
Simulating Homomorphic Evaluation
of Deep Learning Predictions

Christina Boura1,4, Nicolas Gama1,2, Mariya Georgieva2,3(B),
and Dimitar Jetchev2,3

1 Laboratoire de Mathématiques de Versailles, UVSQ, CNRS,
Université Paris-Saclay, Versailles, France

christina.boura@uvsq.fr
2 Inpher, Lausanne, Switzerland

{nicolas,mariya,dimitar}@inpher.io
3 EPFL, Lausanne, Switzerland

4 Inria, Paris, France

Abstract. Convolutional neural networks (CNNs) is a category of deep
neural networks that are primarily used for classifying image data. Yet,
their continuous gain in popularity poses important privacy concerns for
the potentially sensitive data that they process. A solution to this prob-
lem is to combine CNNs with Fully Homomorphic Encryption (FHE)
techniques. In this work, we study this approach by focusing on two
popular FHE schemes, TFHE and HEAAN, that can work in the approx-
imated computational model. We start by providing an analysis of the
noise after each principal homomorphic operation, i.e. multiplication,
linear combination, rotation and bootstrapping. Then, we provide a the-
oretical study on how the most important non-linear operations of a CNN
(i.e. max, Abs, ReLU), can be evaluated in each scheme. Finally, we mea-
sure via practical experiments on the plaintext the robustness of different
neural networks against perturbations of their internal weights that could
potentially result from the propagation of large homomorphic noise. This
allows us to simulate homomorphic evaluations with large amounts of
noise and to predict the effect on the classification accuracy without a
real evaluation of heavy and time-consuming homomorphic operations.
In addition, this approach enables us to correctly choose smaller and
more efficient parameter sets for both schemes.

Keywords: Neural networks · Homomorphic encryption · TFHE ·
HEAAN

1 Introduction

Neural networks (NN) are extremely powerful machine learning algorithms for
classification or recognition of complex data such as images, handwriting or
speech. These algorithms are used in many domains and so, they often treat
highly sensitive data like medical records or confidential financial information.
c© Springer Nature Switzerland AG 2019
S. Dolev et al. (Eds.): CSCML 2019, LNCS 11527, pp. 212–230, 2019.
https://doi.org/10.1007/978-3-030-20951-3_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20951-3_20&domain=pdf
https://doi.org/10.1007/978-3-030-20951-3_20

Simulating Homomorphic Evaluation of Deep Learning Predictions 213

One of the most popular choices for achieving privacy guarantee in these settings
is Fully Homomorphic Encryption (FHE) [7,25]. FHE schemes allow for comput-
ing on encrypted data in the sense that decrypting the encrypted result yields the
result that would have been produced if the computation had been performed on
the plaintext. Compared to other privacy-preserving solutions (e.g. Multiparty
Computation (MPC)), FHE operations are non-interactive and thus, they save
on communication costs. Second, MPC schemes require non-collusion assump-
tions on the computing parties in order to achieve privacy and such assumptions
can often be challenging. In FHE applications, no such assumptions are needed.

The three FHE schemes B/FV [8,12,20], TFHE [16,17], based on [18,21] and
HEAAN [14,15], all based on the Ring-LWE problem, are currently among the
most efficient constructions. For all of them, a homomorphic noise is added on
the top of the plaintext. The scheme B/FV was initially designed to perform
exact SIMD operations modulo a prime. Thus, for B/FV the added noise does
not affect the outcome of the decryption in the sense that the decrypted value
is exactly the plaintext. In this context the noise quantifies how many opera-
tions can be homomorphically executed with the decrypted value remaining cor-
rect. The notion of bootstrapping in B/FV has therefore the meaning of “noise
reduction”.

On the other hand, in HEAAN, homomorphic operations are floating-point
operations where the least-significant bits of the mantissa are randomly rounded
at each arithmetic operation to a value that is close to the exact result. The
entropy in the errors induced by these least-significant roundings arise from many
factors such as the randomness of the ciphertexts as well as the randomness of
the large evaluation keys. These errors, unpredictable to the users, are corrected
by neither decryption nor bootstrapping (the decryption of the encryption is not
the original message) and accumulate throughout the whole computation.

There is still a notion of the maximum number of homomorphic operations,
or multiplicative level, that designs the maximum number of operations that can
be applied on a given ciphertext: if we do less operations than this level, the
decryption produces an approximate result (as opposed to the exact result in
B/FV); if we exceed this level, the decryption fails completely in an undefined
behaviour manner. The bootstrapping of HEAAN can still extend this level to
allow further computations, but it does not reduce noise. As shown in [6], TFHE
(the last of the above-mentioned schemes) can be interfaced with both B/FV
and HEAAN, and thus, supports both exact or approximated arithmetic: in this
paper, we only consider the approximate mode of operation.

For evaluating CNNs with FHE, one can either select one scheme over the
other, or propose a hybrid solution combining HEAAN and TFHE. Indeed, some
of the computations performed during a CNN evaluation are easier with TFHE
while some others are more natural with HEAAN. For instance, in the case when
many approximated computations have to be performed and a decision must be
taken on the result, it is optimal to use the HEAAN scheme for the first part
and switch to TFHE for evaluating the decision function. This hybrid approach
based on the Chimera framework has already been used by one of the solutions

214 C. Boura et al.

proposed to the Idash’18 Track 2 [2,10] competition on designing homomorphic
solutions for semi-parallel Genome Wide Association Studies (GWAS) based
on logistic regression using homomorphically encrypted data. Here, the logistic
regression requiring many iterations was performed with TFHE in order to use
a fast bootstrapping to reduce the noise, whereas the linear algebra computa-
tions on matrix of large dimensions was performed with HEAAN using massively
vectorized SIMD computations offered by the scheme.

Our Contributions. The goal of this paper is to efficienty simulate homomor-
phic evaluation of neural network predictions (in particular, CNN predictions)
in order to analyze the stability of the performance (evaluation accuracy) of
neural networks in the presence of noise due to FHE decryptions (what we refer
to as the approximated computational model). Performing such an analysis on
encrypted data can be extremely time consuming, the reason why we choose
to do our analysis on the plaintext and simulate the noise resulting from the
homomorphic computations and the function approximations.

