®

Check for
updates

PeerClear: Peer-to-Peer Bot-net
Detection

Amit Kumar, Nitesh Kumar, Anand Handa®™, and Sandeep Kumar Shukla

C3I Center, Department of CSE, Indian Institute of Technology, Kanpur,
Kanpur, India
{amitkr,niteshkr,ahanda,sandeeps}@cse.iitk.ac.in

Abstract. A bot-net is a network of infected hosts (bots) that works
independently under the control of a Botmaster (Bot herder), which
issues commands to bots using command and control (C&C) servers.
Bot-net architectures have advanced over time, to evade detection and
disruption. Traditionally, bot-nets used a centralized client-server archi-
tecture which had a single point of failure but with the advent of peer-
to-peer technology, the problem of single point of failure seems to have
been resolved. Gaining advantage of the decentralized nature of the P2P
architecture, botmasters started using P2P based communication mech-
anism. P2P bot-nets are highly resilient against detection even after some
bots are identified or taken down. P2P bot-nets provide central frame-
works for different cyber-crimes which include DDoS (Distributed Denial
of Service), email spam, phishing, password sniffing, etc. In this paper,
we propose PeerClear, an approach for identifying P2P bot-nets using
network traffic analysis. PeerClear uses a two-step process for identi-
fying P2P bots. In the first step, the hosts involved in P2P traffic are
detected and in the second step, the detected hosts are further analyzed
to detect bot-nets. Our evaluation shows that our approach PeerClear
outperformed several recent approaches and achieves a high detection
rate of 99.85%. We also implement multiple new approaches reported
in the literature and test on the same dataset to evaluate their relative
performance.

Keywords: Bot-net - Dynamic analysis -+ Machine learning -
Malware detection

1 Introduction

According to world Internet user statistics [1], almost 50% of the world popula-
tion is connected to the Internet. Individuals use it for communication, banking
transaction, information seeking, leisure purpose, etc. Organizations use it for
their business, connecting with their customers, partners, suppliers, etc. Such
widespread usage of the Internet leads us to the new era of cyber crimes. Accord-
ing to IANS (Indo-Asian News Service), cyber crimes in India rose 19 times
between 2005 to 2014 and this is based only on the attacks that have been
exposed. Currently, there is a combat between hackers and defense agencies.

© Springer Nature Switzerland AG 2019
S. Dolev et al. (Eds.): CSCML 2019, LNCS 11527, pp. 279-295, 2019.
https://doi.org/10.1007/978-3-030-20951-3_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20951-3_24&domain=pdf
https://doi.org/10.1007/978-3-030-20951-3_24

280 A. Kumar et al.

Among all the cyber attacks, the bots seem to be one of the biggest players in
many cyber crimes. Bots are infected machines under the control of an attacker
and the network of such infected machines constitutes the bot-net [23]. Bot
malware turns the computer into a robot that carries out tasks based on the
commands sent to it over the Internet. Bot-nets provide a number of resources to
the attackers such as bandwidth, computing power, IP diversity, etc., which allow
attackers to commit cyber crimes on a larger scale. According to Vinton Gray
Cerf known as the “Father of the Internet”, one-quarter of all world computers
are part of one or the other bot-net [4].

Realizing the gravity of bot-nets, researchers started studying bot-nets and
methods to mitigate them. Traditionally bot-nets used client-server architecture
to communicate among themselves, which has a single point of failure and is
easier to detect. To make the bot-net resilient against detection, cyber criminals
started using new architectures for bot-net communication. Peer-to-Peer (P2P)
architecture for bot-net communication comes out to be the most prominent one,
avoiding the single point of failure problem of the client-server architecture. One
such bot-net is Zeus or Zbot that had become the largest bot-net in the world
estimated to affect 3.6 million PCs around the globe according to Damballa [8].
In this paper, we present a new method for P2P bot-net detection and carry
out experiments to compare the performance of our method against recently
reported methods in the literature.

To summarize our contributions:

— We propose a novel approach, PeerClear to detect P2P bot-net over the net-
work using a flow-based approach.

— We have used a two-phase P2P bot-net detection scheme. In the first phase,
we identify the P2P hosts on the network and in the second phase, the iden-
tified hosts are further analysed to detect P2P bot-nets from P2P-benign
applications.

— Our experimental analysis shows that PeerClear achieves high detection accu-
racy of 99.85% which is better as compared to the other authors' work.

In the next section, we discuss the background study of the research. In
Sect. 3, we discuss the related work. Section4 depicts our approach to detect
P2P bot-nets. We summarise our results in Sect. 5 and lastly, Sect. 6 concludes
the paper.

2 Background

Bot-net is derived from the word “Robot” and “Network.” It is a network of
infected hosts or zombies that run automatically and autonomously under the
control of an individual or organization. Generally, a bot-net has three working
components, first is the attacker, referred to as botmaster or bot herder, second
is the Bot, and third is the Command & Control (C&C) server.

