
K,h or SK,h

serves as a local stiffness matrix in the BEM-based FEM simulation.

Remark 4.7 The 2D implementation of the BEM-based FEM, used in all numerical
examples in this book, utilizes SK,h as local stiffness matrix. The entries of the
boundary element matrices are computed by means of a fully numeric integration
routine involving adaptive quadratures techniques. The 3D implementation, in
contrary, is set up on a semi-analytic integration technique for the computation
of the boundary element matrices and the assembling of the global FEM matrix
is performed using Sunsym

K,h as local stiffness matrix. In both cases, the represen-
tation formulas are evaluated with analytic expressions. As already mentioned,
the boundary element matrices are rather small. Therefore, no additional matrix
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compression techniques like the Adaptive Cross Approximation (ACA) have been
applied, cf. [20, 144, 148]. Furthermore, the inversion of the single-layer potential
matrix VK,h is done with the help of an efficient LAPACK [6] routine.

Local Nyström Solver
We restrict ourselves to two-dimensions and proceed as in Sect. 4.4. The bound-
ary ∂K of a polygonal element is prescribed as a union of straight lines and can
thus be parametrized by a piecewise smooth curve easily. The number of boundary
segmentsM corresponds to the number of edges, and the vertices z� are given by the
nodes of the element. For the approximation of the bilinear form of the global FEM
formulation, we proceed with the local volume integrals (∇uh,∇vh)L2(K), since
the Neumann trace γK1 uh is not accessible directly by the Nyström approximation.
Consequently, the elements are subdivided into triangles and a quadrature rule is
applied on each of them, where the evaluations of ∇uh and ∇vh are realized by
means of (4.41).

The Nyström approximation has to be performed for each basis function. This
involves the solution of a system of linear equations (4.39) each. In contrast, the
local BEM solver only inverts one matrix per element. Furthermore, an effective
generalization of the Nyström approximation to 3D is not obvious and the use of
volume quadrature is unpleasant. But, the implementation of a Nyström code is
much easier than the appropriate numerical approximation of the BEM matrices.
Furthermore, due to the sigmoidal change-of-variables the Nyström approximation
copes with singularities that appear at reentrant corners. The BEM, which is
applied on the coarsest possible mesh, might need additional attention on this, see
Sect. 4.5.2.2.

In order to bypass the unpleasant volume integration in the evaluation of the
global FEM bilinear form using the local Nyström solver, it is possible to apply
an advanced strategy. In [135], the authors have proposed a Nyström discretization
using harmonic conjugates which directly gives access to the Neumann trace of
the approximation. Consequently, this approach can be applied to approximate the
boundary integrals (γ K1 uh, γ

K
0 vh)L2(∂K) in the reformulation of the FEM bilinear

form such that volume integrals are avoided. Beside this, the Nyström approach
relies on a piecewise smooth boundary curve only and therefore, it opens the
developments towards polygonal elements with curved edges, see [5].

4.5.2 Numerical Examples and Comparison

In this section we substantiate our considerations on the local solvers. Numerical
examples for the Nyström approximation as well as for the BEM have been
presented in the previous sections. Furthermore, the whole book contains examples
for the BEM-based FEM using the local BEM solver. Therefore, we restrict
ourselves here to demonstrate the applicability of the local Nyström solver and
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discuss a comparison of the two solvers in the case of the presence of singularities
in the approximation space V k

h .

4.5.2.1 Interpolation with Local Nyström Solver

To demonstrate the interpolation properties, we first interpolate the smooth function

v(x) = sin(2πx1) sin(2πx2) for x ∈ Ω = (0, 1)2

on two different families of meshes which have already been used in a former exam-
ple. The first family has been generated by the software package PolyMesher [167],
and consists of convex polygons that are primarily pentagons and hexagons. The
second family consist of rectangles and L-shaped elements, and has been chosen to
illustrate that the presence of non-convex elements does not negatively impact the
interpolation properties of the associated local spaces. The meshes with the convex
and L-shaped elements are depicted in Figs. 2.14 and 2.16, respectively. The relative
interpolation errors for

Ikh : H 2(Ω) → V k
h

in the H 1- as well as in the L2-norm are presented with respect to the mesh size h
in logarithmic scale in Fig. 4.4 for different approximation orders k. The results for
the meshes generated by PolyMesher are visualized with a solid line whereas the
results for the meshes with L-shaped elements are given with a dashed line. We
observe optimal rates of convergence for both families of meshes as expected from
the theory developed in Chap. 2.
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Fig. 4.4 Relative interpolation error in H 1-norm (left) and L2-norm (right) with respect to the
mesh size h on meshes produced by PolyMesher (lines, cf. Fig. 2.14) and meshes with L-shaped
elements (dashed, cf. Fig. 2.16), for k = 1, 2, 3 and local Nyström solver
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4.5.2.2 Comparison of Local Solvers for L-Domain

In a second example, we make use of polar coordinates x = (r cosφ, r sin φ)�. The
function

v(x) = r2/3 sin(2(φ − π/2)/3) for x ∈ Ω = (−1, 1)2 \ [0, 1]2

is interpolated in the space V 1
h . This function exhibits the typical singularity at

the reentrant corner, which is located in the origin of the coordinate system. We
compare the L2-interpolation error for three families of meshes, see Fig. 4.5, using
the local Nyström solver. Afterwards, we compare the Nyström solver with a naive
application of the local BEM solver and we discuss improvements.

We specify the meshes by a discretization parameter n ∼ h−1 instead of the mesh
size h. The first family is denoted by K 1

n and the nth mesh consists of one L-shaped
element, (−1/3, 1/3)2 \[0, 1/3]2, and 24n2 squares of size (3n)−1 × (3n)−1. Thus,
K 1

n has (2n + 1)(12n + 1) + 1 vertices. The second family K 2
n solely consists

of congruent squares of size (3n)−1 × (3n)−1 such that, the nth mesh has 27n2

elements. The third family K 3
n is obtained from K 2

n by agglomerating the three
squares that have the origin as a vertex. The vertices in the meshes coincide with the
nodes in the corresponding FEM discretization. For all square elements in either
mesh, the local spaces are the bilinear functions. If K is the L-shaped element
in K 1

n , then it contains 6n + 2 nodes, i.e. degrees of freedom, on its boundary
and V 1

h

∣

∣

K
contains functions having the correct singular behaviour at the reentrant

Fig. 4.5 First four meshes of first family K 1
n (top), second family K 2

n (middle), and third
family K 3

n (bottom)
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Table 4.8 Relative L2-error (err) for interpolation in V 1
h for the three families of meshes depicted

in Fig. 4.5, and numerical order of convergence (noc) with respect to the number of degrees of
freedom (DoF)

First family Second family Third family

DoF err noc DoF err noc DoF err noc

40 3.24 × 10−3 – 40 1.26 × 10−2 – 40 3.24 × 10−3 –

126 8.02 × 10−4 1.22 133 4.00 × 10−3 0.96 133 1.12 × 10−3 0.89

260 3.55 × 10−4 1.12 280 2.04 × 10−3 0.90 280 5.87 × 10−4 0.86

442 1.99 × 10−4 1.09 408 1.46 × 10−3 0.89 408 4.25 × 10−4 0.86

672 1.27 × 10−4 1.07 833 7.85 × 10−4 0.87 833 2.32 × 10−4 0.85

950 8.79 × 10−5 1.06 1045 6.45 × 10−4 0.86 1045 1.92 × 10−4 0.84

1276 6.44 × 10−5 1.05 1281 5.42 × 10−4 0.86 1281 1.61 × 10−4 0.84

corner. If K is the L-shaped element in K 3
n , then it contains only 8 nodes, i.e.

degrees of freedom, on the boundary and V 1
h

∣

∣

K
also contains functions having the

correct singular behaviour at the reentrant corner.
In Table 4.8, the relative interpolation error in the L2-norm is given for all

three sequences of meshes, maintaining comparable numbers of degrees of freedom
between the spaces. Furthermore, the numerical order of convergence (noc) is given.
This is an estimate of the exponent q in the error model C DoF−q . Standard bilinear
interpolation theory for functions v ∈ H 1+s(Ω) on the second family of meshes
yields ‖v − I1

hv‖L2(Ω) = O(DoF−(1+s)/2), i.e. q = (1 + s)/2. Since v ∈ H 1+s(Ω)

for any s < 2/3, we expect to see essentially q = 5/6 for the second family, which
is what the experiments indicate.

For the first family of meshes, we achieve O(DoF−1) convergence, and we
explain why this is expected. Let K denote the L-shaped element in Kn,1. Since
v − I1

hv is harmonic in K , its extreme values occur on ∂K , where I1
hv is piecewise

linear and agrees with v at the vertices. We note that v − I1
hv = 0 on the two (long)

edges touching the origin, so ‖v − I1
hv‖L∞(K) = ‖v − I1

hv‖L∞(∂KI ), where ∂KI

is ∂K \ ∂Ω . Let E be an edge of ∂KI , having length h = 1/(3n). Standard 1D
interpolation estimates imply that ‖v − I1

hv‖L∞(E) ≤ h2‖∂2v/∂t2‖L∞(E), where
the derivatives are taken in the tangential direction. We deduce that

‖v−I1
hv‖2

L2(K)
≤ |K|‖v−I1

hv‖2
L∞(K) ≤ h4|K|‖∂2v/∂t2‖2

L∞(∂KI )
≤ 1

3h
4|v|2

W 2∞(Ω\K) .

For each square element K ′, essentially the same argument yields

‖v − I1
hv‖2

L2(K
′) ≤ h6|v|2

W 2∞(Ω\K) .
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From this, we determine that

‖v−I1
hv‖2

L2(Ω) ≤
(

1
3h

4 + h6(|K 1
n | − 1)

)

|v|2
W 2∞(Ω\K) =

(

1
3h

4 + 8
3h

4
)

|v|2
W 2∞(Ω\K) .

In other words, ‖v − I1
hv‖L2(Ω) = O(h2) = O(DoF−1).

Now suppose that K is the L-shaped element in K 3
n with edge length h. Since

the maximal interpolation error happens on the boundary ∂K , we estimate it directly
by computing the linear interpolant on each edge, and comparing it with v on that
edge. We determine that

‖v−I1
hv‖2

L2(K)
≤ 3h2‖v−I1

hv‖2
L∞(K) ≤ 3h2(0.023201h2/3)2 ≤ 0.0016149h10/3 .

For comparison, we estimate the interpolation error for the three h × h squares in
K 2

n that touch the origin, namely for K1 = [−h, 0] × [0, h], K2 = [0, h] × [−h, 0]
and for K3 = [−h, 0] × [−h, 0], noting that K = K1 ∪ K2 ∪ K3. Since v is
most naturally expressed in polar coordinates, we convert the bilinear interpolant
I1
hv to polar coordinates on each square, and compute upper and lower bounds on

‖v − I1
hv‖L2(Kj ),

‖v − I1
hv‖L2(Dj ) ≤ ‖v − I1

hv‖L2(Kj ) ≤ ‖v − I1
hv‖L2(̂Dj )

,

where Dj, ̂Dj are sectors of disks centered at the origin, having radii h and
√

2h
respectively, and satisfying Dj ⊂ Kj ⊂ ̂Dj . These bounds are

0.172h5/3 ≤ ‖v − I1
hv‖L2(K1) = ‖v − I1

hv‖L2(K2) ≤ 0.364h5/3 ,

0.571h5/3 ≤ ‖v − I1
hv‖L2(K3) ≤ 0.941h5/3 .

This explains why the interpolation error for the third family, while being of the
same order as that of the second family, is slightly smaller.

Finally, for the first family of meshes, only the local interpolant on the (fixed)
L-shaped element K , has to be approximated numerically. For the results above
in Table 4.8, we used the Nyström approach. For comparison, we repeat the
interpolation error experiment for the first family, using instead three versions of the
local BEM solver to treat I1

hv on K . For the first version (large edges), the boundary
element mesh is precisely that suggested by K itself, consisting of two edges of
length 1/3 touching the origin, and 6n edges of length h = 1/(3n), cf. Fig. 4.6
(left). For the second version, the two long edges are each partitioned into n sub-
edges of length h, cf. Fig. 4.6 (middle). As seen in Table 4.9, the convergence for the
first version stagnates almost immediately, whereas the convergence for the second
version is similar to what has been seen for the second and third families above. So,
we see that the BEM discretization error dominates the interpolation error in these
cases, but the Nyström discretization error does not. Recalling that the BEM integral
formulation is attempting to compute γK1 v on ∂K , and γK1 v(x) = − 2

3r
−1/3 on both
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Fig. 4.6 Zoom of L-shaped element for different BEM discretizations with two large edges (left),
small edges (middle) and a graded mesh (right)

Table 4.9 Relative L2-error (err) for interpolation in V 1
h for the first family of meshes depicted

in Fig. 4.5, and numerical order of convergence (noc) with respect to the number of degrees of
freedom (DoF) with three versions of the local BEM solver

Version 1 (large edges) Version 2 (small edges) Version 3 (graded mesh)

DoF err noc DoF err noc DoF err noc

40 6.65 × 10−3 – 40 6.65 × 10−3 – 40 6.65 × 10−3 –

126 4.88 × 10−3 0.27 128 2.16 × 10−3 0.97 128 1.29 × 10−3 1.41

260 4.56 × 10−3 0.09 264 1.10 × 10−3 0.93 264 5.26 × 10−4 1.23

442 4.45 × 10−3 0.05 448 7.09 × 10−4 0.83 448 2.64 × 10−4 1.31

672 4.39 × 10−3 0.03 680 5.06 × 10−4 0.81 680 1.60 × 10−4 1.20

950 4.36 × 10−3 0.02 960 3.83 × 10−4 0.81 960 1.08 × 10−4 1.15

1276 4.34 × 10−3 0.02 1288 3.02 × 10−4 0.82 1288 7.75 × 10−5 1.12

of the edges touching the origin, it is not surprising that the BEM struggles in its
discretization. This challenge is mitigated for the local BEM solver by employing
the a priori knowledge of the singular behaviour or by a self-adaptive procedure. We
prescribe an appropriate graded mesh along the two large edges, cf. Fig. 4.6 (right),
which copes with the singularity in the Neumann trace. The underlying regularity
theory and the construction of graded meshes for the boundary element method has
been studied in [88, 161, 171]. We repeat the convergence test with the adapted
BEM discretization on the first family and retrieve the optimal rates of convergence
for the interpolation error in Table 4.9.



Chapter 5
Adaptive BEM-Based Finite Element
Method

As long as the solutions of boundary value problems are sufficiently regular, the
refinement of the mesh size h and the increase of the approximation order k in the
discretization space V k

h yields an improvement in the accuracy. In particular, this
yields optimal convergence rates. But, in most applications the regularity of the
solution is restricted due to corners of the domain or jumping physical quantities.
Therefore, it is essential to adapt the solution process to the underlying problem
in order to retrieve optimal approximation properties. In this chapter, we deal
with a posteriori error estimates which can be used to drive an adaptive mesh
refinement procedure and we recover optimal rates of convergence for the adaptive
methods in the numerical experiments in the presence of singularities. For the error
estimation, we cover the classical residual based error estimator as well as goal-
oriented techniques on general polytopal meshes. Whereas, we derive reliability
and efficiency estimates for the first mentioned estimator, we discuss the benefits
and potentials of the second one for general meshes.

5.1 Preliminaries

In the following derivations we restrict ourselves to the model problem and the
BEM-based FEM formulation given in Chap. 2. Therefore, let Ω ⊂ R

d , d = 2, 3 be
a polygonal or polyhedral domain. Its boundaryΓ = ΓD∪ΓN is split into a Dirichlet
and a Neumann part, where we assume |ΓD| > 0. Given a source term f ∈ L2(Ω),
a Dirichlet datum gD ∈ H 1/2(ΓD) as well as a Neumann datum gN ∈ L2(ΓN), the
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problem reads

− div(a∇u) = f in Ω ,

u = gD on ΓD ,

a∇u · n = gN on ΓN .

Furthermore, we restrict ourselves for the presentation in this chapter to piecewise
constant diffusion coefficients which are aligned with the mesh, i.e.

a(x) = aK for x ∈ K and K ∈ Kh

for the initial mesh and consequently for all meshes in the refinement process. The
Galerkin as well as the corresponding discrete Galerkin formulation are given in
Sect. 2.5. We assume for simplicity, that the extension of the Dirichlet data gD can
be chosen in V k

h . The Galerkin formulations thus read

Find u ∈ gD +H 1
D(Ω) :

b(u, v) = (f, v)L2(Ω) + (gN , v)L2(ΓN ) ∀v ∈ H 1
D(Ω) ,

(5.1)

and

Find uh ∈ gD + V k
h,D :

b(uh, vh) = (f, vh)L2(Ω) + (gN , vh)L2(ΓN) ∀vh ∈ V k
h,D .

(5.2)

In Chap. 2, the approximation spaces are defined and we have derived a priori error
estimates for the Galerkin approximation uh ∈ V k

h of the form

‖u− uh‖H 1(Ω) ≤ c hk |u|Hk+1(Ω) for u ∈ Hk+1(Ω) . (5.3)

As already mentioned, the convergence rate k in these estimates is linked to, and
restricted by the regularity of the solution u ∈ Hk+1(Ω). Furthermore, the estimate
cannot be evaluated for computational purposes since it contains the unknown
solution u in the right hand side. The aim of an adaptive FEM is to retrieve the
convergence O(hk), k ∈ N of the error although the exact solution is not regular
at all, i.e. u ∈ H 2(Ω). In order to achieve this, we need an error estimator that is
computable and can serve as an indicator for local refinement. We consider estimates
of the form

‖u− uh‖ ≤ c η for η2 =
∑

K∈Kh

η2
K ,
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where η = η(uh) is desirable for practical considerations. Here, ‖ · ‖ denotes
some norm and η is a computable error estimator, which depends on the current
approximation uh but not on the unknown solution u explicitly. Therefore, the
inequality is called a posteriori error estimate. The values ηK , which are assigned
to the elements K ∈ Kh, serve as error indicator over the corresponding elements.
With their help, we can monitor the approximation quality over the single elements
and we can use this information for local mesh refinement.

The preceding considerations lead to an adaptive finite element strategy, which
is often abbreviated to AFEM in the literature. This scheme can be sketched as

SOLVE → ESTIMATE → MARK → REFINE → SOLVE → · · · .

First, the discrete boundary value problem is solved on a given mesh and the error
estimator η and the error indicators ηK are computed for all elements. If the desired
accuracy is reached according to η, we are done. If not, some elements are marked
for refinement. These elements are chosen on the basis of the error indicators ηK .
Next, the marked elements are refined, and thus we obtain a new mesh which is
adapted to the problem. Afterwards, we can solve the boundary value problem on
the refined mesh and continue this procedure until the desired accuracy is reached.

For triangular meshes and piecewise linear trial functions, the first convergence
proof for the adaptive finite element method applied to the Poisson problem can be
found in [67]. Here, the mesh has to satisfy some fineness assumption. In [129], this
condition is removed and the notion of data oscillation is introduced. A general
convergence result for conforming adaptive finite elements, which is valid for
several error estimates and for a class of problems, has been published 7 years
later in [130]. The first convergence rates are proven in [36], where an additional
coarsening step is introduced and the refinement is done in such a way that a new
node lies inside each marked element of the previous mesh. In [55], the authors
show a decay rate of the energy error plus data oscillation in terms of the number of
degrees of freedom without the additional assumptions on coarsening and refining.
A state of the art discussion and an axiomatic presentation of the proof of optimal
convergence rates of adaptive finite element methods can be found in [53].

Whereas the cited theory is done for triangular meshes, we state an adaptive finite
element method on regular and stable polygonal meshes. In the SOLVE step, we
approximate the solution of the boundary value problem on the current mesh Kh.
This is done as described in Chap. 2. Solving the discrete problem, we obtain an
approximation uh ∈ V k

h on the current mesh for a fixed order k.
The ESTIMATE part serves for the computation of the a posteriori error

estimator η and local error indicators ηK . There is a great variety of estimators
in the literature. The most classical one is the residual error estimate which goes
back to [15]. This estimator measures the jumps of the conormal derivative of the
approximation uh over the element boundaries. Other estimators are obtained by
solving local Dirichlet [16] or Neumann [19] problems on element patches. The
engineering community came up with an error indicator that uses the difference
between ∇uh and its continuous approximation, see [183]. The equilibrated residual
error estimator [39] is obtained by post-processing of the approximation and belongs
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to the more general class of functional analytic error estimates [142]. Finally, we
mention the hierarchical [64] and the goal oriented [18] error estimates. For a
comparison of all these strategies see for instance [54].

After the computation of the estimator and the local error indicators, we have
to MARK several elements for refinement. There are different strategies in the
literature for this task. The most classical one is the maximum strategy which has
been proposed already in [16]. Here, all elements K ∈ Kh are marked which satisfy

ηK ≥ θ ηmax

for a given parameter 0 ≤ θ ≤ 1 and ηmax = max{ηK : K ∈ Kh}. So, the elements
with the largest error indicators are chosen for refinement. For large values of θ , the
strategy becomes more selective, whereas for small θ , we obtain almost a uniform
refinement. A similar idea is used by the modified equidistribution strategy. For a
given parameter 0 ≤ θ ≤ 1 and the global error estimator η, all elements K ∈ Kh

are marked which satisfy

ηK ≥ θ
η√|Kh| .

In this strategy one tries to reach a state where the error is distributed equally over
all elements. The parameter θ controls again the selectivity. This kind of strategy
has been used in Sect. 3.4.6 for the generation of anisotropically adapted meshes.
Finally, we mention Dörfler’s strategy, see [67]. Here, a set of elements KM ⊂ Kh

is marked such that

(

∑

K∈KM

η2
K

)1/2

≥ (1 − θ) η ,

where 0 ≤ θ < 1 is again a given parameter and η the global estimator. It is
advantageous to choose the set KM as small as possible. This can be achieved by
sorting the elements K ∈ Kh according to the value of their error indicators ηK .
Since every sorting algorithm is computationally expensive, Dörfler proposed
in [67] the following procedure with given parameter 0 < ν < 1, which is chosen
to be small.

sum = 0.0
μ = 1.0
while (sum < (1-θ)2 η2)
do

μ = μ - ν

for all K ∈ Kh

if (K is not marked)
if (ηK > μ ηmax)

mark K

sum = sum + η2
K
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Dörfler’s marking strategy was one of the key points in the proofs of convergence
and convergence rates of AFEM in the literature mentioned above.

