
Shlomi Dolev
Danny Hendler
Sachin Lodha
Moti Yung (Eds.)

 123

LN
CS

 1
15

27

Third International Symposium, CSCML 2019
Beer-Sheva, Israel, June 27–28, 2019
Proceedings

Cyber Security
Cryptography and
Machine Learning

Lecture Notes in Computer Science 11527

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board Members

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Shlomi Dolev • Danny Hendler •

Sachin Lodha • Moti Yung (Eds.)

Cyber Security
Cryptography and
Machine Learning
Third International Symposium, CSCML 2019
Beer-Sheva, Israel, June 27–28, 2019
Proceedings

123

Editors
Shlomi Dolev
Ben-Gurion University of the Negev
Beer-Sheva, Israel

Danny Hendler
Ben-Gurion University of the Negev
Beer-Sheva, Israel

Sachin Lodha
Tata Consultancy Services
Mumbai, India

Moti Yung
Columbia University and Google
New York, NY, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-20950-6 ISBN 978-3-030-20951-3 (eBook)
https://doi.org/10.1007/978-3-030-20951-3

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-20951-3

Preface

CSCML, the International Symposium on Cyber Security Cryptography and Machine
Learning, is an international forum for researchers, entrepreneurs, and practitioners in
the theory, design, analysis, implementation, or application of cyber security,
cryptography, and machine learning systems and networks, and, in particular, of
conceptually innovative topics in these research areas.

Information technology has become crucial to our everyday lives, an indispensable
infrastructure of our society and therefore a target for attacks by malicious parties.
Cyber security is one of the most important fields of research today because of these
developments. Two of the (sometimes competing) fields of research, cryptography and
machine learning, are the most important building blocks of cyber security.

Topics of interest for CSCML include: cyber security design; secure software
development methodologies; formal methods, semantics, and verification of secure
systems; fault tolerance, reliability, availability of distributed secure systems;
game-theoretic approaches to secure computing; automatic recovery self-stabilizing,
and self-organizing systems; communication, authentication and identification security;
cyber security for mobile and Internet of Things; cyber security of corporations;
security and privacy for cloud, edge, and fog computing; cryptocurrency; Blockchain;
cryptography; cryptographic implementation analysis and construction; secure
multi-party computation; privacy-enhancing technologies and anonymity;
post-quantum cryptography and security; machine learning and Big Data; anomaly
detection and malware identification; business intelligence and security; digital
forensics, digital rights management; trust management and reputation systems; and
information retrieval, risk analysis, DoS.

The Third CSCML took place during June 27–28, 2019, in Beer-Sheva, Israel. This
year the conference was organized in cooperation with the International Association for
Cryptologic Research (IACR) and selected papers will appear in a dedicated special
issue in the journal Information and Computation.

This volume contains 18 contributions selected by the Program Committee and ten
brief announcements. All submitted papers were read and evaluated by Program
Committee members, assisted by external reviewers. We are grateful to the EasyChair
system in assisting the reviewing process.

The support of Ben-Gurion University of the Negev (BGU), in particular the
BGU-NHSA, BGU Lynne and William Frankel Center for Computer Science, the
BGU Cyber Security Research Center, Oracle, ATSMA, the Department of Computer
Science, Tata Consultancy Services, IBM and BaseCamp, is also gratefully
acknowledged.

March 2019 Danny Hendler
Moti Yung

Shlomi Dolev
Sachin Lodha

Organization

CSCML, the International Symposium on Cyber Security Cryptography and Machine
Learning, is an international forum for researchers, entrepreneurs, and practitioners in
the theory, design, analysis, implementation, or application of cyber security,
cryptography, and machine learning systems and networks, and, in particular, of
conceptually innovative topics in the scope.

Founding Steering Committee

Orna Berry DELLEMC, Israel
Shlomi Dolev (Chair) Ben-Gurion University, Israel
Yuval Elovici Ben-Gurion University, Israel
Bezalel Gavish Southern Methodist University, USA
Ehud Gudes Ben-Gurion University, Israel
Jonathan Katz University of Maryland, USA
Rafail Ostrovsky UCLA, USA
Jeffrey D. Ullman Stanford University, USA
Kalyan Veeramachaneni MIT, USA
Yaron Wolfsthal IBM, Israel
Moti Yung Columbia University and Google, USA

Organizing Committee

General Chairs

Shlomi Dolev Ben-Gurion University of the Negev
Sachin Lodha Tata Consultancy Services

Program Chairs

Danny Hendler Ben-Gurion University of the Negev
Moti Yung Columbia University and Google

Organizing Chairs

Timi Budai Ben-Gurion University of the Negev
Simcha Mahler Ben-Gurion University of the Negev

Program Committee

Ittai Abraham VMware., Israel
Adi Akavia Tel Aviv Yaffo Academic College, Israel
Amir Averbuch Tel Aviv University, Israel
Silvia Bonomi Sapienza University of Rome, Italy

Anat Bremler-Barr IDC Herzliya, Israel
Emilio Coppa PSapienza University of Rome, Italy
Antonella Del Pozzo CEA List, France
Itai Dinur Ben-Gurion University, Israel
Orr Dunkelman University of Haifa, Israel
Karim El Defrawy SRI International, USA
Bezalel Gavish Southern Methodist University, USA
Niv Gilboa Ben-Gurion University, Israel
Ehud Gudes Ben-Gurion University, Israel
Shay Gueron University of Haifa, Israel
Danny Hendler (Co-chair) Ben-Gurion University, Israel
Stratis Ioannidis Northeastern University, USA
Gene Itkis MIT Lincoln Laboratory, USA
Bhavana Kanukurthi IISc, India
Ben Kreuter Google, USA
Mark Last Ben-Gurion University, Israel
Ximing Li South China Agricultural University, China
Yin Li Fudan University, China
Avi Mendelson Technion, Israel
Aikaterini Mitrokosta Chalmers University of Technology, Sweden
Kobbi Nissim Georgetown University, USA and Ben-Gurion

University, Israel
Yossi Oren Ben-Gurion University, Israel
Chandrasekaran

Pandurangan
IIT Madras, India

Haim Permuter Ben-Gurion University, Israel
Giuseppe Persiano Università degli Studi di Salerno, Italy
Benny Pinkas Bar Ilan University, Israel
Christian Riess FAU, Germany
Or Sattath Ben-Gurion University, Israel
Elad M. Schiller Chalmers University of Technology, Sweden
Galina Schwartz UC Berkeley, USA
Gil Segev Hebrew University, Israel
Paul Spirakis University of Liverpool, UK and University Patras,

Greece
Kannan Srinathan IIIT, India
Uri Stemmer Ben-Gurion University, Israel
Ari Trachtenberg Boston University, USA
Philippas Tsigas Chalmers University of Technology, Sweden
Doug Tygar UC Berkeley, USA
Kalyan Veeramachaneni MIT LIDS, USA
Colin Wilmott Nottingham Trent University, UK
Rebecca Wright Rutgers University, USA
Moti Yung (Co-chair) Columbia University and Google, USA

viii Organization

Additional Reviewers

Luigi Catuogno
Eran Lambooij
Calvin Newport
Moshe Shechner
Nadav Voloch
Yu Zhang

Sponsors

Organization ix

x Organization

Contents

Jamming Strategies in Covert Communication . 1
Ori Shmuel, Asaf Cohen, and Omer Gurewitz

Linear Cryptanalysis Reduced Round of Piccolo-80. 16
Tomer Ashur, Orr Dunkelman, and Nael Masalha

Continuous Key Agreement with Reduced Bandwidth 33
Nir Drucker and Shay Gueron

Covert Channel Cyber-Attack over Video Stream DCT Payload
(Copyright Protection Algorithm for Video and Audio Streams) 47

Yoram Segal and Ofer Hadar

Effects of Weather on Drone to IoT QKD . 67
Shlomi Arnon and Judy Kupferman

Malware Classification Using Image Representation 75
Ajay Singh, Anand Handa, Nitesh Kumar, and Sandeep Kumar Shukla

MLDStore: DNNs as Similitude Models for Sharing Big Data
(Brief Announcement) . 93

Philip Derbeko, Shlomi Dolev, and Ehud Gudes

Cyber Attack Localization in Smart Grids by Graph Modulation
(Brief Announcement) . 97

Elisabeth Drayer and Tirza Routtenberg

Beyond Replications in Blockchain: On/Off-Blockchain IDA for Storage
Efficiency and Confidentiality (Brief Announcement) 101

Shlomi Dolev and Yuval Poleg

Self-stabilizing Byzantine Consensus for Blockchain
(Brief Announcement) . 106

Alexander Binun, Shlomi Dolev, and Tal Hadad

The Advantage of Truncated Permutations . 111
Shoni Gilboa and Shay Gueron

Reconstructing C2 Servers for Remote Access Trojans
with Symbolic Execution . 121

Luca Borzacchiello, Emilio Coppa, Daniele Cono D’Elia,
and Camil Demetrescu

Generating a Random String with a Fixed Weight. 141
Nir Drucker and Shay Gueron

An Access Control Model for Data Security in Online Social Networks
Based on Role and User Credibility. 156

Nadav Voloch, Priel Levy, Mor Elmakies, and Ehud Gudes

Enhancing Image Steganalysis with Adversarially Generated Examples 169
Kevin Alex Zhang and Kalyan Veeramachaneni

Controllable Privacy Preserving Blockchain: FiatChain: Distributed Privacy
Preserving Cryptocurrency with Law Enforcement Capabilities 178

Rami Puzis, Guy Barshap, Polina Zilberman, and Oded Leiba

A Relay Attack on a Tamper Detection System (Brief Announcement) 198
Itai Dinur and Natan Elul

Amended Cross-Entropy Cost: An Approach for Encouraging Diversity
in Classification Ensemble (Brief Announcement) . 202

Ron Shoham and Haim Permuter

Governance and Regulations Implications on Machine Learning
(Brief Announcement) . 208

Sima Nadler, Orna Raz, and Marcel Zalmanovici

Simulating Homomorphic Evaluation of Deep Learning Predictions. 212
Christina Boura, Nicolas Gama, Mariya Georgieva,
and Dimitar Jetchev

Everything Is in the Name – A URL Based Approach
for Phishing Detection . 231

Harshal Tupsamudre, Ajeet Kumar Singh, and Sachin Lodha

Network Cloudification (Extended Abstract) . 249
Yefim Dinitz, Shlomi Dolev, Sergey Frenkel, Alex Binun,
and Daniel Khankin

New Goal Recognition Algorithms Using Attack Graphs 260
Reuth Mirsky, Ya’ar Shalom, Ahmad Majadly, Kobi Gal, Rami Puzis,
and Ariel Felner

PeerClear: Peer-to-Peer Bot-net Detection. 279
Amit Kumar, Nitesh Kumar, Anand Handa, and Sandeep Kumar Shukla

Rethinking Identification Protocols from the Point of View of the GDPR. . . . 296
Mirosław Kutyłowski, Łukasz Krzywiecki, and Xiaofeng Chen

xii Contents

Temporal Pattern-Based Malicious Activity Detection in SCADA Systems
(Brief Announcement) . 316

Meir Kalech, Amit Shlomo, and Robert Moskovich

Anonymous Deniable Identification in Ephemeral Setup
and Leakage Scenarios (Brief Announcement) . 320

Łukasz Krzywiecki, Mirosław Kutyłowski, Jakub Pezda,
and Marcin Słowik

Randomized and Set-System Based Collusion Resistant Key Predistribution
Schemes (Brief Announcement) . 324

Vasiliki Liagkou, Paul Spirakis, and Yannis C. Stamatiou

Author Index . 329

Contents xiii

Jamming Strategies in Covert
Communication

Ori Shmuel(B), Asaf Cohen, and Omer Gurewitz

Ben Gurion University of the Negev, Beersheba, Israel
{shmuelor,coasaf,gurewitz}@bgu.ac.il

Abstract. Consider the communication problem where Alice tries to
send a message towards Bob while trying to conceal the presence of
communication from a watchful adversary, Willie, which tries to deter-
mine if a transmission took place or not. Under the basic settings, where
all variables are known to Willie, the total amount of information bits
that can be transmitted covertly and reliably in n independent channel
uses is O(

√
n) (a.k.a the square-root law). Thus, the resulting rate is

O(
√

n/n) which goes to zero as n → ∞. However, when a jammer is
present and assists Alice by creating uncertainty in Willie’s decoder, this
transmission may have a strictly positive rate.

In this work, we consider the case where the jammer is equipped
with multiple antennas. We analyze this case and present transmission
strategies for the jammer in order to maximize his assistance to Alice, in
terms of maximizing a ratio between Willie’s and Bob’s noise variances.
Specifically, the analysis is performed for the cases were Bob is equipped
with multiple antennas and employs a linear receiver. Our results indi-
cate that the jammer’s transmission strategy is to perform beamforming
towards a single direction which depends on the channel coefficients of
both the legitimate receiver and the adversary. However, in case Bob is
able to cancel the jammer’s interference completely, then the jammer’s
strategy becomes independent and may be set according to the channel
coefficients of the adversary alone.

Keywords: Covert communication · MIMO · Jamming

1 Introduction

The demands for privacy and security of information have become a dominant
factor in the design of many communication systems. These demands can be cat-
egorized into two broad requirements. The first is preventing an adversary from
determining the content of the transmission (or changing it) while the other is
preventing the detection of the transmission in the first place (up to a certain
probability of detection) which is more restrictive in nature. In this work, we
concentrate on the latter, which is also known as Low Probability of Detec-
tion (LPD) or covert communication. In covert communication, Alice wishes to
communicate with Bob while keeping the transmission hidden from a watchful
c© Springer Nature Switzerland AG 2019
S. Dolev et al. (Eds.): CSCML 2019, LNCS 11527, pp. 1–15, 2019.
https://doi.org/10.1007/978-3-030-20951-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20951-3_1&domain=pdf
https://doi.org/10.1007/978-3-030-20951-3_1

2 O. Shmuel et al.

adversary, Willie. In order to do so, Alice must construct a transmission scheme
which will enable her to remain within the margin of uncertainty at Willie’s
detector. In fact, for Additive White Gaussian Noise (AWGN) channels, it was
shown in [1] that Alice can transmit O(

√
n) bits in n channel uses (a.k.a the

square root law) due to the noise Willie endures. This problem was extended to
other types of communication channels, e.g., binary symmetric, discrete memo-
ryless and multiple access channels in [2–5], respectively. These works presented
similar results for the total transmission rate that can be achieved i.e., O(

√
n/n),

which goes to zero as n → ∞.
The concept of hiding information from possible detection relates to steganog-

raphy which deals with hiding information in legitimate objects such as digital
images, audio or text [6]. Specifically, by using the statistical properties of the
legitimate objects, specific symbols may be modified in order to hide a stegano-
graphic message. In fact, under certain assumptions, similar behaviour for the
total amount of covert information that can be concealed (or transmitted in our
case) from Willie can be described also by the square root law in steganogra-
phy [6, Chap. 13]. The difference lies in the fact that in steganography one uses
a legitimate signal to hide the information whereas in covert communication
one uses the channel noise to hide the information. Note that in covert com-
munication the presence of information is concealed in the noise and therefore
unknown as opposed to using noise to hide a massage but with the knowledge
of its existence (e.g., [7,8]).

When Willie suffers from additional uncertainty in his received noise power,
besides his own noise variance, it was shown in subsequent works that O(n)
covert and reliable bits can be transmitted in n channel uses, namely, a strictly
positive rate [9–11]. The uncertainty may be a result of inaccurate knowledge of
Willie’s own noise or a result of an active node which causes confusion at Willie’s
side (e.g., a jammer that varies his noise power randomly).

The limits of covert communication in a multiple-antenna setting were first
established in [12]. Therein, it was shown that in case Alice is equipped with
multiple antennas, her best strategy is to perform beamforming towards Bob,
which results with a constant gain to the square root law (i.e., the scaling law
remains the same) by the number of independent paths between her and Bob.
However, the case where such a communication channel includes a jammer which
is equipped with multiple antennas is still open and remains unclear under var-
ious settings. For example, the knowledge the jammer possesses on the channel
coefficients, and his preference on which user to assist, may affect his strategy,
and the resulting rates, significantly. Thus, in a previous work1, we analyzed the
effect of multiple antennas at the jammer on covert communication and obtained
the optimal transmission strategy for the jammer while helping Alice and Bob
for the case which Bob is equipped with a single antenna.

In this work, we extend the settings and assume that Bob is equipped with
multiple antennas as well. Accordingly, we analyze the system and try to deter-

1 The mentioned work is currently under peer review for the ISIT 2019 conference at
the time of submission of this paper.

Jamming Strategies in Covert Communication 3

mine whether the fact that Bob possess multiple antennas affect the jammer’s
transmission strategy while helping Alice and Bob. We further assume that Bob
uses a linear receiver, with contrast to the existing literature on covert com-
munication which assumes that Bob performs ML decoding. This assumption
addresses the nowadays practical demands for receiver complexity; moreover, it
can provide interesting insights on the transmission and detection strategies of
the jammer and Bob.

This work contribution is built on previous results which appear in this paper
as well. Specifically, we provide a criterion for Alice’s transmission power as a
function of the jammer assistance transmission strategy. This criterion promises
that the system is covert; that is, Willie has nothing better to do besides guessing
if communication occurred or not. We then describe Bob’s received SNR for the
case of a single and multiple antennas as a function of this strategy and trans-
mission powers. Then, given that the system is covert, we examine the strategies
of the jammer and Bob which maximize both Alice’s allowed transmission power
and Bob’s received SNR. The resulting optimization problem for the case which
Bob is equipped with a single antenna has a closed-form solution which is given
in this paper. However, when Bob has multiple antennas the optimization prob-
lem of Bob and the jammer results in complicated global optimization. We thus
relax it and provide sub optimal transmitting and detection strategies for the
jammer and Bob, respectively.

2 System Model

We consider a system in which Alice (“a” in the channel coefficients notation)
wishes to communicate covertly with Bob (“b”) while Willie’s (“w”) awareness
of this communication remains uncertain. In addition, we assume that there is
a third participant, the jammer (“j”), which may assist either Alice and Bob
or Willie, depending on the side he takes and the knowledge he possesses. This
model is depicted in Fig. 1. In our settings, we assume that Alice and Willie are
equipped with a single antenna, while Bob and the jammer are equipped with
M and N antennas, respectively. Further more, as mentioned in the introduc-
tion, we assume that Bob employs a linear receiver. The channel between all
participates is subject to block fading and AWGN. In this setting, Willie tries to
detect whether transmission by Alice was made or not, by performing a statis-
tical hypothesis test on his received signal. The null hypothesis H0 means that
no transmission was made by Alice, while the hypothesis H1 suggests otherwise.
Throughout, lower case letters represent random variables, bold lower case rep-
resent random vectors, and bold upper case represent random matrices. Thus,
under each of the hypotheses, the received signals at Bob and Willie in the i− th
channel use is

H1 : yb[i] = x[i]hab + Hjbv[i] + nb[i]

yw[i] = x[i]haw + v[i]T hjw + nw[i]
H0 : yb[i] = Hjbv[i] + nb[i]

yw[i] = v[i]T hjw + nw[i],

(1)

4 O. Shmuel et al.

Fig. 1. A Covert communication model, where an independent jammer assists the
communication between Alice and Bob by transmitting AN.

where x[i] is the complex symbol transmitted by Alice in the i − th channel use,
with average power Pa (i.e., E[|x[i]|2] = Pa) and v[i] = (v1[i], v2[i], ..., vN [i])T is
the vector transmitted by the jammer at the i−th channel use, with a covariance
matrix ΣΣΣ = E[v[i]v[i]†] and total power Pj .

The channel coefficients between Alice, Willie and Bob are haw ∈ C and
hab ∈ C

M , respectively. hjw ∈ C
N and Hjb ∈ C

M×N are the channel coefficients
from the jammer to Willie and Bod, respectively. These channel coefficients are
originated from a zero mean complex Gaussian distribution with unit variance
and are considered to be fixed for the period of n channel uses (a slot). This
is a common channel model for slowly varying fading channels (block fading
channels). We assume that Bob possesses the knowledge of hab and Hjb and
Willie possesses the knowledge of haw and hjw. In addition, both Bob and Willie
endure complex additive Gaussian noise denoted by nb ∼ CN (0, σ2

b IM) and
nw ∼ CN (0, σ2

w). The above assumptions concerning the channel coefficients,
follow similar assumptions in the covert communication literature.

This paper focuses on the achieving a positive covert rate. Thus, we assume
that the jammer assists Alice to create uncertainty at Willie’s decoder continu-
ously, regardless of whether or not Alice transmits (Similarly to [11]). We note
that the case where the jammer assists Willie is out of this paper’s scope, and
may be considered as future work. The jammer’s assistance comes in the form
of Artificial Noise (AN) with a randomly varying total power Pj while using
his multiple antennas. This is due to the assumption that the jammer does not
coordinate with Alice. In case the jammer and Alice are coordinating, the jam-
mer can lower his noise when Alice is transmitting and increase it back up when
she is not. This keeps Willie unaware of the changes in the noise power level
while improving Bob reception when a transmission takes place. As this is not
the case here, the jammer must create uncertainty with respect to the noise
power at Willie’s decoder so that the transmission power by Alice can be con-
cealed in the AN [10,11,13]. Hence, the transmitted vector by the jammer is
v[i] ∼ CN (0,ΣΣΣ) where the total power Pj is a r.v. which is allocated according

Jamming Strategies in Covert Communication 5

to ΣΣΣ. Specifically, following similar assumptions as in [11,13], we assume that Pj

is a uniform r.v. on [0, Pmax] with the probability density function (pdf) given
by,

fPj
(x) =

{
1

Pmax
if 0 ≤ x ≤ Pmax

0 otherwise ,
(2)

and it’s redrawn for every n channel uses independently. This way, even if Willie
correctly estimates the power on the channel during n channel uses, he has no
way of knowing whether it is the result of solely the jammer, or does it include
Alices’s transmission. The next block has independent drawings. We also note
that in case Willie had not known the channel coefficients, the jammer could have
used a noise distribution with constant variance, since the uncertainty would
arise from the random channel coefficients [11].

The jammer allocates its power Pj in each slot according to the covariance
matrix ΣΣΣ. This allocation is constructed in a way that assists Alice as much
as possible. That is, the jammer may direct his AN towards certain directions
with different powers. The magnitude of this division is represented by the vector
ξξξ = (ξ1, ..., ξN)T such that

∑N
l=1 ξl = 1. That is, Pjξξξ is the singular values vector

of the covariance matrix ΣΣΣ, where the corresponding eigenvectors represent the
directions for this power allocation. Let us also denote X to be a diagonal matrix
with ξξξ as its elements.

Similar to previous works on covert communication [1,10,11,13], we assume
that Alice and Bob share a codebook which is not revealed to Willie; however,
Willie knows its statistics. This codebook is generated by independently drawing
symbols from a zero-mean complex Gaussian distribution with variance Pa and
it is assumed to be used only once. When Alice wishes to transmit, she picks a
codeword and transmits its n symbols as the sequence {x[i]}n

i=1.

2.1 Covert Criteria

Upon receiving the vector yw, Willie performs hypothesis testing in order to
determine if transmission by Alice took place or not. That is, he tries to dis-
tinguish between the two hypothesis H0 and H1. Accordingly, Willie seeks to
minimize his probability of error which is a function of the probability of Miss
Detection (PMD) in case a transmission occurred and the probability of False
Alarm (PFA) in case a transmission did not occurred. That is,

Pe = pPMD + (1 − p)PFA, (3)

where p is the a priori probability that Alice transmitted a message (H1). Accord-
ing to [11], Pe ≥ min{p, 1−p}(PMD +PFA). Thus, we define the following crite-
ria for covert communication, which eventually will define Alice’s transmission
power, as

PMD + PFA ≥ 1 − ε, (4)

where ε > 0 is the covertness requirement ([1]). That is, as long as (4) hold
for a given ε, the transmission is considered covert. Note also that this criterion

6 O. Shmuel et al.

is reasonable for the following reason. Willie can easily choose a strategy with
PFA = 0 and PMD = 1, by simply declaring H0 at all times, regardless of his
channel measurements. Analogously, PFA = 1 and PMD = 0 are achieved by
always declaring H1. Requiring PMD + PFA ≥ 1 − ε is therefore equivalent to
forcing Willie to only time-share between these two trivial strategies, hence if
PMD + PFA ≥ 1 − ε, Willie is as ignorant as an adversary without any data at
all.

The optimal test for Willie to distinguish between H0 and H1 and minimize
its probability of error is to apply the Neyman-Pearson criterion, resulting with
the likelihood ratio test: ∏n

i=1 P1∏n
i=1 P0

H0

<
>
H1

1 − p

p
, (5)

where P0 and P1 are the probability distributions of Willie’s observation in a
single channel use under the hypotheses H0 and H1, respectively. Note that we
may write the joint distribution as a multiplicative of the marginal distribu-
tions since the channel uses are i.i.d. In particular, under H0 and given Pj , P0

is distributed as CN (0, σ0
w), and under H1 and given Pj , P1 is distributed as

CN (0, σ1
w) where,

σ0
w = σ2

w + h†
jwΣΣΣhjw,

σ1
w = σ2

w + h†
jwΣΣΣhjw + Pah2

aw.
(6)

The terms in the last line above reflect the self noise power of Willie, the received
AN power and the transmission power of Alice, respectively. Eventually, the
optimal ratio test Willie preforms is an energy test on the average received power.
Specifically, the average received power, P rav

w , is compared with a threshold η,

P rav
w � 1

n

n∑
i=1

|yw[i]|2

H0

<
>
H1

η. (7)

This was shown in [11] by using Fisher-Neyman factorization and likelihood ratio
ordering techniques. One can realize that, given Pj , the average received power

P rav
w is a Gamma r.v. with parameters k = n and θ = σi

w

n for i = 0, 1, i.e.

P rav
w ∼ Γ (n,

σi
w

n).
In this work, we wish to check the effect of multiple antennas and CSI at the

jammer on covert communication. Therefore, in the next sections, we describe
this effect on Alice’s transmission power, which is linked to Willies ability to
detect transmission, and on Bob received SNR and the jammer’s transmission
strategy. Specifically, we provide a criterion for a strictly positive covert rate,
discuss the received SNR at Bob while assuming M = 1 and M > 1 antennas.
Finally, we present the transmission strategies the jammer takes in order to assist
Alice as much as possible.

Jamming Strategies in Covert Communication 7

3 Covert Criteria Compliance

In covert communication, Alice wishes to maximize the ambiguity of Willie con-
cerning her transmission. That is, she would like to make PMD +PFA as close as
possible to 1. In other words, Alice would like to set her power Pa appropriately
(codebook construction) such that for a fixed ε > 0 the criteria PMD+PFA ≥ 1−ε
holds.

In the following lemma we present a positive achievable rate for Alice code-
book such that the system is considered covert ((4) holds) under our model.

Lemma 1. Under the model of block fading AWGN model, where there is a jam-
mer with N antennas who transmit AN with covariance matrix Σ = PjVXV†,
as long as Alice transmits with power

Pa =
εPmax

4h2
aw

h†
jwVXV†hjw, (8)

the system is covert and Alice can transmit with positive rate, i.e., (4) applies
and Willie is unable to decided if transmission occurred.

Proof. As mentioned above, Willie compares P rav
w to a threshold η; however, this

threshold depends on the distribution of Pj and thus may be optimized by Willie.
The following analysis will show that for any optimal threshold τ that Willie set
for himself, there exist a construction by Alice such that (4) holds. Specifically,
we bound each of the probabilities PMD and PFA for a given value of Pj and
average it on all possible values of Pj resulting with the necessary conditions for
covertness. This proof’s steps are constructed similarly to arguments presented
in [11] which were modified to suit the jammer’s antennas. Let us begin with the
false alarm probability PFA given Pj , i.e.,

PFA(Pj) = Pr(P rav
w ≥ τ |H0, Pj). (9)

Recall that P rav
w ∼ Gamma(n,

σ0
w

n), thus, the expected value of P rav
w is σ0

w.
Accordingly, we may describe the probability of P rav

w to exist around its expected
value. Let ε > 0 be a fixed small constant. Then, there exist δ0(ε) > 0 such that

Pr(σ0
w − δ0 ≤ P rav

w ≤ σ0
w + δ0) > 1 − ε

2
,

Since
Pr(P rav

w ≥ σ0
w − δ) ≥ Pr(P rav

w ≥ σ0
w − δ0)

> Pr(σ0
w − δ0 ≤ P rav

w ≤ σ0
w + δ0),

for some δ(ε) ≥ δ0(ε), then for any τ < σ0
w − δ(ε) we have

Pr(P rav
w ≥ τ |H0, Pj) > 1 − ε

2
. (10)

8 O. Shmuel et al.

Similarly for PMD given Pj , i.e.,

PMD(Pj) = Pr(P rav
w ≤ τ |H1, Pj), (11)

P rav
w ∼ Gamma(n,

σ1
w

n) with expected value equal to σ1
w we have

Pr(σ1
w − δ1 ≤ P rav

w ≤ σ1
w + δ1) > 1 − ε

2
.

for some ε > 0 and δ1(ε) > 0. Again, since

Pr(P rav
w ≤ σ1

w + δ) ≥ Pr(P rav
w ≤ σ1

w + δ1)

> Pr(σ0
w − δ1 ≤ P rav

w ≤ σ0
w + δ1),

for some δ(ε) ≥ δ1(ε), then for any τ > σ1
w + δ(ε) we have

Pr(P rav
w ≤ τ |H1, Pj) > 1 − ε

2
. (12)

Let us define the set of intervals P = {Pj : σ0
w − δ < τ < σ1

w + δ} and let
δ(ε) = max{δ0(ε), δ1(ε)}. Thus, for all Pj /∈ P we have,

PMD(Pj) + PFA(Pj) ≥ 1 − ε

2
.

We may compute Pr(P) by rewiriting (6) while using the SVD of ΣΣΣ in order to
express Pj as follows,

σ0
w = σ2

w + Pjh
†
jwVXV†hjw,

σ1
w = σ2

w + Pjh
†
jwVXV†hjw + Pah2

aw.
(13)

Since Pj is a uniform r.v.

Pr(P) = Pr

(
τ − σ2

w − Pah2
aw − δ

h†
jwVXV†hjw

≤ Pj ≤ τ − σ2
w + δ

h†
jwVXV†hjw

)

=
Pah2

aw + 2δ

Pmaxh
†
jwVXV†hjw

.

Therefore, if we set Pa = εPmax
4h2

aw
h†

jwVXV†hjw and δ(ε) = εPmax
8

h†
jwVXV†hjw, we are

left with
Pr(P) =

ε

2
.

Considering all the above in order we have,

PMD + PFA = EPj [PMD(Pj) + PFA(Pj)]

≥ EPj [PMD(Pj) + PFA(Pj)|Pc]Pr(Pc)

> 1 − ε.

(14)

The above shows that as long as Alice transmits with power Pa = εPmax
4h2

aw
h†

jwVXV†hjw

the system is covert. The rate of Alice can be obtained by using Pa in Bob’s SNR which
can be lower bounded by a constant providing a positive rate.

Jamming Strategies in Covert Communication 9

For the case where the jammer has no knowledge on the channel coefficients, the
best he can do is to distribute his power equally and independently between his
antennas, i.e., Σ = (Pj/N)I. Accordingly, we have the following corollary,

Corollary 1. In case the jammer has no CSI, and he allocates the power equally
between his antennas, i.e., ξl = 1

N , then,

Pa =
εPmax‖hjw‖2

4Nh2
aw

. (15)

4 Detection at Bob

In Sect. 3, we constructed a criterion for Alice’s transmission power (Pa) such
that the system is covert. Accordingly, since the power is positive and does not
go to zero with n, there exists a rate R for which Bob can decode successfully
with a probability of error that goes to zero. This rate can be attained by using
capacity achieving codes for AWGN channels, and is eventually a function of
Bob’s SNR. In what follows we describe Bob’s received SNR; first for the case
which Bob has a single antenna and second for the case of multiple antennas.

4.1 Bob’s Antennas M = 1

We first describe Bob’s SNR for the simple case where he posses a single antenna
(i.e., M = 1). This will help us focus only on the jammer’s strategy. Thus, in
case Alice transmitted, the received SNR of Bob, given the CSI, hab, and Hjb

which is, in this case, a single column matrix denoted as hjb, is given as follows:

SNR1
b =

Pah2
ab

h†
jbΣΣΣhjb + σ2

b

=
Pah2

ab

Pjh
†
jbVXV†hjb + σ2

b

. (16)

We will use (16) as our target function for the maximization problem in
Sect. 5. Note that this function depends also on the covariance matrix of the AN
signal (i.e., the jammer strategy) which we will optimize also in the maximiza-
tion.

4.2 Bob’s Antennas M > 1

When Bob possess multiple antennas (i.e., M > 1), he can take an active part
in the communication. For example, by steering his antennas away form the
jammer. In fact, even if Bob does not have the channel coefficients from the
jammer, he can improve his SNR using a bigger antenna array. As mentioned
in Sect. 2, we assume Bob employs a linear receiver. That is, Bob preforms a
linear operation on the received signal which eventually increases his received
SNR. In other words, Bob projects the received vector onto a subspace which
on one hand diminishes the effect of the AN from the jammer and on the other

10 O. Shmuel et al.

intensifies Alice’s transmission. Specifically, Bob performs the following on the
received signal

cT yb[i] = x[i]cT hab + cT Hjbv[i] + cT nb[i], (17)

where c is the linear filter. Accordingly, the received SNR of Bob for a general
linear filter is

Pa(c†hab)2

c†
(
H†

jbΣΣΣHjb + σ2
b I

)
c
. (18)

We will use (18) when we consider the global maximization for the SNR for
the case of multiple antennas at Bob also in Sect. 5.

5 The Jammer’s Strategies

If the jammer possess knowledge of the channel state, he may use it to assist
either Alice and Bob or Willie. The jammer assistance, when using his CSI, is
reflected by the covariance matrix ΣΣΣ, according to the player he wishes to assist.
This power allocation affects the transmission power Alice can use, the received
SNR’s side at Bob and Willie’s ability to detect the communication.

In this work, we assume the jammer assists Alice. Hence, the jammer should
construct his covariance matrix ΣΣΣ in a way that enables Alice to increase her
transmission power while still being covert, while reducing the AN at Bob in
order to have a higher achievable rate. Recall that ΣΣΣ = PjVXV†. Thus, the
jammer essentially needs to design the diagonal matrix X and the unitary matrix
V appropriately. In what follows, we describe the jammer’s strategies for the case
which Bob posses a single antenna and for the case of multiple antennas.

5.1 The Case Where M = 1

Following the expressions for Alice’s power to ensure covertness, and Bob’s SNR
(Eqs. (8) and (16), respectively). We may express an optimization problem for
Bob’s SNR by employing (8) in to (16) as follows,

max
V,X

(
εPmax

4h2
aw

h†
jwVXV†hjw

)
h2

ab

Pjh
†
jbVXV†hjb + σ2

b

,

s.t. 0 ≤ ξl ≤ 1 and,
N∑

l=1

ξl = 1.

(19)

Note that VXV† influence on both the enumerator and the denominator dif-
ferently with respect to the vectors hjw and hjb. Note also, since the system is
covert, we are only interested in maximizing Bob’s SNR as it dictates the rate
eventually. The following is our main result.

Jamming Strategies in Covert Communication 11

Theorem 1. The optimal solution for the maximization problem in (23) is the
following power allocation,

ΣΣΣ = Pjv∗v∗†, (20)

where

v∗ =
(hjbh

†
jb + σI)− 1

2 q∗

‖(hjbh
†
jb + σI)− 1

2 q∗‖ (21)

and q∗ is the eigenvector which corresponds to the highest eigenvalue of the
matrix

(hjbh
†
jb + σI)− 1

2 (hjwh†
jw)(hjbh

†
jb + σI)− 1

2 . (22)

Proof. This Proof follows similar steps as in an analytical derivation of the max-
imization problem performed in [14]. We can simplify (19) as follows,

max
V,X

(
εPmax

4h2
aw

h†
jwVXV†hjw

)
h2

ab

Pjh
†
jbVXV†hjb + σ2

b

= C
Pmax

Pj
max
V,X

w†Xw
b†Xb + σ

,

(23)

where C = εh2
ab/4h2

aw, σ = σ2
b

Pj
, w = V†hjw and b = V†hjb. The maximization

function in (23) can be written as

w†Xw
b†Xb + σ

=
∑N

l=1 ξlw
2
l∑N

l=1 ξlb2l + σ
. (24)

Let us assume ξξξ∗ is the optimal power allocation for fixed w and b. We
examine two indices i and j in ξξξ∗ which have power allocation (ξi, ξj) such that
ξi + ξj = Pij . We will show first that either ξi = Pij or ξj = Pij must occur,
hence, eventually, the optimal power allocation is a unit vector (since this is
true for each pair of indices). Then, we will find the corresponding direction
(eigenvector) of the AN power.

The optimization problem on ξξξ can be written as follows,

max
ξξξ

f(ξξξ)

�max
ξξξ

∑N
l=1 ξlw

2
l∑N

l=1 ξlb2l + σ

= max
ξξξ

∑
l �=i,j ξlw

2
l + w2

i ξi + w2
j ξj∑

l �=i,j ξlb2l + b2i ξi + b2jξj + σ

= max
ξξξ

∑
l �=i,j ξlw

2
l + w2

i ξi + w2
j (Pij − ξi)∑

l �=i,j ξlb2l + b2i ξi + b2j (Pij − ξi) + σ

= max
ξξξ

∑
l �=i,j ξlw

2
l + ξi(w2

i − w2
j) + w2

j Pij∑
l �=i,j ξlb2l + ξi(b2i − b2j) + b2jPij + σ

(25)

12 O. Shmuel et al.

The derivative according to ξi shows that the function f(ξξξ) is either monotoni-
cally increasing or monotonically decreasing with ξi depending on the sign of

(w2
i − w2

j)

⎛
⎝∑

l �=i,j

ξlb
2
l + σ + b2jPij

⎞
⎠ − (b2i − b2j)

⎛
⎝∑

l �=i,j

ξlw
2
l + w2

j Pij

⎞
⎠ .

Thus, for every two indices i, j, if f(ξξξ) is monotonically decreasing ξi can
be minimized by setting ξj = Pij . On the other hand if f(ξξξ) is monotonically
increasing ξi can be maximized by setting ξj = 0. Thus, we conclude that the
optimal power allocation is a unit vector, which essentially means that the opti-
mal strategy is to allocate all the power of the jammer towards a single direction.

In order to find this direction, which is the corresponding eigenvector v, we
may write the unit rank ΣΣΣ as ΣΣΣ = Pjvv†. Note that v is constrained to have
a unit norm, i.e., v†v = 1. Returning to the maximization problem in (23), we
have,

C
Pmax

Pj
max
V,X

h†
jwVXV†hjw

h†
jbVXV†hjb + σ

(26)

= C
Pmax

Pj
max

v

h†
jwvv

†hjw

h†
jbvv

†hjb + σv†v
(27)

= C
Pmax

Pj
max

v

v†hjwh
†
jwv

v†hjbh
†
jbv + σv†v

(28)

= C
Pmax

Pj
max

v

v†hjwh
†
jwv

v†(hjbh
†
jb + σI)v

(29)

= C
Pmax

Pj
max

v

v†Wv

v†Bv
(30)

where, W = hjwh
†
jw, and, B = hjbh

†
jb + σI. The above maximiztion problem is

also known as the Rayleigh quotient [15] when we denote q = B1/2v and rewrite the
maximization function above as

v†Wv

v†Bv
=

q†B−1/2WB−1/2q

q†q
. (31)

The optimal solution q∗ for the Rayleigh quotient problem is the eigenvector which
corresponds to the highest eigenvalue of the matrix B−1/2WB−1/2. Accordingly, the
optimal v is thus,

v∗ =
B− 1

2 q∗

‖B− 1
2 q∗‖

=
(hjbh

†
jb + σI)− 1

2 q∗

‖(hjbh
†
jb + σI)− 1

2 q∗‖
. (32)

We conclude that the optimal direction v∗ of the AN depends on both channel
vectors hjw and hjb. Though it is not clear from the expression in (32) for
v∗, what is the specific AN transmission direction, one can gain intuition on
the direction from Eq. (28). Specifically, it is clearly seen that v∗ on one hand

Jamming Strategies in Covert Communication 13

should be close to the direction of Willie, i.e., to maximize the projection on hjw,
while on the other hand it should be orthogonal to Bob as much as possible, i.e.,
minimize the projection on hjb.

5.2 The Case Where M > 1

In this subsection, we present a sub-optimal strategy for the jammer which
follows a specific scheme that Bob employs when using his multiple antennas.
That is, assuming the system is covert (i.e. Alice is transmitting with the power
given in (8)) we present a sub-optimal solution for the optimization problem for
Bob and the jammer strategies which maximize the covert rate.

Recall that Bob possess a linear receiver and thus he preforms a linear func-
tion on the received signal. Accordingly, following the SNR expression in (18),
we may write the global optimization problem for maximizing Bob’s SNR by
employing (8) in to (18) as follows

max
V,X,c

(
εPmax

4h2
aw

h†
jwVXV†hjw

)
(c†hab)2

c†
(
H†

jbΣΣΣHjb + σ2
b I

)
c

s.t. 0 ≤ ξl ≤ 1 and,
N∑

l=1

ξl = 1.

(33)

Note that c should be chosen with ΣΣΣ together; this complicates the optimiza-
tion problem greatly. Therefore, we relax the optimization problem and provide
a suboptimal scheme for Bob and the jammer in the following subsection. The
global solution for the optimization problem is left for future work.

Nulling Towards the Jammer. When Bob posses the complete knowledge of
the channel between him and the jammer his detector may cancel the additional
AN by projecting the received vector onto the null-space of Hjb. Specifically, Bob
projects the received vector yb[i] at the i−th channel use onto a subspace spanned
by a unitary matrix Q which is the null space of Hjb, i.e., Q = nullspace(HT

jb).
So basically, in order to cancel the AN and retrieve the massage from Alice, Bob
multiplies the vector c with yb[i] where c is some row in Q (w.l.o.g let us assume
that it is the first raw of Q, however one can choose the raw which is closest to
the direction of Bob from Alice). That is, we have

cT yb[i] = x[i]cT hab + cT Hjbv[i] + cT nb[i]

= x[i]cT hab + cT nb[i].
(34)

Note that this is a suboptimal strategy for Bob since c was chosen without
considering the channel between Alice and Bob. That is, the choice of c may be
bad after all to the total SNR since c may reduce the inner product with hab at

14 O. Shmuel et al.

the enumerator. Nevertheless, we may write the optimization problem for Bob’s
SNR as follows

max
V,X

(
εPmax

4h2
aw

h†
jwVXV†hjw

)
(cT hab)2

σ2
b‖c‖2

s.t. 0 ≤ ξl ≤ 1 and,
N∑

l=1

ξl = 1.

(35)

Since c depends only on the channel matrix Hjb the solution for the maxi-
mization problem is given in the following theorem.

Theorem 2. The optimal solution for the maximization problem in (35) is the
following power allocation,

ΣΣΣ = Pjv∗v∗†, (36)

where
v∗ =

hjw

‖hjw‖ (37)

Proof. Since Bob cancels the received AN from the jammer, the maximization
problem in (35) reduces to

max
V,X

h†
jwVXV†hjw. (38)

With similar arguments as in the proof of Theorem1, for any V, the power
allocation should be for a single direction only. That is, ξξξ is a unit vector. Thus,
the maximization reduces to

max
v

h†
jwvv†hjw

= max
v

‖h†
jwv‖2.

(39)

The maximum is attained when v is collinear to hjw and since v is constrained
to have a unit norm, i.e., v†v = 1, the optimal direction is

v∗ =
hjw

‖hjw‖ . (40)

Theorem 2 essentially shows that when Bob is able to cancel the AN in any
way, the jammer should transmit his AN towards Willie without degrading the
covert rate between Alice and Bob.

6 Conclusion

This work engages the problem of covert communication under the assumption
that there exists a jammer with multiple antennas which helps Alice and Bob
to communicate covertly and reliably by transmitting AN to confuse Willie and
increase his detector’s uncertainty. Specifically, the detection and transmission

Jamming Strategies in Covert Communication 15

strategies for Bob and the jammer were examined. The transmission strategy
of the jammer is reflected by the covariance matrix of the AN signal, i.e. the
directions and power allocation of the AN transmission. On the other hand, the
detection strategy of Bob is reflected by the linear filter he chooses to perform.
In case Bob has a single antenna the optimal strategy for the jammer is given
whereas for the case Bob is equipped with multiple antennas sub-optimal strate-
gies for Bob and the jammer are given. As future work, we intend to obtain the
optimal strategies when Bob is equipped with multiple antennas.

References

1. Bash, B.A., Goeckel, D., Towsley, D.: Limits of reliable communication with low
probability of detection on AWGN channels. IEEE J. Sel. Areas Commun. 31(9),
1921–1930 (2013)

2. Che, P.H., Bakshi, M., Jaggi, S.: Reliable deniable communication: hiding mes-
sages in noise. In: 2013 IEEE International Symposium on Information Theory
Proceedings (ISIT), pp. 2945–2949. IEEE (2013)

3. Wang, L., Wornell, G.W., Zheng, L.: Fundamental limits of communication with
low probability of detection. IEEE Trans. Inf. Theory 62(6), 3493–3503 (2016)

4. Bloch, M.R.: Covert communication over noisy channels: a resolvability perspec-
tive. IEEE Trans. Inf. Theory 62(5), 2334–2354 (2016)

5. Arumugam, K.S.K., Bloch, M.R.: Keyless covert communication over multiple-
access channels. In: 2016 IEEE International Symposium on Information Theory
(ISIT), pp. 2229–2233. IEEE (2016)

6. Fridrich, J.: Steganography in Digital Media: Principles, Algorithms, and Applica-
tions. Cambridge University Press, Cambridge (2009)

7. Alpern, B., Schneider, F.B.: Key exchange using ‘keyless cryptography’. Inf. Pro-
cess. Lett. 16(2), 79–81 (1983)

8. Yung, M.M.: A secure and useful “keyless cryptosystem”. Inf. Process. Lett. 21(1),
35–38 (1985)

9. Che, P.H., Bakshi, M., Chan, C., Jaggi, S.: Reliable deniable communication with
channel uncertainty. In: 2014 IEEE Information Theory Workshop (ITW), pp. 30–
34. IEEE (2014)

10. Lee, S., Baxley, R.J., Weitnauer, M.A., Walkenhorst, B.: Achieving undetectable
communication. IEEE J. Sel. Top. Signal Process. 9(7), 1195–1205 (2015)

11. Sobers, T.V., Bash, B.A., Guha, S., Towsley, D., Goeckel, D.: Covert communi-
cation in the presence of an uninformed jammer. IEEE Trans. Wirel. Commun.
16(9), 6193–6206 (2017)

12. Abdelaziz, A., Koksal, C.E.: Fundamental limits of covert communication over
MIMO AWGN channel, arXiv preprint arXiv:1705.02303 (2017)

13. Shahzad, K., Zhou, X., Yan, S., Hu, J., Shu, F., Li, J.: Achieving covert wireless
communications using a full-duplex receiver. IEEE Trans. Wirel. Commun. 17(12),
8517–8530 (2018)

14. Shafiee, S., Ulukus, S.: Achievable rates in Gaussian MISO channels with secrecy
constraints. In: IEEE International Symposium on Information Theory, ISIT 2007,
pp. 2466–2470. IEEE (2007)

15. Horn, R.A., Johnson, C.R.: Matrix Analysis, vol. 37. Cambridge University Press,
New York (1985)

http://arxiv.org/abs/1705.02303

Linear Cryptanalysis Reduced Round
of Piccolo-80

Tomer Ashur1,2, Orr Dunkelman3, and Nael Masalha3(B)

1 Department of Electrical Engineering, ESAT/COSIC, KU Leuven, Leuven, Belgium
2 iMinds, Leuven, Belgium

3 Department of Computer Science, University of Haifa, Haifa, Israel
nael.masalha@hotmail.com

Abstract. Piccolo is a 64-bit lightweight block cipher suitable for con-
strained environments such as wireless sensor networks. In this paper
we evaluate the security of Piccolo-80 against linear cryptanalysis, we
present a 6-round linear approximation of Piccolo-80 with probability
1/2 + 2−29.04. We use this approximation to attack 7-round Piccolo-
80 (with whitening keys) with data complexity of 261 known plaintexts
and time complexity of 261. Its extension to an 8-round attack merely
increases the time complexity to 270. This is the best linear attack
against Piccolo-80 and it is also applicable to Piccolo-128 as the differ-
ence between the two variates is only the number of rounds and the key
schedule algorithm. Moreover, we show that the bias in the approxima-
tion of the F-function, in some cases, is related to the MSB of the input.
We utilize this relation to efficiently extract the MSBs of the whitening
keys in the first round.

Keywords: Piccolo · Linear cryptanalysis

1 Introduction

Due to the continuously evolving technology of constrained hardware devices,
such as RFID tags and wireless sensor nodes, there is a huge demand to provide
cryptographic security to such resource-constrained devices. As a result, new
lightweight block ciphers suitable for such devices have been studied and Piccolo
was proposed in CHES 2011 [16].

Piccolo is a 64-bit lightweight block cipher, it supports 80- and 128-bit secret
keys. According to the length of the secret key, they are denoted Piccolo-80 and
Piccolo-128, respectively. The respective number of rounds of Piccolo-80 and
Piccolo-128 is 25 and 31. The iterative structure of Piccolo is a variant of gen-
eralized Feistel networks and has 4 branches, each of 16 bits. Its security was
evaluated against several cryptanalytic techniques, such as Meet-in-the-Middle
(MITM) [7], biclique [6], and impossible differential [3]. In this paper we evalu-
ate the security of Piccolo-80 against linear cryptanalysis, and show a 7-round
attack, on the full first 7 rounds (i.e. with whitening keys) of Piccolo-80, using
c© Springer Nature Switzerland AG 2019
S. Dolev et al. (Eds.): CSCML 2019, LNCS 11527, pp. 16–32, 2019.
https://doi.org/10.1007/978-3-030-20951-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20951-3_2&domain=pdf
https://doi.org/10.1007/978-3-030-20951-3_2

Linear Cryptanalysis Reduced Round of Piccolo-80 17

6-round linear approximation, with data complexity of 261 known plaintexts,
and time complexity of 261. We then extend this attack to 8-round, with data
complexity of 261 known plaintexts, and time complexity of 270. We experimen-
tally verified the attack on the first two rounds and the first four rounds. We
also show that one can use conditional linear cryptanalysis [5] to attack Piccolo.
We found that the bias in the approximation of the F-function might be related
to the MSB of the input, thus we can increase the bias of the 6-round linear
approximation by discarding plaintexts that have specific values of the bits that
go to the MSBs of the F-functions in the first round.

Linear cryptanalysis is considered one of the most powerful cryptanalysis
techniques. It was introduced by Matsui in [12] as an attack on the full 16-
round DES, and later, an improved version is successfully applied to recover
the key of the full 16-round DES [13]. Linear cryptanalysis studies statistical
linear relations between bits of the plaintext, the ciphertext and the key. These
relations are used to compute values of bits of the key, when enough plaintexts
and their corresponding ciphertexts are known.

This paper is organized as follows. In Sect. 2, we briefly introduce the struc-
ture of Piccolo. In Sect. 3 we review the related work. The 7-round and 8-round
linear attacks on Piccolo-80 are presented in Sect. 4. We report the experimental
verification of our results in Sect. 5. Finlay, Sect. 6 concludes the paper.

2 A Brief Description of Piccolo

Before presenting the structure of Piccolo-80 and Piccolo-128, we give the fol-
lowing notations which are used throughout this paper:

|A|: The bit length of A.
A|B: The concatenation of A and B.
AL: The left half of A.
AR: The right half of A.
A[i]: The ith bit of A.
A[i, j, . . . , k]: A[i] ⊕ A[j] ⊕ . . . ⊕ A[k].

Piccolo is a 64-bit block cipher supporting 80- and 128-bit keys. As shown
in Fig. 1, the structure of Piccolo is a variant of generalized Feistel networks.
The 80- and 128-bit key variates are referred to as Piccolo-80 and Piccolo-128,
respectively. The difference between the two key modes lies in the number of
rounds and the key schedule. The number of rounds is r = 25 for Piccolo-80 and
r = 31 for Piccolo-128.

The data processing part takes a 64-bit block X ∈ {0, 1}64, four 16-bit
whitening keys wki ∈ {0, 1}16 (0 ≤ i < 4) and 2r 16-bit round subkeys
rki ∈ {0, 1}16 (0 ≤ i < 2r) as inputs, and outputs a 64-bit block Y ∈ {0, 1}64.

Let P = (P0, P1, P2, P3) be a 64-bit plaintext, where Pi ∈ {0, 1}16 (0 ≤
i < 3), and let (wk0, wk1) be a prewhitening key, then the input value I0 =
(I0,0, I0,1, I0,2, I0,3) of round 0 is computed as follows:

I0,0 = P0 ⊕ wk0, I0,1 = P1, I0,2 = P2 ⊕ wk1, I0,3 = P3.

18 T. Ashur et al.

X(64)

wk0 ⊕ wk1 ⊕
. F ⊕ rk0 . F ⊕ rk1

. F ⊕ rk2 . F ⊕ rk3

. F ⊕ rk2r−4 . F ⊕ rk2r−3

. F ⊕ rk2r−2 . F ⊕ rk2r−1

wk2 ⊕ wk3 ⊕

Y(64)

P0 P1 P2 P3

16 16 16 16

I0,1 I0,2 I0,3 I0,4

RP

RP

RP

Ir−1,1 Ir−1,2 Ir−1,3 Ir−1,4

Fig. 1. The structure of Piccolo

To generate Ii+1 from Ii (i = 0, ..., r − 2), each round is composed of two F-
functions F : {0, 1}16 → {0, 1}16 and a round permutation RP : {0, 1}64 →
{0, 1}64.

The F-functions consists of two S-box layers separated by diffusion matrix
(see Fig. 2). The S-box layer consists of four 4-bit bijective S-boxes S. The round
permutation RP (see Fig. 3) takes a 64-bit input value X = (x0, x1, x2, x3, x4,
x5, x6, x7) and generates a 64-bit output value Y = (x2, x7, x4, x1, x6, x3, x0, x5).

The 64-bit ciphertext C = (C0, C1, C2, C3), where Ci ∈ {0, 1}16 (0 ≤ i < 3),
is generated as follows:

C0 = Ir−1,0 ⊕ wk2, C1 = F (Ir−1,0) ⊕ Ir−1,1 ⊕ wk2r,
C2 = Ir−1,2 ⊕ wk3, C3 = F (Ir−1,2) ⊕ Ir−1,3 ⊕ wk2r+1.

The key schedule of Piccolo-80 is simple. First, the 80-bit secret key K is
defined as follows. Let kj = (kL

j , kR
j) (j = 0, 1, 2, 3, 4), where kj ∈ {0, 1}16,

kL
j ∈ {0, 1}8 and kR

j ∈ {0, 1}8.
K = (k0, k1, k2, k3, k4).

Four whitening keys (wk0, wk1, wk2, wk3) and 25 round keys (rk2i, rk2i+1) are
generated as follows (i = 0, 1, ..., 24). Let (con80

2i) and (con80
2i+1) be 16-bit round

constants.

Linear Cryptanalysis Reduced Round of Piccolo-80 19

S S

S S

S S

S S

16 16

4

4

4

4

M

Fig. 2. The F function of Piccolo

X(64)

x0 x1 x2 x3 x4 x5 x6 x7

x2 x7 x4 x1 x6 x3 x0 x5

Y(64)

8 8 8 8 8 8 8 8

Fig. 3. The round permutation (RP) of Piccolo

– The whitening keys are

wk0 = kL
0 ||kR

1 , wk1 = kL
1 ||kR

0 ,
wk2 = kL

4 ||kR
3 , wk3 = kL

3 ||kR
4 .

– The round keys are

(rk2i, rk2i+1) = (con80
2i , con

80
2i+1) ⊕

⎧
⎪⎨

⎪⎩

(k2, k3), (i mod 5) ≡ 0 or 2,

(k0, k1), (i mod 5) ≡ 1 or 4,

(k4, k4), (i mod 5) ≡ 3,

(con80
2i |con80

2i+1) = (ci+1|c0|ci+1|{00}2|ci+1|c0|ci+1) ⊕ {0f1e2d3c}16
where ci is a 5-bit representation of i, e.g., c13 = {01101}2. The key schedule of
Piccolo-128 is very similar, the interested reader is referred to [16].

3 Previous Analysis of Piccolo

Several cryptanalytic results on Piccolo were previously proposed. First, the
designers of Piccolo evaluated its security against various attacks and attacked
Piccolo-80 up to 17 rounds and Piccolo-128 up to 21 rounds by using related-
key attacks [16]. In addition, they used a Meet-in-the-Middle (MITM) attack on
14-round Piccolo-80 and a 21-round Piccolo-128 without whitening keys.

20 T. Ashur et al.

Table 1. Summary of attacks on Piccolo-80 in the single-key model

Method Rounds Whitening
keys pre/post

Data Time

Imp. Diff. [1] 13 None 243.25 CP 269.7

RK Diff. [14] 14 None 268.19 CP 268.19

MITM [10] 14 None 264 KP 273

MITM [17] 14 None 248 KP 275.39

Biclique [18] 25 Pre 248 CP 278.95

Biclique [11] 25 Both 248 CP 279.13

Linear [Sect. 4.3] 7 Both 261 KP 261

Linear [Sect. 4.4] 8 Both 261 KP 270

Conditional linear [Sect. 4.5] 2 Pre 214 CP 214

Conditional linear [Sect. 4.6] 8 Both 254 CP 254

CP: Chosen Plaintext, KP: Known Pliantext, RK: Related Key, MITM: Meet in the
Middle

Related-key differential attack on 14-round Piccolo-80 and 21-round Piccolo-
128 without whitening keys, are introduced in [14]. The data and time com-
plexities of the attack against Piccolo-80 are 268.19 and 268.19, respectively, and
against Piccolo-128 are 2117.77 and 2117.77, respectively.

A Meet-in-the-Middle (MITM) attack on 14-round Piccolo-80 and a 17-round
Piccolo-128 without whitening keys, are also proposed in [17]. The data and time
complexities of the attack against Piccolo-80 are 248 and 275.39, respectively, and
against Piccolo-128 are 248 and 2126.87, respectively.

Biclique cryptanalysis [6] of the full Piccolo-80 without postwhitening keys
and a 28-round Piccolo-128 without prewhitening keys was introduced in [18].
These attacks are with data complexity of 248 and 224 chosen ciphertexts,
and with time complexity of 278.95 and 2126.79 encryptions, respectively. Later,
biclique cryptanalysis of the full round Piccolo-80 and Piccolo-128 was intro-
duced in [11]. These attacks have data complexity of 248 and 224 chosen cipher-
texts, and with time complexity of 279.13 and 2127.35 encryptions.

Impossible differential cryptanalysis [3] on Piccolo without whitening keys,
is introduced in [1], 12-round and 13-round impossible differential attack on
Piccolo-80 and 15-round attack on Piccolo-128. The data and time complexity
of the attack against Piccolo-80 is 236.34 and 255.18 for 12-round and 243.25 and
269.7 for 13-round. The data and time complexity for 15-round cryptanalysis of
Piccolo-128 are 258.7 and 2125.4, respectively.

Multidimensional zero-corellation linear cryptanalysis on Piccolo-128 with-
out whitening keys, was introduced in [9], with 13-round, 14-round and 15-round.
The data complexities are 256.8, 252.43, and 255.6, respectively, and time complex-
ities are 2117.2, 2123.09, and 2126.55, respectively. Table 1 shows our results along
with the previous cryptanalysis results in the single-key model on Piccolo-80.

Linear Cryptanalysis Reduced Round of Piccolo-80 21

4 A Linear Attack on Reduced Round of Piccolo-80

We now introduce a linear approximation of 6 rounds of Piccolo. First, we con-
struct a linear approximation of the F-function, then we use it to create a 6-round
linear approximation.

4.1 Linear Approximation of the F-Function

We start by studying the linear approximation of the F-function. Our approach
is to treat the F-function as a black box, i.e., to ignore the internal description
of the S-box layers and the diffusion matrix M, and to handle the F-function
as a 16-bit S-box. This approach solves any dependency issue between the first
layer of S-boxes to the second layer, making the analysis more accurate than
merely choosing the number of active S-boxes. The linear approximations of the
F-function were found by iterating all the input and output masks. Table 2 lists
the highest bias entries of the linear approximations table of the F-function.

4.2 Linear Approximation of 6 Round Piccolo-80

We now extend the linear approximation of the F-function to 6-round linear
approximation by concatenating linear approximations, as described in [12] and
[2]. Namely, we try to minimize the number of active F-functions as much as
possible.

Figure 4 describes a 6-round linear approximation. The input mask of the
approximation is λp = 0008 0000 D301 0029x and the output mask is λc =
202F D308 5554 0001x. This approximation contains 6 active F-functions.

Table 2. High bias linear approximations of the F-function

Linear approximation of F Bias

0029x → 8808x 2−5

2229x → 0008x 2−5

2922x → 0800x 2−5

1022x → 0088x 2−5

9022x → 0088x 2−5

4046x → 8900x 2−5

C046x → 8900x 2−5

2222x → 8888x −2−5

2430x → 0608x −2−5

8862x → 000Dx 2−5.2

A862x → 000Dx 2−5.2

22 T. Ashur et al.

0008x 0000x D301x 0029x

F ⊕ F ⊕ bias = 2−5.83

0008x 0000x 8800x 0029x

0029x 8808x RP 0000x 0000x

F ⊕ F ⊕ bias = 2−5

0000x 8808x 0000x 0000x

8800x 0000x RP 0008x 0000x

F ⊕ F ⊕ bias = 2−1

8800x 0000x 0008x 0000x

0000x 0000x RP 0000x 8808x

F ⊕ F ⊕ bias = 2−5

0000x 0000x 0029x 8808x

0008x 0000x RP 8800x 0029x

F ⊕ F ⊕ bias = 2−5.83

0008x 0000x D301x 0029x

0029x D308x RP 0000x 0001x

F ⊕ F ⊕ bias = 2−11.28

202Fx D308x 5554x 0001x

0000x 0000x 5B01x 0029x

0029x 8808x 0000x 0000x

0000x 0000x 0000x 0000x

0000x 0000x 0029x 8808x

0000x 0000x 5B01x 0029x

2006x D308x 5554x 0001x

Fig. 4. A 6-round linear approximation of Piccolo-80 with bias = 2−29.04

The first round contains one active F-function with the linear approximation
(5B01x → 0029x) and a bias of 2−5.83. The second round contains one active
F-function with linear approximation (0029x → 8808x) and a bias of 2−5. There
are no active F-functions in the third round. The fourth round is similar to the
second one with exchanged active and non-active F-functions. The fifth round is
the same as the first one. The sixth round contains two active F-functions, the
left one with linear approximation (2006x → D308x) and a bias of 2−6.5 and the
right active F-function with linear approximation (5554x → 0001x) and a bias
of 2−5.87. Figure 4 shows the bias of each round in the right side, based on the

Linear Cryptanalysis Reduced Round of Piccolo-80 23

Pilling-up Lemma [12], we conclude that the total bias of this approximation is
2−29.04.

The 6 round linear approximation was built by applying the linear approx-
imation (0029x → 8808x), which has maximal bias, to the left side F-function
in the second round, and leaving the right side F-function inactive. Then, we
extended it up to the first round, by searching the highest biased linear approxi-
mation of the F-function with output mask (0029x). The third round is trivial as
it includes no active F-functions. The fourth and fifth rounds are mirror to the
second and first rounds. In the sixth round, we searched for the highest biased
linear approximations of the F-function with output mask (D308x), for the left
side F-functions, and 0001x for the right side F-function.

Equations (1) and (2) describe the linear relation between plaintext, cipher-
text and round subkey bits for the first 6 rounds of Piccolo. The bias of Eq. (1) is
2−29.04. Equation (3) assumes that the xor of the key bits involved in the linear
approximation, but not contained in wk2 and wk3 equals 0. This assumption
only affects the bias sign.

∑

k

= P [0, 3, 5, 16, 24, 25, 28, 30, 31, 51]⊕

C[0, 18, 20, 22, 24, 26, 28, 30, 35, 40, 41, 44, 46, 47, 48, 49, 50, 51, 53, 61]
(1)

∑

k

= kL
1 [0, 1, 4, 6, 7] ⊕ kR

0 [0, 3] ⊕ kR
3 [0, 3, 5] ⊕ kL

0 [3, 7] ⊕ kL
4 [3, 7] ⊕ kR

4 [3]⊕

kR
1 [5] ⊕ kL

2 [0, 1, 4, 6, 7] ⊕ kR
2 [3]

(2)

0 = kL
1 [0, 1, 4, 6, 7] ⊕ kR

0 [0, 3] ⊕ kL
0 [3, 7] ⊕ kR

1 [5] ⊕ kL
2 [0, 1, 4, 6, 7] ⊕ kR

2 [3] (3)

4.3 A Linear Attack on 7 Rounds of Piccolo-80

According to [12], once an (n−1)-round linear approximation is discovered for a
given cipher, it is conceivable to attack the cipher by recovering bits of the nth
round subkey. In our case, we extract bits from the whitening keys wk2 and wk3
in the seventh round, see Fig. 5. We shall refer to the subkeys to be recovered
from the seventh round as the target partial subkeys.

The bias of the linear approximation, described in Fig. 4, is 2−29.04, therefore,
according to [15], the attack requires 261 plaintext/ciphertext pairs, in order to
retrieve the maximum-biased key, with 98% success rate. The basic algorithm of
the attack, described in Algorithm 1, is based on the basic M2 algorithm of [12].

24 T. Ashur et al.

Algorithm 1. Basic Attack Procedure
1: Data: {(pi, ci)}
2: Result: wk2 and wk3
3:
4: wk2 ← 0
5: wk3 ← 0
6: max bias ← 0
7:
8: for each candidate wk2, candidate wk3 ∈ {0, 1}16 do
9: current bias ← 0

10: for each pair (pi, ci) do
11: Decrypt ci and find A,B,C,D (described in Figure 5)
12: if Equation 1 holds then
13: Increment current bias by 1
14: else
15: Decrement current bias by 1
16: end if
17: end for
18: if |current bias| � max bias then
19: wk2 ← candidate wk2
20: wk3 ← candidate wk3
21: max bias ← |current bias|
22: end if
23: end for
24:
25: Output wk2 and wk3

A B C D

F ⊕ rk12 F ⊕ rk13

wk2 ⊕ wk3 ⊕

C0C1 C2C3 C4C5 C6C7

Fig. 5. Decryption of the seventh round

The time complexity of this algorithm is the time needed to partially decrypt
261 ciphertexts under 232 subkeys for one round. Thus, the total time complexity
is about 1

7 · 261 · 232 ≈ 290.19 Piccolo encryptions, with data complexity of 261

Linear Cryptanalysis Reduced Round of Piccolo-80 25

plaintexts, and 261 memory for plaintexts. Obviously, in the case of Piccolo-80
this time complexity is greater than that of exhaustive search. A better algorithm
in terms of time complexity is based on the algorithm described in [4], this
algorithm utilizes that, in the naive Algorithm 1, for each ciphertext we look
only on 32 bits, and decrypt many times the same value under the same key.
The resulting algorithm is given as Algorithm 2.

Algorithm 2. Improved Attack Procedure
1: Data: {(pi, ci = ci0c

i
1|ci2ci3|ci4ci5|ci6ci7)}

2: Result: wk2 and wk3
3:
4: Initialize an array A of 232 counters.
5:
6: for each pair (pi, ci) do
7: parity ← pi[0..63] ⊕ ci2c

i
3[0..15] ⊕ ci6c

i
7[0..15]

8: if parity = 0 then
9: Increment A[ci0c

i
1|ci4ci5] by 1

10: else
11: Decrement A[ci0c

i
1|ci4ci5] by 1

12: end if
13: end for
14:
15: wk2 ← 0
16: wk3 ← 0
17: max bias ← 0
18:
19: for each candidate wk2, candidate wk3 ∈ {0, 1}16 do
20: current bias ← 0
21: for each ci0c

i
1|ci4ci5 do

22: Decrypt ci0c
i
1 and calculate the left F-function parity.

23: Decrypt ci4c
i
5 and calculate the right F-function parity.

24: if Equation 1 holds then
25: Increment current bias by A[ci0c

i
1|ci4ci5]

26: else
27: Decrement current bias by A[ci0c

i
1|ci4ci5]

28: end if
29: end for
30: if |current bias| � max bias then
31: wk2 ← candidate wk2
32: wk3 ← candidate wk3
33: max bias ← |current bias|
34: end if
35: end for
36:
37: Output wk2 and wk3

26 T. Ashur et al.

The time complexity of this algorithm is the time needed to partially decrypt
232 ciphertexts under 232 subkeys for one round. Thus, the total time complexity
is about 1

7 · 232 · 232 ≈ 261.19 Piccolo encryptions, with data complexity of 261

plaintexts, and memory of 232 counters. We further improve the time complexity
of the analysis phase, to 32·232 = 237, using the fast Fourier transform, suggested
in [8], to speed up the computation of the bias for every subkey candidate. Thus,
the total time complexity of the algorithm is 261. The matrix C, in our case, is
defined by the following function:

C(wk2|wk3, c0c1|c4c5) = parity(F (wk2|wk3 ⊕ c0c1|c4c5))

According to proposition 1 and demonstration 1 in [8], C is level-32 circulant
with type (2, 2, ..., 2)

︸ ︷︷ ︸
32 times

, thus we can use the fast algorithm to achieve the improved

analysis time. While this seems a futile improvement (form 261.19 to 261) it is
used in 8-round attack described next, where it saves a lot.

4.4 A Linear Attack on 8 Rounds of Piccolo-80

We now present the attack on the first eight rounds and extract the key bits of
the four whitening keys wk0, wk1, wk2 and wk3. Equation 1, is used as a relation
between input bits of the second round to output bits of the seventh round. The
attack is described in Algorithm 3.

The time complexity of this algorithm is the time needed to partially encrypt
232 plaintexts under 232 subkeys for one round and partially decrypt 232 cipher-
texts under 232 subkeys for one round. Thus, the total time complexity is about
2
8 · 264 · 264 ≈ 2128 encryptions, with data complexity of 261 plaintexts, and
memory of 264 counters. We further improve the time complexity of the analysis
phase to 64 · 264 = 270, using the fast Fourier transform. The matrix C, in this
case, is defined by the following function:

C(wk0|wk1|wk2|wk3, p0p1|p4p5|c0c1|c4c5) = parity(F (wk0|wk1|wk2|wk3 ⊕ p0p1|p4p5|c0c1|c4c5))

The matrix C is level-64 circulant with type (2, 2, ..., 2)
︸ ︷︷ ︸

64 times

.

4.5 Input MSB of the F-Function as a Partitioning Distinguisher

While studying the linear behavior of the F-function in Sect. 4.1, we observed
that in part of the linear approximations, the bias is influenced by the most
significant bit MSB of the input. For example, the bias of the approximation
(5B01x → 0029x), described in the first round of Fig. 4, equals 2−5.83. Now we
divide the input of the F-function into two disjoint sets, the first set includes
input values whose MSB equals 0 and the second set includes input values whose
MSB equals 1. Recalculating the bias of (5B01x → 0029x), for each one of the
input sets, gives bias 2−5.01 and 2−8.38, respectively. The total bias equals to the

Linear Cryptanalysis Reduced Round of Piccolo-80 27

Algorithm 3. 8-Round Attack Procedure
1: Data: {(pi = pi0p

i
1|pi2pi3|pi4pi5|pi6pi7, ci = ci0c

i
1|ci2ci3|ci4ci5|ci6ci7)}

2: Result: wk0, wk1, wk2 and wk3
3:
4: Initialize an array A of 264 counters.
5:
6: for each pair (pi, ci) do
7: parity ← pi2p

i
3[0..15] ⊕ pi6p

i
7[0..15] ⊕ ci2c

i
3[0..15] ⊕ ci6c

i
7[0..15]

8: if parity = 0 then
9: Increment A[pi0p

i
1|pi4pi5|ci0ci1|ci4ci5] by 1

10: else
11: Decrement A[pi0p

i
1|pi4pi5|ci0ci1|ci4ci5] by 1

12: end if
13: end for
14:
15: wk0 ← 0
16: wk1 ← 0
17: wk2 ← 0
18: wk3 ← 0
19: max bias ← 0
20:
21: for each candidate wk0, candidate wk1, candidate wk2, candidate wk3 ∈ {0, 1}16

do
22: current bias ← 0
23: for each pi0p

i
1|pi4pi5|ci0ci1|ci4ci5 do

24: Encrypt pi0p
i
1 and calculate the left F-function parity.

25: Encrypt pi4p
i
5 and calculate the right F-function parity.

26: Decrypt ci0c
i
1 and calculate the left F-function parity.

27: Decrypt ci4c
i
5 and calculate the right F-function parity.

28: if Equation 1 holds then
29: Increment current bias by A[pi0p

i
1|pi4pi5|ci0ci1|ci4ci5]

30: else
31: Decrement current bias by A[pi0p

i
1|pi4pi5|ci0ci1|ci4ci5]

32: end if
33: end for
34: if |current bias| � max bias then
35: wk0 ← candidate wk0
36: wk1 ← candidate wk1
37: wk2 ← candidate wk2
38: wk3 ← candidate wk3
39: max bias ← |current bias|
40: end if
41: end for
42:
43: Output wk0, wk1, wk2 and wk3

28 T. Ashur et al.

Table 3. Bias as a function of input’s MSB

Linear approximation of F Toatal bias Bias when MSB = 0 Bias when MSB = 1

5B01x → 0029x 2−5.83 2−5.01 2−8.38

9022x → 0088x 2−5.01 2−6.05 2−4.44

1022x → 0088x 2−5.01 2−6.05 −2−4.44

4046x → 8900x 2−5.01 2−5.44 2−4.71

C046x → 8900x 2−5.01 2−5.44 −2−4.71

62A6x → 0D00x 2−5.21 2−4.87 2−5.71

E2A6x → 0D00x 2−5.21 2−4.87 −2−5.71

662Ax → 00D0x 2−5.21 2−4.87 2−5.71

average of the other two biases. Table 3 lists several such linear approximations
of the F-function.

Utilizing this behavior, the first round of Piccolo can be attacked to extract
the MSB of the whitening keys wk0 or wk1. For simplicity, we assume that the
first round contains only one active F-function on the right side with biases εmin

for the input set whose MSB equals 1 and εmax for the input set whose MSB
equals 0. Assuming we have O(1/(|εmax| − |εmin|)2) pairs of chosen plaintexts,
with X4[7] = 0, and their corresponding ciphertexts, we calculate the bias using
the linear approximation of the first round, if the observed bias is greater than
εmin + |εmax − εmin|/2 − 2 · σ, then we conclude that X4[7] ⊕ wk1[15] = 0 and
wk1[15] = 0, otherwise, we conclude that X4[7] ⊕ wk1[15] = 1 and wk1[15] = 1.
As an example, we show how to attack the first round, using the linear approx-
imation described in Fig. 6 and extract wk1[15]. The input to the active F-
function is X4X5 ⊕ wk1, this implies that the MSB input to F-function is
X4[7] ⊕ wk1[15]. Assuming that we have 212 pairs of chosen plaintexts, with
X4[7] = 0, we calculate the bias according to Eq. 4, if the received bias is greater
than 2−8.38 + (2−5.03 − 2−8.38)/2 − 2 · 2−1 · 2−6 ≈ 2−7.65, then we conclude that
X4[7] ⊕ wk1[15] = 0 and wk1[15] = 0, otherwise, we conclude that wk1[15] = 1.

P [0, 3, 5, 16, 24, 25, 28, 30, 31, 51] ⊕ C[0, 3, 5, 27, 31, 51] = 0 (4)

4.6 Extracting the MSB Values of the Whitening Keys wk0 and
wk1

We now use the behavior described in Sect. 4.5, to extend the linear attack
described in Sect. 4.3 and extract the MSBs of the whitening keys wk0 and
wk1. We divide the input of the F-functions in the first round into four disjoint
sets, according to the MSB values {00,01,10,11}, and recalculate the bias values
{ε0, ε1, ε2, ε3} of the linear approximation, for each one of the sets. For example,
the bias of the 6-round linear approximation described in Fig. 4 is 2−27.3 when
the MSB of the right F-function input equals 0, and 2−34.04 when the MSB of

Linear Cryptanalysis Reduced Round of Piccolo-80 29

0008
X0X1

0000
X2X3

D301
X4X5

0029
X6X7

wk0 ⊕ wk1 ⊕

F ⊕ rk0 F ⊕ rk1

0008 0000 8800 0029

0000 0000 5B01 29

Fig. 6. Extracting MSB of whitening key wk1

the input equals 1. There are only two values of the bias because there is only
one active F-function in this case. The same attack used in Sect. 4.5 can be used
to extract the MSB of wk1.

5 Experimental Verification of a Reduced-Round Attack

In this section we describe the experimental verification of our proposed attacks,
which ran on a single core of an Intel Xeon Platinum 8170 CPU, with 2.10 GHz
frequency and 125 GB RAM. The attack program is based on C++11, compiled
by g++ (GCC) version 5.4.0, running on Ubuntu 16.04.5 LTS.

5.1 Partial Verification of 2 Rounds and 4 Rounds Linear Attack

We start with the experimental verification of a reduced-round versions of the
attack described in Sect. 4.3. The attack versions are based on 1-round and 3-
round linear approximations, described in Fig. 4, with an additional round for
key recovery. This is a partial verification of the attack, as we only compute
wk2 in case of 2 rounds and wk3 in case of 4 rounds. We repeated each version
with three different values of plaintext/ciphertext pairs, and for each value it
was verified by 100 random keys. Table 4 summarizes the results of the attack
on the first two and the first four rounds.

5.2 Verification of MSB as a Partitioning Distinguisher

We now show the experimental verification results for the attack described in
Sect. 4.5. Table 5 summarizes the results of the attack on two different linear
approximations of the F-function. The experiment consisted of 28 random keys,
and for each key we tried variable number of plaintexts/ciphertexts.

30 T. Ashur et al.

Table 4. Summary of 2 and 4 rounds attack verification (100 trials)

Rounds Plaintexts/Ciphertexts
(per key)

Attack time Success rate %

Algorithm 1 Algorithm 2 Actual Expected [15]

2 213.66 15min 32min 28 25

2 214.66 31min 34min 84 71

2 215.66 62min 35min 99.60 98

4 221.66 70.6 h 23min 36 25

4 222.66 138.4.1 h 23min 87.50 69

4 223.66 282.5 h 23min 99.21 98
Exhuastive search time for two rounds is 1.18 h and for four rounds is 2.11 h

Table 5. Summary of MSB partitioning distinguisher attack verification (256 trials)

Linear
approximation
of F

Low bias
εmin

High bias
εmax

Plaintexts/
Ciphertexts
(per key)

Success rate of
guessing MSB
of wk1

5B01x → 0029x 2−8.38 2−5.01 212 56.01%

5B01x → 0029x 2−8.38 2−5.01 213 83.43%

5B01x → 0029x 2−8.38 2−5.01 214 96.56%

5B01x → 0029x 2−8.38 2−5.01 215 100%

662Ax → 00D0x 2−5.71 2−4.87 212 63.35%

662Ax → 00D0x 2−5.71 2−4.87 213 75.78%

662Ax → 00D0x 2−5.71 2−4.87 214 89.91%

662Ax → 00D0x 2−5.71 2−4.87 216 98.89%

6 Conclusion

In this paper, we proposed linear cryptanalysis of the lightweight block cipher
Piccolo-80. We attacked seven and eight rounds of Piccolo-80 using a 6-round lin-
ear approximation with bias 2−29.04. The 7-round attack requires data complex-
ity of 261 known plaintexts. The time complexity is 261 and memory complexity
of 232. The 8-round attack requires data complexity of 261 known plaintexts. The
time complexity is 270 and memory complexity of 264. The attack was verified
on reduced versions of two and four rounds of Piccolo-80. In addition, we showed
that the F-function bias might be related to the MSB of the input, and presented
an attack that uses this property to extract the MSB’s of the whitening keys
wk0 and wk1.