In order to perform our experiments on approximate operations, we have
chosen exclusively the HEAAN and TFHE schemes implemented in the context
of the Chimera [6] framework. After analyzing the noise in the homomorphic
operations in Sect. 2 and explaining how/why this noise can be modeled with
Gaussian distributions in the context of both TFHE and HEAAN, we show in
Sect. 3 how one can homomorphically evaluate various commonly used func-
tions for deep learning (e.g., Abs, Sign, max and ReLU) with TFHE and HEAAN
and discuss the potential difficulties of such an approach. We remark that the
choice of a scheme also depends on the desired level of precision in the output.
Through the simulation approach, one is able to efficiently determine the best
CNN structure and the smallest FHE parameters required during a preliminary
study phase.

We performed experiments with perturbations on three distinct convolutional
neural networks of small (LeNet-5), medium (cat-and-dog-9) and large (ResNet-
34) size and observed that all these networks support large relative errors of at
least 10% without almost any impact on the global accuracy (see Sect. 2). This
means, as we show, that only 4 bits of precision (instead of 20 to 40 bits usually)
are needed on all fixed-point operations throughout the network, which yields
very small parameter sets and fast homomorphic operations. Finally, these exper-
iments allowed to make useful deductions about the stability of some common
CNN operations (e.g., different pooling functions). As we show, all operations
are not equally stable and thus, some of them should be preferred when used in
a FHE context.

Outline. In Sect. 2 we recall the homomorphic schemes TFHE and HEAAN and
we analyse the noise propagation for basic arithmetic (linear combination, mul-
tiplication, rotation/permutation and bootstrapping). In Sect. 3, we show how
to tweak the bootstrapping to evaluate the activation functions of the CNN.
Finally, in Sect. 4, we simulate the noise propagation during the homomorphic
evaluation and measure its effect on the CNN prediction accuracy.

Simulating Homomorphic Evaluation of Deep Learning Predictions 215

2 Homomorphic RLWE Encryption Schemes and Noise
Propagation

The goal of this section is to introduce the key concepts concerning both the
TFHE and HEAAN schemes that are necessary to understand the core of this
article. As explained earlier, both schemes will be introduced via the Chimera
framework [6] that provides a unified representation of these schemes as well as
a uniform noise analysis. We start by introducing some necessary notation.

Notation. Let T = R/Z be the real torus, that is the set of real numbers modulo
1. We denote further by ZN [X] = Z[X]/(XN + 1) the ring of polynomials with
integer coefficients modulo XN +1. Respectively, RN [X] = R[X]/(XN +1) is the
ring of real polynomials modulo XN + 1. Informally, the elements of ZN [X] are
seen as integer polynomials with N coefficients whereas the elements of RN [X]
are seen as real polynomials with N coefficients.

In order to introduce the notion of slots (real or complex), we use the following
two isomorphisms of R-vector spaces:

R[X]/(XN + 1) � R
N , f = a0 + · · · + aN−1X

N−1 �→ (a0, . . . , aN), (1)

and
R[X]/(XN + 1) � C

N/2, f �→ (f(ζ), f(ζ3), . . . , f(ζN−1)). (2)

Here ζ = eπi/N is a primitive root of XN + 1. Representation (1) corresponds
to what is called the coefficient packing and representation (2) corresponds to
what is called the slot packing.

2.1 HEAAN and TFHE Through the Chimera Framework

The Chimera framework introduced in [6] allows to apply elementary operations
either from the HEAAN or the TFHE library to RLWE ciphertexts [29] within
the same FHE computation. Both use the same ciphertext space.

In this work, we describe these libraries mostly from the user point of view
without going into the details of their internal representation. In particular, we
view an RLWE ciphertext as an encryption of a plaintext in C

N/2 (i.e., N/2
complex plaintext slots under the isomorphism (2)) on which one can perform
approximated arithmetic. The coefficients to slots representation and slots to
coefficients representation can be used at any moment to switch between a slot-
based representation in C

N/2 and a coefficient-based representation in R
N .

The slots in a given ciphertext vector have a fixed public precision ρ > 0 in
the following sense: the complex coordinates of the vector are all of the form
(x + iy) · 2τ for some public exponent τ > 0 (uniform across all the coordinates
and precomputed in advance) and some secret x, y ∈ [−1, 1]. In addition, both
x and y are assumed to have ρ fractional bits of precision (i.e., the size of the
mantissa is exactly ρ bits, where ρ is usually a fixed constant across the entire
computation).

216 C. Boura et al.

During the FHE computation, only the ρ-bits of the mantissa are secret and
are the only ones that are homomorphically evaluated.

In a pure floating-point model, the result of some operations cannot always
be exactly represented on the target precision: these results are usually rounded
to the nearest mantissa. In FHE, these roundings are more random and difficult
to predict and we modelize this via a noise propagation model, whose mean and
standard deviation depend on the elementary operation.

We will only refer to the internal cryptographic representation of the cipher-
texts in the section where we define our noise propagation model. Namely, both
TFHE and HEAAN schemes use RLWE ciphertexts in RN [X]2 mod 1 (or RN [X]2

mod q), the same key space ZN [X] with small coefficients and the same phase
function ϕs(a, b) = b − s · a introduced in [16]. In this framework, the approx-
imated decryption, common to HEAAN and TFHE, considers that the phase is
always close to the actual message and is a good enough approximation thereof.
Then, accumulated errors are not corrected by the cryptosystem but rather by
the numerical stability of the homomorphically evaluated algorithm.

Finally, the notion of level common to TFHE and HEAAN is defined as the
maximal multiplicative depth supported by the ciphertext. Each homomorphic
product reduces the level of the resulting ciphertext; when the level 0 is reached,
the ciphertext must be bootstrapped to continue operating on it.

Consider a security parameter λ, a maximal level L and a target precision ρ,
then these parameters implicitly define a minimal key size N . For more details
see the FHE standardization workshop security document [3].

Below, we describe the algorithms for encryption and decryption that are
used in TFHE and HEAAN, both enabling error-tolerant decryption functions,
and hence approximated arithmetic.

KeyGen: A uniformly random binary key s ∈ ZN [X] (with small coefficients).
In order to support non-linear operations, KeyGen also needs to generate
various encryptions of s, such as evaluation, key-switching or bootstrapping
keys, which are not essential to this paper (see [9,15,20] for more details).

EncryptAtLevelτ,L(x, s): The plaintext x is in C
N/2 (complex slots bounded

by |x| ≤ 2τ). Divide x by 2τ+L and apply the isomorphism (1) to obtain a
small real polynomial μ bounded by 2−L. Then, pick a uniformly random
a ∈ RN [X] mod 1, and a small Gaussian error e with standard deviation
2−L−ρ, and return (a, s · a + μ + e).