In bot-nets, the Botmasters directly communicate with the bots using C&C
servers. The botmasters are directly connected to the bots because they have

PeerClear: Peer-to-Peer Bot-net Detection 281

a smaller attack domain. However, for bots having larger attack domain such
as Zeus [15], Waledac [18], etc., botmaster is connected to the bots through
intermediate hosts. These intermediate hosts act as a C&C servers. Nowadays
most of the researchers are interested in tracking C&C servers for identifying
structures of the bot-net, and these intermediate hosts complicate the process of
tracing back the botmaster from detected bots. The most important component
in a bot-net is the structure of its command and control channel that prevents
the bot-net from being dismantled easily. The communication used among C&C
servers and bots can be of the following two types:

— Push-Based Approach: In the push based approach, the botmaster pushes
the commands into the bots to attack. The advantage of this approach is
that the botmaster can instantaneously perform certain tasks through bots.
Thus botmaster has higher control over the bots. The main disadvantage of
this approach is that the amount of traffic generated is high and two bots
infected by the same bot-net, thus having similar traffic patterns, may lead
to an easier detection of bots.

— Pull-Based Approach: In the pull based approach, the bots periodically receive
commands from the server. The server can introduce a random delay while
delivering commands, so the bot-net has control over generated traffic. This
prevents easy detection of bots and servers. In this approach, instantaneous
execution of the command is not possible.

In this work, we are more concerned with P2P bot-net detection, which is a
collection of heterogeneously distributed resources connected by a network. The
most distinctive difference between client server networking and P2P networking
is the existence of servents (host that may act both as a server and a client at
the same time) [22].

Peer-to-Peer (P2P) Bot-net: P2P bot-nets are the most complex bot-net
known so far. The primary objective of P2P bot-nets is to remove or minimize
single point of failure problem of the IRC (Internet Relay Chat) /Web bot-nets
[21]. In P2P bot-nets, all bots form a P2P network which enables them to com-
municate and share files across the bot-net. P2P bot-nets help the attacker to
inject commands at any point in the network by routing it to all the bots. This
activity needs commands to be authenticated to prevent unauthorized injection
of commands. Authentication mechanisms such as public key cryptography are
often used. The bots need to have access to atleast one other active node to
remain connected to a P2P bot-net. For this purpose, some bot-nets use hard-
coded lists of peers while some others use network scanning. Examples of P2P
bot-net include storm bot-net, first identified around January 2007 [12]. This
bot-net infected around 50 million systems worldwide.

3 Related Work

In 2014 Yin et al. proposed a node based detection approach for detecting
P2P bot-nets [24]. They extracted network characteristics of individual hosts
with time intervals of 10, 20, 30, 60, 180 min. The captured data is sampled

282 A. Kumar et al.

for reducing the overhead of the defense system. They have used decision tree
classifiers because of its low computational complexity and high performance.
They have used only offline traffic and did not evaluate the performance of their
approach on online traffic.

Rodriguez-Gomez et al. proposed an approach to detect malicious applica-
tions associated with P2P bot-nets based on resources shared by the number of
peers in a P2P network [20]. The bot-net resources are the popular resources
and have a shorter lifetime as compared to legitimate resources. Therefore, the
main inspiration behind the approach is that the resources shared by bots in
a P2P network (bot-net resources) will be accessed in a different way than the
resources shared by the legitimate users in the P2P network. They trained two
models, one for legitimate and other for bot-net resources. Using these models,
they have found potential bot-net resources in the P2P network.

Peerminor [13], a pure behavioural system for classifying P2P bots into fam-
ilies, was presented by Kheir et al. They have used a two-stage classifier for
this purpose. In the first stage, they have built a classifier to ignore benign P2P
traffic and considered only malicious P2P traffic to reduce packet monitoring
overhead. In the second stage, they have built one class classifier for known P2P
bot families to classify the detected bots into respective families further. Peermi-
nor used flow-based features e.g, number of packets sent and received, number of
bytes sent and received, flow duration and protocols used. It is the first detection
approach that gave information about the type of bot-net infecting the systems.
Their training data-set has 794 benign P2P clusters and 1445 malicious P2P
clusters. Peerminor achieves 97% accuracy for all classes collectively.

Dilon designed a P2P bot detection algorithm using live NetFlow data [10].
NetFlow is a network protocol analyzer for observing network traffic and gath-
ering IP traffic data developed by Cisco. In this work, the Zeus bot-net network
traffic was considered and aimed at the detection of individual P2P bots within
a network perimeter. For this, they have filtered P2P traffic, the hosts with
more than four failed connection is considered as P2P host, and others are dis-
carded. For detecting Zeus, they have used two major features. Firstly, they
have used packet ratio, up packets divided by down packets with a threshold of
0.4. Secondly, they have used the traffic patterns. The Zeus bot-net control loop
periodically wakes up and contacts peers for P2P network configuration and can
be detected by the traffic pattern.