Linear Cryptanalysis Reduced Round of Piccolo-80 31

References

1. Azimi, S.A., Ahmadian, Z., Mohajeri, J., Aref, M.R.: Impossible differential crypt-
analysis of piccolo lightweight block cipher. In: 2014 11th International ISC Con-
ference on Information Security and Cryptology (ISCISC), pp. 89–94. IEEE (2014)

2. Biham, E.: On Matsui’s linear cryptanalysis. In: De Santis, A. (ed.) EUROCRYPT
1994. LNCS, vol. 950, pp. 341–355. Springer, Heidelberg (1995). https://doi.org/
10.1007/BFb0053449

3. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of skipjack reduced to 31
rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS,
vol. 1592, pp. 12–23. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48910-X 2

4. Biham, E., Dunkelman, O., Keller, N.: Linear cryptanalysis of reduced round ser-
pent. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 16–27. Springer, Hei-
delberg (2002). https://doi.org/10.1007/3-540-45473-X 2

5. Biham, E., Perle, S.: Conditional linear cryptanalysis - cryptanalysis of DES with
less than 242 complexity. IACR Trans. Symmetric Cryptol. 2018(3), 215–264
(2018)

6. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique cryptanalysis of the Full
AES. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp.
344–371. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-
0 19

7. Bogdanov, A., Rechberger, C.: A 3-subset meet-in-the-middle attack: cryptanalysis
of the lightweight block cipher KTANTAN. In: Biryukov, A., Gong, G., Stinson,
D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 229–240. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19574-7 16

8. Collard, B., Standaert, F.-X., Quisquater, J.-J.: Improving the time complexity of
Matsui’s linear cryptanalysis. In: Nam, K.-H., Rhee, G. (eds.) ICISC 2007. LNCS,
vol. 4817, pp. 77–88. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-76788-6 7

9. Fu, L., Jin, C., Li, X.: Multidimensional zero-correlation linear cryptanalysis of
lightweight block cipher Piccolo-128. Secur. Commun. Netw. 9(17), 4520–4535
(2016)

10. Isobe, T., Shibutani, K.: Security analysis of the lightweight block ciphers XTEA,
LED and Piccolo. In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS,
vol. 7372, pp. 71–86. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-31448-3 6

11. Jeong, K., Kang, H., Lee, C., Sung, J., Hong, S.: Biclique cryptanalysis of
lightweight block ciphers present, piccolo and LED. IACR Cryptology ePrint
Archive 2012, 621 (2012)

12. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48285-7 33

13. Matsui, M.: The first experimental cryptanalysis of the data encryption standard.
In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 1–11. Springer, Hei-
delberg (1994). https://doi.org/10.1007/3-540-48658-5 1

14. Minier, M.: On the security of Piccolo lightweight block cipher against related-
key impossible differentials. In: Paul, G., Vaudenay, S. (eds.) INDOCRYPT 2013.
LNCS, vol. 8250, pp. 308–318. Springer, Cham (2013). https://doi.org/10.1007/
978-3-319-03515-4 21

https://doi.org/10.1007/BFb0053449
https://doi.org/10.1007/BFb0053449
https://doi.org/10.1007/3-540-48910-X_2
https://doi.org/10.1007/3-540-48910-X_2
https://doi.org/10.1007/3-540-45473-X_2
https://doi.org/10.1007/978-3-642-25385-0_19
https://doi.org/10.1007/978-3-642-25385-0_19
https://doi.org/10.1007/978-3-642-19574-7_16
https://doi.org/10.1007/978-3-540-76788-6_7
https://doi.org/10.1007/978-3-540-76788-6_7
https://doi.org/10.1007/978-3-642-31448-3_6
https://doi.org/10.1007/978-3-642-31448-3_6
https://doi.org/10.1007/3-540-48285-7_33
https://doi.org/10.1007/3-540-48658-5_1
https://doi.org/10.1007/978-3-319-03515-4_21
https://doi.org/10.1007/978-3-319-03515-4_21

32 T. Ashur et al.

15. Selçuk, A.A.: On probability of success in linear and differential cryptanalysis. J.
Cryptology 21(1), 131–147 (2008)

16. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo:
an ultra-lightweight blockcipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011.
LNCS, vol. 6917, pp. 342–357. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-23951-9 23

17. Tolba, M., Abdelkhalek, A., Youssef, A.M.: Meet-in-the-middle attacks on reduced
round piccolo. In: Güneysu, T., Leander, G., Moradi, A. (eds.) LightSec 2015.
LNCS, vol. 9542, pp. 3–20. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-29078-2 1

18. Wang, Y., Wu, W., Yu, X.: Biclique cryptanalysis of reduced-round piccolo block
cipher. In: Ryan, M.D., Smyth, B., Wang, G. (eds.) ISPEC 2012. LNCS, vol.
7232, pp. 337–352. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-29101-2 23

https://doi.org/10.1007/978-3-642-23951-9_23
https://doi.org/10.1007/978-3-642-23951-9_23
https://doi.org/10.1007/978-3-319-29078-2_1
https://doi.org/10.1007/978-3-319-29078-2_1
https://doi.org/10.1007/978-3-642-29101-2_23
https://doi.org/10.1007/978-3-642-29101-2_23

Continuous Key Agreement
with Reduced Bandwidth

Nir Drucker1,2(B) and Shay Gueron1,2

1 University of Haifa, Haifa, Israel
2 Amazon, Seattle, USA

drucker.nir@gmail.com, shay@math.haifa.ac.il

Abstract. Continuous Key Agreement (CKA) is a two-party procedure
used by Double Ratchet protocols (e. g., Signal). This is a continuous and
synchronous protocol that generates a fresh key for every sent/received
message. It guarantees forward secrecy and post-compromise security.
Alwen et al. have recently proposed a new KEM-based CKA construction
where every message contains a ciphertext and a fresh public key. This
can be made quantum-safe by deploying a quantum-safe KEM. They
mention that the bandwidth can be reduced when using an ElGamal
KEM (which is not quantum-safe). In this paper, we generalized their
approach by defining a new primitive, namely Merged KEM (MKEM).
This primitive merges the key generation and the encapsulation steps of
a KEM. This is not possible for every KEM and we discuss cases where a
KEM can be converted to an MKEM. One example is the quantum-safe
proposal BIKE1, where the BIKE-MKEM saves 50% of the communica-
tion bandwidth, compared to the original construction. In addition, we
offer the notion and two constructions for hybrid CKA.

Keywords: Double Ratchet protocol · Continuous Key Agreement ·
Post Quantum Cryptography · Code-based cryptography · BIKE

1 Introduction

Double Ratchet (DR) protocols (e. g., Signal [16]) are used to secure instant
messaging applications such as WhatsApp [3], Skype [14], Facebook Messenger
[1], and Google Allo [15]. Several formal security analyses of the DR protocol and
its variants are given in [4,6,10,11,13,17], focusing on slightly different sets of
security properties. For example, according to [4] a secure DR based messaging
protocol between parties A and B in the presence of an attacker A should have
the following properties (see details in [4]):

– Correctness. If A is a passive attacker then A (B) receives all the messages
sent by B (A) in the correct order.

– Immediate Decryption and Message-Loss Resilience. A message is decrypted
upon arrival. In addition, the protocol execution continues even if a message
is lost.

c© Springer Nature Switzerland AG 2019
S. Dolev et al. (Eds.): CSCML 2019, LNCS 11527, pp. 33–46, 2019.
https://doi.org/10.1007/978-3-030-20951-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20951-3_3&domain=pdf
https://doi.org/10.1007/978-3-030-20951-3_3

34 N. Drucker and S. Gueron

– Authenticity. A cannot modify messages or inject new ones (unless one of the
parties’ state is compromised).

– Privacy. A does not learn anything about the contents of the messages (unless
one of the parties state is compromised).

– Forward Secrecy (FS). If one of the parties’ state is compromised, the previous
messages remain confidential.

– Post-Compromise Security (PCS). The parties can recover from a state com-
promise. Here, we assume that the parties have access to a randomness source
and that A remains passive.

– Randomness leakage/failures. Fresh randomness is required only for achieving
Post-Compromise Security (PCS) and is not used to achieve other property.

A DR protocol achieves these properties by: (a) encrypting and authenticat-
ing every message with a fresh symmetric key; b) using fresh randomness (that
is often used by some Public Key Encryption (PKE) scheme to achieve PCS).

In [4] the DR protocol uses a CKA (public-key ratchets), an AEAD with
new keys for every message (symmetric-key ratchets), FS-AEAD hereafter, and a
hash function. The CKA can be constructed from any PKE scheme, in particular,
any IND-CPA KEM. The use of KEMs is also mentioned in [17] (although the
construction in [4] is simpler). The DR scheme can be made quantum-safe1 by
using a quantum-safe KEM, FS-AEAD, and hash function.

To construct a CKA from a KEM, party A (wlog) uses a public key (received
from B) to encapsulate a shared secret ss into a ciphertext ct, generates a new
pair of secret/public keys (sk, pk) and sends ct and pk to B, at every round.
This protocol doubles the communication bandwidth compared to DH CKA
where only one public key is sent (assuming the DH and the KEM public keys of
the same size). To reduce the bandwidth overhead, [4] mentions that deploying
ElGamal KEM allows using the ciphertext as the subsequent public key. Note
that ElGamal KEM is not quantum-safe.

Our Contribution:

– We define a new primitive that we call MKEM. An MKEM is derived from
a KEM by merging the key generation and the encapsulation procedures.
Using it can achieve 50% bandwidth reduction compared to the original CKA
protocol with the same KEM. It also may save some of the operations executed
during encapsulation. We point out that converting a KEM to an MKEM is
not always possible (e. g., BIKE2).

– We present an instantiation of MKEM with BIKE1 [5].
– Following Bindel et al. [8] (who introduced compilers for quantum-safe hybrid

Authenticated Key Exchange) we propose two compilers for a hybrid CKA.
We believe that this is the first hybrid quantum-safe CKA compiler.

1 We use the terminology quantum-safe to cryptographic algorithms that rely on prob-
lems that are believed to be hard even in the presence of quantum computers. For
example, cryptographic algorithms that rely on factorization (e. g., RSA) are not
considered quantum-safe due to Shor’s algorithm [18]. On the other hand for some
parameters cryptographic algorithms that rely on the Shortest Vector Problem over
lattices are commonly considered quantum-safe.

Continuous Key Agreement with Reduced Bandwidth 35

The Organization of the Paper. Section 2 introduces some notation and
background. In Sect. 3 we describe the MKEM scheme and its properties. We
present an MKEM instantiation that is based on BIKE1 in Sect. 4, and two
hybrid CKA constructions in Sect. 5. Section 6 is the conclusion.

2 Notation and Background

We denote null values and protocol failures by ⊥. Uniform random sampling from
a set W is denoted by w

$←− W . For an algorithm A, we denote its output by out =
A() if A is deterministic, and by out ← A() otherwise. The (Hamming) weight
of a vector of bits x is denoted by wt(x). The finite field of 2 elements is denoted
by F2. The xor operation is denoted by ⊕. An attacker A is parameterized by its
running time t. Let the term epoch denote the period between two consecutive
messages sent by the same party in a DR protocol. During an epoch, the other
party can send as many messages as it wishes.

2.1 Continuous Key Agreement (CKA)

A CKA (roughly) models the public-key ratchets in a DR protocol. It can use
a PKE of choice and in particular a KEM. This synchronous protocol between
parties A and B sends a message msgi in round i: from A to B if i is even and
from B to A otherwise. A fresh shared secret ssi is agreed by both parties in
round i. The state of the parties is denoted by γ(A) and γ(B), respectively.

Definition 1. A CKA scheme consists of four algorithms CKA = (CKA-Init-A,
CKA-Init-B, CKA-S, CKA-R), where

– CKA-Init-A (CKA-Init-B) gets an input key k and outputs an initial state. The
notation is γ(A) ←CKA-Init-A(k) (γ(B) ← CKA-Init-B(k)), respectively.

– CKA-S updates the party’s state γ(·), generates a message msgi, and a key
ssi. The notation is: (γ(·)′,msgi, ssi) ← CKA-S (γ(·)).

– CKA-R for an input message msgi and a state γ(·) generates a new state
γ(·)′ and calculates the shared secret. The notation is (γ(·)′, ssi) ← CKA-
R(γ(·),msgi).

CKA-S(γ(·)) is a randomized algorithm. For adversarial cases where the source
of randomness is controlled by an adversary, we denote the algorithm by CKA-
S(γ(·), r). Here r denotes the adversary controlled randomness. We use K to
denote the set of initial keys and SS to denote the set of possible shared secrets
ssi, i = 1, 2,

We briefly describe the CKA correctness property and its security game (a
full description is found in [4]).

Correctness. A CKA scheme is correct if for every i = 1, 2, . . ., A and B agree
(with high probability) on the same (shared) secret ssi.

36 N. Drucker and S. Gueron

Security. A challenger Chal sets the epoch counters tA = tB = 0, samples a
bit b

$←− {0, 1}, an initial key k
$←− K, and invokes γ(A) ←CKA-Init-A(k) and

γ(B) ←CKA-Init-B(k). Chal receives an input t∗ that defines the round on which
the challenge oracle may be called.
Let U denote one of the users A or B. An adversary A interacts with Chal by
making oracle calls to one of the following five oracles (in a ping-pong order
A → B → A → . . .):

1. Send-U(): increment tU by 1, perform (γU ,msgtU , sstU) ← CKA-S(γU), and
return (msgtU , sstU).

2. Send-U’(r): increment tU by 1, perform (γU ,msgtU , sstU) ← CKA-S(γU , r),
and return (msgtU , sstU). This oracle can be called only if max(tA, tB) ≤
t∗ − 2.

3. Receive-U(): increment tU by 1 and perform (γU , ·) = CKA-R(γU ,msgtU).
4. Corr-U(): return γU . A call to this oracle is allowed only when max(tA, tB) ≤

t∗ − 2 or tU ≥ t∗ + ΔCKA. (ΔCKA is defined below).
5. Chall-U(): increment tU by 1, and perform (γU ,msgtU , sstU) ← CKA-S(γU).

If b = 0 return (msgtU , sstU), and otherwise set ss′ $←− SS and return
(msgtU , ss). This oracle can be invoked only when tU = t∗ and if no Corr()
or Send-U’() calls were performed less than two epochs before the call.

The game is parameterized by ΔCKA: the minimum number of epochs
between t∗ and a state that do not contain secrets. When a party reaches epoch
t∗ + ΔCKA, its state may be revealed to A (by a Corr-U() call). The game is
endless but we consider it terminated if γ(A) and γ(B) are revealed or when A
outputs a bit b′. A wins if b′ = b. The advantage of A against a CKA with
ΔCKA = Δ is denoted by AdvCKA

ror,Δ(A).

Definition 2. A CKA scheme is (t,Δ, ε)-secure if for all t-attackers A,

AdvCKA
ror,Δ(A) ≤ ε (1)

2.2 Key Encapsulation Mechanism (KEM)

A KEM is a public key primitive. We denote the secret key and public key
domains by SK and PK, respectively. A KEM consists of three functions:
keygen, encaps, decaps. It is played between parties A and B through three mes-
sages (sent over an un-trusted channel). First, A invokes (sk, pk) ← keygen(1κ)
generating a secret key sk ∈ SK and a public key pk ∈ PK, and sends pk to B.
B uses the received pk and invokes (ss, ct) ← encaps(1κ, pk) to produce a cipher-
text ct and a shared secret ss ∈ SS. B sends ct to A. A uses the received ct and
invokes ss = decaps(sk, ct) (in some KEM protocols decaps may occasionally
fail. In such cases we say that the output is ⊥).

Continuous Key Agreement with Reduced Bandwidth 37

3 Merged KEM (MKEM)

We propose MKEM as a primitive for CKA.

Definition 3. An MKEM is a public-key primitive with two algorithms
MKEM = (kgc, decaps) that have the following syntax:

– kgc. Take an (implicit) security parameter and a public key pk0 and output
(sk1, pk1, ct1, ss1). Here, (sk1, pk1) is a newly generated key pair. If pk0 =⊥
then ct1 = ss1 =⊥ (i. e., output (sk1, pk1,⊥,⊥) ← kgc(⊥)). Otherwise, use
pk0 to generate a ciphertext ct1, in a way that pk1 and a shared secret ss1
can be retrieved from ct1 by invoking decaps.

– decaps: receive a secret key sk0 and a ciphertext ct1 and retrieve the shared
secret ss1 and pk1, i. e., (ss1, pk1) = decaps(sk0, ct1).

Remark 1. In MKEM, only the initial public key pk0 is non-secret. For i ≥ 1,
pki−1 and pki have no use after calling (·, pki, ·, ·) ←− kgc(pki−1), and can be
deleted immediately after this invocation.

Correctness. Consider the (continuous) iterative sequences: A executes
(sk0, pk0,⊥,⊥) ← kgc(⊥) and sends pk0 to B; B executes (sk1, pkB

1 , ct1, ss
B
1) ←

kgc(pk0) and sends ct1 to A; A repeat the process by executing (ssA
1 , pkA

1) =
decaps(sk0, ct1) and (sk2, pkB

2 , ct2, ss
B
2) ← kgc(pk1) and sending ct2 to B and so

on. We say that an MKEM is correct if for each i ≥ 1, ssA
i = ssB

i and pkA
i = pkB

i .

Security. The security of an MKEM is defined similarly to the IND-CPA and
IND-CCA security of a KEM. Let Chal be the game challenger and let A be an
adversary.

– IND-CPA: Chal generates (sk1, pk1, ct1 =⊥, ss1 =⊥) ← kgc(⊥) or
(sk1, pk1, ct1, ss1) ← kgc(pk0), pk0 ∈ PK, computes (·, ·, ct2, ss02) ← kgc(pk1),

and samples ss12
$←− SS, b

$←− {0, 1}. It hands (ct1, ct2, ssb
2) to A that outputs

a bit b′ (indicating whether it believes it received ss02 or ss12). A wins if b′ = b.
– IND-CCA - Here, A also has access to a decaps oracle. This oracle returns

(ŝs, p̂k) for every input ĉt 	= ct1, ct2.

Definition 4. An MKEM scheme is (t, ε)-cpa-secure if for all t-attacker A,

AdvMKEM
cpa (A) ≤ ε (2)

Figure 1 shows the flow of a CKA that uses an MKEM (Panel (a)) and also
compares (Panel (b)) to a CKA based on a KEM. We require that the MKEM
is IND-CPA (similarly to KEM, IND-CCA is not required).

Constructing an MKEM scheme is not necessarily simple. Indeed, in Sect. 4
we show how to transform BIKE1 KEM into BIKE1-MKEM and explain why the
same technique cannot be applied to BIKE2/3. Consequently, we work on each
case separately, without stating a general security relation between an MKEM
and its related KEM (although we believe that equivalence exists).

38 N. Drucker and S. Gueron

Lemma 1. Let MK be a (t′, ε)-cpa-secure MKEM. Then, the corresponding
CKA scheme (denoted CKA) is (t,Δ = 0, ε)-secure for t ≈ t′.

Proof (outline). According to [4] (see Theorem 2 therein): for every KEM K that
is (t′′, ε)-cpa-secure (t′′ ≈ t), there is an adversary B for which

AdvCKA
ror,0 (A) ≤ AdvKEM

cpa (B) (3)

Replacing the KEM with the analogous MKEM does not change the confiden-
tiality of the messages that A can see (it sees a ciphertext in both cases).

BA
sk0 pk0

(sk1, pk1, ct1, ss1) ← MK.kgc(pk0)

ct1

msg1

(ss1, pk1) = MK.decaps(sk0, ct1)
(sk2, pk2, ct2, ss2) ← MK.kgc(pk1)

ct2

msg2

. . .

(a)

BA
sk0 pk0

(ct1, ss1) ← K.encaps(pk0)
(sk1, pk1) ← K.keygen()

ct1,pk1

msg1

(ss1) = K.decaps(sk0, ct1)
(ct2, ss2) ← K.encaps(pk1)
(sk2, pk2) ← K.keygen()

ct2,pk2

msg2

. . .

(b)

Fig. 1. Panel a: A CKA protocol that uses an MKEM (MK). Panel B: A CKA protocol
that uses KEM (K). The initialization sk0 ←CKA-Init-A(k), pk0 ←CKA-Init-A(k) (not
shown in the figures) starts A with sk0 and B with pk0. At each subsequent round (i)
the new shared secret (ssi) is generated.

Continuous Key Agreement with Reduced Bandwidth 39

Epoch tA starts when A sends msg2tA−1 and ends when it sends msg2tA+1.
If in this epoch, A performs Corr-A(), it gets to see γA = sk2tA−1 (or γA =
(sk2tA+1) if msg2tA was already received). This allows A to decapsulate ct2tA

(resp. ct2tA+2) and extract (ss2tA , pk2tA) (resp. (ss2tA+2, pk2tA+2)). It provides
no information on sk2tA (resp.ss2tA+2) to A, by the properties of the underlying
KEM. Consequently, Δ = 0 also when using MKEM. ��
Remark 2. In the proof of Lemma 1 if A gets to see some pki, i ≥ 1 value it may
be able to decrypt/decapsulate cti (that was derived from pki) and obtain ssi.
However by the properties of the underlying KEM, A cannot obtain ski.

4 BIKE-MKEM

BIKE [5] is a suite of 3 KEMs (BIKE1, BIKE2, BIKE3) submitted to the
NIST Post-Quantum Cryptography (PQC) project ([2]). They are IND-CPA
secure KEMs. BIKE1/2/3 use Quasi Cyclic - Moderate Density Parity Check
(MDPC) codes, to enjoy shorter keys than McEliece KEM [7]. Figure 2 outlines
BIKE1/2/3, and full details are available in [5].

The computations of BIKE are executed over R := F2[X]/ 〈Xr − 1〉, for the
parameter r. Denote the (Hamming) weights of the secret key sk = (sk0, sk1)
and the errors vector e by w and t, respectively. Concrete BIKE1 parameters
for NIST Level-1 are |pk| = |ct| = 20, 326, |ss| = 256 r = 10, 163, w = 142, and
t = 134. BIKE1/2/3 are IND-CPA KEM because decoding failures may occur,
at some low rate, estimated to be at most 10−8. Therefore, and also to achieve
forward secrecy, BIKE1/2/3 use ephemeral keys.

Server S Client C
Generate ephemeral QC-MDPC
key pair (sk, pk)

pk

msg1

Generate a sparse error vector e
ct ← QC-MDPC.Encryptpk(e)
Derive the ss from e

ct

msg2

(e′ or ⊥) = QC-MDPC.Decryptsk(ct)
Derive the ss from e′

Fig. 2. A general description of BIKE1/2/3 protocol.

40 N. Drucker and S. Gueron

4.1 BIKE1-MKEM Transformation

Figure 3 shows the proposed BIKE1-MKEM. For every X ∈ {pk, sk, ct, e},i =
{0, 1} X consists of two equal length halves (X[0],X[1]) (e. g., pk =
(pk[0], pk[1])). We explain the elements of the protocol below.

– kgc(pk0). Receive pk0 ∈ PK as input. Generate a secret key sk1 with odd

weights of ≈ w/2 (for sk1[0] and for sk1[1]). Generate g
$←− R and calculate

the public key pk1 = (g · sk1[1], g · sk1[0]). Sample b0, b1
$←− {0, 1} and set

pk′
1 = (pk1[0] ⊕ b0, pk1[1] ⊕ b1) (see Remark 4 for the requirement on pk′

1).

Subsequently, generate an error vector e
$←− R with weight t and use pk′

1 and
pk0 to encrypt it to a ciphertext ct = (pk0[0] ·pk′

1[0]+ e0, pk0[1] ·pk′
1[1]+ e1).

Hash the error vector e to generate the value ss (which is the shared secret).
Output sk, pk1, ct, and ss.

– decaps(sk0, ct). Receive sk0 ∈ SK as input. Compute the syndrome synd =
ct[0] · sk0[0] + ct[1] · sk0[0] and decode synd (with a QC-MDPC decoder) to
extract the error vector e′. If the decoding succeeds and also wt(e′) = t,
calculate

pk′
1 = (pk′

1[0], pk′
1[1])

=
(
pk−1

0 [0]
(
ct[0] − e′[0]

)
, pk−1

0 [1]
(
ct[1] − e′[1]

))

(see Remark 5 for how to calculate pk−1
0 [0] and pk−1

0 [1]). If pk′
1[i], i = 0, 1 is

even set pk′
1[i] = pk′

1[i] ⊕ 1. Set pk1 = (pk′
1[0], pk′

1[1]) and derive the shared
secret ss by hashing e′.

Remark 3. The encapsulation in BIKE1 (which is a KEM) samples a random

message m
$←− {0, 1}n. The decapsulation needs only to retrieve the error vector

but not m itself. In BIKE1-MKEM the decapsulation needs to extract both the
shared secret ss and the public key pk1.

Remark 4. In BIKE1 MKEM we replace m with pk1 = (pk1[0], pk1[1]) ∈ PK =
{0, 1}n-with-even-weight. Thus, we need to convert it to be a uniform random

element in {0, 1}n. To this end, we sample two bits bi
$←− {0, 1}, i = 0, 1, and xor

them to the least significant bit of pk1[i]. During decapsulation (after extracting
pk′

1), decaps checks if one of its halves has even weight, and flips its least
significant bit accordingly.

Remark 5. The values pk−1
0 [0], pk−1

0 [1], required to retrieve pk1, can be cal-
culated during either kgc or decaps (they are invertible by the definition of
BIKE1). In the first case we extend the “structure” of the secret key to
sk1 = (sk1[0], sk1[1], pk−1

0 [0], pk−1
0 [1] and in the second case we change it into

sk1 = (sk1[0], sk1[1], pk0[0], pk0[1]), respectively.

Correctness. The correctness of BIKE1-MKEM follows by inspecting the flows,
up to possible decoding failures that, for BIKE1-MKEM occur at a Decoding
Failure Rate (DFR) ≤ 10−8.

Continuous Key Agreement with Reduced Bandwidth 41

(sk1,pk1, ct, ss) kgc(pk0)

sk1
$ R,

wt(sk1[0]), wt(sk1[1]) is odd and ≈ w/2

g
$ of odd weight

pk = (g · sk1[1], g · sk1[0])

b0, b1
$ {0, 1}

pk′
1 = (pk1[0] ⊕ b0, pk1[1] ⊕ b1)

e
$

R

R2 such that wt(e[0]) + wt(e[1]) = t
ct = (pk0[0] · pk′

1[0] + e[0],
pk0[1] · pk′

1[1] + e[1])

ss = Parallel SHA384(e)

(ss,pk) = decaps(sk0, ct)

synd = ct[0] · sk0[0] + ct[1] · sk0[1]
e′ = BIKE.decode(synd, sk′)
Abort if (e′ =⊥)
Abort if wt(e′) �= t

pk′
1 = (pk−1

0 [0](ct[0] − e′[0]),
pk−1

0 [1](ct[1] − e′[1]))

If wt(pk′
1[0]) is even pk′

1[0] = pk′
1[0] ⊕ 1

If wt(pk′
1[1]) is even pk′

1[1] = pk′
1[1] ⊕ 1

pk1 = (pk′
1[0], pk′

1[1])

ss = Parallel SHA384(e′)

Fig. 3. BIKE1 MKEM. Here, note that for every X ∈ {pk0, sk0, pk1, sk1, e, ct}, X con-
sists of two equal length halves (X[0], X[1]) (e. g., ct = (ct[0], ct[1])). Parallel SHA384

is the hash function (that was optimized for performance) used by BIKE [5].

Lemma 2. Let BIKE1-KEM be a (t, ε)-cpa-secure KEM. Then, BIKE1-MKEM
is a (t, ε)-cpa-secure MKEM.

Proof. Let A be an adversary against BIKE1-MKEM. We construct an adversary
B against the IND-CPA property of BIKE1. B receives a triple (pk, ct, ssb) and
attempts to guess b = {0, 1} as described before. It hands (pk, ct, ssb) to A and
outputs the same bit that A outputs. A cannot distinguish a ciphertext that
was generated by BIKE1-KEM from a ciphertext generated by BIKE1-MKEM,
because the generation is equivalent. Therefore,

AdvBIKE1−MKEM
cpa (A) ≤ AdvBIKE1−KEM

cpa (B) ≤ ε (4)

(we consider the same t for both A and B). ��

4.2 CKA, MKEM and DFR

This section discusses the difficulties that arise from using a KEM/MKEM that
has non-negligible DFR (e. g., BIKE1) for constructing a CKA2. Consider, the
case in the DR protocol of [4], where (wlog) A sends a msgi = (ct, pk) to B,
and B cannot decapsulate it (due to a decapsulation error). In this case the DR
protocol stalls: B ignores msgi and leaves its epoch counter tB unchanged. A
that does not expect an acknowledgement, continues to use the “bad” ciphertext

2 CKA uses ephemeral keys for both KEM and MKEM. This protects the scheme
from attacks that may exploit decapsulation failures, such as [12] in the context of
QC-MDPC codes. We note that CKA is aborted (and subsequently re-initialized)
upon encountering a decapsulation failure.

42 N. Drucker and S. Gueron

ct for its subsequent messages, during the epoch that has “no reason” to change.
The motivation for not sending an acknowledgement in response to msgi is: (a)
the DR protocol is asynchronous; (b) avoid a Denial of Service (DoS) situation
that occurs when A deliberately sends “bad” messages to B that cannot be
decapsulated. Here, sending (a failure) “acknowledgement” would overload the
network.

The DFR of BIKE1-MKEM is at most 10−8. We argue that this can be
tolerated from the practical viewpoint. Consider a user that performs 10, 000
conversations, using 10, 000 epochs. Every epoch includes at least one message.
Even in this extreme scenario, the user is expected to experience a decoding
failure at most once. From the practical viewpoint, it means that BIKE1-MKEM
is correct 99.999999% of the time.

A general treatment for DFRs in DR protocols is left as a future work, but
we provide here, some practical remedies.

1. A messaging application can offer “refresh”/“restart” functionality as com-
monly done in many applications. When a user expects messages but
notices that none arrive for a “long” period of time he can invoke
a “restart”/“refresh” for the conversation. This alleviates inconvenience
inflicted by decoding errors. Stalls due to DoS attacks are captured in [4].

2. A messaging application can use a timer. If no response arrives after a long
period of time the application can automatically restart the connection.

3. A receiver who fails to decapsulate a message can alert the sender. This app-
roach is not ideal because it can lead to a DoS attack. Unless, the receiver can
distinguish between benign decapsulation errors and maliciously-sent “bad”
messages. An example for such case is the Public Key Secure-Messaging
(PKSM) of [4].

5 A Hybrid CKA Constructions

Currently, new standards for quantum-safe key exchange, encryption and signa-
tures are developed, but no finalize vetted schemes are available for immediate
deployment (the NIST process [2] is expected to last a few more years). However,
threats (at least theoretical) to current CKAs exist: recorded sessions that are
secure in the classical world may be broken in a Post-Quantum (PQ) setting.
A hybrid approach that combines a classical and a quantum-safe scheme seems
to be a prudent approach, hoping to achieve post-quantum security without
taking the risk of a premature transition to an un-vetted scheme. To this end,
some hybrid Key Exchange (KEX) protocols and combiners have been recently
suggested (constructions and useful survey are given in [8]).

We extend the list of hybrid KEX/AKE/SSH with a new notion, of a Hybrid
CKA (H-CKA). Concretely, we propose two constructions. Parallel H-CKA and
Interleaved H-CKA, both using the hybrid KEM of [8].

Continuous Key Agreement with Reduced Bandwidth 43

Parallel H-CKA. This is a combination of two CKA protocols: classical CKAc

and quantum-safe CKAq (as illustrated in Fig. 4). Here, γA
1 = (skc, skq) ←CKA-

Init-A(kc, kq) and γB
2 = (pkc, pkq) ←CKA-Init-B(kc, kq), where kc, kq ∈ K, pkc ∈

PKc, pkq ∈ PKq and skc, skq are the associated secret keys.

– The procedure
(
γ′,msgi = (ctci , ct

q
i), ssi

) ←CKA-S(γ): (1) calculate (in par-
allel)

(skc
i , pkc

i , ct
c
i , ss

c
i) ← MKc.kgc(pkc

i−1)
(skq

i , pkq
i , ct

q
i , ss

q
i) ← MKq.kgc(pkq

i−1)

(2) apply a combiner (e. g., as in [8]) ssi = combine(ssc
i , ss

q
i ,msgi) and gen-

erate the shared secret ssi; (3) set γ′ = (skc
i , sk

q
i).

– The procedure
(
γ′, ssi

) ←CKA-R(γ,msgi): (1) decapsulate (ctci , ct
q
i) to

extract (ssc
i , ss

q
i , pkc

i , pkq
i); (2) set γ = (pkc

i , pkq
i) and apply the same combiner

as above.
There are no additional (sub)rounds in the Parallel H-CKA compared to CKA.
However, the communication bandwidth is the sum of the bandwidths of the
two involved schemes. We note that the H-CKA construction uses MKEMs, but
it also possible to use KEMs instead.

BA
skc

0, sk
q
0 pkc

0, pk
q
0

(skc
1, pk

c
1, ct

c
1, ss

c
1) MKc.kgc(pkc

0)
(skq

1, pk
q
1, ct

q
1, ss

q
1) MKq.kgc(pkq

0)
ss1 = combine(ssc1, ss

q
1,msg1)

ctc1,ct
q
1

msg1

(ssc1, pkc
1) = MKc.decaps(skc

0, ct
c
1)

(ssq1, pk
q
1) = MKq.decaps(skq

0, ct
q
1)

(skc
2, pk

c
2, ct

c
2, ss

c
2) MKc.kgc(pkc

2)
(skq

2, pk
q
2, ct

q
2, ss

q
2) MKq.kgc(pkq

1)
ss1 = combine(skc

1, sk
q
1,msg1)

ss2 = combine(skc
2, sk

q
2,msg2)

ctc2,ct
q
2

msg2

. . .

Fig. 4. Parallel Hybrid CKA (H-CKA) combining a classicical security and quantum-
safe MKEMs (MKc and MKq, respectively). The combiner combine is one of the options
of [8].

44 N. Drucker and S. Gueron

Interleaved CKA. An Interleaved CKA uses a CKA that is (t, 2Δ, ε)-secure
instead of (t,Δ, ε)-secure. This means that recovering from a state compromise
takes 2Δ rounds rather than only Δ. By [4], when a CKA uses KEM, we have
Δ = 0 (for comparison note that using DH has Δ = 2). Therefore, our interleaved
schemes are at least (t, 1, ε)-secure. Instantiating an interleaved H-CKA can be
done in two ways (deploying a “third ratchet”).

1. Option 1. We break Parallel H-CKA into two interleaved flows: (1) B → A :
ctc1; (2) A → B : ctq1 (3) B → A : ctc2; (4) A → B : ctq2. The sequence is
repeated. The associated shared secrets of each round are ssc

1, ssq
1, ssc

2, ssq
2,

. . .. In an odd round number i, ssi = combine(ssc
i/2, ss

q
i/2). In an even round

i, ssi = combine(ssq
i/2−1, ss

c
i/2).

2. Option 2. We send the same messages msgi as in Parallel H-CKA, but adding
a Boolean toggle flag f to γ, where: if f = true CKA-S and CKA-R oper-
ate as before but ssi = combine(ctci−1, ct

q
i); if f = false no message will be

sent/received and ssi = combine(ctci , ct
q
i).

The bandwidth in Option 1 is reduced (hopefully, by 50%) compared to Parallel
H-CKA. The bandwidth in Option 2 is the same as in Parallel H-CKA but the
number of rounds is halved. The tradeoff implied by using Interleaved H-CKA
is that Δ is increased by at least 1. This can be tolerated for achieving better
bandwidth/latency compared to Parallel H-CKA.

6 Conclusion

The new primitive MKEM is designed to reduce the bandwidth of the CKA
protocol used by the DR scheme. It can also be used by any cryptographic
protocol that uses two (or more) back to back KEMs. A concrete instantiation
that is based on BIKE1, shows that it can have a significant impact (of 50%) on
the bandwidth.

We are not sure if every KEM can be converted into an MKEM and if the
bandwidth reduction is necessarily significant. Here are two examples.

– Many KEMs are based on a PKE scheme where the encryption is designed to
operate on “short” messages. Consider Kyber512 [9] for instance. Its public
key has 736 bytes, its ciphertext has 800 bytes, and it encrypts a 32-byte
random message. Here, applying our MKEM method is easy (replacing one
randomized value with another). However, this will reduce the bandwidth
from 800 + 736 = 1, 536 to 800 + 704 = 1, 504 bytes i. e., save 32/1536 ≈ 2%.
It is still worth doing (at practically no cost), but the impact is modest.

– Consider BIKE2/3 that encrypt an error vector. This error vector has a spe-
cific weight that is different from the weight of the public key. Here, encrypting
the public key (instead of the error vector) requires some transformation from
different sets of bit strings (that have different cardinalities).

Continuous Key Agreement with Reduced Bandwidth 45

We suggest that H-CKA (Parallel H-CKA and Interleaved H-CKA) can be
used by messaging applications to hopefully achieve quantum-safe security but
without giving up the classical security.

We raised the difficulty of designing a general CKA primitive and DR scheme
(beyond the practical proposed remedies) that can use KEMs that have a non-
negligible DFR. This is left as an open problem.

Acknowledgments. This research was supported by: The Israel Science Foundation
(grant No. 1018/16); The BIU Center for Research in Applied Cryptography and Cyber
Security, in conjunction with the Israel National Cyber Bureau in the Prime Minister’s
Office; the Center for Cyber Law & Policy at the University of Haifa in conjunction
with the Israel National Cyber Directorate in the Prime Minister’s Office.

References

1. Messenger secret conversations: Technical whitepaper (2013). https://
fbnewsroomus.files.wordpress.com/2016/07/secret conversations whitepaper-
1.pdf

2. Nist:post-quantum cryptography - call for proposals, September 2017. https://csrc.
nist.gov/Projects/Post-Quantum-Cryptography

3. Whatsapp encryption overview: Technical white paper, December 2017. https://
www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf

4. Alwen, J., Coretti, S., Dodis, Y.: The double ratchet: security notions, proofs,
and modularization for the signal protocol. Cryptology ePrint Archive, Report
2018/1037 (2018). https://eprint.iacr.org/2018/1037

5. Aragon, N., et al.: BIKE: bit flipping key encapsulation (2017)
6. Bellare, M., Singh, A.C., Jaeger, J., Nyayapati, M., Stepanovs, I.: Ratcheted

encryption and key exchange: the security of messaging. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 619–650. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63697-9 21

7. Bernstein, D.J., et al.: Classic McEliece: conservative code-based cryptography
(2017)

8. Bindel, N., Brendel, J., Fischlin, M., Goncalves, B., Stebila, D.: Hybrid key encap-
sulation mechanisms and authenticated key exchange. Cryptology ePrint Archive,
Report 2018/903, September 2018. http://eprint.iacr.org/

9. Bos, J., et al.: CRYSTALS - Kyber: a CCA-secure module-lattice-based KEM.
Cryptology ePrint Archive, Report 2017/634 (2017). https://eprint.iacr.org/2017/
634

10. Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L., Stebila, D.: A formal
security analysis of the signal messaging protocol. In: 2017 IEEE European Sym-
posium on Security and Privacy (EuroS P), pp. 451–466, April 2017. https://doi.
org/10.1109/EuroSP.2017.27

11. Durak, F.B., Vaudenay, S.: Bidirectional asynchronous ratcheted key agreement
without key-update primitives. Cryptology ePrint Archive, Report 2018/889
(2018). https://eprint.iacr.org/2018/889

12. Guo, Q., Johansson, T., Stankovski, P.: A key recovery attack on MDPC with CCA
security using decoding errors. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016. LNCS, vol. 10031, pp. 789–815. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53887-6 29

https://fbnewsroomus.files.wordpress.com/2016/07/secret_conversations_whitepaper-1.pdf
https://fbnewsroomus.files.wordpress.com/2016/07/secret_conversations_whitepaper-1.pdf
https://fbnewsroomus.files.wordpress.com/2016/07/secret_conversations_whitepaper-1.pdf
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://eprint.iacr.org/2018/1037
https://doi.org/10.1007/978-3-319-63697-9_21
http://eprint.iacr.org/
https://eprint.iacr.org/2017/634
https://eprint.iacr.org/2017/634
https://doi.org/10.1109/EuroSP.2017.27
https://doi.org/10.1109/EuroSP.2017.27
https://eprint.iacr.org/2018/889
https://doi.org/10.1007/978-3-662-53887-6_29
https://doi.org/10.1007/978-3-662-53887-6_29

46 N. Drucker and S. Gueron

13. Jaeger, J., Stepanovs, I.: Optimal channel security against fine-grained state com-
promise: the safety of messaging. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10991, pp. 33–62. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96884-1 2

14. Lund, J.: Signal partners with microsoft to bring end-to-end encryption to skype,
October 2018. https://signal.org/blog/skype-partnership

15. Marlinspike, M.: Open whisper systems partners with Google on end-to-end
encryption for allo (2013). https://signal.org/blog/allo/

16. Perrin, T., Marlinspike, M.: The double ratchet algorithm. GitHub wiki (2016)
17. Poettering, B., Rösler, P.: Asynchronous ratcheted key exchange. Cryptology

ePrint Archive, Report 2018/296 (2018). https://eprint.iacr.org/2018/296
18. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-

ing. In: Proceedings 35th Annual Symposium on Foundations of Computer Science,
pp. 124–134, November 1994. https://doi.org/10.1109/SFCS.1994.365700

https://doi.org/10.1007/978-3-319-96884-1_2
https://doi.org/10.1007/978-3-319-96884-1_2
https://signal.org/blog/skype-partnership
https://signal.org/blog/allo/
https://eprint.iacr.org/2018/296
https://doi.org/10.1109/SFCS.1994.365700

Covert Channel Cyber-Attack over Video
Stream DCT Payload

(Copyright Protection Algorithm
for Video and Audio Streams)

Yoram Segal(&) and Ofer Hadar

Communication Systems Engineering Department,
Ben Gurion University of the Negev (BGU), 84105 Beer-Sheva, Israel

yoramse@post.bgu.ac.il

Abstract. The two main cyber-attack techniques via video packets are based on
using the packet header or the payload. Most of the standard software protection
tools easily detect anomalies in headers since there are fewer places to embed
the malicious content. Moreover, due to the relatively small header size, such
attacks are limited by the data volumes that can transfer. On the other hand, a
cyber-attack that uses video packets’ payload can effectively conceal much more
information and produce covert channels. Multimedia covert channels provide
reasonable bandwidth and long-lasting transmission streams, suitable for
planting malicious information and therefore used as an exploit alternative. The
primary focus of this article is a proof of concept of cyber-attack that conceals
malicious data in a video payload in the compressed domain, using steganog-
raphy (in real time). This malicious data is extracted using a covert channel and
a malware (that had previously planted at the end user side), on the other side.
Additionally, after the implementation of the attack, it is necessary to review its
parameters and conclude what the optimal parameters to use in different video
scenarios.
In this paper, we will demonstrate attacks that take advantage of compressed

domain video payload.
It is important to note that this method can be used as a method of copyright

protection.

Keywords: Exploit � Invisible covert channel � Steganography �
Watermarking � Cyber � Steno objects � Intra prediction � Inter prediction �
Discrete Cosine Transform � DCT � Motion vectors

1 Introduction and Motivation

New multimedia platforms are introduced to our lives frequently (e.g., Spotify, Cell-
comTV, Netflix) and the relative part of digital media in internet traffic is increasing.
Current studies [1] show that video traffic reached up to 73% of consumer internet
traffic in 2016 and predicted to reach 82% by the year 2021.

This work was supported by the Israel National Cyber Bureau.

© Springer Nature Switzerland AG 2019
S. Dolev et al. (Eds.): CSCML 2019, LNCS 11527, pp. 47–66, 2019.
https://doi.org/10.1007/978-3-030-20951-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20951-3_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20951-3_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20951-3_4&domain=pdf
https://doi.org/10.1007/978-3-030-20951-3_4

H.264, also known as MPEG-4 AVC (Advanced Video Coding) and H.265, are
widely used in the new multimedia platforms. H.264\H.265 is suitable for a wide range
of applications such as video conferencing, TV, storage, video streaming, surveillance
and others. Video steganography over H264 is the process of secretly inserting and
concealing data within videos. Steganography has been helpful in protecting media
copyrights (via digital watermarks). On end, sophisticated users have used steganog-
raphy as means of communication, transmitting hidden messages without anyone, but
the intended recipient/s, being aware of it. Lately, newspaper reports have indicated
that some users are using malicious software to break into smartphones, computers and
even internet-connected televisions.

Multiple techniques have been reported for steganography and watermarking. An
overview of digital image steganography is presented in [2]. In [3] basic building
blocks for steganography in the compressed video were examined: the embedding
operation and the choice of embedding alternatives.

It is shown in [4] that Facebook Cover Photos can effectively hide information
using Discrete Cosine Transform (DCT) coefficient embedding algorithms [5].
Watermarking solves the challenge of illegal video distribution and manipulation.
Watermark’s robustness is critical for avoiding attackers’ watermark disruption [6, 7].
Some methodologies developed in [5] for compressing the robustness of different
watermarking techniques. The watermarking algorithm presented in [9] is embedding
the watermark into the video by adjusting intermediate frequency coefficients.

An innovative approach for cyber-attack applying a Smart threshold and Anomaly
Correction to compressed domain DCT coefficients described in [9]. In this paper, we
focus on manipulations of compressed domain Error estimation of DCT coefficients.

Video compression protocols, such as H.264, for example, divide video frames to
Macro Blocks (MB), perform pixel predictions, calculate errors between predicted
values and original values, perform DCT transform on the error results and then
quantization of the obtained DCT coefficients. We conceal malicious data in a video
payload using steganography [11] algorithm that operates in the frequency domain and
embeds binary codewords into a selected set of DCT coefficients.

The Cyber-attack algorithm takes advantage of lack of sensitivity of movie viewers
to small deviations of Macro-Block (object) values from their original ones. Viewers
are not likely to notice the minor noise of MBs. Moreover, since the viewer does not
know the accurate real value of MBs in the original video movie, they are not likely to
notice minor changes that affect MBs values accuracy.

2 Glossary

To complement the needed background, fundamental glossaries are presented in the
following section.

Steganography: The art of data hiding within data. Steganography is an encryption
technique that means to conceal the very existence of a message in oppose to cryp-
tography that means to protect the content of a message.

48 Y. Segal and O. Hadar

Watermarking: The method of embedding data into digital multimedia content, not
necessarily in a hidden manner. This is used to verify the credibility of the content or to
recognize the identity of the content’s owner. Watermarking has an additional
requirement of robustness to possible attacks.

Covert channel: Communication paths that were neither designed nor intended to
transfer information at all. These channels are typically used by untrustworthy pro-
grams to leak information to their owner while performing a service for another
Program.

Compression: The conversion of information to a representation or form that requires
fewer bits than the original. This is useful for transmitting across network as well as for
storing. Two types of compression: Lossless compression: decompressed image is the
same as the original. Lossy compression: decompressed image is not the same as the
original but looks similar.

Intra Prediction: Prediction of a current video data block (e.g. macroblock) is created
from previously coded block in the same frame. Exploiting the similarity to neigh-
boring blocks, spatial redundancies.

Inter Prediction: Prediction of a current video data block (e.g. macroblock) is created
from one or more past or future frames (i.e. reference frames). The accuracy of the
prediction can usually be improved by compensating for motion between the reference
frame(s) and the current frame. Exploiting the temporal redundancies.

DCT (Discrete Cosine Transform): A Fourier related transform which expresses a
finite sequence of data points in terms of a sum of cosine functions oscillating at
different frequencies. DCT is highly useful for lossy compression most of the signal
information tends to be concentrated in a few low-frequency components of the DCT,
and small high-frequency components can be discarded. The transform is calculated
using a scaling matrix (Sf), combined with the quantization process into (Mf) where:

Mf � Sf � 215

Qstep
ð1Þ

Quantization: Mapping of a signal with a range of values X to a quantized signal with
a reduced range of values Y. Using fewer bits to represent the same signal in a lossy
manner. Usually preformed after DCT conversion and described as division by a
quantization step size, Q step, then rounding the result:

Q ¼ round
1

Qstep

� �
ð2Þ

Entropy Coding: Removes statistical redundancy in the data by representing com-
monly occurring code words by short binary codes in a lossless manner. Huffman

Covert Channel Cyber-Attack over Video Stream DCT Payload 49

coding is a type of entropy coding that use prefix code for each symbol in an efficient
way.

Motion Vectors: A two-dimensional vector used for inter-prediction that provides an
offset from the coordinates in the decoded picture to the coordinates in a reference
picture.

Median Vector: A two-dimensional vector (2D) that represents the estimated motion
vector of a macroblock. It calculated from its neighbors. In video compression, instead
of transmitting the macroblock motion vector, we are carrying the difference between
the original motion vector and its median vector (predicted motion vector). A 2D
motion vector has two components - the X component and the Y component. The
median vector calculated per component. All X components from all neighbors motion
vectors grouped into one sorted array. The value in the array that separates the higher
half from the lower half is determinate as the X component value of the median vector.
The Y component will be calculating in the same way.

YUV: YUV is a color encoding system that takes human perception into account in
the encoding process, allowing reduced bandwidth for chrominance components and
enabling transmission errors and compression artifacts to be more efficiently masked by
the human perception than using a RGB representation. The YUV model defines a
color space in terms of one luma component (Y) which represents the brightness, and
two chrominance components (UV) which represent color. YUV is computed from
linear RGB as follows:

Y ¼ 0:299Rþ 0:587Gþ 0:114B ð3Þ

U � 0:492 B� Yð Þ ð4Þ

V � 0:877 R� Yð Þ ð5Þ

DES Encryption: The Data Encryption Standard (DES) uses a block cipher algorithm
that takes a fixed length string of plaintext bits and transforms it through a series of
complicated operations into another cipher text bit string of the same length. A key is
used to customize the transformations, so decryption is only possible with the
knowledge of the key used in the encryption process.

Reed–Solomon Code: Reed-Solomon codes are group of error correcting codes
commonly used in commercial and consumer technologies and communications. The
codes operate on a block of data treated as a set of finite field elements called symbols.
The codes can detect and correct multiple symbol errors, depending on the number of
symbols used in the code for checking: By adding t check symbols to the data, a Reed–
Solomon code can detect any combination of up to and including t erroneous symbols,
or correct up to and including t/2 symbols.

Data Packet Structure: A Typical data packet contains a header, payload and trailer.
A header usually contains instructions about the data carried in the packet (such as

50 Y. Segal and O. Hadar

length, numbering information and source/destination address). The payload represents
the body of the packet and contains the actual data the packet is delivering to the
destination. A trailer usually contains bits marking the end of the data in the payload
and error checking bits.

ARP Spoofing: ARP spoofing, ARP cache poisoning, or ARP poison routing, is a
technique by which an attacker sends (spoofed) Address Resolution Protocol
(ARP) messages onto a local area network. Generally, the aim is to associate the
attacker’s MAC address with the IP address of another host, such as the default
gateway, causing any traffic meant for that IP address to be sent to the attacker instead.
ARP spoofing may allow an attacker to intercept data frames on a network, modify the
traffic, or stop all traffic. Often the attack is used as an opening for other attacks, such as
denial of service, man in the middle, or session hijacking attacks. The attack can only
be used on networks that use ARP, and requires attacker have direct access to the local
network segment to be attacked (Wikipedia).

MSE (Mean Square Error): The mean squared error (MSE) measures the average of
the squares of the errors—that is, the average squared difference between the estimated
values Ŷi and the real value Yi. The MSE is a measure of the quality of an estimator—it
is always non-negative, and values closer to zero are better. If a vector of n predictions
generated from a sample of n data points on all variables, Y is the vector of observed
values of the variable being predicted Ŷ, then the within-sample MSE of the predictor
is computed as:

MSE ¼ 1
n

Xn

i�1
Yi � Ŷi
� �2 ð6Þ

PSNR (Peak Signal-to-Noise Ratio): Peak signal-to-noise ratio describes the ratio
between the maximum possible power of a signal and the power of corrupting noise
that affects the fidelity of its representation and is usually expressed in terms of the
logarithmic decibel scale. PSNR is most easily defined via the mean squared error
(MSE). If Here, MAXI is the maximum possible pixel value of the image then the
PSNR (in dB) is defined as:

PSNR ¼ 10 log10
MAXI2

MSE

� �
ð7Þ

SSIM (Structural Similarity Index): The structural similarity (SSIM) index is a
method for predicting the perceived quality of digital images and videos and is used for
measuring the similarity between two images. The measurement is based on a com-
parison to an unaltered image that is used as a reference. SSIM is designed to improve
on traditional methods such as PSNR and MSE. The measure between two windows x
and y of common size N � N is (Wikipedia):

Covert Channel Cyber-Attack over Video Stream DCT Payload 51

s x; yð Þ ¼ 2lxly þC1
� �þ 2rxy þC2

� �
l2x þ l2y þC1

� �
r2x þ r2y þC2

� � ð8Þ

With: lx;ly the average and r2x ; r
2
y the variance, rxy the covariance of x and y. C1,

C2 two variables to stabilize the division with weak denominator (see Wikipedia for
more details).

3 Objective

The primary objective of this article is to supply proof of concept to a covert channel
that is based on H264 DCT coefficients manipulations. We demonstrate a cyber-attack
that conceals malicious data in a video payload, in the compressed domain, using
steganography (in real time). It will be used as a remote-control tool of malicious code
that already exist at the victim side. The video stream allows as communicate with the
malicious code via our covert channel. This new method let us take advantage on the
user device without any operating system constrains or firewall restrictions.

After the implementation of the attack, it is necessary to review its parameters and
conclude what are the optimal parameters to be used in different scenarios contexts.

The suggested attack will be implemented in the H.264 standard since it is widely
used and offer flexibility in the compression process. The H.264 standard defines a
syntax for compressed video and a method for decoding this syntax to produce a
displayable video sequence. The covert channel that connects the malware and the
adversary will be the positions of DCT coefficients in the block, a known dictionary
and the malicious data concealed within the coefficients’ values.

The attack was implemented in MATLAB environment with an H.264 open source
codec.

To measure the quality of the attack, we performed several tests to ensure high
accuracy in detection of the malicious data upon receiving the infected H.264 bit-
stream. Other quality metrics used are the well-known MSE (mean square error) and
PSNR (peak sound to noise ratio) metrics to ensure that the additive infected data do
not increase bitrate to a noticeable level.

Since this work deals with concealment of malicious data within DCT coefficients,
our primary focus is on the I-macroblocks, in which the residual DCT coefficients are
coded and transmitted rather than the motion vectors. P and B-frames consist of
I-macroblocks as well as predicted macroblocks, while I-frames merely consist of
I-macroblock.

Cyber protection algorithms have two basic models: Detection and Prevention.
Detection is an alerting algorithm that typically uses signature analysis or statistical
anomaly detection methods. It has the advantage of being attack specific but may not
be able to generalize. The generalization gap is overcome by incorporating some
automatic adaptation in the detection processor implementing some learning cycles,
which might consider an attack as standard data. Prevention is a process that prevents
malicious data from penetrating the site or the system. The Prevention process operates

52 Y. Segal and O. Hadar

on a regular basis regardless of the existence or non-existence of attack, therefore,
providing more general protection compared to the Detection process.

In this research work, we are exploring a real-time Prevention algorithm for H.264
video streams. It is part of a more General Prevention Research (GPR) against attacks
that use the video or audio stream payload as a malicious data container.

Payload manipulations produce some artifacts that can be described as noise
addition to original video stream images. Modern video coding techniques employ
lossy coding schemes, which often create compression artifacts that may lead to
degradation of perceived video quality. Payload attack takes advantage of naturally
introduced compression artifacts and assumes that the user will not be able to distin-
guish between compression artifacts and malicious data of covert channel artifacts.

3.1 Attack Perspective

To be able to prevent attack via video, it is necessary to analyze and understand the
attacker point of view. Video-based Cyber-attacks are divided into two stages: first, the
planting of hostile malware which will perform offensive actions such as: taking
control of the device, deleting information, denial of service and so on. The second
stage is establishing of a hidden communication channel (covert channel), capable of
communicating with the malicious software that was preinstalled and sending to it
remote operation commands, such as timing the attack and determining the type of
attack. In advanced attacks, the covert channel can be used to manage a rolling event,
whereas the attack develops according to the victim’s responses. The paper is focused
on offensive prevention of the second cyber-attack stage (the covert channel), assuming
that the hostile software already exists on the victim system. The first cyber-attack stage
is out of the scope of this paper.

Attackers objective is maximizing covert channel bandwidth, thus maximize the
amount of malicious data delivered in the stream payload, while minimizing the noise
level. There are two types of such video attacks – Online and Offline. Offline attacks
based on recorded movies. The attackers have access to or have some movies that they
promote. This situation provides attackers with all the time that they need to plant
malicious data in the video. Online attacks are much more complicated because of
attacks based on intervening between the content streaming server and the user (man-
in-the-middle attack) [11]. The online interference needs to guarantee very low latency.
Brute-force payload manipulation requires online video transcoding process (decoding
and encoding). The transcoding process consumes processing time and increases the
latency. Therefore, online attacks will usually be done in the compressed domain and
accomplished by manipulating the DCT and the MV components. Unlike the
transcoding process, extracting DCT and MV consumes only 10% of the resources that
required for full stream transcoding.

Our research to prevent such attacks focused on preventing MV and DCT
manipulation. The fundamental concept is based on a random selection of MV and
DCT coefficients and performing minor random changes of their values.

The prevention concept is mostly a self-immunization process by which an immune
system becomes fortified against some types of malicious data (known as the

Covert Channel Cyber-Attack over Video Stream DCT Payload 53

immunogen). This process described as self-attacking with random parameters such
that any attack will be impacted and destroyed by those random changes.

3.2 Infrastructure Implementation Method

In general, the attack method is to establish a covert channel between the attacker and a
VLC media player malware that located at the end user PC - a VLC that implement the
attack code that created with Matlab and converted to C code (see Fig. 1). The VLC
had been planted on the victims’ host using social engineering or other known vul-
nerabilities exploitations. The second step is to partially decompress a bitstream (which
addressed to the malware) and conceal malicious data in a video payload using
steganography algorithm that operates in the frequency domain and embeds a binary
codeword into a selected set of DCT coefficients. Finally, upon receiving the incoming
bitstream, the malware must successfully extract the malicious data while decoding the
video.

H.264 provides a clearly defined syntax for representing compressed video and
related information (see Fig. 2). Upon receiving a bitstream, a decoder parses the
syntax, extracts the parameters and data elements and can then proceed to decode and
display video. The syntax is organized hierarchically, from a complete video sequence
at the highest level, down to coded macroblocks and blocks.

At the top level, an H.264 sequence consists of a series of ‘packets’ or Network
Adaptation Layer Units (NAL). These can include parameter sets containing key
parameters that are used by the decoder to correctly decode the video data and slices,
which are coded video frames or parts of video frames. At the next level, a slice
represents all or part of a coded video frame and consists of several coded macroblocks,
each containing compressed data corresponding to a 16 � 16 block of displayed pixels
in a video frame. At the lowest level, a macroblock contains type information
describing the choice of methods used to code the macroblock, prediction information
such as coded motion vectors or intra prediction mode information and coded residual
data. Understanding the syntax is crucial for accessing the desired location while
working in real time and analyzing a bitstream.

Fig. 1. Real time man in the middle attack

54 Y. Segal and O. Hadar

Fig. 2. H.264 protocol hierarchy syntax and data casting location

Covert Channel Cyber-Attack over Video Stream DCT Payload 55

3.3 Research Structure and Lab Setup

The research program includes the following components:

1. Defense algorithm
2. Attack algorithm
3. Attack envelope (computers, smartphones, IoT)

Our research to prevent such attacks is focused on preventing MV and DCT
manipulation. The fundamental concept is based on random selection of MV and DCT
coefficients and performing minor random changes of their values.

The prevention concept is essentially a self-immunization process by which an
immune system becomes fortified against some types of malicious data (known as the
immunogen). This process can be described as self-attacking with random parameters
such that any attack will be impacted and destroyed by those random changes.

As part of this research phase, we focus on attacks, initiated from within the LAN
environment, thus performed from inside the organization. In order to evaluate covert
channel available bandwidth and corresponding video quality degradation and in order
to measure video delivery delays due to the attack, we created an attack envelope that
uses ARP spoofing [11] for “hijacking” the user requested live channel video stream
and replacing it by the infected one (see Figs. 3 and 4).

Fig. 3. Attack lab setup indicating stage A of the ARP spoofing used for hijacking the stream

Fig. 4. Attack lab setup indicating stage B of the ARP spoofing used for hijacking the stream

56 Y. Segal and O. Hadar

Our measurement results indicate that the delay introduced to the requested live
video stream, due to stream hijacking, ranges between 10’s to 100’s msec, which is
unnoticeable and may be attributed to regular network delays.

Using this method, some of the ARP updates will still arrive from the original real
live streaming content server. Therefore, we can expect some temporary disruptions in
covert channel transmission (when the user client switches back to the original server).
The switch is transparent to the user and only means that covert channel will deliver its
malicious content only part of the time when it is the selected streaming server choice.

We use this attack to route the victim’s HTTP request through the attacker who
manipulates the data. The HTTP video requests are filtered with IPTABLES (Linux
networking tool) and changed to a different destination port (and/or address).

As it can see from Fig. 3 and from Fig. 4, In our lab, we performed the following
Proof of Concept measurements, to understand the effect of a MITM (Man-in-The-
Middle) on the innocent viewer.

Switch the traffic routing through another computer between the Client and Video
Server (Layer 3 re-routing only); Perform of simple proxying with SOCAT (TCP
listening and forwarding tool). (Layer 4 proxying only); Repacking the video (from one
type of stream to another) via FFMPEG, and full transcoding via FFMPEG.

3.4 Attack Algorithm and Related Work

The attack method in the article is based on [6, 7, 10]. In this section we will point out
the similarities and differences between the approaches and how they were managed.

The papers mentioned above discuss embedding a watermark in single JPEG
picture, therefore use different approach in embedding the watermark. The transition
from handling pictures to handling videos required several adjustments such as:

– Work locally (macroblock by macroblock and frame by frame) rather than globally
over an entire picture [6, 7]. This was done to comply with the MATLAB based
H.264 codec.

– The basic unit on which the algorithm operates is 4 � 4 macroblock rather than
8 � 8 as in [9] to comply with the MATLAB based H.264 codec.

– The algorithm mentioned in [6, 7] embedded the watermark to the 1000 largest
DCT coefficients (DC excluded). Since our algorithm operates macroblock by
macroblock we decided to select DCT coefficients in the medium range frequencies
as the algorithm mentioned in [10].

– By embedding the watermark to the medium frequencies, we achieve: robustness to
noisy channel – if a noise is added to the video it will not affect the correlation
results. Robustness to operations such as high and low pass filter.

To keep a robust attack while adjusting a picture algorithm to videos we have made
few assumptions:

– Agreat advantage for this attack is the lack of need of reference video to determine if a
watermark is present in a video or to determine which watermark was embedded [6].

Covert Channel Cyber-Attack over Video Stream DCT Payload 57

– There is a symmetric secret key that must share between the adversary and the
users’ decoder. The symmetric secret key contains the location of the DCT coef-
ficients in which we embedded the watermark, the length of a word and many times
it duplicated.

– To extract and detect the watermark the decoder must have a copy of the dictionary
[7]. The dictionary must be known to both sides but not necessary be secretive.

3.5 Implementation

The malicious data is concealed in the bitstream by embedding a single codeword to
luma macroblocks. Although the term ‘watermark’ is usually used to describe a veri-
fication or an authenticity measure, in this subsection, we will refer to the malicious
codeword to concealed in a macroblock as a watermark for simplicity.

The DCT watermarking technique in this project has two main characteristics: it
operates in the transform domain instead of the spatial domain, and it can extract the
watermark from a frame without comparison to an original un-marked image. The
implemented technique is suitable for luminance samples of a source frame, or more
precisely, for the luminance residual samples.

The H.264 codec used in the MATLAB environment operates on different mac-
roblocks sizes according to the standard [12–14]. However, the residual macroblock
which goes through the encoding process has a size of 4 � 4 (See Table 1).

The watermark consists of a codeword sequence, which superimposed to some of
the coefficients of the full-frame DCT transform. The mark always superimposed to the
same set of coefficients in each block. The set of coefficients, which the watermark
superimposed to can be in every frequency; however, due to the tradeoff between
perceptual invisibility and robustness to compression and other conventional image
processing techniques, it is essential to choose the coefficients carefully.

To regain some robustness properly choosing the set of DCT values the mark is
superimposed to, and by perceptually hiding it in image areas characterized by high
luminance variance is essential. For that reason, the set of coefficients belongs to the
medium range frequencies.

There is a tradeoff between the size of the dictionary too and the length of a
codeword versus the perceptual quality of a video, long codeword cause greater
degradation and use higher bitrate to transmit a single symbol. A part of the research
was to examine and construct a codebook with unique codewords. Each codeword is
composed of M integers, and in our case since the code is binary, M bits. There are

Table 1. 4 � 4 macroblock DCT coefficients

DC 2 6 7
3 5 8 13
4 9 12 14

10 11 15 16

58 Y. Segal and O. Hadar

many ways to construct such dictionary, yet after extensive trial and error period the
optimal dictionary included 16 codewords, each has 8 bits length. 14 of the codewords
used as symbols and two more are signaling words for beginning or ending a trans-
mission between the adversary and the malware.

The dictionary that used in this work is presented in Table 2, the first and last
codewords used as signaling symbols:

The primary objective in creating the dictionary was to achieve a highly successful
detection rate by the malware. Although a dictionary that is formed by 8 bits codeword
can consist of 256 unique codewords, the difference (bitwise) between any two
codewords is a single bit. By creating greater Hamming distance (the number of bit
differences between two codewords) between any two codewords, the detection, which
uses correlation method, produce a significant difference in the correlation result when
extracting the suspected codeword and correlating it with all the words in the dic-
tionary. Another means to regain robustness and overcome false detections was to use
redundant bits by duplicating a single codeword multiple times and referring to it as a
single codeword. Denote the rule in which the adversary embeds the watermark as an
embedding rule, and it goes as follows:

Let I be the luma Macro Block (MB) on which the embedding process will per-
form, T to be the coefficient set in the original bitstream (after integer transform &
quantization) and X to be the codeword to embed in the MB.

X ¼ xif g; i 2 coefficient set ð9Þ

T ¼ tif g; i 2 coefficient set ð10Þ

The data T is added by modifying the selected DCT coefficients according to one of
the following formulas:

t0i ¼ ti þ xi ð11Þ

Table 2. Dictionary

1. 0 0 0 0 1 1 1 1
2. 0 0 1 1 0 0 1 1
3. 0 0 1 1 1 1 0 0
4. 0 1 0 1 0 1 0 1
5. 0 1 0 1 1 0 1 0
6. 0 1 1 0 0 1 1 0
7. 0 1 1 0 1 0 0 1
8. 1 1 1 1 0 0 0 0

9. 1 1 0 0 1 1 0 0
10. 1 1 0 0 0 0 1 1
11. 1 0 1 0 1 0 1 0
12. 1 0 1 0 0 1 0 1
13. 1 0 0 1 1 0 0 1
14. 1 0 0 1 0 1 1 0
15. 0 0 0 0 0 0 0 0
16. 1 1 1 1 1 1 1 1

Covert Channel Cyber-Attack over Video Stream DCT Payload 59

ti0 ¼ ti 1þ xið Þ ð12Þ

t0i ¼ ti þ tij jxi ð13Þ

Let T 0 be the selected manipulated coefficient set to reinsert to the MB, and Y to be
the codewords dictionary table.

z ¼ Y � T�

M
¼ 1

M

X
i2coefficiant set yit

�
i ð14Þ

The above formula will allow us to determine which codeword was embedded.
The Y codeword that yields the most significant z correlation is assumed to be the
present in the MB. To find the exact location of the coefficients set we want to mark in
a bitstream, a partial decompression is required. The bitstream is composed from NAL
(Network Abstraction Layer) unit in the highest syntax layer which is composed of
Slices and other control parameter units for the decoder. One layer under is the Slice
layer in which a coded unit (frame) is made up of one or more slices. Each slice
consists of a Slice Header and Slice Data. The Slice Data is a series of coded mac-
roblocks and skip macroblock that contains no data. In the lowest layer, the Mac-
roblock layer, each coded macroblock contains the following parameters:

– MB type: I, B or P type.
– Prediction information: prediction mode for I MB or reference frames for B/P MB.
– Coded Block Pattern (CBP): indicates which luma and chroma blocks contain non-

zero residual elements.
– Quantization parameter: quantization step size.
– Residual data.

Denote the rule in which the malware identifies and extracts the codeword as extracting
rule, and it goes as follows: Let I* be the infected luma MB from which we need to
extract the codeword and let T* be the corrupted coefficient set. To identify the correct
codeword, we will measure the correlation, between the corrupted coefficient set and
every possible codeword, Y, from the dictionary (codebook).

4 Results

The video database was formed by movies with different characteristic such as:
magnitude of motion between frames, amount of details or changes in a frame in the
spatial domain (detailed frames tend to hold in the medium and high frequencies range
more data than frames with greater smooth areas), natural and artificial objects in the
video, etc.

All videos are of the same frame size of 144 � 176 pixels per frame (i.e., QCIF)
and frame rate of 30 fps. The videos were initially loaded to the codec in raw
(YUV) representation and then encoded to H.264 format to match the MATLAB based
codec. The GOP (group of pictures) size set to 4 without B frames.

60 Y. Segal and O. Hadar

The codeword that embedded in the videos is of index 2 in the dictionary (i.e., 0 0 1
1 0 0 1 1). The same word was embedded 742 times in each video to examine the
probability of detection and false alarm when given a fixed code word within a wide
range of video scenes. Figure 5 demonstrates the mean correlation over all the word
received versus all the words in the dictionary, while each plotline is a different video.
The peak of all lines is in the codeword of index two that yields the highest mean
correlation. The codeword of index 9 has the lowest correlation to codeword since it is
the one’s complement to the embedded codeword. All other codewords have mean
correlation values around zero.

Figure 6 demonstrates the hit (successful extraction and identification of the
embedded codeword) and miss (false detection of the embedded codeword) rate for
different videos.

Fig. 5. Mean correlation values vs. dictionary codewords

Fig. 6. Successful detection rate for several videos

Covert Channel Cyber-Attack over Video Stream DCT Payload 61

The mean successful detection is 92%. That result improved by adding residual
data, but it would cause higher MSE (if more DCT coefficients will change per mac-
roblock) or creating a smaller dictionary with fewer symbols that would make us use
more symbols to embed the same data in a video. The lowest successful detection is
88%, and the highest successful detection is 96%. This result means that even the
lowest successful detection it is quite an excellent method to conceal and detect
embedded data.

To avoid false detection, in addition to maximal computing correlation of the
suspected manipulated DCT coefficients with the dictionary words it is necessary to
establish a correlation threshold. If all correlation results are less than the threshold, we
will assume no codeword sent.

To establish this threshold, we looked for the maximum correlation result with the
minimum value over all codewords. Every codeword embedded with uniform distri-
bution and a total of over 12000 codewords concealed in a variety of videos. The
threshold that calculated was 0.0606.

Threshold calculation method:

1. Compute correlation for every suspected coefficient set with all words in the
dictionary.

2. Find maximal correlation.
3. If the maximal correlation points the codeword that was embedded (successful

identification) save its value.
4. Among all correlation values that saved find the minimal and this is the threshold.

For the watermark casting simulation, we used formula 11 that produced the
highest successful identification rate as well as the lowest MSE. In the following graph
- Fig. 7, we can see the effect of the MSE differences between the embedded frames
(that contain malicious data) and clear frames with no additional information. As we
can see the effect of the embedded data is to increase MSE (*350 or PSNR 22 db) in
videos which includes minor motions and lower MSE (*65 or PSNR 30 db) in videos

Fig. 7. MSE vs. frame index per video

62 Y. Segal and O. Hadar

with enough motion. It happens since as the motion in a video increase, the residual
macroblocks contain more information and more DCT coefficients have non-zero
values. So, when adding to the coefficients the binary word, it would effect on the MSE
only half of the time (only when we add 1 and no effect by adding 0).

At the initial design of the algorithm the manner in which the attack operates relied
mostly on the methods described in [6, 7, 9]. After the changes and additional code to
embed and extract malicious codewords to the codec, the success ratio and correlation
results did not fully comply with the results in the papers above. The results of these
experiments are presented in Fig. 8. The extraction of a suspected codeword from an
incoming bitstream first step is to produce a corrupted set of DCT coefficients with an
added codeword with the same size. The second step is to calculate the correlation of
the corrupted coefficients with the codewords in the dictionary. With the use of these
results, we created a false-positive and true-positive graph that describe number of hits
versus the correlation value (see Fig. 8). The cut point between the two graphs is our
selected threshold. The first version of the dictionary was composed of binary code-
words with 8 bits, and the total size of the dictionary was 256. That means the minimal
Hamming distance between the words was 1 bit. However, with the use of this method,
the success rate was around 62%.

Changes in the implementation were needed to adjust the gap between the papers
and the work with H.264 codec. Therefore, we made changes at the dictionary and
extended the Hamming distance in the expense of dictionary size that led to lower
bitrate but increased the mean successful detection rate to 92%.

5 Comparative Analysis DCT Steganography Techniques

In paper [16] various video steganography techniques in compressed domain are dis-
cussed. Researchers used videos for steganography, which are compressed in MPEG-2,
MPEG-4 or H.264/AVC format, although H.265 format is also available but still not

Fig. 8. Distribution of correlation vs. hit count

Covert Channel Cyber-Attack over Video Stream DCT Payload 63

utilized for steganography. In video compressed domain, the commonly used methods
for steganography are categorized according to the literature and for embedding secret
data researchers utilized motion vector, macroblocks, variable length code etc. based
techniques. These video steganography techniques are discussed by highlighting var-
ious quality parameters.

Yang et al. [17] proposed an algorithm to hide data in videos using 4 � 4 DCT
coefficients. They used vector quantization for hiding 1 bit of secret data in each 4 � 4
DCT block and the hiding was done in the low frequency components of the subblocks.
After hiding data, the stego video was compressed using different quantization
parameters using H.264/AVC coding standard. Experimental results showed that this
technique was highly robust against compression. Shao-dao et al. [18] proposed an
approach for video steganography based on high bitrate hiding algorithm to hide video
as a secret message. They embedded 1 bit of secret message in each 4 � 4 macroblocks
of DCT using vector quantization. The utilized 8 low frequency coefficients for
embedding the information and the extraction was a blind retrieval for this scheme. By
analyzing the result, it can be concluded that the scheme was highly robust against
compression and PSNR was degraded by only 0.22 dB on average and BER at
receiver’s end was only 0.015%. But in terms of capacity, this scheme was able to hide
only 2 frames of QCIF format in 96 frames of CIF format. Ma et al. [19] presented a
technique based on intra-frame distortion drift introduced after embedding in
H.264/AVC videos. In this technique the intra-frame distortion was introduced after
embedding but not propagated to the neighboring blocks. They deployed the I-frame
DCT quantized coefficients to hide data in the 4 � 4 luminance blocks and there was
no intra-frame distortion drift to the covert video. They used block coefficient pairs for
embedding with one used for embedding the secret data and the other one was used to
fix the level of distortion. The obtained results demonstrated that the embedding
capacity of the scheme was high and average PSNR was above 40 db. Esen et al. [20]
proposed an adaptive block-based technique by utilizing forbidden zone hiding and
selective embedding. The de-synchronization occurred because of adaptive block
selection was handled by Repeat Accumulate (RA) codes. For embedding Y compo-
nent of the frame was utilized and middle-frequency. A comparative summary of the
various methods can be seen in Table 3.

Table 3. Comparative analysis of steganography techniques

Hiding scheme Quality parameters PSNR

[17] 4 � 4 DCT macroblock coefficients PSNR, Bit Error Rate –

[18] 4 � 4 DCT macroblocks PSNR, Bit Error Rate 42 db
[19] 4 � 4 DCT block paired coefficients Capacity, PSNR 40 db
[20] Y components of middle frequency

band of DCT
Capacity, PSNR 37 db

Our DCT block correlation coefficients PSNR 30 db @ 150 Kbps
45 db @ 80 Kbps

64 Y. Segal and O. Hadar

6 Conclusion and Future Research Directions

In this paper we suggested a covert channel technic, that is based on video stream. Such
method can be used for remote-control cyber-attack without any operating system
dependency. The new idea based on manipulating DCT of compressed H.264 standard
video streams. The paper offers to prevent such attack by generate random data within
the potential DCT. Future work in this area can consider a hybrid technique in which
the watermark added in the frequency domain, but spatial information is also exploited
by marking only a subset of the image blocks in which there is a lot of changes and
details. This hybrid technique can increase the robustness of the watermark, as well as
better perceptual quality. Future work in this area can consider a hybrid technique in
which the watermark or stego information added in the frequency domain, but spatial
information is also exploited by marking only a subset of the image blocks in which
there is a lot of changes and details. This hybrid technique can increase the robustness
of the watermark, as well as better perceptual quality. Another future work can be to
consider CDR (Content Disarm & Reconstruction) techniques that may cope with such
watermarks.

Acknowledgment. This work was supported by the Israel National Cyber Bureau. The authors
gratefully thank Mr. Lior Yahav for implementing the attack algorithm.

References

1. Cisco: Cisco Visual Networking Index: Forecast and Methodology, 2016–2021 (2017)
2. Neufeld, A., Ker, A.D.: A study of embedding operations and locations for steganography in

H.264 video. In: SPIE, Multimedia Watermarking, Security, and Forensics, vol. 8665 (2013)
3. Morkel, T., Eloff, J.H., Olivier, M.S.: An overview of image steganography. In: Proceedings

of the Fifth Annual Information Security South Africa Conference, ISSA 2005 (2005)
4. Amsden, N.D., Chen, L., Yuan, X.: Transmitting hidden information using steganography

via Facebook. In: International Conference on Computing, Communication and Networking
Technologies (ICCCNT) (2014)

5. Lampson, B.: A note on the confinement problem. Commun. ACM, 613–615 (1973)
6. Cox, I.J., Kilian, J., Leighton, T., Shamoon, T.: Secure spread spectrum watermarking for

image, audio and video. In: IEEE International Conference on Image Processing, vol. 3,
pp. 243–246 (1996)

7. Barni, M.: A DCT-domain system for robust image watermarking. Signal Process. 66, 357–
372 (1998)

8. Verma, H.K., Singh, A.N., Kumar, R.: Robustness of the digital image watermarking
techniques against brightness and rotation attack. Int. J. Comput. Sci. Inf. Secur. IJCSIS, 5
(2009)

9. Jianfeng, L., Zhenhua, Y., Fan, Y., Li, L.: A MPEG2 video watermarking algorithm based
on DCT domain. In: Digital Media and Digital Content Management (DMDCM) (2011)

10. Amsalem, Y., Hadar, O., Puzanov, A., Bedinerman, A., Kutcher, M.: DCT-based cyber
defense techniques. In: Applications of Digital Image Processing XXXVIII (2015)

11. Katzenbeisser, S.: Information Hiding Techniques for Steganography and Digital. Artech
House (2000)

Covert Channel Cyber-Attack over Video Stream DCT Payload 65

12. Fouant, S.: Man in the Middle (MITM) Attacks Explained: ARP Poisoning. ShortestPathFirs
(2010)

13. Richardson, I.E.G.: The H.264 Advanced Video Compression Standard. Wiley (2011)
14. “H.264 encoder decoder scheme”
15. Sullivan, G.: Overview of the H.264/AVC video coding standard. IEEE Trans. Circuits Syst.

Video Technol. 13, 560–576 (2003)
16. Juneja, M., Mukesh, D.: Overview of video steganography in compressed domain. Int.