DecryptApproxAtLevelτ,L(c, s): Compute the phase ϕs(c) = b−s ·a mod 1,
lift all its coefficients to the real field in the interval [− 1

2 , 1
2) which recovers

an approximation of μ, then apply the isomorphism (1) and multiply by 2τ+L

to recover the slots x (up to an error 2τ−ρ).

Remark 1. Here we describe only a symmetric key version. Note however that
the public key version is obtained by evaluation of constant functions using the
secret key.

Simulating Homomorphic Evaluation of Deep Learning Predictions 217

2.2 Noise Models for Homomorphic Operations

We now analyze the resulting output noise of the main homomorphic operations
for TFHE and HEAAN. The most common operations are linear combinations,
multiplications, slot permutations as well as functional bootstrapping.

Linear Combination. Let
∑k

i=1 αici be a linear combination, where the ci are
RLWE ciphertexts that encrypt the plaintexts xi and αi ∈ Z are small inte-
gers. Given independent normally distributed Gaussian noises ei ∈ C

N/2 (slot
representation) with multivariate normal distribution N(xi, σ

2
i) (xi ∈ C

N/2 is
the mean and σi ∈ C

N/2×N/2 is the covariance matrix), the noise of the decryp-
tion of

∑k
i=1 αici is

∑k
i=1 αiei which is normally distributed with multivariate

distribution N
(∑k

i=1 αiμi,
∑k

i=1 α2
i σ

2
i

)
.

We can thus simulate this noise by computing the exact result
∑k

i=1 αixi,
applying a random multivariate (discrete) Gaussian noise of amplitude∑

αi2τi−ρ and expressing the outcome as an exact multiple of 2τ−ρ.

Multiplication. The homomorphic evaluation of a multiplication corresponds to
the internal product of ciphertexts of HEAAN [15] or to the external product of
Chimera/TFHE [6,17] if one of the operands is a fresh ciphertext.

Assuming that c1 and c2 are ciphertexts corresponding to the two plaintexts
x1, x2 and assuming that the noise parameters e1, e2 ∈ C

N/2 in the decryptions
of c1 and c2, respectively, are independent and normally distributed according
to N(μi, σi), then the distribution of the noise parameter for the decryption of
the product c1c2 can be approximated with a normal distribution. Indeed, note
that,

(x1 + e1)(x2 + e2) = x1x2 + x1e2 + x2e1 + e1e2.

Now, for fixed x1, the terms x1e2 and x2e1 are clearly normally distributed and
e1e2 is negligible, so the distribution of the noise in the decryption of the product
can be approximated with the normal distribution for x1e2 + x2e1. This has
already been studied (see e.g. [15,16]). Thus, when multiplying homomorphically
two ciphertexts c1, c2 representing plaintexts x1, x2 with public exponents τ1, τ2
and precision ρ, we obtain a ciphertext c with exponent τ = τ1+τ2 and precision
ρ, which can be modeled as follows: compute the exact product x1x2, add a
random (discrete) multivariate Gaussian noise of amplitude 2τi−ρ and express
the outcome as an exact multiple of 2τ−ρ.

Rotations/Permutations. One of the possibilities for permuting or rotating the
elements in the slot representation is to switch to the coefficient packing. This
last operation is easy. Knowing that the transformation between coefficients to
slots representation and inversely corresponds to applying an orthogonal (or
hermitian) matrix, the effect on the noise is numerically stable and it preserves
the Gaussian noise amount. However, this consumes (at least) one homomor-
phic multiplicative level, because the transformation involves a homomorphic
evaluation of a Discrete Fourier Transformation.

218 C. Boura et al.

Bootstrapping. Traditionally, a bootstrapping applies homomorphically the iden-
tity function to the plaintext and resets the multiplicative level to a high value.
Here, we omit the noise-reduction part which does not occur in the floating-
point mode [14]. Complex non-linear functions are traditionally evaluated by
interleaving bootstrappings, SIMD additions and multiplications and slot rota-
tions. However, it is not optimal to proceed this way for three reasons: (1) After
a costly bootstrapping, one still needs to evaluate the non-linear function which
is time consuming, thus sacrificing efficiency. (2) One can approximate the non-
linear function by polynomials: if the approximation can be made arbitrarily
precise within a fixed range, the degree and the size of the coefficients rapidly
diverge for large ranges and the expression gets numerically unstable outside
the specified range (Runge’s phenomenon). Therefore, any plaintext outlier can
destroy the correctness of the result, which leads to a precision sacrifice. (3)
Finally, the bootstrapping needs to raise the multiplicative level very high to
leave room for the homomorphic function evaluation, thus requiring excessively
large parameters (again, sacrificing efficiency). In the cases of both TFHE and
HEAAN, we thus focus on a more numerically stable strategy where the boot-
strapping includes the evaluation of the non-linear function.

Functional Bootstrapping in TFHE. Recall that the TFHE scheme evaluates func-
tions via evaluating lookup tables on discretized input [17, §4.3, Alg. 4]. As such,
the bootstrapping of TFHE approximates a given function by a step function (in
exactly the same way as one performs Riemann integration) and then evaluates
the approximation by a homomorphic lookup table evaluation. For example, the
ReLU function f(x) = max(0, x) for −1 ≤ x ≤ 1 can be approximated by the
step function defined as follows:

fδ(x) =

{
0 if x ≤ 0
kδ if x ∈ [(k − 1)δ, kδ),

where k ∈ Z and k ≤ 1/δ (see Fig. 1 (left)). Thus, given a plaintext x, instead
of computing f(x), one obtains the value fδ(x + e1) + e2 where e1 and e2 are
two error terms, e2 being Gaussian noise and e1 corresponding to an internal
rounding error (see the rounding in Step 2 of [16, Alg. 3]).

Functional Bootstrapping in HEAAN. In contrast to TFHE, the original version
of HEAAN evaluates the sine function by Taylor approximation [14, §3.2]. More-
over, the extension of HEAAN proposed in Chimera generalizes this method to
evaluation of Fourier series and thus, evaluation of the given target function via
a low-degree Fourier series. Graphically, the target function f is replaced by a
smooth function Sf and then a Gaussian noise is added on the top of that (see
Fig. 1 (right)). Finally, when the function has a point of singularity (such as the
ReLU at the point x = 0), the HEAAN approximation is biased at that point
(strictly above x = 0). It is thus desirable to validate the effect of this biased
approximation to the quality of prediction of the trained convolutional neural
network.