Narang et al. have presented, PeerShark [17] for detecting P2P bot-net in
the stealthier state (a state where bot-net network activity is almost negligible).
PeerShark does not require Deep Packet Inspection (DPI). Rather than using the
traditional 5-tuple (source IP, source port, destination IP, destination port, pro-
tocol) based approaches, they have used a two tuple (port oblivious and protocol
oblivious) conversation based approach. They have the following four modules
in their model. Firstly, Packet Filtering Module that filter IPv4 packets from
network traffic. Secondly, the conversation creation module that creates a list of
conversations. Then the conversation aggregation module aggregates conversa-
tions into single conversations based on some higher flow-gap value. Finally, the
classification module that used supervised machine learning algorithms to train

PeerClear: Peer-to-Peer Bot-net Detection 283

their model. Their training data-set consisted of 50,000 conversations. PeerShark
used the packet header information of TCP/UDP/IP to extract a set of features
such as the duration of the conversation, the inter-arrival time of packets, the
amount of data exchanged, a median value of inter-arrival time to classify various
P2P applications with an approximate accuracy of 97%.

In another approach, Hojjat et al. [6] proposed a botnet detection based on
behavioral analysis of the traffic. The proposed model detects P2P botnets in
the command and control phase of the life cycle of the botnet. In this phase, the
bot tries to set up a connection to its command and control server and then com-
municates with the botnet. The proposed model is based on the inferences that
bots of a botnet have uniform traffic behavior and bears specific traffic patterns
during communication. Hence, the methodology is independent of the content
and can also detect P2P botnets which use encrypted traffic. The authors have
considered a total of 9930 botnet traffic packets with 3296 extracted flows and
14680 normal traffic packets with 1233 extracted flows. They have used various
classifiers such as Bayesian Network Classifier, Naive Bayes Classifier, Support
Vector Machine, J48 Decision Tree Classifier, and Random Forest Classifier. The
maximum botnet detection accuracy achieved was 99.26% using Random Forest
Classifier.

Himanshi et al. [9] proposed a model based on the bot behavior. A two-
tier framework was implemented to detect parasitic P2P bots. There are three
stages in a P2P botnet lifecycle namely — infection stage, waiting stage, and exe-
cution stage. The proposed model detects the bot in the waiting stage i.e. before
going into the execution stage. Hence, it did not require any bot signatures. The
proposed model considered the features like bot's lifetime in the P2P network,
search request intensities, and time correlated behavior for detection of the bot-
net. The authors have considered 41,941,536 malicious P2P data packets and
25,913,400 Benign Peers packets. The maximum detection accuracy achieved by
the proposed model was approx 99%.

In 2016, Alauthaman et al. [5] came up with another P2P botnet detection
method which implemented an adaptive multilayer feed-forward NN (Neural
Network) using Decision Trees. A network traffic reduction mechanism was intro-
duced to increase the performance. It being a connection-oriented method did
not require any Deep Packet Inspection (DPI). Hence, the model was indepen-
dent of payload and used only the header information of TCP control packets.
For feature selection, a classification and regression tree method was used. From
these features, a multilayer feed-forward NN was trained using back propagation
learning algorithm. The model achieved an accuracy of 99.20%.

Although the above approaches are able to classify or detect the P2P bot-
net with high accuracy but none of them have sophisticated P2P traffic cate-
gorization methodology. They have used a more straight forward approach for
categorizing P2P traffic like failed connections threshold, destination diversity
threshold, etc. To note that PeerShark, the authors have used conversation based
approach and they have not differentiated the P2P and non-P2P traffic that we
have used in our work. Discarding non-P2P traffic have a greater impact on
the computational overhead of the developed system as less traffic needs to be

284 A. Kumar et al.

monitored. They have a good P2P traffic categorization method, but they are
using the same approach for classifying botnet as used for P2P traffic catego-
rization. Therefore there is a need for a system which can categorize P2P traffic
using all properties shown by P2P hosts and has a separate P2P bot detection
module for detecting bots using distinctive features shown by P2P botnets. Since
the dataset on which these authors calibrated their methods may be different,
we have implemented the models reported in [5,6,9,17] and evaluated them on
our dataset to obtain a fair comparison.

4 Our Approach

In the previous section, we have discussed various P2P bot-net detection methods
proposed by multiple researchers. Studying their approaches, detection methods,
and future work, we propose a two-step approach to detect P2P bot-net in
the stealthy state (a state where bot-net network activity is almost negligible).
Firstly, we have identified all the hosts which are involved in the P2P activity
and secondly, we have detected P2P bots in the identified P2P hosts as shown
in Fig. 1.

Packet Feature Feature
| Filtering | Extraction | Selection
P2P Traffic + Non P2P Traffic
o
N
o
P2P Botnet + P2P T
Benign + Non P2P |Tmining data Testing data ‘ -]
benign Traffic -
o
@
-
— Model =
g
| Resutki |
No SP2P Host ?
Drop
T
| Yes
Feature Feature
Extraction Selection
o
| P2P botnet traffic + P2P benign traffic ‘ %
e @
S
Training ‘ Testing ‘ 3
@
-
v o
@
-
g
Trained
2k 2
3

Fig. 1. Flow chart of our approach to detect P2P bot-net.