As the name of the last step REFINE already indicates, this is the time
where the marked elements are refined. Usually, this step is more complicated for
standard methods working on triangular or quadrangular meshes because of the
strict admissibility conditions on the mesh. In such cases, it has to be guaranteed
that no hanging nodes appear. Therefore, the mesh has to be completed in the sense
that neighbouring elements are refined until all hanging nodes disappear. In the
literature, one can find several strategies like red-green refinement or newest vertex
bisection with completion algorithms, see [36, 170]. Another possibility to handle
hanging nodes is to treat them as conditional degrees of freedom, i.e., to fix the value
of the finite element functions in these points to be a suitable interpolation of their
neighbouring regular nodes. Nevertheless, the first idea with completion spreads the
local refinement into a neighbourhood and the second one produces artificial nodes.
Both scenarios are somehow unpleasant for the numerical realization. Due to the
use of the BEM-based FEM, we are in the fortune situation to cope with arbitrary
polytopal meshes. Therefore, we do not have to worry about hanging nodes because
they are incorporated as ordinary nodes in the strategy and thus contribute to the
approximation accuracy. This behaviour is discussed more precisely in Sect. 5.2.3.
The refinement only affects the marked elements and is done as described in
Sect. 2.2.3. During this refinement process with the discussed bisection algorithm,
the stability of the sequence of meshes is not preserved automatically. Thus, we
might want to enforce this property explicitly in the mesh refinement.

In certain algorithms and applications an additionalCOARSEN step is necessary
which reverses the local mesh refinement in some areas of the domain. This has been
introduced in [36] for theoretical reasons in order to prove convergence rates for
the adaptive algorithm. But also in time-dependent problems, this additional step is
meaningful if, for instance, the singularity of the solution travels through the spacial
domain. The coarsening often relies on the hierarchy of adaptive meshes obtained
during the refinement. For polytopal meshes, however, one might agglomerate
almost arbitrary elements in this step since the union of polytopes is a polytope.
This demonstrates once more the flexibility of these general meshes.

5.2 Residual Based Error Estimator

In this section, we consider one of the most classical a posteriori error estimators,
namely the residual based error estimator, and formulate it on polytopal meshes. For
the classical results on simplicial meshes see, e.g., [4, 170]. This a posteriori error
estimate bounds the difference of the exact solution and the Galerkin approximation
in the energy norm ‖ · ‖b associated to the symmetric and positive definite bilinear
form, i.e. ‖ · ‖2

b = b(·, ·). Among others, the estimate contains the jumps of the
conormal derivatives over the element interfaces. Since we are dealing with the
three- and two-dimensional case simultaneously, F ∈ Fh denotes a face (d = 3) or
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edge (d = 2), respectively. Such a jump over an internal face F ∈ Fh,Ω is defined
by

�uh�F =
(

aKγ
K
1 uh + aK ′γK

′
1 uh

) ∣

∣

∣

F
,

where K,K ′ ∈ Kh are the neighbouring elements of F with F ∈ F (K) ∩ F (K ′).
The element residual is given by

RK = f + aK�uh for K ∈ Kh ,

and the face/edge residual by

RF =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 for F ∈ Fh,D ,

gN − aKγ
K
1 uh for F ∈ Fh,N with F ∈ F (K) ,

− 1
2 �uh�F for F ∈ Fh,Ω .

We can proceed as for the two-dimensional case in [174, 180] in order to formulate
the residual based error estimator and to prove its reliability and efficiency on
polytopal meshes. This estimator involves the previously defined element and face
residuals and gives an upper bound for the Galerkin error in the energy norm which
does not contain any unknown quantity.

Theorem 5.1 (Reliability) Let Kh be a regular and stable mesh. Furthermore,
let u ∈ gD + H 1

D(Ω) and uh ∈ gD + V k
h,D be the solutions of (5.1) and (5.2),

respectively. The residual based error estimate is reliable, i.e.

‖u− uh‖b ≤ c ηR with η2
R =

∑

K∈Kh

η2
K ,

where the error indicator is defined by

η2
K = h2

K‖RK‖2
L2(K)

+
∑

F∈F (K)

hF ‖RF ‖2
L2(F )

.

The constant c > 0 only depends on the regularity and stability parameters of the
mesh, see Sect. 2.2, the approximation order k, the space dimension d and on the
diffusion coefficient a.

In this presentation it is assumed that we can compute γK1 uh analytically. However,
in the realization these terms are treated by means of boundary element methods
as discussed in Chap. 4. This approximation of the Neumann traces has been
incorporated in [180] and yields an additional term in the estimate.
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Fig. 5.1 Example of
modified neighbourhoods of
edges and elements in two
space dimensions, cf. Fig. 3.1

E ∗
E

K

∗
K

Whereas the reliability gives an upper bound for the error, the efficiency states
a local upper bound for the error indicator in terms of the approximation error and
the problem data. Beside of the neighbourhoods (3.2) of nodes, edges, faces and
elements defined in Sect. 3.1, we additionally need the following modified versions

ω∗
E =

⋃

K ′∈Kh:E∈E (K ′)
K ′ , ω∗

F =
⋃

K ′∈Kh:F∈F (K ′)
K ′ , ω∗

K =
⋃

F∈F (K)

ω∗
F , (5.4)

cf. Fig. 5.1. Furthermore, we introduce the notation ‖ · ‖b,ω for ω ⊂ Ω , which
means that the energy norm is only computed over the subset ω. More precisely, it
is ‖v‖2

b,ω = (a∇v,∇v)L2(ω) for our model problem.

Theorem 5.2 (Efficiency) Under the assumptions of Theorem 5.1, the residual
based error indicator is efficient, i.e.

ηK ≤ c

(

‖u − uh‖2
b,ω∗

K
+ h2

K‖f − ˜f ‖2
L2(ω

∗
K)

+
∑

F∈F (K)∩Fh,N

hF ‖gN − g̃N‖2
L2(F )

+ hK
∑

K ′⊂ω∗
K

‖γ K ′
1 uh − ˜γ K

′
1 uh‖2

L2(∂K
′)

)1/2

,

where ˜f , g̃N and ˜γK
′

1 uh are piecewise polynomial approximations of f , gN and

γK
′

1 uh, respectively. The constant c > 0 only depends on the regularity and
stability parameters of the mesh, see Sect. 2.2, the approximation order k, the space
dimension d and on the diffusion coefficient a.

The terms involving the data approximation ‖f − ˜f ‖L2(ω
∗
K)

and ‖gN − g̃N‖L2(F )

are often called data oscillations. They are usually of higher order. Additionally,

we have the term ‖γK ′
1 uh − ˜γK

′
1 uh‖L2(∂K ′) measuring oscillations in the Neumann

trace of the approximation uh on the boundaries of the elements. The piecewise

polynomial function ˜γK
′

1 uh might be chosen as the approximation of the Neumann
trace obtained as solution of the derived boundary integral equation from Chap. 4.
Thus, known error estimates from the boundary element method can be applied in
order to bound this term further if needed.
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Remark 5.3 Under certain conditions on the diffusion coefficient it is possible to
get the estimates in Theorems 5.1 and 5.2 robust with respect to a, see, e.g., [139].

5.2.1 Reliability

We follow the classical lines in the proof of the reliability, see, e.g., [170]. However,
we have to take care on the polytopal elements and the quasi-interpolation operators.

Proof (Theorem 5.1) The bilinear form b(·, ·) is a inner product on V = H 1
D(Ω)

due to its boundedness and ellipticity, and thus, V is a Hilbert space together with
b(·, ·) and ‖ · ‖b. The Riesz representation theorem yields

‖u− uh‖b = sup
v∈V \{0}

|R(v)|
‖v‖b with R(v) = b(u− uh, v) . (5.5)

Thus, in order to prove the theorem, we reformulate and estimate the term |R(v)|
in the following. Let vh ∈ V 1

h,D , the Galerkin orthogonality b(u− uh, vh) = 0 and
integration by parts over each element lead to

R(v) =
∑

K∈Kh

(

(RK, v − vh)L2(K) +
∑

F∈F (K)

(RF , v − vh)L2(F )

)

. (5.6)

The Cauchy–Schwarz inequality yields

|R(v)| ≤
∑

K∈Kh

(

‖RK‖L2(K)‖v − vh‖L2(K) +
∑

F∈F (K)

‖RF ‖L2(F )‖v − vh‖L2(F )

)

.

We choose vh = ICv, where IC is the Clément interpolation operator from
Sect. 3.3, which preserves the homogeneous boundary data on ΓD . Estimating the
L2-norms of v− ICv over the elements and faces with the help of Theorem 3.7, we
find

|R(v)| ≤ c
∑

K∈Kh

(

hK‖RK‖L2(K)|v|H 1(ωK)
+

∑

F∈F (K)

h
1/2
F ‖RF ‖L2(F )|v|H 1(ωF )

)

≤ c
(
∑

K∈Kh

η2
K

)1/2( ∑

K∈Kh

|v|2
H 1(ωK)

)1/2 ≤ c ηR |v|H 1(Ω) ,

where in the last two estimates we utilized several times Cauchy–Schwarz inequality
and the facts, that each element has a bounded number of faces, see Lemmata 2.7
and 2.16, and that it is covered by a uniformly bounded number of patches only, see
Lemma 3.1. Because of

√
a/amin > 1, it is |v|H 1(Ω) ≤ ‖v‖b/√amin and thus (5.5)

together with the previous inequality completes the proof. ��
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5.2.2 Efficiency

The classical proof of efficiency for the residual based error estimator makes use of
special bubble functions over the simplicial meshes. These functions have support
over single elements and are used to localize the residuals. We adapt the bubble
function technique to polytopal meshes. Therefore, let φT and φF be the usual
polynomial bubble functions over the auxiliary discretization Th(Kh) consisting
of triangles (d = 2) or tetrahedra (d = 3), see [4, 170]. Here, φT is a cubic (d = 2)
or quartic (d = 3) polynomial over the triangle/tetrahedron T ∈ Th(Kh), which
vanishes on Ω \T and in particular on ∂T . It is usually defined as the product of the
barycentric coordinates of the triangle and tetrahedron, respectively, and scaled such
that its maximum is one. The edge bubble φF is a piecewise quadratic (d = 2) or
cubic (d = 3) polynomial over the adjacent triangles/tetrahedra in Th(Kh), sharing
the common edge/face F , and it vanishes elsewhere. This bubble function can also
be defined as scaled product of barycentric coordinates.

At first glance, we might define the bubble functions over polytopes as product
of the first order basis functions defined in Sect. 2.3.1 or one might use the element
bubble functions defined in Sect. 2.3.2. However, in these cases the functions are
no polynomials that complicates their treatment in the analysis. In contrast, we
define the new bubble functions over the polytopal mesh with the help of the bubble
functions over the auxiliary discretization, namely

ϕK =
∑

T ∈Th(K)

φT and ϕF = φF

for K ∈ Kh and F ∈ Fh.

Lemma 5.4 Let K ∈ Kh and F ∈ F (K) of a regular and stable mesh Kh. The
bubble functions satisfy

supp ϕK = K , 0 ≤ϕK ≤ 1 ,

supp ϕF ⊂ ω∗
F , 0 ≤ϕF ≤ 1 ,

and fulfil for p ∈ Pk(K) the estimates

‖p‖2
L2(K)

≤ c (ϕKp, p)L2(K) , |ϕKp|H 1(K) ≤ ch−1
K ‖p‖L2(K) ,

‖p‖2
L2(F )

≤ c (ϕFp, p)L2(F ) , |ϕFp|H 1(K) ≤ ch
−1/2
F ‖p‖L2(F ) ,

‖ϕFp‖L2(K) ≤ ch
1/2
F ‖p‖L2(F ) .

The constants c > 0 only depend on the regularity and stability parameters of the
mesh, see Sect. 2.2, the approximation order k and the space dimension d .
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Proof Similar estimates are valid for φT and φF on triangular and tetrahedral
meshes, see [4, 170]. By the use of Cauchy–Schwarz inequality and the properties
of the auxiliary discretization Th(Kh) the estimates translate to the new bubble
functions. The details of the proof are omitted. ��

With these ingredients the proof of Theorem 5.2 can be addressed. The arguments
follow the line of [4].

Proof (Theorem 5.2) Let ˜RK ∈ Pk(K) be a polynomial approximation of the
element residual RK for K ∈ Kh. For v = ϕK˜RK ∈ H 1

0 (K) and vh = 0 Eq. (5.6)
yields

b(u− uh, ϕK˜RK) = R(ϕK˜RK) = (RK, ϕK˜RK)L2(K) .

Lemma 5.4 gives

‖˜RK‖2
L2(K)

≤ c (ϕK˜RK, ˜RK)L2(K)

= c
(

(ϕK˜RK, ˜RK − RK)L2(K) + (ϕK˜RK,RK)L2(K)

)

≤ c
(‖˜RK‖L2(K)‖˜RK − RK‖L2(K) + b(u− uh, ϕK˜RK)

)

,

and furthermore,

b(u−uh, ϕK˜RK) ≤ c |u−uh|H 1(K)|ϕK˜RK |H 1(K) ≤ ch−1
K ‖u−uh‖b,K‖˜RK‖L2(K) .

We thus get

‖˜RK‖L2(K) ≤ c
(

h−1
K ‖u− uh‖b,K + ‖˜RK − RK‖L2(K)

)

,

and by the reverse triangle inequality

‖RK‖L2(K) ≤ c
(

h−1
K ‖u− uh‖b,K + ‖˜RK − RK‖L2(K)

)

.

Next, we consider the face residual. Let ˜RF ∈ Pk(F ) be an approximation
of RF , with F ∈ Fh,Ω . The case F ∈ Fh,N is treated analogously. For
v = ϕF ˜RF ∈ H 1

0 (ω
∗
F ) and vh = 0 Eq. (5.6) yields in this case

b(u−uh, ϕF ˜RF ) = R(ϕF ˜RF ) =
∑

K⊂ω∗
F

(

(RK, ϕF ˜RF )L2(K) + (RF , ϕF ˜RF )L2(F )

)

.
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Applying Lemma 5.4 and the previous formula leads to

‖˜RF ‖2
L2(F )

≤ c (ϕF ˜RF , ˜RF )L2(F )

= c
(

(ϕF ˜RF , ˜RF − RF )L2(F ) + (ϕF ˜RF ,RF )L2(F )

)

≤ c
(‖˜RF ‖L2(F )‖˜RF − RF ‖L2(F ) + (ϕF ˜RF ,RF )L2(F )

)

,

and

|(ϕF ˜RF ,RF )L2(F )| = 1
2

∣

∣

∣

∣

b(u− uh, ϕF ˜RF )−
∑

K⊂ω∗
F

(RK, ϕF ˜RF )L2(K)

∣

∣

∣

∣

≤ c

(

|u− uh|H 1(ω∗
F )

|ϕF ˜RF |H 1(ω∗
F )

+
∑

K⊂ω∗
F

‖RK‖L2(K)‖ϕF ˜RF ‖L2(K)

)

≤ c

(

h
−1/2
F ‖u− uh‖b,ω∗

F
+
∑

K⊂ω∗
F

h
1/2
F ‖RK‖L2(K)

)

‖˜RF ‖L2(F ) .

Therefore, it is

‖˜RF ‖L2(F ) ≤ c

(

h
−1/2
F ‖u−uh‖b,ω∗

F
+
∑

K⊂ω∗
F

h
1/2
F ‖RK‖L2(K)+‖˜RF −RF ‖L2(F )

)

.

By the reverse triangle inequality, h−1
K ≤ h−1

F and the previous estimate for
‖RK‖L2(K), we obtain

‖RF ‖L2(F ) ≤ c

(

h
−1/2
F

‖u−uh‖b,ω∗
F

+
∑

K⊂ω∗
F

h
1/2
F

‖˜RK−RK‖L2(K)+‖˜RF −RF ‖L2(F )

)

.

Let ˜f , g̃N and ˜γK1 uh be piecewise polynomial approximations of f , gN and γK1 uh,
respectively. We choose ˜RK = ˜f + aK�uh for K ∈ Kh and

˜RF =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

0 for F ∈ Fh,D ,

g̃N − aK
˜
γK1 uh for F ∈ Fh,N with F ∈ F (K) ,

− 1
2

(

aK
˜
γK1 uh + aK ′ ˜γK ′

1 uh

)

for F ∈ Fh,Ω with F ⊂ F (K) ∩ F (K ′) .

Consequently, we have ˜RK ∈ Pk(K) and ˜RF ∈ Pk(F ). Finally, the estimates for
‖RK‖L2(K) and ‖RF ‖L2(F ) yield after some applications of the Cauchy–Schwarz
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inequality and due to hF ≤ hK and |F (K)| ≤ c, see Lemmata 2.7 and 2.16,

η2
K ≤ c

(

‖u− uh‖2
b,ω∗

K
+ h2

K

∑

K ′⊂ω∗
K

‖˜RK ′ − RK ′ ‖2
L2(K

′) +
∑

F∈F (K)

hF ‖˜RF − RF ‖2
L2(F )

)

≤ c

(

‖u− uh‖2
b,ω∗

K
+ h2

K‖f − ˜f ‖2
L2(ω

∗
K
)

+
∑

F∈F (K)∩Fh,N

hF ‖gN − g̃N‖2
L2(F )

+ hK
∑

K ′⊂ω∗
K

‖γK ′
1 uh − ˜γK

′
1 uh‖2

L2(∂K
′)

)

.

��

5.2.3 Numerical Experiments

The residual based error estimate can be used as stopping criteria to check if the
desired accuracy is reached in a simulation on a sequence of meshes. However, it
is well known that residual based estimators overestimate the true error a lot. But,
because of the equivalence of the norms ‖ · ‖1,Ω and ‖ · ‖b on H 1

D(Ω), we can still
use ηR to verify numerically the convergence rates for uniform mesh refinement
when h → 0. On the other hand, we can utilize the error indicators in order to
gauge the approximation quality over the single elements and drive an adaptive
mesh refinement strategy with this information. The adaptive algorithm discussed
in Sect. 5.1, has been implemented with Dörfler’s marking strategy. During the
refinement of the mesh we enforce the stability condition. This is done by refining
elements that do not satisfy hK < cT hE for a threshold parameter cT .

In the following we present numerical examples in 2-dimensions on uniformly
and adaptively refined meshes. For the convergence analysis, we consider the
error with respect to the mesh size h = max{hK : K ∈ Kh} for uniform
refinement. For the adaptive BEM-based FEM, the convergence is studied with
respect to the number of degrees of freedom (DoF). On uniform meshes the relation
DoF = O(h−2) holds, whereas on adaptive meshes the mesh size does not decrease
uniformly.

Experiment 1: Uniform Refinement Strategy
Consider the Dirichlet boundary value problem

−�u = f in Ω = (0, 1)2 , u = 0 on Γ ,

where f ∈ L2(Ω) is chosen in such a way that u(x) = sin(πx1) sin(πx2) for x ∈ Ω

is the exact solution. The solution is smooth, and thus, we expect optimal rates of
convergence for uniform mesh refinement. The problem is treated with the BEM-
based FEM for different approximation orders k = 1, 2, 3 on a sequence of meshes
with L-shaped elements of decreasing diameter, see Fig. 5.2 left. In Fig. 5.3, we
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Fig. 5.2 Mesh with L-shaped elements for uniform refinement (left), initial mesh for adaptive
refinement (middle), adaptive refined mesh after 30 steps for k = 2 with solution having a
singularity in the origin of the coordinate system (right)
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Fig. 5.3 Convergence graph for sequence of uniform meshes with L-shaped elements and V k
h ,

k = 1, 2, 3, where ηR/|u|H 1(Ω) is given with respect to h in logarithmic scale

give the convergence graphs in logarithmic scale for the value ηR/|u|H 1(Ω), which
behaves like the relative H 1-error, with respect to the mesh size h. The example
confirms the theoretical rates of convergence stated in Sect. 2.5 on a sequence of
meshes with non-convex elements. The highly accurate computations for V 3

h involve
approximately 690,000 degrees of freedom. Due to the decoupling of the variational
formulation discussed in Sect. 2.5 into (2.31) and (2.32) the global system of linear
equations has about 540,000 unknowns and the remaining degrees of freedom are
determined by local projections.
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Experiment 2: Adaptive Refinement for Solution with Singularity
LetΩ = (−1, 1)2 ⊂ R

2 be split into two domains,Ω1 = Ω \Ω2 and Ω2 = (0, 1)2.
Consider the boundary value problem

− div (a∇u) = 0 in Ω , u = gD on Γ ,

where the coefficient a is given by

a =
{

1 in Ω1 ,

100 in Ω2 .

Using polar coordinates (r, φ) such that x = (r cosφ, r sin φ)�, we choose the
boundary data as restriction of the global function

gD(x) = rλ
{

cos(λ(φ − π/4)) for x ∈ R
2+,

β cos(λ(π − |φ − π/4|)) else,

with

λ = 4

π
arctan

(
√

103

301

)

and β = −100
sin
(

λπ4

)

sin
(

λ 3π
4

) .

This problem is constructed in such a way that u = gD is the exact solution in Ω .
Due to the ratio of the jumping coefficient, it is u ∈ H 2(Ω) with a singularity in
the origin of the coordinate system. Consequently, uniform mesh refinement does
not yield optimal rates of convergence. Since f = 0, it suffices to approximate the
solution in V k

h,H with the variational formulation (2.31). Starting from an initial
polygonal mesh, see Fig. 5.2 middle, the adaptive BEM-based FEM produces a
sequence of locally refined meshes. The approach detects the singularity in the
origin of the coordinate system and polygonal elements appear naturally during the
local refinement, see Fig. 5.2 right. In Fig. 5.4, the energy error ‖u−uh‖b as well as
the error estimator ηR are plotted with respect to the number of degrees of freedom
in logarithmic scale. As expected by the theory the residual based error estimate
represents the behaviour of the energy error very well. Furthermore, the adaptive
approach yields optimal rates of convergence in the presence of a singularity, namely
a slope of −k/2 in the logarithmic plot.