Simulating Homomorphic Evaluation of Deep Learning Predictions 219

x

y

0

y = f(x)
y = f (x)
y ← f (x) + err

x

y

0

y = f(x)
y = Sf (x)
y ← Sf (x) + err

Fig. 1. Functional bootstrap in TFHE for the ReLU function (in left) and Functional
bootstrap in HEAAN for the ReLU function (in right). (Color figure online)

In conclusion of this section, since every elementary FHE operation has a
Gaussian noise in output, we can omit the input noise from the bootstrapping
and merge it with the output noise of the previous operation in our simulation.

3 Evaluation of Nonlinear Functions in Neural Networks

Non-linear functions are central building blocks in deep learning and as such it
is important to analyse how to homomorphically evaluate them. Examples of
such operations are comparisons, max functions, piecewise functions (e.g. the
REctified Linear Unit (ReLU) := max(0, x) activation function), rounding, a
decryption function (equivalent to the sign function) or continuous functions
such as the sigmoid sigmoid(x) = 1/1 + exp(−x).

Note that the ReLU and max are easily expressed with the absolute value: for
x, y in (−1/4, 1/4), 2max(x, y) = (x + y) + |x − y|, and for 2ReLU(x) = x + |x|.

3.1 Non-linear Functions in TFHE

In TFHE, given a non-linear function f : T → T, one can compute f(ϕs(c)) (see
Sect. 2.1) for a LWE ciphertext c via functional boostrapping under the following
constraints: the domain of the function is restricted to multiples of 1/2N where
N is the bootstrapping key size (in particular, it is a medium-sized power of 2),
and the function must be (1/2)-antiperiodic, i.e. f(x + 1/2) = −f(x). On the
half-period, the function can be defined pointwise, so its graph can be arbitrary.
Some particular functions such as Abs(x)−1/4 and Sign(x) already coincide with
a (1/2)-antiperiodic function over [−1/2, 1/2] (see Fig. 2). More general functions
such as sigmoid(γx) − 1/2 can be defined over [−1/2, 1/2] and extended to R by
anti-periodicity.

Once the (1/2)-antiperiodic function f to evaluate is chosen, its graph is
mapped to the element ν =

∑N−1
i=0 νiX

i ∈ RN [X] mod 1 where νi = f(i/2N)
and used as a test vector in the bootstrapping of TFHE to evaluate f (see [17,
§6.1]). In the output of the bootstrapping, the decrypted value is within a small
Gaussian error around f(x) as discussed in Sect. 2.

220 C. Boura et al.

0 1
4

1
2- 14- 12 0 1

2- 12

Fig. 2. Absolute (on the left) and Sign (on the right) values TFHE

3.2 Non-linear Functions in HEAAN

In HEAAN, non-linear functions can be evaluated via approximations by either
complex-valued polynomials (via traditional products) or trigonometric polyno-
mials (Fourier approach within the bootstrapping).

As explained in [5], Fourier series of smooth and regular functions con-
verge rapidly: for instance, the Fourier series of a C∞-function converges super-
algebraically and if one smooths any periodic function by convolution with a
small Gaussian, its Fourier series converges exponentially fast. However, the
convergence is slower if the function has discontinuities (pointwise convergence
in Ω(1/k)), or discontinuities in its derivative (uniform convergence in Ω(1/k2))
where k is the number of harmonics used in the series.

For example, the absolute value is a triangular signal on [−1/2, 1/2) which
extends naturally to a 1-periodic continuous function (piecewise C1). Given N/2
LWE ciphertexts, we can efficiently pack the complex exponential of their phases
exp(2iπμ) in the slots of a single HEAAN ciphertext. Subsequently, we can evalu-
ate any trigonometric polynomial of small degree and extract the results back to
LWE samples. For instance, the triangular signal (corresponding to the absolute
value) has the following Fourier series with only cosine terms of odd degrees that
converge in O(k2) and the square signal (corresponding to the sign or decryption
function) has only sine terms of odd degrees.

Abs(x) = K1

∞∑

k=0

cos 2π(2k + 1)x
(2k + 1)2

+ K2, Sign(x) = K1

∞∑

k=0

sin 2π(2k + 1)x
(2k + 1)

+ K2

Figure 3 shows that the first three (resp. six) terms of the Fourier series of
the absolute value and the sign function already provide a good approximation
on the interval [−1/2, 1/2).

Compared to classical approximations of functions by polynomials in [11,22]
(i.e. Taylor series or Weierstrass approximation theorem), Fourier series have
three main advantages: they do not diverge to ∞ outside of the interval (better
numerical stability), the Fourier coefficients are small (square integrable), and
the series converge uniformly to the function on any interval that does not con-
tain any discontinuity in the derivative. However, in the particular case of Abs
and Sign, the presence of a singularity or discontinuity at x = 0 in both graphs

Simulating Homomorphic Evaluation of Deep Learning Predictions 221

implies that the series converge poorly around 0. Unfortunately, native plaintexts
in HEAAN ciphertext at level L have by definition tiny phases in the interval[−1/2L, 1/2L

)
. We address this problem using the bootstrapping capability of

HEAAN: First, we decrease the level L = 0 or L = 1 (using the algorithm of
re-scaling defined in [15]), so that input phases range over a large torus interval
(−1/2, 1/2) or (−1/4, 1/4), and then, divide K1 by 2L so that the output has
level L.

With this bootstrapping trick, HEAAN can at the same time evaluate a non-
linear function and bootstrap its output to a level L even higher than its input.
Taking this fact into account, instead of writing ReLU(x) = max(0, x) as 1

2 (|x|+x)
like in TFHE, where the term +x/2 is not bootstrapped, it is actually better to
extend the graph of ReLU from a half period (−1/4, 1/4) directly to a 1-periodic
continuous function and to decompose the whole graph as a Fourier series. In
the latter case, the output level L can be freely set to an arbitrary large value.
Figure 3 shows a degree-7 approximation of the odd-even periodic extension of
the graph of ReLU(x). If the ReLU is evaluated via this technique, the output
message is the Fourier approximation, and the phase still carries an additional
Gaussian noise on top of it, as shown in Sect. 2. In the next section, we also study
the robustness of neural networks with this approximation and perturbation
model.