PeerClear: Peer-to-Peer Bot-net Detection 285

Dataset. For our experiment we have collected three types of data, i.e., P2P-
Benign, P2P bot-net and Non-P2P network traffic.

— P2P-Benign network Traffic: It was collected by 11 distinct hosts which exe-
cuted five different P2P benign applications (Skype, eMule, u-Torrent, Frost-
wire, and Vuze.) for several days.

— P2P bot-net Traffic: This data was collected from Peerrush [2] dataset which
contains the P2P bot-net traffic of Storm [12], Waledac [18], and Zeus [15]
and also the P2P bot-net traffic generated from Vinchuca bot-net [16].

— Non-P2P Traffic: It was obtained from the departmental network which was
being observed over five days. Network sniffing tool based on libpcap was used
to capture the packets.

All the above data was captured in the form of a .pcap file which contains
the network information.

4.1 P2P Host Detection

The main aim of this phase is to detect all the hosts which were engaged in
P2P activity. It consists of four modules namely packet filter, feature extraction,
feature selection and classification.

Packet Filter. In this module, unwanted packets such as multicast, broadcast
and DNS generated traffic (P2P network does not use DNS) were filtered out and
the rest was sent to feature extraction module as shown in Fig. 2. This filtering
reduce the packet monitoring overhead and the processing time.

Network
Traffic Is a multicast Is a broadcast Yes packet
packet? packet? Dropped
Yes
Packet - CheckPinDNs »+-<Is a DNS Packel?
Dropped
No Addresohed P | memove
P2P host to DNS list timestamp
detection f expired
IPs

Fig. 2. Packet filter module.

286 A. Kumar et al.

Feature Extraction. To find out the prominent features for the detection of
P2P hosts, the distinctive properties shown by the hosts engaged in the P2P
activity as opposed to the hosts with Non-P2P activities were studied and dis-
cussed as follows:

— Failed Connections: In the P2P network, nodes may continuously join and
leave the network. To remain connected, the peers must be connected to at
least one of the peers. So peers in the P2P network continuously search for
new peers. While searching for new peers, many peers may not be available
in P2P network because of the continuous process of joining and leaving,
so the number of failed connection attempts in the P2P network is usually
higher. Regular Internet traffic did not encounter such a high number of failed
connection attempts.

— DNS filter: Peers in the P2P network operate outside of the DNS system.
Peers did not use the DNS queries to search other peers. They get it directly
from the overlay network’s routing table. Although for connecting to the
central server, they may need to make a DNS request, which was very rare. A
regular Internet user usually uses the Internet browser to visit some popular
websites which were mostly resolved by DNS requests. We implemented this
component in the packet filter module.

— Destination diversity: Since the IPs of the peers are usually scattered across
many different networks, the diversity of IPs (IP domain) contacted by P2P
peers in the P2P network is typically large. For all the IPs contacted by a
peer, we have computed a set of/16 prefix of each destination IP. It gives an
approximate idea of IP domains visited by the peer. The size of this set is
the destination diversity of the peer. We have also used destination diversity
ratio calculated by dividing destination diversity with the total number of
distinct IPs contacted by the peers.

Based on the above properties, we have used tshark (a network protocol
analyzer) [3] tool to extract the features from pcap files (Table 1).

Feature Selection. In feature extraction, we have extracted fourteen features
based on the P2P host behavior. However, we found that all the features are not
important while training the classifiers. There may be some features which do
not affect the performance of the classification or perhaps make the results worse.
Therefore, in this section, we apply the feature reduction technique to reduce the
dimensionality of the feature vector. Information gain algorithm is used as a mea-
sure for feature reduction. As shown in Fig. 3, top 2 to 14 features with highest
info-gain score were selected for classification. The final feature vectors consist
of the extracted top 10 features because we ran the classifiers on top 2 to 14 fea-
tures and then ten-fold cross validation, and the accuracy comes out to be maxi-
mum for the top 10 features which are demonstrated in Fig. 4. Fourteen features
(Table 1) based on the P2P host behavior were extracted. The final feature vector
used for the classification is: <Fs, F3, Fy, F5, Fg, Fo, F11, F12, F13, F14, label>