Experiment 3: Adaptive Refinement, Closer Look
Using polar coordinates again, let Ω = {x ∈ R

2 : |r| < 1 and 0 < ϕ < 3π/2} and
the boundary data gD be chosen in such a way that

u(r cosφ, r sinφ) = r2/3 sin

(

2φ

3

)
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Fig. 5.4 Convergence graph for adaptive mesh refinement with V k
h,H , k = 1, 2, 3, the energy error

and the residual based error estimator are given with respect to the number of degrees of freedom
in logarithmic sale
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Fig. 5.5 Closer look at the error distribution |u−uh|2H 1(K)
for the first three meshes in the adaptive

refinement approach

is the solution of the boundary value problem

−Δu = 0 in Ω, u = gD on Γ.

The function u is constructed in such a way that its derivatives have a singularity at
the origin of the coordinate system. The boundary value problem is discretized using
the first order approximation space V 1

h and we analyse the first steps in the adaptive
refinement strategy in more detail. This will stress the use and the flexibility of
polygonal meshes in adaptive computations. For this purpose the error distribution is
visualized in Fig. 5.5 for the first three meshes. Each elementK is colored according
to the value |u − uh|2H 1(K)

. The adaptive algorithm apparently marks and refines
the elements with the largest error contribution. The introduced nodes on straight
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edges (hanging nodes for classic meshes) are not resolved. Each of these nodes
corresponds to a degree of freedom in the finite element computation and thus,
improves the approximation within the neighbouring elements. For example, the
upper right triangle close to the reentrant corner in Fig. 5.5 is not refined. But,
the error reduces due to the additional nodes on the left edge, namely, the triangle
became a pentagon in the right most mesh.

Experiment 4: Solution with Strong Internal Layer
Let Ω = (0, 1)2 and f be chosen such that

u(x) = 16x1(1 − x1)x2(1 − x2) arctan(25x1 − 100x2 + 50) ,

is the exact solution of

−�u = f in Ω , u = 0 on Γ .

Since u is arbitrary smooth, we expect optimal rates of convergence in the case
of uniform mesh refinement in an asymptotic regime. Although the solution u is
smooth, it has a strong internal layer along the line x2 = 1/2+x1/4. The initial mesh
is visualized in Fig. 5.6 (left). Furthermore, the first uniform refined mesh is given
in the middle of Fig. 5.6. In the right most picture of Fig. 5.6 the adaptively refined
mesh for V 1

h and a relative error of approximately 0.2 is presented. This mesh has
been achieved after 19 refinement steps. It is seen that the adaptive strategy refines
along the internal layer of the exact solution.

In Fig. 5.7, we give the convergence graphs for the first, second and third order
method and for the uniform as well as the adaptive strategy. In all cases we
recover the optimal rates of convergence which correspond to a slope of −k/2.
But, for the uniform refinement, the internal layer has to be resolved sufficiently
before the optimal rates are achieved. Since the adaptive strategy resolves the layer

0 1
0

1

0 1
0

1

0 1
0

1

Fig. 5.6 Initial mesh (left), uniformly refined mesh (middle), adaptively refined mesh for k = 1
and ‖u− uh‖b/‖u‖b ≈ 0.2 (right) for the solution with an internal layer
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Fig. 5.7 Convergence of the relative energy error ‖u − uh‖b/‖u‖b with respect to the number of
degrees of freedom for the approximation orders k = 1, 2, 3 on uniformly and adaptively refined
meshes

automatically, the adaptive BEM-based FEM is much more accurate for the same
number of unknowns.

In Chap. 3, we have introduced the notion of anisotropic polytopal meshes. Such
meshes are especially suited for the approximation of functions with strong layers.
In Sect. 3.4.6, an algorithm has been given in order to adapt the mesh to the layers
of a function sought to be approximated. In this algorithm, it has been assumed
that the function and its derivatives are known. The anisotropic polytopal meshes
clearly outperformed the uniformly and adaptively refined meshes with isotropic
elements in that case. In this section, we have investigated an adaptive refinement
method that does not need the knowledge of the exact solution and the refinement is
done fully automatic. So the next step would be to combine the adaptive algorithm
driven by a posteriori error estimates with anisotropic mesh refinement for problems
containing strong layers in their solutions.

5.3 Goal-Oriented Error Estimation

In the previous section, the adaptive algorithm has been driven by an error indicator
penalizing the error measured in the energy norm. In engineering applications,
however, this quantity might not be of importance for the considered simulation.
In this case, goal-oriented error estimation techniques are advantages that enable
adaptive refinements with different emphases. The dual-weighted residual (DWR)
method allows for estimating the error u − uh between the exact solution of the
boundary value problem and its Galerkin approximation in terms of a general (error)
functionals J . These functionals can be norms but also more general expressions,
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like point-values, (local) averages or other quantities of interest. Error estimators
based on the DWR method always consist of residual evaluations, that are weighted
by (local) adjoint sensitivity measures. These sensitivities are the solution to adjoint
problems that measure the influence of the error functional J . The DWR technique
goes back to [21, 22] and is motivated by [74]. Important further developments in
the early stages have been accomplished in [3, 4, 18, 37, 83, 134, 137, 141].

In this section, we restrict ourselves to the two-dimensional case d = 2 although
the approach is applicable in general dimensions. Thus, let Ω ⊂ R

2 be a bounded
polygonal domain with boundary Γ = ΓD ∪ ΓN and |ΓD| > 0. Furthermore, we
only consider the Poisson problem, i.e. a ≡ 1,

−�u = f in Ω ,

u = 0 on ΓD ,

∇u · n = gN on ΓN ,

with source function f , homogeneous Dirichlet condition and Neumann data gN
for simplicity. This setting is sufficient to highlight the key concepts which can be
applied to more general problems.

5.3.1 DWR Method for Linear Goal Functionals

The DWR method is aimed to measure the error in an adaptive algorithm via certain
quantities of interest, i.e., goal functionals J (·). Although the theory is applicable for
non-linear goal functionals, see [22], we restrict ourselves to the linear case. Such
quantities of interest can be mean values of the solution and its derivatives or more
involved technical values such as drag or lift in fluid dynamics. These examples
include, for instance,

J (u) =
∫

Ω

u dx , J (u) =
∫

Γ

∇u · n ds , J (u) = u(x∗), x∗ ∈ Ω , (5.7)

that are a mean value, a line integral related to the stress values in elasticity and
a point value. If the exact solution u is unknown and only its approximation by a
discrete function uh is given, the question arises, whether we can bound the error

J (u)− J (uh) .

The DWR approach tackles this task by exploiting a dual problem

Find z ∈ H 1
D(Ω) : b(v, z) = J (v) ∀v ∈ H 1

D(Ω) , (5.8)



5.3 Goal-Oriented Error Estimation 159

where the bilinear form coincides for the Poisson equation with the one in the primal
problem. The boundary conditions are of homogeneous Dirichlet and Neumann
type. The derivation of the dual (or better ‘adjoint’) problem follows the Lagrangian
formalism that is well-known in optimization. The original motivation is provided
in detail in [22]. The solvability and regularity theory for (5.8) follows standard
arguments. Thus, we may recognize that the last functional in (5.7), the point
evaluation, does not fall into this theory, since it is not defined for functions in
H 1(Ω). Consequently, one may regularize the point evaluation by a convolution
with a mollifier, i.e. with an appropriate smooth function having small local support.

Choosing v = u − uh in (5.8) and applying the Galerkin orthogonality, namely
b(u− uh, vh) = 0 for all vh ∈ V k

h,D , yields

b(u− uh, z − vh) = J (u− uh) .

This is a key point in the DWR method. Since vh is an arbitrary discrete test function,
we can, for instance, use an interpolation or projection vh = ihz to obtain an error
representation.

Proposition 5.5 For the Galerkin approximation of the above bilinear form, we
have the a posteriori error identity:

J (u− uh) = b(u− uh, z − ihz) . (5.9)

We cannot simply evaluate the error identity because z is only analytically known in
very special cases. Consequently, in order to obtain a computable error representa-
tion, z is approximated through a discrete function z∗h, that is, as the primal problem
itself, obtained from solving a discretized version of (5.8).

Proposition 5.6 Let z∗h be the discrete dual function. For the Galerkin approxima-
tion of the above bilinear form, we have the a posteriori error representation

J (u− uh) ≈ b(u− uh, z
∗
h − ihz

∗
h) .

The straight forward choice of z∗h = zh ∈ V k
h,D as solution of

b(vh, zh) = J (vh) ∀vh ∈ V k
h,D

is not applicable. Since zh − ihzh ∈ V k
h,D and due to the Galerkin orthogonality this

choice yields

J (u− uh) ≈ b(u− uh, zh − ihzh) = 0 .

For the evaluation of the error in the form (5.9), we have to calculate approximations
z∗h − ihz

∗
h of the interpolation errors z − ihz. This approximation is the critical part

in the DWR framework that limits strict reliability [132]. A remedy is only given by
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spending sufficient effort on the estimation of these weights on fine meshes [22, 52]
or an additional control of the approximation error in z − ihz, see [132]. As just
mentioned, it is well-known that the discrete approximation of z− ihz must be finer
than the trial space for the primal variable as the residual is orthogonal on V k

h,D .
On triangular and quadrilateral meshes there are basically two main strategies in the
literature.

• Global more accurate approximation: The dual problem is either treated on the
same mesh with a higher order approximation space or on a finer mesh with the
same order approximation space. Both variants are quite expensive [22].

• Local more accurate reconstruction: The primal and dual problem are treated on
the same mesh with the same approximation space, but, the dual approximation
is post-processed locally using a patch-mesh structure [22]. This is a cheaper
alternative, but needs an agglomeration of elements.

Both strategies are applicable on polygonal meshes. However, we even propose a
new approach which is based on a local post-processing using a single element.
This enables the treatment of the primal and dual problem with the same mesh and
approximation space followed by an element-wise higher order reconstruction in
order to obtain z∗h. Detailed explanations of this variant are provided in Sect. 5.3.3.2.

In order to obtain an error estimator, the right hand side of (5.9) is either estimated
or approximated by some η(uh, z). The quality of this error estimator with respect
to the true error is measured in terms of the effectivity index Ieff with

Ieff(uh, z) =
∣

∣

∣

∣

η(uh, z)

J (u− uh)

∣

∣

∣

∣

→ 1 for h → 0 . (5.10)

In many applications, the asymptotic sharpness 1 cannot be achieved, but it should
be emphasized that even overestimations of a factor 2 or 4 still yield a significant
reduction of the computational cost in order to obtain a desired accuracy for the
goal functional J (u). The residual based error estimator studied in Sect. 5.2 is
known to have a bad effectivity. In the numerical experiments in Sect. 5.2.3 the
error estimator ηR overestimated the true error by a factor between 5 and 10 in the
problem with singular solution and by a factor between 7 and 22 in the problem with
smooth solution containing an internal layer. The DWR method produces sharper
estimates.

In the following sections, we explain the realization of the dual-weighted residual
method for goal-oriented error estimation on polygonal discretizations. We first
introduce special meshes and then recall various strategies to discretize the primal
and dual problems. In particular, we introduce an element-based post-processing
of the dual solution. The above mentioned error estimator η(uh, z) is the basis for
the derivation of a posteriori error estimates. In order to use this formulation from
Proposition 5.5 for mesh refinement, we need to localize the error contributions on
each element. Therefore, two error representations are finally recapitulated: using
the classical method with strong forms of the differential operator, and secondly,
using a partition of unity for the variational form.
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5.3.2 Preparation for Post-processing: Special Meshes

The local post-processing of the dual solution might be done on coarsened meshes
obtained by agglomerating polygonal elements in a classical way. However, on these
general meshes we might alternatively use novel kinds of hierarchies. In the later
described post-processing of the dual solution, we exploit this possibility. Therefore,
we do not allow general polygonal meshes Kh as described in Sect. 2.2. Here, we
restrict ourselves to regular and stable meshes Kh with polygonal elements having
an even number of nodes, such that every second node lies on an straight part
of the boundary of the element. Furthermore, we assume that by removing these
nodes from the mesh we obtain a coarsened polygonal mesh K2h which is still
regular. In Fig. 5.8, we visualize such meshes Kh in the middle column and their
corresponding coarsened meshes K2h in the left column. Using these meshes we
define the approximation spaces V k

h and V k
2h, respectively.

The condition on the node count for Kh is not a real restriction. We can always
introduce some additional nodes in the mesh to ensure the requirements. This is also
done when we refine some given meshes. The middle column of Fig. 5.8 shows a
sequence of uniform refined meshes which are used in later numerical experiments
in Sect. 5.3.5. In the refinement procedure each element in the mesh Kh is bisected
as described in Sect. 2.2.3. This yields a mesh which does not satisfy the requirement
on the node count for each element in general, see Fig. 5.8 right. However, we can
ensure the required structure of the mesh by introducing some additional nodes.
This can be observed by comparing the refined, but inappropriate mesh, in the
right column of Fig. 5.8 with the next mesh in the sequence depicted in the middle
column.

5.3.3 Approximation of the Primal and Dual Solution

The primal and dual problems are approximated on polygonal meshes as described
in Chap. 2. For this reason, letΩ ⊂ R

2 be a bounded polygonal domain meshed into
polygonal elements satisfying the regularity and stability assumption and, in most
experiments, the requirement on the node count as described above. The primal
variable u is approximated by uh ∈ V k

h , which is given by the decoupled weak
formulation (2.31) as well as (2.32) and reads in this setting for uh = uh,H + uh,B
with uh,H ∈ V k

h,H and uh,B ∈ V k
h,B :

Find uh,H ∈ V k
h,H,D :

b(uh,H , vh) = (f, vh)L2(Ω) + (gN , vh)L2(ΓN) ∀vh ∈ V k
h,H,D ,

(5.11)
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Fig. 5.8 Each row corresponds to the mesh in one FEM simulation, the middle column corre-
sponds to the actual mesh Kh, the left column shows the mesh K2h after coarsening and the right
column shows the mesh after refinement before the nodes are added to ensure the condition on the
node count



5.3 Goal-Oriented Error Estimation 163

and

Find uh,B ∈ V k
h,B : b(uh,B, vh) = (f, vh)L2(Ω) ∀vh ∈ V k

h,B . (5.12)

For the approximation of the dual solution z we have a corresponding decoupling
and we focus on two strategies. Either we use globally a higher order for the
approximation, which is, however, practically expensive, or we apply a local post-
processing to zh ∈ V k

h . The local post-processing is especially attractive for the
approximation space of the BEM-based FEM, since there is no need for local
agglomerations of elements as we see in the next sections.

5.3.3.1 Dual Solution with Globally Higher Order Discretization

A brute-force strategy to obtain an approximation of the dual solution, which is
suited for error estimation, is to solve the discrete variational formulation with
higher accuracy. To track the approximation order, we write uh = u

(k)
h ∈ V k

h for
the approximation of the primal solution. The dual solution can be approximated by
z
(k+1)
h ∈ V k+1

h on the same mesh. The choice z∗h = z
(k+1)
h is applicable for the error

representation, cf. (5.9). Here, we do not need the restriction on the node count for
the mesh Kh. As we already mentioned, this strategy is computationally expensive
in practical applications. However, it serves as a good starting point to verify the
performance of the dual-weighted residual method on polygonal meshes.

5.3.3.2 Dual Solution Exploiting Local Post-Processing

A more convenient and efficient strategy is to approximate the dual solution by
zh = z

(k)
h ∈ V k

h on the same mesh with the same approximation order as the
primal solution. Afterwards z∗h is chosen as a post-processed version of zh on a
coarsened mesh with higher approximation order. This strategy is well discussed
in the literature for simplicial meshes, see [143] and the references therein. In fact,
this has already been introduced in the early studies [22]. The key point is, how
the meshes, and especially the coarse meshes, are chosen. Since polygonal meshes
are very flexible and inexpensive for coarsening and refining, they are well suited
for this task. It is possible to just agglomerate two or more neighbouring elements
to construct a coarsened mesh and to proceed in a classical way for the local post-
processing.

In the following we describe a slightly different strategy that does not need the
agglomeration of elements and is applicable on single elements. We use the meshes
Kh and K2h discussed in Sect. 5.3.2 satisfying the requirement on the node count.
The approach relies on two key ingredients: the hierarchy of the discretization of the
element boundaries ∂K in these two meshes and the decoupling of the dual problem
analogously to (5.11) and (5.12) for the primal problem.
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Let zh ∈ V k
h be the approximation of the dual problem over the mesh Kh.

We construct z∗h ∈ V k+1
2h as locally post-processed function over the mesh K2h.

We write the mapping zh = z
(k)
h �→ z∗h ∈ V k+1

2h also in operator notation with

Pk+1
2h : V k

h → V k+1
2h such that z∗h = Pk+1

2h z
(k)
h . It is sufficient to define the post-

processing on a single element K ∈ Kh, since it directly generalizes to the entire
mesh. By construction, each element K = Kh ∈ Kh has a corresponding element
K2h ∈ K2h, which is obtained by skipping every second node on the boundary ∂Kh.
Thus, the shapes of these elements coincide and they only differ in the number
of nodes on the boundary. Consequently, ∂Kh can be interpreted as a refinement
of ∂K2h, or in other words, ∂Kh and ∂K2h are one-dimensional patched meshes of
the element boundary. Therefore, it is Pk

pw(∂K2h) ⊂ Pk
pw(∂Kh). In terms of the

approximation space we set V k
2h(Kh) = V k

h (K2h) ⊂ V k
h (Kh). Since it is clear from

the approximation space which element is meant, we skip the index h and 2h again.
Suppose we would approximate the dual problem globally in V k+1

2h . Then, the
weak formulation decouples into a global system of linear equations in order
to compute the expansion coefficients of the harmonic basis functions and into
a projection of the error functional into the space of element bubble functions.
We similarly proceed with the post-processing. Exploiting the hierarchy of the
boundary, we construct z∗h = z∗h,H + z∗h,B ∈ V k+1

2h (K) = V k+1
2h,H (K) ⊕ V k+1

2h,B(K)

from the approximation zh = zh,H + zh,B ∈ V k
h (K) in the following way: We set

z∗h,H ∈ V k+1
2h,H (K) as interpolation of zh,H ∈ V k

h,H (K) (5.13)

and

z∗h,B ∈ V k+1
2h,B(K) as solution of: (∇z∗h,B,∇ϕ)L2(K) = J (ϕ) ∀ϕ ∈ V k+1

2h,B(K) .

(5.14)

The interpolation process in (5.13) is equivalent to an interpolation of a function in
Pk

pw(∂Kh) by a function in Pk+1
pw (∂K2h). Thus, a standard point-wise interpolation

procedure is applied. The definition of z∗h,B is exactly the projection of the error
functional into the space of element bubble functions. Both operations are local
over a single element and are thus suited for a computationally inexpensive post-
processing.

Remark 5.7 The first idea might be to use the interpolation operator Ikh studied in

Sect. 2.4 and to set z∗h = Ik+1
2h z

(k)
h . But, this strategy does not work. The interpolation

affecting the harmonic basis functions yields the same results as described above.
However, the transition from the lower order element bubble functions to the higher
order ones is not well suited. Since there is no agglomeration of elements and
the process is kept on a single element, there is no additional information in the
interpolation using higher order element bubble functions. This is reflected by
the fact that V k

h,B(K) = V k
2h,B(K). The choice (5.14) overcomes this deficit and

includes the required information for the element bubble functions by exploiting the
dual problem.
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5.3.4 The Localized Error Estimators

In this section, we discuss the localization of the error representation derived in
Sect. 5.3.1 on polygonal meshes. The representation involves the adjoint sensitivity
measure z−ihz with ih : V → V k

h . Since the dual solution is not known in general, it
is approximated in the numerical tests as discussed in Sect. 5.3.3. In the realization,
we replace z in the error estimates by z∗h. The operator ih is realized in the following
with the help of the interpolation operator Ikh, which is given and studied in Sect. 2.4.

5.3.4.1 The Classical Way of Localization

The error identity in Proposition 5.5 is realized in the classical way by using the
concrete problem, followed by integration by parts on every mesh elementK ∈ Kh,
yielding

J (u− uh) =
∑

K∈Kh

(

(

f + �uh, z− ihz
)

L2(K)
− (γK1 uh, (z − ihz)

)

L2(∂K)

)

+ (gN, (z− ihz)
)

L2(ΓN)
.

Following the usual procedure for residual based error estimators as in Sect. 5.2.1,
we combine each two boundary integrals over element edges to a normal jump and
proceed with the Cauchy–Schwarz inequality to derive an upper bound of the error.