J. Control. Theory Appl. 1–11 (2018)
17. Yang, M., Bourbakis, N.: A high bitrate information hiding algorithm for digital video

content under H.264/AVC compression. In: Midwest Symposium on Circuits and Systems,
vol. 2005, pp. 935–938 (2005)

18. Shou-Dao, W., Chuang-Bai, X., Yu, L.: A high bitrate information hiding algorithm for
video in video. Eng. Technol. 413–418 (2009)

19. Ma, X., Li, Z., Tu, H., Zhang, B.: A data hiding algorithm for H.264/AVC video streams
without intra-frame distortion drift. IEEE Trans. Circuits Syst. Video Technol. 20(10), 1320–
1330 (2010)

20. Esen, E., Alatan, A.A.: Robust video data hiding using forbidden zone data hiding and
selective embedding. IEEE Trans. Circuits Syst. Video Technol. 21, 1130–1138 (2011)

66 Y. Segal and O. Hadar

Effects of Weather on Drone to IoT QKD

Shlomi Arnon(&) and Judy Kupferman

Ben-Gurion University of the Negev, Beer Sheva, Israel
shlomi@bgu.ac.il

Abstract. The Internet of Things (IoT) is playing a growing role in society, and
includes control over a range from household appliances to municipal power
grids and nationwide assets. As a result, hackers from a national level down to
low level criminals are looking to take advantage of important IoT infrastruc-
tures. These present an immediate target for cyber-terrorists as well as more
mundane attacks by thieves and personal enemies, and it is imperative to devise
defensive measures. In this work, we describe potential possible attacks on
several IoT systems. As a result, vendors of the IoT infrastructure employ
conventional encryption which is based on complexity to fight against hackers.
However the emerging technology of quantum computing will make deci-
phering of the conventional encryption an easy task. This leads us to propose a
scheme for use of QKD (quantum key distribution) which could be effective as a
countermeasure. In this paper we will describe the feasibility study of weather
effect design guidelines for a small, short range, mobile QKD system from drone
to IoT on the ground.

Keywords: Internet of Things � Quantum Key Distribution � Free Space Optics

1 Introduction

The Internet of Things (IoT) is found in critical applications of everyday life today.
These range from the home, including appliances, lighting and wearables, to a much
larger scale that affects thousands of people. IoT is used in transportation, vehicles and
smart road infrastructures, in architecture using smart building design, in hospitals and
medical devices, and on a municipal and even larger scale: pollution monitoring, smart
traffic systems, water supply, gas supply, and power plants with a smart grid. As the
scale of use increases, the danger of hacking is growing exponentially. If a mobile
phone or computer is hacked, this can cause financial loss. But if a medical device is
hacked, the life of the patient can be affected. If there is a power outage, millions of
lives could be at risk. If street lights all turn green at the same time multiple deaths will
result. And when sensors that serve to detect pollution in a water supply are disrupted
or disabled, large scale slaughter can ensure.

Examples of this are numerous. In 2015, hackers broke into dozens of energy firms
in the US, Turkey and Switzerland, and in some cases gained operational access to vital
equipment [1]. In 2015 hackers shut off power for 225,000 Ukrainians. In 2017, North
Korean hackers breached an American energy utility using malware emails [2]. In
2018, probably Russian hackers hit three energy and transport companies in the

© Springer Nature Switzerland AG 2019
S. Dolev et al. (Eds.): CSCML 2019, LNCS 11527, pp. 67–74, 2019.
https://doi.org/10.1007/978-3-030-20951-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20951-3_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20951-3_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20951-3_5&domain=pdf
https://doi.org/10.1007/978-3-030-20951-3_5

Ukraine and Poland [3]. In 2017, in California, St. Jude Medical’s implantable cardiac
devices were declared by the FDA to be vulnerable to hackers. These contained
transmitters that read data and sent it remotely to physicians [4]. As for transport,
vehicles are connected by internet to other vehicles, to infrastructure and to internet and
radio supporting communications, where by 2021 connected automobiles will account
for over 82% of cars sold [5]. Vehicle hacking has already been demonstrated,
beginning with the Jeep Cherokee hack of 2015 where security researchers gained
control of steering wheel brakes and engine, causing Fiat Chrysler to recall 1.4 million
vehicles, and most recently at the Black Hat security conference where Keen Security
Labs presented details of how they remotely hacked a Tesla Model S [6, 7].

Today such systems are protected by classical cryptography. However, quantum
computers will be able to hack classical cryptography [8, 9]. According to Arvind
Krishna, head of IBM Research, in 2026 quantum computers will be able to hack any
classical cryptographic system. It has been known since the 1980s that quantum
computers could factor large numbers, which is one of the mainstays of public key
cryptography. At that time construction of large quantum computers was not possible,
but due to advances in novel materials and in low temperature physics, large com-
mercial quantum computer systems will be viable and available within five years, and
anyone wanting to ensure their data is protected for over 10 years should move
immediately to alternate forms of encryption.

An effective solution to this is quantum cryptography. Classical cryptography is
based on computational hardness, e.g. factoring of large numbers. Conversely, quan-
tum cryptography is based on the underlying physics, and thus is not vulnerable to
more powerful computers. The basis of quantum cryptography is Quantum Key
Distribution (QKD), which involves sharing of a secret key between two partners that
in theory cannot be hacked by an outside source. QKD networks have been in com-
mercial use for several years, and working QKD networks have been installed in the
US, Europe, Japan and China, where in January 2019, the Chinese Micius satellite
passed encrypted data between China and Austria over a distance of 7600 km [10].
These have been proven theoretically to be completely secure. Another solution being
explored is post quantum cryptography [11], with algorithms that would be secure
against quantum hacking. We focus on QKD because it has already been successfully
implemented.

QKD has two basic technologies: discrete variable (DV-QKD) where each bit of
private information is encoded onto the discrete degrees of freedom of an optical signal,
and continuous variable (CV-QKD) which employs coherent communication tech-
niques. Implementation has been done over fiber and through free space, but an
interesting development is that of mobile transmitters, namely drone based [12] and
hand-held devices [13]. Since IoT is implemented in a broad range of situations,
flexible and mobile defenses against hacking may prove of prime importance. In this
work we present a free space optics (FSO) scheme for mobile quantum key distribution
to systems that are controlled using IoT, and analyze the effect of weather conditions on
transmission. The scheme is aimed at infrastructure components that would be par-
ticularly vulnerable to cyber-terror, such as power stations, controllers of water supply,
street lighting, etc. but it could be effective for any system linked to IoT. This paper is

68 S. Arnon and J. Kupferman

organized as follows. First we give a description of the proposed system. We calculate
the probability for the quantum key to be received, as a function of transmitter height.
We perform a numerical simulation, and end with a discussion.

2 Scenario Under Consideration

The quantum key QKD concept under consideration employs polarization of single
photons to transmit the key. These photons are called qubits – quantum bits – which is
a generic name for any quantum two level system. The qubits encode bits, so that such
a qubit could carry bit 0 or bit 1. This technique is used in many DV- QKD protocols.
These protocols are divided into two general types: “prepare and measure”, where the
first and most representative example is BB84 [14] and “entanglement based” such as
E91 [15]. In this work the system could be BB84 for example. This is well tested, and
proven secure in theory and practice, and used by banks and government [16]. In BB84
(developed by Bennett and Brassard in 1984, of course), Alice sends a string of random
bits in one of two bases at random. Bob chooses a basis for measurement. After
measuring they disclose over a public channel which basis was used for each mea-
surement. They throw out the measurements where a different basis was used, and half
the bits remain as a shared key. The bits could be encoded in photon polarization,
where one basis could have polarization angle 0° for bit 0 and 90° for bit 1, while the
other basis would be 45° for 0, −45° for 1. Thus the shared key is distributed. This is
secure against eavesdropping because quantum mechanics prohibits cloning; the
eavesdropper, Eve, cannot make an exact copy of a qubit. She can intercept it, measure
it, and send it on, but she doesn’t know which basis to measure it in, and with
probability of ½ she will use the wrong basis. Afterwards Alice and Bob compare small
portions of the key to determine error rate, and if it’s more than 0, they know Eve has
been there and take action accordingly. Of course errors could result from hardware
problems, but they assume it’s all eavesdropping.

We now describe the proposed scenario. As usual in quantum information systems,
we denote the sender as Alice and the receiver as Bob. The infrastructure consists of
several Bobs on the ground, each controlled over the internet. Alice wishes to send
each Bob a quantum key for signal encryption/decryption. This key cannot be broken
by hackers, and Alice can send a different key at regular intervals. We place Alice in a
drone, moving in the air from one Bob to another. The drone hovers directly above the
receiver, Bob, and moves from one Bob to the next like bees that go from one flower to
the next. It repeats the pattern at regular intervals, so that the key is replaced regularly
for each Bob. We treat the case of one Bob, and for simplicity, we assume he is located
on a static platform on the ground. Extension to mobile platforms is straightforward.
Figure 1 illustrates the scheme in question.

Effects of Weather on Drone to IoT QKD 69

Alice sends the message to Bob through free space over a distance Z. The prob-
ability for Bob to receive a photon transmitted by Alice, as a function of Z, the distance
between them, is given [17–19] by

PBob Zð Þ ¼ PAliceK1 Zð Þ: ð1Þ

whereK1 is a constant andGBob is the gain of Bob’s telescope. GBob is equal to (p dBob/k)
2

[16] where dBob is the unobscured circular aperture diameter of Bob’s telescope, and k is
the wavelength.

The probability to transmit one photon, assuming the source is Poisson distributed,
is given as

PAlice ¼ rTð Þne
�rT

n!
: ð2Þ

where T is the pulse duration, r is rate and in our case we assume that n = 1
K1 is given by

K1 Zð Þ ¼ gq GBobGAlicegAlice gBob
LA Zð Þ
Z2

k
4p

� �2

ð3Þ

Fig. 1. QKD. Alice sends a signal containing a quantum key to IoT stations on the ground.

70 S. Arnon and J. Kupferman

where, ηq is quantum efficiency, ηAlice, ηBob are optical efficiencies, GAlice is Alice’s
telescope gain, and GAlice is equal to (p dAlice/k)

2 [20] where dAlice is the unobscured
circular aperture diameter of Alice’s telescope. LA(Z) is atmospheric loss. Since Alice
will be directly above Bob, atmospheric loss should be minimal, but factors such as
weather, fog etc. must also be taken into account. The atmospheric loss as a function of
distance is give as

LA Zð Þ ¼ 10
�caZ
10 ð4Þ

where ca is the attenuation. Here we will take several samples of average atmospheric
loss, for various weather conditions. We performed a numerical simulation of the
probability for Bob to receive a photon, using typical values shown in Table 1. Table 2
shows the atmospheric attenuation due to weather for a wavelength of 780 nm [21].
The range chosen was up to 100 m between the drone Bob and the ground station
Alice. Figure 2 shows the decrease in Bob’s probability with increased height of Alice.

Table 1. Values for simulation

Definition Symbol Value

Gain of Alice’s telescope GAlice 5105

Gain of Bob’s telescope GBob 5106

Alice’s optical efficiency ηAlice 0.9
Bob’s optical efficiency ηBob 0.9
Bob’s receiver quantum efficiency ηq 0.1
Optical wave length k 780 nm
Pulse duration T 1 ns
Photon rate r 109 photon/s
Number of photon n 1

Table 2. Weather attenuation [21]

Aerosols Visibility [m] ca Attenuation [dB/km]
(at 780 nm)

Clear ∞ 0
Haze 5200 3
Fog 830 20
Cloud 170 100

Effects of Weather on Drone to IoT QKD 71

From Fig. 2 we see that the probability for Bob drops sharply as the distance goes
from 0 to about 100 m, but after that the decrease is slower. There is almost no dif-
ference between clear visibility and for haze, and only a slight difference for fog, while
for cloudy weather the difference becomes significant after a distance of about 30 m.

3 Discussion

We have proposed a system where a quantum key is repeatedly distributed by a mobile
transmitter to ground based receivers. QKD in the proposed scheme uses single photon
transmission and reception. As seen from Fig. 2 the probability for Bob to receive a
photon drops steeply with the increased distance from Alice. Clearly the height of the
transmitter should be as low as possible. Atmospheric loss affects the probability for
reception, where clouds have a greater effect than fog or haze and the disparity between
them is greater for distances of over 30 m. This suggests that varying weather con-
ditions would not be a serious obstacle to operation of such a system if the drone height
can be kept relatively low. If atmospheric loss were significant such a system would be
impractical for a mobile system, since one could not guarantee consistent and identical
weather in the different locations. Thus it appears that drone borne transmission may be

Fig. 2. Bob‘s detection probability as a function of the distance separation between Alice and
Bob (IoT), for four different values of atmospheric loss.

72 S. Arnon and J. Kupferman

a preferable and efficient method of transmitting QKD to the ground system. The
mobility of the system enables flexibility in the ground system as well, so the proposal
may be adapted to forms of IoT that are mobile such as medical appliances worn by
patients, who could receive instructions to stop at “charging stations” at prescribed
intervals where the device could receive a new cryptographic key, or vehicle QKD.
With the increase in mobile internet applications, flexibility of the QKD system seems
to be a natural development.

References

1. http://fortune.com/2017/09/06/hack-energy-grid-symantec/
2. https://www.nbcnews.com/news/north-korea/experts-northkorea-targeted-u-s-electric-power-

copanies-n808996
3. https://www.euractiv.com/section/cybersecurity/news/hackers-accused-of-ties-to-russia-hit-

3-east-european-companies-cybersecurity-firm/
4. https://money.cnn.com/2017/01/09/technology/fda-st-jude-cardiac-hack/
5. https://info.entrustdatacard.com/iot-tesla?_ga=2.95926104.559287255.1513006603-14616

2010.1496333764
6. https://www.kaspersky.com/blog/blackhat-jeep-cherokee-hack-explained/9493/
7. https://hackernoon.com/smart-car-hacking-a-major-problem-for-iot-a66c14562419
8. https://www.zdnet.com/article/ibm-warns-of-instant-breaking-of-encryption-by-quantum-

computers-move-your-data-today/
9. https://it.slashdot.org/story/18/05/19/200225/ibm-warns-quantum-computing-will-break-

encryption
10. Liao, S.-K., et al.: Satellite-relayed intercontinental quantum network. Phys. Rev. Lett. 120

(3), 030501 (2018)
11. Bernstein, D.J.: Introduction to post-quantum cryptography. In: Bernstein, D.J., Buchmann,

J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 1–14. Springer, Berlin (2009).
https://doi.org/10.1007/978-3-540-88702-7_1

12. Hill, A.D., Chapman, J., Herndon, K., Chopp, C., Gauthier, D.J., Kwiat, P.: Drone-based
quantum key distribution. Urbana 51, 61801–63003 (2017)

13. Chun, H., et al.: Handheld free space quantum key distribution with dynamic motion
compensation. Optics Express 25(6), 6784–6795 (2017)

14. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin
tossing. In: Proceedings of IEEE International Conference on Computers, Systems and
Signal Processing, vol. 175, p. 8, New York (1984)

15. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661
(1991)

16. Tentrup, T.B.H., et al.: Large-alphabet Quantum Key Distribution using spatially encoded
light. arXiv preprint arXiv:1808.02823 (2018)

17. Arnon, S., Kopeika, N.S.: Laser satellite communication network-vibration effect and
possible solutions. Proc. IEEE 85(10), 1646–1661 (1997)

18. Arnon, S.: Effects of atmospheric turbulence and building sway on optical wireless-
communication systems. Opt. Lett. 28(2), 129–131 (2003)

19. Yang, F., Cheng, J., Tsiftsis, T.A.: Free-space optical communication with nonzero boresight
pointing errors. IEEE Trans. Commun. 62(2), 713–725 (2014)

Effects of Weather on Drone to IoT QKD 73

http://fortune.com/2017/09/06/hack-energy-grid-symantec/
https://www.nbcnews.com/news/north-korea/experts-northkorea-targeted-u-s-electric-power-copanies-n808996
https://www.nbcnews.com/news/north-korea/experts-northkorea-targeted-u-s-electric-power-copanies-n808996
https://www.euractiv.com/section/cybersecurity/news/hackers-accused-of-ties-to-russia-hit-3-east-european-companies-cybersecurity-firm/
https://www.euractiv.com/section/cybersecurity/news/hackers-accused-of-ties-to-russia-hit-3-east-european-companies-cybersecurity-firm/
https://money.cnn.com/2017/01/09/technology/fda-st-jude-cardiac-hack/
https://info.entrustdatacard.com/iot-tesla%3f_ga%3d2.95926104.559287255.1513006603-146162010.1496333764
https://info.entrustdatacard.com/iot-tesla%3f_ga%3d2.95926104.559287255.1513006603-146162010.1496333764
https://www.kaspersky.com/blog/blackhat-jeep-cherokee-hack-explained/9493/
https://hackernoon.com/smart-car-hacking-a-major-problem-for-iot-a66c14562419
https://www.zdnet.com/article/ibm-warns-of-instant-breaking-of-encryption-by-quantum-computers-move-your-data-today/
https://www.zdnet.com/article/ibm-warns-of-instant-breaking-of-encryption-by-quantum-computers-move-your-data-today/
https://it.slashdot.org/story/18/05/19/200225/ibm-warns-quantum-computing-will-break-encryption
https://it.slashdot.org/story/18/05/19/200225/ibm-warns-quantum-computing-will-break-encryption
http://dx.doi.org/10.1007/978-3-540-88702-7_1
http://arxiv.org/abs/1808.02823

20. Chen, C.-C., Gardner, C.S.: Impact of random pointing and tracking errors on the design of
coherent and incoherent optical intersatellite communication links. IEEE Trans. Commun.
37(3), 252–260 (1989)

21. Kopeika, N.: A System Engineering Approach to Imaging, 700 p. SPIE Press (1998). (2nd
printing. April 2000)

74 S. Arnon and J. Kupferman

Malware Classification Using Image
Representation

Ajay Singh, Anand Handa(B), Nitesh Kumar, and Sandeep Kumar Shukla

C3I Center, Department of CSE,
Indian Institute of Technology, Kanpur, India

ajay199109@gmail.com, {ahanda,niteskr,sandeeps}@cse.iitk.ac.in

Abstract. In the recent years, there has been a rapid rise in the num-
ber of files submitted to anti-virus companies for analysis. It has become
very difficult to analyse the functionality of each file manually. Malware
developers have been highly successful in evading signature-based detec-
tion techniques. Most of the prevailing static analysis techniques involve
a tool to parse the executable, and extract features or signatures. Most
of the dynamic analysis techniques involve the binary file to be run in
a sand-boxed environment to examine its behaviour. This can be easily
thwarted by hiding the malicious activities of the file if it is being run
inside a virtual environment. Hence, there has been a need to explore
new approaches to overcome the limitations of static or dynamic analy-
sis such as time intensity, resource consumption, scalability. In this paper,
we have explored a new technique to represent malware as images. We
have used 37, 374 samples belonging to 22 families and then applied deep
neural network architectures such as ResNet-50 architecture including a
dense Convolutional Neural Network (CNN) for classifying images. By
converting the executable into an image representation, we have made
our analysis process free from the problems faced by standard static
and dynamic analyses. With our models, we have been able to get an
accuracy of 98.98%, and 99.40% in classifying malware samples by using
deep CNN, and ResNet-50 respectively on our dataset. In this paper, we
have also compared the results of our proposed model on our collected
dataset with the results obtained on publically available datasets like
Malimg having 9,339 samples belonging to 25 families. We also present
our findings on the limitation of this method through experimentation
on packed and previously unseen classes of malware.

Keywords: Malware classification · Convolutional neural network ·
Machine learning · Deep neural network · Image processing

1 Introduction

The Internet has become an integral part of our daily life. Almost 57% of the
world’s population as of 2017 is connected over the Internet [8]. We use it for

c© Springer Nature Switzerland AG 2019
S. Dolev et al. (Eds.): CSCML 2019, LNCS 11527, pp. 75–92, 2019.
https://doi.org/10.1007/978-3-030-20951-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20951-3_6&domain=pdf
https://doi.org/10.1007/978-3-030-20951-3_6

76 A. Singh et al.

banking, communicating, entertainment, shopping, and various other commer-
cial and non-commercial activities. Albeit making our life convenient, the Inter-
net has exposed us to the risk of getting attacked. Illegitimate users use malware
programs to commit financial frauds or steal private/sensitive information from
legitimate users. The number of reported attacks are increasing every year. Pan-
dalabs has reported identifying 227,000 malware samples every day in 2016 [9].
What started as a hobby of tech-enthusiast and researchers, has now evolved into
an international community of highly trained programmers motivated by easy
profits [32]. It has now grown to be a multi-million dollar industry [6] where
hacking tools are sold and bought, just like the legal software industry. Even
technical support and customer services are available to allure pillagers.

The proliferation of malware at an ever-increasing rate poses a serious threat
in the post-internet world. Malware detection and classification has become one
of the most crucial problems in the field of cyber security. With the ever increas-
ing risk of attack, the onus lies on the security researchers for devising new tech-
niques for detecting malware and developing new security mechanisms against
them.

Traditional malware identification tool, anti-virus software, use signature
matching to identify malware. The analyst at security companies analyse a sam-
ple received by them and develop unique signatures related to that sample. The
anti-virus database is then updated with these signatures, which then compares
the signature of every file on the machine with its database. If the signature of a
particular file matches with any of the signatures in the anti-virus database then
that file is labelled as malware. Due to their high matching speed and high accu-
racy in finding known threats signature-based techniques are effective, but these
techniques fail to cope with code obfuscation and fail to effectively identify newly
arrived threats. More than 800,000 files are submitted every day to VirusTotal
[11] for analysis. Since the volume of samples obtained by Antivirus companies
for analysing is very large, so doing the analysis manually is not possible. So
the process of analysis needs to be automated, which will help in reducing the
number of files which requires manual analysis.

Cohen has shown that detecting whether a given program is malware is an
undecidable problem [1]. Automated detection and analysis techniques are lim-
ited by this theoretical result and might fail in some cases. So for such cases,
manual intervention is required to understand new attacks and analyses eva-
sion techniques. The new techniques learned from such manual analysis is then
incorporated into the automated software improving its efficacy.

The famous quote by Fred R. Barnard, “A picture is worth a thousand words”
motivated us. In this paper, we will examine whether it holds for malware also.
Visualizations have always proven to be beneficial in getting a comprehensive
view of any system or data. We are intuitively more capable of making more
sense out of images than any other representation. So this paper explores how
we can generate a visual representation for representing a binary file and examine
whether there are any patterns visible in those visual representations. Then it
leverages those representations for classifying malware samples into their respec-

Malware Classification Using Image Representation 77

tive classes/families. Classification of malware is helpful for the analyst as it helps
them to get a better insight into the functioning of the malware. Malware sam-
ples which have similar code structure are grouped into one class. This is very
helpful for analysts because just by knowing the class/family of the malware they
can have an idea about how to devise sanitation and detection techniques for
that malware. Also by knowing the family to which a malware belong we have
a general idea about its behaviour. This helps in sharing of knowledge between
malware analysts.

Specifically, this paper contributes a new method for visually representing
malware. Using this new representation technique we have been successful in
effectively classifying malware to their respective families/classes. Also, our tech-
nique can be used for real-time classification because the pre-processing time is
almost negligible and the image can be directly given as input to the classifier.
We have used RGB representation over grey-scale for malware images because
the accuracy of our model is not very much promising for the grey-scale image
representation. With the new representation, we have been able to achieve an
improvement in the results as shown in the previous work. We have discussed
the results in the Sect. 5.

Also, we have successfully applied state of the art neural network technique
for malware analysis, which was found missing in the work we surveyed.

Rest of the paper is organised as follows: Sect. 2 gives a general overview of
some of the popular and common malware analysis from literature and their
advantages and disadvantages. Section 3 discusses our methodology. Section 4
includes the configuration details of the models used in the present work.
Section 5 discusses the experimental results and their comparison with previ-
ous work, and Sect. 6 concludes the paper.

2 Related Work

Malware are being used to attack critical infrastructures, for espionage against a
nation, for stealing private information or for conducting financial frauds. All the
attacks use the network as a medium. Almost all the malware detection system in
the industry use either a signature based approach or anomaly-based approach.
A signature is a unique sequence of bytes that is present in the malicious binary
and in the files that have been damaged by that malware [34]. Signature-based
methods use the unique signatures developed by the anti-virus companies using
the known malware to capture the threat. This approach is fast and has high
accuracy, but it fails in detecting previously unseen malware. So generally, after a
new malware has infected numerous systems, an analyst may be able to generate
its signature. Also, the signature database has to be prepared manually which
is a time-consuming process [24]. In the anomaly-based approach, the anti-virus
companies form a database of actions that are considered safe. If a process
breaks any of these predefined rules, it is labelled as malicious [37]. Although
with anomaly-based method we are able to identify new unseen malware samples,
but the false alarm rate is very high.

78 A. Singh et al.

Bazrafshan et al. presented a heuristic based method [18]. In a heuristic
based approach analysts use machine learning techniques to train a malware
classifier. Static, dynamic, visual feature representations or a combination are
used for training a classifier on a dataset composed of both malign and benign
binaries. Various machine learning techniques such as Support Vector Machines,
Random Forests, Decision Trees, Naive Bayes, K-means Clustering and Gradient
Boost and Ada-boost have been suggested for classifying and detecting malware
samples into either their respective classes or to filter out the malware that
requires further exhaustive analysis by an analyst. A few of these techniques,
used in the literature, are discussed in this section.

Static analysis includes extraction of static features from the binary file using
binary analysis tools. The static analysis have certain limitations as they can be
easily evaded if the malware is obfuscated or packed, we require some robust
behavioural features for our analysis. This brings us to various Dynamic Anal-
ysis Approaches. Common to all dynamic analysis based approaches is that the
execution of the binary sample is done in a controlled environment for extracting
behavioural features inside a virtual machine.

Similar to static analysis dynamic analysis also have certain limitations as
it cannot explore all the execution paths of an executable and it tries to detect
the virtual environment during the execution process. So another field of study
forked out in the area of malware analysis, visualization approach which improves
detection and classification accuracy for malware. Some of the visualization
approaches are discussed in the next subsection of the paper.

2.1 Visualization Approaches

Several Hex viewer tools were already available to visualize and edit a binary
file, but they just display the file in hexadecimal and ASCII formats and fails
to convey any structural information to the analyst. First, we will discuss how
various researchers tried to visualize binaries.

Nataraj et al. [31] were the first to explore the use of byte plot visualization
for automatic malware classification. They converted all the malware sample to
grey-scale byte plot representations and extracted texture based features from
the malware image. They used an abstract representation technique, GIST, for
computing texture features from images. Their dataset consists of 9,458 malware
samples belonging to 25 different classes, collected from Anubis [3] system. They
used the global image-based features to train a K-Nearest Neighbour model,
with Euclidean distance as the distance measure, to classify malware samples
into their respective classes and accuracy of 97.18% was obtained. The results
obtained showed that image processing based malware classifying techniques can
classify malware more quickly than existing dynamic approaches. Inspite of that,
their approach has a huge computational overhead of calculating texture-based
features.

Han et al. [21] proposed a new way of visualizing malware using op-code
sequences to detect and classify malware samples. They used image matrices to
visually represent malware which assisted in detecting features of malware and

Malware Classification Using Image Representation 79

also in finding similarities between different samples swiftly. First, the binary
file is disassembled using IDAPro [7] or OllyDbg [15], and the op-code sequence
is divided into blocks. Then they used two hash functions and for each block
of op-code sequence, computed a coordinate and the RGB value using the two
hash functions. Then they plotted all the RGB values to their corresponding
coordinates in a matrix of dimension 8 by 8 to get an image matrix. They used
“selective area matching” for calculating similarities between image matrices
and evaluated their model on malware samples from 10 different families. Their
results showed that image matrices of malware from the same family had a
higher similarity score than with malware from different families. This shows
that image matrices can effectively classify malware families.

Makandar et al. [27] converted malware into a 2-dimension grey-scale image
and classified the samples using texture-based features. They extracted texture
based global features using Gabor wavelet transform and GIST and used Mahen-
hur dataset [27] for experiments, which comprises of 3131 binaries samples from
24 unique malware families. They used the Artificial Neural Networks (ANN)
for classifying malware and reported an accuracy of 96.35%.

Liu et al. [26] proposed an incremental approach to automatically assign
malware to their respective families and detect new malware. They used a com-
bination of grey-scale byte plot, Op-code n-grams, and import functions. The
decision-making module uses these features to classify malware samples to their
respective families and to identify new unknown malware. They used Shared
Nearest Neighbour (SNN) as the clustering algorithm to detect new malware
families. Their model is evaluated on a dataset consisting of 21,740 malware
samples from 9 different families and reported classification accuracy of 98.9%
and the detection accuracy of 86.7%.

Aziz et al. [29] proposed a malware class recognition and classification using
supervised learning classifier. The proposed model has three-stages. In the first
stage, pre-processing is done by applying wavelet transforms. In the second stage,
feature extraction is performed using Discrete Wavelet Transform (DWT) which
decompose the image into four levels. Lastly, in the third stage classification
is performed using Support Vector Machine (SVM) classifiers. They achieved
a classification accuracy on two datasets (Malimg [31] and Mahenhur [27]) as
91.05% and 92.53% respectively.

In 2016, Seonhee et al. [35] proposed a malware classification model using a
deep neural network. Firstly, the model converts the malware code to malware
image and then it is trained using a convolutional neural network. They have
performed two sets of experiments. In the first set, they have classified 9-families
with an accuracy of 96.2%, 98.4% of top-I, and top-II error rates respectively
and in the second set of experiments, the model classified 27 malware families
with an accuracy of 82.9% and 89% of top-I, and top-II error rate.

Barath et al. [30] proposed a malware classification method that visualizes the
malware as an image without changing its global structure. Principal Component
Analysis (PCA) is used for feature extraction. The authors used Artificial Neural
Network (ANN), k- Nearest Neighbors (k-NN) and Support Vector Machine

80 A. Singh et al.

(SVM) for classifying the malware into their respective classes. The highest
accuracy reported is 96.6% for k-NN on the dataset BIG 2015 provided by Kaggle
for Microsoft malware classification challenge.

In another paper, Aziz et al. [28] recognized malware classes with image
processing techniques using SVM. Texture-based features like Gabor wavelet,
GIST and Discrete Wavelet Transform (DWT) were extracted. The proposed
model outputs an accuracy of 98.84% and 98.88% using k-NN(k = 3) and SVM
respectively on Malimg dataset having 12,470 samples.

Kalash et al. [23] recently proposed a deep learning framework for mal-
ware classification. They have introduced a CNN- based architecture to clas-
sify malware samples by converting malware binaries to grey-scale images. They
have then trained a CNN for classification. The experiments were conducted on
two datasets namely Malimg and Microsoft malware dataset. Authors achieved
95.52% and 99.97% accuracy on Malimg and Microsoft respectively.

Yakura et al. [38] proposed a method to reduce the overhead in the investi-
gation of samples by extracting the essential byte sequences in malware samples.
Along with CNN, they have applied an attention mechanism [17,25] to an image.
Attention mechanism is a technique to dynamically select important features
which improves the performance. The approach is based on region distinction
which extracts the characteristic byte sequences mainly related to a malware
family. The treated information proves to be very useful in case the malware
samples were packed. The authors have used 147803 samples belonging to 542
families from VX Heaven [10] as the dataset. The 2D- CNN achieves an accuracy
of 50.97%.

Although a lot of work has been already done in this area using visualization
approaches, still there is a scope of improvement in accuracy for classifying
malware into their respective families. Image-based detection and classification
prove to be effective because it leverages the structural similarity between the
known and new malware binaries. Moreover, visual analytic helps analysts to
recognize patterns in malware's code and behaviour, thus helping them to come
up with better results. We used a novel way of representing a binary file as a
coloured image matrix to analyse and classify malware. Our approach requires
no code extraction or decompilation or execution. We converted the malware
samples into images and used a machine learning algorithm to classify them into
their respective classes.

3 Our Methodology

A large number of malware samples are created using polymorphic and meta-
morphic techniques, so different malware will possess some structural similarity,
share some attributes and behaviours. Despite most of the new malware being
very similar to the known malware samples, signature-based anti-virus programs
still fail to detect them because they do not take into account structural and
behavioural properties for detection.

Malware Classification Using Image Representation 81

3.1 Dataset Collection and Pre-processing

Collection: We collected more than sixty thousand malware samples from var-
ious malware repositories such as Malshare [5], VirusShare [4], VirusTotal [2].
These portals collect malware using Honeypots and also users around the world
submit to them for analysis and sharing malware samples. Then we removed the
duplicates from the malware collection by comparing MD5 hash of each file. To
assert that all of those samples were valid malware samples, we analysed them
using VirusTotal and selected only those which were labelled as malicious by
more than 50% of the anti-virus engines in the VirusTotal report.

Labelling: Since we are using supervised learning for classification, therefore
we require labelled samples. So for labelling these samples we used the label
provided by Microsoft anti-virus engine in the VirusTotal report. For this we
had to provide the MD5 hash of the binary file to VirusTotal. If that file had
already been analysed by their engine then it would return a report otherwise
we had to upload the file to get the report. There were a few samples in our
dataset that Microsoft anti-virus engine failed to classify, we decided to drop
such samples to maintain consistency of labels. After this we were left with
37, 374 valid malware samples as shown in Table 1.

Table 1. Our dataset details

Malware type Malware family Number of samples

Virus Krepper 1127

Luder.B 1291

Sality 1342

Expiro 2097

Virut 728

Worm Yuner.A 3906

Allaple.A 6126

VB.AT 3748

Backdoor Agent 1024

Rbot 856

TrojanDownloader Tugspay.A 3652

Renos 1880

Small 447

TrojanDropper Sventore.C 1654

Sventore.A 1503

Trojan Comame!gmb 1874

Bulta!rfn 608

startpage 1327

Skintrim.N 228

Virtool Vbinject 1247

Rogue FakeRean 128

Winwebsec 581

Total 37,374

82 A. Singh et al.

Fig. 1. Conversion of binary file to coloured image. (Color figure online)

Conversion of Binary File to Image: Generally, all binary files can be
considered as a sequence of ones and zeros. So first we converted each binary file
into a string of ones and zeros. Then we divide the content of the string into units
of 8 bits each, that is, 8 characters for every unit. Now considering each unit
as a byte, we took their upper and lower nibbles as indices of a 2-dimensional
colour map that stores RGB values corresponding to that Byte. Repeating this
for every unit we got a sequence of RGB values (pixel values) corresponding to
each Byte in the binary file.

Fig. 2. Sample images of malware belonging to different families

Now we converted this sequence of pixel values into a 2-dimensional matrix,
thus getting an image representation for a binary file. For this work we have

Malware Classification Using Image Representation 83

fixed the width of the matrix to 384 Bytes or units. So the height of image is
variable and depends on the size of the binary file. Figure 1 shows the method
for conversion of binary file to coloured image.

Figure 2 shows image representations of malware from three different families.
From the images we can easily discern that there is some textural differences
among malware from different classes. This is possibly due to the recycling of
old malware code, as most of the new malware created reuse the preexisting
code and to evade detection by signature matching they use techniques such as
obfuscation, packing or encryption. The question is how can we leverage these
similarities to classify malware samples to their respective families.

Proposed Model: Neural networks have been very successful in finding mean-
ing or recognising patterns from a set of images. We used a Residual Neural
Network (ResNet-50) for training a classifier to group malware into their classes
[33]. Residual learning means that every layer is responsible for fine tuning the
outputs from its previous layer. Figure 3 shows the flow of the proposed model.

Fig. 3. Flow of proposed model.

The images are re-sized to a common size of 32 rows and 32 columns. The
dataset comprising of samples from 22 classes is divided and 26,149 samples
are used for training and 11,225 samples are used for validation. The training
set samples are fed to Residual Neural Network (ResNet-50). The ResNet-50
architecture and the experimental results are explained in Sect. 4.2.

We initially used deep convolutional neural network for classification and it
gave about 98.98% accuracy. The results were comparable with those in some of
the previous work but upon using ResNet-50 we got accuracy of 99.40%, which
is a significant improvement both on CNN based approach and previous work.

84 A. Singh et al.

Table 2. Malimg dataset from Natraj et al. [31]

Malware type Malware family Number of samples

Worm Allaple.L 1591

Allaple.A 2949

Yuner.A 800

VB.A T 408

PWS Lolyda.AA1 213

Lolyda.AA2 184

Lolyda.AA3 123

Lolyda.AT 159

Trojan C2Lop.P 146

C2Lop.gen!g 200

Skintrim.N 80

Alueron.gen!J 198

Malex.gen!J 136

TDownloader Swizzot.gen!I 132

Swizzor.gen!E 128

Wintrim.BX 97

Dontovo.A 162

Obfuscator.AD 142

Backdoor Agent.FYI 116

Rbot!gen 158

Dialer Adialer.C 122

Dialplatform.B 177

Instantaccess 431

Worm: AutoIT Autorun.K 106

Rogue Fakerean 381

Total 9339

We also compared our model with that proposed by Natraj et al. [31] who
used byte plot representation and classified malware using GIST [36] features
extracted from the images. GIST are a set of global features which tends to
capture textural similarity between images. They used a K-Nearest Neighbour
model to classify a malware dataset of 9339 samples belonging to 25 classes.
They got classification accuracy of 97.18% for the following dataset as shown in
Table 2.

For implementing the proposed system we used Python programming lan-
guage and a plethora of different Python libraries. The entire code for dataset
preparation and labelling using VirusTotal API service is implemented in
Python. PIL library of python was used for image generation and resizing. For

Malware Classification Using Image Representation 85

learning models we used Keras with Tensorflow as background. Scikit-learn was
used for performance evaluation and matplotlib along with seaborn was used for
plotting.

4 Model Configuration

4.1 Dense CNN Configuration

Initially we tried to classify the malware images using CNN. We used a 15 layer
CNN with 5 convolutional layers and 2 dense layers and the architecture is
discussed in the Table 3. This gave us an accuracy of 98.98%.

Table 3. CNN architecture configuration details

Layer (type) Output shape Param# # Layer (type) Output shape Param#

1 Conv2D (None, 32, 32, 32) 832 9 Conv2D (None, 1, 1, 120) 300120

2 MaxPooling (None, 7, 7, 32) 0 10 MaxPooling (None, 1, 1, 120) 0

3 Conv2D (None, 7, 7, 50) 40050 11 Dropout (None, 1, 1, 120) 0

4 MaxPooling (None, 2, 2, 50) 0 12 Flatten (None, 120) 0

5 Conv2D (None, 2, 2, 80) 200100 13 Dense (None, 512) 61952

6 MaxPooling (None, 1, 1, 80) 0 14 Dropout (None, 512) 0

7 Conv2D (None, 1, 1, 100) 300120 15 Dense (None, 22) 11286

8 MaxPooling (None, 1, 1, 100) 0 16 N/A N/A N/A

The total no. of parameters are: 714, 420; Trainable parameters are: 714, 420.

Non-trainable parameters are: 0

Fig. 4. A building block of ResNet-50 and complete architecture. The number of MLP
layers might differ. Many such blocks are stacked with varying MLP layers [12,22].

86 A. Singh et al.

4.2 ResNet-50 Architectural Details

Weizmann Institute of Science has recently published a mathematical proof that
establishes the utility of having deeper network as compared to wider. In the
future, deep nets are going to be deeper. As standard fully connected Multi
Layer Perceptron (MLP) get deeper, problems such as exploding/vanishing of
gradients [19] start appearing, thus disturbing the convergence. Degradation
problem also starts to appear with increasing depths as accuracy gets saturated
and then degrades rapidly. In residual networks, this is tackled by feeding inputs
of a layer to other layers ahead which help the stack of layers in between to learn
a particular mapping.

So instead of just hoping that the deep networks will divide the stack of the
layers and will learn desired mappings better on their own as we increase the
depth, we explicitly make a stack of layers to learn the mapping. Figure 4 shows
a unit of such network. As shown, the input is shorted to later layers.

In our experiments, we have used ResNet-50 architecture which is shown in
the Fig. 4 because deeper network give better results whereas CNN suffers from
vanishing gradient problem. Therefore we moved to ResNet (residual networks).
ResNet has been able to handle the vanishing gradient problem and gives better
results than CNN on image classification [20].

5 Experimental Results and Comparison with Previous
Work

We have performed experiments on two different datasets. One is our dataset
that we have generated as discussed in Sect. 3.1 and the second is the Malimg
dataset used by Natraj et al. [31]. Malimg dataset consists of only grey-scale
images of malware samples whose details are shown in Table 2.

To validate that our model gives at par results with the past work, we com-
pared it with the model presented by Natraj et al. We have separately trained
and tested the models on our dataset and Malimg dataset. The Tables 4 and 6
lists the precision and recall score for each class using deep CNN and ResNet-50
models. These comparisons show that our proposed CNN and ResNet-50 models
perform better for both the datasets. Table 7 shows that the dense CNN model
proposed in our work gives classification accuracy of 96.08% and 98.98% on
Malimg dataset and our dataset respectively and ResNet-50 gives classification
accuracy of 98.10% and 99.40% on Malimg dataset and our dataset respectively.
These facts are comparable to the accuracy with the model proposed by Natraj
et al. who got an accuracy of 97.18% on Malimg dataset.

One of the reason for using the RGB representation over grey-scale represen-
tation of malware images is that grey-scale images have very small differences
between individual pixels and CNN and ResNet further averages out the adja-
cent pixels so the amount of pattern information we are trying to capture by
representing the malware as image is somewhat higher in coloured representa-
tion. Another reason for using the RGB representation of malware images is

Malware Classification Using Image Representation 87

Table 4. Comparison of results using deep CNN model.

Result of deep CNN model on our dataset Result of deep CNN model on malimg dataset

Classes Precision Recall F1-score Support Classes Precision Recall F1-score Support

0 1.00 0.98 0.99 257 0 1.00 1.00 1.00 37

1 1.00 1.00 1.00 308 1 1.00 1.00 1.00 35

2 1.00 1.00 1.00 39 2 0.98 1.00 0.99 885

3 0.99 0.96 0.97 135 3 1.00 0.99 1.00 478

4 1.00 1.00 1.00 497 4 0.98 1.00 0.99 60

5 0.99 0.97 0.98 175 5 0.97 1.00 0.98 32

6 1.00 0.98 0.99 403 6 0.77 0.73 0.75 60

7 1.00 1.00 1.00 1096 7 0.64 0.61 0.63 44

8 1.00 1.00 1.00 339 8 1.00 1.00 1.00 54

9 0.99 1.00 1.00 388 9 1.00 1.00 1.00 49

10 1.00 1.00 1.00 563 10 0.98 0.98 0.98 115

11 1.00 1.00 1.00 1172 11 1.00 1.00 1.00 130

12 1.00 1.00 1.00 69 12 0.97 0.91 0.94 64

13 0.99 0.97 0.98 219 13 0.98 0.96 0.97 56

14 1.00 0.98 0.99 630 14 1.00 1.00 1.00 37

15 0.99 0.98 0.98 375 15 0.98 1.00 0.99 48

16 1.00 0.98 0.99 183 16 0.85 0.68 0.76 41

17 1.00 0.99 1.00 399 17 1.00 1.00 1.00 43

18 1.00 1.00 1.00 564 18 0.96 0.98 0.97 48

19 1.00 1.00 1.00 1838 19 1.00 1.00 1.00 24

20 1.00 1.00 1.00 451 20 0.39 0.49 0.43 39

21 0.96 1.00 0.98 1125 21 0.48 0.38 0.42 40

- - - - - 22 1.00 1.00 1.00 123

- - - - - 23 1.00 1.00 1.00 30

- - - - - 24 1.00 1.00 1.00 240

Avg 0.99 0.99 0.99 - Avg 0.96 0.96 0.96 -

Total - - - 11225 Total - - - 2812

Table 5. Experimental results for packed and unknown malware

Classification model Packed malware Accuracy Unknown malware Accuracy

Test samples Test samples

CNN 714 60.50% 10961 76.97%

ResNet-50 714 53.22% 10961 72.50%

that the accuracy of the model is relatively less for grey-scale representation as
compared to colour map representation. The accuracy of our model came out to
be 73% and 75% for CNN and ResNet-50 architecture respectively for grey-scale
images on our dataset. The results are comparatively less as compared to the
results achieved by using RGB or colour map representation on our dataset.

We have also performed experiments on our trained model using 714 test
samples of packed malware and 10961 test samples of previously unseen malware

88 A. Singh et al.

Table 6. Comparison of results using ResNet-50 model.

Result of ResNet-50 model on our dataset Result of ResNet-50 model on malimg dataset

Classes Precision Recall F1-score Support Classes Precision Recall F1-score Support

0 1.00 0.99 0.99 257 0 1.00 1.00 1.00 37

1 1.00 1.00 1.00 308 1 1.00 1.00 1.00 35

2 1.00 1.00 1.00 39 2 0.98 1.00 0.99 885

3 0.99 0.97 0.98 135 3 0.99 0.98 0.98 478

4 1.00 1.00 1.00 497 4 1.00 0.98 0.99 60

5 0.99 0.98 0.99 175 5 1.00 1.00 1.00 32

6 1.00 0.98 0.99 403 6 0.98 0.99 0.97 60

7 1.00 1.00 1.00 1096 7 0.98 0.99 0.99 44

8 1.00 1.00 1.00 339 8 1.00 0.96 0.98 54

9 1.00 1.00 1.00 388 9 1.00 1.00 1.00 49

10 1.00 1.00 1.00 563 10 0.98 0.98 0.98 115

11 1.00 1.00 1.00 1172 11 1.00 0.99 1.00 130

12 1.00 1.00 1.00 69 12 1.00 0.99 0.98 64

13 0.99 0.98 0.99 219 13 1.00 0.98 0.99 56

14 1.00 0.98 0.99 630 14 1.00 1.00 1.00 37

15 0.99 0.99 0.99 375 15 0.96 1.00 0.98 48

16 1.00 0.99 0.99 183 16 1.00 0.99 0.99 41

17 1.00 0.99 1.00 399 17 1.00 1.00 1.00 43

18 1.00 1.00 1.00 564 18 1.00 0.98 0.95 48

19 1.00 1.00 1.00 1838 19 1.00 1.00 1.00 24

20 1.00 1.00 1.00 451 20 0.98 0.99 0.96 39

21 0.99 1.00 0.98 1125 21 0.98 0.99 0.97 40

- - - - - 22 0.98 0.98 0.99 123

- - - - - 23 1.00 0.97 0.98 30

- - - - - 24 1.00 1.00 1.00 240

Avg 0.99 0.99 0.99 - Avg 0.98 0.98 0.98 -

Total - - - 11225 Total - - - 2812

Table 7. Experimental results

Classification model Malware dataset Accuracy Malimg dataset Accuracy

Samples Train set Test set Samples Train set Test set

CNN 37374 26149 11225 98.98% 9339 6527 2812 96.08%

ResNet-50 37374 26149 11225 99.40% 9339 6527 2812 98.10%

which are not the part of our dataset. The trained model is not trained on these
previously unseen and packed malware.

The results discussed in the Table 5 shows that the accuracy % values are
60.50% and 53.22% for CNN and ResNet-50 respectively when tested on packed
malware and 76.97% (CNN) and 72.50%(ResNet-50) for previously unseen mal-
ware samples. To obtain our packed malware samples we have used a packer
[14] which packs the malware executable and then they are being tested on
the trained model. The previously unseen samples are gathered from sources

Malware Classification Using Image Representation 89

VXHeaven [10], Virustotal [2], Contagio [13]. Finally, in this section, we have
compared our model results with the results from other visualization approaches
in the literature. Table 8 shows that our model outperforms in terms of accuracy
as compared to the other state-of-the-art models.

Table 8. Accuracy (%) comparison with other visualization approaches as reported in
the literature.

Authors Dataset Approach Classifiers (%) Accuracy

Nataraj et al.
2011 [31]

9458 malware
25 families

Visualization
using a grey
scale byte plot
representation

K-NN 97.18%

Han et al.
2013 [21]

Samples from
10 families

Visualization
using op-code
sequences

Selective area
matching

Makandar
et al. 2015
[27]

Mahenhur
(3131 malware
and 24
families)

Visualization ANN 96.35%

Seonhee et al.
2016 [35]

9 Families
(I-stage)
27 Families
(II-stage)

Two stage
visualization

Deep neural
network

98.4%
89%

Barath et al.
2016 [30]

BIG 2015 by
Kaggle

Visualization K-NN 96.6%

Liu et al.
2017 [26]

Kingsoft,
ESNET NOD
32, and
Anubis
(20,000
samples)

Visualization SNN 86.7%

Aziz et al.
2017 [28]

Malimg
(12,470
samples)

Visualization K-NN SVM 98.84%
98.88%

Aziz et al.
2017 [29]

Malimg
Mahenhur

Three stage
visualization

SVM 91.05%
92.53%

Kalash et al.
2018 [23]

Malimg
Microsoft

Visualization CNN 95.52%
99.97%

Yakura et al.
2018 [38]

VX Heaven
(147803
samples and
542 families)

Visualization by
extracting byte
sequences

2D-CNN 50.97%

Our approach 37,374
samples 22
families

Visualization CNN ResNet-50 98.98%
99.40%

90 A. Singh et al.

6 Limitations and Future Work

In this paper, we have presented an approach based on image processing but
there can be some adversarial effects to this approach. One of them is that if
packed or previously unseen malware are used then our model detects it with a
low accuracy as discussed in Sect. 5. This is due to the reason that packers use
various cryptographic algorithms to encrypt the malware and it becomes hard
for the model to detect the byte sequences for classification.

To remain undetected from this visualization approach of detecting malware,
the malware authors can use obfuscation techniques such as adding jump instruc-
tions, redundant code fragments and applying permutations to the executable.
This can be another area for future work where implementation can also be done
for obfuscated malware.

Another dimension for future work can be the detection of evasive malware.
The evasive malware are the one which remain undetected even by dynamic
analysis as they are able to fool the controlled environment or sandbox and hide
their original behaviour. Like, Cerber ransomware [16] is “sandbox aware” and
refuse to detonate if it finds any virtual environment.

7 Conclusion

This work proposed a visualization based approach to classify malware using
image representation. For image representation we have used RGB colour map
representation over grey-scale. We have prepared our dataset by converting exe-
cutable to images and trained our model using our dataset and one of the publicly
available Malimg dataset. The model proposed in this work gives an improve-
ment on the previous works as reported in the literature and also shows that
applying state of the art neural network techniques in malware analysis is use-
ful. Deep CNN and ResNet-50 models are used for training and testing both the
datasets. The experiments are also performed on packed and previously unseen
malware samples which lays down the foundation for future work.

Acknowledgement. This work was partially funded by Science and Engineering
Research Board, Government of India.

References

1. Cohen, F.: Computer Viruses: Theory and experiments (1987). http://web.eecs.
umich.edu/∼aprakash/eecs588/handouts/cohen-viruses.html

2. Online malware report generator (2004). https://www.virustotal.com/
3. Kolbitsch, C., Anubis (2011). https://seclab.cs.ucsb.edu/academic/projects/proje

cts/anubis/
4. Virusshare - malware repository (2011). https://virusshare.com/
5. Malshare- malware repository (2012). http://malshare.com/
6. Kaspersky Cybercrime, Inc.: How profitable is the business? (2014). https://blog.

kaspersky.com/cybercrime-inc-how-profitable-is-the-business/15034/

http://web.eecs.umich.edu/~aprakash/eecs588/handouts/cohen-viruses.html
http://web.eecs.umich.edu/~aprakash/eecs588/handouts/cohen-viruses.html
https://www.virustotal.com/
https://seclab.cs.ucsb.edu/academic/projects/projects/anubis/
https://seclab.cs.ucsb.edu/academic/projects/projects/anubis/
https://virusshare.com/
http://malshare.com/
https://blog.kaspersky.com/cybercrime-inc-how-profitable-is-the-business/15034/
https://blog.kaspersky.com/cybercrime-inc-how-profitable-is-the-business/15034/

Malware Classification Using Image Representation 91

7. Ida: About (2015). https://www.hex-rays.com/products/ida/
8. Ict: Facts and figures (2016). http://www.itu.int/en/ITU-D/Statistics/Docume

nts/facts/ICTFactsFigures2016.pdf
9. Pandalabs-quaterly report (2016). http://www.pandasecurity.com/mediacenter/

src/uploads/2016/05/Pandalabs-2016-T1-EN-LR.pdf
10. Vx heaven dataset (2016). https://archive.org/download/vxheaven-windows-vir

us-collection
11. Virustotal- daily statistics (2017). https://www.virustotal.com/en/statistics/
12. Airbnb engineering & data science - image classification (2018). https://medium.

com/airbnb-engineering/categorizing-listing-photos-at-airbnb-f9483f3ab7e3
13. Contagio-malware dump (2018). http://contagiodump.blogspot.com/
14. Packer-tool upx 3.95, 26 August 2018. https://github.com/upx/upx/releases/tag/

v3.95
15. Ollydbg v1.10, 27 September 2013. http://www.ollydbg.de/
16. Cerbr ransomware, 29 March 2017. https://www.securityweek.com/cerber-ransom

ware-tries-evade-machine-learning-security
17. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning

to align and translate. arXiv preprint arXiv:1409.0473 (2014)
18. Bazrafshan, Z., Hashemi, H., Fard, S.M.H., Hamzeh, A.: A survey on heuristic mal-

ware detection techniques. In: The 5th Conference on Information and Knowledge
Technology, pp. 113–120. IEEE (2013)

19. Bengio, Y., Simard, P., Frasconi, P., et al.: Learning long-term dependencies with
gradient descent is difficult. IEEE Trans. Neural Netw. 5(2), 157–166 (1994)

20. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, pp. 249–256 (2010)

21. Han, K., Lim, J.H., Im, E.G.: Malware analysis method using visualization of
binary files. In: Proceedings of the 2013 Research in Adaptive and Convergent
Systems, pp. 317–321. ACM (2013)

22. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

23. Kalash, M., Rochan, M., Mohammed, N., Bruce, N.D., Wang, Y., Iqbal, F.: Mal-
ware classification with deep convolutional neural networks. In: 2018 9th IFIP
International Conference on New Technologies, Mobility and Security (NTMS),
pp. 1–5. IEEE (2018)

24. Kong, D., Yan, G.: Discriminant malware distance learning on structural infor-
mation for automated malware classification. In: Proceedings of the 19th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
1357–1365. ACM (2013)

25. Lin, Z., Feng, M., Santos, C.N.D., Yu, M., Xiang, B., Zhou, B., Bengio, Y.: A struc-
tured self-attentive sentence embedding. arXiv preprint arXiv:1703.03130 (2017)

26. Liu, L., Wang, B.S., Yu, B., Zhong, Q.X.: Automatic malware classification and
new malware detection using machine learning. Front. Inf. Technol. Electron. Eng.
18(9), 1336–1347 (2017)

27. Makandar, A., Patrot, A.: Malware analysis and classification using artificial neural
network. In: 2015 International Conference on Trends in Automation, Communi-
cations and Computing Technology (I-TACT-15), pp. 1–6. IEEE (2015)

28. Makandar, A., Patrot, A.: Malware class recognition using image processing tech-
niques. In: 2017 International Conference on Data Management, Analytics and
Innovation (ICDMAI), pp. 76–80. IEEE (2017)

https://www.hex-rays.com/products/ida/
http://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2016.pdf
http://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2016.pdf
http://www.pandasecurity.com/mediacenter/src/uploads/2016/05/Pandalabs-2016-T1-EN-LR.pdf
http://www.pandasecurity.com/mediacenter/src/uploads/2016/05/Pandalabs-2016-T1-EN-LR.pdf
https://archive.org/download/vxheaven-windows-virus-collection
https://archive.org/download/vxheaven-windows-virus-collection
https://www.virustotal.com/en/statistics/
https://medium.com/airbnb-engineering/categorizing-listing-photos-at-airbnb-f9483f3ab7e3
https://medium.com/airbnb-engineering/categorizing-listing-photos-at-airbnb-f9483f3ab7e3
http://contagiodump.blogspot.com/
https://github.com/upx/upx/releases/tag/v3.95
https://github.com/upx/upx/releases/tag/v3.95
http://www.ollydbg.de/
https://www.securityweek.com/cerber-ransomware-tries-evade-machine-learning-security
https://www.securityweek.com/cerber-ransomware-tries-evade-machine-learning-security
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1703.03130

92 A. Singh et al.

29. Makandar, A., Patrot, A.: Wavelet statistical feature based malware class recogni-
tion and classification using supervised learning classifier. Orient. J. Comput. Sci.
Technol. 10(2), 400–406 (2017)

30. Narayanan, B.N., Djaneye-Boundjou, O., Kebede, T.M.: Performance analysis of
machine learning and pattern recognition algorithms for malware classification. In:
2016 IEEE National Aerospace and Electronics Conference (NAECON) and Ohio
Innovation Summit (OIS), pp. 338–342. IEEE (2016)

31. Nataraj, L., Karthikeyan, S., Jacob, G., Manjunath, B.: Malware images: visu-
alization and automatic classification. In: Proceedings of the 8th International
Symposium on Visualization for Cyber Security, p. 4. ACM (2011)

32. Ollmann, G.: The evolution of commercial malware development kits and colour-
by-numbers custom malware. Comput. Fraud Secur. 2008(9), 4–7 (2008)

33. Raghakot.: Resnet (2015). https://github.com/raghakot/keras-resnet
34. Santos, I., Nieves, J., Bringas, P.G.: Semi-supervised learning for unknown malware

detection. In: Abraham, A., Corchado, J.M., González, S.R., De Paz Santana, J.F.
(eds.) International Symposium on Distributed Computing and Artificial Intelli-
gence. Advances in Intelligent and Soft Computing, vol. 91, pp. 415–422. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19934-9 53

35. Seok, S., Kim, H.: Visualized malware classification based-on convolutional neural
network. J. Korea Inst. Inf. Secur. Cryptology 26(1), 197–208 (2016)

36. Torralba, A., Murphy, K.P., Freeman, W.T., Rubin, M.A.: Context-based vision
system for place and object recognition (2003)

37. Vinod, P., Jaipur, R., Laxmi, V., Gaur, M.: Survey on malware detection methods.
In: Proceedings of the 3rd Hackers Workshop on Computer and Internet Security
(IITKHACK 2009), pp. 74–79 (2009)

38. Yakura, H., Shinozaki, S., Nishimura, R., Oyama, Y., Sakuma, J.: Malware analysis
of imaged binary samples by convolutional neural network with attention mech-
anism. In: Proceedings of the Eighth ACM Conference on Data and Application
Security and Privacy, pp. 127–134. ACM (2018)

https://github.com/raghakot/keras-resnet
https://doi.org/10.1007/978-3-642-19934-9_53

MLDStore
DNNs as Similitude Models for Sharing Big Data

(Brief Announcement)

Philip Derbeko(B), Shlomi Dolev, and Ehud Gudes

Ben-Gurion University of the Negev, Beer-Sheva, Israel
philip.derbeko@gmail.com, {dolev,ehud}@cs.bgu.ac.il

Abstract. The amount of data grows exponentially with time and the
growth shows no signs of stopping. However, the data in itself is not useful
until it can be processed, mined for information and queried. Thus, data
sharing is a crucial component of modern computations. On the other
hand, exposing the data might lead to serious privacy implications.

In our past research we suggested the use of similitude models, as
compact models of data representation instead of the data itself. In this
paper we suggest the use of deep neural networks (DNN) as data models
to answer different types of queries. In addition, we discuss ownership
of the DNN models and how to retain the ownership of the model after
sharing it.

Keywords: Similitude model · Big data · Deep neural networks

1 Introduction

The conflict of data usage is that the data has to be shared with different parties
to calculate correlations and infer insights. However, the sharing of the data leads
to a significant risk to privacy, as shown by many recent data leaks.

To solve this conflict we suggest the use of a representative data model instead
of the data itself [4,5]. We call such a model Similitude Model, i.e. a smaller model
that is design to answer future unknown queries as if they were performed over
the entire dataset. Similitude models are in common use in architecture and
mechanical engineering [9]. In this research we suggest to use generative deep
neural network models for data sharing instead of the data itself.

2 Motivation and Related Work

In our model, the data provider generates and maintains one or two types of
the model and shares it with the cloud providers. Those cloud providers use the

We thank the Lynne and William Frankel Center for Computer Science and the Rita
Altura Trust Chair in Computer Science.
c© Springer Nature Switzerland AG 2019
S. Dolev et al. (Eds.): CSCML 2019, LNCS 11527, pp. 93–96, 2019.
https://doi.org/10.1007/978-3-030-20951-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20951-3_7&domain=pdf
https://doi.org/10.1007/978-3-030-20951-3_7

94 P. Derbeko et al.

models to answer clients queries. Our goal is to allow data providers to share
their data in succinct and computation efficient way without worrying about
privacy leakage and also to allow clients to use the shared data for queries.

While the idea of building an accurate and probabilistic model of data is not a
new one, in recent years as deep neural networks techniques are developed, there
have been new advances in this area [1–3,6,14,16]. Using deep neural networks
(DNN) as a basis for probabilistic models has few advantages. DNNs are able
to capture complex structures in the data, able to generate a synthetic dataset
without a high computational load and, they are scalable and can be adapted
to high-dimensional data.

Once the data provider has trained the models, they are sent to the cloud
to future use. In fact, new service, Machine Learning Data Store (MLDStore),
just like the “AppStore” or “GooglePlay”, in the domain of data can be created.
MLDStore may support uploading and maintaining similitude models for others
to be used, free of charge or per payment. The similitude models may not be
copied to the clients but be kept in the cloud for the sake of sampling up to
certain number of samples, allowing good enough answers to statistical queries.
With time, the observed data changes, which requires updates to the model, that
are then kept in the cloud. The continuous learning with changing data often
leads to forgetting of the previously learnt data [8,12].

A simple, but expensive solution is to generate a dataset from the old model
and mix it with the new data. This solution has the advantage of not increasing
the size of the DNN model. Another solution with a constant size of the model
was suggested in [15] where a set of pre-trained models are kept but they are
connected laterally with learning connections. A slightly less expensive solution
is to record the responses of the previous layers and mix them with a training
data [10] or changing the objective function to include previous weights [16]. The
choice of a specific algorithm is important but does not impact the rest of the
paper.

3 Data Sharing Protocol

To answer different types of queries we use two types of networks. One is based
on Generative Stochastic Networks (GSN) [1] whose accuracy can be improved
by adversarial networks [3,6,11,16]. This type of networks is useful for the task
of generating a synthetic sample and then running a statistical query on the
generated data.

The second type of network is an auto-encoder based networks (see [2,20] for
an overview). In this research, we use the encoder network for answering a point
membership queries by adding an output layer to the encoder network. If the
fit is good, then corresponding hidden units are activated and the output value
will rise, otherwise the output value will be low.

The data sharing protocol is as follow.

1. The data provider builds (using well-known methods) two models: generative
and encoder. The models are shared with a cloud provider.

MLDStore 95

2. Given the query from the user, if the query is a statistical query, the cloud uses
the model to generate a synthetic dataset that is used to answer statistical
queries. The size of the synthetic dataset is dictated by the required accuracy
according to concentration inequalities [7,17].

3. If the user query is a point membership query, the cloud queries the kept
encoder model. The output of the model indicates a fit of the data point for
the model.

4. As the data provider receives more data, it continues to train the model [16]
or adds a new model to the previous one [15]. A comparison of the techniques
will be done in the full paper.

5. When the model is sufficiently changed, the updates or the entire model is
then sent to the cloud to replace the previous one.

4 Ownership of the Model

We have described a mechanism that allows the data providers to share the data
without really sharing the data. However, once the data provider shares the data
model with the cloud, the cloud provider can use the model as it wishes to and
can run as many queries as it wants. We want to prevent that and leave the
ownership of the model in the hands of the data providers.

The way to do that is to use Secure Multi-Party Computations (MPC), see
[18,19]. MPC were applied to DNN learning in [13] which used MPC to privately
train models on shared data. In our case, it is enough to use Garbled Circuit for
two parties, as described originally in [19]. The algorithm allows two parties to
calculate a function f without exposing its own calculations.

To use MPC calculations the DNN has to be divided between two cloud
providers, such that they can calculate network inference collaboratively. A sim-
ple way to do that is to replicate the network while the weights of the networks
are split between the two providers. The split is done randomly as long as the
combination of the weights equals to the original weight. The cloud providers
will calculate the activation function for each of the unit using Garbled Circuit
between them, at the end of the process both cloud providers will have a result
of the networks inference. The client can send the query to any cloud provider.
When the query is received an MPC protocol is initiated that performs the infer-
ence step of the model. The client does not have to be part of the MPC protocol,
however, by being a part of the protocol the client can ensure that the clouds
do not cooperate. The protocol, first agrees on the network unit that is has been
calculated and performs unit calculations similarly to [13]. The calculated result
is then returned to the client.

5 Conclusion

We briefly discuss a way to enable data providers to share their data without
worrying that private information will leak. In addition, we discuss the notion
of data ownership and suggest a solution. The full paper includes more details
and experimental results.

96 P. Derbeko et al.

References

1. Bengio, Y., Laufer, E., Alain, G., Yosinski, J.: Deep generative stochastic networks
trainable by backprop. In: ICML (2014)

2. Bengio, Y., Yao, L., Alain, G., Vincent, P.: Generalized denoising auto-encoders
as generative models. In: NIPS (2013)

3. Creswell, A., Bharath, A.A.: Denoising adversarial autoencoders. IEEE Trans. Neu-
ral Netw. Learn. Syst. (2018)

4. Derbeko, P., Dolev, S., Gudes, E.: Privacy via maintaining small similitude data
for big data statistical representation. In: Dinur, I., Dolev, S., Lodha, S. (eds.)
CSCML 2018. LNCS, vol. 10879, pp. 105–119. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-94147-9_9

5. Derbeko, P., Dolev, S., Gudes, E., Ullman, J.D.: Efficient and private approxima-
tions of distributed databases calculations. In: 2017 IEEE International Conference
on Big Data, BigData 2017, Boston, MA, USA, 11–14 December 2017, pp. 4487–
4496 (2017)

6. Goodfellow, I.J., et al.: Generative adversarial nets. In: NIPS (2014)
7. Hoeffding, W.: Probability inequalities for sums of bounded random variables. In:

Fisher, N.I., Sen, P.K. (eds.) The Collected Works of Wassily Hoeffding. Springer
Series in Statistics (Perspectives in Statistics). Springer, New York (1962). https://
doi.org/10.1007/978-1-4612-0865-5_26

8. Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks. Proc.
Natl. Acad. Sci. 114(13), 3521–3526 (2017)

9. Kline, S.: Similitude and Approximation Theory. Springer, Heidelberg (1986).
https://doi.org/10.1007/978-3-642-61638-9

10. Li, Z., Hoiem, D.: Learning without forgetting. IEEE Trans. Pattern Anal. Mach.
Intell. 40(12), 2935–2947 (2018)

11. Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B.: Adversarial autoen-
coders. CoRR, abs/1511.05644 (2015)

12. McCloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks:
the sequential learning problem. In: Psychology of Learning and Motivation, vol.
24, pp. 109–165. Academic Press (1989)

13. Mohassel, P., Zhang, Y.: SecureML: a system for scalable privacy-preserving
machine learning. In: 2017 IEEE Symposium on Security and Privacy (SP), pp.
19–38, May 2017

14. Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and
approximate inference in deep generative models. arXiv preprint arXiv:1401.4082
(2014)

15. Rusu, A.A., et al.: Progressive neural networks. CoRR, abs/1606.04671 (2016)
16. Seff, A., Beatson, A., Suo, D., Liu, H.: Continual learning in generative adversarial

nets. CoRR, abs/1705.08395 (2017)
17. Serfling, R.J.: Probability inequalities for the sum in sampling without replacement.

Ann. Statist. 2(1), 39–48 (1974)
18. Tassa, T., Gudes, E.: Secure distributed computation of anonymized views of

shared databases. ACM Trans. Database Syst. 37(2), 11:1–11:43 (2012)
19. Yao, A.C.: Protocols for secure computations. In: 2013 IEEE 54th Annual Sympo-

sium on Foundations of Computer Science, pp. 160–164 (1982)
20. Yoshua, B.: Learning deep architectures for AI. Foundations 2, 1–55 (2009)

https://doi.org/10.1007/978-3-319-94147-9_9
https://doi.org/10.1007/978-3-319-94147-9_9
https://doi.org/10.1007/978-1-4612-0865-5_26
https://doi.org/10.1007/978-1-4612-0865-5_26
https://doi.org/10.1007/978-3-642-61638-9
http://arxiv.org/abs/1401.4082

Cyber Attack Localization in Smart Grids
by Graph Modulation
(Brief Announcement)

Elisabeth Drayer(B) and Tirza Routtenberg

Department of Electrical and Computer Engineering,
Ben-Gurion University of the Negev, Beer Sheva, Israel

drayer@post.bgu.ac.il, tirzar@bgu.ac.il

Abstract. In this brief announcement we present our ongoing work
to localize “false data injection” (FDI) attacks on the system state of
modern power systems, better known as smart grids. Because of their
exceptional importance for our society and together with the increas-
ing presence of information and telecommunication (ICT) components,
these power systems are a vulnerable target for cyber attacks. In our
method, we represent the power system as a graph and use a gener-
alized modulation operator that is applied on the states of the system.
Our preliminary results indicate that attacked grid states exhibit specific
modulation patterns that facilitate the localization of the attacks on the
particular buses of the grid. This approach is demonstrated by several
case study simulations.

Keywords: False data injection (FDI) attacks · Anomaly detection ·
Graph signal processing · Laplacian matrix · Smart grid

1 Introduction and Motivation

With the shift from the classical, hardware dominated power system towards
the “smart grid”, that includes extensive use of information and communication
technology (ICT), cyber security becomes a serious concern. Smart grids are
considered to be a vulnerable target, as continuous electricity supply is essential
for our society [6,7]. In particular, the false data injection (FDI) attack is an
especially considered type of attack, which is not limited to smart grids, but can
appear in all industrial control systems [3]. In these attacks, the attacker is able
to compromise a portion of the measurement sensors of the power system. As a
result, the state of the system is miscalculated, which affects the system opera-
tion status and may lead to serious physical consequences, including systematic
problems and failures [3]. Thus, the ability to detect this type of attack on the
power system is crucial.

Supported by the Kreitman School of Advanced Graduate Studies and the BGU
Cyber Security Research Center.

c© Springer Nature Switzerland AG 2019
S. Dolev et al. (Eds.): CSCML 2019, LNCS 11527, pp. 97–100, 2019.
https://doi.org/10.1007/978-3-030-20951-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20951-3_8&domain=pdf
https://doi.org/10.1007/978-3-030-20951-3_8

98 E. Drayer and T. Routtenberg

In our previous work we focused on methods to detect the presence of FDI
attacks [1,2]. These methods are able to alert the grid operator about the pres-
ence of FDI attacks. In this brief announcement we present preliminary results
from our ongoing research on an extension of these works that enables us to
identify and localize FDI attacks within a certain geographic area of the grid.
We represent the power system as an undirected weighted graph and use the
concept of generalized modulation [5] on graph signals to localize FDI attacks.

2 Methodology

In this work we model the power system as an undirected graph, G = (V, E),
where V = {v1, . . . , vM} is a set of M nodes representing the buses where loads
or generators are connected, and E = {(ei,j)} is a set of transmission lines
connecting bus i with bus j. Under the linear power flow model, the state of
the power system is defined by the voltage angles at every bus of the system,
ϕ = [ϕ1, . . . , ϕM]T . The electric behavior of the lines, i.e. the line admittance, is
represented by the weight of the edge wi,j : E → R. This facilitates the modeling
of the power system topology by a weighted Laplacian matrix Y ∈ R

M×M . This
matrix admits the eigenvalue decomposition

Y = UΛUT , (1)

where U is the matrix of the orthonormal eigenvectors U = [u1, . . . , uM] and Λ
the diagonal matrix containing the real eigenvalues λ1, . . . , λM , respectively.

In [5], the generalized modulation operator for signals related to graphs is
defined for the k-th eigenvector of Y as

Hk,i = (Mkϕ)i
�
= ϕiui,k, (2)

where i is the bus number. This definition of modulation is a generalization of
the classic modulation operator known in signal processing [5]. The modulation
operator, Mk, can be applied on all buses and eigenvectors, leading to a matrix
of modulations, H ∈ R

M×M .
In an FDI attack measurements of the power system are compromised, lead-

ing to the attacked grid state

ϕFDI = ϕ + c, (3)

where c is the impact of the attack on the state vector. As the unattacked grid
state, ϕ, is not known, the attack can not be detected or localized offhandedly.

The method we propose for the localization of such attacks is based on a
comparison between the modulation matrices of different states of the system.
In particular, if we have H1 and H2 for two different states of the grid, e.g. for
two different time steps, we can calculate the matrix of the absolute difference
between each element of these two matrices as

ΔHk,i =
∣
∣H1

k,i − H2
k,i

∣
∣ . (4)

Cyber Attack Localization in Smart Grids 99

The main assumption that we use to localize FDI attacks is that, for two
unattacked states, ΔH from (4) will be a matrix with a random pattern and
small values. This is related to the “smoothness” of the unattacked state with
regard to the underlying graph structure [4,5]. FDI attacks destroy this smooth-
ness and thus it is expected that the matrix ΔH will contain a peak in the
column related to the bus that is attacked.

3 Case Study

We have validated the assumptions and our proposed method on the IEEE 14-
bus test system, a classic test system in the power system domain [8]. In the first
step we generated a reference matrix, Hnorm, against which we have compared
every new grid state. In a real world application, Hnorm would be derived based
on building the average over historic grid states. In our case, we used Monte
Carlo simulations and (2) to generate Hnorm as an average of undisturbed grid
states.

In the second step, we simulated attacks on the buses of the system by
modifying the grid state, ϕ, by arbitrary values, c: ϕi,FDI = ϕi + c. Then,
according to (2), we calculate the modulation matrix Hattacked. To localize a
potential attack, the difference between Hnorm and Hattacked is calculated as

ΔH = |Hnorm − Hattacked| . (5)

Figure 1 illustrates the matrix ΔH in the form of a heatmap for an unattacked
grid state. The pattern is random with small values. On the other hand, Fig. 2a

Fig. 1. ΔH between Hnorm and an unattacked grid state.

illustrates ΔH for an attack on bus 7. The peak values in the corresponding
column are clearly visible. Further simulations showed that our method not only
works if one node is attacked, but also for multiple attacked nodes, see Fig. 2b.
Currently we are extending our work to be able to use it to localize general bad

100 E. Drayer and T. Routtenberg

Fig. 2. ΔH of a grid state: (a) with an attack on bus 7 (b) with an attack on the buses
3, 7, and 12.

data in the power system, as well as to detect topology changes. We will also
formalize and statically analyze the localization method and will derive closed-
form tests based on the here presented modulation matrices.

References

1. Drayer, E., Routtenberg, T.: Detection of false data injection attacks in smart grids
based on graph signal processing. ArXiv e-prints https://arxiv.org/abs/1810.04894,
December 2018

2. Drayer, E., Routtenberg, T.: Intrusion detection in smart grid measurement infras-
tructures based on principal component analysis. In: Accepted for IEEE PowerTech
(2019)

3. Liang, G., Zhao, J., Luo, F., Weller, S.R., Dong, Z.Y.: A review of false data injection
attacks against modern power systems. IEEE Trans. Smart Grid 8(4), 1630–1638
(2017). https://doi.org/10.1109/TSG.2015.2495133

4. Shuman, D.I., Narang, S.K., Frossard, P., Ortega, A., Vandergheynst, P.: The emerg-
ing field of signal processing on graphs: extending high-dimensional data analysis
to networks and other irregular domains. IEEE Signal Process. Mag. 30(3), 83–98
(2013). https://doi.org/10.1109/MSP.2012.2235192

5. Shuman, D.I., Ricaud, B., Vandergheynst, P.: Vertex-frequency analysis on graphs.
Appl. Comput. Harmonic Anal. 40(2), 260–291 (2016)

6. Sridhar, S., Hahn, A., Govindarasu, M.: Cyber-physical system security for the
electric power grid. Proc. IEEE 100(1), 210–224 (2012). https://doi.org/10.1109/
JPROC.2011.2165269

7. Ten, C., Manimaran, G., Liu, C.: Cybersecurity for critical infrastructures: attack
and defense modeling. IEEE Trans. Syst. Man Cybern. - Part A: Syst. Hum. 40(4),
853–865 (2010). https://doi.org/10.1109/TSMCA.2010.2048028

8. Thurner, L., et al.: Pandapower - an open source python tool for convenient model-
ing, analysis and optimization of electric power systems. IEEE Trans. Power Syst.
33(6), 6510–6521 (2018). https://doi.org/10.1109/TPWRS.2018.2829021

https://arxiv.org/abs/1810.04894
https://doi.org/10.1109/TSG.2015.2495133
https://doi.org/10.1109/MSP.2012.2235192
https://doi.org/10.1109/JPROC.2011.2165269
https://doi.org/10.1109/JPROC.2011.2165269
https://doi.org/10.1109/TSMCA.2010.2048028
https://doi.org/10.1109/TPWRS.2018.2829021

Beyond Replications in Blockchain
On/Off-Blockchain IDA for Storage Efficiency

and Confidentiality (Brief Announcement)

Shlomi Dolev(B) and Yuval Poleg

Department of Computer Science, Ben-Gurion University of the Negev,
Beersheba, Israel

dolev@cs.bgu.ac.il, p.yuval@gmail.com

1 Introduction

We present on/off-Blockchain schemes for storing private data within the frame-
work of public Blockchains that conceal its content and origin, spreading the data
using information dispersal algorithm (IDA) [5] for preserving storage efficiency.
The on-chain scheme encrypts the data and distributively store IDA shards over
different blocks. Linkage of shards is also avoided by associating each shard with
a different public key. The off-chain solution is based on storing Merkle tree root
over the Blockchain while the actual shards are stored off the chain in the stor-
age of the participants, and therefore is not replicated, achieving the Blockchain
distributed trust without the drawback of replicating the entire data with every
participant.

Our method presented in this paper is focused on the client’s data, and
storing hers sensitive information, even off-chain, while gaining availability and
authenticity for the data, this achieved by using Blockchain technology as a
proven mechanism for storing data that need to be immutable, and the use of
IDA core capabilities. As our goal is to store client’s data, we do not focus in
improving the performance of the IDA as suggested in [1] or the Blockchain
consensus infrastructure as suggested in [8].

Next we elaborate on Blockchain, then we describe our on-Blockchain solution
and our off-Blockchain solution.

Blockchain. Blockchain’s concept and the various applications that use
Blockchain have rapidly evolved in the last years. Blockchain enables the usage
of distributed ledgers across the Internet, storing immutable records on business
actions and transactions. The trust for storing and maintaining the records is
distributed rather than trust in a central entity.

We thank the Lynne and William Frankel Center for Computer Science, the Rita
Altura Trust Chair in Computer Science. This research was also partially supported
by a grant from the Ministry of Science and Technology, Israel & the Japan Science
and Technology Agency (JST), and the German Research Funding Organization (DFG,
Grant#8767581199).
c© Springer Nature Switzerland AG 2019
S. Dolev et al. (Eds.): CSCML 2019, LNCS 11527, pp. 101–105, 2019.
https://doi.org/10.1007/978-3-030-20951-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20951-3_9&domain=pdf
https://doi.org/10.1007/978-3-030-20951-3_9

102 S. Dolev and Y. Poleg

The most notable application that uses Blockchain is the crypto-currency
Bitcoin [4], a distributed currency that was launched at the beginning of 2009.
Besides crypto-currency, there are variety applications for Blockchain, in the
domain of contracts, copyrights, intellectual property, supply chain tracking,
and many more.

Transactions with Bitcoin are saved inside a block of the Blockchain. Each
block contains several transactions. A block and the content of the block are
designed to be immutable, by using (linked) signatures in the forms of hash
functions. The blocks are replicated across many computers and servers par-
ticipants. Prior to adding a new block, each such participant verifies the block
validity (e.g., link-ability to previous block) and the validity of the transactions
within the block (e.g., the balance of the entity with a certain public key allows
the payment so there is no double spending).