−1
2

1
2

−1
2

1
2

-0.05

 0

0.05

 0.1

0.15

 0.2

0.25

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

degree- 7trigo polynomial
real function

Fig. 3. Abs (on the left), Sign (in the middle) and ReLU (on the right) for HEAAN

4 Predictions for Deep Learning

Neural networks (NN) are computing systems trained to solve among others
classification problems. Networks with multiple layers are known as deep. Con-
volutional neural networks (CNN) are a special type of deep neural networks
that have been proven very successful in image recognition and classification.
Preserving the privacy of sensitive data (e.g., medical or financial) while apply-
ing machine learning algorithms and still ensuring good performance and high
output accuracy is currently a problem of interest to both the cryptographic and
the machine learning communities [4,7,10,11,23,25,32]. We briefly describe now
the main layers composing a CNN from a FHE point of view.

Convolution: It is an operation that extracts features from the input image
(such as lines or borders) and is achieved by computing convolutions (via

222 C. Boura et al.

element-wise products) of the input matrix and a filter. Convolution is viewed
as a secret affine function that can be efficiently evaluated using the external
product of [6,17].

Non-linearity: To introduce non-linearity, an activation function is then
applied to the output of the convolution. Nowadays, this is almost always
achieved by the ReLU function. In almost all previous works, the standard
approach was to replace the ReLU by a function with a lower multiplica-
tive depth. In [23], ReLU is notably approximated by the square function
f(x) = x2, in [7] it is replaced by the sign function, while in [11] the ReLU is
approximated by low-degree polynomials.

Pooling: This layer reduces the dimensions of the input by retaining the most
important information. This is typically done by a procedure called max pool-
ing or more rarely by average pooling that compute the maximum (resp.
average) value for every disjoint region of the input. Today, no efficient algo-
rithm is known to compute the maximum of a large number of values. On
the contrary, average pooling is linear with public coefficients and therefore
FHE-friendly. In [23] the authors replace max pooling by sum pooling, while
in [11] max pooling is replaced by average pooling.

Fully Connected (FC) Layer: All the neurons of this layer are all connected
to all neurons of the previous layer. Their activation is computed by a matrix
multiplication plus a bias offset. This is again a secret precomputed affine
step that can be achieved via the external product.

Loss Layer: This is normally the last layer of a CNN. During the evaluation, the
loss layer becomes an argmax operation. This last step is in general ignored in
other homomorphic implementations of neural networks. For example, in [7,
23], the authors simply output the score vectors and the recipient computes
the best one after decryption. To do this final step homomorphically, the
boolean approach of TFHE seems to be the most suited to this non-SIMD
step.

4.1 Robustness Against the FHE Error Models

In this section, we simulate the homomorphic execution of the neural network
by replacing the value output of each non-linear layer by a random sample which
has the same distribution as the phase of RLWE samples after a homomorphic
evaluation of the layer. This approach allows us to simulate a homomorphic
evaluation, and to obtain accurate predictions on the outcome without having to
run the expensive homomorphic computation. This allows to estimate the largest
noise standard deviation α that can be tolerated by the network, and therefore,
the smallest FHE parameters required to evaluate it. In our experiments we
add Gaussian noise with varying standard deviation and look for the maximal
standard deviation of the noise that can be tolerated by the network.

As explained above, in the context of FHE, the training of networks is usu-
ally done on the plaintexts without any perturbations occurring, and only then,
the network is encrypted to the cloud to protect the privacy of the model during

Simulating Homomorphic Evaluation of Deep Learning Predictions 223

predictions. In this direction, we carried out many experiments on three differ-
ent convolutional neural networks structures, using the TFHE and HEAAN noise
models of Sect. 2, in order to measure their robustness against such perturba-
tions. This approach is not new. For example, in [13] the authors studied the
stability of CNNs by applying among others a Gaussian perturbation to the
internal weights inside the convolutional layers. The applied Gaussian was cen-
tered at zero and had a standard deviation relative to the standard deviation of
that layer’s original weight distribution. This type of perturbation modifies the
average value of the inputs to the convolutional layer. Even, if the motivation
of this paper is not linked to homomorphic computations, their conclusions and
ours intersect at some points. Indeed, the authors of [13] noticed that the last
convolutional layers are surprisingly stable, while the first convolutional layers
are much more fragile and so the accuracy depends on the level the perturbation
applies. The most surprising result that we obtain in our experiments is that
all the neural networks we tested support quite large relative errors of at least
10% of 2τ , without any impact on the global accuracy. In a TFHE context, rais-
ing the error amplitude from a usually required 2−40 negligible amount to 2−4

means that the depth of leveled circuits (number of transitions in automata in
leveled circuits in [17]) can be increased by a factor (236)2 without changing the
parameter sets. This also means that only 4 bits of precision (instead of 20 to 40
bits usually) are needed on all fixed point operations throughout the network,
which results notably in very small parameter sets for HEAAN.

4.2 Experiments

We conducted experiments with three different convolutional neural networks
and for all of them we used the dlib C++ library [26]. The first network is
LeNet-5 [27], that can be trained to recognize handwritten digits, the second-
one is a 9-layer CNN trained to distinguish cat from dog pictures, and the last
one is the ResNet-34 network [24], a deep network of 34 layers able to classify an
input image into one of 1000 objects. We briefly describe each of the networks
and the experiments done on it.

LeNet-5: Recognition of Handwritten Digits. LeNet-5 is a well-known
convolutional 7-layer neural network designed by LeCun et al. in 1998 to recog-
nize handwritten digits [27]. In the original version of the network, the sigmoid
was used as the activation function. In the version that we manipulated (dlib
library [26]), the ReLU activation function is used instead.

We trained this network on the MNIST dataset [28], composed of 60000
training and 10000 testing images, with two different versions of the pooling
algorithm. We first trained the network by using max pool for both pooling lay-
ers and at a second stage we re-trained it from scratch by replacing now max
pool by average pool. Our goal was to see how each version reacts to pertur-
bations. In particular, we added to each output value of the activation function
a value drawn from a Gaussian distribution with mean value zero and some
standard deviation σ. This was done for the activation function of all levels. For

224 C. Boura et al.

our experiments we further used two different activation functions: the original
ReLU activation function and then an approximation of the ReLU function by a
trigonometric function, depicted in Fig. 3 (right), or in green in Fig. 1 (right)
which can be used in HEAAN as a replacement of max(0, x). Finally, we per-
turbed the output of the activation function in two different ways. First by a
Gaussian distribution of fixed standard deviation σ and in a second experiment
by a standard deviation proportional to the input’s standard deviation (which
can be publicly estimated during training).

The results of these experiments are summarized in Table 1 and Fig. 4. In this
example, we pushed standard deviation from 0.0 to 1.0 for both trained CNNs,
the one trained with max pool and the other one trained with average pool. In
Table 1 we give both the accuracy on the testing set but also on the training set.
In order to correctly interpret the right part of Fig. 4 it has to be noted that
the mean value of the ReLU entries was measured between 0.4 and 1.91 and the
standard deviation between 0.97 and 2.63.