Proposition 5.8 For the BEM-based FEM approximation of the Poisson equation,
we have the a posteriori error estimate based on the classical localization:

|J (u− uh)| ≤ ηCL =
∑

K∈Kh

ηCL
K (5.15)

with

ηCL
K = ‖RK‖L2(K) ‖z− ihz‖L2(K) +

∑

E∈E (K)
‖RE‖L2(E) ‖z− ihz‖L2(E) , (5.16)

where RK and RE are the element and edge residuals defined in Sect. 5.2, namely

RK = f + �uh for K ∈ Kh ,

and

RE =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 for E ∈ Eh,D ,

gN − γK1 uh for E ∈ Eh,N with E ∈ E (K) ,

− 1
2�uh�E for E ∈ Eh,Ω .
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According to the definition of the trial space we have �uh ∈ Pk−2(K) in each
K ∈ Kh. Since most of the basis functions are harmonic, �uh is directly obtained
by the expansion coefficients of uh corresponding to the element bubble functions.
The term γK1 uh is treated by means of boundary element methods in the realization
and therefore it is approximated in Pk−1

pw,d(∂K).
The local error indicator (5.16) is usually estimated in order to separate it into

two parts such that ηCL
K ≤ rK(uh)wK(z), see, e.g., [4, 18, 21, 22, 143]. The first

part rK(uh) contains the residual with the discrete solution uh and the problem data
and the second part wK(z) contains the adjoint sensitivity measure z − ihz. The
separation is obtained by further applications of the Cauchy–Schwarz inequality
and reads in our notation

|J (u− uh)| ≤
∑

K∈Kh

(‖RK‖L2(K) + h
−1/2
K ‖RE‖L2(∂K)

)

︸ ︷︷ ︸

=rK(uh)

· (‖z− ihz‖L2(K) + h
1/2
K ‖z − ihz‖L2(∂K)

)

︸ ︷︷ ︸

=wK(z)

. (5.17)

In order to incorporate the polygonal structure of the elements and in particular the
different numbers and lengths of their edges, we propose to split the L2-norms over
the boundaries of the elements. This refined manipulation yields

|J (u− uh)| ≤
∑

K∈Kh

(

‖RK‖2
L2(K)

+
∑

E∈E (K)
h−1
E ‖RE‖2

L2(E)

)1/2

︸ ︷︷ ︸

=rK(uh)

·
(

‖z − ihz‖2
L2(K)

+
∑

E∈E (K)
hE‖z − ihz‖2

L2(E)

)1/2

︸ ︷︷ ︸

=wK(z)

. (5.18)

The powers of hK and hE in (5.17) and (5.18) are chosen in such a way that the
volume and boundary terms contribute in the right proportion. This weighting of
the norms implicitly makes use of hE ∼ hK , which is guaranteed by the stability of
the polygonal meshes. For triangular and quadrilateral meshes the terms hE and hK
only differ by a small multiplicative factor. (For quadrilaterals it is hK = √

2hE .)
In polygonal meshes, however, the ratio hK/hE < cK can be large and it might
even blow up in the numerical tests, if the stability is not enforced. Due to these
reasons, it seems to be natural to weight directly the volume term ‖RK‖L2(K) with
‖z− ihz‖L2(K) and the edge term ‖RE‖L2(E) with ‖(z− ihz)‖L2(E) which gives rise
to Proposition 5.8.
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5.3.4.2 A Variational Error Estimator with PU Localization

We use a new localization approach [143] based on the variational formulation.
Localization is simply based on introducing a partition of unity (PU) into the
global error representation Proposition 5.5. In the case of triangular or quadrilateral
meshes, the (bi-)linear basis functions are usually utilized, which are associated
with nodes. The same is possible for polygonal meshes and the corresponding
nodal basis functions, cf. Sect. 2.3.1, which satisfy the partition of unity property.
However, this yields a node-wise error indicator, whereas the adaptive refinement
is an element-wise procedure. Therefore, we define an element-wise partition of
unity in order to obtain directly an element-wise indicator. For this reason, let
n(z) = |{K ∈ Kh : z ∈ N (K)}| be the number of neighbouring elements to
the node z ∈ Nh. We can write

1 =
∑

z∈Nh

ψz =
∑

K∈Kh

∑

z∈N (K)

1

n(z)
ψz =

∑

K∈Kh

χK on Ω ,

and thus obtain a new partition of unity employing the element-wise functions

χK =
∑

z∈N (K)

1

n(z)
ψz . (5.19)

The support of χK is local and covers the neighbouring elements of K , namely

suppχK = {x ∈ K ′ : K ′ ∈ Kh,K ∩K ′ = ∅} = ωK .

Inserting the partition of unity into the global error representation Proposition 5.5
yields

J (u− uh) =
∑

K∈Kh

b
(

u− uh, (z − ihz)χK
)

.

Consequently, when we refer from now on to the PU-based localization technique,
we mean the following error representation.

Proposition 5.9 For the BEM-based FEM approximation of the Poisson equation,
we have the element-wise PU-DWR a posteriori error representation and estimate

J (u− uh) = ηPU =
∑

K∈Kh

ηPU
K and |J (u− uh)| ≤ ηPU

abs =
∑

K∈Kh

|ηPU
K | ,

(5.20)

respectively, with

ηPU
K = (f, (z−ihz)χK

)

L2(Ω)
+(gN, (z−ihz)χK

)

L2(ΓN )
−(∇uh,∇((z−ihz)χK)

)

L2(Ω)
.
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We finish this section by a comment on the practical realization. Even if high-
order approximations are used for the primal and dual problems, the PU can be
realized using a lowest order method involving the nodal basis functions only.

5.3.5 Numerical Tests

In this section, we substantiate our formulations of the dual-weighted residual
estimator and the treatment of the dual solution with several different numerical
tests and various goal functionals. In the first example, we consider the standard
Poisson problem with a regular goal functional. The second example considers a
norm-based goal functional. In the third example we study adaptivity in detail. In all
examples, we compare the classical and PU localization techniques. Moreover, we
compare as previously mentioned different ways to approximate the dual solution.

In analyzing our results, we notice that the tables and graphs are given with
respect to the number of degrees of freedom (DoF) in the following. This highlights
the fact that the considered sequences of meshes may have the same shapes of
elements, but have different numbers of degrees of freedom. This behaviour is due
to the mesh requirement for the local post-processing involving additional nodes on
the boundaries of the elements. The degrees of freedom are also the usual criterion
for adaptive refined meshes.

The adaptive algorithm discussed in Sect. 5.1 has been realized in a slightly
adjusted way. In the SOLVE step, we additionally have to compute the approximate
(higher order) dual solution z∗h. For the error estimator we now distinguish between
η = ∑

K ηK and ηabs = ∑

K |ηK | in ESTIMATE. Note that ηCL
abs = ηCL but

ηPU
abs = ηPU. This also influences the formulation in the marking later on since

the error indicators are not squared here. In the MARK step, we utilize this
time the equidistribution strategy such that all elements K are marked that have
values |ηK | above the average θηabs/|Kh|. Furthermore, we point out that not all
theoretical assumptions on the regularity and stability of the mesh from Sect. 2.2
are enforced in REFINE for the following tests. During the refinement, the edge
lengths may degenerate with respect to the element diameter. If not otherwise stated,
all appearing volume integrals are treated by numerical quadrature over polygonal
elements as described in Sect. 4.5.1.

Problem 1: Verification in Terms of a Domain Goal Functional
Let Ω = (0, 1)2. We consider the boundary value problem

−�u = 1 in Ω , u = 0 on Γ ,

on two uniform sequences of meshes depicted in Fig. 5.8 (left and middle columns).
With a little abuse of notation we denote the sequence of meshes by K2h and Kh for
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the left and middle column in Fig. 5.8, respectively. The goal functional is chosen as

J (v) =
∫

Ω

v dx ,

such that the dual and primal problems coincide. The regularity of the solutions is
only limited by the corners of the domain and consequently, it is u, z ∈ H 3−ε(Ω) for
arbitrary small ε > 0. We use the reference value J (u) ≈ 0.03514425375 ± 10−10

taken from [143] for the convergence analysis.
In the first experiment, we compare the different representations of the classical

localization technique given in Sect. 5.3.4.1. Here we detect a significant difference
depending on the partition into residual terms and dual weights of the classical
estimator. The primal solution is approximated in V 1

h and the dual solution is

treated by globally higher order, i.e. z∗h = z
(2)
h . For this choice, we do not need

the requirement on the node count for the meshes. Therefore, we perform the
computations on the mesh sequence K2h of the unite square Ω . The effectivity
index Ieff is presented in Table 5.1. For comparisons, we also provide results
computed on a sequence of structured meshes with rectangular elements. Obviously,
the sharpened estimate (5.18) performs better than the usual form (5.17) of the
estimator. We observe, however, that the effectivity index is indeed closest to one
for the estimate (5.15) which does not separate the residual part from the sensitivity
measure. Therefore, we only apply (5.15) in the following experiments for the
classical localization. Furthermore, the comparison with structured meshes indicate
that the polygonal shapes of the elements do not influence the effectivity on these
uniform refined meshes.

Next, we compare the effectivity index for the PU-based and the classical
localization with (5.15). The problems are approximated with k = 1, 2. In Table 5.2,
we show Ieff for the choice z∗h = z

(k+1)
h on a sequence of meshes K2h. The

Table 5.1 Problem 1 approximated with uh ∈ V 1
h , and dual solution treated by globally higher

order, i.e. z∗
h = z

(2)
h ; comparison of effectivity for different representations of the classic

localization on a mesh sequence K2h and on structured meshes

Polygonal-meshes Quad-meshes

DoF J
(

u− u
(1)
h

)

ICL
eff (5.15) ICL

eff (5.17) ICL
eff (5.18) DoF J

(

u− u
(1)
h

)

ICL
eff (5.15)

4 5.52 × 10−3 3.01 6.30 3.31 9 2.56 × 10−3 2.91

8 3.48 × 10−3 2.21 6.56 4.03 49 6.51 × 10−4 2.93

13 4.30 × 10−3 1.74 4.83 2.59 121 2.90 × 10−4 2.93

25 2.33 × 10−3 2.02 5.42 2.98 225 1.64 × 10−4 2.92

57 1.32 × 10−3 1.99 5.89 3.37 361 1.05 × 10−4 2.92

129 5.36 × 10−4 2.29 6.47 3.64 529 7.27 × 10−5 2.92

289 2.63 × 10−4 2.34 6.73 3.84 729 5.35 × 10−5 2.92

620 1.17 × 10−4 2.65 7.45 4.28 961 4.09 × 10−5 2.92

1297 5.67 × 10−5 2.66 7.48 4.24 1225 3.23 × 10−5 2.92
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Table 5.2 Problem 1 approximated with uh ∈ V k
h , k = 1, 2 and dual solution treated by

globally higher order, i.e. z∗
h = z

(k+1)
h ; comparison of effectivity for PU localization and classical

localization with (5.15) on mesh sequence K2h

DoF J
(

u− u
(1)
h

)

ICL
eff (5.15) IPU

eff DoF J
(

u− u
(2)
h

)

ICL
eff (5.15) IPU

eff

8 3.48 × 10−3 2.21 1.16 35 1.76 × 10−4 2.09 1.30

13 4.30 × 10−3 1.74 0.99 65 7.36 × 10−5 1.59 1.24

25 2.33 × 10−3 2.02 1.00 129 1.41 × 10−5 1.65 1.30

57 1.32 × 10−3 1.99 1.01 273 4.00 × 10−6 1.60 1.27

129 5.36 × 10−4 2.29 1.03 577 7.80 × 10−7 1.68 1.34

289 2.63 × 10−4 2.34 1.04 1217 1.93 × 10−7 1.66 1.34

620 1.17 × 10−4 2.65 1.07 2519 3.63 × 10−8 1.80 1.41

1297 5.67 × 10−5 2.66 1.07 5153 4.95 × 10−9 3.62 2.90

Table 5.3 Problem 1 approximated with uh ∈ V k
h , k = 1, 2 and dual solution treated by local

post-processing, i.e. z∗
h = Pk+1

2h z
(k)
h ; comparison of effectivity for classical with (5.15) and PU

localization on mesh sequence Kh

DoF J
(

u− u
(1)
h

)

ICL
eff (5.15) IPU

eff DoF J
(

u− u
(2)
h

)

ICL
eff (5.15) IPU

eff

25 3.41 × 10−3 1.40 0.92 69 1.21 × 10−5 1.20 0.57

45 1.76 × 10−3 1.96 0.96 129 1.07 × 10−5 1.27 0.86

89 9.17 × 10−4 2.05 0.95 257 8.69 × 10−7 1.19 0.68

193 4.63 × 10−4 2.36 0.96 545 6.76 × 10−7 1.50 1.08

465 2.31 × 10−4 1.99 0.93 1249 4.36 × 10−8 1.34 0.79

953 1.14 × 10−4 2.10 0.95 2545 2.65 × 10−8 1.56 1.14

2069 5.66 × 10−5 2.12 0.95 5417 1.50 × 10−9 2.01 1.39

4269 2.83 × 10−5 2.09 0.96 11,097 <10−9 – –

effectivity index for the PU localization is close to one whereas the classical
localization lacks on effectivity for the first order approximation k = 1. For k = 2
the effectivity ICLeff is improved.

Furthermore, in Table 5.3, we applied the local post-processing of z(k)h in order to

construct z∗h = Pk+1
2h z

(k)
h and therefore the computations are done on the sequence

of meshes Kh, which satisfy the condition on the node count. Although the elements
have the same shapes in the sequences of meshes, the number of degrees of freedom
is larger in Kh than in K2h. Both localization strategies show good effectivity in
Table 5.3. Due to the local post-processing instead of the globally higher order
approximation for the dual solution, the computational cost is significantly reduced
compared to the experiments for Table 5.2. We finally remark that for obtaining
errors of similar order in the case of k = 2, the meshes in Table 5.2 are one times
more refined in comparison to the method presented in Table 5.3. However, as just
explained, the mesh itself is coarser but the number of degrees of freedom is higher
on the other hand when using the local post-processing of z(k)h .
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Problem 2: A Norm-Based Goal Functional
In our second example, let again Ω = (0, 1)2. We consider the boundary value
problem

−�u = f in Ω , u = 0 on Γ ,

where f is chosen such that u(x) = sin(πx1) sin(πx2) is the analytical solution. As
in the previous problem, we compare the different localization techniques and the
two choices of z∗h. The computations are done solely on the sequence of meshes
satisfying the node count condition, which is depicted in Fig. 5.8 in the middle
column. The error functional is chosen as

J (v) = (u− uh, v)L2(Ω)

‖u− uh‖L2(Ω)

,

such that J (u−uh) = ‖u−uh‖L2(Ω). Our results of the effectivity indices are shown
in the Tables 5.4 and 5.5. All indices are close to one and behave similar to those
of the previous Problem 1. IPUeff is hardly effected by the different approximations
of the dual solution and also the classical localization shows comparable effectivity.
Consequently, the computationally less expensive post-processing is to favor over
the higher order approximation of the dual solution in practical applications.

Problem 3: Adaptivity
Finally, let Ω = (−1, 1) × (−1, 1) \ [0, 1] × [−1, 0] be an L-shaped domain and
its boundary is split into ΓD = {(x1, x2) ∈ R

2 : x1 ∈ [0, 1], x2 = 0 or x1 = 0,
x2 ∈ [−1, 0]} and ΓN = ∂Ω \ ΓD . We consider the mixed boundary value problem

−�u = 0 in Ω , u = 0 on ΓD , ∇u · n = gN on ΓN ,

Table 5.4 Problem 2 approximated with uh ∈ V k
h , k = 1, 2 and dual solution treated by

globally higher order, i.e. z∗
h = z

(k+1)
h ; comparison of effectivity for PU localization and classical

localization with (5.15) on mesh sequence Kh

DoF J
(

u− u
(1)
h

)

ICL
eff (5.15) IPU

eff DoF J
(

u− u
(2)
h

)

ICL
eff (5.15) IPU

eff

25 3.80 × 10−2 1.76 0.92 69 5.64 × 10−3 1.38 0.95

45 2.10 × 10−2 1.99 0.98 129 2.90 × 10−3 1.26 0.95

89 1.05 × 10−2 1.91 0.81 257 8.48 × 10−4 1.27 0.97

193 5.34 × 10−3 2.05 0.83 545 3.57 × 10−4 1.29 0.96

465 2.59 × 10−3 1.98 0.82 1249 1.17 × 10−4 1.46 0.93

953 1.35 × 10−3 2.06 0.83 2545 4.04 × 10−5 1.35 0.98

2069 6.75 × 10−4 2.11 0.82 5417 1.59 × 10−5 1.37 0.99

4269 3.38 × 10−4 2.04 0.84 11,097 5.26 × 10−6 1.36 1.05
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Table 5.5 Problem 2 approximated with uh ∈ V k
h , k = 1, 2 and dual solution treated by local

post-processing, i.e. z∗
h = Pk+1

2h z
(k)
h ; comparison of effectivity for classical with (5.15) and PU

localization on mesh sequence Kh

DoF J
(

u− u
(1)
h

)

ICL
eff (5.15) IPU

eff DoF J
(

u− u
(2)
h

)

ICL
eff (5.15) IPU

eff

25 3.80 × 10−2 1.65 0.83 69 5.64 × 10−3 1.26 0.95

45 2.10 × 10−2 1.79 0.86 129 2.90 × 10−3 1.28 0.96

89 1.05 × 10−2 2.29 0.84 257 8.48 × 10−4 1.28 0.97

193 5.34 × 10−3 2.16 0.80 545 3.57 × 10−4 1.30 0.95

465 2.59 × 10−3 2.24 0.82 1249 1.17 × 10−4 1.29 0.89

953 1.35 × 10−3 2.20 0.82 2545 4.04 × 10−5 1.32 0.97

2069 6.75 × 10−4 2.25 0.82 5417 1.59 × 10−5 1.33 0.97

4269 3.38 × 10−4 2.19 0.82 11,097 5.26 × 10−6 1.34 1.01

Fig. 5.9 Initial mesh of the L-shaped domain in Problem 3 with triangular elements (left) and
adaptive meshes for k = 2 after 10 refinements for classical (middle) and PU (right) localization,
where the dual problem is treated by globally higher order, i.e. z∗

h = z
(k+1)
h

where gN is chosen with the help of polar coordinates (r, φ), such that

u(r cosφ, r sin φ) = r2/3 sin
(

2
3φ
)

is the exact solution. This is a classical problem for mesh adaptivity, since the
gradient of the solution inherits a singularity at the reentrant corner in the origin
of the coordinate system. It holds u ∈ H 5/3(Ω). The considered goal functional is
a point evaluation

J (v) = v(x∗) ,

where x∗ is chosen as the upper right node inside the domain, which is adjacent to
six elements of the initial mesh, see Fig. 5.9 (left). We apply the adaptive strategy
and compare the resulting meshes for the different localization techniques and
approximations of the dual solution.
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Fig. 5.10 Zoom into L-shaped domain in Problem 3 with adaptive meshes for k = 2 after 10
refinements for classical (left) and PU (right) localization, where the dual problem is treated by
globally higher order, i.e. z∗

h = z
(k+1)
h

Fig. 5.11 Initial mesh of the L-shaped domain in Problem 3 with triangular elements (left), which
are actually degenerated hexagons, and adaptive meshes for k = 2 after 10 refinements for classical
(middle) and PU (right) localization, where the dual problem is treated by local post-processing,
i.e. z∗

h = Pk+1
2h z

(k)
h

In Fig. 5.9, we display the initial mesh and the adaptively refined meshes for
k = 2 after 10 refinement steps for the classical and the PU localization. A zoom-
in highlighting the resulting shapes of adaptively refined elements is provided in
Fig. 5.10. The dual problem is treated by a globally higher order discretization, i.e.
z∗h = z

(k+1)
h . This experiment has been carried out on sequences of meshes, which

do not satisfy the condition on the node count. The elements in the initial mesh are
triangles. The adaptive process, however, produces naturally polygonal elements
during the local refinements. These refinements are located in the expected regions.

The resulting meshes for the experiments with local post-processing for the
dual solution, i.e. z∗h = Pk+1

2h z
(k)
h , are visualized in Fig. 5.11. As before, a zoom-

in highlighting the resulting shapes of adaptively refined elements is provided
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Fig. 5.12 Zoom into L-shaped domain in Problem 3 with adaptive meshes for k = 2 after 10
refinements for classical (left) and PU (right) localization, where the dual problem is treated by
local post-processing, i.e. z∗

h = Pk+1
2h z

(k)
h

in Fig. 5.12. This strategy is carried out on a sequence of meshes satisfying the
condition on the node count, and thus, the triangular elements in the initial mesh
are actually degenerated hexagons. The refinement pattern is similar to the one in
Fig. 5.9. But we observe that there are less refinements far from the singularity
and the point x∗ after 10 steps. Due to the additional nodes on the boundary of
the elements, there are more degrees of freedom per element. Consequently, the
approximation over the degenerated hexagonal elements (with triangular shape) is
more accurate compared to the corresponding triangular elements in Fig. 5.9.

In order to study convergence, we plot the absolute values of the errors and
the estimators with respect to the number of degrees of freedom on a logarithmic
scale. The abbreviation e = u − uh is used in the key of the plots. If we run the
computations on a sequence of uniform refined meshes, the convergence slows down
due to the singularity located at the reentrant corner. The tests are performed on a
uniform sequence K2h, which does not satisfy the condition on the node count,
and on a uniform sequence Kh, which satisfies this condition. The initial meshes
are visualized in Figs. 5.9 and 5.11, respectively. The corresponding convergence
graphs are given in Fig. 5.13 for k = 1, 2. In these graphs, the error estimator ηPU is
given additionally, which clearly reflects the behaviour of the true error J (e).

Next, we apply the adaptive refinement strategy. The following computations
are run on meshes satisfying the condition on the node count only. We have
performed 25 adaptive refinement steps for the different localization techniques and
the two choices of z∗h. Since f = 0 in this test, we directly obtain from (5.12)
that uh,B = 0 and thus uh = uh,H ∈ V k

h,H . Consequently, we can reduce the
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Fig. 5.13 Convergence of uniform refinement strategy with respect to the number of degrees of
freedom for Problem 3 with PU localization and z∗

h = z
(k+1)
h

volume integral in ηPU to the boundaries of the elements. Let K ′ ∈ Kh with
K ′ ⊂ ωK = supp χK , it is

(∇uh,∇((z− ihz)χK)
)

L2(K ′) = (γK ′
1 uh, γ

K ′
0 ((z − ihz)χK)

)

L2(∂K ′)

according to Green’s first identity. This reformulation improved the accuracy of
the numerical results. The convergence graphs are given in Fig. 5.14 for the PU
localization and in Fig. 5.15 for the classical localization stated in Prop. 5.8. In
contrast to the uniform refinement strategy, we recover higher convergence rates,
which are not limited by the regularity of the primal solution. Both localization
techniques show comparable performance in Figs. 5.14 and 5.15, respectively. The
PU localization, however, has a better effectivity while less computational effort
is spent for the dual problem. Furthermore, we point out that the convergence is
actually faster than expected. Indeed for finite elements, L∞ regularity results for
irregular meshes have been established in [153] and further references to regular
meshes are cited therein. In particular, assuming enough regularity, we would expect
for k = 2 a behaviour like O(DoF−3/2). For k = 1 we would expect O(DoF−1)

including a logarithm term [153]. However in our computations, we observe for
k = 2 a behaviour like O(DoF−3). For k = 1 the error J (e) seems to converge
with O(DoF−2) rather than with O(DoF−1) indicated by the estimators ηPU and
ηCL. These effects might be caused by the special meshes, which include additional
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Fig. 5.14 Convergence of adaptive refinement strategy with respect to the number of degrees of
freedom for Problem 3 with PU localization
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Fig. 5.15 Convergence of adaptive refinement strategy with respect to the number of degrees of
freedom for Problem 3 with classic localization

nodes in order to satisfy the condition on the node count during the refinement.
Furthermore, the implementation allows edge degeneration, that is excluded in the
current theory of most polygonal discretization techniques, but which might be
beneficial. These observations rise open questions for future research.



Chapter 6
Developments of Mixed and
Problem-Adapted BEM-Based FEM

In the final chapter some extensions and improvements of the BEM-based FEM
are discussed which have not been addressed so far. In particular, the focus lies on
two topics: The use of the method within mixed finite element formulations and
the generalization of the construction of basis functions to polyhedral elements with
polygonal faces in 3D with an application to convection-dominated problems.