Blockchain is based on the (trust-able) assumption that the majority of the
participants are honest and will add only consistent blocks. Thus, any attempt to
add an inconsistent block (that will imply a fork of the chain) will eventually be
overcame by the consistent chain extension, where shorter chains are abandoned.

2 On-Blockchain Scheme

We propose to apply the IDA to each record that we want to store in the
Blockchain, and store each shard with its index (matrix row number) in a dif-
ferent block. Whenever we would like to read back our record or data, we will
need to read enough shards that are stored in multiple blocks and reconstruct
them back using IDA.

We note that shards maybe stored in different Blockchains. Each of these
Blockchain maybe implemented by different participants or (partially) the same
participants and be based on the same technology or different technologies (e.g.,
Ethereum, Hyperledger).

IDA allows us to produce m shards from the data, such that unauthorized
party that does not have enough shards i.e., at least n, and the random matrix,
cannot reconstruct the data back. To ensure data confidentiality we do encrypt
the data with a secret private key (different from the wallet’s private key, possibly
hash of the wallet’s private key) prior to applying IDA. Since each shard is stored
in a block, and each block is immutable and distributed across the system, we
obtain all three aspects of information security: Data Confidentiality: with IDA
no one can read and correlate the shard of our data among all other shard
and even correlated needs to decrypt the data. Data Integrity: each block is
immutable and cannot be tampered. Data Availability: here we benefit twice,
each IDA product has a redundancy of m − n, and each shard is replicate and
distributed across the web.

Shards Access Information. In Cryptocurrency like Bitcoin there is a utility
named wallet [2] that stores private and public keys which identify a specific
owner (e.g., person, organization). The wallet uses the associated private and

Beyond Replications in Blockchain 103

public keys to perform operations such as a payment transfer or receive. The
wallet stores and aggregates all the operations that are related to the owner’s
account, so she can see her balance. A way to manage our data is to use the same
mechanism of Bitcoin’s Deterministic wallet [7] that generates a new public key
for each transaction. By generating a new public key for every transaction, an
adversary cannot track down the owner’s account operations i.e., to know what
the balance of her wallet is. Using this capability in the scale of data shards
can prevent linkage among shards of the same transaction. When we index the
shards, we also store for each shard, it’s index i.e., the row of the matrix that
produced the shard.

IDA and Encryption. To achieve provable confidentiality of the data stored
in the Blockchain, we also use encryption to encrypt the record before apply
IDA, while IDA itself can gain us some degree of security with computational
complexity for reconstructing the data under brute force attack, encryption adds
another layer of security that can help us in case that an adversary obtains all
the necessary shards. Because we encrypt the data, we do not need to regard
the matrix value as an encryption key keeping the matrix value private. On the
contrary, we can assume that the matrix is public; Since an adversary has to
try many combination to try to trace back the shard, and even if the adversary
manages to, the data is encrypted, knowing the matrix does not contribute much
to the security.

3 Off-Blockchain Scheme

The mechanism of Blockchain to replicate every block is responsible for the
security of the method, but also consumes storage. In general, while Information
dispersal is an efficient storage solution for high availability the data, Blockchain
is not. Our On-Blockchain scheme is particularly useful when we do not care
about efficient storage, or when the data needed to be stored is small (e.g.,
passwords, keys) our Off-Blockchain scheme becomes handy when we want to
store larger data e.g., contracts, photos, documents.

We propose to apply the IDA on the data that we want to store, as before, but
now, each shard is stored locally by a different participant, at her own storage
solution like on-premise storage, or cloud storage (e.g., Object storage), stored
with an on-blockchain authentication using a Merkle tree data structure, and to
store the root of the Merkle tree and the tree depth in the Blockchain. Therefore,
we are using the Blockchain distributed trust capability without the necessity
to replicate the entire data.

One benefit of Blockchain is the possibility to cope with dynamic set of partic-
ipants, namely, to withstand reasonable churn. We suggest to employ off-chain
memory of participants, thus, we have to consider erasures of off-Blockchain
shards. One way to handle churn, is to periodically, prior to the erasure of
too many shards, to read and rewrite any (distributed) off-chain stored data.
Another possibility, is to store the off-chain data in third parties storage. Where

104 S. Dolev and Y. Poleg

the third parties are not necessarily a storage of the participants, but still most
of which are trusted. In this case, in order to reconstruct the data, links to the
location of the shared are needed. Such links may require storage on the chain.
One can use a random number (e.g., the Merkle tree root) as a seed for produc-
ing a pseudorandom sequence that defines the links to the shared, the first link
is associated with the first row of the matrix, the second link is associated to the
second row of the matrix, and so on. The mapping between random numbers
and a valid link maybe based on hamming distance to the closest valid link, or
any analogous mapping.

As before, we assume that the IDA matrix is public as we encrypt the data
prior to applying the IDA. Once a Merkle tree is constructed, we send each
participant a pair 〈T, P 〉, where P is a proof used to verify that T = 〈i, vi〉 is
indeed the i’th leaf in our Merkle tree. When we want to reconstruct our data,
we ask from sufficient number of participants (depends on our initial setup for
the IDA) the pair 〈T, P 〉. Using P and T we can verify the integrity of the shard,
and using the matrix rows we can apply reverse IDA to get back the data.

With this list, we can recalculate the entire path to the root without knowing
the other leaves original values. Note that we need to verify that the length of
P corresponds to the depth stored in the Blockchain for the tree. Once we
recalculated the tree root, if the root value is identical to the one stored in the
Blockchain, and the number of calculations we have made is equal to the depth
of the tree stored in the Blockchain, then the leaf value we have is authenticated.

Encryption of the Data. As we discussed in the previous scheme, our IDA matrix
is public, and we encrypt the data to achieve provable confidentiality, if we do
not need the level of security implied by the encryption, we can reduce the
calculation’s complexity and have the matrix values being the secret.

We further suggest distributing the encryption key using secret sharing [6].
Each participant maintains not only the IDA shard but also a share of encryption
key [3]. Shamir’s secret sharing is a method to distribute a secret S into m unique
parts, where each participant receives one part. There is a minimum number n,
called threshold, that represents the number of parts needed to reconstruct the
secret, any n − 1 parts cannot reconstruct (in fact has no information on) the
secret. In our case we use secret sharing where we distribute the encryption key
into the same size of the IDA key matrix, where m is the number of participants,
and n is the minimum number of shards needed to reconstruct the data with
IDA. Therefore, each participant besides its own shard, also receives a share
of the secret so, when we reconstruct the data, we can reconstruct the secret
and decrypt the data. To do so we add a third value to the verifier T tuple,
T = 〈i, vi,Di〉 where Di is the secret share for the i’th participant.

The steps to reconstruct the data now include also calculating the secret,
using Lagrange interpolation over a finite field, to obtain the encryption key,
and to decrypt the data.

Beyond Replications in Blockchain 105

References

1. Alon, N., Kaplan, H., Krivelevich, M., Malkhi, D., Stern, J.P.: Addendum to “scal-
able secure storage when half the system is faulty”. Inf. Comput. 205(7), 1114–1116
(2007)

2. CoinDesk: How to store your bitcoin (2017)
3. Krawczyk, H.: Secret sharing made short. In: Stinson, D.R. (ed.) CRYPTO 1993.

LNCS, vol. 773, pp. 136–146. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48329-2_12

4. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Cryptography Mailing
list, March 2009. https://metzdowd.com

5. Rabin, M.O.: Efficient dispersal of information for security, load balancing, and fault
tolerance. J. ACM 36(2), 335–348 (1989)

6. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
7. Wuille, P.: Hierarchical deterministic wallets (2012)
8. Zamani, M., Movahedi, M., Raykova, M.: RapidChain: scaling blockchain via full

sharding. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2018, pp. 931–948. ACM, New York (2018)

https://doi.org/10.1007/3-540-48329-2_12
https://doi.org/10.1007/3-540-48329-2_12
https://metzdowd.com

Self-stabilizing Byzantine Consensus
for Blockchain

(Brief Announcement)

Alexander Binun, Shlomi Dolev(B), and Tal Hadad

Department of Computer Science, Ben-Gurion University of the Negev,
Beersheba, Israel

dolev@cs.bgu.ac.il

1 Introduction

Blockchain is designed to cope with Byzantine participants using proof of work or
proof of stake, see [2,14–16,19]. It is also designed to converge following potential
disagreements that lead to the creation of forks; in some sense such a convergence
causes the eventual stabilization of the Blockchain. The self-stabilization prop-
erty of long lived systems is very important [6,10,11], ensuring for automatic
recovery without human intervention.

Coping with unexpected faults (e.g., the executable code of each participant
is altered), the system may lose consistency for a while. Then, when the recovery
precondition are met (e.g., a majority of the participants execute their code, after
a periodic refresh) the system automatically regains its consistency regardless of
the state it starts from. The Blocks added to the Blockchain before and during
recovery may be totally corrupted. Once recovered the participants can scan the
history recorded in the Blockchain and add a block that corrects misconducted
operations within the execution history.

Several Blockchain systems employ Byzantine agreement to decide on the
next block (e.g., [5]), others (e.g., [13]) use Byzantine agreement for ordering
the transactions within a block. Byzantine agreement is designed to cope with a
given threshold on the number of Byzantine participants. See e.g., [3,7,8], and
the references therein, on the way to address the cases in which this number of
Byzantine threshold as well as other assumptions are temporally violated.

In this paper we demonstrate the effect of the temporary threshold violation
on Hyperledger [13]. We demonstrate a specific case in which Hyperledger never
recovers from a transient violation of the system state. We show that when the
timestamp variables used by the Byzantine faults tolerant consensus algorithm

We thank the Lynne and William Frankel Center for Computer Science, the Rita
Altura Trust Chair in Computer Science. This research was also partially supported
by a grant from the Ministry of Science and Technology, Israel & the Japan Science
and Technology Agency (JST), and the German Research Funding Organization (DFG,
Grant#8767581199). We thank Chryssis Georgiou, Ioannis Marcoullis, Elad Michael
Schiller for helpful discussions.

c© Springer Nature Switzerland AG 2019
S. Dolev et al. (Eds.): CSCML 2019, LNCS 11527, pp. 106–110, 2019.
https://doi.org/10.1007/978-3-030-20951-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20951-3_10&domain=pdf
https://doi.org/10.1007/978-3-030-20951-3_10

Self-stabilizing Byzantine Consensus for Blockchain 107

are set to their maximal values the BFT-SMaRT used by the Hyperledger hangs
forever. Then we propose to use the self-stabilizing Byzantine agreement (e.g.,
[3,7]) in order to facilitate recovery of BFT-SMaRT.

2 Terminology

In most Blockchain platforms (e.g., [1,12]) the life-cycle of a transaction is
twofold:

– Order: Transactions are added to the ledger in some order and disseminated
to all peers.

– Execute: Transactions are sequentially executed on all peers.

In Hyperledger Fabric (HLF) the transaction is three-fold:

– Execute: Transactions can be executed in any order.
– Order: When a sufficient number of peers responsible for ordering, called
orderers, agree on the results of a transaction, the transaction is added to the
ledger and disseminated to all nodes. This is the phase where the transac-
tions are ordered. Before this happens there is no concept of one transaction
happening before or after another.

– Validate: Each orderer validates and applies the transactions in a sequence
defined by the ordering cluster.

For example, the orderers can check whether a later transaction was invali-
dated by an earlier transaction.

The transactions are ordered according to their timestamps. The content is
not examined, e.g., to reveal Byzantine parties. So HLF (in its current distribu-
tion) is designed to tolerate only crashes. The case of Byzantine fault tolerance
is considered in [4] that adds Byzantine Fault-Tolerant (BFT) functionality to
the ordering phase. It is implemented as a HLF plugin and will be incorporated
into the upcoming HLF distributions.

The BFT module [4] still suffers from the following drawback: A transient
error might cause the BFT layer to be stuck forever. Unless an external party
forcibly resets the entire system, the Hyperledger remains incapacitated. We
suggest implementing the Byzantine fault-tolerant self-stabilization algorithm
as in [3,8] to let the HLF ordering layer recover from such transient errors.

3 Transient Error that Incapacitates BFT

The transient faults used to demonstrate the missing stabilization property of
Hyperledger that uses BFT-SMaRT is the modification of the timestamp variable
Epoch.timestamp to hold the maximum possible value (e.g., [10,11] for analogous
event). This can be done at runtime (using Java reflection) as in [22].

108 A. Binun et al.

The code looks as follows:

Class<?> epoch = Class.forName("bftsmart.consensus.Epoch");
Field ftstamp = epoch.getDeclaredField("timestamp");
ftstamp.setAccessible(true);
ftstamp.set(cc, Integer.MAX_VALUE);

We reproduce the transient error as follows:

1. Set timestamps to the maximal possible value.
2. Reassemble BFT-SMaRT and Hyperledger following the instructions in [21].
3. Relaunch BFT-Smart and Hyperledger following the instructions in [20].

The resulting output is as follows:

Invocation 0-- ###################TIMEOUT#######################
-- Reply timeout for reqId=0, Replies received: 0
, ERROR!

Orderer:
Exception in thread "Server" java.lang.StackOverflowError

at java.util.concurrent.locks.ReentrantLock.lock(ReentrantLock.java:285)
at bftsmart.consensus.Consensus.getEpoch(Consensus.java:118)
at bftsmart.consensus.Consensus.getEpoch(Consensus.java:107)
at bftsmart.consensus.Epoch.<init>(Epoch.java:105)

Note that the executables of the Hyperledger and BFT-SMaRT were not
changed. Only values of the variables were altered, just as a transient fault,
e.g., soft error, single event upset, or insufficient redundancy in the used error
detection code, may yield the change of variables values (e.g., [9]).

Many blockchains, e.g., RedBelly [18] and Tendermint [17] support the BFT
consensus feature. At the heart of the BFT module lies the notion of “message
timestamp counter” similar to the one of Hyperledger. Once corrupted due to a
transient error, the message counter may be too large. By setting the counter to
the maximal possible infinite value we can incapacitate any such Blockchain in
the same way we did for Hyperledger.

4 Byzantine Self-stabilization for Orderers

We demonstrate that we are capable of adding self-stabilization to the Hyper-
ledger and BFT-SMaRT by adding the Byzantine fault-tolerant synchronized
clock from [3] to the prototype. Technically, we perform the following steps:

1. Compile the BFT clock module into the executable clock.jar
2. Update the entrypoint script of the Docker script Dockerfile-orderingnode

that forms image of an ordering node as follows: (a) save the node IP for the
future use by the self-stabilization BFT clock and (b) launch the BFT clock
module.

Self-stabilizing Byzantine Consensus for Blockchain 109

The entrypoint script startBFT.sh will be as follows:

hostname -I >> hosts.txt
java -jar clock.jar &
./startReplica.sh

The self-stabilizing Byzantine clock synchronization will return indication
on a too late response of the BFT-SMaRT and invoke a new instance of BFT-
SMaRT for the next attempt of the Hyperledger to add a Block.

References

1. Androulaki, E., et al.: Hyperledger fabric: a distributed operating system for
permissioned blockchains. In: Proceedings of the Thirteenth EuroSys Conference
(EuroSys 2018), Article no. 30, 15 p. ACM, New York (2018). https://doi.org/10.
1145/3190508.3190538

2. Amelchenko, M., Dolev, S.: Blockchain abbreviation: implemented by message
passing and shared memory (extended abstract). In: NCA, pp. 385–391 (2017)

3. Binun, A., et al.: Self-stabilizing Byzantine-tolerant distributed replicated state
machine. In: Bonakdarpour, B., Petit, F. (eds.) SSS 2016. LNCS, vol. 10083, pp.
36–53. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49259-9 4

4. Bessani, A., Sousa, J., Alchieri, E.: State machine replication for the masses with
BFT-SMaRt. In: The IEEE/IFIP International Conference on Dependable Systems
and Networks, DSN 2014, Atlanta, USA, June 2014

5. Chen, J., Gorbunov, S., Micali, S., Vlachos, G.: ALGORAND AGREEMENT:
super fast and partition resilient Byzantine agreement. IACR Cryptology ePrint
Archive 2018, 377 (2018)

6. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)
7. Dolev, S., Eldefrawy, K., Garay, J.A., Kumaramangalam, M.V., Ostrovsky, R.,

Yung, M.: Brief announcement: secure self-stabilizing computation. In: PODC, pp.
415–417 (2017)

8. Dolev, S., Georgiou, C., Marcoullis, I., Schiller, E.M.: Self-stabilizing Byzantine
tolerant replicated state machine based on failure detectors. In: Dinur, I., Dolev,
S., Lodha, S. (eds.) CSCML 2018. LNCS, vol. 10879, pp. 84–100. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-94147-9 7

9. Dolev, S., Haviv, Y.A.: Self-stabilizing microprocessor: analyzing and overcoming
soft errors. IEEE Trans. Comput. 55(4), 385–399 (2006)

10. Perlman, R.: Fault-tolerant broadcast of routing information. Comput. Netw. 7,
395–405 (1983)

11. Rosen, E.: Vulnerabilities of network control protocols: an example, RFC 789, July
1981

12. Sousa, J., Bessani, A., Vukolic, M.: A Byzantine fault-tolerant ordering service
for the hyperledger fabric blockchain platform. In: The IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN 2018, June 2018

13. The hyperledger fabric ledger description. https://hyperledger-fabric.readthedocs.
io/en/release-1.4/ledger/ledger.html

14. BFT-SMaRt in hyperledger fabric. https://github.com/bft-smart/fabric-ordering
service

15. Hyperledger fabric: a distributed operating system for permissioned blockchains.
https://arxiv.org/pdf/1801.10228v2.pdf

https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1007/978-3-319-49259-9_4
https://doi.org/10.1007/978-3-319-94147-9_7
https://hyperledger-fabric.readthedocs.io/en/release-1.4/ledger/ledger.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/ledger/ledger.html
https://github.com/bft-smart/fabric-orderingservice
https://github.com/bft-smart/fabric-orderingservice
https://arxiv.org/pdf/1801.10228v2.pdf

110 A. Binun et al.

16. BFT-SMaRt. https://github.com/bft-smart/library
17. Tendermint. https://github.com/tendermint/tendermint
18. Redbelly. http://redbellyblockchain.io/
19. Proof of work vs. proof of stake. https://medium.com/@hydrominer/proof-of-

work-vs-proof-of-stake-7b3afe24f0cc
20. Byzantine fault-tolerant ordering service for hyperledger fabric. https://github.

com/bft-smart/fabric-orderingservice
21. Compiling the Byzantine fault-tolerant ordering service for hyperledger fabric.

https://github.com/bft-smart/fabric-orderingservice/wiki/Compiling
22. Java reflection. https://docs.oracle.com/javase/tutorial/reflect/member/field

Values.html

https://github.com/bft-smart/library
https://github.com/tendermint/tendermint
http://redbellyblockchain.io/
https://medium.com/@hydrominer/proof-of-work-vs-proof-of-stake-7b3afe24f0cc
https://medium.com/@hydrominer/proof-of-work-vs-proof-of-stake-7b3afe24f0cc
https://github.com/bft-smart/fabric-orderingservice
https://github.com/bft-smart/fabric-orderingservice
https://github.com/bft-smart/fabric-orderingservice/wiki/Compiling
https://docs.oracle.com/javase/tutorial/reflect/member/fieldValues.html
https://docs.oracle.com/javase/tutorial/reflect/member/fieldValues.html

The Advantage of Truncated
Permutations

Shoni Gilboa1 and Shay Gueron2,3(B)

1 The Open University of Israel, Ra’anana, Israel
2 University of Haifa, Haifa, Israel

shay.gueron@gmail.com
3 Amazon, Seattle, USA

Abstract. Constructing a Pseudo Random Function (PRF) from a
pseudorandom permutation is a fundamental problem in cryptology.
Such a construction, implemented by truncating the last m bits of per-
mutations of {0, 1}n was suggested by Hall et al. (1998). They conjec-
tured that the distinguishing advantage of an adversary with q quesires,
Advn,m(q), is small if q = o(2(m+n)/2), established an upper bound on
Advn,m(q) that confirms the conjecture for m < n/7, and also declared
a general lower bound Advn,m(q) = Ω(q2/2n+m). The conjecture was
essentially confirmed by Bellare and Impagliazzo in 1999. Nevertheless,
the problem of estimating Advn,m(q) remained open. Combining the
trivial bound 1, the birthday bound, and a result by Stam (1978) leads
to the following upper bound:

Advn,m(q) ≤ O

(
min

{
q2

2n
,

q

2
n+m

2

, 1

})

This upper bound shows that the number of times that a truncated
permutation can be used as a PRF can exceed the birthday bound by
at least a factor of 2m/2. In this paper we show that this upper bound is
tight for every m < n and q > 1. This, in turn, verifies that the converse
to the conjecture of Hall et al. is also correct, i.e., that Advn,m(q) is
negligible only for q = o(2(m+n)/2).

Keywords: Pseudo random permutations ·
Pseudo random functions · Advantage

1 Introduction

The (in)distinguishablity of a random permutation from a random function is
a combinatorial problem which has a fundamental role in cryptology. Indeed,
various cryptographic primitives (block ciphers, hash and MAC schemes) are
analyzed by starting from an idealization as a random permutation. This paper
discusses a generalization of this problem.

Let �, n be positive integers and let Fn,� be the set of functions from {0, 1}n

to {0, 1}�. A Pseudo Random Function (PRF) Φ : {0, 1}n → {0, 1}� is a selection
c© Springer Nature Switzerland AG 2019
S. Dolev et al. (Eds.): CSCML 2019, LNCS 11527, pp. 111–120, 2019.
https://doi.org/10.1007/978-3-030-20951-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20951-3_11&domain=pdf
https://doi.org/10.1007/978-3-030-20951-3_11

112 S. Gilboa and S. Gueron

of a function from Fn,�, according to some probability distribution. The quality
of a PRF Φ is determined by the ability of an “adversary” to distinguish an
instance of Φ from a function chosen uniformly at random from Fn,�, in the
following setting. It is assumed that the adversary has only query access to a
function ϕ : {0, 1}n → {0, 1}�, which is either selected uniformly at random
from Fn,�, or is an instance of the PRF Φ. The adversary may use any algorithm
A that first selects (possibly adaptively) a sequence of queries to the function,
i.e., strings in {0, 1}n, and then outputs a bit. We may interpret this bit as
the guess of A. For b ∈ {0, 1}, let PA

Φ (b) be the probability that the output
is b when ϕ is the PRF, and let PA

U (b) be the probability that the output is
b when ϕ is selected from Fn,� uniformly at random. The advantage of the
algorithm A against the PRF Φ is defined as

∣
∣PA

Φ (1) − PA
U (1)

∣
∣ (which also equals

∣
∣PA

Φ (0) − PA
U (0)

∣
∣). The advantage, AdvΦ, of the adversary against the PRF Φ

is the maximal advantage of A against Φ over all the algorithms it may use, as
a function of the number of queries (when the PRF Φ is clear from the context,
we omit it and simply write Adv). Hereafter, we consider adversaries with no
computational limitations where the advantage has an explicit expression (see
Sect. 2).

PRF Based on a Permutation. The classical example of a PRF from {0, 1}n

to {0, 1}n is a permutation of {0, 1}n, chosen uniformly at random. In this case,
the advantage of the PRF (i.e., the maximal advantage over all possible adver-
saries) is

Adv(q) = 1 −
(

1 − 1
2n

) (

1 − 2
2n

)

. . .

(

1 − min{q, 2n} − 1
2n

)

,

achieved by an adversary that executes the “collision test” (i.e., submits q̃ :=
min{q, 2n} distinct queries and outputs 1 if no two replies are equal, and 0 oth-
erwise). An approximation for Adv(q) can be obtained by the following inequal-
ities. For every 1 ≤ k ≤ q̃ − 1 we have

(

1 − k

2n

)(

1 − q̃ − k

2n

)

≥ 1 − q̃

2n
,

and hence

Adv(q) ≤ 1 −
(

1 − q̃

2n

) q̃−1
2

≤ min
{

q̃(q̃ − 1)
2n+1

, 1
}

= min
{

q(q − 1)
2n+1

, 1
}

.

On the other hand,
(

1 − 1
2n

)(

1 − 2
2n

)

. . .

(

1 − q̃ − 1
2n

)

≤ 1
(

1 + 1
2n

) (

1 + 2
2n

)

. . .
(

1 + q̃−1
2n

)

≤ 1

1 + 1+2+...+(q̃−1)
2n

=
1

1 + q̃(q̃−1)
2n+1

,

The Advantage of Truncated Permutations 113

and hence

Adv(q) ≥ 1 − 1

1 + q̃(q̃−1)
2n+1

=
q̃(q̃−1)
2n+1

1 + q̃(q̃−1)
2n+1

≥
q̃(q̃−1)
2n+1

2max
{

1, q̃(q̃−1)
2n+1

}

=
1
2

min
{

q̃(q̃ − 1)
2n+1

, 1
}

=
1
2

min
{

q(q − 1)
2n+1

, 1
}

.

Therefore,
Adv(q) = Θ

(

min
{

q2/2n, 1
})

. (1)

This implies that the number of queries required to distinguish a random per-
mutation from a random function, with success probability significantly larger
than, say, 1/2, is Θ(2n/2). In other words, a permutation can be used safely
(e.g., as a one-time-pad) as long as the number of outputs (q) that it produces
is sufficiently lower than 2n/2.

A generalization of the above PRF is the following.

Definition 1.1 (Truncated Permutation PRF). Let TRUNCn,m : {0, 1}n →
{0, 1}n−m be defined by the mapping (x1, x2, . . . xn) �→ (x1, x2, . . . xn−m). The
“Truncated permutation” PRF is the PRF defined by the composition TRUNCn,m◦
π, where π is a permutation of {0, 1}n, chosen uniformly at random.

Notation 1. The advantage of an (computationally unbounded) adversary
against the Truncated Permutation PRF is denoted by Advn,m.

The following problem arises naturally.

Problem 1. For every 0 ≤ m < n and q, find (the order of magnitude of)
Advn,m(q).

A different, related, problem is the following.

Problem 2. For every 0 ≤ m < n, how many queries does the adversary need
in order to gain non-negligible advantage against the Truncated Permutation
PRF? Specifically, what is (the order of magnitude) of q1/2(n,m) = min{q |
Advn,m(q) ≥ 1/2}?
We proceed to describe a short history of these problems.

The Birthday Bound. We start by remarking that the classical ‘birthday
bounds’

Advn,m(q) ≤ min
{

q(q − 1)
2n+1

, 1
}

, (2)

and q1/2(n,m) = Ω(2n/2) are obviously valid. Every algorithm that the adver-
sary can use with the truncated replies of (n − m) bits from π(w) (w ∈ {0, 1}n)
can also be used by the adversary who sees the full π(w) (it can simply ignore m
bits and apply the same algorithm). Of course, we expect ‘better’ bounds that
would reflect the fact that the adversary receives less information when f(w) is

114 S. Gilboa and S. Gueron

truncated, and would allow for using the outputs of a (truncated) permutation
for significantly more than 2n/2 times.

Hall et al. (1998). Problems 1 and 2 were studied by Hall et al. [6] in 1998,
where the truncated (random) permutation were proposed as a PRF construc-
tion. The authors of [6] declared1 the lower bound

Advn,m(q) = Ω(q2/2n+m), (3)

for every 0 ≤ m < n and q ≤ 2(n+m)/2. This bound implies that q1/2(n,m) =
O(2(n+m)/2) for every 0 ≤ m < n. Hall et al. [6] also proved the following upper
bound:

Advn,m(q) ≤ 5
(

q

2
n+m

2

) 2
3

+
1
2

(
q

2
n+m

2

)3 1

2
n−7m

2

(4)

For m ≤ n/7 this implies that q1/2(n,m) = Ω(2(m+n)/2). However, for larger val-
ues of m, the bound on q1/2(n,m) that is offered by (4) deteriorates, and becomes
(already for m > n/4) worse than the trivial birthday bound q1/2(n,m) =
Ω(2n/2). Hall et al. [6] conjectured that an adversary needs Ω(2(n+m)/2) queries
in order to get non-negligible advantage, in the general case.

Bellare and Impagliazzo (1999). Bellare and Impagliazzo derived the fol-
lowing result in 1999 [1, Theorem 4.2].

Advn,m(q) = O(n)
q

2
n+m

2

(5)

whenever 2n−m < q < 2
n+m

2 . This implies that q 1
2

= Ω(1
n2

m+n
2) for m >

1
3n + 2

3 log2 n + Ω(1).

Gilboa and Gueron (2015). The method used to show (4) can be pushed to
prove the conjecture made in [6], thus settling Problem 2, for almost every m.
In particular, [2] showed that

Advn,m(q) ≤ 2 3
√

2
(

q

2
n+m

2

) 2
3

+
2
√

2√
3

(
q

2
n+m

2

) 3
2

+
(

q

2
n+m

2

)2

(6)

for m ≤ n
3 and that

Advn,m(q) ≤ 3
(

q

2
n+m

2

) 2
3

+ 2
(

q

2
n+m

2

)

+ 5
(

q

2
n+m

2

)2

+
1
2

(
2q

2
n+m

2

) n
n−m

(7)

for n
3 < m ≤ n − log2(16n). This implies that q1/2(n,m) = Ω(2

m+n
2) for every

0 ≤ m ≤ n − log2(16n).

1 The paper [6] only provide a sketch of proof of (3) and claims that the computation
may be completed by using techniques presented in the paper. We could not see how
this is the case. We therefore refer to (3) only as a ‘declared’ result.

The Advantage of Truncated Permutations 115

Stam (1978). Surprisingly, it turns out that Problem2 was solved 20 years
before Hall et al. [6], in a different context. The bound

Advn,m(q) ≤ 1
2

√

(2n−m − 1)q(q − 1)
(2n − 1)(2n − (q − 1))

≤ 1

2
√

1 − q−1
2n

· q

2
n+m

2

, (8)

which is valid for every 0 ≤ m < n and q ≤ 2n, follows directly from a result
of Stam [7, Theorem 2.3]. This implies that q1/2(n,m) = Ω(2(m+n)/2) for every
0 ≤ m < n, confirming the conjecture of [6] in all generality (20 years before the
conjecture was raised). We point out that the bound in [7] can be simplified to
the more amenable form

Advn,m(q) ≤ q

2
m+n

2

, q ≤ 3
4
2n (9)

This settles Problem 2, but note that Problem1 still remains quite open.

The Best Known Bounds for Problem 1. Note that the bound (8) is tighter
than the bounds (4), (5), (6) and (7). Therefore, summarizing the above results,
the best known upper bound for the advantage in Problem1, is the one obtained
by combining (2) and (8), namely

Advn,m(q) ≤ min

{

q(q − 1)
2n+1

,
1
2

√

(2n−m − 1)q(q − 1)
(2n − 1)(2n − (q − 1))

, 1

}

= Θ

(

min
{

q2

2n
,

q

2
n+m

2

, 1
})

, (10)

whereas the only general lower bound that we are aware of is the bound (3),
declared in [6]. By (1), we know that the bound (10) is tight if m = 0, and it
was shown in [3] that it is tight also in the case m = n − 1.

Our Contribution. In this paper we answer Problem 1 by showing that (10) is
tight for every q > 1, as formulated in the following theorem.

Theorem 1.1. Assume m < n, q > 1. Then

Advn,m(q) = Θ

(

min
{

q2

2n
,

q

2
n+m

2

, 1
})

.

In particular, note that this implies that the bound (3) is, in general, not tight.

2 Notation and Preliminaries

We fix 0 ≤ m < n and q ≥ 1. Let:

Ω :=
({0, 1}n−m

)q
.

116 S. Gilboa and S. Gueron

We view Ω as the set of all possible sequences of replies that the adversary gets
for his q queries. We remark here that in our problem, we may assume that
all the queries are fixed and distinct (and hence q ≤ 2n). For every ω ∈ Ω,
α ∈ {0, 1}n−m let

dα(ω) := #{1 ≤ i ≤ q | ωi = α}.

For every positive t, let W (0, t) := 1 and for every positive integer k,

W (k, t) :=
k−1∏

j=0

(

1 − j

t

)

.

For ω ∈ Ω, let

R(ω) :=

∏

α∈{0,1}n−m W (dα(ω), 2m)

W (q, 2n)
=

∏

α∈{0,1}n−m,dα(ω)≥2 W (dα(ω), 2m)

W (q, 2n)
.

As in Sect. 1, consider an adversary that has only query access to a function
ϕ : {0, 1}n → {0, 1}n−m, which is either selected uniformly at random from
Fn,n−m, or is TRUNCn,m◦π, where π is a permutation of {0, 1}n, chosen uniformly
at random. For every ω ∈ Ω, it is easy to verify the following: the probability
that ω is the actual sequence of replies that the adversary gets for his queries is
1/|Ω| in the former case, and R(ω)/|Ω| in the latter. Suppose that the adversary
uses an algorithm A. Let S ⊆ Ω be the set of sequences of replies for which A
outputs 1. Then

PA
U (1) =

∑

ω∈S

1
|Ω| , PA

TRUNCn,m◦π(1) =
∑

ω∈S

R(ω)
|Ω| ,

and the advantage of A against the PRF TRUNCn,m ◦ π is therefore

∣
∣
∣PA

TRUNCn,m◦π(1) − PA
U (1)

∣
∣
∣ =

∣
∣
∣
∣
∣

∑

ω∈S

R(ω) − 1
|Ω|

∣
∣
∣
∣
∣
.

Assuming the adversary has no computational limitations, we may conclude that

Advn,m(q) = AdvTRUNCn,m◦π(q) = max
S⊆Ω

∣
∣
∣
∣
∣

∑

ω∈S

R(ω) − 1
|Ω|

∣
∣
∣
∣
∣
.

Since

∣
∣
∣
∣
∣

∑

ω∈S

R(ω) − 1
|Ω|

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣
∣
∣

∑

ω∈S
R(ω)>1

R(ω) − 1
|Ω| −

∑

ω∈S
R(ω)<1

1 − R(ω)
|Ω|

∣
∣
∣
∣
∣
∣
∣
∣

≤ max

⎧

⎪⎪⎨

⎪⎪⎩

∑

ω∈S
R(ω)>1

R(ω) − 1
|Ω| ,

∑

ω∈S
R(ω)<1

1 − R(ω)
|Ω|

⎫

⎪⎪⎬

⎪⎪⎭

,

The Advantage of Truncated Permutations 117

with equality if S = {ω ∈ Ω | R(ω) > 1} or S = {ω ∈ Ω | R(ω) < 1}, we
conclude that2

Advn,m(q) =
∑

ω∈Ω
R(ω)>1

R(ω) − 1
|Ω| = Emax{R − 1, 0}, (11)

and

Advn,m(q) =
∑

ω∈Ω
R(ω)<1

1 − R(ω)
|Ω| = Emax{1 − R, 0}, (12)

where all expectations, here and below, are with respect to the uniform distri-
bution on Ω.

3 Proof of Theorem1.1

In this section we prove our main result. We first address the regime 1 < q ≤
2

n−m
2 +8, in which

min
{

q2

2n
,

q

2
n+m

2

, 1
}

= Θ

(
q2

2n

)

.

Proposition 3.1. If 1 < q ≤ 2
n−m

2 +8 then

Advn,m(q) = Ω

(
q2

2n

)

.

In the proof of Proposition 3.1 we will use the following technical lemma. We
omit the proof.

Lemma 3.1. For every positive t and positive integer k ≤ t/2,

ln W (k, t) ≥ −2k2

3t
. (13)

Proof of Proposition 3.1. Assume first, in addition, that q ≤ 2n−m−1. Let

S :=
{

ω ∈ Ω | ∀α ∈ {0, 1}n−m : dα(ω) ≤ 1
}

.

For every ω ∈ S,

R(ω) =
1

W (q, 2n)
=

q−1
∏

j=0

1
1 − j

2n

≥
q−1
∏

j=0

(

1 +
j

2n

)

2 Here is an adversary algorithm (attack) realizing this advantage: make a sequence
of q arbitrary distinct queries and apply the function R on the sequence of replies.
Output 0 if the result is smaller than 1 and 1 otherwise.

118 S. Gilboa and S. Gueron

and hence

R(ω) − 1 ≥
q−1
∑

j=0

j

2n
=

q(q − 1)/2
2n

.

By (13),
Pr(S) = W (q, 2n−m) = Ω(1).

Therefore, by (11),

Advn,m(q) = Emax{R − 1, 0} ≥ Pr(S)
q(q − 1)/2

2n
= Ω

(
q2

2n

)

.

Now, if 2n−m−1 < q ≤ 2
n−m

2 +8, then by what we already proved

Advn,m(q) ≥ Advn,m(2n−m−1) = Ω

((

2n−m−1
)2

2n

)

= Ω

(
q2

2n

)

.

We now address the regime 2
n−m

2 +8 < q ≤ 2
n+m

2 −3, in which

min
{

q2

2n
,

q

2
n+m

2

, 1
}

= Θ

(
q

2
n+m

2

)

.

Proposition 3.2. Assume that 2
n−m

2 +8 < q ≤ 2
n+m

2 −3. Then

Advn,m(q) = Ω

(
q

2
n+m

2

)

.

Proposition 3.2 will follow easily from the following technical lemmas. We omit
the proofs. For ω ∈ Ω, let C(ω) be the number of ‘collisions’ in ω, i.e.,

C(ω) = #{1 ≤ i < j ≤ q | ωi = ωj} =
∑

α∈{0,1}n−m

(
dα(ω)

2

)

.

Lemma 3.2. Suppose q is a power of 2. Then

R ≤ e
1
2 · q(q−1)

2n+m − 1
2m (C−EC).

Lemma 3.3. If q > 2
n−m

2 +8 then

Pr

(

C − EC >
1
10

√

q(q − 1)
2n−m

)

>
1

400

The Advantage of Truncated Permutations 119

We will now proceed to prove Proposition 3.2.

Proof of Proposition 3.2. With no loss of generality we may assume that q is a

power of 2. If C(ω) − EC > 1
10

√
q(q−1)
2n−m then

1
2

· q(q − 1)
2n+m

− 1
2m

(C(ω) − EC) <
1
2

· q(q − 1)
2n+m

− 1
2m

· 1
10

√

q(q − 1)
2n−m

= − 1
10

(

1 − 5

√

q(q − 1)
2n+m

)√

q(q − 1)
2n+m

< − 3
80

√

q(q − 1)
2n+m

,

hence, by Lemma 3.2,

1 − R(ω) > 1 − e
− 3

80

√
q(q−1)
2n+m .

Therefore, by (12) and Lemma 3.3,

Advn,m(q) = Emax{1 − R, 0} >
1

400

(

1 − e
− 3

80

√
q(q−1)
2n+m

)

= Ω

(
q

2
n+m

2

)

.

Now we can prove Theorem 1.1.

Proof of Theorem 1.1. The upper bound was already demonstrated in the intro-
duction, so we only need to show that

Advn,m(q) = Ω

(

min
{

q2

2n
,

q

2
n+m

2

, 1
})

.

If 1 < q ≤ 2
n−m

2 +8 then by Proposition 3.1

Advn,m(q) = Ω

(
q2

2n

)

.

If 2
n−m

2 +8 < q ≤ 2
n+m

2 −3 then by Proposition 3.2

Advn,m(q) = Ω

(
q

2
n+m

2

)

.

Finally, if q > 2
n+m

2 −3 then by Proposition 3.2

Advn,m(q) ≥ Advn,m

(

2
n+m

2 −3
)

= Ω

(

2
n+m

2 −3

2
n+m

2

)

= Ω(1).

4 Conclusions

Theorem 1.1 settled Problem 1 by showing that the upper bound (10) is tight for
every q > 1.

120 S. Gilboa and S. Gueron

Note that truncated permutations are used in practice, due to the simplicity
of this construction, as a Beyond-Birthday-Bound PRF. Examples (specifically
with m = n/2) for the use of truncated permutations for key derivation can be
seen in [5] and also in the AES-GCM-SIV emerging standard [4].

An extended version, containing detailed proofs of all statements, is available
at https://arxiv.org/abs/1610.02518.

Acknowledgments. We thank Ron Peled for fruitful discussion.
This research was partially supported by: The Israel Science Foundation (grant No.

1018/16); The BIU Center for Research in Applied Cryptography and Cyber Security,
in conjunction with the Israel National Cyber Bureau in the Prime Minister’s Office;
The Center for Cyber Law and Policy at the University of Haifa in conjunction with
the Israel National Cyber Directorate in the Prime Minister’s Office.

References

1. Bellare, M., Impagliazzo, R.: A tool for obtaining tighter security analyses of pseudo-
random function based constructions, with applications to PRP to PRF conversion.
ePrint 1999/024. http://eprint.iacr.org/1999/024

2. Gilboa, S., Gueron, S.: Distinguishing a truncated random permutation from a ran-
dom function, manuscript (2015). https://arxiv.org/abs/1508.00462

3. Gilboa, S., Gueron, S., Morris, B.: How many queries are needed to distinguish a
truncated random permutation from a random function? J. Cryptol. 31(1), 162–171
(2018)

4. Gueron, S., Langley, A., Lindell, Y.: AES-GCM-SIV: nonce misuse-resistant authen-
ticated encryption. https://datatracker.ietf.org/doc/draft-irtf-cfrg-gcmsiv/

5. Gueron, S., Lindell, Y.: Better bounds for block cipher modes of operation via
nonce-based key derivation. In: Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2017, pp. 1019–1036 (2017)

6. Hall, C., Wagner, D., Kelsey, J., Schneier, B.: Building PRFs from PRPs. In:
Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 370–389. Springer, Hei-
delberg (1998). https://doi.org/10.1007/BFb0055742

7. Stam, A.J.: Distance between sampling with and without replacement. Stat. Neerl.
32(2), 81–91 (1978)

https://arxiv.org/abs/1610.02518
http://eprint.iacr.org/1999/024
https://arxiv.org/abs/1508.00462
https://datatracker.ietf.org/doc/draft-irtf-cfrg-gcmsiv/
https://doi.org/10.1007/BFb0055742

Reconstructing C2 Servers for Remote
Access Trojans with Symbolic Execution

Luca Borzacchiello, Emilio Coppa(B), Daniele Cono D’Elia,
and Camil Demetrescu

Sapienza University of Rome, Rome, Italy
{borzacchiello,coppa,delia,demetres}@diag.uniroma1.it

Abstract. The analysis of a malicious piece of software that involves
a remote counterpart that instructs it can be troublesome for security
professionals, as they may have to unravel the communication protocol in
use to figure out what actions can be carried out on the victim’s machine.
The possibility to recur to dynamic analysis hinges on the availability of
an active remote counterpart, a requirement that may be difficult to meet
in several scenarios. In this paper we explore how symbolic execution
techniques can be used to synthesize a command-and-control server for
a remote access trojan, enabling in-vivo analysis by malware analysts.
We evaluate our ideas against two real-world malware instances.

Keywords: Malware analysis · Symbolic execution ·
Protocol reversing

1 Introduction

Remote Access Trojan (RAT) is a term used to identify a cyber menace that
can steal information and carry out malicious behaviors on a victim machine at
the command of a remote counterpart. RATs provide attackers with capabilities
like file upload, key logging, and remote code execution, communicating with
a counterpart commonly dubbed C2 (Command & Control) server. Communi-
cation protocols are specific to RAT families and can become richer as families
evolve over time: although packets are carried out using standard means like
HTTP or IRC, their format is proprietary and the contents possibly encrypted.

Unlike other malware categories, analyzing a RAT typically requires active
ongoing communications for the results of the analysis to be rich. This is the
case not only with an initial assessment in a sandbox, but also with an in-
depth analysis by malware analysts on its code. Unfortunately this may not
be possible for a variety of reasons. For instance, a company that discovers
and promptly contains an infection [14] may not allow communications for the
sake of analysis, especially where there is a suspicion of a targeted attack—as
such communications would reveal that the target has been reached. A server
counterpart may also decline connection attempts when the analysis takes place

c© Springer Nature Switzerland AG 2019
S. Dolev et al. (Eds.): CSCML 2019, LNCS 11527, pp. 121–140, 2019.
https://doi.org/10.1007/978-3-030-20951-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20951-3_12&domain=pdf
https://doi.org/10.1007/978-3-030-20951-3_12

122 L. Borzacchiello et al.

from an unexpected network origin or time frame. Another common scenario is
when the server disappears from the network—either at the attacker’s will or
because of an intervention by the authorities—but the analysis of the RAT could
still be valuable (e.g., to unveil its infection spreading mechanisms).

Automatic analysis systems may be of little use in the absence of an active
counterpart, leaving manual dissection as the only avenue to analysis. RATs can
accept dozens distinct commands as part of the communications with the C2
server: while commands are usually not hard to analyze when taken individu-
ally, their number and interplay can make the analysis quite complex and time
consuming. Authentication schemes can make the work of human analysts even
more tedious as they have to mimic them when carrying out the analysis. Finally,
even in the presence of an active counterpart the server may not be sending all
the supported commands within a reasonable timeframe, leaving to the analyst
the task of unveiling the characteristics of the remaining ones.

Protocol reverse engineering techniques may reveal details of the communi-
cation scheme, producing automata and grammars that capture facts inferred by
analyzing packets. Their applicability to RAT analysis may however be limited
by constraints, e.g., on having to communicate with the server for validating
messages, or on having access to its binary. Although the output of such tech-
niques can bring valuable insights to analysts, they could not be used readily in
the setting where malware dissection normally takes place, which would instead
benefit from having a synthesized counterpart to interact with in order to reveal
indicators and features of the sample other than its communication protocol.

Previous research has explored static analysis techniques to ease RAT dis-
section: in particular, [2] proposes symbolic execution to reveal and analyze the
commands supported by a RAT without requiring the presence of the server
counterpart. The output is a collection of execution traces enriched with sym-
bolic constraints on the data buffers exchanged throughout communications.
Unfortunately, such traces typically encompass at most one command due to
scalability issues, and may come in numbers often much greater than the sup-
ported commands due to the nature of the symbolic exploration: for instance,
multiple paths can be generated for the same command when its handler con-
tains loops or when memory is dereferenced using a symbolic pointer [3,11].
Another problem is that such reports cannot be merged to form longer paths
descriptive of communication patterns with the C2 server, as protocol rules may
shape subsequent packets differently than in a naive concatenation of recorded
communications (consider for instance the use of sequence numbers).

Contributions. We propose a technique to reconstruct the C2 server counterpart
for a RAT by having access only to the sample meant to run on the victim’s
machine. Our goal is to synthesize a program so that the analyst can make the
client connect to it, enabling in-vivo analysis of the RAT. To this end:

– we produce execution traces for a sample using symbolic execution, exploring
the full software stack to avoid writing API models required by [2];

– we assemble traces into a compact automata representation inspired by pre-
vious protocol reverse engineering research;

Reconstructing C2 Servers for RATs with Symbolic Execution 123

– we augment the automaton with speculative edges not seen in recorded traces
to build paths that span multiple commands in a C2 communication session,
and validate them with symbolic execution to generate server instances.

We implement the technique in the context of the S2E platform [7], and
perform a preliminary assessment against two well-known RAT samples.

2 Approach

In the present section we provide the reader with an overview of our approach.
We then describe in detail every step of the proposed technique, using a simple C2
communication protocol implemented in an artificial RAT as running example
to highlights challenges and key points in our strategy. Finally, we discuss open
problems and limitations of our solution.

2.1 Overview

Figure 1 visually summarizes the main steps behind our approach:

1. Trace Generation. Given a RAT sample, we use symbolic execution [3] as
in [2] to reveal different executions paths, trying to maximize code coverage
during the exploration. For each path we record traces of taken branches and
relevant APIs that get executed. The presence of input-dependent loops and
the uncertainty on other portions of the input may lead to a high number
of alternative states in the symbolic executor, but we expect a significant
fraction of the recorded traces to reveal at least one command of the RAT
(i.e., the associated paths are deep enough to perform authentication and
carry out one of the supported functionalities). Traces where no interesting
APIs have been executed are discarded.

2. Trace Analysis. To reason over the possibly large number of reports gener-
ated during the previous step we build an Augmented Prefix Tree Acceptor
(APTA) [6], a tree-shaped DFA used in previous research on protocol reverse
engineering [10]. This representation allows us to compactly represent traces
into a single data structure, capturing which APIs and branches have been
observed along different paths.

3. Speculation. While an APTA can capture information about distinct (sym-
bolically executed) paths, our goal is to generate a small number of paths—
ideally one—that can cover all the commands. We use information from past
executions to speculate over richer paths that could be possible in the RAT
but were not observed possibly due to the limited scalability of the symbolic
analysis. To this end, we add speculative edges to the APTA—turning it into
a graph—and compute path(s) that can cover all its nodes, describing an
execution where multiple commands are taken in by the RAT.

4. Validation. We validate the feasibility of a speculatively generated path with
symbolic execution, using knowledge on the branches from initially recorded
traces to drive the exploration. We rely on the symbolic engine to fill the

124 L. Borzacchiello et al.

blanks for the actions that take place between two commands linked by a
speculative edge, as the latter is not backed by a trace. When the symbolic
exploration succeeds, we record a sequence of API calls and results that in a
native execution would lead the client to follow the path. When we cannot
produce a valid sequence, we go back and try a different speculation.

5. C2 Server Generation. For each validated path spanning multiple commands,
we synthesize a C2 server counterpart for executing the client natively. At
each step the server executes APIs that symmetrically interact with the ones
invoked by the client (e.g., they send data when a client is expecting to receive
some), using inputs that were instantiated in the symbolic exploration.

2.2 Steps

To illustrate the different steps of our approach we will use the artificial RAT
instance of Fig. 2 as running example: as we mentioned, its code is meant to
capture common traits of several real-world RATs. The client instantiates a
connection to the C2 server and waits from the attacker for the commands to
be executed on the victim’s machine. Its dispatcher takes the form of an infinite
loop for processing incoming packets: our RAT supports only two commands,
namely the first allows the attacker to execute a program using the WinExec
Windows API, while the second can remove a file using DeleteFile. A simple
authentication scheme is implemented at branches B2 and B3 in the code, while
sequence numbers are used for packet validation at branch B4.

Trace Generation. Similarly as in [2] we use symbolic execution techniques
to reveal interesting control-flow paths that the execution may follow within a
RAT. A symbolic engine supplies symbolic expressions in place of concrete inputs
to a program, where an input may represent data coming from the network or
other interactions with the OS. When symbolically executing instructions in
the program, the engine maintains a collection of constraints on the program
state, forking the execution when a branch involving symbolic expressions is
met and both outcomes are feasible. An SMT solver is used to evaluate symbolic
expressions as well as to obtain valid concrete assignments for them.

Symbolic execution can be very valuable in our setting, as the analysis can be
carried out by modeling the communications with the C2 server using symbolic
buffers in network-related APIs. Unfortunately though symbolic techniques incur
scalability issues (especially the path explosion problem [2,3]) that make it hard
to analyze long program paths. Fully automatic approaches to the exploration
of a RAT are unlikely to reveal the commands without heuristics tailored to the
structure of the sample under analysis; also, the presence of code for its initial
activities (e.g., environmental checks, achieving persistence) may prevent the
exploration from reaching the command dispatching loop at all. For this reason
we ask the analyst to provide hints in the form of the location of the dispatcher
loop and relevant details for reaching it (such as the thread on which the analysis
should focus or branches that were possibly forced in the debugger).

Reconstructing C2 Servers for RATs with Symbolic Execution 125

Fig. 1. Overview of the steps for the proposed approach.

Fig. 2. Artificial RAT instance. For the sake of presentation, conditional branches and
case statements in the C code are annotated with labels BK .

Once the symbolic exploration reaches the loop for the first time, we adopt an
iterative deepening search strategy as in [2] to combine the benefits of BFS and
DFS in this specific setting: each alternative path originating from the uncer-
tainty on received inputs is explored for a given number of instructions before
the exploration switches to another path in the queue. Optionally the analyst
can provide further hints on the location of the handler for individual commands,
which may be simple to spot in a debugger unless the code is heavily obfuscated.
For each path we record the sequence of taken branches and Windows API calls
for communications or anyhow relevant in malicious code analysis (we will refer
to such APIs as interesting). Branches are split in groups across invocations of
APIs that produce new symbolic inputs. The exploration is terminated upon
exhaustion of the memory and time budget for the analysis.

126 L. Borzacchiello et al.

When symbolically executing our artificial RAT using the search strategy
described above, and assuming that we exhaust the time budget after com-
pleting two iterations of the dispatcher loop (branch B1) along each possible
path, our approach generates the following traces:

– Trace 1
(a) API: socket(...), connect(..., SERVER ADDR, ...), read(..., D1,

64), read(..., D2, 64), WinExec(D3, 0)

(b) buffers: *D1:= "MAGIC STR", *D2:= "11Program.exe",

*D3:= "Program.exe"

(c) taken branches: [B1], [B2, B3], [B4, B5]

– Trace 2
(a) API: socket(...), connect(..., SERVER ADDR, ...), read(..., D1,

64), read(..., D2, 64), DeleteFile(D3)

(b) buffers: *D1 = "MAGIC STR", *D2 = "12File.doc",

*D3 = "File.doc"

(c) taken branches: [B1], [B2, B3], [B4, B6]

– Other traces
Traces that failed to authenticate (i.e., branch B3 not taken) or received

invalid commands (i.e., sequence number not validated at B4 or unimplemented

switch). Discarded as they do not contain any interesting Windows APIs.

For each trace we maintain three records: (a) a list of executed APIs and
their call sites (omitted for brevity, we use them to distinguish different
calls to the same API), (b) a concrete assignment for each symbolic buffer Di
manipulated by one or more API in the trace, and (c) a list of branches taken
along the explored path. For instance, the first trace reports that the client
instantiates a connection to a C2 server identified by the sockaddr structure
SERVER ADDR, performs two consecutive read operations, and executes the
WinExec API. The trace provides concrete assignments for buffers D1, D2,
and D3, obtained by querying the solver before terminating the exploration.
When buffers used as arguments for known APIs contain unconstrained or
loosely constrained symbolic values, we add constraints to make the solver
produce an answer meaningful for a human agent. For instance, we ask
the solver whether symbolic buffer D3 can hold a path to some executable.
Taken branches are split across the two invocations of read. In our traces
read yields symbolic buffers D1 and D2, while D3 is a substring of D2.
Observe that the two traces cannot directly be merged to form a longer
one involving both commands: the sequence numbering scheme would drop
replayed packets for commands issued in different communication sessions.

Trace Analysis. To compactly represent the generated traces we use an APTA
representation inspired by prior protocol reversing research [10]. An APTA is
a tree-shaped, incompletely specified DFA (deterministic finite state automa-
ton) [6]: its root represents the common initial state for the explored traces,

Reconstructing C2 Servers for RATs with Symbolic Execution 127

Fig. 3. APTA for the artificial RAT. Fig. 4. Speculation step.

while each path in the tree denotes a communication session (in other words, a
trace). Each path ends with a final state that marks the end of a trace: such a
state does not necessarily correspond to the end of communications with the C2
server, but may be part of a session that we explored only partially under the
given resource budget. In our setting, internal nodes of the APTA other than
the root represent receive operations, i.e., APIs such as the read function that
generate new symbolic inputs and thus identify incoming data buffers from the
C2 server. Edges are characterized by two records extracted from traces: the
interesting APIs invoked (API) and the branches taken (BT) between the two
actions encoded by the two nodes of the APTA. Paths with the same prefix of
nodes and edges get merged by the tree representation.

Previous research [10] uses inferred message types for edge labels, while we
do not assume to know such information. Instead, we choose labels according
to the relevant effects from receiving a message, that is, the interesting APIs
executed in the trace. Our goal is clearly different than the one pursued in [10]:
we are not interested in building a specification of the communication protocol,
but rather in generating a synthetic C2 server for in-vivo RAT dissection.

Figure 3 shows the APTA built for our artificial RAT. Given the two traces
generated in the initial step, we construct a tree characterized by two distinct
paths with a common prefix. Node A is the initial state. Nodes B and C
represent the two invocations of the read function executed in the body of
the dispatcher loop across two loop iterations. Nodes D and E denote the
final states for the first trace and the second trace, respectively. Edge AB
is characterized by the invocation of socket and connect and by the taken
branch B1. Edge BC reports only the taken branches B2 and B3 since no
interesting API appeared in the traces between the two read invocations.
Edges CD and CE represent what has been recorded in two traces from the
last invocation of the read function (node C) and the end of each trace.

Speculation. We would like to identify a theoretical path that could drive
symbolic execution into generating a single trace that exposes all the commands

128 L. Borzacchiello et al.

implemented by the RAT under analysis. As the list of such commands is not
know a priori, we can try and learn from traces generated in the first step, lever-
aging the practical observation that several real-world RATs are implemented
through an infinite dispatcher loop: although we expect a few commands to sink
the communication (e.g., shutdown command), a significant fraction of them
could be executable one after the other. Instead of using heuristics to identify
commands, we limit our reasoning to the APIs observed in the initial step. In
other words, we characterize commands based on the set of APIs that could be
executed by the RAT in response to some network data received from the C2
server. Hence, the aim of this step is to speculate over the feasibility of an exe-
cution path in the RAT able to execute the entire set of APIs observed across
several traces during the first step of our approach.

We start by choosing the order by which we would like to visit interesting
edges in the APTA. This order could be arbitrary or based on hints provided
by an analyst1. To make exploration easier, we require that subsequent edges
within alternative paths inside the APTA appear consecutively (i.e., edges are
not interleaved). To build a path we start from the root node of the APTA and
visit edges according to the chosen order until a leaf node is met. We then add
a speculative edge from the leaf node to the source node of the next edge that
we would like to visit. We continue to visit edges according to the order until
another leaf is reached. We repeat the process of adding speculative edges as
long as needed, until all the interesting edges are covered by the generated path.

For the APTA of Fig. 3 we choose to visit edges in the following order: AB,
BC, CD, CE. Edge AB has to come before BC and CD due to their ordering
in the first trace. Similarly, BC comes before CD. The ordering between CD
and CE is arbitrary. To build a valid path covering all edges, we start from
the root node A and follow edges in order until the leaf D is met. To hit
the remaining edge CE we add a speculative edge between nodes D and C,
and eventually we visit E to cover CE. Hence, the trace that we would like
to generate in the next phase should follow the path: ABCDCE. Figure 4
shows the path on the APTA after adding the speculative edge.

Validation. To validate the feasibility of the speculatively generated path we
resort to symbolic execution. Differently from the first step, we can now exploit
knowledge from past executions. Any non-speculative edge in the path is found
in the APTA too, so it represents a portion of a trace recorded in the initial
step: the taken branches associated with non-speculative edges can thus be used
to guide symbolic execution when attempting to cover them.

We carry out the symbolic execution following three different exploration
strategies: strictly-branch-guided, target-guided, and loosely-branch-guided.

1 An analyst may desire to test whether the RAT can execute a speculated sequence
of APIs that they build by combining insights from previous observations.

Reconstructing C2 Servers for RATs with Symbolic Execution 129

The first strategy is only used at the beginning when starting the symbolic
execution from the same point used in the first step. Since the speculative path
begins with a prefix that strictly coincides with one of the traces generated during
that step, the exploration is guided along the branches that were taken in each
edge along that prefix. Assuming the execution is deterministic, the control flow
should reach the first node in the speculative path that corresponds to a leaf in
the APTA following exactly the same branches as in the original trace, i.e., the
symbolic engine does not yield alternative execution paths.

Upon reaching the first leaf, we switch to the target-guided exploration strat-
egy switches. Since the execution should now aim at covering a speculative edge,
there is no record of taken branches to reach it from past executions. However,
the exploration has a well-defined target location: the node reached by the spec-
ulative edge. Hence, we now allow for a strategy where multiple alternative paths
can be explored by the engine, and see whether within a given time and memory
budget at least one such path reaches the target location. When one is found,
the exploration continues along it and we switch to the third strategy.

In the loosely-branch-guided strategy we are trying to cover a non-speculative
edge from the current execution path. Although this edge is present in the APTA
and thus a list of taken branches is available, we cannot expect execution to
strictly follow it: as the internal program state may have changed along the path,
there is no guarantee that the RAT can now take branch decisions observed in the
exact same manner as in the original trace behind that edge. We thus try to drive
execution towards such list of branches using a loose enforcement: the strategy
is designed to tolerate up to k divergences (i.e., different branch decisions) with
respect to the original branches. If at least one execution path reaches the next
leaf in the speculative path, we discard any other alternative paths and switch
back to the target-guided strategy, aiming at covering the next speculative edge
in the path. We repeat this process as long as needed to validate the entire path.

During this process the target-guided and loosely-branch-guided strategies
may possibly fail. In this case, our technique goes back to the speculation phase,
marks as invalid the speculative edge that led to the failure and tries a different
speculation. In particular, for such an invalid edge (s, t) we replace it with a new
edge between node s and the nearest ancestor of node t, i.e., its parent. We then
recompute the speculative path using the new edge in place of the old one and
we attempt validation. Observe that another failure would lead us to consider
the second nearest ancestor for t and so on. In case of repeated failures when
considering other of its ancestors, we update the speculative path by dropping
any edge along the sub-path from t to the next leaf. After completing the vali-
dation phase, if any edge present in the APTA has been dropped in the process
we go back to the speculation phase and compute an alternative additional path
covering the dropped edges. As every edge in the APTA gets covered by at least
one speculative path, a pathological exploration sequence may lead to a number
of speculative paths equal to the number of traces obtained in the first step.

130 L. Borzacchiello et al.

Given the speculative path ABCDCE for our artificial RAT, we start the
symbolic exploration from node A using the strictly-branch-guided strategy.
The execution path follows branches B1, B2, B3, B4 and B5 (just as expected
as we are replaying the first recorded trace) and reaches node D, which is
a leaf in the APTA. From now on, the exploration switches to the target-
guided strategy in order to reach node C. Assuming a time budget sufficient
to cover a few instructions, the symbolic engine can lead the execution path
to successfully reach C. Then, the engine switches to the loosely-branch-
guided strategy, trying to drive the exploration towards branches B4 and
B5. At least one symbolic execution path can reach node E (leaf) at the
end of our speculative path, thus terminating the validation step. No APTA
edge was dropped from the initial speculative path, thus no extra speculative
paths are required. The trace generated for the speculative path is:

(a) API: socket(...), connect(..., SERVER ADDR, ...), read(..., D1, 64),

read(..., D2, 64), WinExec(D3, 0), read(..., D4, 64), DeleteFile(D5)

(b) buffers: *D1 = "MAGIC STR", *D2 = "12Program.exe",

*D3 = "Program.exe", *D4 = "22File.doc", *D5 = "File.doc"

(c) branch taken: [B1], [B2, B3], [B4, B5], [B4, B6]

C2 Server Generation. We synthesize a distinct C2 server for each trace gen-
erated from a speculative path. Each server sends back to the RAT the network
buffers reported in the trace. To this end, we use network APIs that carry out
symmetric functionalities for those that get executed in the RAT client.

Given the network APIs and the buffers listed in the trace generated during
the previous step for our RAT, the C2 server implementation is characterized
by the following flow of actions:

s1 = socket(...); bind(s1, ...); // symmetric to socket()

s2 = accept(s1, ...); // symmetric to connect()

write(s2, D1, 64); // symmetric to read(..., D1, ...)

write(s2, D2, 64); // symmetric to read(..., D2, ...)

write(s2, D4, 64); // symmetric to read(..., D4, ...)

The analyst sets up redirection for connections from the RAT to the server
instance, then in-vivo analysis can take place in a debugger or other tools.

2.3 Discussion

A number of issues may hinder the applicability of our approach when consider-
ing real-world RATs. In the following we discuss relevant challenges we identified.

Encryption. Communications with C2 servers may be protected by crypto
schemes. Although this may seem a showstopper at first—as SMT solvers used

Reconstructing C2 Servers for RATs with Symbolic Execution 131

in symbolic execution cannot defeat robust encryption—we may still be able
to analyze several real-world such instances. RATs often use symmetric crypto
functions with keys embedded in the binary or sent by the server: since symbolic
execution can handle both scenarios, our approach may sustain C2 server recon-
struction for such RATs. Asymmetric crypto schemes are instead likely to make
symbolic execution fail at reasoning over exchanged data. However, if the sample
is using standard crypto APIs we could extend our approach to perform func-
tion call interposition, rewriting API arguments to use custom private and public
keys. For instance, a symbolic engine may model the Windows CryptDecrypt
API internally in order to return a valid content for an encrypted network buffer.
To make the synthesized server work, similar hooks should be applied also when
running the RAT within the analyst’s environment.

Nondeterminism and Other Input Types. Another challenge is represented
by nondeterministic factors in the execution. Recorded traces during phase one
could not be directly repeatable [18] due to nondeterminism in OS interactions,
the network or other external factors such as time sources. Since we implemented
our approach on top of S2E [7], a framework for whole-system analysis, some
of these issues could be mitigated in practice. However, the problem of limiting
nondeterminism in the RAT execution when running it in the analyst’s analysis
environment remains an open problem.

A crucial assumption behind our approach is that the execution of interesting
APIs causally depends on the receival of specific commands from the C2 server.
This assumption may be not always be true and several factors can thus under-
mine our reasoning. In general, network may not be the only source of input: as
we will see in Sect. 3, real-world RATs may use other data coming from the envi-
ronment (e.g., obtained through a system call) as an input. Our approach builds
on top of the assumption that any input source can be identified and marked
as symbolic. In practice, this may require additional effort from the analyst.
RATs using multiple channels for communicating with the attacker, e.g., sam-
ples relying on bifurcated or covert signaling channels, are not currently handled
by our approach. Also, our model should be extended to account for concurrent
communications with the C2 server carried out by using, e.g., multiple threads.

Obfuscation. Our approach relies on symbolic execution to reveal interesting
behaviors in RATs. Code obfuscation techniques, such the ones described in [4,
24], could be used by malware writers to render symbolic execution ineffective.
Nonetheless, to the best of our knowledge, these kinds of code obfuscations are
not currently widespread in the malware realm. This situation may change in
the future and thus symbolic execution frameworks may require enhancements
in order to better cope with these techniques.

Number of Paths in the APTA. When constructing an APTA using the
approach presented in Sect. 2.2, we may get an extremely large number of paths
inside the APTA. Unlike our toy example, a command handler of a real-world
RAT may embed a logic made of several conditional branches: unfortunately,
each such branch can make the exploration fork, yielding several traces for the

132 L. Borzacchiello et al.

Fig. 5. NetWire – Control flow graph of the RAT’s dispatcher loop.

same command and increasing the number of paths in the APTA. To mitigate
this problem, we merge APTA edges that refer to the same source and tar-
get receive nodes and report the same list of interesting APIs. In other words,
we merge edges that differ only for the taken branches. To avoid losing use-
ful information when merging, we define the BT record as a set of lists, where
each list identifies the branches taken in some trace. Besides reducing the size of
the APTA, this allows our approach to consider multiple—alternative—ways of
guiding a path over an edge during the validation step, possibly increasing the
chances of covering a command.

Speculation. Finally, we point out that the order by which during the specu-
lation phase we pick edges of the APTA to be visited plays a crucial role. The
interplay between commands may make a chosen speculative path unfeasible,
yielding in the worst case to traces just as short as those we were able to record
during the first step of our approach. Nonetheless, testing and validating any
possible speculation decision for path construction is not feasible as we would
be dealing with a combinatorial choice problem.

3 Experimental Evaluation

In the following we discuss a preliminary experimental evaluation of our approach
considering two real-world RATs. We prototyped our technique in S2E [7] to
perform symbolic execution on the entire software stack (including kernel and
libraries), and extended it with more than 70 hooks for Windows APIs—used to
inject symbolic data in case of network communications and to track interesting
APIs—and the three exploration strategies discussed in Sect. 2.2.

We run the experiments on a server equipped with two Intel Xeon E5-2630
v3 CPUs (16 cores in total, @2.40 GHz) and 256 GB of RAM, running Debian
Linux 9. We use a budget of 6 h and 32 GB of RAM for the trace generation
step, and one of 12 h and 64 GB of RAM for the validation step. To validate
the results of our experiments, we manually reviewed the synthesized C2 servers
by running them alongside the RAT samples, checking their functionalities and
verifying that commands described in public reports on the two RATs were
actually handled by the generated servers.

Reconstructing C2 Servers for RATs with Symbolic Execution 133

3.1 NetWire

NetWire is a RAT with keylogging capabilities sold on the black market. It exists
in several variants and has been used by criminals since 2012. In 2016 this RAT
received particular attention from security vendors after taking part in a large
campaign for stealing payment card data [17]. The variant we considered [16]
allows an attacker to perform 51 commands on the infected machine, e.g., sending
a file, stealing browser credentials, or taking a screenshot of the victim’s desktop.
Figure 5 provides an annotated CFG for its dispatcher.

Trace Generation. Starting the exploration from the executable’s entry point
would likely lead to the generation of a large number of paths in the symbolic
executor, exhausting the resource budget well before reaching the dispatcher
loop. For this reason, as in [2] we assume that the analyst can identify the
thread executing the loop and provide hints for steering the exploration toward
this component. Since in NetWire it is implemented as a switch statement with
a large number of cases, detecting it in an initial inspection was straightforward.
Our prototype generated over 2000 traces, covering 41 commands while 10 led
to internal crashes. An excerpt2 from a valid trace is the following:

(a) API: ..., socket(...), connect(...), ..., time(T), ..., send(...,D1, ...), ...,
recv(..., D2, ...), recv(..., D3, ...), fopen(D4, ...), send(...,D5, ...), ...

(b) buffers: *D1= f(T), *D2= SEED IV, *D3= {0x3e, ...},
*D4= "C:\Users\...\Opera\profile\wand.dat", *D5= {...}

When analyzing the entire trace, we can learn several interesting facts about
NetWire. First, it uses a raw TCP socket for communicating with the C2 server.
Second, it sends to the server a buffer that contains some data f(T) derived
from a timestamp T obtained using the function time. The server sends back a
buffer that likely contains a seed and an initialization vector, internally used by
NetWire in combination with a statically embedded password to generate a sym-
metric key. This key is then used during communications to encrypt data using a
custom implementation of AES. As discussed in Sect. 2.3, symmetric encryption
can be handled by our approach when the key is embedded in the binary or is
dynamically generated with a computation. NetWire derives the symmetric key
from a buffer received from the server, falling in the latter case. Since we gener-
ate the server and thus can control the buffer’s content, our approach is able to
successfully deal with the symmetric encryption scheme of NetWire. However,
to make the trace replayable outside our environment the time function should
be hooked in order to produce the same value used in the symbolic exploration.
Another interesting element from this trace is that NetWire implements a com-
mand (0x3e) that sends to the server the content of profile files for the Opera
browser.

2 Addresses of taken branches seem of little interest and are thus omitted.

134 L. Borzacchiello et al.

Fig. 6. NetWire – APTA with speculative edges after completing the validation step.

Trace Analysis, Speculation, and Validation. The APTA built from ana-
lyzing the traces is depicted in Fig. 6. To make the representation compact, we
merged paths related to the same command (see Sect. 2.3) and discarded traces
where no interesting APIs were observed. The resulting APTA contains 29 dis-
tinct paths, covering 30 commands (since command 0x4 is a prefix for all the
paths). We discarded traces related to 11 commands for which no interesting
APIs were recorded. Figure 6 shows the path chosen in the speculation step:
the path was successfully validated during the fourth step, generating a single
execution trace able to cover all 30 commands.

C2 Server Generation. To synthesize a C2 server instance for NetWire, our
prototype programmatically generated a Python program template using wrap-
pers for network APIs such as socket, bind, accept, read, and write. When
generating the server, our prototype reports that the analyst should hook (e.g.,
using debugger scripting or by rewriting API results in a sandbox) the invocation
of the time function that takes place at a specific call site inside the sample.

3.2 GoldSun

The first specimen of the GoldSun RAT dates back to 2004: over the years, the
RAT has infected machines in over 60 countries [23]. We considered a variant [2]
that injects code in Windows Explorer to remain stealthy and lets the attacker

Reconstructing C2 Servers for RATs with Symbolic Execution 135

main command loop

command 01
(ECHO)

reconstruct Win32 API import address table
(IAT) with LoadLibrary and
GetProcAddress

read remote command from server
and check it starts with @@

command 09 (LS)

create/check mutex to avoid multiple
running instances of the thread

send command
execution result

back to server

0x402BB0

InternetOpenUrl to
mse.vmnat.com,

send hostname
and MAC address

retrieved from NetBIOS
and reads command buffer

with InternetReadFile

check if some system files exist
+ POST HTTP 1.1 of

buffer with hostname, MAC address,
and encrypted info on host (IP,

sys32time.ini exists y/n,
ipop.dll exists y/n,
malware version)

command 02 (IPOP LOAD CHECK)

command 40 (PING)

command 03 (SEND FILE)

command 04 (RECV FILE)

command 05 (CMDEXEC)

command 06 (DELETE FILE)

command 07 (MOVE FILE)

command 0A (INTERACTIVE MODE)

command 0B (MKDIR)

command 0C (WinExec
C:\Windows\System\netbn.exe)

command 0D (RMDIR)

command 0E (TERMINATE PROCESS)

command 0F (WinExec
C:\Windows\System\netdc.exe)

command 10 (WinExec
C:\Windows\System32\NFal.exe
+ update registry at key
Software\Microsoft\Windows\
CurrentVersion\Policies\Explorer\Run
with CommonService = C:\Windows\
System32\NFal.exe "%1" %*)

decrypts the buffer using a
byte-wise XOR 45h

dispatch command encoded in 3rd
byte of buffer

Fig. 7. GoldSun – Control flow graph of the RAT’s command processing thread [2].

perform 16 types of commands on the victim’s machine, such as executing a file
or stealing one. Figure 7 provides an annotated version of the control flow graph
(CFG) for the dispatcher loop of the variant we analyzed.

Trace Generation. Similarly as for NetWire, we rely on the initial guidance
of the analyst to reach the dispatcher loop: our prototype could generate more
than 300 traces originating in it, exposing all the 16 commands implemented by
the RAT. An excerpt from one of the traces is the following:

(a) API: ..., InternetOpenA(...), InternetConnectA(..., D1, 80,...),
..., InternetReadFile(..., D2, 4096, ...), ..., WinExec(D3, 0), ...

(b) buffers: *D1= "mse.vmnat.com", *D2= XOR(0x45, "@@5File.exe"),

*D3= "File.exe"

where *D1 is the server domain used by the C2 server (listening on port 80) and
*D2 is the buffer for requesting the RAT to execute the program File.exe on the
victim’s machine using WinExec. Notice that *D2 is encrypted with a single-byte
XOR scheme (key 0x45) while buffer *D3 is just a substring of decrypted *D2.

Although such encryption scheme is rather weak, it is sufficient to hinder
reuse of messages across different communication sessions: the C2 server can

136 L. Borzacchiello et al.

instruct the sample to change the key, making messages from one session pos-
sibly invalid for another. In addition to message format and encryption factors,
classic network simulators like FireEye FakeNet-NG would be defeated by the
authentication scheme using by this RAT, which requires the C2 server to exe-
cute the first command two times before allowing the execution of any other
command.

Trace Analysis, Speculation, and Validation. The APTA built after ana-
lyzing the recorded traces is depicted in Fig. 8. As for NetWire, we merged paths
for the same commands and discarded uninteresting traces, yielding a tree with
15 paths (as the first command appears twice in each path).

To build the speculative path, we added to the approach presented in Sect. 2.2
the requirement for the path to cover the command 0x10 after the last speculative
edge. This choice results from the observation that this command makes the
dispatcher loop terminate, thus acting as a shutdown action. This reasoning
could be easily integrated into the approach by devising a heuristic for detecting
traces that terminate the execution, e.g., by using exit-like APIs.

Interestingly, we experienced several edge invalidations when performing the
speculation step. While our original speculative path had all the speculative
edges reaching the deepest receive node in the APTA (node K in Fig. 8), the
final validated path shows several speculative edges reaching other receive nodes
(i.e., ancestors of K). This resulted from multiple failures during the symbolic
exploration. Nonetheless, no interesting edge was dropped during the validation
phase, resulting in a single speculative path (reported in Fig. 8) able to execute
all the 16 commands implemented by GoldSun.

C2 Server Generation. The sample communicates with the C2 server using
the HTTP protocol (see, e.g., the InternetConnectA API in the trace excerpt
above). Our prototype can synthesize C2 server instances for this protocol in the
form of Python Flask applications. For GoldSun, the C2 server is mainly imple-
mented by handling request on the route /httpdocs/mm/ <victim id>/Cmwhite,
where victim id is a unique identifier for the victim computed in the sample
by concatenating the hostname and the MAC address of the victim’s machine.
When generating the server, our prototype reports that the analyst should set
the host name and the MAC address in the analysis environment to same values
used in the symbolic exploration to prevent path divergences in the execution.

4 Related Work

Symbolic execution and protocol reverse engineering techniques constitute the
backbone of our approach. We briefly review works targeting such research.

Symbolic Execution. Symbolic execution is a program analysis technique pio-
neered in the ’70s. The technique is used to explore multiple paths of a program

Reconstructing C2 Servers for RATs with Symbolic Execution 137

Fig. 8. GoldSun – APTA with speculative edges after completing the validation step.

by using symbolic instead of concrete inputs and it is widely used by the cyber-
security community [19–22]. Due to space limitation, we refer the reader to the
work by Baldoni et al. [3] for a complete treatment of the subject.

Protocol Reverse Engineering. In the last two decades, protocol reverse
engineering has received large attention from the research community. A recent
survey [13] divides works on this topic in two fields:

Message Format Inference. The goal is to classify the messages exchanged
between client and server and, for each identified class, to deduce the fields
which compose a message from the class and the relations (if any) among these
fields. The ultimate goal is to reconstruct the grammar that defines the structure
of messages. Automatic approaches can be further categorized based on the type
of inference applied. Techniques based on network inference analyze the packets
exchanged between client and server. For instance, [5] uses sequence alignment
algorithms to find similarities among the exchanged messages and exploits this
knowledge to identify recurring patterns and field boundaries. [12] assumes that
fields delimiters are known and uses a set of heuristics to classify the messages
and to identify hierarchical relations between fields. Techniques based on appli-
cation inference monitor not only packets, but also the code. [15] leverages the
idea that an application manipulates logically-related fields in code portions that
are close to each other. [10] uses instead a combination of system-call monitoring
and taint analysis to deduce the field boundaries and possibly the semantics of
the fields (e.g., if a field encodes a length).

138 L. Borzacchiello et al.

Protocol Grammar Inference. The aim of such works is to reconstruct valid
sequences of messages accepted by client and server. Message format inference is
typically a prerequisite for this phase. Active inference approaches start from an
inaccurate model and iteratively refine it by probing an application that imple-
ments the protocol; automaton learning algorithms are typically involved. For
instance, [8] infers the protocol state machine of the MegaD C2 server by probing
an active server using the L* algorithm [1]. [9] performs active protocol gram-
mar inference in combination with concolic execution. Passive approaches deduce
instead the protocol grammar by examining network traces. [10] constructs an
automaton that models the protocol by processing sequences of captured mes-
sages that have been previously classified.

5 Conclusion

In this paper we have proposed new ideas for synthesizing a server counterpart
for a RAT malware when only the client is available for inspection. As direc-
tions for future work, we plan to extend our automata representation to account
for concurrent communications, and explore the limits of our implementation
when dealing with more complex protocols with respect to packet format and
interactions with the OS other than network-related ones.

Acknowledgments. This work is supported in part by a grant of the Italian Presi-
dency of the Council of Ministers.