Table 1. Experiments on the LeNet-5 network trained first with max pool and then
with average pool. ReLU means that during the evaluation the original ReLU function
was used, while R̃eLU signifies that an approximation was used instead.

Pool type σ Non-proportional perturbation Proportional perturbation

ReLU ˜ReLU ReLU ˜ReLU

Train acc. Test acc. Train acc. Test acc. Train acc. Test acc. Train acc. Test acc.

Max 0.0 0.9999 0.9924 0.9999 0.9924 0.9999 0.9924 0.9999 0.9924

Average 0.9994 0.9903 0.9994 0.9903 0.9994 0.9903 0.9975 0.9903

Max 0.1 0.9998 0.9918 0.9996 0.9916 0.9984 0.9908 0.9980 0.9905

Average 0.9994 0.9903 0.9993 0.9904 0.9977 0.9891 0.9976 0.9892

Max 0.2 0.9990 0.9910 0.9976 0.9899 0.9883 0.9835 0.9842 0.9787

Average 0.9991 0.9901 0.9985 0.9894 0.9897 0.9843 0.9878 0.9826

Max 0.3 0.9966 0.9894 0.9901 0.9833 0.9540 0.9501 0.9199 0.9192

Average 0.9981 0.9898 0.9960 0.9872 0.9699 0.9655 0.9595 0.9581

Max 0.4 0.9919 0.9843 0.9654 0.9610 0.8686 0.8723 0.7695 0.7815

Average 0.9968 0.9884 0.9908 0.9845 0.9308 0.9296 0.9014 0.9039

Max 0.5 0.9823 0.9766 0.8942 0.8966 0.7475 0.7587 0.5901 0.5959

Average 0.9947 0.9869 0.9792 0.9737 0.8728 0.8745 0.8156 0.8214

Max 0.6 0.9626 0.9610 0.7644 0.7737 0.6199 0.6248 0.4325 0.4317

Average 0.9919 0.9842 0.9552 0.9517 0.8007 0.8054 0.7179 0.7245

Max 0.7 0.9284 0.9280 0.6166 0.6288 0.5013 0.5024 0.3233 0.3274

Average 0.9883 0.9816 0.9171 0.917 0.7219 0.7288 0.6212 0.6332

Max 0.8 0.8756 0.8808 0.4809 0.4953 0.4040 0.4056 0.2526 0.2576

Average 0.9843 0.9779 0.8633 0.8698 0.6433 0.6506 0.5295 0.5383

Max 0.9 0.8103 0.8191 0.3826 0.3884 0.3316 0.3322 0.2036 0.2094

Average 0.9779 0.9724 0.8044 0.8135 0.5691 0.5727 0.4498 0.4538

Max 1.0 0.7399 0.7462 0.3179 0.326 0.2757 0.2803 0.1719 0.1732

Average 0.9696 0.9636 0.7434 0.7548 0.4989 0.5062 0.3822 0.3862

Simulating Homomorphic Evaluation of Deep Learning Predictions 225

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 0.2 0.4 0.6 0.8 1

te
st

in
g

ac
cu

ra
cy

standard deviation

Max Pool with ReLU
Average Pool with ReLU

Max Pool with Approximate ReLU
Average Pool with Approximate ReLU

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

te
st

in
g

ac
cu

ra
cy

% of standard deviation

Max Pool with ReLU
Average Pool with ReLU

Max Pool with Approximate ReLU
Average Pool with Approximate ReLU

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

te
st

in
g

ac
cu

ra
cy

standard deviation

Max Pool with ReLU
Average Pool with ReLU

Max Pool with Approximate ReLU
Average Pool with Approximate ReLU

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 5 10 15 20 25 30 35 40

te
st

in
g

ac
cu

ra
cy

% of standard deviation

Max Pool with ReLU
Average Pool with ReLU

Max Pool with Approximate ReLU
Average Pool with Approximate ReLU

Fig. 4. Experiments with LeNet-5 (up) and the cat versus dog classifier (down). The
results with proportional perturbations are on the right, while with non-proportional
perturbations on the left.

The first remark that can be done by looking into these experiments is that
average pool is much more stable to perturbations than max pool and provides
a high accuracy even for large values of the standard deviation. The second
remark concerns the accuracy when an approximation of the ReLU function is
used instead of the original one. As it can be seen from the left part of Fig. 4, the
accuracy for the average pool version is clearly lower when a ReLU approximation
is used, but still has a very good score (over 95%) for standard deviations as
high as 0.6. Finally, special care has to be taken when interpreting the results
corresponding to the application of a proportional perturbation of the input
data standard deviation. In the right part of Fig. 4 the x-axis corresponds to a
perturbation equal to the percentage of the inputs’ standard deviation. Depend-
ing on the original deviation of the input distribution, the perturbation can be
extremely important and this is why the accuracy shows to drop. Therefore, one
has to keep in mind that the perturbation of the right-side figures is in general
more important and probably also more meaningful than the one of the left-side
figures.

Cats versus Dogs Classifier. In this section we present our results and
remarks on a simple 9-layer neural network that was trained to classify pictures
as cats or dogs. For this, we used again the dlib library [26] and coded with it

226 C. Boura et al.

the 9-layer NN presented in [1]. The structure of this NN is depicted in Fig. 5.
This network is composed of 3 convolution layers followed by the ReLU activation
function, two fully connected (FC) layers and two pooling layers. In the original
net, the max pool operation is used at this step. The 7-th layer is a dropout
layer, that is a standard technique for reducing overfitting and consists in ignor-
ing a different randomly chosen part of neurons during the different stages of
the training phase [31]. We trained this network on the Asirra dataset [19] used
by Microsoft Research in the context of a CAPTCHA (Completely Automated
Public Turing test to tell Computers and Humans Apart) challenge. Most of the
good CNNs trained to distinguish dogs from cats achieve more than 80% accu-
racy on the testing set while the accuracy on the training set is usually around
100%. The difference in the two performances is usually due to some overfitting
occuring.

Input Image

64 × 64 × 3

32 filters
of size 3× 3
Stride size: 1

Pool

2× 2
windows

Stride size: 2

FC
Dropout

512 1

Loss

Layer

Pool

2× 2
windows

Stride size: 2

ReLu ReLu ReLu

ReLu

Layer
Conv

64 filters
of size 3× 3
Stride size: 1

64 filters
of size 3× 3
Stride size: 1

Layer
Conv

Layer
Conv

FC

Layer 1 Layer 3Layer 2 Layer 4

Layer 5 Layer 6 Layer 7 Layer 8 Layer 9

Fig. 5. 9-layer neural network [1] trained to classify pictures as cats or dogs.