The challenge in the treatment of mixed formulations is the proper construc-
tion of a H(div)-conforming, vector valued approximation space over polytopal
discretizations. In contrast to the previous definitions of basis functions, the
construction involves local Neumann problems, which are treated in the numerical
realization by appropriate boundary element methods.

The forthcoming generalization to 3D gives a H 1-conforming discretization
once more which makes use of a hierarchical construction of basis functions. This
adapted construction shows in particular advantageous properties when applied
to convection-diffusion-reaction problems in the convection-dominated regime.
The experiments indicate an improved resolution of exponential layers at out-
flow boundaries for the proposed approach when compared to the Streamline
Upwind/Petrov-Galerkin (SUPG) method.

6.1 Mixed Formulations Treated by Means of BEM-Based
FEM

Mixed finite element methods have been instrumental in the development of flexible
and accurate approximations of elliptic problems with heterogeneous coefficient on
triangular and rectangular grids. The flexibility can even be improved when using
polygonal and polyhedral meshes. Such general cells are very desirable in many
applications, e.g. flows in heterogeneous porous media as models in hydrology and
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reservoir simulation. Therefore, a variety of approximation and solution methods on
general grids, such as mixed finite element methods [120], mimetic finite difference
methods [27] and the virtual element methods [29, 30, 42], have been considered,
studied, and tested in the last decade. This issue has also been addressed for
generalized barycentric coordinates, see [85, 166].

The goal of this section is to introduce a mixed formulation for the BEM-
based FEM which has been proposed in [73]. The key idea is to construct a
finite dimensional approximation space by implicitly defined basis functions which
satisfy certain Neumann boundary value problems on a local, element-by-element-
wise level. These problems are treated once more by means of boundary integral
formulations which are discretized by boundary element methods.

Since these ideas are applied to the mixed formulation of the problem, we need
a suitable discretization of the vector valued Sobolev space

H(div,Ω) = {v ∈ L2(Ω) : div v ∈ L2(Ω)}

on polytopal meshes. This is done by implicitly generating trial functions. A
construction of suitable trial function for the mixed FEM on polygonal meshes was
done by Kuznetsov and Repin in [120] by using subdivision of the polygonal cell
into triangular elements and subsequently generating the test functions locally by
mixed FEM. Also similar ideas were implemented in the mixed multiscale finite
element method [56, 72]. The novelty in our approach is that instead of treating the
local problem by the classical mixed FEM (as in [120]) or by the multiscale FEM
(as in [56]) the local problems are treated by means of boundary element methods.
Thus, we avoid an additional triangulation of the elements.

6.1.1 Mixed Formulation

We consider the classical model problem of Darcy flow in a porous medium in
two-dimensions. Let Ω ⊂ R

2 be a convex polygonal domain which is bounded,
and let n be the outer unit normal vector to its boundary Γ = ∂Ω . The boundary
Γ = ΓD ∪ ΓN is divided into ΓD (with non vanishing length) and ΓN , where
Dirichlet and Neumann data is prescribed, respectively. For a given source func-
tion f ∈ L2(Ω) and Dirichlet data gD ∈ H 1/2(ΓD), the boundary value problem
for the pressure variable p ∈ H 1(Ω) reads

− div(A∇p) = f in Ω ,

n · A∇p = 0 on ΓN ,

p = gD on ΓD ,

(6.1)
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where the tensor A ∈ L∞(Ω) represents the permeability of the medium. We
assume that A(·) ∈ R

2×2 is symmetric, positive definite with

0 < amin ≤ v�A(x)v
v�v

≤ amax ∀v ∈ R
2 \ {0} for almost all x ∈ Ω

for constants amin and amax, and piecewise constant with respect to the polygonal
mesh later on. Vector valued Lebesgue and Sobolev spaces are indicated by bold
letters. We further assume that every interior angle at any transient point between
the boundary ΓD and ΓN is less than π , so that the solution of (6.1) with A = I ,
f = 0 and gD = 0 is in the space Hs(Ω), s > 3

2 , see [87].
Next, a new unknown flux variable u = A∇p is introduced and the boundary

value problem is presented as a system of first order differential equations:

− div u = f in Ω ,

A∇p = u in Ω ,

n · u = 0 on ΓN ,

p = gD on ΓD .

(6.2)

This yields the following variational formulation in mixed form, which is actually a
saddle point problem:

Find (u, p) ∈ HN(div,Ω)× L2(Ω) :
a(u, v)+ b(v, p) = (n · v, gD)L2(ΓD) ∀v ∈ HN(div,Ω) ,

b(u, q) = −(f, q)L2(Ω) ∀q ∈ L2(Ω) ,
(6.3)

where

a(u, v) = (A−1u, v)L2(Ω) , b(v, q) = (div v, q)L2(Ω)

and

HN(div,Ω) = {v ∈ L2(Ω) : div v ∈ L2(Ω) and n · v = 0 on ΓN } .

The space H(div,Ω) is equipped with the norm

‖v‖2
H(div,Ω) = ‖v‖2

L2(Ω) + ‖ div v‖2
L2(Ω) .

It is easily seen that the bilinear forms a(·, ·) and b(·, ·) are bounded, i.e.

|a(u, v)| ≤ $1‖u‖H(div,Ω)‖v‖H(div,Ω) for u, v ∈ H(div,Ω) ,

|b(v, q)| ≤ $2‖v‖H(div,Ω)‖q‖L2(Ω) for v ∈ H(div,Ω), q ∈ L2(Ω) ,
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with some constants ρ1, ρ2 > 0. Let us set

Z = {v ∈ HN(div,Ω) : b(v, q) = 0 ∀q ∈ L2(Ω)} .

Obviously, we have for v ∈ Z that div v = 0 and hence, the bilinear form a(·, ·) is
Z-elliptic, i.e., there exists a constant α > 0 such that

a(v, v) ≥ α‖v‖2
H(div,Ω) for v ∈ Z .

Furthermore, the form b(·, ·) satisfies the so called inf-sup condition, i.e., there exists
another constant β > 0 such that

inf
q∈L2(Ω)

sup
v∈HN(div,Ω)

b(v, q)
‖v‖H(div,Ω)‖q‖L2(Ω)

≥ β .

Consequently, the Babuska–Brezzi theory [43] is applicable and thus, the saddle
point problem (6.3) has a unique solution.

Next, we discuss the approximation of the mixed variational formulation (6.3)
with the help of BEM-based FEM on polygonal meshes. Therefore, we first need to
introduce a H(div)-conforming approximation space.

6.1.2 H(div)-Conforming Approximation Space

The construction of an approximation space for L2(Ω) is rather easy, later on we
use

Mh = {q ∈ L2(Ω) : q|K = const ∀K ∈ Kh} (6.4)

for this purpose. We concentrate in this section on the definition of a conforming
approximation space for H(div,Ω). We consider a regular and stable polygonal
mesh Kh according to Sect. 2.2. The finite dimensional subspace of H(div,Ω) that
serves as approximation space is defined through its basis. We restrict ourselves
to the lowest order method in which the basis functions are associated with edges
only. For E ∈ Eh, let nE be a unit normal vector, which is considered to be fixed
in the sequel. Furthermore, let K1 and K2 be the two adjacent elements sharing
the common edge E with the outer normal vectors nK1 and nK2 , respectively. The
function φE is defined implicitly as solution of the following local boundary value
problem

div(A∇φE) = κE(K)/|K| in K ∈ {K1,K2} ,

nE · A∇φE =
{

h−1
E on E ,

0 on all other edges ,

(6.5)
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Fig. 6.1 Adjacent elements
to E for the definition of φE
(left) and vector field ψE

(right)

nE

E

K2K1

see Fig. 6.1. Here, κE(K) = nE · nK = ±1, such that the solvability condition for
the Neumann problem is satisfied and (6.5) has a weak solution φE ∈ H 1(Ω) which
is unique up to an additive constant. For E ∈ E (K1) ∩ E (K2), we define

ψE(x) =
{

A∇φE(x) for x ∈ K1 ∪K2 ,

0 else .
(6.6)

Due to this definition one easily concludes that

‖ψE‖L2(K1∪K2) = ‖∇φE‖L2(K1∪K2) ≤ c , (6.7)

cf. also [51]. By construction, ψE has continuous normal flux across E and zero
normal flux along all other internal edges of Ω so that ψE ∈ H(div,Ω). An edge
E ⊂ ΓD has only one neighbouring element K , and therefore the basis function is
constructed in the same way by considering problem (6.5) solely on K .

We set the finite dimensional approximation space as

Xh = span {ψE : E ∈ Eh} ⊂ H(div,Ω) ,

and the subspace with vanishing normal traces on ΓN as

Xh,N = span {ψE : E ∈ Eh \ Eh,N } ⊂ HN(div,Ω) . (6.8)

The corresponding vector valued interpolation operator

πh : H(div,Ω) → Xh

is defined by

πhv =
∑

E∈Eh
vE ψE , (6.9)

where

vE =
∫

E

nE · v dsx for E ∈ Eh .
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For v ∈ HN(div,Ω) and E ∈ Eh,N , we point out that vE = 0. Consequently, the
operator satisfies

πh : HN(div,Ω) → Xh,N .

Recall, that the space Xh in general does not consist of piecewise polynomial func-
tions. The approximation properties of the interpolation operator πh are established
below. First of all, we have the boundedness of this operator.

Lemma 6.1 Let Kh be a regular and stable polygonal mesh. The interpolation
operator πh : Hs(Ω) → Xh, s > 1

2 , defined by (6.9) is bounded in Hs(Ω). Namely,
there is a constant c > 0 independent of h = max{hK : K ∈ Kh} such that

‖πhv‖L2(Ω) ≤ c‖v‖Hs (Ω) for v ∈ Hs(Ω) . (6.10)

For the restriction of the interpolation operator onto an element K ∈ Kh it holds

‖πhv‖L2(K) ≤ c‖v‖Hs (K) for v ∈ Hs(K) .

Proof Since πh is defined locally, it is enough to show that this estimate is valid
over each element K ∈ Kh. Obviously, it holds

πhv|K =
∑

E∈E (K)
vEψE |K , vE =

∫

E

nE · v dsx ,

and we have

‖πhv‖2
L2(K)

≤ c
∑

E∈E (K)
v2
E ‖ψE‖2

L2(K)

with a constant c depending on the number of edges |E (K)|, which is uniformly
bounded over all elements due to the stability of the mesh, see Lemma 2.7. By (6.7)
we have ‖ψE‖L2(K) ≤ c and to conclude the proof we need to bound vE .

We rescale the finite element K to ̂K by using the mapping x �→ x̂ = h−1
K x,

cf. (2.22). Then using the trace inequality [87]

‖ŵ‖L2(̂E)
≤ c
(‖ŵ‖L2(̂K)

+ |ŵ|Hs (̂K)

)

for ŵ ∈ Hs(̂K) , s > 1
2
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on the scaled element, where ̂E denotes an edge of ̂K, we get

v2
E ≤ hE

∫

E

|nE · v|2 dsx ≤ hE

∫

E

|v|2 dsx ≤ hEhK ‖̂v‖2
L2(̂E)

≤ chEhK

(

‖̂v‖L2(̂K)
+ |̂v|Hs (̂K)

)2 ≤ c
(

‖v‖2
L2(K)

+ h2s
K |v|2Hs (K)

)

(6.11)

≤ c ‖v‖2
Hs (K) ,

since hK ≤ 1. Thus, ‖πhv‖2
L2(K)

≤ c ‖v‖2
Hs (K) and after summing for K ∈ Kh we

get the desired bound. ��
Next, we discuss the approximation properties of the interpolation operator πh.

Lemma 6.2 Let Kh be a regular and stable mesh and v ∈ Hs (Ω), 1
2 < s ≤ 1. It

holds

‖v − πhv‖H(div,Ω) ≤ chs |v|Hs (Ω) + inf
qh∈Mh

‖ div v − qh‖L2(Ω)

with h = max{hK : K ∈ Kh}.
Proof On E ∈ Eh the interpolant πhv satisfies

nE · πhv
∣

∣

E
= h−1

E

∫

E

nE · v dsx ,

and since nK = κE(K)nE for E ∈ E (K), we have according to the divergence
theorem

∫

K

div πhv dx =
∫

∂K

nK · πhv dsx =
∫

∂K

nK · v dsx =
∫

K

div v dx .

Hence, div πhv is the L2-projection of div v into Mh. Therefore, it is

‖ div v − div πhv‖L2(Ω) = inf
qh∈Mh

‖ div v − qh‖L2(Ω) ,

and we obtain

‖v − πhv‖H(div,Ω) =
(

‖v − πhv‖2
L2(Ω) + ‖ div(v − πhv)‖2

L2(Ω)

)1/2

≤ ‖v − πhv‖L2(Ω) + inf
qh∈Mh

‖ div v − qh‖L2(Ω) .

It remains to estimate the error of the projection πh in theL2-norm. We consider this
term over the scaled element ̂K which is obtained by the mapping x �→ x̂ = h−1

K x,
cf. (2.22). All objects on the scaled element ̂K are indicated by a hat such as the
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gradient operator̂∇ with respect to the variable x̂. Furthermore, it is ̂ψE(̂x) = ψE(x)
and ψ

̂E denotes the basis functions defined on ̂K for the edge ̂E ∈ E (̂K) which
corresponds to E ∈ E (K). First, we show the identity π̂hv = π̂hv̂. To this end, we
observe that

ψE(x) = A∇φE(x) = A∇̂φE(h−1
K x) = h−1

K Â∇̂φE(̂x) . (6.12)

Furthermore,̂φE satisfies

̂div
(

Â∇̂φE
) = h2

K div
(

A∇φE
) = κ

̂E(
̂K)

|̂K| in ̂K ,

since |̂K| = |K|/h2
K , and

n
̂E · Â∇̂φE = nE · hKA∇φE = h−1

̂E
on ̂E ,

since h
̂E = hE/hK . The basis function ψ

̂E = Â∇φ
̂E on the scaled element ̂K is

given according to (6.5) and (6.6). Obviously, ̂φE and φ
̂E are solutions of the same

Neumann problem on ̂K and consequently it is

̂φE = φ
̂E + C

for a constant C ∈ R. Hence, (6.12) yields

̂ψE = h−1
K ψ

̂E .

For the interpolation operator we thus get on each element K ∈ Kh

π̂hv =
∑

E∈E (K)
vÊψE =

∑

̂E∈E (̂K)
vEh

−1
K ψ

̂E =
∑

̂E∈E (̂K)
v
̂Eψ̂E = π̂hv̂ ,

because of

vE =
∫

E

nE · v dsx = hE

h
̂E

∫

̂E

n
̂E · v̂ dŝx = hK v

̂E

due to h
̂E = hE/hK .

With the help of Lemma 6.1 and exploiting the reverse triangle inequality, we
have for s > 1

2

‖̂v − π̂hv̂‖L2(̂K)
≤ c‖̂v‖Hs (̂K) . (6.13)



6.1 Mixed Formulations Treated by Means of BEM-Based FEM 185

Next, in order to apply the Bramble–Hilbert Lemma, see Theorem 1.9, to the
functional

f(̂v) = ‖̂v − π̂hv̂‖L2(̂K)
,

we further have to show that π̂hd = d if d = (d1, d2)
� ∈ R

2 is a constant vector.
By construction, it is π̂hd = ̂∇φ over ̂K , where φ is the solution of

− ̂�φ = 0 in ̂K and n
̂K · ̂∇φ = n

̂K · d on ∂ ̂K . (6.14)

The boundary data for this problem is compatible,

∫

∂ ̂K

n
̂K · d dŝx =

∫

̂K

̂divd d̂x = 0 ,

and therefore the problem has a unique solution up to an additive constant. Obvi-
ously, φ(̂x) = d1x̂1 + d2x̂2 + C satisfies (6.14) for C ∈ R and so π̂hd = ̂∇φ = d.

Finally, the scaling and the application of the Bramble–Hilbert Lemma to the
functional f yields

‖v − πhv‖L2(K) = hK ‖̂v − π̂hv̂‖L2(̂K)
≤ chK |̂v|Hs (̂K) = chsK |v|Hs (K) ,

and after summation over all elements we obtain the desired bound. ��
Remark 6.3 The constant c in Lemmata 6.1 and 6.2 only depend on the regularity
and stability of the mesh. This can be seen as in [51], since the estimates in the
proofs, which might incorporate additional dependencies, have only been performed
on the scaled element.

6.1.3 Approximation of Mixed Formulation

By the use of the previously introduced spaces, the discrete version of the variational
formulation (6.3) reads:

Find (uh, ph) ∈ Xh,N ×Mh :
a(uh, vh)+ b(vh, ph) = (n · vh, gD)L2(ΓD) ∀vh ∈ Xh,N ,

b(uh, qh) = −(f, qh)L2(Ω) ∀qh ∈ Mh .
(6.15)

To prove unique solvability of the discrete problem, we use a fundamental theorem
in the mixed finite element analysis, see [43]. This theory relies on the space

Zh = {vh ∈ Xh,N : b(vh, qh) = 0 ∀qh ∈ Mh}
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and the following two assumptions.

A1: There exists a constant α∗ > 0 such that

a(vh, vh) ≥ α∗‖vh‖2
H(div,Ω) for vh ∈ Zh .

A2: There exists a constant β∗ > 0 such that

inf
qh∈Mh

sup
vh∈Xh,N

b(vh, qh)
‖vh‖H(div,Ω)‖qh‖L2(Ω)

≥ β∗ .

Such assumptions hold in the continuous setting and they are used in order to prove
unique solvability of the mixed formulation (6.3). In the discrete case, however,
we have to verify these assumptions for the introduced approximation spaces.
Afterwards, the continuity of the bilinear forms a(·, ·) on Xh × Xh and b(·, ·) on
Xh×Mh as well as A1 and A2 are sufficient for the existence and uniqueness of the
solution of the discrete problem (6.15), see [43]. Furthermore, this theory gives an
error estimate. Thus, Babuska–Brezzi theory yields the main result of this section.

Theorem 6.4 The problem (6.15) with Xh,N defined by (6.8) and Mh defined
by (6.4) has a unique solution (uh, ph) ∈ Xh,N × Mh. Furthermore, there exists
a constant c depending only on α∗, β∗, $1 and $2 as well as on the mesh regularity
and stability such that

‖u − uh‖H(div,Ω)+‖p − ph‖L2(Ω)

≤ c

{

inf
vh∈Xh

‖u − vh‖H(div,Ω) + inf
qh∈Mh

‖p − qh‖L2(Ω)

}

.

(6.16)

Proof To show existence and uniqueness we need to verify A1 and A2. Assump-
tion A1 is shown in a straightforward manner. Since div vh is constant on each
element it follows

Zh = {vh ∈ Xh,N : div vh = 0 in K ∈ Kh} , (6.17)

and therefore we get for vh ∈ Zh

a(vh, vh) =
∑

K∈Kh

∫

K

A−1vh · vh dx

≥ a−1
max

∑

K∈Kh

{

‖vh‖2
L2(K)

+ ‖ div vh‖2
L2(K)

}

= α∗ ‖vh‖2
H(div,Ω) .

To verify A2 we use the interpolation operator πh defined by (6.9). We have
shown that πh satisfies (6.10). In the following we make use of an auxiliary problem.
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For given qh ∈ Mh, we consider φ as unique solution of the boundary value problem

�φ = qh in Ω ,

n · ∇φ = 0 on ΓN ,

φ = 0 on ΓD .

(6.18)

Since we have assumed that Ω is convex, it is well known that if either ΓN or ΓD
is an empty set, then the solution of this problem belongs to H 2(Ω), see, e.g., [87].
The general case has been studied in details by Bacuta et al. [17] by the use of FEM
tools. If all angles between edges with Neumann and Dirichlet data are strictly less
than π , then there exists s > 1

2 such that

‖φ‖H 1+s (Ω) ≤ c‖qh‖L2(Ω) ,

cf. [17, Theorem 4.1]. Let w = ∇φ. Due to the construction, w has a piecewise
constant divergence and the normal trace of w vanishes on ΓN . On each E ∈ Eh the
function πhw satisfies

nE · πhw
∣

∣

E
= h−1

E

∫

E

nE · w dsx ,

and since nK = κE(K)nE for E ∈ E (K), we have

∫

K

div πhw dx =
∫

∂K

nK · πhw dsx =
∫

∂K

nK · w dsx =
∫

K

div w dx .

Therefore, it is

div w = div πhw = qh for K ∈ Kh .

Making use of the stability of the interpolation operator πh, see Lemma 6.1, we get

‖πhv‖L2(Ω) ≤ c‖v‖Hs (Ω) ≤ c‖φ‖H 1+s (Ω) ≤ c‖qh‖L2(Ω) , (6.19)

where c > 0 is a generic constant. Finally, we obtain

sup
vh∈Xh,N

b(vh, qh)
‖vh‖H(div,Ω)

≥ b(πhw, qh)
‖πhw‖H(div,Ω)

= ‖qh‖2
L2(Ω)

(

‖πhw‖2
L2(Ω) + ‖ div(πhw)‖2

L2(Ω)

)1/2

≥ ‖qh‖2
L2(Ω)

(

c2‖qh‖2
L2(Ω) + ‖qh‖2

L2(Ω)

)1/2 ≥ β∗‖qh‖L2(Ω) ,

that proves the inf-sup condition.
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Following standard arguments of Babuska and Brezzi utilizing A1 and A2, it is
easily shown that the discrete problem (6.15) has a unique solution and that the error
estimate (6.16) holds, see, e.g., [43]. ��

6.1.4 Realization and Numerical Examples

In contrast to (6.2), the following numerical examples are a little bit more general
and involve non-homogeneous Neumann data, i.e. n · u = gN on ΓN for
gN ∈ L2(ΓN). As usual, we seek the approximation uh = uh,N + uh,gN , where
uh,N ∈ Xh,N has homogeneous Neumann data and uh,gN ∈ Xh is an extension of
the given data gN in the discrete space, e.g.,

uh,gN =
∑

E∈Eh,N

∫

E

gN dsx ψE .