PeerClear: Peer-to-Peer Bot-net Detection 287

Table 1. Extracted network traffic features for P2P host detection

Feature_Id | Feature Description

F_1 ret_count Retransmitted packet count

F_2 diversity Destination diversity

F.3 diversity_ratio | Destination diversity ratio

F 4 no_pkt_out Number of connection attempts made on distinct
port

F.5 distinct_ip Number of distinct IPs contacted

F_6 reset Reset packets count

F_7 out_of_ord Out of order packets count

F._8 icmp ICMP destination unreachable packets count

F_9 flows Number of packets sent and received

F_10 byte_in Bytes per packet in forward direction

F_11 byte_out Bytes per packet in backward direction

F_12 dis_ret_count | Average retransmitted packets per host count

F_13 dup_ack Duplicate ack packets count

F_14 ctrl_pkt Total number of control packets (packet without

data) sent and received

Classification. The collected traffic data were categorised into two groups, first
group is used to train the classifier, and the other group is used to test the
classifier. The training group consisted of 70% of the instances, and our testing
group consisted of 30% of the instances. For the selection of classification model,
we have used 10-fold cross validation on Random forest [11], Decision Tree [19]
and XGBoost [7] classifiers to detect P2P hosts from the captured traffic.

For P2P host detection, the data were extracted for three different time
windows of 10 min duration and the results are shown in Table2. The results
in terms of true-positive rate (TPR), false-positive rate (FPR), precision and
accuracy are summarized in Table 2.

Table 2.

P2P host detection results (R1)

Classifier

TPR |FPR | Precision | Accuracy

Random forest

99.91% | 0.003% | 99.98% | 99.93%

Decision tree

99.89% | 0.001% | 99.92% | 99.88%

XGBoost

99.73% | 0.001% | 99.92% | 99.78%

288 A. Kumar et al.

flows
distinct_ip
diversity
icmp
div_ratio
«» ho_pktout
<
5 byteout
=1

8 ctrl_pkt
Y dup_ack
dis_retcount
ret_count
reset
out_oforder
bytein

t T T —

o m o ~ [o) - o - N ©o ~ © [< o

m n ©o o ~ o~ m a n o m ~ © N

N T § T ¢ N 0 O~ B B O O ®

o o o (=] o o o o o (=] o (=] o o

nfoGain-->

Fig. 3. Information gain

4.2 P2P Bot-net Detection

After the identification of P2P hosts over the network, in this phase, the bot-net
was detected from the identified P2P hosts. This phase consists of three modules,
i.e., feature extraction, feature selection and classification.

Feature Extraction. For the P2P bot-net detection, the flow-based approach
was used and the data was extracted for 1-hour time window, to trace the stealth-
ier nature of P2P bots. A network flow is a set of packets exchanged between two
hosts. Network traffic flow is uniquely identified by five tuples (source IP, source
port, destination IP, destination port, protocol). The conversation is defined by
the help of binary tuple (source IP, destination IP) and vice versa. All the con-
versations are categorized as port and protocol oblivious. In this work, we have
used only flow-based features.

P2P protocols use transport layer protocols to share the files, so both the
TCP and UDP traffic are captured for our experimental analysis. To distinguish
between the P2P benign traffic and the P2P bot-net traffic, we have focused
on management flows, i.e., the network traffic which is used to maintain the
updated information about the network. Once the bot-net infects any host, in
order to remain connected to that host, bot-net continuously sends the control
packets as keep-alive messages to the bot. Bots’ communication in the waiting
state is quite stealthy. These control packets provide useful insights into the
bot-net communication pattern.

Moreover, the management flow depends on the protocol design whereas the
data flow depends on the user. The data flows are usually regulated by the user
interaction with the P2P applications. The usage of the P2P applications varies
from user to user. Relying on the management flows allow more universally, user-
independent P2P bot-net detection approach. We have not completely discarded
the data flows. Some of the features were also obtained from the data flows as
well.

PeerClear: Peer-to-Peer Bot-net Detection 289

0.998 4

>

1%

@©

—

3

S 0.997

<

c

o

2

g 09961

©

>

tnl

9 0.995

S —— Random Forest

—— XGBoost

0.994 —— DecisionTree

2 6 8 10 12 14
Number of feature Selected

Fig. 4. Ten-fold cross validation

Now the question arises, how to separate the management and data packets.
This is because management packets are generally embedded inside the data
packets, and sometimes are sent separately. Below are few heuristics considered
to separate management from data packets.

— Inter packet time: The management packets are exchanged periodically
whereas the data packets are sent continuously one after another. There-
fore, inter packet time between the data packets are usually very small. On
the other hand in the management packets inter packet time is large. We con-
sider only those flows in which inter packet time was greater than a particular
threshold 6. For example, consider a packet P; and packets seen before and
after P; as P;_1 and P;;;. Now say inter packet time between packets P; and
P;,_1 was A;_; and that of between P; and P;1+11 was A;41 then we consider
P; as management packet if A;_; and A;;; both are greater than 6.

— Duration of Flow: P2P network flows are generally long-lasting. Instead of
creating a new connection, peers exchange the management packets to keep
the connection alive. Same as in the case of the P2P bot-net, to prevent losing
connection with a bot, they periodically exchange control messages.