References

1. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987). https://doi.org/10.1016/0890-5401(87)90052-6

2. Baldoni, R., Coppa, E., D’Elia, D.C., Demetrescu, C.: Assisting malware analysis
with symbolic execution: a case study. In: Dolev, S., Lodha, S. (eds.) CSCML 2017.
LNCS, vol. 10332, pp. 171–188. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-60080-2 12

3. Baldoni, R., Coppa, E., D’Elia, D.C., Demetrescu, C., Finocchi, I.: A survey of sym-
bolic execution techniques. ACM Comput. Surv. 51(3), 50:1–50:39 (2018). https://
doi.org/10.1145/3182657

4. Banescu, S., Collberg, C., Ganesh, V., Newsham, Z., Pretschner, A.: Code obfus-
cation against symbolic execution attacks. In: Proceedings of the 32nd Annual
Conference on Computer Security Applications, ACSAC 2016, pp. 189–200 (2016).
https://doi.org/10.1145/2991079.2991114

5. Beddoe, M.A.: Network protocol analysis using bioinformatics algorithms. Toorcon
(2004)

6. Bugalho, M., Oliveira, A.L.: Inference of regular languages using state merging
algorithms with search. Pattern Recogn. 38(9), 1457–1467 (2005). https://doi.
org/10.1016/j.patcog.2004.03.027

7. Chipounov, V., Kuznetsov, V., Candea, G.: The S2E platform: design, implementa-
tion, and applications. ACM Trans. Comput. Syst. (TOCS) 30(1), 2:1–2:49 (2012).
https://doi.org/10.1145/2110356.2110358

https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1007/978-3-319-60080-2_12
https://doi.org/10.1007/978-3-319-60080-2_12
https://doi.org/10.1145/3182657
https://doi.org/10.1145/3182657
https://doi.org/10.1145/2991079.2991114
https://doi.org/10.1016/j.patcog.2004.03.027
https://doi.org/10.1016/j.patcog.2004.03.027
https://doi.org/10.1145/2110356.2110358

Reconstructing C2 Servers for RATs with Symbolic Execution 139

8. Cho, C.Y., Babić, D., Shin, E.C.R., Song, D.: Inference and analysis of formal
models of botnet command and control protocols. In: Proceedings of the 17th ACM
Conference on Computer and Communications Security, CCS 2010, pp. 426–439.
ACM (2010). https://doi.org/10.1145/1866307.1866355

9. Cho, C.Y., Babić, D., Poosankam, P., Chen, K.Z., Wu, E.X., Song, D.: MACE:
model-inference-assisted concolic exploration for protocol and vulnerability dis-
covery. In: Proceedings of the 20th USENIX Conference on Security, pp. 10–10
(2011)

10. Comparetti, P.M., Wondracek, G., Kruegel, C., Kirda, E.: Prospex: protocol speci-
fication extraction. In: Proceedings of the 2009 30th IEEE Symposium on Security
and Privacy, SP 2009 (2009). https://doi.org/10.1109/SP.2009.14

11. Coppa, E., D’Elia, D.C., Demetrescu, C.: Rethinking pointer reasoning in symbolic
execution. In: Proceedings of the 32nd IEEE/ACM International Conference on
Automated Software Engineering, ASE 2017 (2017). https://doi.org/10.1109/ASE.
2017.8115671

12. Cui, W., Kannan, J., Wang, H.J.: Discoverer: automatic protocol reverse engineer-
ing from network traces. In: Proceedings of 16th USENIX Security Symposium on
USENIX Security Symposium (2007). http://dl.acm.org/citation.cfm?id=1362903.
1362917

13. Duchêne, J., Le Guernic, C., Alata, E., Nicomette, V., Kaaniche, M.: Stateof the
art of network protocol reverse engineering tools. J. Comput. Virol. Hacking Tech.
14, 53–68 (2017). https://doi.org/10.1007/s11416-016-0289-8

14. Jiang, D., Omote, K.: An approach to detect remote access trojan in the early
stage of communication. In: 2015 IEEE 29th International Conference on Advanced
Information Networking and Applications, pp. 706–713, March 2015. https://doi.
org/10.1109/AINA.2015.257

15. Lin, Z., Jiang, X., Xu, D., Zhang, X.: Automatic protocol format reverse engineer-
ing through context-aware monitored execution. In: 15th Symposium on Network
And Distributed System Sexurity (NDSS) (2008)

16. Computer Incident Response Center Luxembourg: TR-23 Analysis - NetWiredRC
malware (2014). https://www.circl.lu/pub/tr-23/

17. SecureWorks: NetWire RAT Steals Payment Card Data (2016). https://www.
secureworks.com/blog/netwire-rat-steals-payment-card-data

18. Severi, G., Leek, T., Dolan-Gavitt, B.: Malrec: compact full-trace malware record-
ing for retrospective deep analysis. In: Giuffrida, C., Bardin, S., Blanc, G. (eds.)
DIMVA 2018. LNCS, vol. 10885, pp. 3–23. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-93411-2 1

19. Shoshitaishvili, Y., Wang, R., Hauser, C., Kruegel, C., Vigna, G.: Firmalice - auto-
matic detection of authentication bypass vulnerabilities in binary firmware. In:
Proceedings of the 2015 Network and Distributed System Security Symposium,
NDSS 2015 (2015). https://doi.org/10.14722/ndss.2015.23294

20. Shoshitaishvili, Y., et al.: SoK: (state of) the art of war: offensive techniques in
binary analysis. In: IEEE Symposium on Security and Privacy, SP 2016, pp. 138–
157 (2016). https://doi.org/10.1109/SP.2016.17

21. Song, D., et al.: BitBlaze: a new approach to computer security via binary analysis.
In: Sekar, R., Pujari, A.K. (eds.) ICISS 2008. LNCS, vol. 5352, pp. 1–25. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-89862-7 1

22. Stephens, N., et al.: Driller: augmenting fuzzing through selective symbolic execu-
tion. In: Proceedings of the 2016 Network and Distributed System Security Sym-
posium, NDSS 2016 (2016). https://doi.org/10.14722/ndss.2016.23368

https://doi.org/10.1145/1866307.1866355
https://doi.org/10.1109/SP.2009.14
https://doi.org/10.1109/ASE.2017.8115671
https://doi.org/10.1109/ASE.2017.8115671
http://dl.acm.org/citation.cfm?id=1362903.1362917
http://dl.acm.org/citation.cfm?id=1362903.1362917
https://doi.org/10.1007/s11416-016-0289-8
https://doi.org/10.1109/AINA.2015.257
https://doi.org/10.1109/AINA.2015.257
https://www.circl.lu/pub/tr-23/
https://www.secureworks.com/blog/netwire-rat-steals-payment-card-data
https://www.secureworks.com/blog/netwire-rat-steals-payment-card-data
https://doi.org/10.1007/978-3-319-93411-2_1
https://doi.org/10.1007/978-3-319-93411-2_1
https://doi.org/10.14722/ndss.2015.23294
https://doi.org/10.1109/SP.2016.17
https://doi.org/10.1007/978-3-540-89862-7_1
https://doi.org/10.14722/ndss.2016.23368

140 L. Borzacchiello et al.

23. Villeneuve, N., Sancho, D.: The “Lurid” Downloader. Trend Micro Incorporated
(2011). http://la.trendmicro.com/media/misc/lurid-downloader-enfal-report-en.
pdf

24. Yadegari, B., Debray, S.: Symbolic execution of obfuscated code. In: Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications Security,
CCS 2015 (2015). https://doi.org/10.1145/2810103.2813663

http://la.trendmicro.com/media/misc/lurid-downloader-enfal-report-en.pdf
http://la.trendmicro.com/media/misc/lurid-downloader-enfal-report-en.pdf
https://doi.org/10.1145/2810103.2813663

Generating a Random String
with a Fixed Weight

Nir Drucker1,2(B) and Shay Gueron1,2

1 University of Haifa, Haifa, Israel
2 Amazon, Seattle, USA

drucker.nir@gmail.com, shay@math.haifa.ac.il

Abstract. Generating, uniformly at random, a binary or a ternary
string with a fixed length L and a prescribed weight W , is a step in
several quantum safe cryptosystems (e. g., BIKE, NTRUEncrypt, NTRU
LPrime, Lizard, McEliece).

This fixed weight vector selection generation is often implemented via
a shuffling method or a rejection method, but not always in “constant
time” side channel protected flow. A recently suggested constant time
algorithm for this problem, uses Network Sorting and turns out to be
quite efficient. This paper proposes a new method for this computation,
with a side channel protected implementation. We compare it to the other
methods for different combinations of L and W values. Our method turns
out to be the fastest approach for the cases where L is (relatively) short
and 0.1 < W/L ≤ 0.5. For example, this range falls within the parame-
ters of NTRU LPrime, where our method achieves a 3× speedup in the
string generation. This leads to an overall 1.14× speedup for the NTRU
LPrime key generation.

Keywords: Software optimization · Combinatorics ·
Post Quantum Cryptography · Coding

1 Introduction

This paper deals with efficient methods for what we call the Fixed Weight Vector
Selection (FWVS) problem, defined as follows.

Definition 1. Let L, W , q, m be integers such that 0 < W ≤ L and let q ≥ 2 be
a prime. Denote the set of all vectors with L symbols from Fqm having weight W
by SW

L (the weight of a vector is defined to be the number of its nonzero symbols).

Problem 1 (Fixed Weight Vector Selection (FWVS)). Select, uniformly at ran-
dom, a vector from SW

L (here, uniformly at random means that every vector
from SW

L has equal probability to be selected in the process).

To illustrate, we give a simple example.

c© Springer Nature Switzerland AG 2019
S. Dolev et al. (Eds.): CSCML 2019, LNCS 11527, pp. 141–155, 2019.
https://doi.org/10.1007/978-3-030-20951-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20951-3_13&domain=pdf
https://doi.org/10.1007/978-3-030-20951-3_13

142 N. Drucker and S. Gueron

Example 1. L = 5,W = 4, q = 2,m = 1. Here (q = 2), the elements of the vec-
tors are bits. With these parameters, SW

L = {11110, 11101, 11011, 10111, 01111}.
The FWVS problem is to select X from SW

L such that Pr(X = s) = 1
5 for every

s ∈ SW
L .

Problem 1 is one of the steps in several cryptosystems that have been pro-
posed to the first round [2] of NIST Post-Quantum Cryptography (PQC) project.
Five such schemes (BIKE, HQC, McEliece, NTRUEncrypt, and NTRU LPrime)
were recently selected for the second round of the project [3]. A selection of
the relevant parameters that shows the different range of interest for L and W ,
is shown in Table 1. Note that these algorithms use symbols from F2 (binary
strings) or F3 (ternary strings). These correspond to m = 1 and q = 2 or q = 3.

Table 1. Some of the proposals submitted to the first round of NIST PQC project
[2] for which the FWVS problem is a step in their key generation/encapsulation/
decapsulation. The schemes BIKE, HQC, McEliece, NTRUEncrypt, and NTRU LPrime
were recently selected for the second round of the project [3]. The cryptosystems are
sorted in alphabetic order. Note the different ranges of L and W values.

Cryptosystem NIST security
category

L W

BIG QUAKE 1 3,600 78

BIG QUAKE 5 9,000 135

BIKE1 (keygen) 1 10,163 71

BIKE1 (encaps) 1 20,326 134

BIKE1 (keygen) 5 32,749 137

BIKE1 (encaps) 5 65,498 261

HQC 1 22,229 67

HQC 5 59,011 133

Lizard 1 536 140

Lizard 5 1024 200

McElice6960119 5 6960 119

McElice8192128 5 8192 128

NTRUEncrypt 1 443 143

NTRUEncrypt 5 743 247

NTRU LPrime 5 761 250

We point out that a construction for the case q = 3 can be implemented by
means of post processing the results of a construction for the case q = 2 (see
Sect. 5). Therefore, we hereafter deal only with q = 2. We seek fast implementa-
tions of the FWVS problem with the following constraint: the execution should
be in “constant time”1. By constant time we mean that the algorithm: (a) does
1 “Constant time” is the standard term for algorithms/implementations that are

secure against (some) side channel attacks. Other terms that are used are “side
channel protected” and “Isochronous”.

Generating a Random String with a Fixed Weight 143

not involve access to elements of the vectors in a way that depends on the values
of the symbols; (b) does not involve branches that depend on the values of the
symbols.

Proper software implementations of such algorithms are considered to be
secure against the known micro-architectural side channel analyses (side channel
attacks hereafter)2. To illustrate the term “constant time” we give two examples:

Example 2. Assume an implementation that sets one bit in an array of bits by
accessing only the relevant location in the array. A spy process that monitors
the CPU caches can infer the memory address that was accessed, and therefore
can learn the bit location.

Example 3. Assume an implementation that sets a bit only if it equals zero by
performing the “read” operation but performing a “write” operation only when
needed. A spy process that can measure the implementation’s execution time can
distinguish between the two cases (read or read+write) and learn if the relevant
bit was set before the operation. A constant time implementation should always
write a value.

Remark 1. The overall execution time does not have to be fixed (constant) in
order to satisfy these requirements, but since “constant time” is the common
term used for describing such software implementations, we adopt it.

Remark 2. It is straightforward to write side channel protected software for an
inherently constant time algorithm. For other algorithms, the software imple-
mentations need to use special techniques in order to become side channels safe.

Our Contributions. we proposed a new method (RepeatedAND) to address the
FWVS problem and compare it to the alternative methods for different L and W
combinations that are relevant to the Post-Quantum (PQ) proposals mentioned
above. Our method(s) speedup the vectors’ generation significantly for some size
combinations. They lead to a noticeable speedup in the overall performance of
e. g., NTRU LPrime [6].

The paper is organized as follows. Section 2 starts with preliminaries and
notation. Section 3 describes the “RepeatedAND” method. Conversions (from
binary to ternary) are described in Sect. 5. Our results are reported in Sect. 6
and a conclusion is brought in Sect. 7.

2 Preliminaries, Notation, and Conventions

We use Fqm to denote a finite field with qm symbols {0, 1, . . . , qm}, where in this
paper we set m = 1 and q ∈ {2, 3}. Polynomials a(x) = aL−1x

L−1+. . . a1x+a0 ∈
F2[x] are represented, interchangeably, as strings of L bits. If A is such a string,
then A[i] = a(i), 0 ≤ i < L. Polynomials b(x) = bL−1x

L−1 + . . . b1x + b0 ∈ F3[x]
are represented as strings of 2-bit symbols (2 ·L bits). If B is such a string, then
B[2i + 1 : 2i] = b(i), 0 ≤ i < L.
2 Differential power attacks and fault injection attacks are outside the scope of this

paper.

144 N. Drucker and S. Gueron

Example 4. The polynomial x9 +x6 +x2 +x+1 ∈ F2[x] corresponds to the bits
string 1001000111 of length L = 10. The polynomial 2x9+x6+x2+x+2 ∈ F3[x]
corresponds to the bits string 10000001000000010110 of length L = 2 · 10.

Let A be an array of bits. The weight of A is denoted by wt(A) and is
the number of set bits in A. We denote by 1� (resp. 0�) the �-bit string of all
ones (resp. zeros). Bit-wise “and”, “or” and “not” are denoted by ∧ and ∨ and
¬, respectively. In the algorithms below, unless otherwise stated, uninitialized
variables equal 0.

A Pseudorandom Function (PRF) for Generating Uniform Random Samples.
We assume access to a PRF that consists of two functions. It is initialized by
calling st = InitPRF(seed), where seed is some input seed (256-bit in our case)
and the output is a PRF state st. Subsequently, the function r = GetRand(st, �)
is called in order to obtain a pseudorandom integer r in the range 0 ≤ r < �.

Remark 3. In general generating a long sequence of true random bits is slow
(e. g., using RDRAND and RDSEED on x86 platforms), therefore we use some
PRF to efficiently collect pseudorandom numbers.

2.1 The Shuffling Method

The classical approach to the FWVS problem is the Fisher-Yates Shuffle algo-
rithm [11] (a.k.a known as Knuth shuffle). One of its variants [10] is described in
Algorithm 1. It performs an in-place shuffle on a pre-initialized array. Steps 6–8
depend on the values in the array A. Thus, their (software) implementation is
not inherently “constant time” unless the implementation takes the performance
penalty for sweeping over the whole array in every iteration.

Algorithm 1. “inside-out”, Fisher-Yates Shuffle algorithm [10, 11]
Input: seed, L, W
Output: A (an L bits string with weight W)

1: procedure GenString(seed, L, W)
2: A = 0L−W 1W

3: st = InitPRF(seed)
4: for i = 0 to L do
5: j = GetRand(st, L)
6: t = A[j]
7: A[j] = A[i]
8: A[i] = t

9: return A

2.2 Rejection Method

Algorithm 2 is commonly known as the Rejection method (e. g., used in NTRU-
Encrypt [12,13] and BIKE [4,8]). Here, Step 6 is a branch that depends on the

Generating a Random String with a Fixed Weight 145

value of A. Thus, its software implementation is not inherently “constant time”
unless the implementation takes the performance penalty for sweeping over the
whole array in every iteration.

Algorithm 2. Rejection method
Input: seed, L, W
Output: A (an L bits string with weight W)

1: procedure GenString(seed, L, W)
2: A = 0L

3: st = InitPRF(seed)
4: while wt(A) �= W do
5: j = GetRand(st, L)
6: if A[j]=0 then
7: A[j] = 1

8: return A

2.3 Sorting Method

Algorithm 3 shows another approach to Problem1 that we call here Sorting
method. This method has been recently proposed for NTRU LPrime [6]. It is
based on constant time sorting algorithms (details and review are provided in
[5]), and enjoys an efficient software implementation (using AVX2) demonstrated
in [5]. Note that the code in NTRU LPrime generates strings with q = 3, but as
explained above, we describe Algorithm 3 for the case q = 2. This algorithm is
inherently constant time.

Algorithm 3. Sorting method (based on [5])
Input: seed, L, W
Output: A (an L bits string with weight W)
Comment: B is a 32L bits string. Sort operates on a 32-bit integers array.

1: procedure GenString(seed, L, W)
2: st = InitPRF(seed)
3: B[32L − 1 : 0] = GetRand(st, 232L − 1)
4: for i in 0 to W − 1 do
5: B[32i] = 1

6: for i in W to L − 1 do
7: B[32i] = 0

8: Sort(B, L)
9: for i in 0 to L − 1 do

10: A[i] = B[32i]

11: return A

146 N. Drucker and S. Gueron

3 RepeatedAND method

We propose an alternative method to tackle Problem1, as illustrated in Algo-
rithm4. The main idea is that if X and Y are two (pseudo)random inde-
pendent strings of length L then: (a) the expected weight of X and of Y is
E

[
wt(X)

]
= E

[
wt(Y)

]
= L

2 ; (b) E

[
wt(X ∧ Y)

]
= L

4 .
Steps 10–14 in Algorithm 4 generate a string Ā of length L with wt(Ā) ≤ W .

The algorithm takes a sequence Ai, i = 1, 2, , . . . , J of (pseudo)random indepen-
dent strings of length L, where J ≈ ⌊

log2(L/W)
⌋
, and sets

Ā =
J∧

j=0

Aj (1)

The value of J is not pre-determined, but its expected value is E [J] =⌊
log2(L/W)

⌋
. To illustrate, we give an example.

Example 5. Let L = 1, 024, W = 128. Then

E

[
wt(A0)

]
= 512

E

[
wt(A0 ∧ A1)

]
= 256

E

[
wt(A0 ∧ A1 ∧ A2)

]
= 128

The expected number of iterations required for generating Ā as in (1) is J = 3.
In practice, J is typically 3 or 4.

Steps 6–17 use Ā in order to generate a new vector A with wt(A) = W (exactly).
Starting from A = Ā (with wt(Ā) ≤ W), we set w = W − wt(Ā) ≥ 0. Next,
another string Ā′ of length L with wt(Ā′) ≤ w is generated (Steps 10–14). The
value A = A ∨ Ā′ satisfies wt(Ā) ≤ wt(A) ≤ W . Steps 6–17 are repeated while
w > 0. The expected number of rounds is at most �log2W 	.
Remark 4. Algorithm 4 requires independent (pseudo)random values Aj . Sam-
pling Aj from GetRand(·) is (performance wise) costly, so reusing sampled strings
may seem like a tempting shortcut. However, this approach violates the inde-
pendence property. For example, circular rotation of Ā on Step 12, generates
correlation between the bits of A. In practice, some bit manipulation techniques
could possibly lead to sufficiently uncorrelated vectors, and perhaps make the
selection acceptable. We do not adopt this approach here.

Lemma 1. Algorithm4 generates every string in SW
L with equal probability.

Proof. Algorithm 4 outputs only strings from SW
L . For every round of Algo-

rithm4, we have, Step 15,

wt(A) + wt(Ā) < wt(A) + w

= wt(A) + W − wt(A) = W

Generating a Random String with a Fixed Weight 147

Algorithm 4. RepeatedAND method
Input: seed, L, W
Output: A (an L bits string with weight W)

1: procedure GenString(seed, L, W)
2: st = InitPRF(seed)
3: ctr = 0
4: w = W
5: A[L − 1 : 0] = 0L

6: do
7: j = 0
8: Aj = GetRand(st, L)
9: Ā = Aj ∧ ¬A � Optimization

10: do
11: j = j + 1
12: Aj = GetRand(st, L)
13: Ā = Ā ∧ Aj

14: while (wt(Ā) > w)
15: A = A ∨ Ā
16: w = W − wt(A)
17: while (w �= 0)
18: return A

Therefore, in Step 18, we have wt(A) ≤ W . Since Pr(wt(Ā) = 0) < 1, we can
conclude that E

[
wt(A)

] ≤ E

[
wt(A) + wt(Ā)

]
. This implies that the algorithm

stops after some number of rounds, and when it does, we have wt(A) = W .
Clearly, Algorithm 4 outputs every string in SW

L with equal probability because
Pr(A[i] = 1) = W

L for every bit 0 ≤ i < L, independently of the other bits.
�

4 Different Representations of Strings

In general, algorithms use the sparse polynomials (in F2[x] or F3[x]) in different
ways that may use different representations of the data. As a result, Algorithm4
that generates binary strings, may be less efficient than its alternatives, due
to the performance cost of moving across the different representations used in
a specific scheme (especially in constant time implementations). We give two
examples. The additional implementation of BIKE [4] uses three representations
for a(x) ∈ F2[x]: (a) an L-bit string A; (b) an 8L-bit string (B) where each
byte holds one bit (B[8i] = A[i], 0 ≤ i < L); (c) a list of indexes {i : A[i] =
1, 0 ≤ i < L}. The implementations of NTRU LPrime [6] represent a polynomial
b(x) ∈ F3[x] in three ways: (a) a 32-bit integers array C, where C[32i + 1 :
32i] = bi + 1 (mod 3), 0 ≤ i < L (used for sorting); (b) a 2L-bit array D,
where D[2i + 1 : 2i] = bi + 1 (mod 3), 0 ≤ i < L; (c) An 8L-bit array E, where
E[8i + 7 : 8i] = D[2i + 1 : 2i] − 1 (the values are 00000000, 00000001, and
11111111).

Indeed, converting a binary string into a list of indexes in constant time is
expensive and therefore the Rejection method is first used for generating the list

148 N. Drucker and S. Gueron

of indexes, which is later converted into a binary string. By contrast, moving
across the representation in NTRU LPrime is sufficiently fast, thus using the
RepeatedAND method is preferred (see Sect. 6).

5 Handling the Case q = 3

An algorithm for converting a binary string into a ternary string is described
in Algorithm 5. The algorithm gets a binary string S with a fixed weight W
and an auxiliary (pseudo)random L-bit string B with wt(B ∧ S) < W as its
inputs (B = B′ ∧ S, where B′ is a (pseudo)random L bit vector). It outputs
a 2L bits ternary string D where the “zero” symbol is 01 and the other two
symbols are 10 and 00 (as in NTRU LPrime [6]). Step 1 of Algorithm5 maps
0 → 01 and 1 → 10. Step 2 uses B to decide which 10 symbol will be converted
into a 00 symbol. To this end, it squares B (adds a 0 bit next to each bit) and
multiplies the result by x. This ensures that only bits in even positions can equal
1. Finally, we achieve the results by XORing the two strings. Note that for cases
like NTRUEncrypt that use a ternary vector with a fixed number of 1 symbols
(d) and −1 symbols (e), we require that wt(B ∧S) = d. To generate B, we use a
modified version of Algorithm 4, where we replace Step 9 with Ā = Aj ∧(¬A)∧S
and set W = d.

A fast implementation on modern x86 platforms can use the carry less multi-
plication (PCLMUL) instruction for squaring a polynomial in F2[x], bit-wise XOR
for addition and shift left for multiplication by x.

Algorithm 5. Converting a binary string into a ternary string
Input: S (an L bits string with weight W), B (an L bits string with wt(B ∧ S))
Output: C ∈ F3[x] (a 2L bits string with weight W)
Comment: The operations are in F2[x]

1: procedure ConvBinary2Ternary
2: tmp = S2 +

∑l
i=0,i−even xi

3: D = (x · B2) + tmp
4: return D

6 Results

To compare the RepeatedAND method to the studied alternatives, we prepared
optimized software implementations (specifically, in C using AVX/AVX2 intrin-
sics). For the Rejection method, we used our Additional implementation of BIKE
[4] (written in C and x86 assembly). For the Sorting method, we used the imple-
mentation given in [5] (written in C and uses AVX2 intrinsics). We did not
implement the Shuffling method because arguably, its constant time implemen-
tation would have roughly the same performance as the Rejection methods.

Generating a Random String with a Fixed Weight 149

For all these methods we used the same PRF. Specifically, an efficient imple-
mentation (using AES-NI) of AES256 streaming mode, with a 256-bit seed (key)
over a 32-bit counter. For computing the weight of an array in constant time we
divided the array to 64-bit sub-arrays, and used the POPCNT instruction. This
instruction receives a 64-bit value and returns its hamming weight (in 3 cycles).
The algorithms were compiled with gcc (version 5.4.0) in 64-bit mode, using
the “O3” Optimization level, and run on a Linux (Ubuntu 16.04.3 LTS) OS. We
carried out the experiments on an Intel R© desktop of the 7th Intel R© CoreTM Gen-
eration (Micro-architecture Codename “Kaby Lake” [KBL]) 3.60 GHz CoreTM

i7 − 7700. This platform had 16 GB RAM, 32K L1d and L1i cache, 256K L2
cache, and 8, 192K L3 cache. The Intel R© Turbo Boost, Intel R© Hyper-Threading
Technology, and the Enhanced Intel Speedstep R© Technology were disabled.

Fig. 1. The average number of rounds (vertical axis) in the RepeatedAND method
(lower is better). The points in the graph represent (L, W) pairs and displayed accord-
ing to the ratio W

L
.

We performed several experiments. In the first experiment we tested 18
arbitrary values3 of L, and 32 arbitrary values4 of W . Altogether, there were
290 legitimate cases (i.e., W < L). For every legitimate pair, we ran the
RepeatedAND method 30, 000 times and recorded the average number of rounds.
Figure 1 shows the results. We encountered a small number of rounds (2 − 4)
only when W

L < 0.5 with more occurrences when W
L < 0.2. For W

L > 0.6, we

3 L = 128, 251, 437, 512, 761, 1, 024, 1, 493, 2, 048, 4, 096, 5, 312, 8, 192, 6, 451, 10, 163,
16, 384, 24, 567, 32, 749, 32, 768, 65, 536.

4 W = 10, 30, 50, 71, 110, 250, 286, 350, 512, 897, 1, 200, 1, 900, 2, 500, 3, 012, 3, 981,
4, 196, 4, 691, 5, 890, 7, 891, 9, 801, 12, 010, 14, 909, 15, 901, 19, 876, 23, 090, 27, 090,
32, 123, 40, 954, 51, 209, 52, 908, 59, 908, 65, 536.

150 N. Drucker and S. Gueron

encountered a relatively large number of rounds (10+). Note that the FWVS
problem is symmetric, i. e., solving it for some L and W is the same as solving
it for the same L but with W̄ = L − W and then negate the results. Thus, it is
possible to ignore the cases where W

L > 0.5.
The second experiment is the same as above where we disabled the optimiza-

tion of Algorithm 4, Step 9. Figure 2 shows the difference between the average
number of rounds for the same (L,W) pairs in both experiments. Algorithm 4
(with the optimization) is significantly more efficient when W

L ≥ 0.2 (the differ-
ence is usually more than 5 rounds).

Fig. 2. Number of additional rounds per pair (L, W) (See pairs values in the text)
aggregated according to the ratio W

L
, when the optimization of Algorithm 4, Step 9 is

disabled.

Table 2 compares the constant time implementations of the RepeatedAND,
to the Rejection, and Sorting methods over the parameters of BIKE1, Lizard,
NTRUEncrypt, and NTRU LPrime. Note that the final measurements for
NTRUEncrypt should take into account the generation time of vector B in
Algorithm 5.

For easy reproducibility of the results, we used the benchmarking system
SUPERCOP [7] in order to measure the impact of Algorithm 4 on the over-
all performance of NTRU LPrime (ntrulpr4591761)5. We modified the func-
tion small seeded weightw in the NTRU LPrime implementation so that it
calls Algorithms 4 and 5. Subsequently, we used the function small decode
(of the original code) to convert the resulting string into the required format.
5 Note that SUPERCOP uses checksums that were generated by running NTRU

LPrime with its original Sorting method. Thus, to use SUPERCOP for measuring
the performance with our (different) method, we removed the checksums.

Generating a Random String with a Fixed Weight 151

Table 2. Method comparison over some of the parameters of BIKE1, Lizard, NTRU-
Encrypt (NTRUEn), and NTRU LPrime (NTRULPr). The reported cycles include the
(pseudo)random data generation. Fastest result for each parameter choice is marked
with bold. The RepeatedAND and the Sorting implementations generate ternary
strings while the Rejection implementation generate binary strings

Alg. Cat. L (bits) W (bits)
W

L
RepeatedAND

method

(cycles)

Rejection

method

(cycles)

Sorting

method

(cycles)

BIKE1 1 10,163 71 0.007 57,086 17,460 160,313

BIKE1 1 20,326 134 0.006 137,130 45,301 390,546

BIKE1 5 32,749 137 0.004 189,791 43,699 643,000

BIKE1 5 65,498 261 0.004 426,333 141,499 1,502,388

Lizard 1 536 140 0.261 2,377 41,510 7,589

Lizard 5 1,024 200 0.195 5,072 81,251 13,811

NTRUEn 1 443 143 0.322 2,006 33,871 6,710

NTRUEn 5 743 247 0.332 3,414 82,928 10,722

NTRULPr 5 761 250 0.328 3,086 81,674 9,000

Figure 3 compares the 32 measurements taken by SUPERCOP for the key gen-
eration/encapsulation/decapsulation steps of the original implementation and
of our optimization. The original implementations run them in constant time,
unlike our optimized implementation, where Algorithm4 has a variable number
of rounds (but no secret information is leaked). Our optimization outperforms
the baseline in 27/32 = 84% (point A - key generation), 25/32 = 78% (point
B - encapsulation), and 21/32 = 65% (point C - decapsulation), achieving a
speedup of around 1.07×, 1.12×, 1.21×, respectively.

7 Conclusion

We presented a new algorithm for speeding up the FWVS problem. The imple-
mentation of Algorithm 4 achieves speedup of 3× over the equivalent latest imple-
mentation in NTRU LPrime one of the schemes that were selected for the NIST
PQC project round 2 [3].

In addition, our experiments show that the RepeatedAND method can speed-
up other cryptosystems (e. g., Lizard) when L is small. If the value of L is high
(as in BIKE1) it is preferable to use the Rejection method (or the Shuffling
method). In addition, our experiments show that the RepeatedAND method is
usually faster than the Sorting method (on the measured sizes). We point out
that in cases where constant-time implementation is not required, the Shuffling
or the Rejection methods are probably the fastest.

The performance of the RepeatedAND method depends on the performance
of the underlying PRF. In our experiments, we used AES256 as an efficient
choice. However, if a 128 bits key is sufficient (e. g., for NIST Category 1 algo-
rithms), using AES128 will speed-up the algorithm. In addition, our experiments
target x86 platforms with AES-NI enabled. On these platforms, using AES in

152 N. Drucker and S. Gueron

Fig. 3. Cycles count comparison for 32 NTRU LPrime (ntrulpr4591761) key-
gen/encapsulate/decapsulate measurements taken by SUPERCOP. Lower number of
cycles is better. Here, “Before” refers to the original implementation and “After” refers
to the optimization through Algorithm 4.

counter mode leads to a very fast PRF. Implementations that target other plat-
forms (without AES-NI) may choose to use a different PRF (e. g., based on hash
functions).

Better News Are Coming Soon: Vector AES and POPCNT New Instructions
Intel has recently announced [1] that its future architecture, microarchitecture
codename “Ice Lake”, will add vectorized capabilities to the existing AES-NI
instructions. These instructions are intended to push the performance of AES
software further down, to a new (theoretically achievable) throughput of 0.16
C/B [9]. In addition, CPUs with AVX512 capabilities arrive with a new vec-
torized POPCNT instruction that performs eight 64-bit POPCNT in one instruc-
tion. Judicious use of these new instructions will significantly accelerate the
RepeatedAND algorithm.

Acknowledgments. We thank an anonymous reviewer for the comment that led to
Algorithm 6. This research was supported by: The Israel Science Foundation (grant No.
1018/ 16); The BIU Center for Research in Applied Cryptography and Cyber Security,
in conjunction with the Israel National Cyber Bureau in the Prime Minister’s Office;
the Center for Cyber Law & Policy at the University of Haifa in conjunction with the
Israel National Cyber Directorate in the Prime Minister’s Office.

A A variant of the RepeatedAND method

Step 13 of Algorithm4 (Ā = Ā∧Aj) can be replaced with Ā = Ā∧¬Aj without
affecting the correctness or the performance characteristics of the algorithm.

Generating a Random String with a Fixed Weight 153

This is because

wt(Ā ∧ Aj) ≈ wt(Ā ∧ ¬Aj) ≈ wt(Ā)
2

(2)

and
E

[
wt(Ā ∧ Aj)

]
= E

[
wt(Ā ∧ ¬Aj

]
= E

[
wt(Ā)/2

]
(3)

Algorithm 6 is a variant of Algorithm 4 that leverages this fact. It replaces
Step 13 in Algorithm4 with Steps 13–19. The following example illustrates this
optimization.

Algorithm 6. A variant of the RepeatedAND method
Input: seed, L, W
Output: A (an L bits string with weight W)

1: procedure GenString(seed, L, W)
2: st = InitPRF(seed)
3: ctr = 0
4: w = W
5: A[L − 1 : 0] = 0L

6: do
7: j = 0
8: Aj = GetRand(st, L)
9: Ā = Aj ∧ ¬A � Optimization

10: do
11: j = j + 1
12: Aj = GetRand(st, L)
13: if wt(Ā ∧ Aj) ≤ w and wt(Ā ∧ ¬Aj) ≤ w then
14: Ā = max(Ā ∧ Aj , Ā ∧ ¬Aj)
15: else
16: if wt(Ā ∧ Aj) ≤ w then
17: Ā = Ā ∧ Aj

18: else
19: Ā = Ā ∧ ¬Aj

20: while (wt(Ā) > w)
21: A = A ∨ Ā
22: w = W − wt(A)
23: while (w �= 0)
24: return A

Example 6. Let L = 2, 048, W = 500, and assume that wt(A0) = 1, 024 and
wt(A0) ∧ wt(A1) = 524. Then wt(A0) ∧ ¬wt(A1) = 1, 024 − 524 = 500 = W .
Therefore, Algorithm 6 ends after one round, while Algorithm4 will ends after
at least two rounds.

Algorithm 6 is only one example of a greedy algorithm that uses (2) to
optimize Algorithm 4. Other optimizations may apply for specific choices of
L and W . For example, when L = 2, 048 and W = 200 a sequence Āi≥0 =
{. . . , 800, 400, 200} will probably lead to a smaller number of rounds compared
to the expected sequence Āi≥0 = {. . . , 512, 256, 128}.

154 N. Drucker and S. Gueron

B Bounding the probability that the
RepeatedAND algorithm does not stop

In theory, Algorithm4 can enter an infinite loop if wt(A) does not change for an
infinite number of times at (a) Step 13 ; (b) Step 15.

We first explain (heuristically) the claim in Lemma 1 that Algorithm 4 stops
almost surely (i. e., the probability that it does not stops is negligible). We start
by calculating the probability that the loop in Steps 10–14 ends after L − w
iterations. Suppose that the vector A with weight x = wt(A) is converted to the
vector A′ with y = wt(A′) at the end of a single iteration. If y ≤ w the loop
ends. We consider the Markov chain that corresponds to transition from x to y,
where we label the L+1 weights (states) by 0, . . . , L. The transition matrix Px,y

is:

Px,y =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2x

· (
x
y

)
w < x ≤ L, 0 ≤ y ≤ x,

1 0 ≤ x = y ≤ w

0 otherwise

In particular, Px,x = 1
2x < 1

2w for x > w. Denote by X ∼ Geo(1 − Px,x) the
geometric random variable that counts the number of iterations until a state
change occurs (y �= x). Then for some k

P (X ≤ k) = 1 −
(
1 − (

1 − Px,x

))k

= 1 − P k
x,x = 1 − 1

2kx
> 1 − 1

2kw

If x > y in at least L − w iterations we get y < w (because every iteration
reduces the weight by at least 1). Since the loop iterations are independent, after
at most k(L − w) iterations we get (if 2kw ≥ 5)

P
(
wt(A) ≤ w

)
>

(
1 − 1

2kw

)L−w

=

⎛

⎝
(

1 − 1
2kw

)2kw
⎞

⎠

L−w

2kw

>

(
1
e

− 0.05
)L−w

2kw

>

(
1
2

) L−w

2(kw−1)

=
(

1
2

)δL,w,k

where δL,w,k = L−w
2(kw−1) . For example, in the first round of NTRU LPrime, L =

761, w = 250, we get δ761,250,1 =
511

2250−1
≈ 1

2239
. Consequently, the probability

that the loop ends after at most k(L−w) = 511 iterations is almost 1. To bound
the number of iterations when δL,w,k > 1, we first choose some 1 < w1 < w such
that δL,w1,1 < 1 then continue recursively. For example, if L = 761, w = 1, we

choose w1 = 21, and get δ761,21,1 =
740
220

<
1

210
. Thus, after L − w1 iterations

P (wt(A) ≤ 20) > 210
√

0.5 ≈ 0.999. Subsequently, we set k2 = 16 such that with

Generating a Random String with a Fixed Weight 155

k2(w1 − w) = k2(21 − 1) = 20k2 additional iterations we get δw1,w,k2 =
20

2k2−1
<

1
210

and the probability P (wt(A) ≤ w) > 210
√

0.5 ≈ 0.999. Consequently, the loop

ends with (L − w1) + 20k2 iterations with probability at least 0.999. Obviously,
a different choice of parameters can lead to a probability that is closer to 1.

Case (b) is the case where y = 0 for an infinite number of rounds of the
external loop (Steps 6–17), i. e., the Markov chain hits the absorbing state with
weight 0 an infinite number of times. The probability to hit this absorbing state
is 0 < hn,0 < 1

2w (for every x < w, Px,0 = 1
2x < 1

2w) and by the same reasoning
as above, the probability to avoid it in a bounded number of rounds/attempts
is close to 1.

References

1. Intel architecture instruction set extensions programming reference October
2017. https://software.intel.com/sites/default/files/managed/c5/15/architecture-
instruction-set-extensions-programming-reference.pdf

2. NIST Post Quantum Cryptography - Round 1 Submissions (2018). https://csrc.
nist.gov/projects/post-quantum-cryptography/round-1-submissions

3. Alagic, G., et al.: Status report on the first round of the NIST post-quantum
cryptography standardization process. Technical report (2019). https://doi.org/
10.6028/NIST.IR.8240

4. Aragon, N., et al.: BIKE: bit flipping key encapsulation (2017), https://bikesuite.
org/files/BIKE.pdf

5. Bernstein, D.J.: djbsort (2018). https://sorting.cr.yp.to/index.html
6. Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: NTRU prime:

reducing attack surface at low cost. In: Adams, C., Camenisch, J. (eds.) SAC 2017.
LNCS, vol. 10719, pp. 235–260. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-72565-9 12

7. Bernstein, D.J., Lange, T.: eBACS: ECRYPT Benchmarking of Cryptographic
Systems, December 2018. https://bench.cr.yp.to/

8. Drucker, N., Gueron, S.: A toolbox for software optimization of QC-MDPC
code-based cryptosystems. Cryptology ePrint Archive, Report 2017/1251 (2017).
https://eprint.iacr.org/2017/1251

9. Drucker, N., Gueron, S., Krasnov, V.: Making AES great again: the forthcoming
vectorized AES instruction. Cryptology ePrint Archive, Report 2018/392 (2018).
https://eprint.iacr.org/2018/392

10. Durstenfeld, R.: Algorithm 235: random permutation. Commun. ACM 7(7), 420
(1964)

11. Fisher, R.A., Yates, F., et al.: Statistical tables for biological, agricultural and
medical research. In: Statistical Tables for Biological, Agricultural and Medical
Research, 3 edn. (1949)

12. Hoffstein, J., Howgrave-Graham, N., Pipher, J., Whyte, W.: Practical lattice-based
cryptography: NTRUEncrypt and NTRUSign. In: Nguyen, P., Vallée, B. (eds.) The
LLL Algorithm. Information Security and Cryptography, pp. 349–390. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02295-1 11

13. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryp-
tosystem. In: Buhler, J.P. (ed.) Algorithmic Number Theory, pp. 267–288. Springer,
Berlin Heidelberg, Berlin, Heidelberg (1998). https://doi.org/10.1007/BFb0054868

https://software.intel.com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference.pdf
https://software.intel.com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference.pdf
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://doi.org/10.6028/NIST.IR.8240
https://doi.org/10.6028/NIST.IR.8240
https://bikesuite.org/files/BIKE.pdf
https://bikesuite.org/files/BIKE.pdf
https://sorting.cr.yp.to/index.html
https://doi.org/10.1007/978-3-319-72565-9_12
https://doi.org/10.1007/978-3-319-72565-9_12
https://bench.cr.yp.to/
https://eprint.iacr.org/2017/1251
https://eprint.iacr.org/2018/392
https://doi.org/10.1007/978-3-642-02295-1_11
https://doi.org/10.1007/BFb0054868

An Access Control Model for Data Security
in Online Social Networks Based on Role

and User Credibility

Nadav Voloch(&), Priel Levy, Mor Elmakies, and Ehud Gudes

Ben-Gurion University of the Negev, P.O.B. 653, 8410501 Beer-Sheva, Israel
voloch@post.bgu.ac.il

Abstract. During the past decade Online Social Networks (OSN) privacy has
been thoroughly studied in many aspects. Some of these privacy related aspects
are trust and credibility involving the OSN user-data conveyed by different
relationships in the network. One of OSN major problems is that users expose
their information in a manner thought to be relatively private, or even partially
public, to unknown and possibly unwanted entities, such as adversaries, social
bots, fake users, spammers or data-harvesters. That is one of the reasons OSN
have become a major source of information for companies, different organiza-
tions and personal users, possibly misusing it for personal or business gain.
Preventing this information leakage is the target of many OSN privacy models,
such as Access Control, Relationship based models, Trust based models and
many others. In this paper we suggest a new Role and Trust based Access
Control model, denoted here as RTBAC, in which roles, that manifest different
permissions, are assigned to the users connected to the Ego-node (the user
sharing the information), and in addition, every user is evaluated trust wise by
several criteria, such as total number of friends, age of user account, and
friendship duration. These role and trust assessments provide more precise and
viable information sharing decisions and enable better privacy control in the
social network.

Keywords: Online Social Networks Privacy � Access control �
Trust-based privacy models

1 Introduction

Online Social Networks (OSN) privacy models have been a source of much research
over the past few years. Some of which focused on handling the OSN information
sharing instances as an Access Control system, in which there is a selective restriction
of access to the network’s resources. The permission to access resources is the main
concern of the different models, and the decision of giving a certain user authorization
to access a resource is usually made under several criteria, based on many different
factors. Access Control models have different variations, some are more widely-used
than others.

[1] gives a survey of most of the OSN Access Control models, elaborating the
functionalities of the different types. [2] presents a new model for privacy control based

© Springer Nature Switzerland AG 2019
S. Dolev et al. (Eds.): CSCML 2019, LNCS 11527, pp. 156–168, 2019.
https://doi.org/10.1007/978-3-030-20951-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20951-3_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20951-3_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20951-3_14&domain=pdf
https://doi.org/10.1007/978-3-030-20951-3_14

on sharing habits, controlling the information flow by a graph algorithm that prevents
potential data leakage. In [3] a relationship-based approach is being handled, giving
priority to the users’ relationships qualities, on which we have based our initial idea for
the model.

This paper presents a new privacy model for access control in an OSN, in which the
decisions of permission granting combines both pre-defined roles and trust-based
factors derived from user-attributes, such as total number of friends, age of user
account, and resembling attributes between the two users. Similar attributes have
appeared in a previous work [4], which deals with information-flow control, and creates
a model for adversary detection. However, in this paper we present specific parametric
values for these attributes, which are experimentally based. Furthermore, the current
paper focuses on Trust and Access Control, while [4] deals with information-flow
control. The Access Control model presented here is dynamic, in a manner of per-
mission assignments, changing by the modularity of the user entities and their attri-
butes. The model relies on previous researches and models, which will be mentioned
and discussed in the upcoming parts of this paper, and its parameters are evaluated by
experimental results conducted on real OSN users. The combination of the use of Roles
and the novel way for computing users’ Trust provides a much finer level of privacy
control than the one that currently exists in social networks (e.g. [5, 6]), and this is the
main contribution of this paper.

The rest of this paper is structured as follows: Sect. 2 discusses the background for
our work, with explanations for the related papers it relies on, Sect. 3 describes and
defines our model thoroughly with several examples of its operation and presents its
preliminary evaluation, Sect. 4 discusses the model’s implementation and connection
to the work done in previous models and approaches, and Sect. 5 is the conclusion of
the paper, with future prospect on further research on this subject.

2 Background and Related Work

Access Control models, and specifically ones describing OSN privacy, have been
studied extensively over the past decade. A major problem, that exists especially in
OSN, is an information flow to unwanted entities, violating the privacy of individuals.
Even with a proper Access Control model, one likes to prevent such flow, and this is a
subject of recent research. In the sharing-habits research mentioned above a privacy
control model is established by defining the other users into three closeness categories
(close friend, acquaintance, and adversary), then it presents an algorithm that moves
edges from the OSN graph, having the amount of information flowing to the adver-
saries minimized, while the information flow to friends and acquaintances remains
intact. The access given to information instances is decided by a Min-Cut algorithm,
dividing the community graph for the purpose of preventing data leakage to unwanted
entities, such as spammers or other potential adversaries. In this model, the access
granted to the user’s information is based on user-to-user relationships, and we have
based our Access Control method on this approach.

An Access Control Model for Data Security in Online Social Networks 157

The main Access Control model used in OSN is Role-Based Access Control
(RBAC) that has many versions, as presented in [7], and limits access by creating user-
role assignments. The user must have a role that has permission to access that resource.
The most prominent advantage of this method is that permissions are not assigned
directly to users but to roles, making it much easier to manage the access control of a
single user, since it must only be assigned the right role. To this model we add the Trust
factor [8], and it is based on the network users’ interactions history, which could be
problematic in assessing relatively unknown new connections. In this paper we cir-
cumvent this problem by adding independent user attributes to this estimation. An
example of using RBAC specifically in Facebook is done in [5], that describes the use
of roles in it and the possible breaches that can occur due to the flexible privacy settings
of the network. [9] gives an extensive and formal Access Control model for Facebook-
like networks, based on incrementing policies obtained by dynamic relationships in the
network. Another important model we rely on is Relationship-Based Access Control
(ReBAC), presented in [10] that is based on user-relationships in OSN.

The model is topology-based and establishes relationships between users on the
social network by a sequence of binary conditions. [11] presents a model that imple-
ments the contextual nature of relationships, in which a policy language for ReBAC is
devised, based on modal logic, for composing trust-based access control policies with
an applicative paradigm for it. In [12] the formal ReBAC was developed into a two-
stage method for evaluating policies. These policies were defined by semantics for path
conditions, similar to regular expressions, which were used to develop a policy eval-
uation method. A model based on relationship strength between friends – RSBAC
(Relationship Strength Based Access Control) is presented in [13]. The model calcu-
lates the level of closeness between users according to their social activities and their
profile similarities. The model’s main idea is that OSN users that have profile similarity
(in terms of attributes) and communicate frequently, necessarily have a high degree of
closeness, and therefore should get broader permissions to each other’s data instances.
Using Trust in OSN is widely used in different models, and even in relatively early
researches such as [14], the idea of involving trust in Access Control for OSN user data
is handled, in creating Trust criteria for different subjects (users) and objects (data
instances). A research that handles an OSN access control model based on Trust is [15].
The model presents a policy that refers to an access right that a subject can have on an
object, based on relationship, trust, purpose and obligations in the network. [16] present
a model named IMPROVE-Identifying Minimal Profile Vectors for similarity-based
access control. It elaborates on this specific subject, and gives a 30-item list of attri-
butes, some direct and some derived, that define the user information in an OSN. An
important ranking is given to these attributes, based on information gaining from each
attribute, assessing their importance in the closeness approximation between users and
evaluating their information sharing willingness. This trust is used differently in various
roles, depending on the model’s policies.

We have based our Role and Trust Based Access Control (RTBAC) model on the
above works, and it is presented in the following section. The novelty of our model is
that the relationships and their strengths do not determine Access Control directly, but
are used along with other characteristics to compute the trust of an OSN user in
accordance with a specific Ego-user.

158 N. Voloch et al.

3 OSN Role and Trust Based Access Control (RTBAC)

3.1 The RTBAC Model

The basic idea of the model is that besides the general roles given to different users,
each user will be given a certain level of trust, and permissions to access different data
instances will be authorized only if the trust level passes a certain threshold. In this
manner, the generalization disadvantage of RBAC can be solved, and better data
distribution can be achieved. We should first emphasize the way, relative to a specific
Ego-user, RBAC is generally used in an OSN. A user may belong to multiple hier-
archic roles, but all of them are on a single path (as seen in [17]). Therefore, when a
user, and an Access chosen for it, is the lowest in the hierarchy it has the maximal set of
permissions per role. We denote this role as R (U, Ego), but we will use just R as a short
notation. The main contribution of RTBAC is the way Trust is computed. Trust is
computed by assigning values of credibility and connection strength to the different
users, based on the criteria presented below.

A minimum trust value threshold is the core condition of accessing a specific
permission. The purpose of combining trust is to provide an additional stage of
screening besides the RBAC roles. Another advantage of the model is that the com-
bination of trust elements allows dynamic assignments of permissions to users over
time, meaning their trust level can be dropped, and vice versa.

The formal definition of the RTBAC model instance is as follows:
An RTBAC instance is a tuple <u_id, R, P(R), UTV, MTV, P(U)> where:

• u_id - String, the identification of a user connected to the Ego-node
• R - String, the assigned user role of u_id, same as in RBAC
• P - String, An access permission to an OSN data instance
• B (P, R) - Boolean, the preliminary access Permission P of the assigned role R
• UTV - Float, the User Trust Value for u_id, that will be explained in the following

part, values range between 0 and 1
• MTV (P, R) - Float, the Minimal Trust Value of role R for permission P, that will be

explained in the following part, values range between 0 and 1
• B (U, P) - Boolean, the final access decision for u_id U for permission P.

In Fig. 1 we can see the access granting decision made by the model, where the
user must have a role and a minimal trust value to access the specific data instance.

In Fig. 2 we can see an example for the model’s structure – The Ego-user is the
user sharing the information. There are 7 other users in the system in this example, that
obtain different roles.

In this example, we give a minimal trust value (MTV) of 0.745 for a family member
role to access the permission of “Tagging”. This value can be altered per role and per
permission in other cases. An Example of the trust decision making can be clearly seen
in User 6. Users 6 and 7 have a “Family” role, but only User 7 achieves a trust value
>0.745 and gets the “Tagging” permission that User 6 does not obtain.

An Access Control Model for Data Security in Online Social Networks 159

3.2 Criteria Choice for Trust Estimation

The choice of the attributes, for determining the level of trust for the model, is based on
the criteria mentioned in the above sections, and the two main categories of criteria for
our model are:

• Connection strength (c): the connection strength of users is determined by char-
acteristics that indicate their level of closeness such as Friendship Duration (FD),
Mutual Friends (MF), etc. The full characteristics list and their notations are shown

Fig. 1. Access decision in the RTBAC model

Fig. 2. RTBAC model example of 7 users. Users 6 and 7 have a “Family” role, but only User 7
achieves a trust value >0.745 and gets the “Tagging” permission.

160 N. Voloch et al.

in Table 1. The notation given to these factors are by this c notation. For example,
cMF is the value for the Mutual Friends attribute.

• User credibility (u): the user credibly criterion assesses the user attributes that
convey his OSN reputation and trustworthiness, such as Total number of Friends
(TF) and Age of User Account (AUA), calculated from the time the user joined the
OSN, etc. The full list and notations are also shown in Table 1. The resemblance
attributes (RA) that are taken into consideration are: Gender, Age (range), Educa-
tion, Workplace, and Relationship status (married, single, etc.). The notation given
to these factors are by this u notation. For example, uAUA is the value for the Age of
User Account attribute.

3.3 Calculating Trust Parameters’ Values

All the parameters’ values presented in this section are based on an experimental
evaluation we have performed and is discussed in more detail in Sect. 3.5 of this paper.

These values are as follows:

uTF ¼
TF
245 TF\ 245ð Þ;
1 TF � 245ð Þ:

�
ð1Þ

uTF value is based on the Total Friends attribute, and the average value shown in
[18], having fake profiles, social-bots, etc., with an allotted number of friends. The
questionnaire result for this attribute was the lower bound of 244.34.

uAUA ¼
AUA
24 AUA\ 24ð Þ;
1 AUA � 24ð Þ:

�
ð2Þ

uAUA value is calculated in months. It is based on the estimation of the AUA
attribute of [19], that an active spammer profile will not remain active for a long term,
due to OSN security updating policies.

Table 1. User-credibility and connection-strength characteristics variables for RTBAC

Variable Attribute User/Connection

TF Total number of Friends User
AUA Age of User Account (OSN seniority) User
FFR Followers/Followees Ratio User
MF Mutual Friends Connection
FD Friendship Duration Connection
OIR Outflow/Inflow Ratio Connection
RA Resemblance Attributes Connection

An Access Control Model for Data Security in Online Social Networks 161

uFFR ¼ FFR FFR\ 1ð Þ;
1 FFR � 1ð Þ:

�
ð3Þ

For the cRA value we take into consideration 10 of the users’ attributes, based on the
researches presented above, that resemble the Ego-user’s attributes that are gender, age
(range), current educational institute, past educational institute, current workplace, past
workplace, current town, home-town, current country, home-country.

Let us denote the following factors:

• TAego is the total number of non-null attributes (from the 10 attributes mentioned
above) of the Ego-user.

• TRAego, other is the total number of non-null resembling attributes (from the 10
attributes mentioned above) of the Ego-user and the other user.

Now we can define cRA:

cRA ¼ TRAego; other
TAego

ð4Þ

For these resemblance cases, the Pearson correlation coefficient [20] is often used
for ratio calculation, but it defines a symmetric value for both ends of the connection,
whilst our model describes an asymmetric one, since the other user is the one being
checked for resemblance, in relevance to the Ego-user, and not vice versa.

cMF ¼
MF
37 MF\ 37ð Þ;
1 MF � 37ð Þ:

�
ð5Þ

cMF value is also taken from the Mutual Friends attribute having fake profiles,
social-bots, or even adversaries, with a small number of mutual friends, if any.

cFD ¼
FD
18 FD\ 18ð Þ;
1 FD � 18ð Þ:

�
ð6Þ

cFD value is calculated in months. It is based on the Friendship Duration attribute,
having a relatively unknown user, or even a fake profile or spammer, being friends with
the Ego-user not for a substantial amount of time, is of an unwanted sharing willingness
potential.

The attribute of cOIR, that is the ratio of Outflow/Inflow created in [6].

cOIR ¼ Outflow=Inflow Outflow\ Inflowð Þ;
1 Outflow � Inflowð Þ:

�
ð7Þ

162 N. Voloch et al.

Now we can assess the access permission decisions by defining the total values of
user credibility and connection strength in a manner of averaging the different factors
noted above.

u ¼ WiUih i ¼
Pjuj

i¼1 WiUi
Wh ijuj ¼ WuTFþ WuAUA þ WuFFR

5:24 � 3
¼ 5:37uTF þ 5:2uAUA þ 5:16uFFR

15:72
ð8Þ

c ¼ WiCih i ¼
Pjcj

i¼1 WiCi
Wh ijcj ¼ WcMFþWcFDþWcOIRþWcRA

5:52 � 4
¼ 5:93cMFþ 5:1cFDþ 5:7cOIRþ 5:34cRA

22:8
ð9Þ

These weights (Wi) were the survey results for the significance (weight) of every
attribute-factor (Ui or Ci) in u and c. They could theoretically be altered by other user-
preferences or future results. We can now conclude the definition of the model’s User
Trust Value (UTV), taking into consideration that there are 7 attributes: 4 connection
attributes and 3 user attributes (marked as |c| and |u|):

UTV ¼ c � jcj þ u � juj
jcþ uj ¼ 4 � c þ 3 � u

7
ð10Þ

The Minimal Trust Value (MTV) set in this model is based on the Trust-based
dynamic RBAC model presented above and is altered per role and per permission by
the user-preferences if such exist, or by an OSN administration policy, if such exists for
these specific cases.

In Table 2 we can see an example, portrayed in Fig. 2, where there is a difference
between two users that have the same role, but not the same UTV, thus not getting the
same permission. The MTV set for this specific role and permission (Family - Tagging)
is 0.745, and User 6 achieves a UTV value of 0.44 and does not get the permission,
whilst User 7 achieves a UTV of 0.84, thus gets the permission.

In the following parts we will see the model’s algorithm, and the experimental
evaluation done for determining its different parameters.

Table 2. Difference in UTV between same-role users

User WuTF WuAUA WuFFR WcRA WcFD WcOIR WcMF u c UTV MTV

6 0.44 0.33 0.89 0.4 0.67 0.13 0.22 0.55 0.36 0.44 0.745
7 0.78 0.59 0.91 0.8 0.86 0.96 1 0.76 0.91 0.84 0.745

An Access Control Model for Data Security in Online Social Networks 163

3.4 The Model’s Algorithm

The decision algorithm, seen in Fig. 1 and described above, is as follows:

3.5 Experimental Assessment and Real OSN Data Estimation of Trust

As mentioned above, the experimental evaluation of the model’s trust parameters
consisted of two parts:

A. A validation of the parameters by a survey of 282 OSN users that were asked for
the importance of various attributes in their decisions to grant various permissions
to their private data.

The survey included the quantifiable attributes of user credibility and connection
strength described in Table 1. For all these attributes, the request was for the needed
threshold value of Trust of a certain user. For example, an average of 245 total friends
(TF) and above was considered as a trustworthy user, which we can share information
with. The results are the ones presented in the Trust values calculation section above:
MF � 37, TF � 245, AUA � 24 and FD � 18. Two more aspects were examined
in the survey: the importance (weight) of every one of the Resembling Attributes
(RA) on a scale of 1 to 10, and the importance of every one of the model’s Trust
attributes (from Table 1). These two aspects’ results are presented in Fig. 3.

B. In the second experimental evaluation we attempt to validate the trust computation
in a real OSN dataset that included 162 user nodes and their attributes. These were
checked, and the Friend role was being examined Trust wise in a real part of a
Facebook network. This dataset of user nodes was checked for the model
parameters’ Trust quantifiable attribute values mentioned in the previous parts. The
nodes’ UTV was calculated by the formulas presented above, and the average UTV
achieved by the 162 users was 0.745. For the median theoretical probabilistic MTV
value of 0.5, only 3 out of the 162 users, were not granted access to the permission.
In Fig. 4 we can see the results of the UTV calculations of the 162 user nodes.

164 N. Voloch et al.

In Fig. 5 we can see the compliance of the two experimental evaluations – the
survey and the real OSN data. As we can see, there is a strong correlation between the
values in the two experiments. Note that the TF attribute has a much higher value in the
OSN real dataset since the OSN data presents definitive sharing probabilities (actual
friends) whilst the survey presents a more general user-preference estimation.

Fig. 3. The model’s importance (weight) evaluation of resemblance and Trust attributes

An Access Control Model for Data Security in Online Social Networks 165

4 Discussion

The RTBAC privacy model we have presented here helps to improve the current Role-
based models, in which members of the same role (e.g. family or close friend) have the
same set of permissions, disregarding their relationship with the Ego-user and other
users, and not taking into consideration their dynamic behavior. Past Trust-based
dynamic RBAC also used trust values for Access Control in non OSN environments
(e.g. [5]), but its attributes are dependent on users’ interactions history alone, making it
difficult to determine if a permission can be given if this history is not available, and

Fig. 4. UTV values for 162 user nodes with Friend roles

Fig. 5. The compliance of the two experimental evaluations of the model

166 N. Voloch et al.

making it hard to evaluate the true nature of the user’s network. Our privacy model
solves this problem and improves this permission decision by the novel approach of
taking into consideration both the user-roles and the user-attributes relevant to the
specific permission decisions. The model also makes this permission’s decision
dynamic in time, since these attributes can change during time: The user gains or loses
friends, its age of user account grows over time, etc. A certain weakness of this and any
Trust related Access Control model is that new OSN users “fall through the cracks”
since their Trust parameter values, such as AUA and TF, are very low, even though they
could be legitimate users that will be mistaken for fake profiles or spammers. For these
specific cases of new users, we can remedy the problem by giving extra weight to the
OIR attribute, since spammers and bots have a very low value of OIR (they mainly
Outflow data, and rarely Inflow), whilst genuine new user profiles have a high or
moderate OIR value.

5 Conclusion and Future Work

In this paper we have presented an Access-Control model for privacy in OSN. The
novelty of our RTBAC model is its combination of User-Trust attributes, based on real
OSN characteristics, in an RBAC, that usually grants permissions solely to roles, and
by that improving the privacy features of the network. The attributes of this model and
their values were carefully picked and are based on previous research described in
previous sections. These can improve information-sharing decisions done in an OSN.

Our experimental evaluation showed a strong indication of the validity of the Trust
computation model and its attribute threshold parameters. Obviously, these parameters
can be tuned further for different social networks and different size samples.

Current and future work on this model is further validation by experimental OSN
user data, and the combination of the Information Flow model and this current Access
Control model in the part of the role assessment. As seen in Fig. 2 a role that is
“General” is the role of a user that is not directly connected to the Ego-user, and the
decision of the acquaintance or adversary role can be done by an information-flow
model [4].

References

1. Sayaf, R., Clarke, D.: Access control models for online social networks. Social Network
Engineering for Secure Web Data and Services, pp. 32–65 (2012)

2. Levy, S., Gudes, E., Gal-Oz, N.: Sharing-habits based privacy control in social networks. In:
Ranise, S., Swarup, V. (eds.) DBSec 2016. LNCS, vol. 9766, pp. 217–232. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-41483-6_16

3. Cheng, Y., Park, J., Sandhu, R.: An access control model for online social networks using
user-to-user relationships. IEEE Trans. Dependable Secure Comput. 13(4), 424–436 (2016)

4. Gudes, E., Voloch, N.: An information-flow control model for online social networks based
on user-attribute credibility and connection-strength factors. In: Dinur, I., Dolev, S., Lodha,
S. (eds.) CSCML 2018. LNCS, vol. 10879, pp. 55–67. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-94147-9_5

An Access Control Model for Data Security in Online Social Networks 167

http://dx.doi.org/10.1007/978-3-319-41483-6_16
http://dx.doi.org/10.1007/978-3-319-94147-9_5
http://dx.doi.org/10.1007/978-3-319-94147-9_5

5. Patil, V.T., Shyamasundar, R.K.: Undoing of privacy policies on Facebook. In: Livraga, G.,
Zhu, S. (eds.) DBSec 2017. LNCS, vol. 10359, pp. 239–255. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-61176-1_13

6. Ranjbar, A., Maheswaran, M.: Using community structure to control information sharing in
online social networks. Comput. Commun. 41, 11–21 (2014)

7. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access control
models. Computer 29(2), 38–47 (1996)

8. Lavi, T., Gudes, E.: Trust-based dynamic RBAC. In: Proceedings of the 2nd International
Conference on Information Systems Security and Privacy (ICISSP) 2016, pp. 317–324
(2016)

9. Anwar, M., Zhao, Z., Fong, P.W.: An Access Control Model for Facebook-Style Social
Network Systems. University of Calgary, Calgary (2010)

10. Cheng, Y., Park, J., Sandhu, R.: Relationship-based access control for online social
networks: beyond user-to-user relationships. In: 2012 International Conference on Privacy,
Security, Risk and Trust (PASSAT), and 2012 International Conference on Social
Computing (SocialCom), pp. 646–655. IEEE (2012)

11. Fong, P.W.: Relationship-based access control: protection model and policy language. In:
Proceedings of the first ACM Conference on Data and Application Security and Privacy,
pp. 191–202. ACM (2011)

12. Crampton, J., Sellwood, J.: Path conditions and principal matching: a new approach to
access control. In: Proceedings of the 19th ACM Symposium on Access Control Models and
Technologies, pp. 187–198. ACM (2014)

13. Kumar, A., Rathore, N.C.: Relationship strength based access control in online social
networks. In: Satapathy, S.C., Das, S. (eds.) Proceedings of First International Conference on
Information and Communication Technology for Intelligent Systems: Volume 2. SIST, vol.
51, pp. 197–206. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30927-9_20

14. Ali, B., Villegas, W., Maheswaran, M.: A trust based approach for protecting user data in
social networks. In: Proceedings of the 2007 Conference of the Center for Advanced Studies
on Collaborative Research, pp. 288–293. IBM Corp. (2007)

15. Wang, H., Sun, L.: Trust-involved access control in collaborative open social networks. In:
2010 4th International Conference on Network and System Security (NSS), pp. 239–246.
IEEE (2010)

16. Misra, G., Such, J.M., Balogun, H.: IMPROVE-identifying minimal PROfile VEctors for
similarity-based access control. In: Trustcom/BigDataSE/ISPA, 2016 IEEE, pp. 868–875.
IEEE (2016)

17. Facebook help: roles. https://www.facebook.com/help/323502271070625/
18. Dunbar, R.I.: Do online social media cut through the constraints that limit the size of offline

social networks? Roy. Soc. Open Sci. 3(1), 150292 (2016)
19. Zheng, X., Zeng, Z., Chen, Z., Yu, Y., Rong, C.: Detecting spammers on social networks.

Neurocomputing 159, 27–34 (2015)
20. Benesty, J., Chen, J., Huang, Y., Cohen, I.: Pearson correlation coefficient. In: Cohen, I.,

Huang, Y., Chen, J., Benesty, J. (eds.) Noise Reduction in Speech Processing, pp. 1–4.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00296-0_5

168 N. Voloch et al.

http://dx.doi.org/10.1007/978-3-319-61176-1_13
http://dx.doi.org/10.1007/978-3-319-61176-1_13
http://dx.doi.org/10.1007/978-3-319-30927-9_20
https://www.facebook.com/help/323502271070625/
http://dx.doi.org/10.1007/978-3-642-00296-0_5

Enhancing Image Steganalysis with
Adversarially Generated Examples

Kevin Alex Zhang(B) and Kalyan Veeramachaneni

MIT, Cambridge, MA 02139, USA
{kevz,kalyanv}@mit.edu

Abstract. The goal of image steganalysis is to counter steganography
algorithms which attempt to hide a secret message within an image file.
We focus specifically on blind image steganalysis in the spatial domain
which involves detecting the presence of secret messages in image files
without knowing the exact algorithm used to embed them. In this paper,
we demonstrate that we can achieve better performance on the blind
steganalysis task by training the YeNet architecture with adversarially
generated examples provided by SteganoGAN.

Keywords: Steganalysis · Steganography · Deep learning

1 Introduction

Modern image steganography has found applications in everything from mal-
ware, where it can be used to transmit command-and-control instructions, to
industrial espionage, where it can be used to hide or exfiltrate information. Unlike
cryptography, which attempts to hide the content of the message, steganogra-
phy attempts to hide the presence of the message itself by embedding it within
otherwise benign content.

To combat image steganography, we can turn to image steganalysis algo-
rithms which attempt to detect steganographic images. In general, these tech-
niques work by analyzing the image file and identifying statistical anomalies in
the pixel value distribution. Examples of steganalysis techniques include Pri-
mary Sets [4], RS analysis [7], Sample Pairs [5], and Spatial Rich Models [6].
Recently, new deep learning-based techniques have been developed for this task
and have achieved state-of-the-art detection rates [11].

At the same time, new deep learning-based techniques have been developed
for image steganography, yielding impressive results and achieving higher relative
payloads as in [1,8,10,12,13]. Interestingly, since deep learning-based techniques
are learned from data (and a random initial state), a new instance of a deep
learning-based technique can be created simply by re-training the model, signif-
icantly reducing the cost of inventing a “new” steganography algorithm. This
further complicates our analysis since an effective steganalysis algorithm now
must not only defeat a specific instance of a steganography model but must, in
c© Springer Nature Switzerland AG 2019
S. Dolev et al. (Eds.): CSCML 2019, LNCS 11527, pp. 169–177, 2019.
https://doi.org/10.1007/978-3-030-20951-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20951-3_15&domain=pdf
https://doi.org/10.1007/978-3-030-20951-3_15

170 K. A. Zhang and K. Veeramachaneni

fact, defeat all possible instances. In this paper, we will focus specifically on two
techniques, HiDDeN [13] and SteganoGAN [12], which use generative adversarial
networks to create hard-to-detect steganographic images.

YeNetPrimary Sets RS Analysis Sample Pairs
0

0.5

1 0.91
0.99 0.95 0.95

0.78

0.63 0.67 0.65 0.63
0.56 0.56 0.57

au
R
O
C

LSB
HiDDeN

SteganoGAN

Fig. 1. This figure shows the performance of four different steganalysis techniques on
steganographic images produced by the Least Significant Bits (LSB) algorithm, HiD-
DeN [13], and SteganoGAN [12]. We examine three different static (e.g. non-trainable)
spatial steganalysis tools as well as one deep learning-based method (YeNet) that was
trained to detect LSB images. Based on these results, we see that none of these tech-
niques are particularly effective at detecting steganographic images generated by HiD-
DeN or SteganoGAN, suggesting that models trained on LSB steganography do not
generalize well to deep learning-based steganography.

Due to the simultaneous development of both improved steganography meth-
ods and improved steganalysis algorithms, we start by running a simple experi-
ment to determine the current state of steganography and steganalysis. We gen-
erated steganographic images using the least significant bits (LSB) algorithm,
HiDDeN, and SteganoGAN; then, we used multiple steganalysis tools to try
and detect these steganographic images. Figure 1 presents the performance of
these steganalysis tools and we observe that although all the models are capable
of detecting images generated using the simple least significant bits algorithm,
none of them excel at detecting steganographic images generated by HiDDeN or
SteganoGAN. The results from this experiment raise several questions:

1. Existing steganalysis algorithms are not effective at detecting steganographic
images generated by methods not represented in the training set. Can we
overcome this limitation and build steganalysis systems that generalize bet-
ter?

2. We can easily create new instances of deep learning-based steganography
algorithms by re-training the model with a different initial state. Can we take
advantage of the fact to build more robust steganalysis systems?

To address these questions, we will borrow existing steganography and ste-
ganalysis architectures and use them to investigate the implications of being

Enhancing Image Steganalysis with Adversarially Generated Examples 171

able to create new “instances” of steganography algorithms. In addition, we will
examine the behavior of the YeNet architecture as we change the composition of
the training dataset and evaluate its ability to generalize to previously unseen
steganography algorithms.

The paper is organized as follows: Sect. 2 presents the different steganography
methods used to generate our dataset, Sect. 3 presents the different steganalysis
methods used in our experiments, Sect. 4 describes our experimental setup, and
Sect. 5 presents our results.

2 Steganography

The standard image steganography task involves two operations: encoding and
decoding. The encoding operation takes a cover image and a secret message and
combines them to create a steganographic image which closely resembles the
cover image but has the secret message hidden inside. Then, after the stegano-
graphic image is transmitted to the recipient, the decoding operation is applied
to the steganographic image and the secret message is extracted.

In our experiments, we will be using three different techniques to gen-
erate steganographic images: least significant bits (LSB), HiDDeN [13], and
SteganoGAN [12]. Examples of stenographic images generated by some of these
techniques are shown in Fig. 2. Both HiDDeN and SteganoGAN use convolu-
tional neural networks and adversarial training to learn to produce realistic
steganographic images.

Fig. 2. Examples of cover images (top) and the corresponding steganographic images
generated using LSB (middle) and SteganoGAN (bottom) with a relative payload of
one bit per pixel. Both steganography techniques produce high quality images which,
to the human eye, appear identical to the cover images.

172 K. A. Zhang and K. Veeramachaneni

2.1 Least Significant Bits

The simplest way to embed data in images is to simply swap the least significant
bit of each pixel with the corresponding data bit. For example, given a standard
RGB image and a sequence of data bits, we can simply loop from left-to-right,
from top-to-bottom, and over the color channels and replace the lowest bit of each
pixel value with the data bit. This naive approach is well-known by practitioners,
easy to create paired datasets for, and simple to defend against. Examples of
steganographic images generated by this technique are presented in the middle
row of Fig. 2. We will use steganographic images generated by this technique to
initialize our steganalysis models and provide a baseline.

Fig. 3. The SteganoGAN architecture, reproduced with modifications from [12]. The
encoder module maps a data tensor and a cover image to a steganographic image, the
decoder module maps a steganographic image to a data tensor, and the critic module
provides feedback on the quality of the steganographic image. The trapezoids represent
convolutional blocks which consist of a convolutional layer, a leaky ReLU activation
function, and a batch normalization operation. Two or more arrows merging represent
concatenation operations and the curly bracket represents a batching operation.

2.2 HiDDeN

The first deep learning-based steganography algorithm we will examine is HiD-
DeN [13]. This model is designed to take a fixed-length bit vector and an arbi-
trarily sized cover image and produce a steganographic image; note that a given
model is only capable of embedding a fixed number of bits into an image, regard-
less of the size of the image. The HiDDeN architecture uses convolutional neural
networks to represent (1) the encoder, which learns to take the image and bit
vector and produces a steganographic image, (2) the decoder, which learns to
take the steganographic image and decode the bit vector, and (3) the adver-
sary, which learns to detect steganographic images and provides feedback to the
encoder on how to avoid detection.

Enhancing Image Steganalysis with Adversarially Generated Examples 173

2.3 SteganoGAN

We will also use SteganoGAN, a competing deep learning-based steganogra-
phy technique proposed in [12], to generate steganographic images. Examples of
steganographic images generated by this technique are presented in the bottom
row of Fig. 2. This model is conceptually similar to [13] and features a similar
encoder-decoder-critic architecture, but is able to scale more effectively to larger
images while maintaining a constant embedding rate. The SteganoGAN archi-
tecture, shown in Fig. 3, is designed to take in a data tensor and an arbitrarily
sized cover image and create a steganographic image. Unlike the HiDDeN archi-
tecture where the data vector is of a fixed length, the size of the data tensor in
SteganoGAN scales with the size of the cover image so that larger cover images
will naturally be able to hold more data.

3 Steganalysis

Compared to the steganography task, the steganalysis task seems simple: given
an image, the goal is to identify whether it is cover image or a steganographic
image. We use two steganalysis tools, StegExpose [3] and YeNet [11], to eval-
uate our ability to detect steganographic images. The former is a collection of
static steganalysis tools which does not need to be trained, whereas the latter
is intended to be trained on datasets containing examples of cover and stegano-
graphic images.

3.1 StegExpose

To set a baseline for detecting steganographic images, we use StegExpose [3], a
popular steganalysis tool which implements several different steganalysis algo-
rithms including Primary Sets [4], RS analysis [7], and Sample Pairs [5]. We
generate steganographic images using each of the techniques discussed in the
previous section and report the detection performance as measured by the area
under the receiver operating characteristic in Fig. 1. Based on these results, we
see that the steganalysis algorithms all excel at detecting steganographic images
generated using the least significant bit algorithm but fail to detect images gen-
erated by either HiDDeN or SteganoGAN.

3.2 YeNet

We also experiment with the YeNet architecture from [11], which can be trained
on paired datasets containing examples of cover images and the corresponding
steganographic images generated by various models. The YeNet architecture is
similar to standard image classification architectures but the first set of con-
volutional layers are manually set to extract Spatial Rich Model [6] features.
Spatial Rich Models are, in their own right, an effective technique for detecting
steganographic images, but by embedding them into a convolutional neural net-
work, [11] is able to achieve even better detection performance against a wide

174 K. A. Zhang and K. Veeramachaneni

variety of steganography algorithms. We explore the performance of this model
on various tasks in more detail in the following section (Fig. 4).

Table 1. This table shows the detection performance for YeNet models trained on
various subsets of our base training datasets. We report the performance on the test
sets which contain examples from LSB, HiDDeN, and SteganoGAN.

Base datasets Test performance

LSB HiDDeN SteganoGAN

LSB 0.914 ± 0.130 0.783 ± 0.067 0.629 ± 0.050

LSB + 1 SteganoGAN 0.929 ± 0.007 0.834 ± 0.019 0.815 ± 0.028

LSB + 2 SteganoGAN 0.940 ± 0.002 0.868 ± 0.013 0.890 ± 0.015

LSB + 3 SteganoGAN 0.950 ± 0.003 0.893 ± 0.002 0.892 ± 0.009

LSB + 4 SteganoGAN 0.946 ± 0.003 0.868 ± 0.007 0.939 ± 0.003

LSB + 5 SteganoGAN 0.952 ± 0.013 0.894 ± 0.009 0.940 ± 0.002

LSB + 6 SteganoGAN 0.955 ± 0.005 0.891 ± 0.009 0.962 ± 0.003

LSB + 7 SteganoGAN 0.965 ± 0.002 0.930 ± 0.020 0.958 ± 0.003

LSB + 8 SteganoGAN 0.962 ± 0.006 0.891 ± 0.009 0.973 ± 0.005

LSB + 9 SteganoGAN 0.971 ± 0.003 0.925 ± 0.007 0.971 ± 0.008

LSB + 10 SteganoGAN 0.965 ± 0.006 0.911 ± 0.004 0.978 ± 0.003

4 Experiments

To support our experiments, we start by creating two sets of cover images: base
and large. The base set is smaller and consists of 1,000 randomly selected images,
common objects and scenes from the COCO dataset [9]. The size of this base set
is on par with other steganalysis datasets such as the datasets used in the “break
our steganographic system” challenge [2]. The large set is also randomly selected
from the COCO dataset but contains 10,000 images. Both of these datasets are
partitioned into a train and test partition which contain 70% and 30% of the
images, respectively.

Train. To create our training datasets, we take the images in the base train
partition and generate the corresponding steganographic images using the least
significant bits algorithm as well as 10 different instances of SteganoGAN, giv-
ing us a total of 11 different base training datasets corresponding to different
steganography algorithms. We use an identical procedure to generate the large
training datasets.

Test. To create our test datasets, we take the images in the base test partition
and generate the corresponding steganographic images using the least signifi-
cant bit algorithm, a secret instance of SteganoGAN, and a secret instance of
HiDDeN. Once again, we use an identical procedure to generate the large test

Enhancing Image Steganalysis with Adversarially Generated Examples 175

0 5 10 15 20 25 30 35 40 45 50 55 60

0.5

0.6

0.7

0.8

0.9

Epoch

au
R
O
C

0 2
4 6

Fig. 4. This figure shows the area under the ROC curve on the SteganoGAN test
set over time for models trained on different numbers of model instances. We see
that models trained on more instances generally outperform models trained on fewer
instances.

datasets. This procedure ensures that (1) the LSB test set contains images that
the model has never seen before, (2) the SteganoGAN test set contains images
generated by a specific set of neural network weights that the model has never
seen before, and (3) the HiDDeN test set contains images generated by a entire
class of steganography algorithms that the model has never seen before.

Optimization. To train the YeNet model, we use the Adam optimizer with a
batch size of 32 and an initial learning rate of 0.001, and decay the learning
rate when the loss plateaus for 10 epochs. We train the model for 64 epochs
and report the average of the area under the receiver operating characteristic
over three training runs for each of the test sets. By varying the number of
SteganoGAN instances used to train the YeNet model, we can measure the
resulting change in performance on each of the test datasets.