The mixed formulation for the approximation reads:

Find (uh,N , ph) ∈ Xh,N ×Mh :
a(uh,N , vh)+ b(vh, ph) = (n · vh, gD)L2(ΓD) − a(uh,gN , vh) ∀vh ∈ Xh,N ,

b(uh,N , qh) = −(f, qh)L2(Ω) − b(uh,gN , qh) ∀qh ∈ Mh .
(6.20)

It remains to discuss the computation of the involved terms. Afterwards, the system
of linear equations can be set up for the expansion coefficients of the approximations
uh and ph in the form

(

Ah B
�
h

Bh 0

)

(

uh
p
h

)

=
(

r1
r2

)

, (6.21)

where Ah and Bh are the matrices given by testing the bilinear forms a(·, ·) and
b(·, ·) with the basis functions of Xh,N and Mh, respectively. The vectors r1 and
r2 contain the corresponding right hand sides of (6.20). The system can be solved
with the favourite linear algebra algorithm. Alternatively, one might use the Schur
complement. The first equation in (6.21) yields

uh = A−1
h

(

r1 − B�
h ph

)

,

and inserting into the second equation of (6.21) gives

BhA
−1
h B�

h ph
= BhA

−1
h r1 − r2

for the computation of p
h
.
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6.1.4.1 Computational Realization

In this section we address the computational realization of the terms within the
mixed formulation (6.20). The integrals (f, qh)L2(Ω) and (n · vh, gD)L2(ΓD) are
rather standard. The first integral is split into its contribution over each polygonal
element and then a quadrature formula is applied over the auxiliary triangulation
as in (4.43). For the second integral we recognize that n · vh is constant over
each edge of the discretization. Consequently, we split the integral on ΓD into its
contributions over the single edges and apply Gaussian quadrature. We recall that
div vh is constant on each element for vh ∈ Xh. Therefore, the entries of Bh have
an analytic expression. For vh ∈ Xh and qh ∈ Mh, we obtain

b(vh, qh) =
∑

K∈Kh

|K| div vh
∣

∣

K
qh .

In order to treat the bilinear form a(·, ·), we apply boundary element techniques.
We exploit the definition of the basis functions ψE in (6.6) with the help of φE .
Obviously, the function uh ∈ Xh can be expressed locally over each element
K ∈ Kh as

uh = A∇φu
where φu is the unique solution of

div(A∇φu) = fu in K ,

nK ·A∇φu = gu on ∂K ,
(6.22)

with a constant fu and piecewise constant gu ∈ P0
pw,d(∂K). Furthermore, the

function φu is decomposed into φu = φu,0 + φu,f with

φu,f (x) = 1
4fu(x − x̄K)�A−1(x − x̄K) ∈ P2(K) ,

such that

div(A∇φu,f ) = fu in K , (6.23)

and hence, φu,0 is the solution of the Neumann problem

− div(A∇φu,0) = 0 in K ,

nK · A∇φu,0 = gu − nK · A∇φu,f on ∂K .
(6.24)

The function φu,0 is unique up to an additive constant. A small exercise shows that
gu − nK · A∇φu,f ∈ P0

pw,d(∂K), since the gradient of a quadratic function is
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linear and since the normal component of a linear function along a straight edge
is constant. In the case of a scalar valued diffusion coefficient A ∈ R, we apply
the discussed boundary element method from Chap. 4 for the Neumann problem of
the Laplace equation. But, there is also a boundary element method available for a
general, symmetric and positive definite matrix A ∈ R

2×2, see [151]. We comment
on this in Sect. 6.2.3.

Consequently, we have the tools to approximate the Dirichlet trace of φu,0 on ∂K
and we utilize the representation formula to evaluate φu,0 and its derivatives inside
the elements. This allows for a very accurate approximation of uh inside K . Thus,
we have different possibilities to treat the bilinear form a(·, ·) as in Sect. 4.5. Either
we use a numerical integration scheme over the polygonal elements and evaluate uh
and vh with the help of the representation formula in the quadrature nodes, or we
utilize partial integration locally in order to reformulate the volume integrals into
boundary integrals. The first strategy is analog to the volume quadrature in (4.43).
For the second strategy we write

uh = A∇φu and vh = A∇φv
with

φu = φu,0 + φu,f and φv = φv,0 + φv,f

as above. This decomposition and the symmetry of A yield

a(uh, vh) =
∑

K∈Kh

(

A−1uh, vh
)

L2(K)
=
∑

K∈Kh

(A∇φu,∇φv)L2(K)

=
∑

K∈Kh

{

(

A∇φu,0,∇φv,0
)

L2(K)
+ (A∇φu,f ,∇φv,f

)

L2(K)

+ (A∇φu,0,∇φv,f
)

L2(K)
+ (∇φu,f , A∇φv,0

)

L2(K)

}

=
∑

K∈Kh

{

I + II + III + IV
}

.

The terms I–IV are treated separately employing integration by parts and the
properties (6.23) and (6.24). We obtain

III = (nK · A∇φu,0, φv,f
)

L2(∂K)
and IV = (nK · A∇φv,0, φu,f

)

L2(∂K)
,

and consequently the terms are given as integrals of piecewise quadratic polynomi-
als over ∂K that are computed analytically. The same arguments yield

II = (nK · A∇φu,f , φv,f
)

L2(∂K)
− (fu, φv,f

)

L2(K)
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with an integral of a piecewise quadratic polynomial over the boundary ∂K and
an integral of a quadratic polynomial over K , since fu is constant. Both integrals
are computed analytically, where we apply the divergence theorem to transform the
volume integral to a boundary integral. Finally, I has the form

I = (nK · A∇φu,0, φv,0
)

L2(∂K)

after integration by parts. Here, nK ·A∇φu,0 is a piecewise constant function on ∂K
and φv,0 is treated by means of boundary element methods as discussed in Chap. 4.
For scalar valued diffusionA ∈ R, we obtain with the notation of trace and boundary
integral operators

I =
(

AγK1 φu,0, γ
K
0 φv,0

)

L2(∂K)
= A

(

γK1 φu,0,PKγK1 φv,0

)

L2(∂K)
,

where PK denotes the Poincaré–Steklov operator (4.14), which maps the Neumann
to the Dirichlet trace. Hence, I is approximated utilizing the non-symmetric

Punsym
K,h = MK,h

˜D−1
K,h

(

1
2M

�
K,h − K�

K,h

)

or the symmetric

PK,h = VK,h +
(

1
2MK,h − KK,h

)

˜D−1
K,h

(

1
2M

�
K,h − K�

K,h

)

discretization of PK , see (4.14) as well as (4.15) and the more detailed discussion in
Sect. 4.5. For matrix valued diffusion A ∈ R

2×2, the Neumann trace is defined by

γK1 φu,0 = nK ·A∇φu,0
for sufficiently regular functions and we can proceed analogously with the BEM.

6.1.4.2 Numerical Examples

To validate our theoretical findings, we give some numerical experiments for
the mixed formulation of the BEM-based FEM. In the realization, we set up
the matrix Ah with the brute force approach utilizing numerical integration over
polygonal elements, where the test and trial functions are evaluated with the help
of the representation formula. Furthermore, the system of linear equations (6.21) is
solved by means of GMRES [150].

Two model problems are posed on the domain Ω = (−1, 1)2 and we decompose
its boundary into

ΓD = {(x1,−1)� : −1 ≤ x1 ≤ 1} and ΓN = ∂Ω \ ΓD .
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In the first example, we choose the data gD and gN in such a way that the smooth
function p(x) = exp(2π(x1 − 0.3)) cos(2π(x2 −0.3)), x ∈ R

2 is the exact solution
of

−�p = 0 in Ω , n · ∇p = gN on ΓN , p = gD on ΓD .

Thus, (u, p) with u = ∇p solves the corresponding mixed formulation (6.20). For
the second example, we take p(x) = sin(πx1) sin(πx2), x ∈ R

2 as solution of

−�p = f in Ω , n · ∇p = gN on ΓN , p = 0 on ΓD

with corresponding data f and gN . The BEM-based FEM is applied on a sequence
of honeycomb meshes consisting of hexahedral elements with decreasing mesh
size h, see Fig. 6.2. We analyse numerically the relative error

‖u − uh‖H(div,Ω) + ‖p − ph‖L2(Ω)

‖u‖H(div,Ω) + ‖p‖L2(Ω)

. (6.25)

According to Theorem 6.4, the interpolation error in Lemma 6.2 and known approx-
imation properties of the space Mh, cf. Lemma 3.4, we expect linear convergence of
the relative error (6.25) with respect to the mesh size h = max{hK : K ∈ Kh}. The
numerical experiments confirm this fact, see Fig. 6.3. In Fig. 6.4, the approximations
ph and uh of the primal and the flux variable are visualized for the second problem.

In the third and final example, we consider a problem with unknown solution.
Let Ω = (0, 1)2 and we prescribe Dirichlet data on the left edge of the square and
Neumann data else, such that

ΓD = {(0, x2)
� : 0 ≤ x2 ≤ 1} and ΓN = ∂Ω \ ΓD .

We choose the Dirichlet data as

gD(x) = 1 − x2 for x ∈ ΓD ,

Fig. 6.2 Sequence of honeycomb meshes with hexahedral elements and decreasing mesh size h
from left to right
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Fig. 6.3 Relative error (6.25) with respect to h in logarithmic scale for first and second example

Fig. 6.4 Visualization of the approximation of the second example, the primal variable ph and the
flux unknown uh
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and the Neumann data such that we have an inflow in the left part of the upper edge
and an outflow in the lower part of the right edge, namely

gN(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−3 for 0 ≤ x1 ≤ 1/2, x2 = 1 ,

3 − 3x2 for x1 = 1, 0 ≤ x2 ≤ 1/2 ,

0 else on ΓN .

We consider the mixed boundary value problem

− div u = 0 in Ω ,

∇p = u in Ω ,

n · u = gN on ΓN ,

p = gD on ΓD

in the saddle point formulation (6.20) for the unknowns u and p. The approximation
obtained by BEM-based FEM strategies is visualized in Fig. 6.5 on a polygonal
mesh. The vector field uh behaves as expected, it points form the inflow boundary
towards the outflow boundary and it is almost parallel to the boundary with
homogeneous Neumann data.

Fig. 6.5 Visualization of the approximation of third example, the primal variable ph and the flux
unknown uh
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6.2 3D Generalization with Application
to Convection-Diffusion-Reaction Equation

In this section, we discuss a generalization of a variant of the BEM-based finite
element method studied so far. We address the definition of basis functions on
meshes with polyhedral elements having polygonal faces. These functions are
used to construct an approximation space Vh which can be utilized in the discrete
Galerkin formulation of the finite element method. The idea of the BEM-based FEM
is to define the basis functions implicitly on each element as local solutions of the
underlying differential equation and to treat the local problems by boundary element
methods. In the following, we push this idea one step further. As model problem,
we consider once more the diffusion equation (2.1) and in addition a general
convection-diffusion-reaction equation. In particular, the forthcoming construction
of Vh will improve the stability of the discretization method for convection-
dominated problems both when compared to a standard FEM and to previous
BEM-based FEM approaches. The experiments also show an improved resolution of
exponential layers at the outflow boundaries when the proposed method is compared
to the Streamline Upwind/Petrov-Galerkin (SUPG) method [48].

6.2.1 Generalization for Diffusion Problem

In a first step we consider the generalization to polyhedral elements with polygonal
faces for the diffusion problem (2.1). This problem reads

− div(a∇u) = f in Ω ,

u = gD on ΓD ,

a∇u · n = gN on ΓN ,

with the assumptions on the data as described in Chap. 2. Section 2.3 gives
a detailed construction of basis functions for the two-dimensional case and a
simple generalization for the three-dimensional case under the restriction that the
polyhedral elements only have triangular faces. These functions are not limited to
the diffusion equation, but they have been especially designed for that problem.
Here, we first examine the situation for the first order approximation space Vh and
give an alternative construction of its basis functions allowing polytopal elements
with polygonal faces directly. Afterwards, we present the general space V k

h yielding
k-th order approximations.

If we look again into the two-dimensional case and the definition of the nodal
basis functions (2.6), we observe that the values of the basis functions are fixed in
the nodes and extended uniquely along the edges by linear functions. This linear
extension is nothing else than a harmonic extension along the edge, and thus the
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Fig. 6.6 Stepwise construction of basis functions

basis functions are also defined on the edges according to the underlying differential
equation. Therefore, we propose a stepwise and hierarchical construction for the
basis functions in the case of polyhedral elements with polygonal faces as sketched
in Fig. 6.6. This approach has been first proposed in [147]. A similar idea has been
used in two-dimensions for the construction of multiscale finite elements in [104].

In order to get a nodal basis of Vh, we declare for each node z ∈ Nh a basis
function ψz which is equal to one in z and zero in all other nodes of the mesh.
Denoting the i-dimensional Laplace operator by �i , we define the basis functionψz
as unique solution of

−�3ψz = 0 in K for all K ∈ Kh ,

−�2ψz = 0 in F for all F ∈ Fh ,

−�1ψz = 0 in E for all E ∈ Eh ,

ψz(x) =
{

1 for x = z ,

0 for x ∈ Nh \ {z} ,

where the Laplace operators have to be understood in the corresponding linear
parameter spaces. The values in the nodes are prescribed. Afterwards, we solve
a Dirichlet problem for the Laplace equation on each edge. Then, we use the
computed data as Dirichlet datum for the Laplace problem on each face, and finally,
we proceed with the Laplace problem on each element, where the solutions on the
faces are used as boundary values. In the case of convex faces and elements, these
problems are understood in the classical sense and we haveψz ∈ C2(K)∩C0(K). In
the more general situation of non-convex elements, the weak solution is considered
such that we have at least ψz ∈ H 1(K).

Building the span of these nodal basis functions, we obtain a first order
approximation space Vh = V 1

h on general meshes containing polyhedral elements
with polygonal faces. In [147], this space has been analysed for its approximation
properties and an interpolation operator analog to the one defined in Sect. 2.4
has been studied. The discrete Galerkin formulation for the model problem (2.1)
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with the generalized approximation space applicable on polyhedral elements with
polygonal faces reads as in Sect. 2.5, see (2.28).

Having this hierarchical construction in mind for the definition of nodal basis
functions it is clear how to proceed with higher order basis functions. In the two-
dimensional setting we enriched the approximation space with element bubble
functions which have a polynomial Laplacian, see the motivation in Sect. 2.3.2.
Thus, instead of prescribing the Laplace equation on edges, faces and elements, we
use the Poisson equation with polynomial right hand side. Consequently, the discrete
space V k

h consists of function that are polynomials along the edges, their restriction
onto a face F ∈ Fh lies in the two-dimensional approximation space V k

h (F ) defined
in Sect. 2.3.3, and they have a polynomial Laplacian inside the three-dimensional
element K ∈ Kh. More precisely, it is

V k
h =

{

v ∈ H 1(Ω) : �v∣∣
K

∈ Pk−2(K) ∀K ∈ Kh and v
∣

∣

F
∈ V k

h (F ) ∀F ∈ Fh

}

.

We easily see that Pk(K) ⊂ V k
h

∣

∣

K
, such that polynomials are contained in

the approximation space locally. This ensures the approximation properties of the
discrete space.

Remark 6.5 If the polyhedral elements have by chance only triangular faces, the
approximation space described above is equivalent to the simple generalization from
Sect. 2.3.4 for k = 1. In the case k > 1, however, the defined spaces differ between
each other. On each triangular face F it is Pk(F ) � V k

h (F ) and whereas the simple
generalization thus has 1

2 (k − 1)(k − 2) internal degrees of freedom per face the
above generalization has 1

2k(k − 1).

6.2.2 Application to Convection-Diffusion-Reaction Problem

The general convection-diffusion-reaction problem in a bounded Lipschitz domain
Ω ⊂ R

3 is given by

L u = − div(A∇u)+ b · ∇u+ cu = 0 in Ω ,

u = gD on Γ ,
(6.26)

where we restrict ourselves to the pure Dirichlet problem for shorter notation. Here
A(x) ∈ R

3×3, b(x) ∈ R
3, and c(x) ∈ R are the coefficient functions of the partial

differential operator L, and gD ∈ H 1/2(Γ ) is the given Dirichlet data. We assume
that A(·) is symmetric and uniformly positive with minimal eigenvalue amin, and
that c(·) is non-negative. The corresponding Galerkin formulation reads as follows:

Find u ∈ gD +H 1
0 (Ω) :

∫

Ω

(A∇u · ∇v + b · ∇u v + cuv) dx = 0 ∀ v ∈ H 1
0 (Ω) .

(6.27)
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We require that the coefficients A, b, c are L∞(Ω), and that there exists a unique
solution of (6.27). The unique solvability can be ensured under several well known
conditions. For example, if c − 1

2 div(b) ≥ 0, the bilinear form in (6.27) is
H 1

0 (Ω)-elliptic, which guarantees the existence of a unique solution for the Dirichlet
problem. Another sufficient condition is aminc > |b|2, see, e.g. [151]. Unique
solvability of the variational problem (6.27) can be shown under quite general
assumptions using results by Droniou [68].

For the application of the BEM-based FEM, we require that the coefficients
A(·), b(·), and c(·) are piecewise constant with respect to all geometrical objects
in the polyhedral mesh Kh. Since this is not the case in general, the coefficients are
approximated by piecewise constant ones over the edges, faces and elements of the
mesh. If the coefficients are smooth, we take their values in the center of mass of
the geometrical objects as constant approximations. This corresponds to a first order
approximation of the differential equation. If the coefficients are already piecewise
constant with respect to the elements, we obtain their values on the edges and faces
by computing averages over neighbouring elements. To simplify notation, we omit
new symbols for this approximation. The resulting Dirichlet problem is uniquely
solvable according to the before mentioned conditions in [68].

We restrict ourselves to the introduction of the first order approximation space.
If the polyhedral elements consists of triangular faces only, we can proceed as for
the simple generalization in Sect. 2.3.4. Consequently, the basis functions ψ are
defined to be piecewise linear and continuous over the surface triangulation and
satisfy the underlying differential equation inside each element, i.e., Lψ = 0
in K , ∀K ∈ Kh. This strategy has been introduced in [96] for the convection-
diffusion-reaction equation. We refer to it as the original approach. There is a close
relation between this original BEM-based FEM with piecewise linear boundary data
and the so-called method of residual-free bubbles [41, 44, 45, 47, 80]. Indeed, it
has been shown in [94] that the BEM-based FEM, with exact evaluation of the
Steklov–Poincaré operator, is equivalent to the method of residual-free bubbles with
exactly computed bubbles. Since the latter has been shown to be a stable method
for convection-dominated problems, it seems clear that also the BEM-based FEM
should have advantageous stability properties. It should be noted that neither the
Steklov–Poincaré operator nor the computation of the residual-free bubbles can be
realized exactly in practice.

In this chapter we follow the idea of the previous Sect. 6.2.1 and define the basis
functions in a hierarchical fashion as in [99]. Thus, we obtain for each node z ∈ Nh

a basis function ψz as unique solution of

Lψz = 0 in K for all K ∈ Kh ,

LF ψz = 0 in F for all F ∈ Fh ,

LE ψz = 0 in E for all E ∈ Eh ,

ψz(x) =
{

1 for x = z ,

0 for x ∈ Nh \ {z} .
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The differential operators LE and LF are projections of the differential operator L
onto the edge E and the face F , respectively, see below for a precise description.
Thus, the functions ψz are defined implicitly as local solutions of boundary value
problems on edges, faces and elements of the decomposition. Equivalently, one can
say that these functions are defined via PDE-harmonic extensions. The nodal data
is first extended LE-harmonically along the edges and afterwards, the data on the
edges is extended into the faces with the help of a LF -harmonic operator and so on.

For the definition of LE and LF , let F ∈ Fh be a face and E ∈ Eh an edge on
the boundary of F . By rotation and translation of the coordinate system, we map
the face F into the (e1, e2)-plane and the edge E onto the e1-axis of the Euclidean
coordinate system (e1, e2, e3) such that one node of E lies in the origin. Thus, we
have an orthogonal matrix B ∈ R

3×3 and a vector d ∈ R
3 such that

x �→ x̂ = Bx + d and ̂ψ(̂x) = ψ(B−1x̂ − B−1d) ,

and the differential equation in (6.26) yields

−div(A∇ψ)+b·∇ψ+cψ = − div̂x(BAB�∇x̂̂ψ)+Bb·∇x̂̂ψ+ĉψ = 0 . (6.28)

Here, the coefficients BAB�, Bb and c are constant on F and E, respectively,
since A, b and c are constant approximations on each geometrical object of the
original coefficients. Furthermore, we only consider tangential components to define
the operators LF and LE on the face and edge, respectively. This is equivalent to
setting

∂̂ψ

∂x̂3
= ∂2

̂ψ

∂x̂2
3

= 0 in F and
∂̂ψ

∂x̂2
= ∂̂ψ

∂x̂3
= ∂2

̂ψ

∂x̂2
2

= ∂2
̂ψ

∂x̂2
3

= 0 on E

in (6.28). Therefore, the dependence in (6.28) reduces to two and one coordinate
directions such that LF and LE are defined as differential operators in two- and
one-dimensions using the described coordinate system. Overall, the basis functions
are constructed with the help of the convection-diffusion-reaction equation on the
edges, faces and elements, where the diffusion matrix and the convection vector are
adjusted in a proper way. All appearing one-, two- and three-dimensional boundary
value problems are uniquely solvable due to the global properties of A(·), which
carry over to BAB�, and since c − 1

2 div(Bb) = c ≥ 0 on F and E, respectively.
To simplify notation, we omit the coordinate transformation in the following

and abbreviate the transformed diffusion matrix BAB�, the convection vector Bb
and the reaction term c to AF , bF , cF and AE , bE , cE on the faces and edges,
respectively. Furthermore, we treat the basis functionsψz as functions of two or one
variable depending on the underlying domain F or E. For example, let us assume
thatE already lies in the e1-axis and corresponds to the interval (0, hE). In this case,
ψz only depends on x1 and the scalar valued coefficients AE , bE , and cE along E
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and the differential equation reads

AEψ
′′
z + bEψ ′

z + cEψz = 0 in (0, hE) , (6.29)

with some boundary data ψz(0) and ψz(hE) that is 0 or 1 depending on the
considered basis function.