We did exactly the same type of experiments for this network and the results
can be found in Table 2 or visualized in the lower part of Fig. 4. This network
is a little-bit more complex than LeNet-5 and seems to be less stable. For this
reason, the higher standard deviation considered here is 0.4. However, globally,
the same remarks as for LeNet-5 network result. Again, for correctly interpreting
the right part of the table, it has to be noted that the mean value of the inputs
of the activation function ranges between 0.0004 and 0.628 and the standard
deviation ranges between 0.0067 and 3.51.

ResNet-34. ResNet (Residual Network) is a recent family of very deep convo-
lutional neural networks showed to perform extremely well [24]. The global layer
structure is very similar to a classical CNN, however better performances are
achieved by the introduction of a shortcut connection, that consists in skipping
one or more layers. The version that we used is composed of 34 layers, and is

Simulating Homomorphic Evaluation of Deep Learning Predictions 227

Table 2. Experiments on a 9-layer CNN trained to distinguish cats from dogs.

Pool type σ Non-proportional perturbation Proportional perturbation

ReLU R̃eLU ReLU R̃eLU

Training acc. Test acc. Test acc. Test acc. Test acc.

Max 0.0 0.9999 0.8530 0.8500 0.8524 0.85

Average 0.99995 0.8202 0.8138 0.8232 0.814

Max 0.1 0.9944 0.8316 0.8112 0.801 0.784

Average 0.99995 0.8232 0.7880 0.8234 0.7812

Max 0.2 0.8782 0.7446 0.6246 0.6942 0.5892

Average 0.9999 0.8174 0.6726 0.8174 0.6574

Max 0.3 0.6234 0.5872 0.5368 0.5736 0.4996

Average 0.99965 0.8146 0.5868 0.8134 0.5776

Max 0.4 0.5228 0.512 0.5222 0.514 0.4916

Average 0.998 0.8074 0.5522 0.8092 0.5444

abbreviated as ResNet-34. This network, once trained, is able to classify photos
of objects into 1000 distinct object categories.

The training of such residual networks is extremely time consuming (two
weeks on a 16-GB Titan GPU, and about 20 times more on 16-CPU cores)
and because of time constraints we were not able to finish the training on a
network where max pooling is replaced by average pooling. Thus, we were only
able to perform our experiments on the pre-trained network on the imagenet
ILSVRC2015 dataset [30] and the results are reported in Table 3. Top 1 and Top
5 labels report respectively the percentage of the pictures in the validation set
that were correctly classified (Top 1) and whose correct label appeared in the
five top suggestions provided by the network (Top 5).

Table 3. Experiments on ResNet-34 with max pooling and with perturbations of stan-
dard deviation ranging from 0.0 to 0.5. The right columns correspond to perturbations
proportional to the input’s standard deviation.

Pool type σ Non-proportional perturbation Proportional perturbation

ReLU R̃eLU ReLU R̃eLU

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

Max 0.0 0.7416 0.9158 0.7428 0.9187 0.7439 0.9202 0.7398 0.9166

Max 0.1 0.7357 0.9132 0.7056 0.9165 0.7132 0.8948 0.7586 0.9252

Max 0.2 0.6991 0.8860 0.7056 0.8967 0.1562 0.3294 0.3658 0.6027

Max 0.3 0.5068 0.7267 0.4829 0.7171 0.0019 0.0089 0.0012 0.0079

Max 0.4 0.1500 0.0498 0.1065 0.0817 0.0018 0.0085 0.000 0.0009

Max 0.5 0.0233 0.0608 0.0017 0.0066 0.0001 0.0044 0.000 0.0010

228 C. Boura et al.

4.3 Conclusion/Discussion

Finally, we summarize the experiments with the three different CNNs, provide
links to Sect. 3 and give recommendations on which operation should be per-
formed with which FHE scheme (depending on the given use case).

Max pool versus Average pool: We conducted experiments on LeNet-5 and
the 9-layer CNN classifying cats and dogs, by replacing during the training
and the evaluation the classical max pooling operation by the average pool.
This modification, applied also in [11] and to some extend in [23], offers a sig-
nificant advantage for all FHE schemes, as this operation is affine with public
coefficients, compared to max pool that is non-linear. Our experiments showed
that this approach offers a further advantage in FHE, as it is way more stable
than max pool to perturbations. This behaviour has a natural mathemati-
cal explanation, since the standard deviation of an average of independent
samples is smaller than the input standard deviations.

Proportional versus non-proportional perturbations: We applied two
types of perturbations to all three networks. The first type of perturbations
was the addition at the output of the activation function of a value drawn
from a Gaussian distribution with zero mean and a fixed standard deviation.
In the second type of perturbations, the value added had a standard devi-
ation proportional to the standard deviation of the input distribution. The
second scenario corresponds to the fixed-point arithmetic model, where the
public plaintext exponent τ is set to match the amplitude during the training
phase, and therefore, the noise α is by definition relative to 2τ . Surprisingly,
without impacting the result, neural networks are able to absorb very large
relative errors between 10% and 20% after each ReLU (there are respectively
thousands, millions, and billions of them in the three tested networks). This
means homomorphic parameters need only to ensure ρ = 4 bits of precision
on the plaintext, instead of the usually recommended ρ = 30.

Approximating the ReLU activation function: The main source of non-
linearity of a convolutional neural network is coming from the ReLU function.
In TFHE these functions are evaluated exactly either as circuits, or as point-
wise-defined arbitrary functions. Approximating the ReLU by something easier
is thus a natural approach [7,11,23]. In HEAAN such continuous functions can
be approximated accurately by low degree trigonometric polynomials. In our
experiments with ResNet-34 (see Table 3) the output accuracy is surprisingly
even better with an approximated ReLU of this type than with the classical
one, in the presence of small noise, which proves that this approach is realistic.

Number of layers: In the plaintext model, the accuracy can in general be
improved by adding more layers, if no overfitting occurs. However, in the
homomorphic model, what happens with accuracy is still an open question,
because with the number of layers, the complexity of computation grows and
the activation function can only be approximated. This generates additional
noise that can affect the accuracy.