Our main concern is to extract those features which distinguish the P2P bot-
net from P2P benign traffic. The communications used by P2P bot are low in
volume because the bots are controlled by the bot-master and they continuously
communicate with each other to remain connected. Hence, the duration of this
communication is large. For P2P benign applications like p-Torrent, users gen-
erally download large files such as music, videos, etc. On the other hand, Bots
do not download such large files. Rather they continuously send information
to the bot-master. Also, the inter-arrival time between the packets for bots is
more as compared to P2P benign applications, because of the reasons discussed
above. Therefore by using these features, we can prominently distinguish P2P

290 A. Kumar et al.

bot-net traffic from P2P-benign traffic. Table 3 shows the used features captured
by pyshark [14].

— Host Access Features: These features were used to capture the host accessing
pattern of the bot-nets. These include features like inter-arrival time of pack-
ets, maximum inter-arrival time, minimum inter-arrival time, etc. to capture
the distribution of inter-arrival time of flow at any host.

— Flow Size Features: These features were used to capture the distribution of
both incoming and outgoing flows at a specific host. These include features
like packets or bytes sent and received in the flow, to capture their distribution
of the flow at any host. Other examples of flow size features include the
number of bytes sent or received in the flow, smallest packet seen in the flow,
the largest packet seen in the flow, etc.

Table 3. Extracted network traffic features for P2P bot-net detection

ID | Features Description

F1 | mean_inter_time Mean of the Inter-arrival time between packets

F2 | fwd_pkt Number of packets sent in flow

F3 | bkd_pkt Number of packets received in flow

F4 | frwd_bytes Number of Bytes sent in flow

F5 | bkd_bytes Number of Bytes Received in flow

F6 |total_data Total data sent and received in flow including headers

F7 | small_pkt Smallest packet in flow

F8 |large_pkt Largest packet in flow

F9 | max_inter_time Maximum Inter-arrival time between any two packets
in flow

F10 | min_inter_time Minimum Inter-arrival time between any two packets
in flow

F11 | total_duration Total duration of flow

F12 | pkt_frequency Packet frequency (flow duration/ number of packets
in flow)

F13 | mean_fwd_inter_time | Mean inter-time between packets sent in forward
direction

F14 | mean_bkd_inter_time | Mean inter-time between packets sent in backward
direction

F15 | max_fwd_inter_time | Maximum inter-time between packets sent in forward
direction

F16 | min_frwd_inter_time | Minimum inter-time between packets sent in forward
direction

F17 | max_bkd_inter_time | Maximum inter-time between packets sent in
backward direction

F18 | min_bkd_inter_time | Minimum inter-time between packets sent in
backward direction

PeerClear: Peer-to-Peer Bot-net Detection 291

Feature Selection. The extracted 18 features based on host access patterns
and flow size features were further reduced for bot-net detection. We have used
information gain feature selection algorithm to reduce the dimensionality of the
feature vector. The top 2 to 18 features with highest info-gain scores were selected
(Fig.5) and respectively used for the classification.

pktsmall
mnintertime
pktlarge
mnfwdintertime
fwdbytes
totdata

fdp
mnbkdintertime
bkdbytes
meanfwdinter
bdp
meanbkdinter
mxbkdintertime
mxfwdintertime
meanintertime
mxintertime
frequency
totalduration

T O M O N MO N M NSNS S 00N A N

m ™~ © 4 4 O N N N &N F 0 A 4 & N 0N o~

O T N VW N AN MM O NN ST OO0 0 T N

S o ddNmmg NN~ ®D SO

© © O © O © © o © © © © © o o ©
InfoGain--->

Fig. 5. Information gain

Bot-net Classification. For P2P bot-net detection, we have used the same
classification algorithm used in P2P host detection (Random forest, Decision
tree, and XGBooost) for the classification of P2P botnet detection. To find the
best number of features for the best performance of all selected classifiers, we
ran classifiers on 2 to 18 features with the highest info-gain score and obtained
results are shown in Fig. 6 and Table 4. The observation of results shows that all
the classifier performs with more than 99% accuracy and among them, Random
forest outperformed with 99.99% accuracy while using only top 6 features.

Table 4. P2P bot-net detection result (R2)

Classifiers TPR |FPR | Precision | Accuracy
Random forest | 99.98% | 0.002% | 99.99% | 99.99%
Decision tree | 99.97% | 0.004% | 99.97% | 99.97%
XGBoost 99.77% | 0.024% | 99.97% | 99.88%

We have also trained the model for P2P bot-net detection using traffic from
three bot-nets namely Waledac, Vinchuca, and Zeus. For P2P benign applica-
tions, we have used traffic from Skype, eMule, Frostwire, and Vuze. The model

292 A. Kumar et al.

1.000

y
o
©
©
©

o
©
©
~

o
©
©
o

| —— Random Forest
09954 | —— XGBoost
—— DecisionTree

Cross_Validation Accurac

2 4 6 8 o 12 14 15 18
Number of feature Selected

Fig. 6. P2P botnet detection accuracy of selected classifiers

is tested using unseen traffic from a different bot-net i.e. Storm for P2P bot-net
and p-Torrent for P2P benign applications. The model achieves an accuracy of
97% for above-mentioned experiments. This leads us to believe that the app-
roach can be generalized for other bot-net detection. This is perhaps due to the
fact that traffic flow features of most P2P bot-nets are very similar.