Having the basis functions ψz at hand, we define the approximation spaces as

Vh = span {ψz : z ∈ Nh} and Vh,D = Vh ∩H 1
0 (Ω) . (6.30)

The discrete Galerkin formulation thus reads:

Find uh ∈ gD + Vh,D ⊂ Vh :
∫

Ω

(A∇uh · ∇vh + b · ∇uh vh + cuhvh) dx = 0 ∀ v ∈ Vh,D .
(6.31)

Remark 6.6 In order to define a high-order approximation space V k
h with k > 1,

we may proceed as in the previous Sect. 6.2.1. Consequently, additional edge,
face and element bubble functions are introduced which are defined to satisfy the
inhomogeneous convection-diffusion-reaction equation with polynomial right hand
side inside the edges, faces and elements, respectively.

6.2.3 Realization of the Basis Functions

Of course, the hierarchically defined basis functions do not have a closed analytical
form and they have to be treated numerically. In the following, we discuss this
issue in more detail, where we solve the boundary value problems on the edges
analytically, the problems on the faces with the help of a 2D FEM and the problems
on the elements by means of boundary integral equations. For this purpose, an
auxiliary discretization of the boundaries of the elements is needed. We apply
the construction of the triangular surface mesh discussed in Sect. 2.2.2, which
yields a conforming boundary discretization Tl (∂K) of level l. Here, first the
faces are discretized by connecting their vertices with the point zF and afterwards,
the resulting triangles are refined successively by splitting them into four similar
triangles. According to this construction, the triangulations on all faces can be glued
in a conforming manner to obtain a discretization of the whole boundary ∂K . In
particular, the strategy yields for l ≥ 1 a discretization of each edge in the mesh into
line segments, see Fig. 6.7.

The advantage of this line of action is, that the two-dimensional finite element
spaces on the faces of the elements fit exactly the approximation spaces utilized in
three-dimensional boundary element methods. Thus, a 2D FEM approximation on
the faces can directly be used in existing boundary element codes. Alternatively,
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Fig. 6.7 Stepwise approximation of basis functions using the auxiliary discretization with l = 1

one might treat the boundary value problems on the faces by a 2D BEM in order to
avoid the surface triangulation, but this would result in the need of a 3D BEM on
polygonal surface meshes. Hence, we stick with the 2D FEM and 3D BEM strategy
that is explained in more detail in the following. Furthermore, we restrict ourselves
to k = 1.

To be mathematically more precise, we choose a basis function ψz and consider
its approximation ψz,l on the edges and faces of K ∈ Kh with z ∈ N (K). Here, l
refers to the level of the surface triangulation and therefore to the mesh size of the
auxiliary discretization. We seek the approximation of ψz

∣

∣

∂K
, namely the Dirichlet

data for the three-dimensional problem on K , as

g
(ψz)
l,∂K ∈ P1

pw(Tl (∂K)) , and set ψz,l
∣

∣

∂K
= g

(ψz)
l,∂K .

The space of piecewise linear polynomials over Tl (∂K) has been endowed with a
basis ΦD in Sect. 4.3. We denote by g(ψz)

l,∂K the vector with the expansion coefficients

of g(ψz)
l,∂K in this basis. On all edges E ∈ E (K) with z /∈ N (E) and on all faces

F ∈ F (K) with z /∈ N (F ), the function ψz vanishes and it remains to consider
the edges and faces with z ∈ N (E) and z ∈ N (F ), respectively.

On Edges
For the pure diffusion problem, the basis functions are obviously linear along
the edges with prescribed data in the nodes, which is either zero or one. In the
convection-diffusion-reaction regime, however, LE describes an ordinary differen-
tial operator of second order with constant and scalar-valued coefficients, cf. (6.29).
Thus the boundary value problems on the edges are solved analytically and ψz can
be written in closed form on each edge E ∈ Eh. If cE = 0, for instance, a small
exercise shows

ψz(x1) = ψz(0)+ (ψz(hE)− ψz(0)
)

1 − exp
(

bE
AE

hEx1

)

1 − exp
(

bE
AE

hE

) for x1 ∈ [0, hE] .

(6.32)
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Here, we recognize how the data in the nodes for x1 = 0 and x1 = hE enter the
formula.

For the diffusion problem we can express the linear function ψz
∣

∣

E
exact in the

trace space of P1
pw(Tl (∂K)) on E. For the convection-diffusion-reaction problem,

however, we make use of the induced discretization of E into line segments and
we interpolate ψz

∣

∣

E
, cf. (6.32), by g

(ψz)
l,E in the space of piecewise linear functions

over the discretization of E. Finally, the functions g(ψz)
l,E on the edges E ∈ E (F ) are

combined in order to obtain the Dirichlet data g(ψz)
l,∂F on ∂F for the 2D problems on

the faces of the element.

On Faces
The variational formulation for ψz

∣

∣

F
reads analog to (6.27). The non-homogeneous

Dirichlet data is treated as usual in the Galerkin formulation. Therefore, we interpret
g
(ψz)
l,∂F as extension into P1

pw(Tl(F )). Furthermore, we denote by ΦD,F the set of
basis functions from ΦD with support in F , such that

span ΦD,F = P1
pw(Tl (F )) ∩H 1

0 (F ) .

In the case of the pure diffusion problem, the discrete Galerkin formulation for
the approximation of the basis functions on the faces F ∈ F (K) reads:

Find g(ψz)
l,F ∈ g

(ψz)
l,∂F + span ΦD,F :

∫

F

∇g(ψz)
l,F · ∇ϕ dsx = 0 ∀ϕ ∈ ΦD,F .

We point out that the boundary data on the edges is linear in this case. Hence, it is
represented exact in the space of piecewise polynomials. Furthermore, if the faces
F ∈ F (K) are already triangles, we recover the basis functions discussed in the
simple generalization to 3D in Sect. 2.3.4.

In the case of the convection-diffusion-reaction equation we might encounter
convection-dominated problems. Consequently, we propose to utilize a stabilized
FEM on the faces. We choose the Streamline Upwind/Petrov-Galerkin (SUPG)
method [48] such that the discrete formulation for the approximation of the basis
functions on the faces reads:

Find g(ψz)
l,F ∈ g

(ψz)
l,∂F + span ΦD,F :

∫

F

(AF∇g(ψz)
l,F · ∇ϕ + bF · ∇g(ψz)

l,F ϕ + cF g
(ψz)
l,F ϕ) dsx (6.33)

+ δF

∫

F

(bF · ∇g(ψz)
l,F bF · ∇ϕ + cF g

(ψz)
l,F bF · ∇ϕ) dsx = 0 ∀ϕ ∈ ΦD,F ,

where δF ≥ 0 is a stabilization parameter which is set to zero in the diffusion-
dominated case. The choice of δF is discussed in more detail in Sect. 6.2.6. On
all faces F ∈ Fh with z /∈ N (F ), it is g(ψz)

l,F = 0. Here, we point out that the
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boundary data on the edges is not polynomial in general, cf. (6.32). Thus, g(ψz)
l,∂F is

an approximation of the actual data.
Finally, the functions g(ψz)

l,F on the faces F ∈ F (K) are combined in order to

obtain the Dirichlet data g(ψz)
l,∂K ∈ P1

pw(Tl (∂K)) for the 3D problems on the whole
boundary of the element. This construction is well defined since the triangulations
of the faces form a conforming discretization of the surface ∂K , cf. Fig. 6.7.

On Elements
After we have computed the Dirichlet traces g

(ψz)
l of all the approximate basis

functions ψz,l on the skeleton of the discretization, i.e., on the boundaries of the
polyhedral elements, the three-dimensional local problems are treated by means of
boundary integral equations and they are approximated by the boundary element
method. For the pure diffusion problem we proceed as discussed in Chap. 4. Con-
sequently, we have the Steklov–Poincaré operator (4.7), which maps the Dirichlet
to the Neumann trace, and the representation formula (4.3) for the evaluation of
the approximation inside the elements. The approximation of the Steklov–Poincaré
operator and the representation formula are given in (4.20) and (4.22), respectively.
In particular, the approximation space in the 2D FEM on the faces has been chosen
in such a way that g(ψz)

l,∂K ∈ P1
pw(Tl (∂K)) for ψz,l with z ∈ N (K) and K ∈ Kh.

Hence, we can apply directly the results of Sect. 4.3.
The boundary element method is not restricted to the Laplace equation. It

generalizes to a large class of problems where the corresponding fundamental
solutions are known. This is in particular true for the convection-diffusion-reaction
equation. Here, the fundamental solution depends on AK , bK as well as on cK
and consequently on the element K ∈ Kh. In R

3 and under the assumption
cK + ‖bK‖2

A−1
K

≥ 0, we have

U∗
K(x, y) = 1

4π
√

detAK

exp
(

b�
KA

−1
K (x − y)− λ‖x − y‖

A−1
K

)

‖x − y‖
A−1
K

for x, y ∈ R
3 ,

where

‖x‖
A−1
K

=
√

x�A−1
K x and λ =

√

cK + ‖bK‖2
A−1
K

.

With the help of U∗
K(·, ·), which satisfies

LyU
∗
K(x, y) = δ0(y − x)

for the convection-diffusion-reaction operator L, where δ0 is the Dirac delta
distribution, we can formulate the boundary integral operators as in Sect. 4.2. Since
L is not a self-adjoint operator, we have to distinguish between the conormal
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derivative γK1 v, which is given for sufficiently smooth v as

(γ K1 v)(x) = nK(x) · (γ K0 AK∇v)(x) for x ∈ ∂K ,

and the modified conormal derivative

˜γK1 v = γK1 v + (bK · nK)γK1 v , (6.34)

which is associated with the adjoint problem. The conormal derivative is also called
Neumann trace. For x ∈ ∂K , we have the single-layer potential operator

(VKζ )(x) = γK0

∫

∂K

U∗
K(x, y)ζ(y) dsy for ζ ∈ H−1/2(∂K) ,

the double-layer potential operator

(KKξ)(x) = lim
ε→0

∫

y∈∂K :|y−x|≥ε

˜γK1,yU
∗
K(x, y)ξ(y) dsy for ξ ∈ H 1/2(∂K) ,

and the adjoint double-layer potential operator

(K′
Kζ )(x) = lim

ε→0

∫

y∈∂K :|y−x|≥ε
γ K1,xU

∗
K(x, y)ζ(y) dsy for ζ ∈ H−1/2(∂K) ,

as well as the hypersingular integral operator

(DKξ)(x) = −γK1
∫

∂K

˜γK1,yU
∗
K(x, y)ξ(y) dsy for ξ ∈ H 1/2(∂K) .

These operators have the same mapping properties as the corresponding integral
operators for the Laplace operator. We point out that they differ in the fundamental
solution U∗

K(·, ·) and the use of the modified conormal derivative. As in Chap. 4,
we have a representation formula and two representations of the Steklov–Poincaré
operator, which maps the Dirichlet to the Neumann trace

γK1 u = SKγK0 u ,

in terms of the boundary integral operators:

SK = V−1
K ( 1

2I + KK) = DK + ( 1
2I + K′

K)V
−1
K ( 1

2 I + KK) , (6.35)

provided that VK is invertible. The invertibility of the single-layer potential operator
VK is shown for some special cases, like the Laplace operator or when the material
parameters satisfy amincK > |bK |2, where amin is the minimal eigenvalue of AK ,
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see [151]. For general elliptic operators as in (6.26) with constant coefficients,
Costabel [61] has shown that the single-layer potential is a strongly elliptic operator
and thus satisfies a Gårding inequality. The discretization of these boundary integral
operators follows the line of Sect. 4.3, where the boundary mesh Bh is chosen to
be Tl (∂K). Hence, we obtain the corresponding boundary element matrices VK,l ,
MK,l , KK,l and so on.

6.2.4 Fully Discrete Galerkin Formulation

We consider the convection-diffusion-reaction equation only, since it includes the
pure diffusion problem, and we restrict ourselves for shorter notation to Dirichlet
boundary conditions and a vanishing source term as in (6.26). Instead of applying
the approximation space (6.30) with the implicitly defined basis functions on edges,
faces and elements, we use the spaces

Vh,l = span {ψz,l : z ∈ Nh} and Vh,l,D = Vh,l ∩H 1
0 (Ω) ,

which are spanned by the approximated basis function ψz,l as described in the
previous Sect. 6.2.3. This approximation space is conforming, i.e. Vh,l ⊂ H 1(Ω),
due to the continuity of the functions in Vh,l over edges as well as faces and because
of the regularity of the local problems defining the basis functions. The discrete
Galerkin formulation reads:

Find uh,l ∈ gD + Vh,l,D : b(uh,l, vh,l) = 0 ∀vh,l ∈ Vh,l,D , (6.36)

with bilinear form

b(uh,l, vh,l ) =
∫

Ω

(

A∇uh,l · ∇vh,l + b · ∇uh,l vh,l + c uh,lvh,l
)

dx .

For the realization of the bilinear form, we proceed as in Sect. 4.5. Integration by
parts and the properties of Vh,l yield

b(uh,l, vh,l) =
∑

K∈Kh

∫

K

(

AK∇uh,l · ∇vh,l + bK · ∇uh,l vh,l + cK uh,lvh,l
)

dx

=
∑

K∈Kh

∫

∂K

γK1 uh,l γ
K
0 vh,l dsx +

∫

K

L uh,l vh,l dx

=
∑

K∈Kh

∫

∂K

SKγK0 uh,l γ
K
0 vh,l dsx .
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Next, we replace the Steklov–Poincaré operator by its non-symmetric or symmetric
representation, cf. (6.35), and approximate it by means of boundary element meth-
ods in analog to Sect. 4.5. Let g(u)

l,∂K
and g(v)

l,∂K
be the vectors with the expansion

coefficients of γK0 uh,l and γK0 vh,l in P1
pw(Tl (∂K)), respectively. These vectors

are given as linear combinations of the coefficient vectors g(ψz)
l,∂K from the basis

functions ψz computed in Sect. 6.2.3 on the faces. Consequently, we obtain for
b(·, ·) the approximation

bl(uh,l, vh,l ) =
∑

K∈Kh

(g(v)
l,∂K

)�SK,l g(u)l,∂K
,

where SK,l ∈ R
|Ml (∂K)|×|Ml (∂K)| is either

Sunsym
K,l = M�

K,lV
−1
K,l

(

1
2MK,l + KK,l

)

,

when using the non-symmetric representation, or

SK,l = DK,l +
( 1

2M
�
K,l + K�

K,l

)

V−1
K,l

( 1
2MK,l + KK,l

)

,

when using the symmetric representation of the Steklov–Poincaré operator. Here,
the matrices in bold letters are the corresponding boundary element matrices for
the convection-diffusion-reaction operator defined in Sect. 6.2.3. For this differential
operator, however, the hypersingular integral operator DK is not self-adjoint and
hence, DK,l is non-symmetric. Consequently, the symmetric representation of the
Steklov–Poincaré operator yields a non-symmetric matrix SK,l .

Finally, the fully discrete Galerkin formulation reads:

Find uh,l ∈ gD + Vh,l,D : bl(uh,l, vh,l) = 0 ∀vh,l ∈ Vh,l,D . (6.37)

The assembling of the global FEM matrix is performed as usual by adding up the
local element-wise contributions. Therefore, let DK ∈ R

|Ml (∂K)|×|N (K)| be the
matrix obtained by gathering the vectors g(ψz)

l,∂K ∈ R
|Ml (∂K)|, z ∈ N (K) with the

expansion coefficients of γK0 ψz,l in P1
pw(Tl (∂K)) computed in Sect. 6.2.3. The

matrix

D�
KSK,lDK ∈ R

|N (K)|×|N (K)|

with either SK,l = Sunsym
K,l or SK,l = SK,l serves as local stiffness matrix in the

BEM-based FEM simulation. At this point we emphasize that the local auxiliary
triangulations Tl (∂K) are used only to compute the element stiffness matrices. The
level of refinement l chosen for them has no influence on the size of the global FEM
system.
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6.2.5 Numerical Experiments: Diffusion Problem

In the setup of the local boundary element matrices, we use a semi analytical
integration scheme. The inner integral in the Galerkin matrices is evaluated
analytically and the outer one is approximated by Gaussian quadrature. For the
assembling of the global FEM system matrix we use locally the stiffness matrices
resulting from the non-symmetric representation of the Steklov–Poincaré operator,
see Sect. 6.2.4. Since this formulation yields non-symmetric local stiffness matrices
although the bilinear form is symmetric, we apply a symmetrization in order to
retain the symmetry. We write

b(uh,l, vh,l ) =
∑

K∈Kh

∫

K

aK∇uh,l · ∇vh,ldx

=
∑

K∈Kh

aK

2

(

∫

∂K

γK1 uh,l γ
K
0 vh,l dsx +

∫

∂K

γK1 vh,l γ
K
0 uh,l dsx

)

,

and use the approximation

bl(uh,l, vh,l) =
∑

K∈Kh

aK

2
(g(v)

l,∂K
)�
(

Sunsym
K,l + (Sunsym

K,l )�
)

g(u)
l,∂K

,

which yields locally the symmetric stiffness matrix

aK

2
D�
K

(

Sunsym
K,l + (Sunsym

K,l )�
)

DK ∈ R
|N (K)|×|N (K)| .

The symmetric systems of linear equations arising on the faces and in the global
FEM system are solved by the conjugate gradient method [90] without any pre-
conditioning. Of course, for larger problems a more efficient solver is of particular
interest. It is possible to use FETI-type strategies, for instance. The application of
such solvers to the BEM-based FEM has been studied in [94, 97].

The first numerical example in this section is formulated on the unit cube. We
utilize Voronoi meshes which are a particular example of polyhedral meshes. In
Fig. 6.8, the first three meshes of the sequence are visualized which are used for the
convergence experiments. We see that the elements are non-trivial polyhedra with
arbitrary polygonal faces. The meshes have been produced by generating random
points according to [71] and constructing the corresponding Voronoi diagram in
accordance with [70]. It is assumed that the mesh generator provides the points zK
and zF from the Definitions 2.10 and 2.11. However, for convex elements and faces
we may use the center of mass instead which is computable.

In Table 6.1, we sketch the number of elements |Kh| and the number of
nodes |Nh| in the different Voronoi meshes. The proposed strategy approximates
the solution by a linear combination of as many basis function as nodes are in
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Fig. 6.8 Sequence of Voronoi meshes

Table 6.1 Total number of nodes and elements when working with triangulated surfaces of
different mesh levels l

|Kh| |Nh| l = 0 l = 1 l = 2

9 46 98 424 1790

76 416 905 4170 18,011

712 4186 9081 42,446 184,170

1316 7850 17,013 79,676 345,903

5606 34,427 74,457 349,663 1,519,143

26,362 164,915 356,189 1,675,171 7,280,603

the mesh. Therefore, the number of degrees of freedom in the BEM-based FEM
is |Nh| minus the number of nodes on the Dirichlet boundary ΓD . The simple
generalization for the first order method from Sect. 2.3.4, initially proposed in [60],
needs to triangulate the surfaces of the elements and the number of basis functions
corresponds to the total number of nodes after the triangulation. In Table 6.1, this
total number of nodes is listed in the case that the faces are triangulated with the
level l = 0, 1, 2, cf. Fig. 6.9. We recognize that in this situation much more basis
functions and thus degrees of freedom are required in the global computations.
Roughly speaking, the number of nodes doubles if the coarsest discretization of
the faces is used. If a finer triangulation is needed, the number of nodes and thus the
number of degrees of freedom increase 10 times for l = 1 and even more than forty
times for l = 2. Since the diameter of the elements are equal in all four situations,
the approximation errors of the finite element computations are of the same order
for fixed l. However, the constant in [60] might be better than the one obtained
for the presented strategy for vanishing right hand side in the differential equation.
This is due to the fact that if h is fixed and only l is increased, the method in [60]
still converges since it is equivalent to a boundary element domain decomposition
approach [106]. The hierarchical construction proposed in this chapter gives for
small l comparable approximations while requiring a minimal set of degrees of
freedoms.

In the following, we investigate the influence of the face discretization. These
triangulations of the faces are utilized to define the approximated basis functions
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Fig. 6.9 Polyhedral element with surface triangulations of level l = 0, 1, 2

Table 6.2 Number of nodes
|Ml (∂K)| and number of
triangles |Tl (∂K)| in the
surface discretization of the
element in Fig. 6.9 for
different levels

|N (K)| l |Ml (∂K)| |Tl (∂K)|
12 0 20 36

1 74 144

2 290 576

3 1154 2304

4 4610 9216

ψz,l on the faces with the help of local, two-dimensional finite element methods.
The finer the discretization is chosen the better we approximate the original basis
functions ψz. Even though, the face discretization does not blow up the global
system matrix, the computational effort for the local problems increases if the
discretization level l is raised. As one example, we pick the elementK from Fig. 6.9
and list the number of nodes |Ml(∂K)| and the number of triangles |Tl(∂K)| in the
surface discretization of K for different levels l in Table 6.2. The main tasks in the
local problems are the evaluation of the boundary element matrix entries and the
inversion of the single-layer potential matrix VK,l , which gives a local complexity
of O(|Tl(∂K)|3).

Next, the rates of convergence are analysed for different values of l. Therefore,
consider the Dirichlet boundary value problem

−�u = 0 in Ω = (0, 1)3 , u = gD on Γ ,

on the sequence of Voronoi meshes, where gD is chosen such that

u(x) = exp(2
√

2π(x1 − 0.3)) cos(2π(x2 − 0.3)) sin(2π(x3 − 0.3)) (6.38)

is the exact solution. The relative errors in the energy and L2-norm, i.e.

‖u− uh,l‖b
‖u‖b and

‖u− uh,l‖L2(Ω)

‖u‖L2(Ω)

,

are given in Fig. 6.10 with respect to h = max{hK : K ∈ Kh} in logarithmic
scale for different discretization levels l = 0, 1, 2. This example shows that
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Fig. 6.10 Relative error in ‖ · ‖b (•) and ‖ · ‖L2(Ω) (�) with respect to h for levels l = 0, 1, 2 in
the example with solution (6.38)

the discretization level of the faces does not influence the rates of convergence
as proofed in [147]. Additionally, Fig. 6.10 indicates that the constant in the
error estimate can be chosen to be independent of the level l. The coarsest face
discretization with l = 0 is sufficient to analyse the convergence rates in the
forthcoming numerical experiments. Due to this choice, the local complexity in the
two-dimensional finite element method on the faces F ∈ Fh and the local boundary
element methods on the elementsK ∈ Kh is rather small. Furthermore, in Fig. 6.10,
we recognize linear convergence for the approximation error measured in the energy
norm and quadratic convergence if the error is measured in theL2-norm as expected,
see [147].