Simulating Homomorphic Evaluation of Deep Learning Predictions 229

References

1. Cats and dogs and convolutional neural networks, September 2016. http://www.
subsubroutine.com/sub-subroutine/2016/9/30/cats-and-dogs-and-convolutional-
neural-networks

2. Track 2: Secure parallel genome wide association studies using homomorphic
encryption (2018). www.humangenomeprivacy.org/2018/competition-tasks.html

3. Albrecht, M., et al.: Homomorphic encryption security standard. Technical report,
HomomorphicEncryption.org, Toronto, Canada, November 2018

4. Badawi, A.A., et al.: The AlexNet moment for homomorphic encryption: HCNN,
the first homomorphic CNN on encrypted data with GPUs. Cryptology ePrint
Archive, Report 2018/1056 (2018). https://eprint.iacr.org/2018/1056

5. Boura, C., Chillotti, I., Gama, N., Jetchev, D., Peceny, S., Petric, A.: High-
precision privacy-preserving real-valued function evaluation. IACR Cryptology
ePrint Archive 2017, 1234 (2017)

6. Boura, C., Gama, N., Georgieva, M.: Chimera: a unified framework for B/FV,
TFHE and HEAAN fully homomorphic encryption and predictions for deep learn-
ing. Cryptology ePrint Archive, Report 2018/758 (2018)

7. Bourse, F., Minelli, M., Minihold, M., Paillier, P.: Fast homomorphic evaluation of
deep discretized neural networks. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10993, pp. 483–512. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96878-0 17

8. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32009-5 50

9. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: ITCS 2012, pp. 309–325. ACM (2012)

10. Carpov, S., Gama, N., Georgieva, M., Troncoso-Pastoriza, J.R.: Privacy-preserving
semi-parallel logistic regression training with fully homomorphic encryption. Cryp-
tology ePrint Archive, Report 2019/101 (2019). https://eprint.iacr.org/2019/101

11. Chabanne, H., de Wargny, A., Milgram, J., Morel, C., Prouff, E.: Privacy-
preserving classification on deep neural network. Cryptology ePrint Archive,
Report 2017/035 (2017). https://eprint.iacr.org/2017/035

12. Chen, H., Laine, K., Player, R.: Simple encrypted arithmetic library - SEAL v2.1.
In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 3–18. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70278-0 1

13. Cheney, N., Schrimpf, M., Kreiman, G.: On the robustness of convolutional neural
networks to internal architecture and weight perturbations. CoRR, abs/1703.08245
(2017)

14. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: Bootstrapping for approximate
homomorphic encryption. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018.
LNCS, vol. 10820, pp. 360–384. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78381-9 14

15. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arith-
metic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70694-8 15

http://www.subsubroutine.com/sub-subroutine/2016/9/30/cats-and-dogs-and-convolutional-neural-networks
http://www.subsubroutine.com/sub-subroutine/2016/9/30/cats-and-dogs-and-convolutional-neural-networks
http://www.subsubroutine.com/sub-subroutine/2016/9/30/cats-and-dogs-and-convolutional-neural-networks
www.humangenomeprivacy.org/2018/competition-tasks.html
http://homomorphicencryption.org/
https://eprint.iacr.org/2018/1056
https://doi.org/10.1007/978-3-319-96878-0_17
https://doi.org/10.1007/978-3-319-96878-0_17
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://eprint.iacr.org/2019/101
https://eprint.iacr.org/2017/035
https://doi.org/10.1007/978-3-319-70278-0_1
https://doi.org/10.1007/978-3-319-78381-9_14
https://doi.org/10.1007/978-3-319-78381-9_14
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15

230 C. Boura et al.

16. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic
encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53887-6 1

17. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homo-
morphic encryption over the torus. Cryptology ePrint Archive, Report 2018/421
(2018). https://eprint.iacr.org/2018/421

18. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less
than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46800-5 24

19. Elson, J., Douceur, J.R., Howell, J., Saul. J.: Asirra: a CAPTCHA that exploits
interest-aligned manual image categorization. In: Proceedings of the 2007 ACM
Security, CCS 2007, pp. 366–374. ACM (2007)

20. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR
Cryptology ePrint Archive 2012, 144 (2012)

21. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-40041-4 5

22. Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K.E., Naehrig, M., Wernsing, J.:
CryptoNets: applying neural networks to encrypted data with high throughput and
accuracy. In: Proceedings of the 33nd InternationalConference onMachine Learning,
ICML 2016, New York City, NY, USA, 19–24 June 2016, pp. 201–210 (2016)

23. Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K.E., Naehrig, M., Wernsing,
J.: CryptoNets: applying neural networks to encrypted data with high throughput
and accuracy. In: ICML 2016. JMLR Workshop and Conference Proceedings, vol.
48, pp. 201–210. JMLR.org (2016)

24. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR 2016, pp. 770–778. IEEE Computer Society (2016)

25. Jiang, X., Kim, M., Lauter, K.E., Song, Y.: Secure outsourced matrix computation
and application to neural networks. In: Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2018, Toronto, ON,
Canada, 15–19 October 2018, pp. 1209–1222. ACM (2018)

26. King, D.E.: Dlib-ml: a machine learning toolkit. J. Mach. Learn. Res. 10, 1755–
1758 (2009)

27. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. In: Proceedings of the IEEE, pp. 2278–2324 (1998)

28. Lecun, Y., Cortes, C., Burges, C.J.: The MNIST database of handwritten digits.
http://yann.lecun.com/exdb/mnist/

29. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

30. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. IJCV
115(3), 211–252 (2015)

31. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

32. Wagh, S., Gupta, D., Chandran, N.: SecureNN: efficient and private neural network
training. Cryptology ePrint Archive, Report 2018/442 (2018). https://eprint.iacr.
org/2018/442

https://doi.org/10.1007/978-3-662-53887-6_1
https://eprint.iacr.org/2018/421
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-642-40041-4_5
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1007/978-3-642-13190-5_1
https://eprint.iacr.org/2018/442
https://eprint.iacr.org/2018/442

	Simulating Homomorphic Evaluation of Deep Learning Predictions
	1 Introduction
	2 Homomorphic RLWE Encryption Schemes and Noise Propagation
	2.1 HEAAN and TFHE Through the Chimera Framework
	2.2 Noise Models for Homomorphic Operations

	3 Evaluation of Nonlinear Functions in Neural Networks
	3.1 Non-linear Functions in TFHE
	3.2 Non-linear Functions in HEAAN

	4 Predictions for Deep Learning
	4.1 Robustness Against the FHE Error Models
	4.2 Experiments
	4.3 Conclusion/Discussion

	References