5 Results and Comparison with Past Work

The overall performance of our system is determined by passing the entire traffic
into P2P host detection module. The entire traffic consists of non P2P traffic
and P2P traffic. The first module filters P2P hosts from non-P2P hosts. The
filtered P2P hosts can be P2P bot-net hosts or P2P benign hosts. This traffic
is now fed into the other module i.e. P2P bot-net detection module. P2P Bot-
net detection module differentiates P2P bot-nets from P2P benign traffic. The
overall accuracy of the system as a whole is 99.85%. The results show that
our approach outperforms the results reported previously in the literature. We
have also performed experiments using other proposed approaches on our traffic
flows to check how much better is our proposed model in terms of accuracy. It
shows that our model performs better as compared to their models and achieves
better accuracy. We have considered the most recent models discussed in the
literature. The results presented in their papers and the ones obtained by using
their approach on our dataset are summarised in Table 5.

In our proposed model, there are 7,11,149 P2P botnets, and 8,15,659 benign
P2P traffic flows taken into account. Table5 shows the exact amount of traffic
flows, conversations, and packets considered by the different authors. In [9] and
[5], the authors notified the packets but not the flows. Similarly, in [17] authors
notified the number of conversations. We want to mention here that there were
few other work discussed in Sect. 3, but we did not compare them as the infor-
mation about the features, or the statistical methods was missing from their
papers to faithfully reimplement them (Fig. 7).

110

PeerClear: Peer-to-Peer Bot-net Detection 293

98.37 99 99.72 99.2
100 97 94.25
90
80
A 70
3 60
e
3 50
Q
< 40
30
20
10
S S &
N N N
NG ? oy
o2 & K
& & <
¥ &£ &
Q- R g
&
Authors-->

99.26 99.77 99.92

B Proposed model accuracy (%) on respective traffic.
@ Authors proposed model accuracy (%) on our traffic.

Fig. 7. Accuracy(%) of Authors’ proposed model on their’s and as well as on our traffic.

Table 5. Accuracy (%) comparison.

Authors Dataset Approach Author reported Authors proposed
accuracy % model accuracy on
our traffic
Narang P2P Botnet Conversation-based | Approx 97% 98.37%
et al. [17] Conversations - 50000
P2P Benign
Conversations - 50000
Hojjat et al. | P2P Botnet Flows - 3296 Flow based 99.26% 99.77%
[6] P2P Benign Flows - 1233
Himanshi P2P Botnet Packets - |Flow based Approx 99% 99.72%
et al. [9] 41941536
P2P Benign packets -
25913400
Alauthaman |P2P Botnet Flow based 99.20% 94.25%
et al. [5] Control packets - 114087
P2P Benign
Control packets - 331526
Our P2P Botnet flows - 711149 | Flow based 99.85% N/A
approach P2P Benign flows - 815659

6 Conclusion

In this work, we have discussed PeerClear, an approach for detecting P2P bot-
nets using network traffic analysis. The detection of bots was done in two steps,
i.e., P2P host detection and P2P bot-net detection. In P2P host detection
phase, we have performed packet filtering, feature extraction, and classification.
Packet filtering module filters unwanted packets which were not contributing to
the classification. Feature extraction module converts network traffic into the

294 A. Kumar et al.

host-based feature vectors. Classification module uses decision tree for classifi-
cation of extracted feature vectors into P2P or non-P2P. After the identification
of P2P hosts, we have detected P2P bot-net by three other modules i.e., feature
extraction, feature selection, and classification. The feature extraction module
extracts the flow-based feature vectors from the network traffic. The feature
selection module selects essential features based on the information gain ratio
algorithm. Finally in the classification module, Random Forest, XGBoost and
decision tree, classified the P2P bot with more than 99% of accuracy. The over-
all accuracy of PeerClear is (99.85%). We also implemented methods for P2P
bot-net detection reported in other papers an evaluated them on our dataset.
The results indicate our approach does better than others on the same dataset.

Acknowledgement. This work was partially funded by Science and Engineering
Research Board, Government of India.