Finally, we consider the model problem on a L-shaped domain with a singular
solution such that u /∈ H 2(Ω), but u ∈ H 5/3(Ω). Due to the theory of interpolation
spaces, see, e.g., [34], we expect a convergence order of 2/3. With the help of
cylindrical coordinates (r, φ, x3), where r ≥ 0, φ ∈ [π/2, 2π] and x3 ∈ R, the
function

u(r cosφ, r sinφ, x3) = r2/3 sin( 2
3 (φ − π

2 )) ∈ H 5/3(Ω) (6.39)

satisfies the Laplace equation in the L-shaped domain

Ω = ((−1, 1)× (−1, 1)× (0, 1)
) \ [0, 1]3

with appropriate Dirichlet data. The boundary value problem is solved by means
of the BEM-based FEM on a sequence of polyhedral meshes made of polygonal
bricks, i.e., the meshes contain as elements prisms having general polygonal ends.
In Fig. 6.11, we give the initial mesh of the domain Ω with hanging nodes and



6.2 3D Generalization with Application to Convection-Diffusion-Reaction. . . 211

10−1

10−1 100

3
2

re
la
tiv

e
er
ro
r

mesh size h

‖ · ‖b

Fig. 6.11 L-shaped domain with polyhedral mesh made of bricks and Dirichlet data (left) and
relative error ‖u − uh,l‖b/‖u‖b with respect to h for l = 0 in the example with solution (6.39)
(right)

edges. Additionally, we show the relative error ‖u − uh,l‖b/‖u‖b with respect to
h = max{hK : K ∈ Kh} in logarithmic scale. As expected, we obtain the reduced
order of convergence for a sequence of uniform refined meshes. To recover the linear
convergence in the energy norm for singular solutions, it is necessary to perform
adaptive mesh refinement strategies as discussed in Chap. 5.

6.2.6 Numerical Experiments: Convection-Diffusion Problem

In this section, we give some implementation details as well as numerical exper-
iments for the convection-diffusion problem. The computations are done on tetra-
hedral and polyhedral meshes. For the sake of simplicity, we restrict ourselves to
the case of scalar valued diffusion coefficients, i.e., A = αI for some α > 0,
and a vanishing reaction term c = 0. Furthermore, the experiments are carried out
with constant and continuously varying convection vector b. Remember, that we
have to approximate the coefficients α and b by constants on each geometrical
object for the BEM-based FEM, see Sect. 6.2.2. The method is studied for the
case of decreasing diffusion α → 0. Standard numerical schemes like the finite
element method become unstable when applied to this type of convection-dominated
problems. Typically, the issue manifests itself in the form of spurious oscillations.
The critical quantity here is the mesh Péclet number

PeK = hK |bK |
αK

, K ∈ Kh ,

which should be bounded by 2 for standard finite element methods. In the numerical
experiments, we give Peh = max{PeK : K ∈ Kh}. When decreasing the diffusion
for fixed h, the mesh Péclet number increases and we expect oscillations. This is
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due to the fact that the boundary value problem gets closer to a transport equation
and thus, boundary layers appear near the outflow boundary.

In addition to stability, we study the number of GMRES iterations, which are
used to compute the approximate solution of the resulting system of linear equa-
tions, and we compare the presented approach with a 3D SUPG implementation.

Implementation Details
All computations regarding the convection-adapted basis functions can be done in a
preprocessing step. In the case of non-constant convection, diffusion and reaction,
these terms are first projected into the space of piecewise constant functions over
the edges, faces and elements of the mesh. Afterwards, the Dirichlet traces of the
basis functions are computed on the edges and faces. Here, an analytic formula is
utilized on each edge E ∈ Eh, and subsequently, the two-dimensional convection-
diffusion-reaction problems are treated separately on each face F ∈ Fh according
to the SUPG formulation (6.33). Let the local Péclet number be defined by

PeF,T = hT |bF |
αF

for T ∈ Tl(F ) .

The stabilization parameter δF in the SUPG method is chosen to be piecewise
constant over the auxiliary triangulation Tl (F ) on each face F ∈ Fh. The choice

δF,T =
{

c1hT /2 for PeF,T > 2 ,

c2h
2
T /αF else ,

leads to the best possible convergence rate of the discrete solution with respect to
the streamline diffusion norm on F , see [149]. However, an ‘optimal’ choice of
the constants c1 and c2 is not known. Since we aim to omit additional user defined
parameters, the choice

δF,T = hT

2|bF |
(

1

tan(PeF,T )
− 1

PeF,T

)

, (6.40)

is preferred in the numerical realization, see [111].
The auxiliary triangulationsTl (F ) of level l ∈ N0 are constructed as described in

Sect. 2.2 and visualized in Figs. 2.4 and 6.9, for example. But, in case of convection-
dominated problems on the faces, we decided to move the midpoint zF of the mesh,
created in T0(F ), into the direction of the projected convection vector bF , see
Fig. 6.12 (middle). If κ > 0 is such that zF + κbF ∈ ∂F , then the translation
can be chosen as

zF �→ zF + (1 −ϑ)κbF , with transition point ϑ = min
{1

2
,
αF

|bF | log(l+ 1)
}

.
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Fig. 6.12 Adaptation of auxiliary triangulation T2(F ) and projected convection vector: without
adaptation (left), by moving the midpoint (middle), as layered mesh (right)

Consequently, the auxiliary meshes get adapted to the local problems. This adap-
tation is inspired by Shishkin-meshes [156], see also [116, 123, 149], which are
graded in such a way that boundary layers are resolved. Another mesh adaptation
is to construct layered meshes. This can be achieved as follows. We compute again
the point zF + (1 − ϑ)κbF , but this time, we move the edges created in T1(F )

that are parallel to ∂F towards the boundary ∂F such that all edges have the same
distance to ∂F and one edge lies on the computed point, see Fig. 6.12 (right). In the
numerical realization, we set ϑ = 0.25 independent of the local Péclet numbers.
Otherwise, the auxiliary triangulations Tl (F ) degenerate in the computations for
small l = 1, 2, 3 and large Péclet numbers. Furthermore, we only present the results
for the first mentioned mesh adaptation technique since the computed values in the
experiments differ slightly.

The solutions of the resulting systems of linear equations, coming from the SUPG
formulation, with non-symmetric, sparse matrices are approximated with the help
of the GMRES method, see [150]. As the stopping criterion, we use the reduction
of the norm of the initial residual by a factor of 10−10.

Another preprocessing step is the computation of the matrices arising from the
local boundary integral formulations. Here, we use the BEM code developed in
the PhD thesis by Hofreither [94], which is based on a fully numerical integration
scheme described in [151]. The inversions of the local single-layer potential
matrices VK,l are performed with an efficient LAPACK [6] routine.

The assembling of the global stiffness matrix is performed element-wise as
described in Sect. 6.2.4 utilizing the non-symmetric representation of the Steklov–
Poincaré operator in the local stiffness matrices. The resulting system of linear
equations, which is again sparse and non-symmetric, is solved by GMRES. For
the global problem, however, we use the reduction of the norm of the initial residual
by a factor of 10−6 as the stopping criterion. In our numerical experiments, the
GMRES iterations are carried out without preconditioning in general. However, we
also implemented a simple diagonal preconditioner, namely a geometric row scaling
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(GRS) preconditioner, see [86], with matrix

C−1 = diag(1/‖Bj‖p) ,

where by Bj we mean the j -th row of the global stiffness matrix, and we choose the
vector norm with p = 1.

The proposed method is highly parallelizable, especially the preprocessing
steps. The two-dimensional convection-diffusion-reaction problems on the faces
are independent of each other, and can thus be treated in parallel. The subsequent
setup of the boundary integral matrices and of D�

KSK,lDK can be parallelized on an
element level as well. Even the computations of the single entries of each boundary
integral matrix are independent of each other.

In the implementation we use another observation to reduce the computational
complexity. In the case of constant convection, diffusion and reaction terms, the
local boundary integral matrices and the problems on the edges and faces are
identical for elements which differ by some translation only. Therefore, we build a
lookup table in a preprocessing step such that redundant computations are avoided.

Experiment 1
In the first numerical experiment, a problem with constant convection and diffusion
terms is studied. Let Ω = (0, 1)3, and let us consider the boundary value problem

−α�u+ b · ∇u = 0 in Ω , u = gD on Γ ,

where b = (1, 0, 0)� and gD(x) = x1 + x2 + x3. The domain Ω is discretized with
tetrahedral elements, see Fig. 6.13. The discretization is constructed with the help of
a uniform mesh with 8×8×8 small cubes where each cube is split into 6 tetrahedra.
Thus, the mesh consists of 3072 elements, 6528 faces, 4184 edges and 729 nodes

Fig. 6.13 Visualisation of tetrahedral mesh and Dirichlet data for Experiment 1
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of which 343 nodes lie in the interior of Ω . Consequently, the number of degrees
of freedom in the BEM-based FEM is equal to 343 in this example. The maximal
element diameter is h ≈ 0.22. The mesh is chosen rather coarse, but it is well suited
for the study of stability.

Since the convection and diffusion parameters are constant over the whole
domain, the lookup table is applied to speed up the computations. Instead of the
before mentioned numbers of geometrical object, we only have to treat 6 elements,
12 faces and 7 edges in the preprocessing step, where the traces of the basis
functions are computed and the local stiffness matrices are set up.

To handle the Dirichlet boundary condition, we apply pointwise interpolation of
the data gD to obtain an extension into Ω . The interpolant is bounded by 0 from
below and by 3 from above on Γ . The convection-diffusion problem satisfies the
maximum principle [82, 140], and therefore, we know that 0 ≤ u ≤ 3 everywhere
for the exact solution. To study stability of the BEM-based FEM, the maximum
principle is checked for the approximate solution uh,l ∈ Vh,l obtained by (6.37).
Since the basis functions satisfy convection-diffusion problems on the faces and
edges and since the maximum principle is also valid there, the maximal values of
uh,l should by reached in the nodes of the mesh. However, because of oscillations
coming from the SUPG method on the faces, the maximal values might be found at
some auxiliary node. Consequently, the maximum principle is tested on the whole
skeleton ΓS .

Table 6.3 gives a comparison of the classical finite element method with
continuous piecewise linear basis functions and without stabilization, the original
BEM-based FEM proposed in [96] with linear basis functions on the faces and
the hierarchical, convection-adapted BEM-based FEM with l = 2 discussed in
this chapter. The classical FEM satisfies the discrete maximum principle until

Table 6.3 Verifying maximum principle in Experiment 1

Classic FEM BEM-based FEM

Original [96] Hierarchical, l = 2

α Peh umin umax umin umax umin umax

1.0 × 10−1 2 0.00 3.00 0.00 3.00 0.00 3.00

5.0 × 10−2 4 0.00 3.00 0.00 3.00 0.00 3.00

2.5 × 10−2 9 0.00 3.00 0.00 3.00 0.00 3.00

1.0 × 10−2 22 −0.55 3.00 0.00 3.00 −0.01 3.00

5.0 × 10−3 43 −1.14 3.00 0.00 3.00 −0.01 3.00

2.5 × 10−3 87 −1.85 3.07 0.00 3.00 −0.01 3.00

1.0 × 10−3 217 0.00 3.00 −0.01 3.00

5.0 × 10−4 433 0.00 3.00 −0.01 3.00

2.5 × 10−4 866 −142.89 399.06 −0.01 3.00

1.0 × 10−4 2165 −68.85 41.00 −0.01 3.00

5.0 × 10−5 4330 −0.01 3.08

2.5 × 10−5 8660 −0.01 14.72
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α = 2.5 × 10−2, which corresponds to a Péclet number of 9. The BEM-based
strategies, which incorporate the behaviour of the differential operator into the
approximation space, are more stable. The method in [96] passes the test up to
α = 5.0 × 10−4, which corresponds to Peh = 433. In the new, proposed method
we might have oscillations occurring in the approximation of the basis functions
satisfying convection-dominated problems on the faces. If we neglect these small
deviations in the third digit after the decimal point, the proposed method reaches
even α = 1.0 × 10−4, i.e. Peh = 2165, for l = 2 without violation of the maximum
principle.

Next, we study the influence of the auxiliary triangulations of the faces on
the convection-adapted BEM-based FEM. In Table 6.4, the minimal and maximal
values umin and umax of the approximate solution are listed for different levels l
of the auxiliary meshes. The higher l is chosen, the longer the discrete maximum
principle is valid. For l = 3, we even have stability until α = 2.5 × 10−5, i.e.
Peh = 8660. The enhanced stability can be explained by the improved approxi-
mations of the boundary value problems on the edges and faces used to construct
the basis functions. Obviously, the local oscillations in the construction of basis
functions are reduced such that they have less effect to the global approximation.

In Table 6.4, the number of GMRES iterations are given without preconditioning.
The GMRES solver for the proposed BEM-based FEM converges faster than for the
preceding scheme. For increasing l the convergence slightly improves. Furthermore,
the iteration numbers stay bounded without the help of any preconditioning until the
maximum principle is violated.

Experiment 2
In this numerical experiment, we compare the convection-adapted BEM-based FEM
with a well established method for convection-dominated problems, namely the
Streamline Upwind/Petrov–Galerkin (SUPG) finite element method. The three-
dimensional SUPG formulation is analogous to (6.33) and the stabilization param-
eter is chosen according to (6.40). The implementation has been done in the
software FreeFem++, see [89]. For the comparison, we solve again the problem
given in Experiment 1 with the BEM-based FEM and the SUPG method on the
coarse tetrahedral discretization. Both approximations have 343 degrees of freedom.
Furthermore, a reference solution is computed by the SUPG method on a fine
tetrahedral mesh constructed with the help of 128 × 128 × 128 cubes.

Having a closer look at the considered problem, we decompose the boundary of
Ω = (0, 1)3 into the inflow boundary, the outflow boundary and the characteristic
boundary which are given by

Γin = {0}×(0, 1)×(0, 1) , Γout = {1}×(0, 1)×(0, 1) , Γch = ∂Ω\(Γin∪Γout) ,

respectively. It is known, that the solution has an exponential layer near Γout
and a characteristic/parabolic layer near Γch in the convection-dominated regime,
see [149]. The hierarchical construction of the basis functions for the BEM-based
FEM is adapted to the exponential layers but not necessarily to the parabolic
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Fig. 6.14 Comparison of convection-adapted BEM-based FEM and SUPG approximation

layer because of the following reason: When we derived the local boundary value
problems on the edges, faces and elements, we incorporate the behaviour in the
direction of the convection, but we neglect the behaviour orthogonal to the faces,
and thus, along the characteristic layer. Consequently, we should study exponential
layers to see the advantages of the BEM-based FEM. Therefore, we compare the
approximations along the line s �→ (s, 5/8, 1/2)� for s ∈ [0, 1], which is far from
the characteristic boundary and which is aligned with edges of the discretization.

In Fig. 6.14, we give the approximations of the BEM-based FEM for different
levels of the auxiliary triangulations of the faces, the SUPG approximation and
the reference solution for α = 10−3 (Peh = 217) and α = 10−4 (Peh = 2165).
The degrees of freedom are visualized by marks. The SUPG method shows no
oscillations, but the layer in the solution is smeared out due to the stabilization. The
SUPG approximations for α = 10−3 and α = 10−4 hardly differ although the layer
in the solution changes. The convection-adapted BEM-based FEM has no explicit
stabilization, and thus, we recognize some oscillations near the exponential layer.
However, the layer is resolved much better with the same number of degrees of
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freedom. Additionally, we have the possibility to improve the accuracy of the shape
functions within the BEM-based FEM by increasing the level l, i.e., by refining the
auxiliary triangulations of the faces. Doing this, the oscillations near the exponential
layer are reduced and we obtain very accurate solutions for the global problem with
only a few degrees of freedom. If we have a closer look at the plots in the right
column of Fig. 6.14 with the details near the exponential layer, the curves indicate
that the layer of the solution is already smeared out for the reference solution
computed with the SUPG method on a very fine mesh.

Experiment 3
In the final numerical experiment, we consider a convection-diffusion problem
with non-constant convection vector. In order to compare the experiments, let
Ω = (0, 1)3. We solve

−α�u+ b · ∇u = 0 in Ω , u = gD on Γ ,

where

b(x) = 0.85
√

(1 − x1)2 + (1 − x3)2

⎛

⎝

x3 − 1
0

1 − x1

⎞

⎠

and gD is chosen such that it is piecewise bilinear and continuous with 0 ≤ gD ≤ 3
on one side of the unit cube and zero on all others, see Fig. 6.15. The convection
vector b is scaled in such a way that the Péclet numbers in the computations are
comparable with those of Experiment 1. The convection is a rotating field around
the upper edge of the unit cube Ω , which lies in the front when looking at Fig. 6.15.

Fig. 6.15 Visualisation of polyhedral mesh and Dirichlet data for Experiment 3
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Consequently, we expect that the non-zero Dirichlet data is transported towards the
upper side of the cube for low diffusion.

This time, the domain Ω is decomposed into prisms having general polygonal
ends, see Fig. 6.15. The polyhedral mesh consists of 350 elements, 1450 faces,
1907 edges and 808 nodes of which 438 nodes lie in the interior of Ω . Thus, the
number of degrees of freedom in the BEM-based FEM is equal to 438. The maximal
diameter of the elements is h ≈ 0.25 and the discretization was chosen such that h
is approximately the same as in Experiment 1.

In our experiment, the polyhedral mesh has less elements, faces and edges
than the tetrahedral discretization. This is beneficial concerning the computations
in the preprocessing step. Less local problems have to be solved on edges and
faces and there are less boundary element matrices which have to be set up.
Furthermore, polyhedral discretizations admit a high flexibility while meshing
complex geometries. In Table 6.5, we list the minimal and maximal values of the
approximation uh,l on the skeleton for l = 2 to verify the discrete maximum
principle. Furthermore, the number of GMRES iterations are given with and without
GRS preconditioning.

The first observation is that the number of GMRES iterations increases when the
diffusion α tends to zero. Thus, the iteration count is not bounded in this experiment.
However, this behaviour correlates with the violation of the maximum principle and
is therefore the result of inaccuracies. Already with the help of the simple geometric
row scaling preconditioner, we overcome the increase of the iteration number.

A more detailed discussion is needed for the discrete maximum principle. In
Table 6.5, we observe that this principle is violated in a relatively early stage for
α = 2.5 × 10−2, which corresponds to Peh = 9. However, the increase of umax and
the decrease of umin is fairly slow for increasing Péclet number.

Table 6.5 Verifying maximum principle in Experiment 3 for l = 2 and number of iterations
with/without preconditioning

α Peh umin umax Iter. Iter. (prec.)

1.0 × 10−1 2 0.00 3.00 20 20

5.0 × 10−2 4 0.00 3.00 20 21

2.5 × 10−2 9 0.00 3.04 20 21

1.0 × 10−2 22 0.00 3.07 23 22

5.0 × 10−3 43 −0.01 3.26 29 23

2.5 × 10−3 86 −0.04 3.37 42 24

1.0 × 10−3 216 −0.10 3.38 45 23

5.0 × 10−4 431 −0.13 3.45 48 22

2.5 × 10−4 863 −0.15 3.51 51 21

1.0 × 10−4 2157 −0.15 3.53 52 21

5.0 × 10−5 4313 −0.16 3.57 58 23

2.5 × 10−5 8627 −0.25 4.38 69 28
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Fig. 6.16 Approximations of basis functions on polygonal face, projected convection vector and
auxiliary triangulation with appropriately (left) and not appropriately (right) resolved boundary
layer

Here, one has to point out that the computations are done on a polyhedral mesh
with a globally continuous approximation uh,l . This, by itself, is a current field of
research even without dominant convection, see [28]. The geometry of polygonal
faces is more complex than the triangles in Experiment 1, and thus, the computations
on the faces are more involved.

Figure 6.16 presents the approximation of two different basis functions over
the same polygonal face, the auxiliary triangulation and the projected convection
vector. We can see how the local mesh has been adapted to the underlying
differential operator, namely by moving the node, which lay initially in the center
of the polygon, into the direction of the convection. In certain constellations, the
boundary layers are not resolved appropriately. In the left picture of Fig. 6.16, the
approximation of the basis function is satisfactory. In the right picture, however,
oscillations occur in the lower right corner due to the relatively large triangles near
the boundary. In many cases these situations are already resolved quite well by the
simple mesh adaptation. When we introduced the moving of the auxiliary nodes in
the implementation, the numerical results improved. Thus, we expect that a better
adaptation of the local meshes, and consequently a better approximation of the local
problems, improves the stability of the BEM-based FEM such that we would obtain
comparable results to Experiment 1 for the discrete maximum principle.

Finally, in Fig. 6.17, the approximation uh,l is visualized for l = 2 and two
different values of diffusion α = 2.5×10−2 and α = 5.0×10−5. The domainΩ has
been cut through, such that the approximation is visible on a set of polygonal faces
which lie in the interior of the domain. The expected behaviour of the solution can
be observed. The Dirichlet data is transported into the interior of the domain along
the convection vector. In the case of the convection-dominated problem, oscillations
appear near the outflow boundary.
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Fig. 6.17 Cut through the domain Ω = (0, 3)3 and visualisation of the approximation in
Experiment 3 for α = 2.5 × 10−2 (left) and α = 5.0 × 10−5 (right)

Conclusion on Convection-Adapted BEM-Based FEM
We have derived convection-adapted BEM-based FEM discretization schemes for
convection-diffusion-reaction boundary value problems that considerably extend
the range of applicability with respect to the strength of convection. The numerical
results have not only confirmed this enhanced stability property of the discretization
scheme, but have also indicated faster convergence of the GMRES solver in
comparison with the original BEM-based FEM scheme presented in [94, 96]. When
compared to the SUPG method, our proposed method shows an improved resolution
of the exponential layer at the outflow boundary.
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Quadrature rule
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Solvability condition, 113
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204
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213
symmetric discretization, 119
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Stiffness matrix, 134, 206
Strang Lemma, 57
Streamline diffusion norm, 212
Streamline Upwind/Petrov-Galerkin method,

see SUPG
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TetGen, 132
Trace inequality, 68, 74, 76, 182

anisotropic, 87, 91
Trace operator, 13, 108
Trapezoidal rule, 125, 128
Trefftz-DG method, 5
Trefftz FEM, 3
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Triangle inequality, 16
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V
Variational formulation, see Galerkin

formulation
VEM, see Virtual element method
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Weak derivative, 9
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