5 Analysis

The results on the base datasets are shown in Table 1. We immediately see that
a model trained solely on LSB images is not effective at detecting HiDDeN
or SteganoGAN images. However, we also observe that as we add examples of
steganographic images generated by different instances of SteganoGAN, the test
performance increases across the board. Not only does the model get better at
detecting steganographic images generated by a secret instance of SteganoGAN
that it has never seen before, but it also gets better at detecting steganographic
images generated by HiDDeN, a secret class of steganography algorithms that
it has never seen before (Table 2).

176 K. A. Zhang and K. Veeramachaneni

Table 2. This table shows the detection performance for YeNet models trained on
various subsets of our large training datasets. We report the performance on the test
sets, which contain examples from LSB, HiDDeN, and SteganoGAN.

Large Datasets Test performance

LSB HiDDeN SteganoGAN

LSB 0.989 ± 0.002 0.895 ± 0.013 0.812 ± 0.009

LSB + 1 SteganoGAN 0.983 ± 0.004 0.952 ± 0.004 0.976 ± 0.003

LSB + 2 SteganoGAN 0.989 ± 0.001 0.967 ± 0.001 0.984 ± 0.003

LSB + 3 SteganoGAN 0.988 ± 0.001 0.964 ± 0.004 0.989 ± 0.001

LSB + 4 SteganoGAN 0.989 ± 0.002 0.970 ± 0.001 0.991 ± 0.001

LSB + 5 SteganoGAN 0.990 ± 0.002 0.962 ± 0.002 0.993 ± 0.001

To further establish the robustness of our results, we repeat these experiments
with the large datasets. The models trained on this dataset achieve dramatically
higher detection accuracy than the models trained on the base dataset. How-
ever, we still observe similar trends: as we add more instances of SteganoGAN,
our model becomes better at detecting images generated by previously unseen
steganography algorithms. We find that despite not providing a single example of
a steganographic image generated by HiDDeN, we are able to detect them with
an auROC of 0.971. These results suggests that using a diverse set of adver-
sarially generated examples to train a steganalysis tool is a promising strategy
for enabling steganalysis models to generalize well to steganography algorithms
that it has never seen before.

6 Conclusion

In this paper, we explored the relationship between deep learning-based
steganography algorithms and steganalysis techniques. We examined the impact
of using multiple instances of the SteganoGAN steganography algorithm to train
the YeNet steganalysis tool and found significant improvements on all of our test
sets. Finally, we found evidence to suggest that by using a diverse set of adversar-
ially generated examples as our test set, we can train steganalysis models which
generalize well and are able to achieve high detection rates on steganography
algorithms that the model has not seen before.

Enhancing Image Steganalysis with Adversarially Generated Examples 177

References

1. Baluja, S.: Hiding images in plain sight: deep steganography. In: Guyon, I., et al.
(eds.) Advances in Neural Information Processing Systems 30, pp. 2069–2079. Cur-
ran Associates, Inc. (2017)

2. Bas, P., Filler, T., Pevný, T.: “Break our steganographic system”: the ins and outs
of organizing BOSS. In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011.
LNCS, vol. 6958, pp. 59–70. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-24178-9 5

3. Boehm, B.: StegExpose - a tool for detecting LSB steganography. CoRR abs/
1410.6656 (2014)

4. Dumitrescu, S., Wu, X., Memon, N.: On steganalysis of random LSB embedding
in continuous-tone images 3, 641–644 (2002). https://doi.org/10.1109/ICIP.2002.
1039052

5. Dumitrescu, S., Wu, X., Wang, Z.: Detection of LSB steganography via sample
pair analysis. In: Petitcolas, F.A.P. (ed.) IH 2002. LNCS, vol. 2578, pp. 355–372.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36415-3 23

6. Fridrich, J., Kodovsky, J.: Rich models for steganalysis of digital images. IEEE
Trans. Inf. Forensics Secur. 7(3), 868–882 (2012). https://doi.org/10.1109/TIFS.
2012.2190402

7. Fridrich, J., Goljan, M., Du, R.: Reliable detection of LSB steganography in
color and grayscale images. In: Proceedings of the 2001 Workshop on Multime-
dia and Security: New Challenges, pp. 27–30. ACM (2001). https://doi.org/10.
1145/1232454.1232466

8. Hayes, J., Danezis, G.: Generating steganographic images via adversarial training.
In: NIPS (2017)

9. Lin, T., et al.: Microsoft COCO: common objects in context. CoRR abs/1405.0312
(2014)

10. Wu, P., Yang, Y., Li, X.: StegNet: mega image steganography capacity with deep
convolutional network. Future Internet 10, 54 (2018). https://doi.org/10.3390/
fi10060054

11. Ye, J., Ni, J., Yi, Y.: Deep learning hierarchical representations for image steganal-
ysis. IEEE Trans. Inf. Forensics Secur. 12(11), 2545–2557 (2017). https://doi.org/
10.1109/TIFS.2017.2710946

12. Zhang, K.A., Cuesta-Infante, A., Xu, L., Veeramachaneni, K.: SteganoGAN: high
capacity image steganography with gans. CoRR abs/1901.03892 (2019). http://
arxiv.org/abs/1901.03892

13. Zhu, J., Kaplan, R., Johnson, J., Fei-Fei, L.: HiDDeN: hiding data with deep
networks. CoRR abs/1807.09937 (2018)

https://doi.org/10.1007/978-3-642-24178-9_5
https://doi.org/10.1007/978-3-642-24178-9_5
https://doi.org/10.1109/ICIP.2002.1039052
https://doi.org/10.1109/ICIP.2002.1039052
https://doi.org/10.1007/3-540-36415-3_23
https://doi.org/10.1109/TIFS.2012.2190402
https://doi.org/10.1109/TIFS.2012.2190402
https://doi.org/10.1145/1232454.1232466
https://doi.org/10.1145/1232454.1232466
https://doi.org/10.3390/fi10060054
https://doi.org/10.3390/fi10060054
https://doi.org/10.1109/TIFS.2017.2710946
https://doi.org/10.1109/TIFS.2017.2710946
http://arxiv.org/abs/1901.03892
http://arxiv.org/abs/1901.03892

Controllable Privacy Preserving
Blockchain

FiatChain: Distributed Privacy Preserving
Cryptocurrency with Law Enforcement Capabilities

Rami Puzis(B), Guy Barshap, Polina Zilberman, and Oded Leiba

Telekom Innovation Laboratories,
Department of Software and Information Systems Engineering,

Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva, Israel
{puzis,barshag,polinaz,odedlei}@post.bgu.ac.il

Abstract. Central banks are reluctant to accept cryptocurrency,
because current implementations of decentralized privacy preserving
transactions make it impossible to apply know your customer (KYC)
and anti-money laundering (AML) procedures. In this paper, we augment
a distributed privacy preserving cyptocurrency known as Monero with
KYC and AML procedures. The proposed solution relies on secretly shar-
ing of the clients’ private view keys and private transaction keys among
a large number of permissioned signers (PSs). The resulting cryptocur-
rency maintains the notion of distributed trust while allowing a group of
PSs to cooperate, collectively applying KYC and AML procedures.

Keywords: Cryptocurrency · Privacy · Anonymity · Blockchain ·
Anti-money laundering

1 Introduction

Blockchain is an innovative technology for which new applications are constantly
emerging. Naturally, many of the applications are in the field of finance, and
cryptocurrencies are one of the most popular trends. Blockchain provides fer-
tile ground for cryptocurrency, because it provides distributed storage, trans-
parency, auditability, low fees for international transfers, and of course, no double
spending.

Current cryptocurrency approaches can be categorized as either permission-
less or permissioned. The former approaches provide complete visibility of trans-
action content to anyone that has access to the blockchain. Such visibility ensures
the integrity and nonrepudiation of all transactions, however this runs the risk
of compromising the privacy (and in some cases the anonymity) of the trans-
actions [8,27,31,38,39]. The latter approaches obscure transaction details (e.g.,
the sender, receiver and amount), making it easy for the parties to repudiate a
transaction. Unfortunately, neither approach can be adopted for applications in
which regulation is required, such as national cryptocurrency.
c© Springer Nature Switzerland AG 2019
S. Dolev et al. (Eds.): CSCML 2019, LNCS 11527, pp. 178–197, 2019.
https://doi.org/10.1007/978-3-030-20951-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20951-3_16&domain=pdf
https://doi.org/10.1007/978-3-030-20951-3_16

Controllable Privacy Preserving Blockchain 179

National and central banks consider cryptocurrency because they reduce
black market activity, encourage settlement and collaboration, and offer faster
payments and auditability [4,5,10]. Yet, one of the greatest concerns of the banks
are the risks associated with unregulated currency transactions, such as money
laundering, scam operations, and terrorism funding [20] (see Table 1). However,
removing the anonymity and decentralized nature of cryptocurrency defeats the
point of cryptocurrency. This creates a gap that prevents the issuing of fiat
cryptocurrency.

Table 1. Quotes from representatives of financial institutions.

“We predict that no reputable central bank would issue a decentralized virtual
currency where users can remain anonymous. The reputational risk would
simply be too high. Rather, central banks could issue central bank electronic
money. This money would be tightly controlled by them, and users would be
subject to standard KYC (“know your customer”) and AML (“anti-money
laundering”) procedures.” [5]

“Crypto exchanges in Malaysia are now required to identify traders after the
government enacted AML legislation in February. Regulators emphasized the
need to restrict the criminal use of the virtual marketplace” [20,43].

“The time has come to hold the crypto-asset ecosystem to the same
standards as the rest of the financial system.” [13]

In this paper, we present FiatChain, a novel, disclosable, privacy preserving
cryptocurrency which is immutable and privacy maintaining, but can also be
subject to regulations and lawful interception when necessary. To enable trans-
action disclosure we share the keys among n permissioned signers. More formally,
the proposed cryptocurrency satisfies the following requirements:

1. Disclosure of a client’s transactions upon the consortium of a size greater
than or equal to k permissioned signers, where k < n.

2. Non-disclosure upon a consortium of fewer than k permissioned signers.
3. During investigation of some client (Alice), transactions that are not directly

related to Alice will not be disclosed.
4. Only the receiver of money can spend it. In particular, no consortium of

permissioned signers, miners or legal authorities can spend the money of the
investigated client.

5. No entity can forge money, including double spending.

The proposed cryptocurrency is based on (1) Monero, a cryptocurrency which
provides its clients with anonymity and privacy, and (2) Shamir’s secret sharing
and multi-party computation (MPC) which allow a client’s disclosure by a con-
sortium of authorities. Furthermore, our novel cryptocurrency is supported by

180 R. Puzis et al.

four main protocols: client registration, generation of disclosable stealth address
and transaction key, transaction issuance and validation, and a protocol for dis-
closing transaction details upon a consortium of k or more permissioned signers.

The rest of the paper is structured as follows. Section 2 outlines related work.
Sections 3 and 4 briefly describe relevant background on cryptography and Mon-
ero, respectively. The terminology used and the requirements of the proposed
FiatChain cryptocurrency are outlined in Sect. 5. FiatChain registration and
transaction protocols are described in Sect. 6, while the disclosure protocols
are discussed in Sect. 7. Section 8 presents the implementation details of the
employed MPCs, and Sect. 9 concludes the paper.

2 Related Work

FiatChain, the cryptocurrency proposed in this paper, can be positioned accord-
ing the following dimensions (see Fig. 1): decentralization (from a centralized
trusted third party to a decentralized distributed trust); accountability and reg-
ulation compliance; and privacy and confidentiality.

Fig. 1. FiatChain’s positioning in the field of digital money

Centralized digital currencies, such as [11,12], have no distribution of trust
or transparency for increased public trust; they also fail to provide sufficient
privacy, since they leak the total amount received by the merchant to the bank
once it has been deposited.

In order to remove the need for a trusted third party, Satoshi Nakamoto
introduced Bitcoin [33], which provides a distribution of trust and transparency
of its ledger which contains the growing list of transactions. However, the ledger
layer of Bitcoin lacks full client privacy, as it is possible to track and analyze
its transactions graph as demonstrated in [31,39]. Blockchain-based cryptocur-
rencies that preserve privacy can be roughly divided into two categorizes: pri-
vacy preserving extensions to Bitcoin (Coinjoin [2], CoinShuffle [40], Mixcoin [9],

Controllable Privacy Preserving Blockchain 181

TumbleBit [23]) and alternative currencies (known as altcoins) that are not com-
patible with Bitcoin (Monero [41], ZCash [24], ZeroCash [42]). Regardless, cryp-
tocurrency that provides complete privacy and anonymity lack law enforcement
capabilities, and thus, are unlikely to be accepted by banks.

In recent years, there have been many attempts to suggest a blockchain-based
cryptocurrency that can be adopted by banks. Stablecoins like Tether [3] and
MakerDAO [1] were designed to minimize price volatility, however they are not
fully decentralized, since there must be a centralized custodian of the reserve
assets.

A positioning report conducted for the Central Bank of Brazil [44] surveys
the latest attempts to develop cryptocurrencies that can be issued by central
banks. The most relevant studies are those that try to tackle the requirements
for client’s privacy and law enforcement capabilities.

RSCoin [16] is a centrally-issued cryptocurrency solution. The main tech-
nical contribution of this method is its scalability of consensus. Fedcoin [21]
is a central bank cryptocurrency based on RSCoin. Fedcoin includes a system
to maintain KYC rules and a plan to provide anonymity with zero-knowledge
proofs. However like RSCoin, Fedcoin relies on a trusted central bank instead of
distributed nodes to reach consensus on the blockchain. Moreover, the proposed
identity verification protocol allows the central bank to link a user and all of his
transactions.

Garman et al. [19] proposed a solution for regulation of Zerocash payments
using zk-SNARK proofs. In their solution, zk-SNARK proofs are used to prove
the validity of zk-SNARK transactions and demonstrate compliance with general
predefined policies (such as tax payments, deposit limits, etc.), while protecting
privacy.

PRcash [45] relies on MimbleWimble blockchain architecture’s privacy design
[26]. zk-SNARK proofs are used to prove that transaction amounts are below a
certain threshold in order to not reveal its value to regulators. However, PRcash
does not provide arbitrary disclosure of transactions upon lawful interception.
Furthermore, the privacy of each transaction is based on the active participation
of other clients.

3 Cryptographic Toolkit

In this section, we provide background on the cryptographic primitives and pro-
tocols used in FiatChain. We begin with commonly used notations.

First, let us denote Fq as a finite field of size q. A scalar mapping hash function
Hs : {0, 1}∗ → Fq, and a point mapping hash function Hp : E(Fq) → E(Fq).
Similar to Monero, we use Ed25519 elliptic curve [6] with a base point denoted
as G and scalars in Fq, where q = 2255−19. Let k ∈ [0, l) be a randomly selected
scalar, where l is the order of G. Then (k,K = kG) is a pair of private and
public EC-keys respectively. Note that in Monero, private keys are scalars, while
public keys are points on the elliptic curve.

182 R. Puzis et al.

3.1 Pedersen Commitment

A Pedersen commitment [37] is a cryptographic scheme that allows the commit-
ment issuer to commit to a chosen value while keeping the value itself hidden
until the issuer decides to reveal it. After the commitment is published, the
issuer cannot change the value. The commitment to a value v, C(v) is defined
as: C(v) = α · G + v · H, where G and H are the field generators (of the ellip-
tic curve), and α is a random value that is called the blinding factor or mask
value. Furthermore, a Pedersen commitment is additive homomorphic, i.e., for
two commitment values C(v1) = α1G + v1H and C(v2) = α2G + v2H, it holds
that C(v1) + C(v2) = C(v1 + v2).

3.2 Ring Signature

A ring signature provides the ability to sign a message m with a set of n unre-
lated public keys, without inferring the real signer with probability 1/n. Ring
signatures have the following properties:

1. Signer Ambiguity – given a list of n public keys of a ring signature, an outside
observer would not be able to identify which member signed it.

2. Linkability – in cases in which the same private key xj is reused, the cor-
responding public key P̃j supplied in the ring signature will reveal it. This
property is essential to check for double-spending of transactions.

3. Unforgeability – with very high probability, no attacker can forge a signature
without access to corresponding private keys. This property prevents money
theft.

Multilayer Linkable Spontaneous Anonymous Group Signatures
(MLSAG) allow combining confidential transactions with a ring signature in
such a way that using multiple inputs and outputs is possible, anonymity is pre-
served, and double-spending is prevented [35]. An MLSAG signature is a ring
signature on a set of n key-vectors. A key-vector is a collection y = (y1, ..., yr)
of public keys with corresponding private keys x = (x1, ..., xr).

Suppose that each signer of a (generalized) ring containing n members has
exactly m keys {P j

i }i=1,...,n
j=1,...,m. The intent of the MLSAG signature is the following:

– To prove that one of the n signers knows the secret keys of the entire key
vector.

– To enforce the following: if the signer uses any of their m signing keys in
another MLSAG signature, the two rings are linked, and the second MLSAG
signature (ordered by the Monero blockchain) is discarded.

Controllable Privacy Preserving Blockchain 183

3.3 Multi-Party Computations

SPDZ [14,15] is a secure multi-party computation (sMPC) scheme that allows
general arithmetic sMPC with active security against malicious participants in
a dishonest majority scenario. While there are exist several improvements to
the original protocol, all of these protocols consist of two phases, online and
offline in which they are performed by n participants. The online phase computes
a function represented as an arithmetic circuit (i.e., consist of addition and
multiplication gates). Since linear operations (addition and scalar multiplication
over a shared value) can be performed locally, the main focus of this protocol is
how to compute multiplication gates of shared values.

The privacy of this protocol is maintained by performing the computations on
additive secret sharing of the inputs and outputs of each gate. The correctness
and resilience of this protocol against malicious participants is guaranteed by
additive secret sharing of MACs on each gate of the arithmetic circuit.

Furthermore, the scheme is performed over a fixed finite field Fp which is suit-
able for conducting computation over the Ed25519 field that is used in Monero
and our proposed scheme.

Private Membership Testing is a concrete problem of Private Set Inter-
section (PSI), which is a well-studied problem with many suggested solutions
[17,18,32]. Herein, we describe a folklore solution that assumes a general sMPC
primitive, such as SPDZ [14,15] or a Yao garbled circuit [46].1 Let us assume that
participant P1 holds a list of n elements A = {a1, . . . , an}ai∈Fq

, and P2 holds an
element b ∈ Fq. Both participants want to test whether b ∈ A without expos-
ing the exact value of b to P1. To that end, both parties compute the following

Boolean circuit
n∨

i=1

(ai ∧ b), with ai∈[n] and b as P1 and P2 inputs, respectively.

The security and privacy of this scheme rely upon the MPC scheme that is
used and the Boolean circuit’s output value which does not reveal anything but
whether b ∈ A.

3.4 Feldman’s Verifiable Secret Sharing Scheme (VSS)

A general secret sharing scheme consists of two phases and involves the dealer,
who wants to share the secret, and participants that receive shares of the secret.
The first phase is called sharing, in which the dealer “breaks down” his secret
and distributes the shares among the participants. In the second phase, which is
called reconstruction, the participants reconstruct the secret by using Lagrange
polynomial interpolation. In a VSS scheme, the participants can verify that the
shares that they received can indeed construct the dealer’s secret. In other words,
the dealer has a secret s ∈ Fp and shares it among participants P1, . . . , Pn, such
that any t+1 ≤ n participants would be able to reconstruct it. To that end, the

1 This scheme is implemented on the SPDZ arithmetic circuit because of implemen-
tation details.

184 R. Puzis et al.

dealer generates a random polynomial of degree t with coefficients in Fp. Let us
denote that polynomial P (x) =

∑t
i=0 aix

i, where a0 = s. Then, the dealer sends
the value P (i) mod p to each participant Pi,i∈[n] and publicly publishes the
commitments of the coefficients of P (x), i.e., C0 = ga0 , C1 = ga1 , . . . , Ct = gat .
By using the commitments, each participant can verify the share they received.
Formally, participant Pi checks:

gP (i) ?=
t∏

j=0

Cij

j = g
∑t

j=0 aj ·ij

(1)

In the protocols described in this paper, we use a variant of Feldman’s scheme
that works on elliptic curves [25]. Using this scheme, we can ensure that the secret
sharing of values is valid, in cases in which the client is the dealer.

4 Background on Monero

A blockchain is a distributed ledger that stores blocks of data. We consider
a blockchain whose primary objective is to facilitate the issuing of money
and performing transfer transactions, also known as cryptocurrency. Monero
is a blockchain architecture that implements privacy preserving cryptocurrency,
which involve the roles of miners, clients and nodes, like any classical blockchain.
Monero offers its clients a high degree of privacy by using the following methods.

First, the sender’s identity is hidden by using MLSAG (see Sect. 3) which
does not require active participation from other clients. In addition, MLSAG
helps in both providing ownership and preventing the double-spending of money
by signing with the client’s private keys.

Second, the identity of the receiver, which is defined by the receiver’s pair of
public keys (pubic view key ARC and public spend key BRC) is hidden by using
an one-time public key called stealth address. Specifically, the sender generates
a new random address, which is equal to P = Hs(rARC)G + BRC , where r is a
random value from E(Fq).2

Third, with Monero the amount is not explicitly written on the blockchain,
but rather the Pedersen commitment is written with a technique called RingCT
[36]. This technique prevents the fabrication of money out of air by exploiting
the homomorphic feature of a Pedersen commitment, in order to validate that
the sum of all output values does not exceed the input values and by providing
range proofs [30].

It is important to note the reasons why Monero, in its current form, is not (by
design) compatible with law enforcement requirements. First, it was designed to
be permission-less. Therefore, there are no controls regarding the clients that can
2 According to the implementation the exact term is P = Hs(8 · rA||i)G + B, where

multiplying by eight forces the rA point to be in the group base point G and ||
denotes byte concatenation with output index (oi). The output index prevents the
generation of multiple identical stealth addresses for the same receiver (which will
prevent the receiver from spending more than one output).

Controllable Privacy Preserving Blockchain 185

participate in the platform. Second, authorities that wish to investigate certain
transactions are dependent on clients’ consent and cooperation. Third, sharing
a client view key does not permit viewing the transactions that where spent
(only the transactions the client has received can be seen). We describe our
modifications to Monero and the protocol developed to support law enforcement
capabilities in Sect. 6.

5 Terminology and Requirements

In our setting, the stakeholders are:

– Permissioned Signers (PSs) – ensure that the transaction’s encrypted
data can be revealed by a consortium of the permissioned signers. Let us
denote a permissioned signer as PSj , where 1 ≤ j ≤ n, and n is the number
of PSs in the current setting.

– Miners – validate and aggregate the transactions into blocks and append
them to the blockchain.

– Clients – send and receive amounts of money. The senders issue the
transactions.

– Legal Authority – can check transaction details (with the cooperation of
at least k PSs, but without consent of clients), in order to perform legal
investigations.

Herein, we describe FiatChain’s requirements.

Requirement 1 (Disclosure upon consortium). Given a consortium of k
(out of n) PSs and provided with the identity of a specific client, the consortium
can (with a computational power polynomial of the size of the dataset):

1. Identify all transactions in which the client participated as either the receiver
or sender.

2. Expose the following fields for each of these transactions: amount sent, the
identity of the receiver, and the identity of the sender.

Requirement 2 (Secrecy: no consortium → no disclosure). No subset of
PSs of a size less than k can expose any of the fields detailed in Requirement 1.

Requirement 3 (Investigation scope). Only if k PSs agree to perform an
investigation of client’s transactions, his transactions will be disclosed. During
the investigation no private information of other clients will be disclosed, includ-
ing private view keys and transaction keys.

Requirement 4 (Obligations for the receiver). In each transaction the
receiver:

1. is aware of the amount sent,
2. can spend the money he received.

186 R. Puzis et al.

No other entity can spend the money on his behalf.

Requirement 5 (Transaction validation). Each transaction is considered
as valid according to the transaction validation consensus rules if and only if:

1. The sender received enough funds to cover the amount declared in the
transaction.

2. The sender did not already spend the inputs of the transaction in previous
blocks of the blockcahin.

3. The sender and the receiver are registered clients of FiatChain.
4. The sender uses a disclosable stealth address and the transaction’s public key

which was computed by the sender and the PSs.

Note that Requirements 4, 5.1 and 5.2 are inherently supported by Monero.

5.1 Security Model

The security model of FiatChain is based on the following assumptions, which
are consistent with the cryptographic toolkit that was described in Sect. 3.

Assumption 1 (Semi-honest miners and PSs). We assume that PSs and
miners follow the protocol as specified and do not try to deviate from it. We
also assume that, they try to learn as much as they can from the messages they
receive from other parties during the protocol.

Assumption 2 (Malicious clients). The clients that participate in the pro-
tocol can act maliciously, meaning that they are not committed to follow the
protocol, and are presumed to act according to their personal benefits.

Assumption 3 (Adversaries in the protocol are computationally
bound). We assume that an adversary (i.e., any corrupt party) is computa-
tionally bound, or otherwise known as a probabilistic polynomial time attacker.

Assumption 4 (Monero mixing). No subset of clients that is not directly
involved in the transaction can reveal details regarding the transaction (i.e., the
receiver, sender, and transaction amount).

Assumption 5 (Private secure channel between participants). We
assume that a secure channel between any two participants in the FiatChain
exists or can be created ad hoc; a secure channel preserves the confidentiality
of the transmitted data. Furthermore, no other participants in the protocol will
be aware of the existence of such a communication channel besides the channel
participants.

Controllable Privacy Preserving Blockchain 187

6 FiatChain Protocols

The proposed cryptocurrency is supported by four main protocols:

1. Client registration – The identities of the registered clients are stored by n
PSs.

2. Transaction keys and stealth address generation – The client participates with
k PSs in MPC to compute the transaction’s key and the stealth addresses for
each transaction.

3. Transaction issuance and validation – The transaction is based on Monero’s
transaction with the addition of a field that contains the transaction’s public
key and the stealth addresses signed by a PS. During validation, the miner
verifies the validity of the signature.

4. Authorities’ disclosure – The system supports two disclosure processes for
a transaction of a suspected client. In the first, the suspected client is the
sender of a transaction, while in the second, the suspected client is one of the
receivers in a transaction.

As stated in Requirement 1, the proposed blockchain, given a consortium
of k PSs must facilitate the disclosure of a specific client’s transactions. This
means that every payment transaction must include elements that encapsulate
the identity of the client in such a manner that the client cannot forge it. On
the other hand, as stated in Requirement 2, without a consortium, no entity in
the system can link the identity encapsulating elements to the client. To ensure
that the sender of a transaction is disclosable, we suggest a practice in which the
PSs use MPC to compute the transaction’s public. To ensure that the receivers
of transaction’s outputs will be disclosable, we suggest using VSS to share the
clients’ private view keys among the PSs during the registration process.

6.1 Client’s Registration

As in Monero, a client i generates two pairs of elliptic curve cryptography keys
(EC-keys) as follows.

1. View keys pair: (αi, Ai = αiG) which are private and public EC-keys,
respectively.

2. Spend keys pair: (βi, Bi = βiG) which are private and public EC-keys,
respectively.

Then, the client registers with k PSs by sharing the private view key and
revealing his public view and spend keys using Feldman’s scheme which is
described in Sect. 3.4.

6.2 Transaction Keys and Stealth Address Generation

To simplify the discussion, let us call the issuer of a transaction Alice. Alice wants
to send a payment transaction to Bob (a registered client). In Monero, when

188 R. Puzis et al.

constructing a transaction, Alice generates a random private transaction key r,
resulting in the public transaction key R = rG. Furthermore, for each receiver
with public keys (A,B), Alice generates a stealth address P = Hs(rA)G + B.

In FiatChain, Alice applies to k PSs, PS1, . . . , PSk, and they engage in secure
MPC to compute R and P . Let us assume for the sake of simplicity that the
transaction only consists of outputs addressed to Bob. The input that Alice
provides consists of Bob’s public keys of Bob (A,B), while together, the PSs
provide a random value r. Alice also applies, via an anonymous communication
channel, to another PS, PSk+1, whose task in the MPC is to sign elliptic curve
digital signature on R and P . The first step that the PSs perform in the MPC is
private membership testing (as described in Sect. 3.3) to verify that the public
keys (A,B) belong to a registered client (without exposing to which client the
keys belong).3 The output of the MPC, revealed only to Alice, is P , r, and signed
P and R.

Alice, as is usually done in Monero, inserts P and rG = R into the transac-
tion. In addition, Alice adds the signed R and P to the transaction, and a miner
verifies that these elements were also signed by one of the PSs. The PSs receive
a global unique identifier (GUID) which they store with Alice identity and the
share of r that they used in the MPC.

See Figs. 2 and 3 and Algorithm 1 for a detailed description of the MPC that
takes place for each transaction.

Fig. 2. MPC of the stealth addresses and transaction’s public keys per transaction.

Note that in the MPC implementation used in this research, the PSs are not
exposed to Alice’s input. As a result, the PSs just know that Alice wants to
issue a transaction without knowing the identity of the receivers. In addition,
after receiving R and P , Alice can wait for an unbounded amount of time before
issuing the transaction, in order to prevent the PSs from inferring and disclosing
Alice by linking the time they were communication with her.

3 The value (A,B) is translated into the x-term of that function.

Controllable Privacy Preserving Blockchain 189

Fig. 3. Sequence diagram of the computation of the stealth addresses and transaction’s
public key per transaction

Algorithm 1. MPC of receiver’s stealth address and transaction’s keys
Input: Alice:(A,B)Bob, PSi∈[k]: [r]i, PSk+1: skσ, LRegisteredUsers(RU).
Output: Alice:(r, P, σ(P,R)), PSi∈[k]: GUID, PSk+1 : ⊥.
/* Stage 1 : PSs generate together shared random r */

1 for i ← 1 to k do
2 PSi ← [r]i /* Without single dealer by using [23]. */
3 end
/* Stage 2 : Alice and PSs test that the receiver has

valid public key. */
4 if (A,B)Bob �∈ LRU then
5 return ⊥
6 for i ← 1 to k do
7 PSi ← ([r]i, Alice,GUID) /* PSi Store the tuple */
8 end
/* Stage 3 : Alice and PSs compute the stealth address */

9 P ← Hs(rA)G + B
10 R ← rG

/* Stage 4 : PSk+1 Sign on P,R */
11 σ(R,P) ← Signskσ

(R,P)
12 return Alice: (r, P, σ(R,P)) , PSi∈[k]: GUID

6.3 Verifying a Payment Transaction

Before appending a transaction to a block, a miner verifies the validity of the
transaction. The verification algorithm includes Monero transaction verification
and verification of the signature on the transaction’s public key and the stealth
addresses. In cases in which one of the above is invalid, the transaction is rejected.

190 R. Puzis et al.

7 Disclosure

Upon lawful interception, the blockchain must be scanned and all of the trans-
actions in which the suspected client was either the sender or the receiver must
be provided.

The disclosure procedures (see the sequence diagrams in Figs. 4 and 6) are
executed by law enforcement authorities with the cooperation of the PSs. There
are two different disclosure processes:

1. The suspected client is one of the receivers of the transaction.
2. The suspected client is the sender of the transaction.

7.1 Disclosure of a Transaction in Which the Suspected Client
Is One of the Receivers

In Monero, the client scans the blockchain and for each transaction computes
P = Hs(αR)G+B using α and the transaction’s public key R. if P equals one of
the outputs in the transaction, this means that the client is one of the receivers
of this transaction.

Similarly, in FiatChain the legal authority scans the blockchain and for each
transaction with public key R it directs k PSs to engage in MPC and compute
P (see Fig. 4). The PSs received and verified their shares of the client’s private
view key α during the client’s registration process as described in Sect. 6.1. Note
that at no point is the reconstructed private view key α exposed to any of the
PSs or the legal authority.

Fig. 4. Sequence diagram of the retrieval of all the transactions (tx) in which the
suspected client (Alice) is one of the receivers.

Controllable Privacy Preserving Blockchain 191

Disclosing the Sender. For every transaction identified in Fig. 4 (where the
suspect is one of the receivers), the legal authority is required to disclose the
identity of the sender of the transaction. For this purpose, the legal authority
engages with k PSs in MPC for every guid in the blockchain (brute force). The
input of the legal authority is the transaction’s public key R. The input of each
PS is the share of r that corresponds to the given guid. The output of the MPC
is True if the transaction’s public key R equals rG and False otherwise.

Algorithm 2. Disclose sender
Input: tx
Output: sender

1 for guid ∈ GetGUIDs() do
2 if MPC(guid,R) then
3 return GetOwnerOfGUID()
4 end

Disclosing the Transferred Amount. When the suspect is one of the
receivers, the legal authority is also required to disclose the amount transferred
to the suspect.

As in Monero, each output in the transaction includes the encrypted amount
and a mask value. The legal authority and k PSs engage in MPC to decrypt
the amount (see Fig. 5). The inputs of the legal authority to the MPC are
R, enc amount, mask and the index of the output (oi) that is addressed
to the suspect. The input of each PS is their share of the suspect’s private
view key α. The MPC computes the amount and the blinding key as follows:
amount ← enc amount − Hn(Hn(Hn(αR||output index))), blinding key ←
mask − Hn(Hn(αR||output index))

Fig. 5. Sequence diagram of amount disclosure when the suspect (Alice) is one of the
receivers.

192 R. Puzis et al.

7.2 Disclosure of a Transaction Where the Suspected Client Is the
Sender

In Sect. 6.2, we described the MPC used to compute the public key R and the
stealth addresses per each transaction of a client. For every such MPC requested
by a client, the PSs store the MPC’s GUID, the client’s ID and their share of
r. As a result, the transaction’s public key R encapsulates the identity of the
transaction’s sender.

During disclosure of a suspected client, the legal authority directs k PSs to
compute all the public transaction keys that were computed for the suspected
client (see Fig. 6).

Fig. 6. Sequence diagram of the retrieval of all the transactions where the suspected
client (Alice) is the sender.

Disclosing the Receivers. When the suspect is the sender, the legal authority
is required to disclose the identities of all of the receivers of the transaction
(see Algorithm 3). For every transaction identified in Fig. 6, the legal authority
discloses the identities of the receivers by engaging with k PSs in MPC that
computes P . The input of each PS is the share of r that corresponds to a given
guid. The input of the legal authority is a client’s identifiers (A,B).

Algorithm 3. Disclose receivers
Input: tx, guid
Output: receivers (list of clients’ identifiers)

1 for oi ∈ tx.outputs do
2 for (A,B) ∈ registered clients do
3 P ′ ← MPC(guid,A,B)
4 if P ′ == P then
5 receivers.add((A,B))
6 end
7 end
8 return receivers

Controllable Privacy Preserving Blockchain 193

Disclosing the Transferred Amount. When the suspect is the sender, the
legal authority is also required to disclose the amounts transferred to each of the
receivers. As in Monero, each output in the transaction includes the encrypted
amount and a mask value. The legal authority and k PSs engage in MPC to
decrypt the amount (see Fig. 7). The inputs of the legal authority to the MPC
are A, enc amount, mask and the index of the output addressed to the receiver
that is identified by the public key A. The input of each PS is their share of the
transaction’s private key r (according to the given guid). The MPC computation
reveals the amount and the blinding key as follows:
amount ← enc amount − Hn(Hn(Hn(rA||output index))),
blinding key ← mask − Hn(Hn(rA||output index)).

Fig. 7. Sequence diagram of amount disclosure when the suspect (Alice) is a sender.

8 Implementation Details

All of the above mentioned protocols and MPCs were implemented as part of
this research. In FiatChain, stealth addresses and transaction keys are computed
in the same manner as in Monero, thus ensuring backward compatibility with
Monero.

Specifically, Monero utilizes elliptic curve cryptography based on the curve
Ed25519 [6] for signatures, stealth addresses, etc.

The protocols discussed in Sect. 6, including elliptic curve operations, Keccak
hashing [7], and verifiable secret sharing, were implemented using the FRESCO
sMPC framework. This framework provides a suite of protocols for establishing
the p2p network between MPC participants and performing the computations.
The framework allows different computation engines and settings. In this paper,
we use this framework with SPDZ [14,15] and MASCOT [28] preprocessing as
the main protocol which relies on Oblivious Transfer (OT) primitive, because it
has lower communication complexity.

In the implementation, we addressed the following challenges: (1) The prime
in Ed25519 is 2255 − 19. Unfortunately, the current MASCOT and OT modules’
implementation in FRESCO only work with a field size whose bit representation
length is divisible by eight. (2) Some of the built-in computations in FRESCO

194 R. Puzis et al.

(e.g., bit decomposition, equality, and comparison) require additional bits for
statistical security. This fact reduces the field of operation to a subset of the
field used in FRESCO. Large number operations may utilize the space assigned
for security bits and get overwritten.

In order to solve these implementation issues, we increased the number of

bits for computations in FRESCO to
⌈

log2(2255−19)2
8 + s

⌉

· 8, where s is the

maximal number of security bits that may be required for a single mathematical
operation in FRESCO. This resulted in about 1.5 kbit representations of all
of the values used during the sMPC computations. Then, for each operation
that is required to work over a finite field, we performed a “public modulo
reduction”, as described by Ning and Xu [34], on the result of the operation.
Finally, implementation of the hash function was done by bit decomposition of
the data and the subsequent performance of logical operations on the individual
bits, as per the Keccak specification summary.4

Unfortunately, the current implementation is not scalable. First, we have
ended up working over a huge modulus (∼600 bits instead of 256 bits) which
results in larger payloads and longer computation time. Second, as a result of
performing “public modulo reduction” on every operation, a big overhead was
added to even the simplest calculation. Finally, the hash function implementation
was naive and no optimizations were applied.

9 Conclusion

In this paper, we present a privacy preserving cryptocurrency with law enforce-
ment capabilities. FiatChain, the proposed cryptocurrency, represents a signifi-
cant step toward the adoption of the blockchain technology by governments and
central banks around the world. Public interest in cryptocurrencies is apparent,
but central banks have been reluctant to accept this technology for supporting
fiat currency due to fear of money laundering and the inability to track funds
in privacy preserving cryptocurrencies such as Monero or Zcash. Telecom oper-
ators and other similar organizations obliged to lawful interception face similar
problems in adopting privacy preserving blockchain for some of their services.
The distributed disclosure procedures proposed in this paper provide a good
trade-off between the required ability to enforce KYC and AML regulations and
the requirement to maintain clients’ for privacy and anonymity. Clients may rest
assured that no one, not even their bank, can disclose their transactions without
a court order and consent of at least k PSs.

The multi-party computation (MPC) employed provides secrecy of input,
selective output disclosure, and correctness.5 Future research and development
are required to provide more efficient sMPC implementations. In particular it is

4 https://keccak.team/keccak specs summary.html.
5 The integrity of the result is guaranteed and malicious parties deviating from the

protocol during execution should not be able to force honest parties to output an
incorrect result.

https://keccak.team/keccak_specs_summary.html

Controllable Privacy Preserving Blockchain 195

required to modify MASCOT and OT implementations in FRESCO to support
modulus who’s bit length is not divisible by eight, and support bit decomposition
and comparison algorithms in FRESCO without the need for statistical security
bits.

Past research assessed the susceptibility of Monero to statistical attacks
allowing the adversary to link between transactions [29]. In light of these attacks,
further analysis of FiatChain is required in order to make sure that protocols
implemented by permissioned signers do not significantly increase linkability and
traceability.

References

1. The dai stablecoin system. https://makerdao.com/. Accessed 06 Feb 2019
2. Maxwell, G.: Post on bitcoin forum. https://bitcointalk.org/index.php?

topic=279249.msg3013970#msg3013970. Accessed 09 Feb 2019
3. Tether: Fiat currencies on the bitcoin blockchain. https://tether.to. Accessed 06

Feb 2019
4. Swiss national bank plans to launch their own cryptocurrency, Febru-

ary 2018. https://www.interactivecrypto.com/swiss-national-bank-plans-launch-
cryptocurrency. Accessed 27 Feb 2018

5. Berentsen, A., Schar, F., et al.: The case for central bank electronic money and
the non-case for central bank cryptocurrencies. Federal Reserve Bank of St. Louis
Review 100(2), 97–106 (2018)

6. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-
security signatures. J. Crypt. Eng. 2(2), 77–89 (2012)

7. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak specifications. Sub-
mission to nist (round 2), pp. 320–337 (2009)

8. Biryukov, A., Khovratovich, D., Pustogarov, I.: Deanonymisation of clients in bit-
coin p2p network. In: Proceedings of the 2014 ACM SIGSAC Conference on Com-
puter and Communications Security, pp. 15–29. ACM (2014)

9. Bonneau, J., Narayanan, A., Miller, A., Clark, J., Kroll, J.A., Felten, E.W.: Mix-
coin: anonymity for bitcoin with accountable mixes. In: Christin, N., Safavi-Naini,
R. (eds.) FC 2014. LNCS, vol. 8437, pp. 486–504. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45472-5 31

10. Buchanan, B.: The bank of England is planning a bitcoin-style virtual currency –
but could it really replace cash? January 2018. http://theconversation.com/the-
bank-of-england-is-planning-a-bitcoin-style-virtual-currency-but-could-it-really-
replace-cash-89585. Accessed 4 Jan 2018

11. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Balancing accountability and
privacy using e-cash (extended abstract). In: De Prisco, R., Yung, M. (eds.) SCN
2006. LNCS, vol. 4116, pp. 141–155. Springer, Heidelberg (2006). https://doi.org/
10.1007/11832072 10

12. Camenisch, J., Maurer, U., Stadler, M.: Digital payment systems with passive
anonymity-revoking trustees. J. Comput. Secur. 5(1), 69–89 (1997)

13. Carney, M.: The future of money. In: Scottish Economics Conference. Edinburgh
University, March 2018. https://www.bankofengland.co.uk/-/media/boe/files/
speech/2018/the-future-of-money-speech-by-mark-carney.pdf. Accessed 2 Mar
2019

https://makerdao.com/
https://bitcointalk.org/index.php?topic=279249.msg3013970#msg3013970
https://bitcointalk.org/index.php?topic=279249.msg3013970#msg3013970
https://tether.to
https://www.interactivecrypto.com/swiss-national-bank-plans-launch-cryptocurrency
https://www.interactivecrypto.com/swiss-national-bank-plans-launch-cryptocurrency
https://doi.org/10.1007/978-3-662-45472-5_31
http://theconversation.com/the-bank-of-england-is-planning-a-bitcoin-style-virtual-currency-but-could-it-really-replace-cash-89585
http://theconversation.com/the-bank-of-england-is-planning-a-bitcoin-style-virtual-currency-but-could-it-really-replace-cash-89585
http://theconversation.com/the-bank-of-england-is-planning-a-bitcoin-style-virtual-currency-but-could-it-really-replace-cash-89585
https://doi.org/10.1007/11832072_10
https://doi.org/10.1007/11832072_10
https://www.bankofengland.co.uk/-/media/boe/files/speech/2018/the-future-of-money-speech-by-mark-carney.pdf
https://www.bankofengland.co.uk/-/media/boe/files/speech/2018/the-future-of-money-speech-by-mark-carney.pdf

196 R. Puzis et al.

14. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6 1

15. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

16. Danezis, G., Meiklejohn, S.: Centrally banked cryptocurrencies. arXiv preprint
arXiv:1505.06895 (2015)

17. De Cristofaro, E., Tsudik, G.: Practical private set intersection protocols with lin-
ear complexity. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 143–159. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14577-3 13

18. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set inter-
section. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 1–19. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
24676-3 1

19. Garman, C., Green, M., Miers, I.: Accountable privacy for decentralized anonymous
payments. In: Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 81–
98. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54970-4 5

20. Georgacopoulos, C.: Banks and the crypto industry: Asia, April 2018. https://
cointelegraph.com/news/banks-and-the-crypto-industry-asia. Accessed 18 Apr
2018

21. Gupta, S., Lauppe, P., Ravishankar, S.: A blockchain-backed central bank cryp-
tocurrency (2017)

22. Harn, L., Lin, C.: Strong (n, t, n) verifiable secret sharing scheme. Inf. Sci. 180(16),
3059–3064 (2010)

23. Heilman, E., Alshenibr, L., Baldimtsi, F., Scafuro, A., Goldberg, S.: Tumblebit:
an untrusted bitcoin-compatible anonymous payment hub. In: Network and Dis-
tributed System Security Symposium (2017)

24. Hopwood, D., Bowe, S., Hornby, T., Wilcox, N.: Zcash protocol specification. Tech-
nical report, 2016–1.10. Zerocoin Electric Coin Company (2016)

25. Ibrahim, M.H., Ali, I., Ibrahim, I., El-Sawi, A.: A robust threshold elliptic curve
digital signature providing a new verifiable secret sharing scheme. In: 2003 IEEE
46th Midwest Symposium on Circuits and Systems, vol. 1, pp. 276–280. IEEE
(2003)

26. Jedusor, T.E.: Mimblewimble (2016)
27. Kappos, G., Yousaf, H., Maller, M., Meiklejohn, S.: An empirical analysis of

anonymity in zcash. arXiv preprint arXiv:1805.03180 (2018)
28. Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure

computation with oblivious transfer. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pp. 830–842. ACM (2016)

29. Kumar, A., Fischer, C., Tople, S., Saxena, P.: A traceability analysis of monero’s
blockchain. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017.
LNCS, vol. 10493, pp. 153–173. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-66399-9 9

30. Maxwell, G., Poelstra, A.: Borromean ring signatures (2015)
31. Meiklejohn, S., et al.: A fistful of bitcoins: characterizing payments among men

with no names. In: Proceedings of the 2013 Conference on Internet Measurement
Conference, pp. 127–140. ACM (2013)

https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/978-3-642-32009-5_38
http://arxiv.org/abs/1505.06895
https://doi.org/10.1007/978-3-642-14577-3_13
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-662-54970-4_5
https://cointelegraph.com/news/banks-and-the-crypto-industry-asia
https://cointelegraph.com/news/banks-and-the-crypto-industry-asia
http://arxiv.org/abs/1805.03180
https://doi.org/10.1007/978-3-319-66399-9_9
https://doi.org/10.1007/978-3-319-66399-9_9

Controllable Privacy Preserving Blockchain 197

32. Miyaji, A., Nishida, S.: A scalable multiparty private set intersection. Network and
System Security. LNCS, vol. 9408, pp. 376–385. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-25645-0 26

33. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
34. Ning, C., Xu, Q.: Multiparty computation for modulo reduction without bit-

decomposition and a generalization to bit-decomposition. In: Abe, M. (ed.) ASI-
ACRYPT 2010. LNCS, vol. 6477, pp. 483–500. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-17373-8 28

35. Noether, S., Mackenzie, A., Monero-Core-Team: Ring confidential transactions,
February 2016. https://lab.getmonero.org/pubs/MRL-0005.pdf

36. Noether, S., Mackenzie, A., et al.: Ring confidential transactions. Ledger 1, 1–18
(2016)

37. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

38. Quesnelle, J.: On the linkability of zcash transactions. arXiv preprint
arXiv:1712.01210 (2017)

39. Ron, D., Shamir, A.: Quantitative analysis of the full bitcoin transaction graph.
In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 6–24. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39884-1 2

40. Ruffing, T., Moreno-Sanchez, P., Kate, A.: CoinShuffle: practical decentralized coin
mixing for bitcoin. In: Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS,
vol. 8713, pp. 345–364. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11212-1 20

41. van Saberhagen, N.: Cryptonote v 2.0, October 2013. https://cryptonote.org/
whitepaper.pdf

42. Sasson, E.B., et al.: Zerocash: decentralized anonymous payments from bitcoin. In:
2014 IEEE Symposium on Security and Privacy (SP), pp. 459–474. IEEE (2014)

43. Suberg, W.: Malaysian central bank: Id now needed for any crypto exchange trans-
action, February 2018. https://cointelegraph.com/news/malaysian-central-bank-
id-now-needed-for-any-crypto-exchange-transaction. Accessed 28 Feb 2018

44. de Vilaca Burgos, A., de Oliveira Filho, J.D., Suares, M.V.C., de Almeida, R.S.:
Distributed ledger technical research in central bank of brazil (2017)

45. Wüst, K., Kostiainen, K., Capkun, V., Capkun, S.: PRCash: fast, private and
regulated transactions for digital currencies

46. Yao, A.C.: Protocols for secure computations (extended abstract). In: 23rd Annual
Symposium on Foundations of Computer Science, pp. 160–164 (1982)

https://doi.org/10.1007/978-3-319-25645-0_26
https://doi.org/10.1007/978-3-319-25645-0_26
https://doi.org/10.1007/978-3-642-17373-8_28
https://lab.getmonero.org/pubs/MRL-0005.pdf
https://doi.org/10.1007/3-540-46766-1_9
http://arxiv.org/abs/1712.01210
https://doi.org/10.1007/978-3-642-39884-1_2
https://doi.org/10.1007/978-3-319-11212-1_20
https://doi.org/10.1007/978-3-319-11212-1_20
https://cryptonote.org/whitepaper.pdf
https://cryptonote.org/whitepaper.pdf
https://cointelegraph.com/news/malaysian-central-bank-id-now-needed-for-any-crypto-exchange-transaction
https://cointelegraph.com/news/malaysian-central-bank-id-now-needed-for-any-crypto-exchange-transaction

A Relay Attack on a Tamper Detection
System (Brief Announcement)

Itai Dinur(B) and Natan Elul

Department of Computer Science, Ben-Gurion University, Beersheba, Israel
dinuri@cs.bgu.ac.il

Abstract. This short paper analyzes a tamper detection system for IoT
environments, presented by Bagci et al. at ACSAC 2015. It shows that
the system is vulnerable to relay attacks.

1 Introduction

In this paper we analyze a tamper detection system for IoT environments, pub-
lished by Bagci et al. [1]. The system does not require adding new hardware
components to IoT devices, but rather analyzes the signal obtained from an IoT
device, assuming that a tamper event has a noticeable effect on the signal’s prop-
erties. The main challenge in designing such a system is to accurately separate
true tamper events from environmental noise.

More specifically, we studied and implemented the recently proposed tamper
detection system of Bagci et al., which was shown to detect tamper events with
high accuracy in both stable (controlled) and more chaotic uncontrolled envi-
ronments (such as a busy office). First, we attempted to reproduce the results
of Bagci et al. by implementing their proposed system and conducting similar
experiments. While our experiments in controlled environments closely matched
the ones of Bagci et al., we were not able to obtain the claimed accuracy level in
uncontrolled environments. Second, and more importantly, we noticed that the
tamper detection system of Bagci et al. is vulnerable to relay attacks. In such
attacks, the attacker relocates the IoT device (stripping it from its original func-
tionality) and replaces it with a relay device that acts as a man-in-the-middle
between the relocated IoT device and the receivers of the tamper detection sys-
tem. We implemented the relay attack and were able to deceive the system of
Bagci et al. even in controlled environments (in which it is harder to disguise
the attack as environmental noise).

2 The Tamper Detection System of Bagci et al. [1]

We briefly describe the tamper detection system for IoT environments suggested
by Bagci et al. [1].

The system is comprised of a network that consists of IoT devices (transmit-
ters) and multiple receivers, whose task is to extract a particular object (called
c© Springer Nature Switzerland AG 2019
S. Dolev et al. (Eds.): CSCML 2019, LNCS 11527, pp. 198–201, 2019.
https://doi.org/10.1007/978-3-030-20951-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20951-3_17&domain=pdf
https://doi.org/10.1007/978-3-030-20951-3_17

A Relay Attack on a Tamper Detection System 199

the channel state information or CSI) from each transmitted WiFi frame. The
CSI data from each receiver is sent to a central computer that runs a designated
algorithm for recognising tamper events.

In essence, the algorithm utilises the channel state information from each
transmitted frame and evaluates the data by translating signal amplitudes to an
Euclidean metric distance measure. This measure reflects the distance between
a group of history “untampered” samples to the current measured amplitude.
Then, a tamper event is detected by a decision procedure if a substantial changes
is observed in the metric distance.

The decision procedure as proposed by Bagci et al. distinguishes between two
main types of environment, controlled and uncontrolled. In a controlled environ-
ment, the physical changes are very limited, and only pre-planned movements
are introduced. On the other hand, an uncontrolled environment may consist of
arbitrary regular activities of humans at their working place. In both environ-
ments, a threshold value is calculated in order to distinguish between untam-
pered and tampered states. The threshold value depends on the environment
type, according to the scale of movement and its physical layout. In a controlled
environment, the threshold is calculated by finding the maximal change in the
Euclidean distance between each two samples of a precalculated untampered
dataset. By using this threshold, the algorithm learns the steady state of the
environment, and triggers an alarm on CSI values that exceed the threshold.
In an uncontrolled environment, due to potential environmental noise, the algo-
rithm calculates the threshold by using both untampered and tampered samples.
In this way, it can differentiate between changes in the signal that originate from
the environmental movements and those originating from true tamper events.

3 The Relay Attack on the Tamper Detection System

We observe that the proposed system of [1] heavily relies on the assumption
that the evaluated signal is originated from the transmitter, and not by another
device that may be maliciously controlled by an attacker in a relay attack.

Our relay attack consists of a relay device that operates in the WiFi frequency
and located in the original location of a transmitter (i.e., an IoT device), which is
moved to a different location. The relay device repeats the transmission of each
frame originated by the transmitter. At the same time, we make sure that the
signal of the relocated transmitter is masked and does not reach the transmitters.
In order to mask the signal, we utilise a Faraday cage which weaken the signal
such that it is virtually blocked from the receivers, but is still readable by the
relay device which is located in close proximity to the masked transmitter.

The attack is illustrated in Fig. 1. We stress that the relay device is located in
the same location as the original transmitter and is implemented using the same
type of hardware (in our case, the same model of Raspberry Pi). Therefore, its
signal has similar CSI to the original transmitter and the receivers cannot distin-
guish it from the signal of the original device. We further note that a relay attack
is generally required here (rather than merely replacing the transmitter with an

200 I. Dinur and N. Elul

attacker-made device), since the original transmitter and receivers may utilize
a cryptographic message authentication code (MAC) algorithm to authenticate
messages using a key that is unknown to the attacker.

In an additional (more complex) attack scenario, the attacker may move the
transmitter to a remote location and relay its packets using additional devices
over an arbitrary network such as the Internet. Consequence, the transmitter
can be moved to an attacker-controlled environment and the IoT device (e.g., a
surveillance camera or a smoke detector) would not fulfill its original task.

Fig. 1. The relay attack

4 Summary of Results

Our experimental setup consists of: (1) A Raspberry Pi transmitter that simu-
lates a monitored IoT device, (2) Four receivers (industrial computers), equipped
with Intel-5300 Network Card Interface (NIC), (3) Main computer (PC) that
gathers the data from the receivers and runs the tamper detection algorithm.

We implemented the tamper detection algorithm of [1] in both controlled
and uncontrolled environments. Unfortunately, we were not able to reproduce
the claimed accuracy level in uncontrolled environments as in [1]. This may be
attributed to factors such as the different environments in which experiments
were carried out, or the use of different hardware (e.g., [1] implemented the
receivers using old laptops, whereas we used industrial computers).

On the other hand, we were able to reproduce similar results to [1] in con-
trolled environments. Consequently, we implemented the relay attack in this
environment. This attack was carried out by replacing the transmitter with a
relay device, whilst keeping the distance value below the max distance threshold,
except for a short period of time as discussed below.

In order to evaluate the attack, we used a similar environment as used in [1].
First, a history dataset was collected when no movement occurs in the environ-
ment. In this experiment, an attacker awaits outside the experiment space. Then,
at time 200 s, the attacker places the transmitter inside a customised Faraday
cage (a metal trashcan), positions the relay device (another Raspberry Pi) in

A Relay Attack on a Tamper Detection System 201

the original position of the transmitter, and powers on the relay device before
exiting the space.

Figure 2 shows the Euclidean distance data collected from the first receiver
on every received sample (the data collected from other receivers is similar).
The outcome is a successful relay that does not trigger a tamper event by the
algorithm after the replacement of the receiver. On the other hand, a tamper
event is triggered during the replacement (210 s–240 s).

Even though a tamper event is triggered during replacement, the attack
should be considered as successful (or at least partially successful), as after the
replacement, a tamper event is not triggered, whereas the system is clearly in a
tampered state. Of course, the question of whether the attack would be detected
in practice depends on how short tamper events are treated. We further note that
a highly trained attacker (or a group of attackers) might be able to implement
the replacement without triggering an alarm, if replacement is performed in the
time period between transmissions (which is 1 s in [1]).

Finally, although we did not implement the attack in an uncontrolled envi-
ronment (as attacking an inaccurate tamper detection system is pointless), we
note that the implementation of the relay attack (on an accurate system) in
such an environment should be significantly easier compared to a controlled
environment. One reason for this is that in order to separate tamper events from
environmental noise, the algorithm of [1] uses time-wise filtering which averages
received values over windows of (up to) 60 s. Thus, short fluctuations in CSI
values have little effect and would not trigger an alarm. Consequently, it is likely
that an attacker would be able to perform the replacement procedure without
triggering any tamper event.

Fig. 2. Euclidean distance vs. Time measurement of receiver 1

Reference

1. Bagci, I.E., Roedig, U., Martinovic, I., Schulz, M., Hollick, M.: Using channel state
information for tamper detection in the internet of things. In: ACSAC 2015 (2015)

Amended Cross-Entropy Cost:
An Approach for Encouraging Diversity

in Classification Ensemble
(Brief Announcement)

Ron Shoham(B) and Haim Permuter

Ben-Gurion University, 8410501 Beer-Sheva, Israel
ronshoh@post.bgu.ac.il, haimp@bgu.ac.il

Abstract. In the field of machine learning, the training of an ensem-
ble of models is a very common method for reducing the variance of the
prediction, and yields better results. Many researches indicate that diver-
sity between the predictions of the models is important for the ensemble
performance. However, for Deep Learning classification tasks there is no
explicit way to encourage diversity. Negative Correlation Learning (NCL)
is a method for doing so in regression tasks. In this work we develop
a novel algorithm inspired by NCL to explicitly encourage diversity in
Deep Neural Networks (DNNs) for classification. In the development of
the algorithm we first assume that the same training characteristics that
hold in NCL must also hold when training an ensemble for classification.
We also suggest the Stacked Diversified Mixture of Classifiers (SDMC),
which is based on our outcome. SDMC is a layer that aims to replace the
final layer of a DNN classifier. It can be easily applied on any model, while
the cost in terms of number of parameters and computational power is
relatively low.

1 Introduction

Ensemble methods are a simple and efficient way to yield better results by aggre-
gating predictions from multiple models. Many works point out that the key
for an ensemble to perform well is to encourage diversity among the models
[2,5,6,8,10]. A well known framework for generating a diversified ensemble for
regression tasks uses Negative Correlation Learning (NCL) criteria [1,6,8]. In
this note we would like to develop a novel analogue framework for the classifi-
cation problem. For regression, the negative correlation is well motivated from
simple decomposition of the error into bias-variance-covariance [1,6]. However,
for classification problems such a framework is less clear. Currently, most of
the ensembles in DNNs are obtained by training the same architecture multiple
times with different seeds. The randomization achieves some diversity but it is
done implicitly, without any clear criteria. We suggest an amended cost func-
tion for multiple classifiers which encourages diversity between different model
predictions.
c© Springer Nature Switzerland AG 2019
S. Dolev et al. (Eds.): CSCML 2019, LNCS 11527, pp. 202–207, 2019.
https://doi.org/10.1007/978-3-030-20951-3_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20951-3_18&domain=pdf
https://doi.org/10.1007/978-3-030-20951-3_18

Negative Cross-Entropy: An Approach for Encouraging Diversity 203

In general, the cost function used in machine learning can be motivated
by several considerations. For instance, cross-entropy can be motivated by a
maximum-likelihood criteria, but also by being a “good match” to sigmoid or
softmax nodes for binary or multi-class cases, respectively [7]. Using a “good
match” to a sigmoid or softmax node is also what motivates us in developing a
cost function for ensemble classification. We show that by adding a penalty that
encourages increasing the cross-entropy between the predictions of the models
we get the same learning characteristics as in NCL.

The novelty of our idea lies in our giving an explicit criterion for simulta-
neously training multiple models for an ensemble, while encouraging diversity
explicitly. One of the benefits of this method is that all models are equally
strong. We also suggest a variant called Stacked Diversified Mixture of Classifiers
(SDMC), which can be applied on any DNN classifier easily, without increasing
the number of parameters and computational power significantly. SDMC is a
variant for the vanilla final softmax layer used in DNN, based on our outcome
in this article.

2 Regression with Negative Correlation Learning

For regression tasks there is a well known technique for encouraging diversity
in ensembles called Negative Correlation Learning (NCL) [1,6]. A mathemati-
cal analysis shows that reducing the correlation between the regressors in an
ensemble might leads to reducing the MSE of the ensemble (bias-variance-
covariance decomposition). Its main idea is that by adding a penalty pi =
(fi − fens)

∑
j �=i(fj − fens) for each model cost function, where fi is the i’th

model prediction and fens = 1
M

∑M
j=1 fj is the ensemble prediction, we reduce

the correlation between the predictors. This yields a new cost function:

ei =
1
2
(fi − t)2 + γpi, (1)

=
1
2
(fi − t)2 + γ(fi − fens)

∑

j �=i

(fj − fens). (2)

When calculating its gradient, and setting λ = 2γ(1 − 1
M), we get

∂ei

∂fi
= (fi − t) − γ[2(1 − 1

M
)(fi − fens)] (3)

= (fi − t) − λ(fi − fens)
= (1 − λ)(fi − t) + λ(fens − t). (4)

3 Classification

Inspired by the above result, we would like to find a penalty for the classification
cost that yields the same characteristics. In order to achieve this, we start from

204 R. Shoham and H. Permuter

the outcome we got in (4) and integrate it. This procedure is similar to that
presented in [7] for finding the cross-entropy as the desired cost function for a
sigmoid classifier. The difference between classification and regression is that we
use an activation function on the final layer1. For binary classification we use
the sigmoid function fi(zi) = 1

1+e−zi
, in contrast to regression where fi(zi) = zi.

Therefore, based on the outcome in (4) we demand

∂ei

∂zi
= (1 − λ)(fi − y) + λ(fens − y). (5)

By applying the chain rule ∂ei

∂zi
= ∂ei

∂fi

∂fi

∂zi
and the result ∂fi

∂zi
= fi(1 − fi), we get

∂ei

∂fi
=

(1 − λ)(fi − y) + λ(fens − y)
fi(1 − fi)

(6)

=
fi − y

fi(1 − fi)
− λ

M

∑

j �=i

fi − fj

fi(1 − fi)
(7)

ei =
∫

∂ei

∂fi
dfi (8)

= −y log(fi) − (1 − y) log(1 − fi)

− λ

M

∑

j �=i

{−fj log(fi) − (1 − fj) log(1 − fi)} (9)

= H(y, fi) − λ

M

∑

j �=i

H(fj , fi). (10)

H is the cross-entropy function and y ∈ {0, 1} is the true label. Therefore, by
adding a penalty pi = − 1

M

∑
j �=i H(fj , fi) and choosing λ ∈ [0, 1] we get a

method to encourage diversity in classification ensembles explicitly.

4 Stacked Diversified Mixture of Classifiers

In this section we suggest a new architecture inspired by our above outcome and
the D-ConvNet architecture [8]. We train a single DNN to generate features,
and on top of the net, instead of using a vanilla softmax layer, we use a Stacked
Diversified Mixture of Classifiers (SDMC). A SDMC is structure of multiple
softmax layers with multiple amended cost functions for each softmax layer.
An illustration of this architecture is shown in Fig. 1. The advantage of using
this variant is that we do not need to train multiple networks simultaneously,
which might significantly increase the training time and the computational power
needed. Instead, we only train a single DNN and stack on top of it multiple
classifiers. Each classifier has its own set of weights and is jointly optimized with
the other classifiers by an amended cost function that penalizes low cross-entropy
with others.
1 In this Brief Announcement we demonstrate our idea only on a sigmoid (binary

classification), but the proof for softmax is similar and is presented in the full version
of this paper.

Negative Cross-Entropy: An Approach for Encouraging Diversity 205

Input

Deep Neural Network Ensemble of classifiers

Output

Fig. 1. Diversified mixture of classifiers. First, an input is sent to a DNN. Next, the
DNN performs initial processing and feature extraction out of the input. Finally, a pool
of classifiers is trained using our suggested cost functions that penalize with respect to
the cross-entropy with other classifiers.

5 Results

5.1 MNIST Using Vanilla Diversified Classifiers

The MNIST is a standard toy dataset, where the task is to classify the images into
10 digit classes. Our goal here was to get some proof of concept and to observe
training behaviour when using our cross-entropy penalty. Here, we used only
our vanilla version and did not apply a SDMS variant. Our architecture was of a
single hidden layer DNN with ReLU activation. We set the number of models to
be M = 5 and changed the values of λ. The results are shown in Table 1. Results
include both the accuracy and the cross-entropy of the predictions over the test
set. We notice from the results that our method reduces the cross-entropy and
get higher accuracy for λ > 0. We observe that even though the performance of
a single net deteriorated when increasing λ, the ensemble performs better.

Table 1. Results on MNIST using our suggested cost function. Ensemble scores refers
to the accuracy and cross-entropy (CE) of the ensemble prediction over the test set.
Single net scores refers to the scores of the prediction of a single model in the ensemble.
Scores are averaged over 6 experiments with a different seed for each λ.

λ Ensemble scores Single net scores

Accuracy CE Accuracy CE

0 0.9790 0.0669 0.9767 0.0810

0.05 0.9798 0.0663 0.9770 0.0809

0.1 0.9799 0.0664 0.9768 0.0802

0.3 0.9797 0.0658 0.9767 0.0806

0.5 0.9802 0.0649 0.9764 0.0842

0.7 0.9800 0.0659 0.9760 0.0866

206 R. Shoham and H. Permuter

5.2 CIFAR-10 Using SDMC

We conducted studies of the SDMC over the CIFAR-10 dataset [4]. We used the
architecture and code of ResNet 110 [3] and stacked on top of it an ensemble of 10
classifiers. This resulted in adding 5850 parameters to a model with an original
size of 1731002, i.e. enlarging the model by 0.34%. The results are shown in
Table 2. In the results we see that the optimal λ reduces the error by ∼7% with
almost no cost in the number of parameters and computational power. We also
see that the cross-entropy reduces significantly. We notice that the optimal λ is
lower than the vanilla usage of our method.

Table 2. Results on CIFAR-10 test set using SDMC with ResNet 110. M refers to the
number of classifiers, and CE stands for cross-entropy. We ran each model 5 times and
show “best(mean-std)” as in [3,9].

M = 1 M = 10
λ = 0

M = 10
λ = 0.001

M = 10
λ = 0.01

M = 10
λ = 0.05

M = 10
λ = 0.1

M = 10
λ = 0.3

M = 10
λ = 0.5

Error (%) 6.43 6.2 6.14 6.12 5.98 6.09 6.13 6.31

CE 0.3056 0.3102 0.3041 0.3048 0.2968 0.2918 0.3137 0.4957

6 Conclusion

In this paper we propose a novel Deep Learning Classification Framework for
encouraging diversity explicitly, based on cross-entropy penalties. First, we intro-
duced the idea of using an amended cost function for multiple classifiers based
on NCL results. Later, we introduce Stacked Diversified Mixture of Classifiers
(SDMC) which aims to improve the capabilities of a model without increasing
the number of parameters and computational power significantly.

References

1. Brown, G., Wyatt, J.L., Tiňo, P.: Managing diversity in regression ensembles. J.
Mach. Learn. Res. 6(9), 1621–1650 (2005)

2. Carreira-Perpinan, M.A., Raziperchikolaei, R.: An ensemble diversity approach to
supervised binary hashing. In: Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon,
I., Garnett, R. (eds.) Advances in Neural Information Processing Systems 29, pp.
757–765. Curran Associates Inc. (2016)

3. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

4. Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical
report, Citeseer (2009)

5. Lee, S., Prakash, S.P.S., Cogswell, M., Ranjan, V., Crandall, D., Batra, D.: Stochas-
tic multiple choice learning for training diverse deep ensembles. In: Lee, D.D.,
Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural
Information Processing Systems 29, pp. 2119–2127. Curran Associates Inc. (2016)

Negative Cross-Entropy: An Approach for Encouraging Diversity 207

6. Liu, Y., Yao, X.: Ensemble learning via negative correlation. Neural Netw. 12(10),
1399–1404 (1999)

7. Nielsen, M.A.: Neural Networks and Deep Learning, vol. 25 (2015)
8. Shi, Z., et al.: Crowd counting with deep negative correlation learning (2018)
9. Srivastava, R.K., Greff, K., Schmidhuber, J.: Training very deep networks. In:

Advances in Neural Information Processing Systems, pp. 2377–2385 (2015)
10. Zhou, T., Wang, S., Bilmes, J.A.: Diverse ensemble evolution: Curriculum data-

model marriage. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-
Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems
31, pp. 5909–5920. Curran Associates Inc. (2018)

Governance and Regulations Implications
on Machine Learning
(Brief Announcement)

Sima Nadler(B), Orna Raz(B), and Marcel Zalmanovici(B)

IBM Research, Haifa, Israel
{sima,ornar,marcel}@il.ibm.com

Abstract. Machine learning systems’ efficacy are highly dependent on
their training data and the data they receive during production. However,
current data governance policies and privacy laws dictate when and how
personal and other sensitive data may be used. This affects the amount
and quality of personal data included for training, potentially introducing
bias and other inaccuracies into the model. Today’s mechanisms do not
provide (a) a way for the model developer to know about this nor, (b)
to alleviate the bias. This paper addresses both of these challenges.

Keywords: Data governance · Implications · Privacy ·
Machine learning

1 Introduction and Background

More and more of today’s computer systems include some kind of machine learn-
ing (ML), making them highly dependent on quality training data in order to
train and test the model. The ML results are only as good as the data on which
they were trained and the data they receive during production. On the other
hand, data governance laws and policies dictate when and how personal and
other sensitive data may be used. For some purposes it may not be used at
all, for others consent is required, and in others it may be used based on con-
tract or legitimate business. In the cases where personal data or other sensitive
information cannot be used, or requires consent, the data sets used to train ML
models will by definition be a subset of the data. If the data set doesn’t include,
for example, age, race, or gender, then there is no way to know that the data
is not representative of the real target population. This has the potential to
introduce bias into the model as well as other inaccuracies — without the solu-
tion creator having any idea of the potential problem. Data sets are sometimes
augmented with meta data describing what is included in the data set, but cur-
rently that meta data has nothing about what has been excluded and why. There
are no current methods for alleviating governance induced bias in ML models.
Our work addresses the issues of capturing information about data
excluded due to governance regulations and policies and suggests how
c© Springer Nature Switzerland AG 2019
S. Dolev et al. (Eds.): CSCML 2019, LNCS 11527, pp. 208–211, 2019.
https://doi.org/10.1007/978-3-030-20951-3_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20951-3_19&domain=pdf
https://doi.org/10.1007/978-3-030-20951-3_19

Governance and Regulations Implications on Machine Learning 209

to utilize such information to characterize the governance implications
impact on ML and improve the ML models. We are unaware of any work
that does that. There is a lot of work about capturing data governance, privacy
policies, proper consent management, and identification and handling of bias in
ML. There are also various data governance tools available. A summary of such
works can be found in the technical report [2] that complements this paper.

We provide a short background on governance laws and policies and their
potential impact on ML. Countries and industries have differing laws regulating
how data, especially personal and other types of sensitive data, may be used.
Europe’s General Data Protection Regulation (GDPR) aims to strengthen data
subject privacy protection, unify the data regulations across the member states,
and broaden the territorial scope of the companies that fall under its jurisdiction
to address non-EU companies who provide services to EU residents. In the United
States privacy laws have typically been industry based with, for example, HIPAA
governing the health care industry as it relates to digital health data. However,
in June 2018 the state of California passed a new privacy law that will go into
effect in 2020. Since each state could theoretically do the same, the US could
find itself with 50 different privacy laws. As a result there are now discussions
about creating a federal privacy law in the United States. Similar trends can be
seen in other countries around the world. While the laws and standards differ,
they tend to be similar in their goals.

When creating a ML system, the goal which it aims to achieve is in essence
the purpose. If personal or other regulated data is needed to train and/or use
the ML system, either all or a subset of the original data will be made available
based on the purpose. Likely this will vary from country to country and/or state
to state, based on local regulations and company regulations. For example, if
one is creating a model to predict the need for public transportation in a given
neighborhood one could use information from current public transportation use,
population size, and other relevant data. However, there may be laws restricting
the use, for example, of location data and transportation uses by minors. Thus,
the training set for the ML-based solution for transportation planning would
not include data about people under the age of 18. This introduces bias into
the model, since the transportation patterns of children would not be included.
There are many other well known fields where such bias is introduced. When the
bias introduction is known, it can be accounted for and corrected. A well known
example is the pharmaceutical industry, where pregnant women and children
are rarely included in clinical trials for drug development. Another example,
in which bias was not known in advance, is automated resume review systems
(e.g., [1]), where the populations currently employed are the ones for which the
ML system naturally is biased.

In this paper we propose to alleviate governance induced bias in ML mod-
els by first capturing, and providing as meta data by a governance enforcement
engine, information about what has been excluded and why. Then, such infor-
mation can be used to identify and alleviate governance implications on ML
models.

210 S. Nadler et al.

2 Method, Feasibility Results and Summary

Method. We define governance implications and suggest to implement them as
meta data to be added to the output of governance enforcement tools. There
are two major types of excluded data: excluded records and excluded features.
These types differ in terms of how they can be identified and alleviated.

The role of data governance is to enforce proper usage of personal and/or
sensitive data as defined by policies and data subject preferences. As data is
accessed, stored, or transferred the governance module is responsible for invoking
the governance policies on the data. Such function might be to filter out certain
data, obfuscate the data, or allow the data to be used as is. While doing this the
governance module logs what it has done and on what the decision was based.

To create the governance implication summary we parse the governance deci-
sions log, and generate a summary containing: original vs derived data set size,
list of features removed from the data set and the removal reasons (policies),
percentage of data subjects included in the derived data set, and affect on fea-
tures included in the derived data set — ex: x% of people over age 60, y% of
people from California.

The governance impact summary then provides important additional infor-
mation which is taken into account when building and running ML models.

Details about governance implications data, impact summary and their
extraction from a governance engine can be found in [2]. That report also
describes in more detail the feasibility analysis which we summarize next.

Feasibility Results. We demonstrate the feasibility of our approach on a US
government Census data set. Our experiments show that it is possible to extract
governance implications from a governance enforcement engine and encode them
as meta data. These governance implications can be effectively utilized to alert
on data issues that negatively affect the ML model trained on the governed data
subset. We demonstrate this for excluded data records, simulating no-consent sit-
uations. We defined example governance policies. (1) California residents infor-
mation was excluded due to new strict privacy law. (2) People over 60 nationwide
tended not to provide consent for their information to be included in the public
data. (3) Granular location codes were excluded entirely to prevent easy cross
reference.

When accessing or sharing data, a data governance enforcement point gener-
ates a compliant subset of the original data based on (1) the purpose for which
the data will be used, (2) the geography which determines the relevant policies
and laws. The enforcement point filters and transforms the full data set based
on the policies and data subject preferences. During this process, all decisions
about which data is included and excluded are logged. For each feature there is
an entry in the governance decision log. We parse the log, creating an interim
data structure. From this interim data we generate a summary about what data
was included and excluded. However, information about important features may
be missing, such as geography and other personal information which may not be
part of the source data set, but could influence the ML model’s results. If such

Governance and Regulations Implications on Machine Learning 211

information exists in a profile management system that can be cross referenced,
we can further generate this data by taking the interim summary and corre-
lating it with information from the profile system. To the governance impact
summary we then add the list of profile features, indicating for each the percent-
age excluded for each data item. The final summary is shown in Fig. 1.

Fig. 1. Final governance impact sum-
mary.

Fig. 2. Intersection of ML model
important features and governance
implications features results in a warn-
ing about potential implications.

We demonstrate that the governance implications summary can be effec-
tively utilized to raise alerts regarding potential ML model under-performance.
We trained a random forest classifier over the US Census data, where the target
was the transportation means. Figure 2 shows the results of analyzing the model
important features and intersecting the resulting group of features with the fea-
tures that the governance implication method marked as affected. This method is
relevant when the features exist in the data provided for training. The resulting
features are indeed two of the features that were under-represented as a result
of simulating governance policies on the full data: age (people over 60) and state
(California). Because the model owners now know the important features that
were under-represented, they know in advance that it is highly likely that the
model is biased and can run existing bias detection and alleviation techniques.

References

1. GIZMODO: Amazon’s secret ai hiring tool reportedly ‘penalized’ resumes
with the word ‘women’s’. One of many reports on the topic (2018).
gizmodo.com/amazons-secret-ai-hiring-tool-reportedly-penalized-resu-1829649346

2. Sima Nadler, O.R., Zalmanovici, M.: Governance and regulations implications
on machine learning. http://www.research.ibm.com/haifa/dept/vst/papers/Data
Governance.pdf

https://gizmodo.com/amazons-secret-ai-hiring-tool-reportedly-penalized-resu-1829649346
http://www.research.ibm.com/haifa/dept/vst/papers/Data_Governance.pdf
http://www.research.ibm.com/haifa/dept/vst/papers/Data_Governance.pdf

Simulating Homomorphic Evaluation
of Deep Learning Predictions

Christina Boura1,4, Nicolas Gama1,2, Mariya Georgieva2,3(B),
and Dimitar Jetchev2,3

1 Laboratoire de Mathématiques de Versailles, UVSQ, CNRS,
Université Paris-Saclay, Versailles, France

christina.boura@uvsq.fr
2 Inpher, Lausanne, Switzerland

{nicolas,mariya,dimitar}@inpher.io
3 EPFL, Lausanne, Switzerland

4 Inria, Paris, France

Abstract. Convolutional neural networks (CNNs) is a category of deep
neural networks that are primarily used for classifying image data. Yet,
their continuous gain in popularity poses important privacy concerns for
the potentially sensitive data that they process. A solution to this prob-
lem is to combine CNNs with Fully Homomorphic Encryption (FHE)
techniques. In this work, we study this approach by focusing on two
popular FHE schemes, TFHE and HEAAN, that can work in the approx-
imated computational model. We start by providing an analysis of the
noise after each principal homomorphic operation, i.e. multiplication,
linear combination, rotation and bootstrapping. Then, we provide a the-
oretical study on how the most important non-linear operations of a CNN
(i.e. max, Abs, ReLU), can be evaluated in each scheme. Finally, we mea-
sure via practical experiments on the plaintext the robustness of different
neural networks against perturbations of their internal weights that could
potentially result from the propagation of large homomorphic noise. This
allows us to simulate homomorphic evaluations with large amounts of
noise and to predict the effect on the classification accuracy without a
real evaluation of heavy and time-consuming homomorphic operations.
In addition, this approach enables us to correctly choose smaller and
more efficient parameter sets for both schemes.

Keywords: Neural networks · Homomorphic encryption · TFHE ·
HEAAN

1 Introduction

Neural networks (NN) are extremely powerful machine learning algorithms for
classification or recognition of complex data such as images, handwriting or
speech. These algorithms are used in many domains and so, they often treat
highly sensitive data like medical records or confidential financial information.
c© Springer Nature Switzerland AG 2019
S. Dolev et al. (Eds.): CSCML 2019, LNCS 11527, pp. 212–230, 2019.
https://doi.org/10.1007/978-3-030-20951-3_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20951-3_20&domain=pdf
https://doi.org/10.1007/978-3-030-20951-3_20

Simulating Homomorphic Evaluation of Deep Learning Predictions 213

One of the most popular choices for achieving privacy guarantee in these settings
is Fully Homomorphic Encryption (FHE) [7,25]. FHE schemes allow for comput-
ing on encrypted data in the sense that decrypting the encrypted result yields the
result that would have been produced if the computation had been performed on
the plaintext. Compared to other privacy-preserving solutions (e.g. Multiparty
Computation (MPC)), FHE operations are non-interactive and thus, they save
on communication costs. Second, MPC schemes require non-collusion assump-
tions on the computing parties in order to achieve privacy and such assumptions
can often be challenging. In FHE applications, no such assumptions are needed.