References

1. Internet world stats (2018). https://www.internetworldstats.com/stats.htm

2. Peerrush (2018). http://peerrush.cs.uga.edu/peerrush/

3. Tshark - Dump and Analyze Network Traffic, March 2018. https://www.wireshark.
org/docs/man-pages/tshark.html

4. Vint Cerf: One Quarter of All Computers part of a Botnet (2018). http://www.
tmttlt.com/archives/5289/

5. Alauthaman, M., Aslam, N., Zhang, L., Alasem, R., Hossain, M.A.: A P2P botnet
detection scheme based on decision tree and adaptive multilayer neural networks.
Neural Comput. Appl. 29(11), 991-1004 (2018)

6. Beiknejad, H., Vahdat-Nejad, H., Moodi, H.: P2P botnet detection based on traf-
fic behavior analysis and classification. Int. J. Comput. Inf. Technol. 6(1), 01-12
(2018)

7. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 785-794. ACM (2016)

8. Comodo: Latest malware attacks, May 2018. https://enterprise.comodo.com/blog/
tag/latest-malware-attacks/

9. Dhayal, H., Kumar, J.: Peer-to-Peer botnet detection based on bot behaviour. Int.
J. Adv. Res. Comput. Sci. 8(3), 172-175 (2017)

10. Dillon, C.: Peer-to-Peer botnet detection using NetFlow. Master’s thesis, University
of Amsterdam (2014)

11. Donges, N.: The Random Forest Algorithm (2018). https://towardsdatascience.
com/the-random-forest-algorithm-d457d499ffcd

12. Holz, T., Steiner, M., Dahl, F., Biersack, E., Freiling, F.: Measurements and miti-
gation of peer-to-peer-based botnets: a case study on storm worm. In: Proceedings
of the 1st Usenix Workshop on Large-Scale Exploits and Emergent Threats (2008)

13. Kheir, N., Han, X., Wolley, C.: Behavioral fine-grained detection and classification
of P2P bots. J. Comput. Virol. Hacking Tech. 11(4), 217-233 (2015)

14. KimiNewt: Python wrapper for tshark, allowing python packet parsing using wire-
shark dissectors, June 2018. https://github.com/KimiNewt/pyshark

https://www.internetworldstats.com/stats.htm
http://peerrush.cs.uga.edu/peerrush/
https://www.wireshark.org/docs/man-pages/tshark.html
https://www.wireshark.org/docs/man-pages/tshark.html
http://www.tmttlt.com/archives/5289/
http://www.tmttlt.com/archives/5289/
https://enterprise.comodo.com/blog/tag/latest-malware-attacks/
https://enterprise.comodo.com/blog/tag/latest-malware-attacks/
https://towardsdatascience.com/the-random-forest-algorithm-d457d499ffcd
https://towardsdatascience.com/the-random-forest-algorithm-d457d499ffcd
https://github.com/KimiNewt/pyshark

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

PeerClear: Peer-to-Peer Bot-net Detection 295

Lelli, A.: Zeusbot/Spyeye P2P Updated, Fortifying the Botnet (2018). https://
www.symantec.com/connect /blogs/zeusbotspyeye-p2p-updated-fortifying-botnet
Lontivero: A Resilient Peer-to-Peer Botnet Agent in.NET, April 2017. https://
github.com /lontivero/vinchuca

Narang, P., Ray, S., Hota, C.: PeerShark: detecting peer-to-peer botnets by tracking
conversations. In: IEEE Security and Privacy Workshops (2014)

Nunnery, C., Sinclair, G., Kang, B.B.: Tumbling down the rabbit hole: exploring
the idiosyncrasies of botmaster systems in a multi-tier botnet infrastructure. In:
Proceedings of the 3rd USENIX Conference on Large-Scale Exploits and Emergent
Threats: Botnets, Spyware, Worms, and More (2010)

Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81-106 (1986)
Rodriguez-Gomez, R.A., Macia-Fernandez, G., Garcia-Teodoroa, P., Steiner, M.,
Balzarotti, D.: Resource monitoring for detection of parasite P2P botnets. Comput.
Netw. 70, 302-3011 (2014)

Saiyod, S., Chanthakoummane, Y., Benjamas, N., Khamphakdee, N., Chaicha-
wananit, J.: Improving intrusion detection on snort rules for botnet detection.
Softw. Netw. 2018(1), 191-212 (2018)

Schollmeier, R.: A definition of peer-to-peer networking for the classification of
peer-to-peer architectures and applications. In: First International Conference on
Peer-to-Peer Computing (2002)

Singh, S.C.: High-tech and computer crimes: global challenges, global responses. In:
Nirmal, B., Singh, R. (eds.) Contemporary Issues in International Law, pp. 413—
437. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-6277-3_-30
Yin, C.: Towards accurate node-based detection of P2P botnets. Sci. World J.
2014, 10 p. (2014)

https://www.symantec.com/connect/blogs/zeusbotspyeye-p2p-updated-fortifying-botnet
https://www.symantec.com/connect/blogs/zeusbotspyeye-p2p-updated-fortifying-botnet
https://github.com/lontivero/vinchuca
https://github.com/lontivero/vinchuca
https://doi.org/10.1007/978-981-10-6277-3_30

	PeerClear: Peer-to-Peer Bot-net Detection
	1 Introduction
	2 Background
	3 Related Work
	4 Our Approach
	4.1 P2P Host Detection
	4.2 P2P Bot-net Detection

	5 Results and Comparison with Past Work
	6 Conclusion
	References