The three FHE schemes B/FV [8,12,20], TFHE [16,17], based on [18,21] and
HEAAN [14,15], all based on the Ring-LWE problem, are currently among the
most efficient constructions. For all of them, a homomorphic noise is added on
the top of the plaintext. The scheme B/FV was initially designed to perform
exact SIMD operations modulo a prime. Thus, for B/FV the added noise does
not affect the outcome of the decryption in the sense that the decrypted value
is exactly the plaintext. In this context the noise quantifies how many opera-
tions can be homomorphically executed with the decrypted value remaining cor-
rect. The notion of bootstrapping in B/FV has therefore the meaning of “noise
reduction”.

On the other hand, in HEAAN, homomorphic operations are floating-point
operations where the least-significant bits of the mantissa are randomly rounded
at each arithmetic operation to a value that is close to the exact result. The
entropy in the errors induced by these least-significant roundings arise from many
factors such as the randomness of the ciphertexts as well as the randomness of
the large evaluation keys. These errors, unpredictable to the users, are corrected
by neither decryption nor bootstrapping (the decryption of the encryption is not
the original message) and accumulate throughout the whole computation.

There is still a notion of the maximum number of homomorphic operations,
or multiplicative level, that designs the maximum number of operations that can
be applied on a given ciphertext: if we do less operations than this level, the
decryption produces an approximate result (as opposed to the exact result in
B/FV); if we exceed this level, the decryption fails completely in an undefined
behaviour manner. The bootstrapping of HEAAN can still extend this level to
allow further computations, but it does not reduce noise. As shown in [6], TFHE
(the last of the above-mentioned schemes) can be interfaced with both B/FV
and HEAAN, and thus, supports both exact or approximated arithmetic: in this
paper, we only consider the approximate mode of operation.

For evaluating CNNs with FHE, one can either select one scheme over the
other, or propose a hybrid solution combining HEAAN and TFHE. Indeed, some
of the computations performed during a CNN evaluation are easier with TFHE
while some others are more natural with HEAAN. For instance, in the case when
many approximated computations have to be performed and a decision must be
taken on the result, it is optimal to use the HEAAN scheme for the first part
and switch to TFHE for evaluating the decision function. This hybrid approach
based on the Chimera framework has already been used by one of the solutions

214 C. Boura et al.

proposed to the Idash’18 Track 2 [2,10] competition on designing homomorphic
solutions for semi-parallel Genome Wide Association Studies (GWAS) based
on logistic regression using homomorphically encrypted data. Here, the logistic
regression requiring many iterations was performed with TFHE in order to use
a fast bootstrapping to reduce the noise, whereas the linear algebra computa-
tions on matrix of large dimensions was performed with HEAAN using massively
vectorized SIMD computations offered by the scheme.

Our Contributions. The goal of this paper is to efficienty simulate homomor-
phic evaluation of neural network predictions (in particular, CNN predictions)
in order to analyze the stability of the performance (evaluation accuracy) of
neural networks in the presence of noise due to FHE decryptions (what we refer
to as the approximated computational model). Performing such an analysis on
encrypted data can be extremely time consuming, the reason why we choose
to do our analysis on the plaintext and simulate the noise resulting from the
homomorphic computations and the function approximations.

In order to perform our experiments on approximate operations, we have
chosen exclusively the HEAAN and TFHE schemes implemented in the context
of the Chimera [6] framework. After analyzing the noise in the homomorphic
operations in Sect. 2 and explaining how/why this noise can be modeled with
Gaussian distributions in the context of both TFHE and HEAAN, we show in
Sect. 3 how one can homomorphically evaluate various commonly used func-
tions for deep learning (e.g., Abs, Sign, max and ReLU) with TFHE and HEAAN
and discuss the potential difficulties of such an approach. We remark that the
choice of a scheme also depends on the desired level of precision in the output.
Through the simulation approach, one is able to efficiently determine the best
CNN structure and the smallest FHE parameters required during a preliminary
study phase.

We performed experiments with perturbations on three distinct convolutional
neural networks of small (LeNet-5), medium (cat-and-dog-9) and large (ResNet-
34) size and observed that all these networks support large relative errors of at
least 10% without almost any impact on the global accuracy (see Sect. 2). This
means, as we show, that only 4 bits of precision (instead of 20 to 40 bits usually)
are needed on all fixed-point operations throughout the network, which yields
very small parameter sets and fast homomorphic operations. Finally, these exper-
iments allowed to make useful deductions about the stability of some common
CNN operations (e.g., different pooling functions). As we show, all operations
are not equally stable and thus, some of them should be preferred when used in
a FHE context.

Outline. In Sect. 2 we recall the homomorphic schemes TFHE and HEAAN and
we analyse the noise propagation for basic arithmetic (linear combination, mul-
tiplication, rotation/permutation and bootstrapping). In Sect. 3, we show how
to tweak the bootstrapping to evaluate the activation functions of the CNN.
Finally, in Sect. 4, we simulate the noise propagation during the homomorphic
evaluation and measure its effect on the CNN prediction accuracy.

Simulating Homomorphic Evaluation of Deep Learning Predictions 215

2 Homomorphic RLWE Encryption Schemes and Noise
Propagation

The goal of this section is to introduce the key concepts concerning both the
TFHE and HEAAN schemes that are necessary to understand the core of this
article. As explained earlier, both schemes will be introduced via the Chimera
framework [6] that provides a unified representation of these schemes as well as
a uniform noise analysis. We start by introducing some necessary notation.

Notation. Let T = R/Z be the real torus, that is the set of real numbers modulo
1. We denote further by ZN [X] = Z[X]/(XN + 1) the ring of polynomials with
integer coefficients modulo XN +1. Respectively, RN [X] = R[X]/(XN +1) is the
ring of real polynomials modulo XN + 1. Informally, the elements of ZN [X] are
seen as integer polynomials with N coefficients whereas the elements of RN [X]
are seen as real polynomials with N coefficients.

In order to introduce the notion of slots (real or complex), we use the following
two isomorphisms of R-vector spaces:

R[X]/(XN + 1) � R
N , f = a0 + · · · + aN−1X

N−1 �→ (a0, . . . , aN), (1)

and
R[X]/(XN + 1) � C

N/2, f �→ (f(ζ), f(ζ3), . . . , f(ζN−1)). (2)

Here ζ = eπi/N is a primitive root of XN + 1. Representation (1) corresponds
to what is called the coefficient packing and representation (2) corresponds to
what is called the slot packing.

2.1 HEAAN and TFHE Through the Chimera Framework

The Chimera framework introduced in [6] allows to apply elementary operations
either from the HEAAN or the TFHE library to RLWE ciphertexts [29] within
the same FHE computation. Both use the same ciphertext space.

In this work, we describe these libraries mostly from the user point of view
without going into the details of their internal representation. In particular, we
view an RLWE ciphertext as an encryption of a plaintext in C

N/2 (i.e., N/2
complex plaintext slots under the isomorphism (2)) on which one can perform
approximated arithmetic. The coefficients to slots representation and slots to
coefficients representation can be used at any moment to switch between a slot-
based representation in C

N/2 and a coefficient-based representation in R
N .

The slots in a given ciphertext vector have a fixed public precision ρ > 0 in
the following sense: the complex coordinates of the vector are all of the form
(x + iy) · 2τ for some public exponent τ > 0 (uniform across all the coordinates
and precomputed in advance) and some secret x, y ∈ [−1, 1]. In addition, both
x and y are assumed to have ρ fractional bits of precision (i.e., the size of the
mantissa is exactly ρ bits, where ρ is usually a fixed constant across the entire
computation).

216 C. Boura et al.

During the FHE computation, only the ρ-bits of the mantissa are secret and
are the only ones that are homomorphically evaluated.

In a pure floating-point model, the result of some operations cannot always
be exactly represented on the target precision: these results are usually rounded
to the nearest mantissa. In FHE, these roundings are more random and difficult
to predict and we modelize this via a noise propagation model, whose mean and
standard deviation depend on the elementary operation.

We will only refer to the internal cryptographic representation of the cipher-
texts in the section where we define our noise propagation model. Namely, both
TFHE and HEAAN schemes use RLWE ciphertexts in RN [X]2 mod 1 (or RN [X]2

mod q), the same key space ZN [X] with small coefficients and the same phase
function ϕs(a, b) = b − s · a introduced in [16]. In this framework, the approx-
imated decryption, common to HEAAN and TFHE, considers that the phase is
always close to the actual message and is a good enough approximation thereof.
Then, accumulated errors are not corrected by the cryptosystem but rather by
the numerical stability of the homomorphically evaluated algorithm.

Finally, the notion of level common to TFHE and HEAAN is defined as the
maximal multiplicative depth supported by the ciphertext. Each homomorphic
product reduces the level of the resulting ciphertext; when the level 0 is reached,
the ciphertext must be bootstrapped to continue operating on it.

Consider a security parameter λ, a maximal level L and a target precision ρ,
then these parameters implicitly define a minimal key size N . For more details
see the FHE standardization workshop security document [3].

Below, we describe the algorithms for encryption and decryption that are
used in TFHE and HEAAN, both enabling error-tolerant decryption functions,
and hence approximated arithmetic.

KeyGen: A uniformly random binary key s ∈ ZN [X] (with small coefficients).
In order to support non-linear operations, KeyGen also needs to generate
various encryptions of s, such as evaluation, key-switching or bootstrapping
keys, which are not essential to this paper (see [9,15,20] for more details).

EncryptAtLevelτ,L(x, s): The plaintext x is in C
N/2 (complex slots bounded

by |x| ≤ 2τ). Divide x by 2τ+L and apply the isomorphism (1) to obtain a
small real polynomial μ bounded by 2−L. Then, pick a uniformly random
a ∈ RN [X] mod 1, and a small Gaussian error e with standard deviation
2−L−ρ, and return (a, s · a + μ + e).

DecryptApproxAtLevelτ,L(c, s): Compute the phase ϕs(c) = b−s ·a mod 1,
lift all its coefficients to the real field in the interval [− 1

2 , 1
2) which recovers

an approximation of μ, then apply the isomorphism (1) and multiply by 2τ+L

to recover the slots x (up to an error 2τ−ρ).

Remark 1. Here we describe only a symmetric key version. Note however that
the public key version is obtained by evaluation of constant functions using the
secret key.

Simulating Homomorphic Evaluation of Deep Learning Predictions 217

2.2 Noise Models for Homomorphic Operations

We now analyze the resulting output noise of the main homomorphic operations
for TFHE and HEAAN. The most common operations are linear combinations,
multiplications, slot permutations as well as functional bootstrapping.

Linear Combination. Let
∑k

i=1 αici be a linear combination, where the ci are
RLWE ciphertexts that encrypt the plaintexts xi and αi ∈ Z are small inte-
gers. Given independent normally distributed Gaussian noises ei ∈ C

N/2 (slot
representation) with multivariate normal distribution N(xi, σ

2
i) (xi ∈ C

N/2 is
the mean and σi ∈ C

N/2×N/2 is the covariance matrix), the noise of the decryp-
tion of

∑k
i=1 αici is

∑k
i=1 αiei which is normally distributed with multivariate

distribution N
(∑k

i=1 αiμi,
∑k

i=1 α2
i σ

2
i

)
.

We can thus simulate this noise by computing the exact result
∑k

i=1 αixi,
applying a random multivariate (discrete) Gaussian noise of amplitude∑

αi2τi−ρ and expressing the outcome as an exact multiple of 2τ−ρ.

Multiplication. The homomorphic evaluation of a multiplication corresponds to
the internal product of ciphertexts of HEAAN [15] or to the external product of
Chimera/TFHE [6,17] if one of the operands is a fresh ciphertext.

Assuming that c1 and c2 are ciphertexts corresponding to the two plaintexts
x1, x2 and assuming that the noise parameters e1, e2 ∈ C

N/2 in the decryptions
of c1 and c2, respectively, are independent and normally distributed according
to N(μi, σi), then the distribution of the noise parameter for the decryption of
the product c1c2 can be approximated with a normal distribution. Indeed, note
that,

(x1 + e1)(x2 + e2) = x1x2 + x1e2 + x2e1 + e1e2.

Now, for fixed x1, the terms x1e2 and x2e1 are clearly normally distributed and
e1e2 is negligible, so the distribution of the noise in the decryption of the product
can be approximated with the normal distribution for x1e2 + x2e1. This has
already been studied (see e.g. [15,16]). Thus, when multiplying homomorphically
two ciphertexts c1, c2 representing plaintexts x1, x2 with public exponents τ1, τ2
and precision ρ, we obtain a ciphertext c with exponent τ = τ1+τ2 and precision
ρ, which can be modeled as follows: compute the exact product x1x2, add a
random (discrete) multivariate Gaussian noise of amplitude 2τi−ρ and express
the outcome as an exact multiple of 2τ−ρ.

Rotations/Permutations. One of the possibilities for permuting or rotating the
elements in the slot representation is to switch to the coefficient packing. This
last operation is easy. Knowing that the transformation between coefficients to
slots representation and inversely corresponds to applying an orthogonal (or
hermitian) matrix, the effect on the noise is numerically stable and it preserves
the Gaussian noise amount. However, this consumes (at least) one homomor-
phic multiplicative level, because the transformation involves a homomorphic
evaluation of a Discrete Fourier Transformation.

218 C. Boura et al.

Bootstrapping. Traditionally, a bootstrapping applies homomorphically the iden-
tity function to the plaintext and resets the multiplicative level to a high value.
Here, we omit the noise-reduction part which does not occur in the floating-
point mode [14]. Complex non-linear functions are traditionally evaluated by
interleaving bootstrappings, SIMD additions and multiplications and slot rota-
tions. However, it is not optimal to proceed this way for three reasons: (1) After
a costly bootstrapping, one still needs to evaluate the non-linear function which
is time consuming, thus sacrificing efficiency. (2) One can approximate the non-
linear function by polynomials: if the approximation can be made arbitrarily
precise within a fixed range, the degree and the size of the coefficients rapidly
diverge for large ranges and the expression gets numerically unstable outside
the specified range (Runge’s phenomenon). Therefore, any plaintext outlier can
destroy the correctness of the result, which leads to a precision sacrifice. (3)
Finally, the bootstrapping needs to raise the multiplicative level very high to
leave room for the homomorphic function evaluation, thus requiring excessively
large parameters (again, sacrificing efficiency). In the cases of both TFHE and
HEAAN, we thus focus on a more numerically stable strategy where the boot-
strapping includes the evaluation of the non-linear function.

Functional Bootstrapping in TFHE. Recall that the TFHE scheme evaluates func-
tions via evaluating lookup tables on discretized input [17, §4.3, Alg. 4]. As such,
the bootstrapping of TFHE approximates a given function by a step function (in
exactly the same way as one performs Riemann integration) and then evaluates
the approximation by a homomorphic lookup table evaluation. For example, the
ReLU function f(x) = max(0, x) for −1 ≤ x ≤ 1 can be approximated by the
step function defined as follows:

fδ(x) =

{
0 if x ≤ 0
kδ if x ∈ [(k − 1)δ, kδ),

where k ∈ Z and k ≤ 1/δ (see Fig. 1 (left)). Thus, given a plaintext x, instead
of computing f(x), one obtains the value fδ(x + e1) + e2 where e1 and e2 are
two error terms, e2 being Gaussian noise and e1 corresponding to an internal
rounding error (see the rounding in Step 2 of [16, Alg. 3]).

Functional Bootstrapping in HEAAN. In contrast to TFHE, the original version
of HEAAN evaluates the sine function by Taylor approximation [14, §3.2]. More-
over, the extension of HEAAN proposed in Chimera generalizes this method to
evaluation of Fourier series and thus, evaluation of the given target function via
a low-degree Fourier series. Graphically, the target function f is replaced by a
smooth function Sf and then a Gaussian noise is added on the top of that (see
Fig. 1 (right)). Finally, when the function has a point of singularity (such as the
ReLU at the point x = 0), the HEAAN approximation is biased at that point
(strictly above x = 0). It is thus desirable to validate the effect of this biased
approximation to the quality of prediction of the trained convolutional neural
network.

Simulating Homomorphic Evaluation of Deep Learning Predictions 219

x

y

0

y = f(x)
y = f (x)
y ← f (x) + err

x

y

0

y = f(x)
y = Sf (x)
y ← Sf (x) + err

Fig. 1. Functional bootstrap in TFHE for the ReLU function (in left) and Functional
bootstrap in HEAAN for the ReLU function (in right). (Color figure online)

In conclusion of this section, since every elementary FHE operation has a
Gaussian noise in output, we can omit the input noise from the bootstrapping
and merge it with the output noise of the previous operation in our simulation.

3 Evaluation of Nonlinear Functions in Neural Networks

Non-linear functions are central building blocks in deep learning and as such it
is important to analyse how to homomorphically evaluate them. Examples of
such operations are comparisons, max functions, piecewise functions (e.g. the
REctified Linear Unit (ReLU) := max(0, x) activation function), rounding, a
decryption function (equivalent to the sign function) or continuous functions
such as the sigmoid sigmoid(x) = 1/1 + exp(−x).

Note that the ReLU and max are easily expressed with the absolute value: for
x, y in (−1/4, 1/4), 2max(x, y) = (x + y) + |x − y|, and for 2ReLU(x) = x + |x|.

3.1 Non-linear Functions in TFHE

In TFHE, given a non-linear function f : T → T, one can compute f(ϕs(c)) (see
Sect. 2.1) for a LWE ciphertext c via functional boostrapping under the following
constraints: the domain of the function is restricted to multiples of 1/2N where
N is the bootstrapping key size (in particular, it is a medium-sized power of 2),
and the function must be (1/2)-antiperiodic, i.e. f(x + 1/2) = −f(x). On the
half-period, the function can be defined pointwise, so its graph can be arbitrary.
Some particular functions such as Abs(x)−1/4 and Sign(x) already coincide with
a (1/2)-antiperiodic function over [−1/2, 1/2] (see Fig. 2). More general functions
such as sigmoid(γx) − 1/2 can be defined over [−1/2, 1/2] and extended to R by
anti-periodicity.

Once the (1/2)-antiperiodic function f to evaluate is chosen, its graph is
mapped to the element ν =

∑N−1
i=0 νiX

i ∈ RN [X] mod 1 where νi = f(i/2N)
and used as a test vector in the bootstrapping of TFHE to evaluate f (see [17,
§6.1]). In the output of the bootstrapping, the decrypted value is within a small
Gaussian error around f(x) as discussed in Sect. 2.

220 C. Boura et al.

0 1
4

1
2- 14- 12 0 1

2- 12

Fig. 2. Absolute (on the left) and Sign (on the right) values TFHE

3.2 Non-linear Functions in HEAAN

In HEAAN, non-linear functions can be evaluated via approximations by either
complex-valued polynomials (via traditional products) or trigonometric polyno-
mials (Fourier approach within the bootstrapping).

As explained in [5], Fourier series of smooth and regular functions con-
verge rapidly: for instance, the Fourier series of a C∞-function converges super-
algebraically and if one smooths any periodic function by convolution with a
small Gaussian, its Fourier series converges exponentially fast. However, the
convergence is slower if the function has discontinuities (pointwise convergence
in Ω(1/k)), or discontinuities in its derivative (uniform convergence in Ω(1/k2))
where k is the number of harmonics used in the series.

For example, the absolute value is a triangular signal on [−1/2, 1/2) which
extends naturally to a 1-periodic continuous function (piecewise C1). Given N/2
LWE ciphertexts, we can efficiently pack the complex exponential of their phases
exp(2iπμ) in the slots of a single HEAAN ciphertext. Subsequently, we can evalu-
ate any trigonometric polynomial of small degree and extract the results back to
LWE samples. For instance, the triangular signal (corresponding to the absolute
value) has the following Fourier series with only cosine terms of odd degrees that
converge in O(k2) and the square signal (corresponding to the sign or decryption
function) has only sine terms of odd degrees.

Abs(x) = K1

∞∑

k=0

cos 2π(2k + 1)x
(2k + 1)2

+ K2, Sign(x) = K1

∞∑

k=0

sin 2π(2k + 1)x
(2k + 1)

+ K2

Figure 3 shows that the first three (resp. six) terms of the Fourier series of
the absolute value and the sign function already provide a good approximation
on the interval [−1/2, 1/2).

Compared to classical approximations of functions by polynomials in [11,22]
(i.e. Taylor series or Weierstrass approximation theorem), Fourier series have
three main advantages: they do not diverge to ∞ outside of the interval (better
numerical stability), the Fourier coefficients are small (square integrable), and
the series converge uniformly to the function on any interval that does not con-
tain any discontinuity in the derivative. However, in the particular case of Abs
and Sign, the presence of a singularity or discontinuity at x = 0 in both graphs

Simulating Homomorphic Evaluation of Deep Learning Predictions 221

implies that the series converge poorly around 0. Unfortunately, native plaintexts
in HEAAN ciphertext at level L have by definition tiny phases in the interval[−1/2L, 1/2L

)
. We address this problem using the bootstrapping capability of

HEAAN: First, we decrease the level L = 0 or L = 1 (using the algorithm of
re-scaling defined in [15]), so that input phases range over a large torus interval
(−1/2, 1/2) or (−1/4, 1/4), and then, divide K1 by 2L so that the output has
level L.

With this bootstrapping trick, HEAAN can at the same time evaluate a non-
linear function and bootstrap its output to a level L even higher than its input.
Taking this fact into account, instead of writing ReLU(x) = max(0, x) as 1

2 (|x|+x)
like in TFHE, where the term +x/2 is not bootstrapped, it is actually better to
extend the graph of ReLU from a half period (−1/4, 1/4) directly to a 1-periodic
continuous function and to decompose the whole graph as a Fourier series. In
the latter case, the output level L can be freely set to an arbitrary large value.
Figure 3 shows a degree-7 approximation of the odd-even periodic extension of
the graph of ReLU(x). If the ReLU is evaluated via this technique, the output
message is the Fourier approximation, and the phase still carries an additional
Gaussian noise on top of it, as shown in Sect. 2. In the next section, we also study
the robustness of neural networks with this approximation and perturbation
model.

−1
2

1
2

−1
2

1
2

-0.05

 0

0.05

 0.1

0.15

 0.2

0.25

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

degree- 7trigo polynomial
real function

Fig. 3. Abs (on the left), Sign (in the middle) and ReLU (on the right) for HEAAN

4 Predictions for Deep Learning

Neural networks (NN) are computing systems trained to solve among others
classification problems. Networks with multiple layers are known as deep. Con-
volutional neural networks (CNN) are a special type of deep neural networks
that have been proven very successful in image recognition and classification.
Preserving the privacy of sensitive data (e.g., medical or financial) while apply-
ing machine learning algorithms and still ensuring good performance and high
output accuracy is currently a problem of interest to both the cryptographic and
the machine learning communities [4,7,10,11,23,25,32]. We briefly describe now
the main layers composing a CNN from a FHE point of view.

Convolution: It is an operation that extracts features from the input image
(such as lines or borders) and is achieved by computing convolutions (via

222 C. Boura et al.

element-wise products) of the input matrix and a filter. Convolution is viewed
as a secret affine function that can be efficiently evaluated using the external
product of [6,17].

Non-linearity: To introduce non-linearity, an activation function is then
applied to the output of the convolution. Nowadays, this is almost always
achieved by the ReLU function. In almost all previous works, the standard
approach was to replace the ReLU by a function with a lower multiplica-
tive depth. In [23], ReLU is notably approximated by the square function
f(x) = x2, in [7] it is replaced by the sign function, while in [11] the ReLU is
approximated by low-degree polynomials.

Pooling: This layer reduces the dimensions of the input by retaining the most
important information. This is typically done by a procedure called max pool-
ing or more rarely by average pooling that compute the maximum (resp.
average) value for every disjoint region of the input. Today, no efficient algo-
rithm is known to compute the maximum of a large number of values. On
the contrary, average pooling is linear with public coefficients and therefore
FHE-friendly. In [23] the authors replace max pooling by sum pooling, while
in [11] max pooling is replaced by average pooling.

Fully Connected (FC) Layer: All the neurons of this layer are all connected
to all neurons of the previous layer. Their activation is computed by a matrix
multiplication plus a bias offset. This is again a secret precomputed affine
step that can be achieved via the external product.

Loss Layer: This is normally the last layer of a CNN. During the evaluation, the
loss layer becomes an argmax operation. This last step is in general ignored in
other homomorphic implementations of neural networks. For example, in [7,
23], the authors simply output the score vectors and the recipient computes
the best one after decryption. To do this final step homomorphically, the
boolean approach of TFHE seems to be the most suited to this non-SIMD
step.

4.1 Robustness Against the FHE Error Models

In this section, we simulate the homomorphic execution of the neural network
by replacing the value output of each non-linear layer by a random sample which
has the same distribution as the phase of RLWE samples after a homomorphic
evaluation of the layer. This approach allows us to simulate a homomorphic
evaluation, and to obtain accurate predictions on the outcome without having to
run the expensive homomorphic computation. This allows to estimate the largest
noise standard deviation α that can be tolerated by the network, and therefore,
the smallest FHE parameters required to evaluate it. In our experiments we
add Gaussian noise with varying standard deviation and look for the maximal
standard deviation of the noise that can be tolerated by the network.

As explained above, in the context of FHE, the training of networks is usu-
ally done on the plaintexts without any perturbations occurring, and only then,
the network is encrypted to the cloud to protect the privacy of the model during

Simulating Homomorphic Evaluation of Deep Learning Predictions 223

predictions. In this direction, we carried out many experiments on three differ-
ent convolutional neural networks structures, using the TFHE and HEAAN noise
models of Sect. 2, in order to measure their robustness against such perturba-
tions. This approach is not new. For example, in [13] the authors studied the
stability of CNNs by applying among others a Gaussian perturbation to the
internal weights inside the convolutional layers. The applied Gaussian was cen-
tered at zero and had a standard deviation relative to the standard deviation of
that layer’s original weight distribution. This type of perturbation modifies the
average value of the inputs to the convolutional layer. Even, if the motivation
of this paper is not linked to homomorphic computations, their conclusions and
ours intersect at some points. Indeed, the authors of [13] noticed that the last
convolutional layers are surprisingly stable, while the first convolutional layers
are much more fragile and so the accuracy depends on the level the perturbation
applies. The most surprising result that we obtain in our experiments is that
all the neural networks we tested support quite large relative errors of at least
10% of 2τ , without any impact on the global accuracy. In a TFHE context, rais-
ing the error amplitude from a usually required 2−40 negligible amount to 2−4

means that the depth of leveled circuits (number of transitions in automata in
leveled circuits in [17]) can be increased by a factor (236)2 without changing the
parameter sets. This also means that only 4 bits of precision (instead of 20 to 40
bits usually) are needed on all fixed point operations throughout the network,
which results notably in very small parameter sets for HEAAN.

4.2 Experiments

We conducted experiments with three different convolutional neural networks
and for all of them we used the dlib C++ library [26]. The first network is
LeNet-5 [27], that can be trained to recognize handwritten digits, the second-
one is a 9-layer CNN trained to distinguish cat from dog pictures, and the last
one is the ResNet-34 network [24], a deep network of 34 layers able to classify an
input image into one of 1000 objects. We briefly describe each of the networks
and the experiments done on it.

LeNet-5: Recognition of Handwritten Digits. LeNet-5 is a well-known
convolutional 7-layer neural network designed by LeCun et al. in 1998 to recog-
nize handwritten digits [27]. In the original version of the network, the sigmoid
was used as the activation function. In the version that we manipulated (dlib
library [26]), the ReLU activation function is used instead.

We trained this network on the MNIST dataset [28], composed of 60000
training and 10000 testing images, with two different versions of the pooling
algorithm. We first trained the network by using max pool for both pooling lay-
ers and at a second stage we re-trained it from scratch by replacing now max
pool by average pool. Our goal was to see how each version reacts to pertur-
bations. In particular, we added to each output value of the activation function
a value drawn from a Gaussian distribution with mean value zero and some
standard deviation σ. This was done for the activation function of all levels. For

224 C. Boura et al.

our experiments we further used two different activation functions: the original
ReLU activation function and then an approximation of the ReLU function by a
trigonometric function, depicted in Fig. 3 (right), or in green in Fig. 1 (right)
which can be used in HEAAN as a replacement of max(0, x). Finally, we per-
turbed the output of the activation function in two different ways. First by a
Gaussian distribution of fixed standard deviation σ and in a second experiment
by a standard deviation proportional to the input’s standard deviation (which
can be publicly estimated during training).

The results of these experiments are summarized in Table 1 and Fig. 4. In this
example, we pushed standard deviation from 0.0 to 1.0 for both trained CNNs,
the one trained with max pool and the other one trained with average pool. In
Table 1 we give both the accuracy on the testing set but also on the training set.
In order to correctly interpret the right part of Fig. 4 it has to be noted that
the mean value of the ReLU entries was measured between 0.4 and 1.91 and the
standard deviation between 0.97 and 2.63.

Table 1. Experiments on the LeNet-5 network trained first with max pool and then
with average pool. ReLU means that during the evaluation the original ReLU function
was used, while R̃eLU signifies that an approximation was used instead.

Pool type σ Non-proportional perturbation Proportional perturbation

ReLU ˜ReLU ReLU ˜ReLU

Train acc. Test acc. Train acc. Test acc. Train acc. Test acc. Train acc. Test acc.

Max 0.0 0.9999 0.9924 0.9999 0.9924 0.9999 0.9924 0.9999 0.9924

Average 0.9994 0.9903 0.9994 0.9903 0.9994 0.9903 0.9975 0.9903

Max 0.1 0.9998 0.9918 0.9996 0.9916 0.9984 0.9908 0.9980 0.9905

Average 0.9994 0.9903 0.9993 0.9904 0.9977 0.9891 0.9976 0.9892

Max 0.2 0.9990 0.9910 0.9976 0.9899 0.9883 0.9835 0.9842 0.9787

Average 0.9991 0.9901 0.9985 0.9894 0.9897 0.9843 0.9878 0.9826

Max 0.3 0.9966 0.9894 0.9901 0.9833 0.9540 0.9501 0.9199 0.9192

Average 0.9981 0.9898 0.9960 0.9872 0.9699 0.9655 0.9595 0.9581

Max 0.4 0.9919 0.9843 0.9654 0.9610 0.8686 0.8723 0.7695 0.7815

Average 0.9968 0.9884 0.9908 0.9845 0.9308 0.9296 0.9014 0.9039

Max 0.5 0.9823 0.9766 0.8942 0.8966 0.7475 0.7587 0.5901 0.5959

Average 0.9947 0.9869 0.9792 0.9737 0.8728 0.8745 0.8156 0.8214

Max 0.6 0.9626 0.9610 0.7644 0.7737 0.6199 0.6248 0.4325 0.4317

Average 0.9919 0.9842 0.9552 0.9517 0.8007 0.8054 0.7179 0.7245

Max 0.7 0.9284 0.9280 0.6166 0.6288 0.5013 0.5024 0.3233 0.3274

Average 0.9883 0.9816 0.9171 0.917 0.7219 0.7288 0.6212 0.6332

Max 0.8 0.8756 0.8808 0.4809 0.4953 0.4040 0.4056 0.2526 0.2576

Average 0.9843 0.9779 0.8633 0.8698 0.6433 0.6506 0.5295 0.5383

Max 0.9 0.8103 0.8191 0.3826 0.3884 0.3316 0.3322 0.2036 0.2094

Average 0.9779 0.9724 0.8044 0.8135 0.5691 0.5727 0.4498 0.4538

Max 1.0 0.7399 0.7462 0.3179 0.326 0.2757 0.2803 0.1719 0.1732

Average 0.9696 0.9636 0.7434 0.7548 0.4989 0.5062 0.3822 0.3862

Simulating Homomorphic Evaluation of Deep Learning Predictions 225

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 0.2 0.4 0.6 0.8 1

te
st

in
g

ac
cu

ra
cy

standard deviation

Max Pool with ReLU
Average Pool with ReLU

Max Pool with Approximate ReLU
Average Pool with Approximate ReLU

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

te
st

in
g

ac
cu

ra
cy

% of standard deviation

Max Pool with ReLU
Average Pool with ReLU

Max Pool with Approximate ReLU
Average Pool with Approximate ReLU

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

te
st

in
g

ac
cu

ra
cy

standard deviation

Max Pool with ReLU
Average Pool with ReLU

Max Pool with Approximate ReLU
Average Pool with Approximate ReLU

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 5 10 15 20 25 30 35 40

te
st

in
g

ac
cu

ra
cy

% of standard deviation

Max Pool with ReLU
Average Pool with ReLU

Max Pool with Approximate ReLU
Average Pool with Approximate ReLU

Fig. 4. Experiments with LeNet-5 (up) and the cat versus dog classifier (down). The
results with proportional perturbations are on the right, while with non-proportional
perturbations on the left.

The first remark that can be done by looking into these experiments is that
average pool is much more stable to perturbations than max pool and provides
a high accuracy even for large values of the standard deviation. The second
remark concerns the accuracy when an approximation of the ReLU function is
used instead of the original one. As it can be seen from the left part of Fig. 4, the
accuracy for the average pool version is clearly lower when a ReLU approximation
is used, but still has a very good score (over 95%) for standard deviations as
high as 0.6. Finally, special care has to be taken when interpreting the results
corresponding to the application of a proportional perturbation of the input
data standard deviation. In the right part of Fig. 4 the x-axis corresponds to a
perturbation equal to the percentage of the inputs’ standard deviation. Depend-
ing on the original deviation of the input distribution, the perturbation can be
extremely important and this is why the accuracy shows to drop. Therefore, one
has to keep in mind that the perturbation of the right-side figures is in general
more important and probably also more meaningful than the one of the left-side
figures.

Cats versus Dogs Classifier. In this section we present our results and
remarks on a simple 9-layer neural network that was trained to classify pictures
as cats or dogs. For this, we used again the dlib library [26] and coded with it

226 C. Boura et al.

the 9-layer NN presented in [1]. The structure of this NN is depicted in Fig. 5.
This network is composed of 3 convolution layers followed by the ReLU activation
function, two fully connected (FC) layers and two pooling layers. In the original
net, the max pool operation is used at this step. The 7-th layer is a dropout
layer, that is a standard technique for reducing overfitting and consists in ignor-
ing a different randomly chosen part of neurons during the different stages of
the training phase [31]. We trained this network on the Asirra dataset [19] used
by Microsoft Research in the context of a CAPTCHA (Completely Automated
Public Turing test to tell Computers and Humans Apart) challenge. Most of the
good CNNs trained to distinguish dogs from cats achieve more than 80% accu-
racy on the testing set while the accuracy on the training set is usually around
100%. The difference in the two performances is usually due to some overfitting
occuring.

Input Image

64 × 64 × 3

32 filters
of size 3× 3
Stride size: 1

Pool

2× 2
windows

Stride size: 2

FC
Dropout

512 1

Loss

Layer

Pool

2× 2
windows

Stride size: 2

ReLu ReLu ReLu

ReLu

Layer
Conv

64 filters
of size 3× 3
Stride size: 1

64 filters
of size 3× 3
Stride size: 1

Layer
Conv

Layer
Conv

FC

Layer 1 Layer 3Layer 2 Layer 4

Layer 5 Layer 6 Layer 7 Layer 8 Layer 9

Fig. 5. 9-layer neural network [1] trained to classify pictures as cats or dogs.

We did exactly the same type of experiments for this network and the results
can be found in Table 2 or visualized in the lower part of Fig. 4. This network
is a little-bit more complex than LeNet-5 and seems to be less stable. For this
reason, the higher standard deviation considered here is 0.4. However, globally,
the same remarks as for LeNet-5 network result. Again, for correctly interpreting
the right part of the table, it has to be noted that the mean value of the inputs
of the activation function ranges between 0.0004 and 0.628 and the standard
deviation ranges between 0.0067 and 3.51.

ResNet-34. ResNet (Residual Network) is a recent family of very deep convo-
lutional neural networks showed to perform extremely well [24]. The global layer
structure is very similar to a classical CNN, however better performances are
achieved by the introduction of a shortcut connection, that consists in skipping
one or more layers. The version that we used is composed of 34 layers, and is

Simulating Homomorphic Evaluation of Deep Learning Predictions 227

Table 2. Experiments on a 9-layer CNN trained to distinguish cats from dogs.

Pool type σ Non-proportional perturbation Proportional perturbation

ReLU R̃eLU ReLU R̃eLU

Training acc. Test acc. Test acc. Test acc. Test acc.

Max 0.0 0.9999 0.8530 0.8500 0.8524 0.85

Average 0.99995 0.8202 0.8138 0.8232 0.814

Max 0.1 0.9944 0.8316 0.8112 0.801 0.784

Average 0.99995 0.8232 0.7880 0.8234 0.7812

Max 0.2 0.8782 0.7446 0.6246 0.6942 0.5892

Average 0.9999 0.8174 0.6726 0.8174 0.6574

Max 0.3 0.6234 0.5872 0.5368 0.5736 0.4996

Average 0.99965 0.8146 0.5868 0.8134 0.5776

Max 0.4 0.5228 0.512 0.5222 0.514 0.4916

Average 0.998 0.8074 0.5522 0.8092 0.5444

abbreviated as ResNet-34. This network, once trained, is able to classify photos
of objects into 1000 distinct object categories.

The training of such residual networks is extremely time consuming (two
weeks on a 16-GB Titan GPU, and about 20 times more on 16-CPU cores)
and because of time constraints we were not able to finish the training on a
network where max pooling is replaced by average pooling. Thus, we were only
able to perform our experiments on the pre-trained network on the imagenet
ILSVRC2015 dataset [30] and the results are reported in Table 3. Top 1 and Top
5 labels report respectively the percentage of the pictures in the validation set
that were correctly classified (Top 1) and whose correct label appeared in the
five top suggestions provided by the network (Top 5).

Table 3. Experiments on ResNet-34 with max pooling and with perturbations of stan-
dard deviation ranging from 0.0 to 0.5. The right columns correspond to perturbations
proportional to the input’s standard deviation.

Pool type σ Non-proportional perturbation Proportional perturbation

ReLU R̃eLU ReLU R̃eLU

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

Max 0.0 0.7416 0.9158 0.7428 0.9187 0.7439 0.9202 0.7398 0.9166

Max 0.1 0.7357 0.9132 0.7056 0.9165 0.7132 0.8948 0.7586 0.9252

Max 0.2 0.6991 0.8860 0.7056 0.8967 0.1562 0.3294 0.3658 0.6027

Max 0.3 0.5068 0.7267 0.4829 0.7171 0.0019 0.0089 0.0012 0.0079

Max 0.4 0.1500 0.0498 0.1065 0.0817 0.0018 0.0085 0.000 0.0009

Max 0.5 0.0233 0.0608 0.0017 0.0066 0.0001 0.0044 0.000 0.0010

228 C. Boura et al.

4.3 Conclusion/Discussion

Finally, we summarize the experiments with the three different CNNs, provide
links to Sect. 3 and give recommendations on which operation should be per-
formed with which FHE scheme (depending on the given use case).

Max pool versus Average pool: We conducted experiments on LeNet-5 and
the 9-layer CNN classifying cats and dogs, by replacing during the training
and the evaluation the classical max pooling operation by the average pool.
This modification, applied also in [11] and to some extend in [23], offers a sig-
nificant advantage for all FHE schemes, as this operation is affine with public
coefficients, compared to max pool that is non-linear. Our experiments showed
that this approach offers a further advantage in FHE, as it is way more stable
than max pool to perturbations. This behaviour has a natural mathemati-
cal explanation, since the standard deviation of an average of independent
samples is smaller than the input standard deviations.

Proportional versus non-proportional perturbations: We applied two
types of perturbations to all three networks. The first type of perturbations
was the addition at the output of the activation function of a value drawn
from a Gaussian distribution with zero mean and a fixed standard deviation.
In the second type of perturbations, the value added had a standard devi-
ation proportional to the standard deviation of the input distribution. The
second scenario corresponds to the fixed-point arithmetic model, where the
public plaintext exponent τ is set to match the amplitude during the training
phase, and therefore, the noise α is by definition relative to 2τ . Surprisingly,
without impacting the result, neural networks are able to absorb very large
relative errors between 10% and 20% after each ReLU (there are respectively
thousands, millions, and billions of them in the three tested networks). This
means homomorphic parameters need only to ensure ρ = 4 bits of precision
on the plaintext, instead of the usually recommended ρ = 30.

Approximating the ReLU activation function: The main source of non-
linearity of a convolutional neural network is coming from the ReLU function.
In TFHE these functions are evaluated exactly either as circuits, or as point-
wise-defined arbitrary functions. Approximating the ReLU by something easier
is thus a natural approach [7,11,23]. In HEAAN such continuous functions can
be approximated accurately by low degree trigonometric polynomials. In our
experiments with ResNet-34 (see Table 3) the output accuracy is surprisingly
even better with an approximated ReLU of this type than with the classical
one, in the presence of small noise, which proves that this approach is realistic.

Number of layers: In the plaintext model, the accuracy can in general be
improved by adding more layers, if no overfitting occurs. However, in the
homomorphic model, what happens with accuracy is still an open question,
because with the number of layers, the complexity of computation grows and
the activation function can only be approximated. This generates additional
noise that can affect the accuracy.

Simulating Homomorphic Evaluation of Deep Learning Predictions 229

References

1. Cats and dogs and convolutional neural networks, September 2016. http://www.
subsubroutine.com/sub-subroutine/2016/9/30/cats-and-dogs-and-convolutional-
neural-networks

2. Track 2: Secure parallel genome wide association studies using homomorphic
encryption (2018). www.humangenomeprivacy.org/2018/competition-tasks.html

3. Albrecht, M., et al.: Homomorphic encryption security standard. Technical report,
HomomorphicEncryption.org, Toronto, Canada, November 2018

4. Badawi, A.A., et al.: The AlexNet moment for homomorphic encryption: HCNN,
the first homomorphic CNN on encrypted data with GPUs. Cryptology ePrint
Archive, Report 2018/1056 (2018). https://eprint.iacr.org/2018/1056

5. Boura, C., Chillotti, I., Gama, N., Jetchev, D., Peceny, S., Petric, A.: High-
precision privacy-preserving real-valued function evaluation. IACR Cryptology
ePrint Archive 2017, 1234 (2017)

6. Boura, C., Gama, N., Georgieva, M.: Chimera: a unified framework for B/FV,
TFHE and HEAAN fully homomorphic encryption and predictions for deep learn-
ing. Cryptology ePrint Archive, Report 2018/758 (2018)

7. Bourse, F., Minelli, M., Minihold, M., Paillier, P.: Fast homomorphic evaluation of
deep discretized neural networks. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10993, pp. 483–512. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96878-0 17

8. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32009-5 50

9. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: ITCS 2012, pp. 309–325. ACM (2012)

10. Carpov, S., Gama, N., Georgieva, M., Troncoso-Pastoriza, J.R.: Privacy-preserving
semi-parallel logistic regression training with fully homomorphic encryption. Cryp-
tology ePrint Archive, Report 2019/101 (2019). https://eprint.iacr.org/2019/101

11. Chabanne, H., de Wargny, A., Milgram, J., Morel, C., Prouff, E.: Privacy-
preserving classification on deep neural network. Cryptology ePrint Archive,
Report 2017/035 (2017). https://eprint.iacr.org/2017/035

12. Chen, H., Laine, K., Player, R.: Simple encrypted arithmetic library - SEAL v2.1.
In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 3–18. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70278-0 1

13. Cheney, N., Schrimpf, M., Kreiman, G.: On the robustness of convolutional neural
networks to internal architecture and weight perturbations. CoRR, abs/1703.08245
(2017)

14. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: Bootstrapping for approximate
homomorphic encryption. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018.
LNCS, vol. 10820, pp. 360–384. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78381-9 14

15. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arith-
metic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70694-8 15

http://www.subsubroutine.com/sub-subroutine/2016/9/30/cats-and-dogs-and-convolutional-neural-networks
http://www.subsubroutine.com/sub-subroutine/2016/9/30/cats-and-dogs-and-convolutional-neural-networks
http://www.subsubroutine.com/sub-subroutine/2016/9/30/cats-and-dogs-and-convolutional-neural-networks
www.humangenomeprivacy.org/2018/competition-tasks.html
http://homomorphicencryption.org/
https://eprint.iacr.org/2018/1056
https://doi.org/10.1007/978-3-319-96878-0_17
https://doi.org/10.1007/978-3-319-96878-0_17
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://eprint.iacr.org/2019/101
https://eprint.iacr.org/2017/035
https://doi.org/10.1007/978-3-319-70278-0_1
https://doi.org/10.1007/978-3-319-78381-9_14
https://doi.org/10.1007/978-3-319-78381-9_14
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15

230 C. Boura et al.

16. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic
encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53887-6 1

17. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homo-
morphic encryption over the torus. Cryptology ePrint Archive, Report 2018/421
(2018). https://eprint.iacr.org/2018/421

18. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less
than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46800-5 24

19. Elson, J., Douceur, J.R., Howell, J., Saul. J.: Asirra: a CAPTCHA that exploits
interest-aligned manual image categorization. In: Proceedings of the 2007 ACM
Security, CCS 2007, pp. 366–374. ACM (2007)

20. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR
Cryptology ePrint Archive 2012, 144 (2012)

21. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-40041-4 5

22. Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K.E., Naehrig, M., Wernsing, J.:
CryptoNets: applying neural networks to encrypted data with high throughput and
accuracy. In: Proceedings of the 33nd InternationalConference onMachine Learning,
ICML 2016, New York City, NY, USA, 19–24 June 2016, pp. 201–210 (2016)

23. Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K.E., Naehrig, M., Wernsing,
J.: CryptoNets: applying neural networks to encrypted data with high throughput
and accuracy. In: ICML 2016. JMLR Workshop and Conference Proceedings, vol.
48, pp. 201–210. JMLR.org (2016)

24. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR 2016, pp. 770–778. IEEE Computer Society (2016)

25. Jiang, X., Kim, M., Lauter, K.E., Song, Y.: Secure outsourced matrix computation
and application to neural networks. In: Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2018, Toronto, ON,
Canada, 15–19 October 2018, pp. 1209–1222. ACM (2018)

26. King, D.E.: Dlib-ml: a machine learning toolkit. J. Mach. Learn. Res. 10, 1755–
1758 (2009)

27. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. In: Proceedings of the IEEE, pp. 2278–2324 (1998)

28. Lecun, Y., Cortes, C., Burges, C.J.: The MNIST database of handwritten digits.
http://yann.lecun.com/exdb/mnist/

29. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

30. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. IJCV
115(3), 211–252 (2015)

31. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

32. Wagh, S., Gupta, D., Chandran, N.: SecureNN: efficient and private neural network
training. Cryptology ePrint Archive, Report 2018/442 (2018). https://eprint.iacr.
org/2018/442

https://doi.org/10.1007/978-3-662-53887-6_1
https://eprint.iacr.org/2018/421
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-642-40041-4_5
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1007/978-3-642-13190-5_1
https://eprint.iacr.org/2018/442
https://eprint.iacr.org/2018/442

Everything Is in the Name – A URL
Based Approach for Phishing Detection

Harshal Tupsamudre(B), Ajeet Kumar Singh, and Sachin Lodha

TCS Research, Pune, India
{harshal.tupsamudre,ajeetk.singh1,sachin.lodha}@tcs.com

Abstract. Phishing attack, in which a user is tricked into revealing sen-
sitive information on a spoofed website, is one of the most common threat
to cybersecurity. Most modern web browsers counter phishing attacks
using a blacklist of confirmed phishing URLs. However, one major dis-
advantage of the blacklist method is that it is ineffective against newly
generated phishes. Machine learning based techniques that rely on fea-
tures extracted from URL (e.g., URL length and bag-of-words) or web
page (e.g., TF-IDF and form fields) are considered to be more effective in
identifying new phishing attacks. The main benefit of using URL based
features over page based features is that the machine learning model can
classify new URLs on-the-fly even before the page is loaded by the web
browser, thus avoiding other potential dangers such as drive-by down-
load attacks and cryptojacking attacks.

In this work, we focus on improving the performance of URL
based detection techniques. We show that, although a classifier
trained on traditional bag-of-words features (tokenized using spe-
cial characters) works well in many cases, it fails to recognize a
very prevalent class of phishing URLs that combines a popular
brand with one or more words (e.g., www.paypalloginsecure.com and
paypalhelpservice.simdif.com) among others. To overcome these
flaws, we explore various alternative feature extraction techniques based
on word segmentation and n−grams. We also construct and use a phishy-
list of popular words that are highly indicative of phishing attacks. We
verify the efficacy of each of these feature sets by training a logistic regres-
sion classifier on a large dataset consisting of 100,000 URLs. Our experi-
mental results reveal that features based on word segmentation, phishy-
list and numerical features (e.g., URL length) perform better than all
other features, as measured by misclassification and false negative rates.

Keywords: Phishing detection · Machine learning ·
Social engineering attacks

1 Introduction

Phishing is a form of social engineering attack that exploits the weakest link
in the security chain, i.e., humans. The attack typically starts with an email
c© Springer Nature Switzerland AG 2019
S. Dolev et al. (Eds.): CSCML 2019, LNCS 11527, pp. 231–248, 2019.
https://doi.org/10.1007/978-3-030-20951-3_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20951-3_21&domain=pdf
https://doi.org/10.1007/978-3-030-20951-3_21

232 H. Tupsamudre et al.

campaign that appears to come from a legitimate entity such as PayPal. The
email lures the recipient into clicking a URL, which leads the user to a website
designed to look legitimate but is not. When the user enters sensitive data such as
passwords or credit card numbers, the fraudulent website records the information
and sends it back to the attacker. Phishing attacks are extremely successful.
According to 2018 Verizon’s data breach investigation report [26], phishing is the
third most common threat vector for data breaches and 4% of users click on any
given phishing campaign. Phishing attacks are not only increasing in number,
but they are also getting more sophisticated every day. The Anti Phishing Work
Group (APWG) identified a total of 151,014 unique phishing websites in the
third quarter of 2018. About half of these websites (49.4%) were hosted on
infrastructure with HTTPS and SSL certificates, whereas at the end of 2016,
the number of phishing websites using HTTPS were merely less than 5% [1].

The security community has invested a great deal of effort in developing
detection countermeasures against phishing attacks. Most phishing detection
techniques can be broadly classified into three categories, blacklist based, heuris-
tics based and machine learning based [14]. Currently, Google Safe Browsing [3]
is the most popular blacklisting service and is used by several web browsers
including Chrome, Firefox and Safari to prevent users from visiting phishing
websites. Microsoft offers similar such service known as SmartScreen and is used
in the Internet explorer. The blacklist method is easy to implement, however one
major disadvantage of this method is that it lacks the ability to protect against
zero-hour phishing attacks. According to one study [25], 63% of the phishing
campaigns end within the first two hours, whereas 47% to 83% of phishing URLs
appeared in blacklists only after 12 h.

The heuristics based approaches exploit common characteristics found in
the previously reported phishing attacks in order to detect new attacks. Few
examples of heuristic tests are as follows:

– if the host-name portion of a URL is an IP address, the URL is phishing.
– if an organization’s name (e.g., PayPal) is present in a URL path but not in

the primary domain, the URL is phishing.
– if hyphen is present in a primary domain, the URL is phishing.
– if password field is present in a web page, the website is phishing.

However, the use of heuristics can be tricky as it requires choosing the right
weights for each heuristic check, and if not done properly it runs the risk of
misclassifying legitimate websites. Machine learning algorithms, on the other
hand, automatically determines best weights for all features (heuristic checks)
using a database of training examples. In the machine learning approach, the
problem of phishing detection is formulated as a binary classification task with
two classes: phishing (positive class) and valid (negative class). The features
required for training the classifier are mainly extracted from the URL [16,17,23]
or web page [7,31] or both [14,19]. While the use of web page features may lead
to better classification accuracy, the main benefit of using URL based features is
that the resulting model can classify new URLs on-the-fly even before the page
is loaded by the web browser, thus avoiding other potential dangers like drive-by

Everything Is in the Name – A URL Based Approach for Phishing Detection 233

download and cryptojacking attacks. Further, page based detection techniques
suffer from performance issues, as many of these [7,31] work only after the entire
web page is rendered, and there is a possibility that users may have divulged
sensitive data before the page is detected as phishing.

The term URL is an abbreviation of Uniform Resource Locator, the global
address of documents and other resources on the World Wide Web. A URL has
three main components: (i) protocol, (ii) hostname, and (iii) path. The hostname
specifies the server on which the resource is located and the path specifies the
location of the document on the server. The hostname is further divided into two
sub-parts: subdomain and domain. The path is also divided into three sub-parts:
directory, file name and arguments. An example is shown in Fig. 1. In the figure,
the term TLD stands for top-level domain.

Fig. 1. Different components of a URL

URL features are of two types: lexical features and external features [16,
17]. Lexical features are those which can be quickly extracted from the URL
string such as the length of the URL, the number of dots in the URL and
the bag-of-words features. External features, on the other hand, require queries
to remote servers (e.g., whois lookup and DNS resolution) which introduces
additional overhead and consume more resources at the client, e.g., battery life
and bandwidth of devices. Researchers [16] showed that the performance of a
classifier that uses only lexical features is comparable to the one that uses full
features (lexical + external). Therefore, lexical features are more appropriate for
implementing an anti-phishing solution at the client side.

1.1 Contributions

Although a classifier trained on conventional lexical features [16,17] performs
well in many cases, in this paper, we demonstrate it fails to recognize an impor-
tant class of phishing URLs that contain popular brand names concatenated with
one or more phishy words. Consequently, we explore various alternative feature
extraction techniques to improve the robustness of classifiers. Specifically, our
contributions are as follows:

1. We find that the conventional bag-of-words (BoW) feature extraction tech-
nique, based solely on special characters (‘/’, ‘?’, ‘.’, ‘=’, ‘ ’, ‘&’ and ‘-’), is
not robust enough to detect all types of phishing URLs. For example, the

234 H. Tupsamudre et al.

BoW features of the URL paypal.com.secure05.xserver.prishka1.com
extracted using techniques described in [16,17] are name = {paypal, com,
secure05, xserver, prishka1} and tld = {com}. A classifier trained on
these conventional BoW features correctly predicts the URL as phishing due
to the high frequency of the words paypal and com in the hostname por-
tion of the phishing URLs dataset. However, the classifier fails to predict the
URL paypalhelpservice.simdif.com as phishing, based on the BoW fea-
tures: name = {paypalhelpservice, simdif} and tld = {com}, as the tokens
paypalhelpservice and simdif do not appear in the phishing dataset.

2. Therefore, to overcome these limitations of conventional bag-of-words (BoW)
features, we explore other feature extraction techniques based on word seg-
mentation and n−grams. We also build and use a phishy-list to recognize
phishing URLs containing brand names along with phishy words.
(a) In the word segmentation technique, we first split the entire URL string

using special characters and then apply word segmentation algorithm on
each token to extract segmented bag-of-words features. We refer to this
feature set as SBoW. We also make distinction between words appearing
in the different parts of the URL. For example, the SBoW features of
the URL paypalhelpservice.simdif.com are name = {paypal, help,
service, simdif} and tld = {com}.

(b) In the n−grams technique, we split the URL string using special charac-
ters and then extract tri-grams from each resulting token. We refer to this
feature set as bag-of-ngrams (BoN). Again, we make distinction between
n−grams appearing in the different parts of the URL. For instance, the
BoN features of the URL paypalhelpservice.simdif.com are name =
{pay, ayp, ypa, pal, hel, elp, ..., dif} and tld = {com}.

(c) Phishing URLs often contain several words such as login, secure,
help and update which are indicative of phishing attacks. Based on this
observation, we retrieve popular tokens from the phishing dataset and
create a phishy-list (PL) of these words. We check whether any phishy
word appears in the URL and use it as a binary feature in conjunc-
tion with BoW features. We refer to this feature set as BoW-PL. For
example, if the word help is present in the phishy-list, then the BoW-
PL features of the URL paypalhelpservice.simdif.com are name =
{paypalhelpservice, simdif}, tld = {com} and phishy-list = 1.

3. We evaluate the efficacy of all proposed feature sets on a dataset of 100,000
URLs obtained from PhishTank and DMOZ websites. We find that, a classi-
fier trained on SBoW, phishy-list and numerical features (e.g., URL length)
outperforms classifiers trained on other feature sets.

2 Related Work

In this section, we give a brief overview of different anti-phishing countermeasures
proposed in the literature. These countermeasures are broadly classified into
three categories: make things invisible, so that users can focus on their task

Everything Is in the Name – A URL Based Approach for Phishing Detection 235

instead of worrying about phishing attacks; provide better interfaces that assist
users in detecting phishing attacks; and train users to proactively recognize and
counter phishing attacks [13].

2.1 Making Things Invisible

Various phishing detection techniques that rely on URL based features or page
based features fall under the make things invisible category. First, we describe
URL based detection techniques (which is the topic of this paper) in detail
followed by page based detection techniques.

URL Based Detection. In [12], Garera et al. identified four distinct cate-
gories of URL obfuscation techniques that the attackers use to mount phishing
attacks. Further, to identify these phishing URLs, they proposed 18 different
features including those based on Google infrastructure such as page rank and
page quality. They determined the weight of each feature using a logistic regres-
sion model trained on a dataset of approximately 2500 URLs. McGrath et al.
[20] performed a comparative analysis of phishing and non-phishing URLs and
found that phishing URLs and domains have very different lengths and character
distributions compared to non-phishing URLs and domains. As a consequence,
the features based on URL length and domain length were successfully employed
in classification models constructed in the subsequent studies.

Ma et al. [17] described a phishing detection approach that uses (a) lexi-
cal features extracted from URL names such as URL length and bag-of-words
(BoW), and (b) external features acquired from queries to remote servers such
as whois lookup. They examined the performance of several batch based learn-
ing algorithms on a dataset of 35,500 URLs and found that the use of lexical
features achieved similar classification accuracy without incurring the overhead
of querying remote queries. Later, Le et al. [16] performed a focused study on
evaluating a classifier trained only on lexical features vs. a classifier trained
on full features (lexical + external) to detect phishing attacks. They found that
the performance of a classifier trained with only lexical features was similar to
the one trained with full features. Their results were based on around 14,000
phishing URLs. We note that both approaches [16,17] extract BoW features by
tokenizing the URL string using special characters (‘/’, ‘?’, ‘.’, ‘=’, ‘ ’, ‘&’ and
‘-’) and make distinction between tokens that appear in the domain name, the
top level domain, the directory, and the file extension. An extensive survey of
phishing detection techniques that rely on URL based features can be found in
[23]. Recently, researchers have also proposed the usage of deep neural networks
for feature extraction and classification of malicious URLs [30].

In this work, we focus on improving the detection capabilities of lexical fea-
tures based classifiers. We explore various lexical features based on word segmen-
tation and n−grams. Further, we also construct and use a phishy-list of phishy
words. In [28], Wang et al. explored the use of a word segmentation algorithm
to improve the detection of malicious domains containing brand names con-
catenated with one or more phishy words. They applied the word segmentation

236 H. Tupsamudre et al.

algorithm only on the domain portion of the URL string. However, we observed
that phrases containing popular brand names and phishy words appear not only
in the domain, but also in other parts of phishing URLs such as subdomain
and path. Therefore, in our approach, we first tokenize the entire URL string
using special characters (‘/’, ‘?’, ‘.’, ‘=’, ‘ ’, ‘&’ and ‘-’) and then apply a word
segmentation algorithm on each token. Further, we distinguish between tokens
appearing in the hostname, tld, directory, file name and arguments portion of
the URL string. Recently, Verma et al. [27] explored the efficacy of unigrams,
bigrams and trigrams features and found that classifiers trained on n−gram fea-
tures achieved a higher classification accuracy. While they extract n−grams from
the URL string directly (without tokenizing), we first tokenize the URL string
and then extract n−grams from each resulting token. In addition, we make dis-
tinction among n−grams belonging to hostname, tld, directory, file name and
arguments, whereas they do not. We evaluate the effectiveness of each of these
feature sets by training a classifier on a large dataset of 100,000 URLs.

Page Based Detection. Other phishing detection techniques rely on page
based features. Zhang et al. [31] developed a novel content based approach called
CANTINA that uses TF-IDF information retrieval algorithm to extract features
from the web page. Their evaluation showed that CANTINA achieved a true
positive rate of approximately 95%. Whittaker et al. [29] described the design
of the Google’s proprietary machine learning classifier that uses a variety of fea-
tures such as lexical features, external features, Google Page Rank, and features
extracted from the page content, to detect phishing websites. Their approach
also achieved a true positive rate of around 95% and a false positive rate of
0.1%. Ardi et al. [7] proposed an approach that uses cryptographic hashing of
each web page’s Document Object Model (DOM) to detect phishing attacks.
Their approach yielded a zero false positive rate.

2.2 Better Interfaces and Training

Numerous studies show that users do not pay attention to the security indicators
in the browsers [6,10] nor do they adhere to the browser warning messages [11].
Although, modern web browsers have improved the design of their warning pages,
many users still struggle to understand and therefore, disregard browser warn-
ing messages [22]. As a consequence, researchers have explored various training
methods to teach users about the importance of various security indicators and to
recognize phishing attacks. For instance, numerous educational games have been
developed to educate users about phishing URLs [8,9,24] which mainly focus
on teaching users about different URL obfuscation techniques as identified by
Garera et al. [12]. Although, training users to recognize phishing attacks could
complement the machine based phishing detection methods, the actual benefits
of using these training techniques in the real world is not yet known.

Everything Is in the Name – A URL Based Approach for Phishing Detection 237

3 Approach

In this section, we first describe the phishing and valid URL datasets used in our
evaluation. Later, we discuss the pros and cons of the traditional lexical features
[16,17] and describe various alternative lexical features. Finally, we give a brief
overview of the logistic regression model employed to recognize phishing URLs.

3.1 Datasets

Phishing URL Dataset. PhishTank [4], a community-driven phishing URL
submission and verification system operated by OpenDNS, is one of the most
widely used phishing data source for training URL based classifiers [16–18,27].
A suspicious URL is marked as phish if it is voted by at least two other members
of the community. The data submitted to PhishTank is available free of cost to
everyone through the PhishTank’s website and API. We scraped 55,000 unique
verified phishing URLs from the PhishTank website during January 2019.

Valid URL Dataset. DMOZ [2] is a large open human-edited directory of
the web containing over five million URLs organized hierarchically in over one
million categories. It is one of the most popular source to obtain legitimate URLs
[16–18,27] and contains websites from diverse categories such as arts, business,
news and sports. We randomly crawled 55,000 unique URLs from the DMOZ
website during January 2019.

After the data collection phase, we performed data sanitization and removed
all URLs with invalid syntax. Since URL based classifiers require lexical features
for predicting a label, we filtered out all short URLs from both datasets. There
were no short URLs in the valid dataset, however there were about 2, 000 short
URLs in the phishing dataset belonging to 20 different URL shortening services.
We also replaced %xx escapes in the URL with their single character equivalent,
e.g., %20 is replaced with space and %2D is replaced with hyphen. From the
remaining URLs, we randomly chose a subset of 50,000 URLs in each of the
datasets.

3.2 Features

In [12], Garera et al. identified four prominent URL obfuscation techniques used
by the attacker. These are as follows:

– Type I. Obfuscation the host with an IP address: In this attack, the hostname
contains an IP address and the organization being phished is placed in the
path.

– Type II. Obfuscating the host with another domain: In this attack, the
URL’s hostname contains a valid looking domain name and the organization
being phished is placed in the path.

– Type III. Obfuscating with large hostnames: In this attack, the organization
being phished is present in the subdomain part of the URL.

238 H. Tupsamudre et al.

– Type IV. Domain unknown or misspelled: In this attack, the domain name
is misspelled or there is no apparent relationship between the organization
being phished and the domain name.

Table 1. Commonly used URL obfuscation techniques illustrated using PayPal brand.
The first four obfuscation techniques were identified by Garera et al. [12] while the
Type V obfuscation was identified by Kintis et al. [15].

Category Description Examples

Type I IP address http://51.77.145.33/www.paypal.com.webapps.mpp.account-selection/

http://159.203.6.191/servicepaypal/

Type II Brand in path http://kannadamatinee.com/www.paypal.com.us/myaccount/signin

http://a0243562.xsph.ru/servicePayPal/C/

Type III Brand in subdomain http://paypal.com.secure05.xserver.prishka1.com/

https://paypalhelpservice.simdif.com/

Type IV Misspelled brand or

unrelated domain

http://paypa1.com

http://bnkp-bdg.com/login

Type V Brand in domain http://paypal-account-limit-remove-com.ga/

http://ssl-paypalupdate.com/success

http://paypalnow.de/signin.htm

Recently, Kintis et al. [15] identified a potent URL obfuscation technique known
as combosquatting in which the organization being phished is present in the
domain along with one or more words. We refer to this obfuscation technique
as Type V. Table 1 provides illustrative examples for each of these obfuscation
techniques.

To improve the classification accuracy of different obfuscating URLs,
researchers [16,17] extracted two types of lexical features from the URL name:
bag-of-words (BoW) features and numerical features. Originally researchers
focused on detecting only the first four obfuscation techniques proposed by Gar-
era et al. [12] as the Type V obfuscation is a more recent one. However, we find
that some of these features are also useful in detecting Type V obfuscation. Now,
we describe pros and cons of each of these features.

Bag-of-Words (BoW). The bag-of-words features are conventionally extracted
by splitting the URL string into multiple tokens using special characters (‘/’, ‘?’,
‘.’, ‘=’, ‘ ’, ‘&’ and ‘-’) [16,17]. Each resulting token constitutes a binary feature,
the value of the feature is one if the token is present in the URL, otherwise it
is zero. Further, a distinction is made among tokens appearing in the hostname,
tld, directory, file name and the argument part of the URL, i.e., the same word
appearing in different parts of the URL is treated as a different binary feature.
The main purpose of using positional bag-of-words (BoW) features is to detect
Type I, Type II and Type III obfuscation techniques where the organization
being phished (e.g., paypal) or tld (e.g., com) or phishy words (e.g., account)
appear in unexpected parts of the URL. For instance, the word com is more likely
to appear in the tld part of the URL, however, if it appears in either subdomain
or path, then the URL is a potential phish.

Everything Is in the Name – A URL Based Approach for Phishing Detection 239

Table 2. Examples of BoW, SBoW, BoN and BoW-PL features

Type I URL 159.203.6.191/servicepaypal/

BoW name = {159, 203, 6, 191}, tld = {}, dir = {servicepaypal}
SBoW name = {159, 203, 6, 191}, tld = {}, dir = {service, paypal}
BoN name = {159, 203, 6, 191}, tld = {}, dir = {ser, erv, rvi, vic, ice, . . ., pal}
BoW-PL name = {159, 203, 6, 191}, tld = {}, dir = {servicepaypal}, phishy-list = 1

Type II URL a0243562.xsph.ru/servicePayPal/C/

BoW name = {a0243562, xsph}, tld = {ru}, dir = {servicepaypal, c}
SBoW name = {a0243562, xsph}, tld = {ru}, dir = {service, paypal, c}
BoN name = {a02, 024, 243, 435, . . ., sph}, tld = {ru}, dir = {ser, erv, rvi, . . ., c}
BoW-PL name = {a0243562, xsph}, tld = {ru}, dir = {servicepaypal, c}, phishy-list = 1

Type III URL paypalhelpservice.simdif.com

BoW name = {paypalhelpservice, simdif}, tld = {com}
SBoW name = {paypal, help, service, simdif}, tld= {com}
BoN name = {pay, ayp, ypa, pal, . . ., dif}, tld = {com}
BoW-PL name = {paypalhelpservice, simdif}, tld = {com}, phishy-list = 1

Type V URL ssl-paypalupdate.com/success

BoW name = {ssl, paypalupdate}, tld = {com}, dir = {success}
SBoW name = {ssl, paypal, update}, tld = {com}, dir = {success}
BoN name = {ssl, pay, ayp, . . ., ate}, tld = {com}, dir = {suc, ucc, cce, ces, ess}
BoW-PL name = {ssl, paypalupdate}, tld = {com}, dir = {success}, phishy-list = 1

We observed that although a classifier trained on conventional BoW features
performs well in many cases, it fails to recognize phishing URLs that combine a
popular brand with one or more words. Table 2 shows BoW features for URLs
belonging to different obfuscation techniques. Since the tokenization procedure
employed in extracting BoW features rely only on special characters, long phrases
such as servicepaypal, paypalhelpservice and paypalupdate remain unseg-
mented in BoW features. The prediction scores of the Type I and Type II URLs
could be improved if the token servicepaypal in the directory is further seg-
mented into individual words service and paypal. Similarly, the Type III URL
is more likely to be classified correctly, if the token paypalhelpservice in the
subdomain is further segmented into words paypal, help and service. There-
fore, we explore different lexical features based on the word segmentation and
n−grams, and use a list of phishy words to improve the prediction of phishing
URLs.

Segmented Bag-of-Words (SBoW). We use word segmentation based tech-
nique to extract BoW features from the URL string which are more robust
against combosquatting URLs. In this technique, we first extract tokens from
the URL string using special characters (‘/’, ‘?’, ‘.’, ‘=’, ‘ ’, ‘&’ and ‘-’). Sub-
sequently, we apply a word segmentation algorithm on each extracted token
to recover the individual words. We use Python’s WordSegment module [5] for
word segmentation which is based on code by Peter Norvig that uses Google Web
Trillion Word Corpus [21]. Table 2 shows SBoW features for different obfuscated
URLs. For example, after applying the word segmentation algorithm, the token
paypalhelpservice in the Type III URL is now further divided into a set of
three words {paypal, help, service}.

240 H. Tupsamudre et al.

Bag-of-ngrams (BoN). We also explore n−gram based features to improve
the detection of phishing URLs containing brand names and words. In this
technique, we first extract tokens from the URL string using special charac-
ters (‘/’, ‘?’, ‘.’, ‘=’, ‘ ’, ‘&’ and ‘-’). Subsequently, we extract tri-grams from
each token and use them as binary features. BoN features for four different
obfuscated URLs are given in Table 2. For example, the trigrams of the token
paypalhelpservice are {pay, ayp, ypa, pal, alh, lhe, hel, elp, lps,
pse, ser, erv, rvi, vic, ice}.

Phishy-List (PL). In this technique, we construct a list of popular phishy
tokens by analysing URL domains in the phishing dataset. We discard all
tokens with length ≤ 3 as they contain common URL parts such as com and
org. We remove organization name tokens like paypal to keep our phishy-
list brand agnostic. The resulting list contains 105 popular words (frequency
≥ 20) indicative of phishing attacks. We refer to this list as new-PL (provided
in Appendix A). Few examples of popular phishy words are secure, login,
account, update, verify and service. We use this phishy-list as a binary
feature and check whether any of the phishy tokens appear in the URL. The
main purpose of using the phishy-list is to detect phishing URLs that con-
tain brand names concatenated with popular phishy words. The phishy-list
feature was also used in [16] (referred as blacklist feature) to address Type
IV obfuscation. However, their phishy-list was small and contained only 12
words: confirm, account, banking, secure, ebayisapi, webscr, login,
signin, paypal, free, lucky and bonus. We refer to this list as legacy-PL.
We emphasize that our phishy-list is large and contains 105 popular brand agnos-
tic phishy tokens.

Numerical Features. We also extract various numerical features as described
by Le et al. [16]. First, the URL string is broken into four parts: domain, direc-
tory, file name and arguments. Subsequently, numerical features in each of these
parts are retrieved. Table 3 shows different numerical features of a URL.

Table 3. Numerical features of a URL

URL paypal-billing.my-profilemanage.com/login/myaccount/webscr login/index.php ?cmd =login-submit

Features len=92, n dot=3

Hostname paypal-billing.my-profilemanage.com

Features len=35, IP=0, port= 0, n token=5, n hyphen=2, max len=13

Directory /login/myaccount/webscr login/

Features len=30, n subdir= 3, max len=9, max dot=0, max delim=1

Filename index.php

Features len=9, n dot= 1, n delim=0

Arguments ?cmd =login-submit

Features len=18, n var= 1, max len=6, max delim=2

1. URL related features. These features include the length of the URL and the
number of dots in the URL. These features are used to address Type II
obfuscation.

Everything Is in the Name – A URL Based Approach for Phishing Detection 241

2. Domain related features. These features include the length of the domain
name, the number of tokens in the domain name, the number of hyphens in
the domain name, the length of the longest token and whether an IP address
or a port number is present in the domain name. Although, these features are
used to address Type I and Type III obfuscation techniques, these features
particularly the number of hyphens can also detect few instances of Type V
obfuscation.

3. Directory related features. These features include the length of the directory,
the number of sub-directory tokens, the length of the longest sub-directory
token, and the maximum number of dots and other delimiters (‘ ’ and ‘-’)
used in a sub-directory token. These features are proposed to address the
Type II obfuscation technique.

4. File name related features. These features include the length of the file name,
and the number of dots and other delimiters (‘ ’ and ‘-’) used in the file name.
These features also used to address Type II obfuscation.

5. Argument related features. These features include the length of the arguments,
the number of variables, the length of the longest variable value, and the
maximum number of delimiters (‘.’, ‘ ’ and ‘-’) used in a value.

Thus, a total of 20 numerical features are extracted from different parts of a
URL. Table 4 compares the numerical features in valid and phishing datasets.
URLs in the phishing dataset are much longer (more than 2x times) and contain
more special characters (hyphen, dot) as compared to URLs in the valid dataset.
We use these numerical features along with BoW, SBoW and BoN features.

Table 4. Analysis of numerical features in phishing and valid datasets

URL len n dot blacklist

Valid 31.31 2.16 0.01

Phishing 73.45 2.44 0.32

Hostname len IP port n token n hyphen max len

Valid 18.77 0 0 3.05 0.09 10.07

Phishing 20.99 0.02 0 2.71 0.35 11.17

Directory len n subdir max len max dot max delim

Valid 2.36 0.31 1.59 0 0.04

Phishing 20.92 2.09 10.44 0.13 0.34

File len n dot n delim

Valid 1.76 0.1 0.06

Phishing 7.02 0.47 0.11

Arguments len n var max len max delim

Valid 0.2 0.02 0.08 0

Phishing 15.05 0.41 5.78 0.16

242 H. Tupsamudre et al.

3.3 Logistic Regression for URL Classification

The problem of phishing detection is formulated as a binary classification task
with two classes: phishing (positive class) and valid (negative class). We use logis-
tic regression as it is computationally efficient and improves the performance by
retaining only the relevant features. It is a simple parametric model where URLs
are classified based on their distance from hyperplane decision boundary. In the
binary classification task, we are given M training instances {x1, x2, . . . , xM},
where each xi is a N dimensional feature vector and yi ∈ {0, 1} is a class label
associated with sample xi. Logistic regression models the probability distribution
of the class label y, given a feature x as follows:

p(y = 1|x; θ) = σ(θT x + b) =
1

1 + exp−(θT x+b)
(1)

where, θ ∈ R
N and bias b are the parameters of the logistic regression model,

and σ(·) is the sigmoid function defined as σ(z) = 1/(1 + exp−z). This sigmoid
function σ(·) interprets the distances as probabilities of positive and negative
labels.

We train the logistic regression model using maximum likelihood estimation
with l1 regularization. We estimate the weight vector θ and bias b by maximizing
the objective function:

L(θ, b) =
M∑

i=1

log p(yi|xi) − λ

N∑

j=1

|θj | (2)

The first term in Eq. 2 computes the conditional log-likelihood that the model
predicts correct label for all the samples in the training set. The second term
in the equation penalizes large magnitude values in the weight vector θ. This is
known as l1 norm regularization and has many beneficial properties over SVM
and Naive Bayes estimators while working with large feature dimensions. (i)
It serves as a measure against overfitting; (ii) it encourages sparse solutions in
which many elements of the weight vector θ are exactly zero (iii) it also helps
in feature selection by retaining only the most relevant features. Due to these
benefits, the logistic regression classifier has been widely used to develop various
anti-phishing solutions in the past [12,17,28].

4 Results and Discussion

Now, we evaluate and compare the efficacy of classifiers trained on various fea-
ture sets described in Sect. 3. Specifically, we investigate how different feature
extraction techniques help in distinguishing phishing URLs from valid URLs.
To this end, we train logistic regression classifiers on different feature sets and
report their misclassification rate (MCR) and false negative rate (FNR). MCR
measures the rate of incorrectly detected valid and phishing instances in relation

Everything Is in the Name – A URL Based Approach for Phishing Detection 243

to all instances, whereas false negative rate (FNR) measures the rate of phish-
ing instances that are incorrectly detected as valid in relation to all phishing
instances. Specifically,

MCR =
NP→V + NV →P

NP→P + NP→V + NV →V + NV →P
(3)

and,

FNR =
NP→V

NP→P + NP→V
(4)

where NP→P is the number of phishing URLs correctly identified as phishing,
NV →V is the number of valid URLs correctly identified as valid, NP→V is the
number of phishing URLs incorrectly identified as valid and NV →P is the number
of valid URLs incorrectly identified as phishing. Our objective is to minimize
both MCR and FNR. For training, we randomly select a subset of 80,000 URLs
and use the remaining 20,000 URLs for testing. In our classification tasks, we
consider phishing URL as positive class and valid URL as negative class.

We divide our experiments into three parts. Firstly, we investigate the
effectiveness of three logistic regression classifiers trained on different bag-of-
X representations, namely BoW [16,17], SBoW and BoN. Secondly, we compare
the effectiveness of two phishy-lists, legacy-PL [16] and our proposed new-PL.
Finally, we determine the potency of combining these different features with
numerical features. The list of feature sets used in our classification experiments
along with their corresponding MCR and FNR are given in Table 5. The table
also shows the total number of extracted features in each feature set, the num-
ber of retained (non-zero) features, the number of retained features with positive
(+ve) and negative (−ve) weights, and FNR reduction (FNR-Red) with respect
to the baseline classifier (trained only on BoW features).

Table 5. Performance of classifiers trained with different feature sets based on MCR,
FNR and reduction in FNR. We also report the number of features in each feature set,
the number of relevant features, and features with +ve and −ve coefficients. Note that
num represents numerical features.

Feature set #Features #Relevant +ve −ve MCR(%) FNR(%) FNR-Red(%)

BoW (baseline) 107,277 2,240 1,767 473 5.04 7.87 −
BoN 108,038 3,987 2,621 1,366 4.18 5.29 32.78

SBoW 88,930 2,692 1,941 751 4.07 5.57 29.22

BoW+legacy-PL 107,278 2,201 1,728 473 5.02 7.84 0.38

BoW+new-PL 107,278 1,885 1,426 459 4.23 5.70 27.57

SBoW+new-PL 88,931 2,318 1,619 699 3.63 4.59 41.67

BoW+legacy-PL+num [16] 107,298 1,809 1,199 610 4.05 5.72 27.31

BoW+new-PL+num 107,298 1,604 1,048 556 3.70 4.83 38.62

BoN+num 108,058 3,428 1,569 1,859 3.44 4.25 45.99

SBoW+new-PL+num 88,951 2,124 1,354 770 3.22 4.10 47.90

Bag-of-X. Our experimental results show that a logistic regression classifier
trained only on conventional BoW features [16,17] (tokens extracted using spe-

244 H. Tupsamudre et al.

cial characters) yielded a MCR of 5.04%. However, classifiers trained on BoN
(tri-gram) features and SBoW features (tokens extracted using special charac-
ters and word segmentation) reduced the MCR to 4.18% and 4.07% respectively.
A deeper analysis of the results show that SBoW and BoN features are more
robust (low FNR) against all types of phishing URLs as compared to BoW fea-
tures. Few examples of such URLs are illustrated in Table 6, where the classifier
trained on BoW features misclassified the phishing URL as valid whereas classi-
fiers trained on SBoW and BoN did not. For instance, based on BoW features, the
Type II URL al-cap.com/vvb/chaseonline2018 (a spoof of US based Chase
bank) is labelled as phish with a probability of 0.42. Note that in this case,
only the tld token com is determined as a relevant feature (and that too nega-
tive) by the logistic regression classifier, whereas other tokens such as cap and
chaseonline2018 are simply ignored since their corresponding weights are zero.
The SBoW features on the other hand extract relevant tokens chase and online
from the phrase chaseonline2018 which are determined as positive features by
the classifier. As a consequence, the URL is classified as phishing with a very
high probability (0.99). The classifier trained on BoN features performed sim-
ilarly to that trained on SBoW features. Consequently, when compared to the
BoW model, FNR of BoN reduced by 32.78% and FNR of SBoW reduced by
29.22%. Although FNR of BoN is slightly less than FNR of SBoW, the number
of features retained in the BoN model (3,987) is almost 1.5 times more than
those retained in the SBoW model (2,692). Therefore, the model trained using
SBoW features is simpler than the model trained using BoN features and exhibit
comparable performance.

Table 6. Illustrative examples demonstrating the effectiveness of logistic regression
classifiers trained on SBoW and BoN features over classifier trained on BoW features.

URL Features +ve features −ve features Prob

Type II BoW − com 0.42

al-cap.com/vvb/chaseonline2018 SBoW online, chase com 0.99

BoN cha, has, ase, lin, nli com, eon, ine 0.99

Type III BoW − blogspot, com 0.19

facebookloginconfirmation. SBoW facebook, login, confirmation blogspot, com 0.99

blogspot.com BoN fac, ceb, ebo, boo, con, . . . log, com, . . . 0.98

Type IV BoW account www, com 0.28

www.amzaon-account.com/ SBoW am, on, account www, com 0.68

BoN cco, amz, acc, zao oun, com, www 0.93

Type V BoW − com 0.42

google1mail.com/mi-cuenta SBoW mail, cuenta, google com 0.95

BoN nta, mai, ail, cue, ogl oog, gle, ent, com 0.90

Phishy-Lists. We trained two logistic regression classifiers to determine the
quality of two phishy lists, legacy-PL and new-PL. Both classifiers were trained
on conventional BoW features, the only difference was that the first classifier con-
sidered legacy-PL whereas the second classifier considered new-PL. We note that

Everything Is in the Name – A URL Based Approach for Phishing Detection 245

phishy-list is a binary feature, where we check if any of the words in the phishy-
list appear in the URL. Therefore, the total number of features used for training
two classifiers were same (107,278). However, after training, we found that the
first classifier with legacy-PL retained 2,201 features, whereas the other classifier
that used new-PL retained only 1,885 features. Also, MCR of the first classifier
with legacy-PL was 5.02%, slightly better than the BoW features (5.04%). Fur-
ther, there was only a miniscule reduction of 0.38% in FNR. On the other hand,
MCR of the second classifier with new-PL was 4.23% and its FNR reduced by
27.57%. Therefore, the use of new-PL resulted in simple model and improved
accuracy. Replacing the BoW features with SBoW features and using new-PL,
reduced the MCR to 3.63%. Also, its FNR decreased by 41.67%. Hence, as
new-PL outperformed legacy-PL, we conduct the remaining experiments using
new-PL only.

Full Feature Set. From the experiments above, it can be seen that BoX fea-
tures, alone, perform very well in classifying phishing URLs. However, these BoX
features are not always enough to model the unseen URLs. Hence, we require
a set of orthogonal features that complement the BoX features. Therefore, we
also consider 20 numerical features to make classifiers more robust. The perfor-
mance of classifiers trained on the following combination of feature sets (BoX,
phishy-list, numerical) is shown in Table 5.

1. BoW + numerical + legacy-PL (state-of-the-art): In this we implemented a
logistic regression classifier based on features proposed in [16]. These state-
of-the-art features resulted in a MCR of 4.05%. Further, we observed a FNR
reduction of 27.31% against the baseline BoW features. However, as shown in
Table 5, this feature set is outperformed by all other full feature sets in terms
of MCR as well as FNR. Further, the classifier trained only on SBoW and
new-BL features (with MCR 3.63% and FNR reduction of 41.67%) performed
better than the current classifier that used BoW features, legacy-PL as well
as numerical features.

2. BoW + numerical + new-PL: Here, instead of using the legacy-PL consisting
of 12 phishy words [16], we used a larger new-PL consisting of 105 brand
agnostic phishy words. We obtained a MCR of 3.70% and FNR reduction
of 38.62%, both better than the state-of-the-art features proposed in [16].
However, these MCR and FNR are still higher than those achieved using
only SBoW and new-PL features.

3. BoN + numerical: After training a logistic regression classifier on tri-gram
features and numerical features, we obtained a MCR of 3.44% and FNR
reduction of 45.99% on the test set. This is the second best feature set among
all other feature sets.

4. SBoW + numerical + new-PL: Here, we used SBoW features, numerical fea-
tures as well as new-BL. We obtained a MCR of 3.22% and FNR reduction
of 47.90%, which is the lowest among all feature sets.

246 H. Tupsamudre et al.

5 Conclusion and Future Work

In this paper, we demonstrated that a classifier trained on conventional lexical
features fails to recognize phishing URLs that contain a brand name concate-
nated with one or more phishy words (e.g., paypalhelpservice.simdif.com).
To overcome these limitations, we explored different bag-of-X representations
including bag-of-words (BoW), segmented bag-of-words (SBoW) and bag-of-
ngrams (BoN). We found that a logistic regression classifier trained on SBoW
features resulted in lower misclassification rate (MCR) as well as lower false neg-
ative rate (FNR) when compared with BoW features. Further, SBoW features
yielded a simpler model when compared with BoN features. We also proposed
a new phishy-list consisting of 105 brand agnostic words suggestive of phishing
attacks and compared its performance against the legacy phishy-list [16]. The
results of our experiments suggest that the new phishy-list not only improved
the detection of phishing URLs, but also resulted in a simpler model. Further, we
found that combining numerical features with SBoW features and new phishy-list
outperformed all other combinations of feature sets used for phishing detection.

The feature extraction techniques proposed in this paper are well suited for
detecting Type III (brand in subdomain), Type V (brand in domain), and Type
II (brand in path) phishing URLs. But still, there is a lot to be desired for Type
IV phishing URLs which are composed of unrelated or misspelled domains. We
plan to explore the techniques to counter these URLs in our future work.

Appendix A

The phishy-list consisting of 105 words extracted from the phishing dataset is
given below:
{limited, securewebsession, confirmation, page, signin, team,
sign, access, protection,active, manage, redirectme, http, secure,
customer, account, client, information, recovery, verify, secured,
busines, refund, help, safe, bank, event, promo, webservis,
giveaway, card, webspace, user, notify, servico, store, device,
payment, webnode, drive, shop, gold, violation, random, upgrade,
webapp, dispute, setting, banking, activity, startup, review,
email, approval, admin, browser, webapp, billing, advert, protect,
case, temporary, alert, portal, login, servehttp, center, client,
restore, secure, blob, smart, fortune, gift, server, security,
page, confirm, notification, core, host, central, service,
account, servise, support, apps, form, info, compute,
verification, check, storage, setting, digital, update, token,
required, resolution, ebayisapi, webscr, login, free, lucky, bonus}

Everything Is in the Name – A URL Based Approach for Phishing Detection 247

References

1. APWG, February 2019. http://docs.apwg.org/reports/apwg trends report q3
2018.pdf

2. DMOZ, February 2019. http://dmoz-odp.org/
3. Google Safe Browsing, February 2019. https://safebrowsing.google.com/
4. PhishTank, February 2019. https://www.antiphishing.org/resources/apwg-

reports/
5. Python Word Segmentation, February 2019. http://www.grantjenks.com/docs/

wordsegment/
6. Alsharnouby, M., Alaca, F., Chiasson, S.: Why phishing still works: user strategies

for combating phishing attacks. Int. J. Hum.-Comput. Stud. 82, 69–82 (2015)
7. Ardi, C., Heidemann, J.: Auntietuna: personalized content-based phishing detec-

tion. In: Proceedings of the NDSS Workshop on Usable Security. The Internet Soci-
ety, San Diego, California, USA, February 2016. http://www.isi.edu/%7ejohnh/
PAPERS/Ardi16a.html

8. Canova, G., Volkamer, M., Bergmann, C., Reinheimer, B.: NoPhish app evaluation:
lab and retention study. Internet Society, USEC (2015)

9. CJ, G., Pandit, S., Vaddepalli, S., Tupsamudre, H., Banahatti, V., Lodha, S.:
Phishy - a serious game to train enterprise users on phishing awareness. In: Pro-
ceedings of the 2018 Annual Symposium on Computer-Human Interaction in Play
Companion Extended Abstracts, CHI PLAY 2018, pp. 169–181. ACM, New York
(2018). https://doi.org/10.1145/3270316.3273042

10. Dhamija, R., Tygar, J.D., Hearst, M.: Why phishing works. In: Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, CHI 2006, pp.
581–590. ACM, New York (2006). https://doi.org/10.1145/1124772.1124861

11. Felt, A.P., et al.: Improving SSL warnings: comprehension and adherence. In: Pro-
ceedings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems, CHI 2015, pp. 2893–2902. ACM, New York (2015). https://doi.org/10.
1145/2702123.2702442

12. Garera, S., Provos, N., Chew, M., Rubin, A.D.: A framework for detection and
measurement of phishing attacks. In: Proceedings of the 2007 ACM Workshop on
Recurring Malcode, WORM 2007, pp. 1–8. ACM, New York (2007). https://doi.
org/10.1145/1314389.1314391

13. Hong, J.: The state of phishing attacks. Commun. ACM 55(1), 74–81 (2012).
https://doi.org/10.1145/2063176.2063197

14. Khonji, M., Iraqi, Y., Jones, A.: Phishing detection: a literature survey. IEEE
Commun. Surv. Tutor. 15(4), 2091–2121 (2013). https://doi.org/10.1109/SURV.
2013.032213.00009

15. Kintis, P., et al.: Hiding in plain sight: a longitudinal study of combosquat-
ting abuse. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2017, pp. 569–586. ACM, New York (2017).
https://doi.org/10.1145/3133956.3134002

16. Le, A., Markopoulou, A., Faloutsos, M.: PhishDef: URL names say it all. In: 2011
Proceedings IEEE INFOCOM, pp. 191–195, April 2011. https://doi.org/10.1109/
INFCOM.2011.5934995

17. Ma, J., Saul, L.K., Savage, S., Voelker, G.M.: Beyond blacklists: learning to
detect malicious web sites from suspicious URLs. In: Proceedings of the 15th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, KDD 2009, pp. 1245–1254. ACM, New York (2009). https://doi.org/10.1145/
1557019.1557153

http://docs.apwg.org/reports/apwg_trends_report_q3_2018.pdf
http://docs.apwg.org/reports/apwg_trends_report_q3_2018.pdf
http://dmoz-odp.org/
https://safebrowsing.google.com/
https://www.antiphishing.org/resources/apwg-reports/
https://www.antiphishing.org/resources/apwg-reports/
http://www.grantjenks.com/docs/wordsegment/
http://www.grantjenks.com/docs/wordsegment/
http://www.isi.edu/%7ejohnh/PAPERS/Ardi16a.html
http://www.isi.edu/%7ejohnh/PAPERS/Ardi16a.html
https://doi.org/10.1145/3270316.3273042
https://doi.org/10.1145/1124772.1124861
https://doi.org/10.1145/2702123.2702442
https://doi.org/10.1145/2702123.2702442
https://doi.org/10.1145/1314389.1314391
https://doi.org/10.1145/1314389.1314391
https://doi.org/10.1145/2063176.2063197
https://doi.org/10.1109/SURV.2013.032213.00009
https://doi.org/10.1109/SURV.2013.032213.00009
https://doi.org/10.1145/3133956.3134002
https://doi.org/10.1109/INFCOM.2011.5934995
https://doi.org/10.1109/INFCOM.2011.5934995
https://doi.org/10.1145/1557019.1557153
https://doi.org/10.1145/1557019.1557153

248 H. Tupsamudre et al.

18. Marchal, S., François, J., State, R., Engel, T.: Phishstorm: detecting phishing
with streaming analytics. IEEE Trans. Netw. Serv. Manag. 11(4), 458–471 (2014).
https://doi.org/10.1109/TNSM.2014.2377295

19. Marchal, S., Saari, K., Singh, N., Asokan, N.: Know your phish: novel techniques
for detecting phishing sites and their targets. In: 2016 IEEE 36th International
Conference on Distributed Computing Systems (ICDCS), pp. 323–333, June 2016.
https://doi.org/10.1109/ICDCS.2016.10

20. McGrath, D.K., Gupta, M.: Behind phishing: an examination of phisher modi
operandi. In: Proceedings of the 1st Usenix Workshop on Large-Scale Exploits and
Emergent Threats, LEET 2008, pp. 4:1–4:8. USENIX Association, Berkeley, CA,
USA (2008). http://dl.acm.org/citation.cfm?id=1387709.1387713

21. Norvig, P.: Natural Language Corpus Data: Beautiful Data, February 2019. http://
norvig.com/ngrams/

22. Reeder, R.W., Felt, A.P., Consolvo, S., Malkin, N., Thompson, C., Egelman, S.:
An experience sampling study of user reactions to browser warnings in the field.
In: Proceedings of the 2018 CHI Conference on Human Factors in Computing
Systems, CHI 2018, pp. 512:1–512:13. ACM, New York (2018). https://doi.org/10.
1145/3173574.3174086

23. Sahoo, D., Liu, C., Hoi, S.C.: Malicious URL detection using machine learning: a
survey. arXiv preprint arXiv:1701.07179 (2017)

24. Sheng, S., et al.: Anti-phishing phil: the design and evaluation of a game that
teaches people not to fall for phish. In: Proceedings of the 3rd Symposium on
Usable Privacy and Security, SOUPS 2007, pp. 88–99. ACM, New York (2007).
https://doi.org/10.1145/1280680.1280692

25. Sheng, S., Wardman, B., Warner, G., Cranor, L., Hong, J., Zhang, C.: An empir-
ical analysis of phishing blacklists. In: Sixth Conference on Email and Anti-Spam
(CEAS), California, USA (2009)

26. Verizon: 2018 data breach investigations report, February 2019. http://www.
verizonenterprise.com/resources/reports/rp DBIR 2018 Report en xg.pdf

27. Verma, R., Das, A.: What’s in a URL: fast feature extraction and malicious URL
detection. In: Proceedings of the 3rd ACM on International Workshop on Security
and Privacy Analytics, IWSPA 2017, pp. 55–63. ACM, New York (2017). https://
doi.org/10.1145/3041008.3041016

28. Wang, W., Shirley, K.: Breaking bad: detecting malicious domains using word
segmentation. arXiv preprint arXiv:1506.04111 (2015)

29. Whittaker, C., Ryner, B., Nazif, M.: Large-scale automatic classification of phish-
ing pages. In: NDSS 2010 (2010). http://www.isoc.org/isoc/conferences/ndss/10/
pdf/08.pdf

30. Yang, W., Zuo, W., Cui, B.: Detecting malicious urls via a keyword-based convo-
lutional gated-recurrent-unit neural network. IEEE Access 7, 29891–29900 (2019).
https://doi.org/10.1109/ACCESS.2019.2895751

31. Zhang, Y., Hong, J.I., Cranor, L.F.: Cantina: a content-based approach to detecting
phishing web sites. In: Proceedings of the 16th International Conference on World
Wide Web, WWW 2007, pp. 639–648. ACM, New York (2007). https://doi.org/
10.1145/1242572.1242659

https://doi.org/10.1109/TNSM.2014.2377295
https://doi.org/10.1109/ICDCS.2016.10
http://dl.acm.org/citation.cfm?id=1387709.1387713
http://norvig.com/ngrams/
http://norvig.com/ngrams/
https://doi.org/10.1145/3173574.3174086
https://doi.org/10.1145/3173574.3174086
http://arxiv.org/abs/1701.07179
https://doi.org/10.1145/1280680.1280692
http://www.verizonenterprise.com/resources/reports/rp_DBIR_2018_Report_en_xg.pdf
http://www.verizonenterprise.com/resources/reports/rp_DBIR_2018_Report_en_xg.pdf
https://doi.org/10.1145/3041008.3041016
https://doi.org/10.1145/3041008.3041016
http://arxiv.org/abs/1506.04111
http://www.isoc.org/isoc/conferences/ndss/10/pdf/08.pdf
http://www.isoc.org/isoc/conferences/ndss/10/pdf/08.pdf
https://doi.org/10.1109/ACCESS.2019.2895751
https://doi.org/10.1145/1242572.1242659
https://doi.org/10.1145/1242572.1242659

Network Cloudification
(Extended Abstract)

Yefim Dinitz1, Shlomi Dolev1, Sergey Frenkel1,2, Alex Binun1,
and Daniel Khankin1(B)

1 Department of Computer Science, Ben-Gurion University of the Negev,
Beersheba, Israel

{dinitz,dolev}@cs.bgu.ac.il, {binun,danielkh}@post.bgu.ac.il
2 Institute of Informatics Problems of FRC “Computer Science and Control”,

Moscow, Russia
fsergei51@gmail.com

Abstract. An automatic cloudification scheme for Software-Defined
Networks (SDN) is presented. An existing network consisting of com-
municating network elements and network functions should be served by
several cloud suppliers. The costs of cloudifying each element and each
function at each cloud and the costs of transferring a unit of information
between and inside clouds are given. The scheme selects in which cloud to
locate each element and function in a way that minimizes the total cost
of cloudifying and communication. As well, an online distributed proto-
col of seamless transformation of the existing network communication to
the clouds is presented.

1 Introduction

The migration of an entire network including all of the network elements and
functions in a cost efficient and seamless manner, is becoming a standard opera-
tion. Such network cloudification is motivated by the need for maintenance of the
original network, as well as a technique for mitigating cyber-attacks by moving
the attack target upfront prior to an anticipated attack.

Network Virtualization (NV), which is the abstraction of a network from
the underlying physical viewpoint, allows customized routing, multiple network
architectures, efficient utilization of infrastructure resources, and customized
infrastructure-abstracted services.

In Software-Defined Networking the control plane and the data plane are
separated. The control logic is centralized in a software-based entity called the
controller, which communicates with switches using a standardized protocol,
such as OpenFlow [9]. SDN can serve as a platform for flexible creation of
directly programmable virtual networks with custom control logic. As a com-
plementary technology, SDN advents NV and Network Functions Virtualization

Research supported by Neptune - The Israeli Network Consortium, and partially sup-
ported by Rita Altura trust chair in Computer Science.

c© Springer Nature Switzerland AG 2019
S. Dolev et al. (Eds.): CSCML 2019, LNCS 11527, pp. 249–259, 2019.
https://doi.org/10.1007/978-3-030-20951-3_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20951-3_22&domain=pdf
https://doi.org/10.1007/978-3-030-20951-3_22

250 Y. Dinitz et al.

(NFV), which allows the implementation of network functions in software. The
significant advantage of NFV is the reduction in the number of middleboxes [8].
This results in increased flexibility, network resilience, on-demand network ser-
vices, and service reliability.

Related Work. In the scope of SDN and NFV, several papers proposed meth-
ods for seamless network re-configurations. The works [1,2] proposed multicast-
based methods for route updates, introducing the Make&Activate-Before-Break
approach (MABB). Using MABB, the original configuration remains active until
the correct working of the new configuration is achieved and verified, and only
then the old configuration is dismantled. So, it may occur that two configura-
tions may exist simultaneously, thus providing a seamless user experience during
the configuration update. Further, the above-mentioned papers were extended
to several, dependent via shared links, pairs of routes in [3] and to policy pre-
serving routes updates in [4]. Moreover, paper [3] described a high-level protocol
for network updates in MABB, which serves as a guideline for the protocol in
this paper. Paper [4] suggested the Route Readiness Verifier (RRV) tool for
implementing the high-level protocol for MABB on the low level of OpenFlow
specifications.

The paper [5] demonstrates a dynamic construction of a virtual network with
custom routing in the context of SDN. Thus, showing the possibility of using
SDN for creating virtual network on-demand for virtualized services. The paper
[10] considers virtual network embedding via path splitting and path migration.
In this work, we do not consider path mapping but assume that network con-
nectivity remains unchanged. Also, we do not map virtual nodes to bundles of
physical nodes but virtualize each node to its designated cloud.

Problem Description. We represent the original communication network by
weighted graph G = (V,E,w). The set of vertices V represents the network
elements, e.g., a router or a Network Function (NF). The set of edges E repre-
sents the network links connecting network elements. The weight function on the
graph edges represents the communication load between the network elements.

We are given a fixed set of cloud providers, denoted by CP = {CPi}, in
which we can virtualize the network elements. For each cloud provider, we are
given a price list, which includes a cost for hosting (virtualizing) each network
element. The communication cost per unit varies, depending on whether the
connected network elements reside in the same cloud or in different clouds, and
on the concrete clouds that the elements belong to.

The first goal of our research is to achieve the lowest cost for virtualizing the
given network. See Fig. 1 for an example. Figure 1a shows a possible given net-
work that we are required to cloudify. Figure 1b shows the graph representation
of the network in Fig. 1a. Figure 2 shows a possible cloudification outcome of the
network in Fig. 1b.

Note that putting network elements in the same cloud may reduce the com-
munication cost between them, but might increase the communication cost with
other elements. For example, consider Fig. 2. Assume that we move the cloud
image of node e from CP3 to CP1. On one hand, it may be that hosting e at CP1

Network Cloudification 251

(a)

a

g

c
b

e f

h
j

d

i

(b)

Fig. 1. Example of the original network and its graph representation.

is cheaper, and the communication costs between e and nodes a and b already
residing in CP1 would be decreased. On the other hand, the communication cost
between e and nodes i and j that stay in CP3, and maybe also between e and
the elements in other cloud providers would increase.

The second goal of our research is developing a seamless way of on-line
replacement of the data transfer and processing from the original network to
its cloudified image. The trivial approach may be to stop transmitting the flow,
to wait until all sent packets have been processed by the original network and
reach their destination, to copy the states of all network functions to their cloud
images, and only then to resume transmitting the flow via the clouds. However,
this would involve a considerable delay. Therefore, we need to develop a com-
munication protocol between the SDN controller and the network elements and
functions during the replacement process, so that the user will not feel any delay
in the transmission and processing of the flow, as much as possible. Of course,
the FIFO order of processing flow packets by network functions, and the order of
the arrival of packets at their destination should be preserved during the on-line
replacement process.

Paper Outline. In this work, we suggest two ways of finding optimal/near-
optimal cloudification of a given network to a given set of clouds. In addition,
we describe a high-level protocol for seamless on-line data transfer and processing
from the original network to its, previously chosen, cloudified version.

In Sect. 2, we formalize our optimization problem and describe its reduction
to Integer Linear Programming (ILP), while referring to a recognized ILP solver.
Section 3 suggests a heuristic method for finding a near-optimal cloudification
solution. Section 4 describes a high-level protocol for seamless on-line transfer
from the original network to its given cloudified version.

252 Y. Dinitz et al.

a gc
b

e

f h

j

d

i

Cloud Provider #1

Cloud Provider #2

Cloud Provider #3

Fig. 2. Possible cloudification of the network in Fig. 1b.

2 Formal Problem Statement and Its Reduction to ILP

The formal cloudification problem instance is defined:

– by graph G = (V,E,w) of the network to be cloudified, with the function w
of link loads,

– by the set P = {CPp} of the cloud providers,
– by the “entrance fee” costs cp ≥ 0 of using cloud CPp,
– by the costs cvp ≥ 0 of virtualizing node v ∈ V to cloud CPp, and
– by the costs ctpq ≥ 0 of transferring a unit of data from cloud CPp to cloud
CPq (including the case p = q).

Our goal is to find a minimal total cost cloudification function f : V → P.
The cloudification problem is NP-hard, by the following reduction of one of

the versions of the k-way cut problem to it. As a consequence, we cannot hope
to find an effective algorithm for solving the cloudification problem.

The basic version of k-way cut problem is as follows. Given an undirected
graph G = (V,E) with an assignment of weights to the edges w : E → N and
an integer k ∈ {2, 3, . . . , |V |}, a k-way cut is a partition of V into k disjoint sets
C1, C2, . . . , Ck; its weight is

k−1∑

i=1

k∑

j=i+1

∑

(u,v)∈E,u∈Ci,v∈Cj

w(v1, v2).

We look for a k-way cut of the minimal weight. In the problem version that we
choose, we also specify k vertices and ask for the minimum k-cut which separates

Network Cloudification 253

these vertices among each of the sets. The NP-hardness of this version of the
k-way cut problem is proved in [6].

For any instance of the chosen version of k-way cut problem (with the notion
as above), we define the corresponding instance of the cloudification problem
as follows. Let us denote the specified k vertices by vi, 1 ≤ i ≤ k. Let us set
M =

∑
e∈E w(e) + 1. The cloud providers CPp correspond to Cp, 1 ≤ p ≤ k, all

costs cp are 0, all costs cvp equal M , except for all cvpp which are 0, all costs ctpq
are 1, except for the case p = q where they are 0. The equivalence of the above
two problem instances is implied by the following two observations:

1. For all mappings f satisfying f(vp) = Cp for all p, the pre-images of Cp form
a k-way cut as required, and vice versa, so that the cost of f equals the weight
of that k-way cut and that common weight is at most M − 1.

2. For all other mappings, the cost of f is at least M .

We suggest a reduction to Integer Linear Programming (ILP) in order to
solve the cloudification problem. The motivation for our choice is as follows.
One of the currently widely used ways to solve hard problems is via a recognized
solver, which works successfully for many large problem instances in a reasonable
time. The most known solvers of this kind are those for SAT (satisfiability) and
LP (linear programming) problems. Also software Gurobi [7] is known to work
quite efficiently in many large ILP instances.

In what follows, we describe the ILP problem instance that finds an optimal
cloudification function. The variable set is composed of the three following groups
of Boolean variables:

– {xvp}, v ∈ V,CPp ∈ P, where xvp = 1 iff f(v) = CPp;
– {yepq}, e = (v, v′) ∈ E,CPp, CPq ∈ P, where yepq = 1 iff f(v) = CPp,

f(v′) = CPq.
– {zp}, CPp ∈ P, where zp = 1 iff cloud CPp is used by f at least once.

The goal function and the restrictions are as follows:

Minimize
∑

v∈V,CPp∈P
cvp · xvp +

∑

e∈E CPp,CPq∈P
ctpq · yepq +

∑

CPp∈P
cp · zp, (1)

subject to:
∑

CPp∈P
xvp = 1 (v ∈ V),

∑

CPq∈P
yepq = xvp (e = (v, v′) ∈ E, CPp ∈ P),

∑

CPp∈P
yepq = xv′q (e = (v, v′) ∈ E, CPq ∈ P),

xvp ≤ zp (v ∈ V, CPp ∈ P),

254 Y. Dinitz et al.

Let us show that the above ILP problem instance is equivalent to the given
optimization problem instance. Pay attention that all the variables have values
either 0 or 1, as required by their meanings. The first equation implies that each
network node is mapped to exactly one cloud. The second and third equations
imply that each network link (v, v′) goes from the cloud image of node v to
the cloud image of node v′. The inequality xvp ≤ zp implies that the flag zp
is set to 1 if at least one network node is mapped to cloud CPp. Subject to
all those conditions, the set of feasible solutions and goal function of the ILP
problem instance correspond exactly to those of the original problem instance,
as required.

3 Heuristic Approach

It might be that the ILP solution is computationally too expensive. For example,
for very large networks it will take a very long time to find a solution. We propose
the following heuristic approach for such instances.

The heuristic is based on repeated random choice of a feasible solution. Each
time a random solution is selected, a greedy algorithm is used to move to a neigh-
boring configuration with minimal cost, until a solution with (local) minimum
cost is reached. A solution is neighbor to another solution iff there exists exactly
one element or function (e.g., firewall) instance that is assigned to a different
cloud, while all other element or function instances are identically located in both
solutions. Note that the number of (solution) neighbors is proportional to the
number of cloud suppliers multiplied by the number of elements and functions.
Moreover, the cost of configuring neighboring solutions can be easily computed
based on the cost of the configuration.

The heuristic stops when successive k randomly chosen solutions and follow-
ing greedy traces from the chosen solution do not improve the already known
minimum cost. There, k is a constant chosen in-advance.

Another possible criteria for terminating the heuristic is the ratio of a lower
bound on the total cost. An obvious cost lower bound is the sum of the minimal
costs of the function instances (according to the cost lists of the cloud suppliers)
discarding the communication costs among the function instances. After each
iteration of the heuristic, one can compute the ratio between the minimal cost
found by the heuristic so far and the lower bound. The heuristic stops when
either no improvement in the cost can be obtained in k successive iterations or
the ratio of a lower bound is good enough prior to reaching k.

4 Launching the Cloudified Version

In this section, we assume that the cloudified configuration NC of the original
network N is already chosen. Moreover, that the cloud controllers already sent
instructions to the corresponding cloud elements to begin working together as a
virtual copy of N . The remaining task is arranging a seamless (“smooth”) way
of launching the virtual version NC instead of N . The challenge is to arrange

Network Cloudification 255

the replacement process so that sources and destinations of the flows transferred
via N would not feel any trouble from changing the flow route from N to NC ,
except for as small as possible temporary delays in arriving packets during the
update period.

We assume that the clouds have sufficient resources, so that no congestion
on links and routers can be expected. In such case, we can execute re-routing
of all flows independently in-parallel. In what follows, we suggest the launching
protocol for the case of a single flow. By the above assumption, treating all flows
accordingly to the same protocol would solve the re-routing problem as above
in the general case. In order to simplify the presentation, we assume that there
is a single controller C instructing the entire cloudified configuration NC , which
is in contact with elements of N , when needed; in the general case of several
controllers, they should be synchronized.

Let us denote the flow by F , its source by s, its destination by d, its current
route from s to d by R, and its new (cloudified) route from the cloud image sC
of s to the cloud image dC of d by RC . Source s is linked to sC and dC is linked
to destination d. Each one of R and RC contains the same (virtual) network
functions processing the packets in F . It is essential that all packets in F : a) will
arrive at d in the original order of their sending from s, and b) will be processed
by each network function in the same order. Moreover, the protocol should be
arranged so that the state of any network function NFC on RC when processing
each packet p would be the same as if all packets sent before p were processed by
its prototype NF on R. The delays in transferring the packets should be made
as minimal as possible.

A special challenge is as follows. We assume that when the cloudified route
RC is ready and packets of F begin to be sent along it, their transfer along RC

might be slow at the beginning and will be accelerated to a reasonable level only
after some period of time. In order to avoid delays in the packets transfer to d, we
would like to duplicate F along both routes R and RC during the stabilization
period at RC . During that period, the packets arriving at d along RC will be
ignored. Only when the transfer rate along RC would stabilize, the flow transfer
along R could be canceled.

For illustration see Fig. 3. In the figure, we assume that R contains network
functions NF1 and NF2 and that RC contains their copies NF1C and NF2C .

Launching Protocol. In the following protocol, we use the notion of a
“marker”. It is a special packet labeled as belonging to F , with some instructions
provided by C on its specific processing by certain routers on its way. Anytime
when sending instructions to s by C is mentioned, it means interacting with s
via its image sC ; similarly on sending messages to C by d, made via dc. The
protocol items are executed in the logical order.

– The controller C sends marker m0 to s, to be forwarded along RC and to be
returned to C by d.

– When m0 arrives at C, the controller C instructs dC : (a) to buffer all pack-
ets of F arriving via the last link of RC , and (b) to inform the controller
permanently on the rate of arrival of such packets.

256 Y. Dinitz et al.

Controller

Original
Network

Cloud

NF1C NF2C

NF1 NF2

sC dC

R

RCmC

m

Rate stabilized on RC

State State
s d

Fig. 3. Illustration to the launching protocol

– The controller C sends marker m along R, to be returned to C by d, and
marker mC to s, to be forwarded along RC and to be returned to C by dC .
The controller instructs s to duplicate all packets of flow F to the first link
of RC , while keeping sending them along R.

– When marker m arrives at some network function NF , a special instruction
at m commands NF to send its state S to C. When state S arrives at C, it is
forwarded to the cloudified copy NFC of NF .

– When marker mC arrives at copy NFC of some network function NF , a
special instruction at mC commands NFC to suspend processing the packets
of F , by buffering them up to receiving the state of NF from C. When that
state is received, it is installed at NFC . After that, processing of F at NFC

is released: the buffered packets of F are processed first, and when the buffer
becomes empty, the buffering of F at NFC is canceled.

– After marker m arrives at C, and C also decides that the packets arrival rate
on RC is stabilized at a reasonable level, the controller does the following. It
sends: (a) marker m′ along R, to be returned to C by d, and (b) marker m′

C

to s to be forwarded along RC and to be buffered at dC as all other packets
of F , with informing C on its buffering. Besides, it instructs s to cancel the
duplication of F , sending the further packets of F on RC only.

– When marker m′ arrives at C, and C is also informed by dC on the buffering
of m′

C , the controller C instructs dC : (a) to erase all the packets up to m′
C ,

included, from the buffer of F , and (b) to release forwarding the packets of
F to d: the buffered packets of F are processed first, and when the buffer
becomes empty, the buffering of F at dC is canceled.

Let us briefly show the correctness and efficiency of the protocol.

– When m0 arrives at C, the entire route RC is known to be ready for using
it for F . The controller waits for that moment before beginning the usage of
RC in order to ensure real transmitting along RC .

Network Cloudification 257

– When marker m arrives at some network function NF , this means that all
packets sent along R before the beginning of duplication were already pro-
cessed by NF . At that moment, the current state of NF is exactly the state
that NFC should begin processing the packets of flow F from. Accordingly,
the suspending and releasing processing at NFC as in the protocol is exactly
what is needed for the correctness of the processing of flow F at NFC . Besides,
the way of state transferring as in the protocol is as efficient as possible in
SDN.

– Waiting for both the arrival of marker m at C, meaning that all packets of F
sent along R before the beginning of duplication at s were already accepted
at d, and for the report on stabilization of the arrival rate of F on RC is
exactly what is needed to C for initializing dismantling route R at the earliest
possible moment.

– The arrival of marker m′ at C means that all packets of F sent along R before
the finishing of duplication at s were already accepted at d. After that, the
report of dC on buffering m′

C means that the packets of F arriving at dC
after m′

C (i.e., those sent along RC after canceling the duplication) should be
forwarded to d. Exactly this is arranged at dC by the protocol.

Launching Variants and Discussion. Let us describe briefly two specific
cases, implying some changes in arranging the launching of the cloudified route
of F .

1. It may happen that we are sure that the transfer rate on route RC will be
reasonable from the very beginning of its work. Then, we could cancel the
duplication of packets of F as above, so that each packet of F will arrive at
d only once. In order to keep the FIFO order of processing of F at d, the
controller instructs d to buffer all packets of F arriving on RC . This buffering
will be canceled by the controller only when marker m will arrive at C. After
that, processing of the packets of F arriving at dC via RC is released: the
buffered packets, if any, are processed first, and when the buffer becomes
empty, the buffering is canceled.

2. It may happen that processing of F by (some of) network functions on R
involves changes in some global data base, so that the double processing of
packets by both those functions and their cloudified versions would be wrong.
In such a case, we can send the copies of real packets of F on RC with a special
instruction not to process them by the copies of such network functions. If
also this would not be possible, we can send dummy packets of F along RC ,
waiting for the stabilization rate of their arrival at dC . (Note that it might
happen that canceling the processing of packets of F at network functions
at RC would imply a not so adequate measuring of the arrival rate of those
packets at dC .)

We would like to mention that the protocol provided in Sect. 4 is a high-
level one not only for saving place in the paper and attention of the reader. The
OpenFlow protocol suffers from the lack of feedback from switches/routers to

258 Y. Dinitz et al.

the controller on finishing the execution of operations. Therefore, composing a
low level protocol as above based OpenFlow encounters problems. This results
in a need of including sometimes heavy and/or time-consuming additions to the
protocol and even a need of enhancing OpenFlow specifications. See [4] for some
suggestions in this direction.

5 Conclusions

We presented the first seamless network cloudification scheme. The scheme is
composed of: (1) techniques for determining an optimal assignment of network
elements and functions to cloud suppliers, and (2) an on-line communication
protocol for re-routing to the chosen cloud virtual elements and functions during
regular operation in a seamless manner.

In the framework of future work on our research, it would be useful to take
a deeper look at whether the cloudification problem has similarities with other
known optimization problems related to the cloud, in what concerns definitions
and used methods of solution. Besides, an experimentation related to our results
is needed. The restrictions on the problem size implied by the current ILP solvers
could be cleared up. An investigation that shows how good is the suggested
heuristic in practice could be made. The comparison of the results achieved by
the suggested heuristic and by ILP solvers could be made too.

References

1. Delaët, S., Dolev, S., Khankin, D., Tzur-David, S., Godinger, T.: Seamless SDN
route updates. In: 2015 IEEE 14th International Symposium on Network Com-
puting and Applications, pp. 120–125 (2015). https://doi.org/10.1109/NCA.2015.
24

2. Delaët, S., Dolev, S., Khankin, D., Tzur-David, S.: Make&activate-before-break
for seamless SDN route updates. Comput. Netw. 147, 81–97 (2018). https://doi.
org/10.1016/j.comnet.2018.10.005

3. Dinitz, Y., Dolev, S., Khankin, D.: Dependence graph and master switch for seam-
less dependent routes replacement in SDN (extended abstract). In: 2017 IEEE
16th International Symposium on Network Computing and Applications (NCA),
pp. 1–7. https://doi.org/10.1109/NCA.2017.8171386

4. Dinitz, Y., Dolev, S., Khankin, D.: Make&activate-before-break: policy preserv-
ing seamless routes replacement in SDN. In: Lotker, Z., Patt-Shamir, B. (eds.)
SIROCCO 2018. LNCS, vol. 11085, pp. 34–37. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-01325-7 6

5. Dolev, S., Khankin, D.: Monitorability bounds via expander, sparsifier and random
walks. In: El Abbadi, A., Garbinato, B. (eds.) NETYS 2017. LNCS, vol. 10299, pp.
307–321. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59647-1 23

6. Goldschmidt, O., Hochbaum, D.S.: Polynomial algorithm for the k-cut problem. In:
1998 29th Annual IEEE Symposium on Foundations of Computer Science (FOCS
1988), pp. 444–451 (1988)

7. Gurobi Optimization: Gurobi optimizer, 2019 (2019). http://www.gurobi.com

https://doi.org/10.1109/NCA.2015.24
https://doi.org/10.1109/NCA.2015.24
https://doi.org/10.1016/j.comnet.2018.10.005
https://doi.org/10.1016/j.comnet.2018.10.005
https://doi.org/10.1109/NCA.2017.8171386
https://doi.org/10.1007/978-3-030-01325-7_6
https://doi.org/10.1007/978-3-030-01325-7_6
https://doi.org/10.1007/978-3-319-59647-1_23
http://www.gurobi.com

Network Cloudification 259

8. Kreutz, D., Ramos, F.M., Verissimo, P.E., Rothenberg, C.E., Azodolmolky, S.,
Uhlig, S.: Software-defined networking: a comprehensive survey. Proc. IEEE
103(1), 14–76 (2015)

9. ONF: OpenFlow Switch Specification Ver 1.5.1. Open Networking Foundation.
https://www.opennetworking.org/software-defined-standards/specifications/

10. Yu, M., Yi, Y., Rexford, J., Chiang, M.: Rethinking virtual network embedding:
Substrate support for path splitting and migration. SIGCOMMComput. Commun.
Rev. 38(2), 17–29 (2008). https://doi.org/10.1145/1355734.1355737

https://www.opennetworking.org/software-defined-standards/specifications/
https://doi.org/10.1145/1355734.1355737

New Goal Recognition Algorithms
Using Attack Graphs

Reuth Mirsky(B), Ya’ar Shalom(B), Ahmad Majadly(B), Kobi Gal(B),
Rami Puzis(B), and Ariel Felner(B)

Ben-Gurion University of the Negev, Beersheba, Israel
{dekelr,yaarsh,ahmadmaj,kobig,puzis,felner}@bgu.ac.il

Abstract. Goal recognition is the task of inferring the goal of an actor
given its observed actions. Attack graphs are a common representation
of assets, vulnerabilities, and exploits used for analysis of potential intru-
sions in computer networks. This paper introduces new goal recognition
algorithms on attack graphs. The main challenges involving goal recog-
nition in cyber security include dealing with noisy and partial observa-
tions as well as the need for fast, near-real-time performance. To this
end we propose improvements to existing planning-based algorithms for
goal recognition, reducing their time complexity and allowing them to
handle noisy observations. We also introduce two new metric-based algo-
rithms for goal recognition. Experimental results show that the metric
based algorithms improve performance when compared to the planning
based algorithms, in terms of accuracy and runtime, thus enabling goal
recognition to be carried out in near-real-time. These algorithms can
potentially improve both risk management and alert correlation mecha-
nisms for intrusion detection.

1 Introduction

Attack Graphs combine vulnerabilities, exploits, assets, and connectivity among
the nodes in a computer network into a singe concise model that encompasses all
attack scenarios where an attacker can reach its goal [4,30]. Attack graphs have
been used in past to asses the security risk of a computer network [33], improve
resilience of the network by patching vulnerabilities that are the most important
for the overall network security, optimize sensors placement [29], correlate alerts
for efficient intrusion detection [37], penetration testing [39] and more.

One of the most challenging and yet important problems in security opera-
tions management is reconstructing the attack scenario to understand how did
the attacker breach the network and recognizing the adversary’s goals to antic-
ipate his future actions [2,22,34]. Goal recognition is a key AI problem that
deals with reasoning about an actor’s goals according to a sequence of observed
actions [45]. This paper studies the goal recognition problem for time-critical
security settings where up to date insights about the possible attack goals and
yet unobserved attacker’s actions should be presented to the analyst by the
recognizer.
c© Springer Nature Switzerland AG 2019
S. Dolev et al. (Eds.): CSCML 2019, LNCS 11527, pp. 260–278, 2019.
https://doi.org/10.1007/978-3-030-20951-3_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20951-3_23&domain=pdf
https://doi.org/10.1007/978-3-030-20951-3_23

New Goal Recognition Algorithms Using Attack Graphs 261

Fig. 1. Components of the proposed approach.

Consider an attacker that aims to take control of a target node in a communi-
cation network. Following the initial penetration an attacker establishes presence
in the victim computer network and perform a series of actions consisting of lat-
eral movements, privilege escalations, etc. up until reaching the target node.
These actions represent its attack plan. An Intrusion Detection System (IDS)
monitors the nodes in the network and detects malicious behavior of potential
attackers in with certain accuracy. The alerts produced by IDS are mapped to
their respective hosts. Preliminary inspection of logs and sensory information
may infer the tools and exploits used in the course of attack execution. Given
these (noisy) observations the goal recognition task is to infer the most probable
goal (target node) of the attacker as well as its plan for achieving this goal.

There are two challenges facing goal recognition in this setting. First, the
recognition must be done in near real time in order to be able to counter the
attack as soon as possible. Thus, we seek algorithms with short running times.
However, existing plan recognizers rely on making calls to costly planning algo-
rithms during runtime. Second, the incorrect observations, including false posi-
tive/false negative alerts, hinder the goal recognition task using standard algo-
rithms, thus the proposed goal recognition algorithm must be robust to noisy
and partial observations.

While several works have tried to reason about probabilistic goal recogni-
tion for cyber security, they were evaluated theoretically [13,15] or using toy
problems [6,25], all using various relaxations that do not apply to real time
settings. In addition, while there exist planning algorithms for goal recogni-
tion [32,35,42,45], they require running off-the-shelf planners online as part of
the recognition task of determining the most likely goals. The planner, which
is the computational bottleneck of these approaches, is called at least once for
each goal so as to be able to compare the observed actions to the optimal plan
to that goal. This paper enhances existing approaches as well as introduces new
approaches for goal recognition, which reduce the number of times the planner is
called, making them significantly more efficient, without hindering their empiri-
cal performance. The main advantage of our new approaches is that they reduce
and even eliminate the need to call planners online.

262 R. Mirsky et al.

Figure 1 summarizes our proposed framework, working in a pipeline with
existing intrusion detection approaches that correlate and aggregate alerts [1,
8]. A PDDL representation of the attack graph (Fig. 1 left) is generated from
the network (Fig. 1 bottom). Alerts generated by an IDS deployed within the
network are compiled into observations (Fig. 1 middle). The inputs for the goal
recognition algorithm (Fig. 1 top) are the attack graphs and the alerts. The
goal recognition algorithm outputs a distribution over the goals of the potential
attacker (Fig. 1 right), which can be potentially used by the IDS to refine future
alerts. The components presented in this work are represented with solid lines,
where other components are represented using dashed lines.

This paper makes the following contributions:

1. We enhance the benchmark planning-based algorithm for goal recognition [35]
to real time settings by reducing its time complexity and allowing it to better
handle noisy and missing observations. This is described in Sect. 4;

2. In Sect. 5 we introduce a new family of goal recognition algorithms that com-
pletely avoid running planners in the recognition phase. Importantly, our
algorithms execute such planners in a preprocessing phase and their output
can be shared by many online queries on the same network. We describe novel
metrics to compute the distance between the actor’s observed actions and the
optimal plan to the goal (calculated in the preprocessing phase);

3. Finally (in Sect. 6) we experimented with of all these algorithms on attack
graphs representing a real world network and analyze the pros and cons of
each of the approaches. Our metric-based algorithms always run faster than
the planning-based approaches, even on noisy observations. In addition, they
provide equal or better predictions except for input with missing observations,
where the planning-based approaches are superior.

2 Goal Recognition

We follow a recent line of research known as goal recognition as planning [35].
The input is a planning theory, usually described in PDDL, and a set of possible
goals. The output is one of the goals or a distribution over all possible goals. This
opened a line of algorithms that execute planners to find plans to the goal with
or without the observations [12,23,36,41,42,44]. Some works added landmark-
based heuristics [31] and cost propagation [10] to the planning algorithms.

We next briefly mention some basic concepts in this research direction, as
presented by Ramı́rez and Geffner [35], simplified for brevity. In a goal recogni-
tion problem, there is an observer and an actor, and the observer needs to infer
the goal of the actor. The input to the observer is a theory description and a
sequence of observations.

Definition 1. A Theory Description (D) is a tuple D = 〈S,A,G, I, C〉,
where S is a set of states, A is a set of actions representing transitions from
state to state, G ⊆ S is the goals the actor can achieve and I ∈ S is the initial
state. C is a cost function mapping any action in A to a real number.

New Goal Recognition Algorithms Using Attack Graphs 263

Each state in S is represented by a set of predicates. All predicates in the
state are assumed to hold true in the environment, and predicates that do not
appear in the state are assumed to be false. Each action a in A has preconditions
and effects, describing what should be true in the state before executing a and
after its execution, respectively. They are both represented as a set of predicates.
The actor is assumed to plan by choosing a goal and then carrying out a plan
for reaching this goal.

Definition 2. A plan for achieving a goal g ∈ G is a sequence of actions
a1, . . . , an such that:

– The execution starts at I (the predicates in the precondition of the first action
are all in I).

– For each ai ∈ A, the state before the execution contains all of the predicates
in ai’s precondition.

– After executing all actions in the sequence, all the predicates in g are true.

Given a theory with n possible goals, g1, . . . , gn and an observation sequence
O = o1, . . . , ot, a solution to the goal recognition problem is a distribution over
the goals such that p(gi | O) is the likelihood that the actor is pursuing goal gi

given O.
In order to suit a real world scenario we make the following assumptions.

First, we allow noisy observation sequences by assuming that it contains false
alerts, i.e., the input may falsely contain some observed actions. Second, we
assume that there are some missing observations, i.e., some actions of the actor
are not reported in the input sequence.

2.1 Other Goal Recognition Works

While we use the goal recognition as planning approach, we note that there are
different approaches to represent a theory in goal recognition, including policy-
based, library-based and others [3,45].

For example, YAPPR [14] takes as input a plan library and can output both
a distribution over the goals of the actor and predictions about future actions.
DOPLAR [20] extended YAPPR using probabilistic reasoning to reach better
performance, at the cost of completeness.

These works require to model the settings using a plan library, which is
difficult to elicit and susceptible to faults. Bui [7] uses particle filtering to provide
approximate solutions to goal recognition problems. These works all rely on a
model of the plans or strategies that the actor can execute.

While adversarial goal recognition was investigated in the past [13,21,22,25],
none of the works mentioned above have combined a PDDL description that
can represent an attack graph in order to recognize the goals of an attacker.
Masters and Sardina [24] recently presented an intersection of deception with
goal recognition in the context of path-planning. We next dive deeper into the
attack graph representation.

264 R. Mirsky et al.

3 Attack Graphs

3.1 Definitions and Background

An attack graph is a description of a network that comprises hosts, their vul-
nerabilities, and their connectivity to one another [5]. Formally,

Definition 3. An attack graph A is an undirected graph A = 〈V,E〉 where:

– V is a set of vertices, such that each v ∈ V represents a single host in the
network. Each host has a single operating system (OS) and it contains a list
of installed software. Each piece of such software can hold a vulnerability,
which can be exploited by an attacker to gain control over the host.

– E is a set of edges, representing the connectivity of the hosts.

A potential attacker traverses over the network by reaching a host and gaining
control over it. After gaining control over a host, all of its neighbors become
accessible to the attacker. The attacker then may choose to traverse one of these
edges and try to take control over the corresponding neighbor. Gaining control
requires to exploit a specific vulnerability, which depends on a combination of
the OS and software available on that host. In the real world, vulnerabilities
might be different from one computer to another even if they share similar OS
and software, and there is no way to detect the specific vulnerabilities in advance.

Swiler et al. [43] presented an automatic tool for generating an attack graph
representation of a computer network. This work has been extended to handle
networks at a larger scale [27]. Later, Noel and Jajodia [29] presented a method
for optimizing the placement of intrusion detection system (IDS) sensors and
prioritizing IDS alerts using attack graph analysis.

Recent studies continued improving the attack graph generation and analysis
approaches toward automated pentesting [9,16,18,40].

Hoffmann [18] discusses the suitability of the “CyberSecurity” benchmark
at the International Planning Competition (IPC) and analyzes the importance
of factoring uncertainty when it comes to understanding the behavior of poten-
tial hacking actors. However, analysis of an attack graph has only focused on
mapping of vulnerabilities and pentesting, rather than on realtime intrusion
detection.

A different line of research does utilize the attack graphs for prioritizing alerts
generated by IDS. These works use attack graphs for alert correlations [28,37,46,
47]. Modern attacks are getting more complex and the number of alerts emerging
from the system increases significantly. Reasoning about temporal order and
causality of alerts, allows detecting false negative and false positive alerts more
efficiently [28,37]. This line of research has done a great deal in refining the
alerts, but did not reason about the ultimate goal of the attacker.

In this work, we feed the alerts as observations into a goal recognizer with
the attack graph as the underlying theory description. Thus, the attack graph
is used directly for online goal recognition. Under these settings, the attacker
might wish to obfuscate the attack by executing irrelevant actions, or the alert
aggregation might produce false positive alerts which are not part of a valid
attack.

New Goal Recognition Algorithms Using Attack Graphs 265

Fig. 2. Simple network example.

3.2 Attack Graphs as PDDL

The theory we use is based on the work of Shmaryahu [38], and was compiled
to match the requirements of our goal recognition algorithms. The theory has
4 types of variables, host, os, sw, vuln, representing hosts, operating systems,
software and vulnerabilities respectively.

These types are used to define 7 parameterized predicates:

1. (LNK,h1, h2) - true if h1 and h2 are linked by an edge on the attack graph.
2. (CNTRL, h) - true if the attacker controls h.
3. (SW, h, s) - true if the software s is installed on the host h.
4. (OS, h, o) - true if host h runs operating system o.
5. (V LNR, v, h) - true if vulnerability v exists in host h.
6. (MATCH, o, s, v) - true if vulnerability v exists in software s under operating

system o.
7. (ACCESS, h) - true if host h is accessible by the attacker.

In addition, the PDDL theory defines the actions the attacker can perform:

– GetAccess(h1, h2), which has the preconditions that h1 and h2 are linked and
that the attacker is controlling h1. The effect is that host h2 is now accessible
to the attacker.

– RunSW (h, sw, os, v) is the action used to run some software sw on the system
os of host h, that might exploit a vulnerability v. This combination might be
a valid software usage, or an exploit.

Using these actions, reaching a goal is a process of traversing to a host,
then running some software on it in order to gain control over it. This is done
repeatedly, until taking control on a connected path to the goal host.

Throughout the paper we will use the following running example from Fig. 2.
This example includes a network with 18 nodes, each node represents a host
in the network, and edges represent connectivity between nodes. An attacker
commences at host a, with the goal of attacking node g1 or g2. Observations
(hosts that are controlled by the attacker) are shown as dark nodes. The cost of
connecting (GetAccess action) and gaining control over a node (RunSW action)
is 1. Note that there is no notion of backtracking because there is no need to
undo a connection. Once control has been established for a given node, it can
always be used to connect to hosts at adjacent nodes.

266 R. Mirsky et al.

4 Planning-Based Algorithms for GR

All of the methods we present rely on calling a planning algorithm to compute
the cost of potential plans that the actor may be pursuing. Running the planner
is the computational bottleneck of all these approaches, especially in realtime
systems as the one that is the focus of this paper. The main advantage of our new
approaches is that they reduce and even eliminate the need to call such planners
online. We distinguish between calls to the planner that are done offline, that
is in a preprocessing phase before observations have been received and online,
during recognition.

We first describe two variants of the benchmark planning-based algorithm
by Ramı́rez and Geffner [35] (denoted R&G). Then, we will introduce our further
enhancement to this approach. In the next section we will introduce a new
metric-based approach for GR.

Table 1. Number of calls to planner by each method

offline online

R&G 2|G|
M&S |G| |G|
R&G+ |G| |G|
PED |G|
APC |G|

4.1 The R&G Approach

Ramı́rez and Geffner [35] introduced the first planning-based algorithm for goal
recognition (R&G).

Given a theory D and an observation sequence O, R&G introduces a modified
theory that takes into account O:

Definition 4. A Modified Theory (D′) given D and O is a tuple D′ =
〈S,A′, G, I, C〉, where for each action a ∈ A, there is a parallel action in A′

with a possible extra predicate in its effects list: pa when a is the first observa-
tion in O and pb → pa when b is the action that immediately precedes a in O.

In a transformed theory and given a plan π, the fluent pa is true after execut-
ing π if and only if π satisfies all observations in O until a. Using D′, R&G use an
off-the-shelf classical planner in order to calculate the following two quantities:

1. The minimal cost of achieving the goal gi such that the plan satisfies all
observations in O. This cost is denoted Ci(O);

New Goal Recognition Algorithms Using Attack Graphs 267

2. The minimal cost of achieving the goal gi such that it does not satisfy the
observation sequence O. This cost is denoted Ci(¬O).

The term L(gi | O) measures the proximity (in terms of cost) between a plan
that is directly based on the observations and the optimal plan for reaching gi

and is defined to be:
L(gi | O) = Ci(O) − Ci(¬O) (1)

Intuitively, as the difference grows larger, this increases the likelihood of goal
gi given O. Given a set of observations O = {o1, . . . , ot}, the R&G algorithm
computes the terms Ci(O) and Ci(¬O) by calling the planner once for each goal
gi given O during the recognition phase. For full details we refer to their paper.
The total number of calls to the planner is 2|G| (see Table 1).

The score given for goal gi given the observation sequence O is defined as:

p(gi | O) ∼= 1
eβ·L(gi|O) + 1

(2)

Where 0 ≤ β ≤ 1 is used to soften the impact of observations that deviate from
the optimal plan. After p(gi | O) is calculated for all gi ∈ G, they are normalized
to provide a valid probability distribution.

Consider the running example from Fig. 2 and the observation sequence O =
{a, h, i, j, k, l, p}. The optimal plan for g1 is P1 = {a, b, c, d, g1}. P1 is also the
optimal plan that does not fully follow O (it does not visit any node in O except
a). Similarly, the optimal plan for g2 is P2 = {a, h, i, j, k, l,m, n, o, g2}. P2 is also
the optimal plan that does not fully follow O (it does not visit node p). We
assume a stardard cost of 1 for gaining control over each of the nodes. Thus we
have that C1(P1) = 5 and C2(P2) = 10. Assuming β = 1 (for the sake of the
example), we get the following values:

L(g1 | O) = C1(O ∪ {b, c, d, g1}) − C1(P1) = 6

L(g2 | O) = C2(O ∪ {q, n, o, g2}) − C2(P2) = 1

p(g1 | O) ∼= 1

e6 + 1
= 0.002, p(g2 | O) ∼= 1

e1 + 1
= 0.269

After normalization we get the goal probabilities p(g1 | O) = 0.007 and p(g2 |
O) = 0.993.

4.2 The M&S Approach

Masters and Sardina [23] (M&S) suggested replacing the Ci(¬O) term with Ci,
the minimal cost of achieving the goal gi without reference to the observations.
This term can be computed by calling the planner offline without referencing
the observations. The resulting likelihood formula is as follows:

L(gi | O) = Ci(O) − Ci (3)

For example, in Fig. 2, C2 is simply the cost of the optimal plan C2(P2).
The number of calls to the planner in this approach includes |G| offline calls, for

268 R. Mirsky et al.

computing Ci for each goal, and |G| online calls, for computing Ci(O) for each
goal (see Table 1). M&S showed that using this approach significantly improves
computation time with similar performance to R&G.

In our example, given the same observation sequence O, we get the same
probability measures for the goal likelihoods of g1 and g2.

4.3 Improvement 1: Realtime Reasoning and Generalization
(R&G+)

We can use the insight from M&S to improve the R&G approach for the case in
which there is a single optimal plan. Let Pi be the optimal plan that is associated
with Ci and computed offline. During the recognition process, we distinguish
between two cases.

1. If O ⊆ Pi, that is, the observations in O are part of the optimal plan, then
by definition of Ci(O), we get that Ci(O) = Ci.

2. Otherwise, there is at least one observation in O that is not in the optimal
plan. By definition of Ci(¬O) we get that Ci(¬O) = Ci.

Note that it is always the case that Ci is a lower bound for both Ci(O) and
Ci(¬O).

We use the above insight to compute L(gi | O) using Eq. 1. We make a single
offline call to the planner to compute Ci and a single online call to compute
Ci(O) or Ci(¬O) as needed (see Table 1). Determining whether O ⊆ Pi can be
done in linear time.

In our running example, suppose O = {a, h, i, j, k, l}. M&S will output the
same plan P2 twice, once for calculating C2 (offline) and once for calculating
C2(O) (online). Our new improvement will get that P2 is in fact a plan that
contains all observations from O, and will choose to calculate C2(¬O), thus will
be able to produce the same probability distribution as R&G, with the improved
online runtime of M&S.

4.4 Improvement 2: Sunk Cost (SC)

In this approach we vary the R&G algorithm to consider the cost already
attributed to the actor from executing the actions in O. Consider the following
two scenarios based on the example in Fig. 2. In the first scenario, the observa-
tion sequence O includes the first six steps of a plan {a, h, i, j, k, l}, and a seventh
observation {p} that is not a part of the optimal plan (shown in the figure). Such
an action may possibly be the cause of a faulty alert or due to a strategic actor
(in Sect. 6 we consider the effect of noise on our algorithms). Here, we get that
C2(O) = 11 and C2(¬O) = 10 and the likelihood L(g2 | O) of goal g2 is 1 (Eq. 1).

In the second scenario, an observation sequence O′ includes {a}, the first out
of the ten steps of the optimal plan for g2, and then a non-related action {b}.
We get that C2(O′) = 6, C2(¬O′) = 5 and the likelihood L(g2 | O′) = 1. In both
scenarios, the observation sequence includes a single non-related action, and the

New Goal Recognition Algorithms Using Attack Graphs 269

score of goal g2 is the same p(g2 | O) = p(g2 | O′) = 0.27. However, if an actor
has already put the effort and executed six out of ten steps, it is more plausible
that g2 is the goal, compared to the case when only one action was executed.

We can augment the original R&G formalism to reason about the cost that
is already incurred by the actor to carry out the actions in the observation
sequence. To this end we vary the β parameter, which was a constant value in
the original R&G approach, as follows:

β =
1

min(Ci(¬O), Ci(O))
. (4)

Using this measure to compute the likelihood in Eq. 1 reduces the effect of
noisy actions in a way that considers their proportion to the optimal plan and
the observation sequence. Given this modification, we get a revised score over the
goals by which goal g2 is more likely under O than O′. (p(g2 | O) = 0.56, p(g2 |
O′) = 0.44).

Because all of the above approaches used Eq. 1 to compute the goal proba-
bility, we can modify the β parameter in any of them. In the empirical results
we use R&G+ with the sunk-cost β.

5 Metric-Based Algorithms for GR

All of the three methods of the R&G family described above must run a planner
at least once online, during the recognition phase. We propose a new paradigm
for goal recognition that is based on distance metrics between the optimal plan
(that is computed offline) and the observation sequence. It does not require online
planner executions and so its online performance is much faster. Furthermore,
as we show in the Empirical Section, in many cases their recognition is better
than the R&G family. We begin with a naive distance metric.

5.1 Plan Edit Distance (PED)

The term edit distance usually refers to distance between sequences or sets by
counting the number of edit actions needed to transform one sequence to the
other. Here, we define an edit distance metric between action sequences which
can be partial or complete plans.

The edit distance between two action sequences A and A′ is defined as the
number of actions that separate them.

Dedit(A,A′) = |AΔA′| (5)

Given an observation sequence O and a goal gi we define a distance metric that
only depends on the number of actions.

D(gi, O) = Dedit(Pi, O) (6)

270 R. Mirsky et al.

where Pi and O are the action sequences in the optimal plan for achieving gi

(computed offline) and an observation sequence O, respectively. This metric
prefers plans which have executed more steps that are part of the optimal plan.
It is naive, as it does not reason about the order by which the actions have taken
place, or the actual cost of executing the different actions. However, as we show
in the Empirical Section, in some cases this metric can be effective.

The score of goal gi (given O) is defined as:

p(gi | O) ∼= 1
D(Pi, O) + 1

(7)

We normalize to get a probability distribution. We label this algorithm by Plan
Edit Distance (PED).

To summarize, we need to call the planner |G| times offline to compute the
optimal plan Pi. Computing D(gi, O) can thus be done in linear time online.

Using this metric for the same sequence in the running example, O =
{a, h, i, j, k, l, p}, we get that D(O,P1) = 10,D(O,P2) = 5 and the goal proba-
bilities are p(g1 | O) = 0.352 and p(g2 | O) = 0.647.

5.2 Alternative Plan Cost

A more informed distance metric between the observations and the optimal plan
is based on the Alternative Plan Cost (APC) of Felner et al. [11]. Their approach
finds a minimal mapping from the states visited when executing O and the states
visited when executing the optimal plan for a given goal gi.

Let S = (s1, . . . , sn) and S′ = (s′
1, . . . , s

′
m) be two sequences of states. Out of

the several mappings suggested by Felner et al. [11], we chose a Time Dimension
Mapping M(S, S′) from the states in S to the states in S′. A time dimension
mapping is monotonic, meaning that given a mapping M with M(si) = s′

j and
M(si+l) = s′

k (for some l > 0), it must hold that j < k. This property guarantees
consistency over the order in which the states are visited in S and S′.

Given some distance measure between individual states termed Dbase, we
choose the minimal monotonic mapping M that minimizes the average distance
between S and S′:

D→(S, S′) = min
M :S→S′

∑|S|
i=1 Dbase(si,M(si))

|S| (8)

The APC approach can capture more complex relationships than PED,
depending on the Dbase metric that is selected to measure distance between
states. Given an observation sequence O and a goal gi, let S to be the sequence
of states visited while executing O and S′ be the sequence of stated visited while
executing Pi (the optimal plan to gi). The distance between O and Pi is defined
as:

D→(gi | O) = D→(S, S′) (9)

Consider the running example from Fig. 2. Reaching each node x is associated
with a state sx. The set of states in S is {sa, sh, si, sj , sk, sl, sp} such that

New Goal Recognition Algorithms Using Attack Graphs 271

each si ∈ S corresponds to observation oi ∈ O. The set of states in S′ is
{sa, sh, si, sj , sk, sl, sm, sn, so, sg2} such that each si ∈ S′ corresponds to action
pi in the optimal plan P2. The distance Dbase between individual states is defined
as the cost of the shortest path between one state to the other. The minimal
time dimension mapping from O to P2 maps any state that also exists in the
optimal plan to itself, and the state sp that deviates from the optimal plan is
mapped to sm.

∀s ∈ {sa, sh, si, sj , sk, sl}, M(s) = s

M(sp) = sm

We have that D→(gi | O) = 2/7, because Dbase(sp, sm) = 2 and 0 for all other
s, and |O| = 7.

One issue with the definition D→ is that it does not reason about the differ-
ences in the size of the optimal plan and the observation sequence. In the above
example, if the goal of the actor was m, we get the same mapping D→ as for
goal g2. To account for this issue we also need to consider the reverse mapping
D←(gi|O) from S′ to S. The APC distance metric between O and gi averages
both measures:

APC(gi | O) = (D→(gi | O) + D←(gi | O))/2 (10)

Each of the two mappings maintains the monotonicity property. Finally, the
score of a goal gi given an observation sequence O is

p(gi | O) ∼= 1
APC(gi | O) + 1

(11)

Again, this is normalized to get a probability distribution.
The minimal time dimension mapping from P2 to O maps any state in the

optimal plan that exists in the observation sequence to itself, otherwise it is
mapped to sp (which preserves monotonicity).

∀s ∈ {sa, sh, si, sj , sk, sl}, M(s) = s

∀s ∈ {sm, sn, so, sg2}, M(s) = sp

Thus, we get that the mapping cost from O to P2 is 2/7 and the mapping
cost from P2 to O is 10/10 (because the distance between p and o, for example,
is 3 – one need to reach m,n, o in order to reach o, since l was already reached
or alternatively reach q, n, o and |P2| = 10), and together APC(g2 | O) = 2/7 +
10/10 = 1.29.

For this method, we need |G| offline calls to the planner to compute the
optimal plan for each goal. Also we can build the Dbase metric offline. The online
component of this approach is to find the mapping between the observation
sequence and the optimal plan, which takes O(|O| × |Pi|) for each goal gi ∈ G
(Fig. 3).

272 R. Mirsky et al.

Fig. 3. An illustration of the network used in this work

6 Empirical Evaluation

In this section we provide an empirical comparison between the different goal
recognition algorithms. The specific attack graph we use in our evaluations con-
tains 60 hosts. The network architecture as well as the operating systems and
software ran by each host was aggregated directly from a real network, that of
a large research university.

The vulnerabilities data was randomly generated such that each host has 15
possible vulnerabilities. The initial state in the network is labeled “Internet” and
is the entry to all connections in the system. We fixed nodes h2 and h31 as two
possible goals for the attacker. The theory was encoded in PDDL as described
in Sect. 3.2.

All of the algorithms were implemented in Python, calling the FF plan-
ner [17] when required. The algorithms are R&G, M&S, R&G+SC (R&G+ with
our varied β), Plan Edit Distance (denoted PED). For the Alternative Plan
Cost (denoted APC) algorithm, we used the landmark-based distance suggested
by Hoffmann et al. [19].

We simulated attacks targeting host #31 using optimal plans to the goals
generated by the FF planner [17]. First, we deleted actions from these plans.
Then, we added noisy data to simulate false positive alerts by adding some
actions that are not part of the plan.

6.1 Prediction Quality

First, we examined whether the goal with the highest probability predicted is
indeed the actual goal. Figure 4 shows the probability distribution on our two
goals. The left blue bar is the probability predicted for the real goal (#31) while
the right orange bar is for the other goal (#2). As seen in this figure, all of the
algorithms gave goal #31 the highest probability, meaning that they managed
to capture the true goal. APC gave the highest probability, while PED was close
behind it.

New Goal Recognition Algorithms Using Attack Graphs 273

0

0.2

0.4

0.6

0.8

1

R&G M&S R&G+SC PED APC
Host #31 Host #2

Fig. 4. Probability distribution for multiple goals

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ra
o

fr
om

 O
rig

in
al

 P
ro

ba
bi

lit
y

1/SNR

R&G+SC
PED
APC
R&G
M&S

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8
Ra

o
fro

m
 O

rig
in

al
 P

ro
ba

bi
lit

y

1/SDR

R&G M&S R&G+SC PED APC

Fig. 5. Probability decline with noisy observations on left (False Positives) and missing
observations on right (False Negatives)

The planning-based algorithms gave the true goal the same score (before
normalization), but R&G+SC gave the other goal a higher score, thus after the
normalization, the true goal’s probability declined. This highlights the drawback
in giving more influence to the β parameter, which has a dampening effect – while
it is beneficial to reduce the decline in probability given noisy observations, it
also give high probability to less likely plans.

6.2 Noisy Observations

Next, we looked at different false information that can interrupt the recognition
process. When trying to perform an intrusion, an attacker is likely to try and
obfuscate the attack. These efforts can lead to False Positive alerts.

Figure 5 (left) shows the probability decline for all recognition algorithms
as more observations are noisy. The x-axis shows the Signal to Noise Ratio
(SNR) which represents the number of false observations that were injected to
the original plan in comparison to the length of the original plan, and the y-
axis represents the relative decline in probability as more noise is introduced.
As seen from this figure, R&G and M&S give the exact same values and are
the less robust to noise and the probability declines fast when introducing noisy
observations. R&G+SC is the best to deal with noise due to the plan-length
normalization of the cost. PED and APC both perform better than R&G and
M&S. Thus, all our new three algorithms outperformed the previous ones along
this measure.

274 R. Mirsky et al.

Table 2. Runtime comparison

Offline Online

R&G 0 1.7237

M&S 0.8210 0.8345

R&G+SC 0.6451 0.6578

PED 0.7251 0.0002

APC 686.7375 0.3246

6.3 Missing Observations

The second property examined is the algorithms’ sensitivity to actions that are
missing from the observations. This can be either because some of the actions
of the attacker were not recognized or because the attacker managed to hide
its actions from the alert system, or due to the fact that the attack is still
ongoing and not all of the attack steps have yet been executed. Figure 5 (right)
shows the probability decline for all recognition algorithms as more actions are
missing. The x-axis is Signal Drop Ratio (SDR), representing relative proportion
of the number of actions that were removed from the original plan, and the
y-axis represents the relative decline (the original probability was normalized
to 1) in probability of the goal as more data is missing. The planning-based
algorithms give the same results and are more robust to missing observations,
as they complete the needed missing actions anyway as part of their solution.

By contrast, both PED and APC reason about the proportion of the plan
that was executed. This results in a decline in the probability returned by these
algorithms.

6.4 Running Times

Finally, a desired attribute of a goal recognizer in an intrusion detection system
is the ability to make a recognition in real-time. Table 2 shows the online and
offline runtimes (measured in seconds) of each algorithm. They reflect the dif-
ferences in computation between the algorithms: R&G and R&G+SC require to
run the planner once more per goal, to compute an alternative plan given the
observations. PED is the lightest and requires to compute the difference between
the actions in the optimal plan and the observation sequence. APC requires to
find the landmarks achieved in the observation sequence (a traversal over the list
of landmarks) and then to compute the edit distance of two sequences of pred-
icates. This makes it the slowest method during offline planning. PED is the
fastest and APC is about an order of magnitude faster than R&G and SC, as it
does not require to run a planner during recognition. Thus, both new distance-
based algorithms are much faster but have an internal tradeoff. PED is faster but
is less robust to noise and its prediction quality (See Fig. 4). Each algorithm has
also a different cost in its preprocessing: all algorithms require to find an optimal

New Goal Recognition Algorithms Using Attack Graphs 275

plan for each goal. Additionally, APC requires to extract the set of landmarks
for each goal, a process that takes more than an order of magnitude longer than
the other algorithms, but is performed offline.

7 Summary, Discussion and Conclusions

This paper presented goal recognition algorithms on attack graphs for intrusion
detection. It utilizes state-of-the-art goal recognition algorithms using planning,
proposed a new algorithm to this family that is more adjusted to the challenges
of attack graphs, and then proposed a new approach for goal recognition and
offers two algorithms to tackle specific challenges that are interesting in the
context of an intrusion detection system. All of the algorithms are evaluated on
a real-world network and simulated attacks.

The empirical results show that all algorithms manage to deal with miss-
ing observations and false positives, while having the highest probability always
assigned to the correct goal. However, there is a clear tradeoff between the algo-
rithms in terms of robustness to noise and time.

The first group of presented algorithms (R&G, M&S and R&G+SC) handle
missing observations by extrapolating the observation sequence. This means that
they are robust to missing observations, but this comes at the cost of runtime.
The PED and APC algorithms do not require to run a planner on the observation
sequence, thus in real-time the running costs are smaller. The latter does require
the extraction of all possible landmarks, but it can be performed offline. They are
even better than the previous planning-based algorithms in their online runtime
and the prediction quality.

One limitation of the study is that it assumes a deterministic planner that
returns a single optimal plan. In many cases k (optimal) plans exist. To find
k-optimal or k-best plans one needs to execute a planner k times. This becomes
costly in terms of time [42], which is less desirable for real-time intrusion detec-
tion. Furthermore, finding k plans may not be cost-effective in our case as k-best
plans to the same goal have many overlaps and are very similar, as opposed to
plans to different goals which have much fewer overlaps if any [26].

An interesting research direction is to find new algorithms for real-time goal
recognition that take advantage of the network structure given by the attack
graph. The authors believe that this structure can be used to enhance the dis-
tance metric between states, and later be used with the alternative plan cost
calculation presented in Felner et al. [11].

References

1. Al-Mamory, S., Zhang, H.: A survey on IDS alerts processing techniques. In: The
6th WSEAS International Conference on Information Security and Privacy (2007)

2. Ang, S., Chan, H., Jiang, A.X., Yeoh, W.: Game-theoretic goal recognition models
with applications to security domains. In: Rass, S., An, B., Kiekintveld, C., Fang,
F., Schauer, S. (eds.) Decision and Game Theory for Security. LNCS, vol. 10575, pp.
256–272. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68711-7 14

https://doi.org/10.1007/978-3-319-68711-7_14

276 R. Mirsky et al.

3. Avrahami-Zilberbrand, D., Kaminka, G.: Fast and complete symbolic plan recog-
nition. In: International Joint Conference on Artificial Intelligence (2005)

4. Azer, M.A., El-Kassas, S.M., El-Soudani, M.S.: Security in ad hoc networks: from
vulnerability to risk management. In: 2009 Third International Conference on
Emerging Security Information, Systems and Technologies, SECURWARE 2009,
pp. 203–209. IEEE (2009)

5. Backes, M., Hoffmann, J., Künnemann, R., Speicher, P., Steinmetz, M.: Simu-
lated penetration testing and mitigation analysis. arXiv preprint arXiv:1705.05088
(2017)

6. Bisson, F., Kabanza, F., Benaskeur, A.R., Irandoust, H.: Provoking opponents to
facilitate the recognition of their intentions. In: AAAI (2011)

7. Bui, H.: A general model for online probabilistic plan recognition. In: International
Joint Conference on Artificial Intelligence, vol. 3, pp. 1309–1315 (2003)

8. Chyssler, T., Burschka, S., Semling, M., Lingvall, T., Burbeck, K.: Alarm reduction
and correlation in intrusion detection systems. In: DIMVA, pp. 9–24 (2004)

9. Durkota, K., Lisỳ, V., Bosanskỳ, B., Kiekintveld, C.: Optimal network security
hardening using attack graph games. In: International Joint Conference on Artifi-
cial Intelligence, pp. 526–532 (2015)

10. E-Martin, Y., R-Moreno, M., Smith, D.: A fast goal recognition technique based on
interaction estimates. In: Twenty-Fourth International Joint Conference on Artifi-
cial Intelligence (2015)

11. Felner, A., Stern, R., Rosenschein, J., Pomeransky, A.: Searching for close alter-
native plans. AAMAS 14, 211–237 (2007). https://doi.org/10.1007/s10458-006-
9006-1

12. Freedman, R., Zilberstein, S.: Integration of planning with recognition for respon-
sive interaction using classical planners. In: AAAI, pp. 4581–4588 (2017)

13. Geib, C., Goldman, R.: Plan recognition in intrusion detection systems. In: 2001
Proceedings of the DARPA Information Survivability Conference and Exposition
II, DISCEX 2001, vol. 1, pp. 46–55. IEEE (2001)

14. Geib, C., Maraist, J., Goldman, R.: A new probabilistic plan recognition algorithm
based on string rewriting. In: ICAPS, pp. 91–98 (2008)

15. Goldman, R., Friedman, S., Rye, J.: Plan recognition for network analysis: prelim-
inary report. In: AAAI Workshops on PAIR (2018)

16. Gonda, T., Shani, G., Puzis, R., Shapira, B.: Ranking vulnerability fixes using
planning graph analysis. In: IWAISe: First International Workshop on Artificial
Intelligence in Security, p. 41 (2017)

17. Hoffmann, J.: FF: the fast-forward planning system. AI Mag. 22(3), 57 (2001)
18. Hoffmann, J.: Simulated penetration testing: from “Dijkstra” to “Turing Test++”.

In: ICAPS, pp. 364–372 (2015)
19. Hoffmann, J., Porteous, J., Sebastia, L.: Ordered landmarks in planning. J. Artif.

Intell. Res. 22, 215–278 (2004)
20. Kabanza, F., Filion, J., Benaskeur, A.R., Irandoust, H.: Controlling the hypoth-

esis space in probabilistic plan recognition. In: International Joint Conference on
Artificial Intelligence, pp. 2306–2312 (2013)

21. Le Guillarme, N., Mouaddib, A., Gatepaille, S., Bellenger, A.: Adversarial intention
recognition as inverse game-theoretic planning for threat assessment. In: ICTAI,
pp. 698–705. IEEE (2016)

22. Lisỳ, V., Ṕıbil, R., Stiborek, J., Bošanskỳ, B., Pěchouček, M.: Game-theoretic
approach to adversarial plan recognition. In: ECAI, pp. 546–551. IOS Press (2012)

23. Masters, P., Sardina, S.: Cost-based goal recognition for path-planning. In:
AAMAS, pp. 750–758 (2017)

http://arxiv.org/abs/1705.05088
https://doi.org/10.1007/s10458-006-9006-1
https://doi.org/10.1007/s10458-006-9006-1

New Goal Recognition Algorithms Using Attack Graphs 277

24. Masters, P., Sardina, S.: Deceptive path-planning. In: International Joint Confer-
ence on Artificial Intelligence 2017, pp. 4368–4375. AAAI Press (2017)

25. Mirsky, R., Gal, Y., Tolpin, D.: Session analysis using plan recognition. In: Work-
shop on User Interfaces and Scheduling and Planning (UISP) (2017)

26. Mirsky, R., Stern, R., Gal, Y., Kalech, M.: Plan recognition design. In: AAAI, pp.
4971–4972 (2017)

27. Noel, S., Jajodia, S.: Managing attack graph complexity through visual hierarchi-
cal aggregation. In: Workshop on Visualization and Data Mining for Computer
Security, pp. 109–118. ACM (2004)

28. Noel, S., Robertson, E., Jajodia, S.: Correlating intrusion events and building
attack scenarios through attack graph distances. In: Computer Security Appli-
cations Conference (2004)

29. Noel, S., Jajodia, S.: Optimal IDS sensor placement and alert prioritization using
attack graphs. J. Netw. Syst. Manag. 16(3), 259–275 (2008)

30. Ou, X., Govindavajhala, S.: MulVAL: a logic-based network security analyzer. In:
14th USENIX Security Symposium. Citeseer (2005)

31. Pereira, R., Oren, N., Meneguzzi, F.: Landmark-based heuristics for goal recogni-
tion. In: AAAI (2017)

32. Pereira, R., Oren, N., Meneguzzi, F.: Plan optimality monitoring using landmarks
and planning heuristics. In: PAIR Workshop in AAAI (2017)

33. Poolsappasit, N., Dewri, R., Ray, I.: Dynamic security risk management using
Bayesian attack graphs. IEEE Trans. Dependable Secur. Comput. 9, 61–74 (2012)

34. Qin, X., Lee, W.: Attack plan recognition and prediction using causal networks.
In: 2004 20th Annual Computer Security Applications Conference, pp. 370–379.
IEEE (2004)

35. Ramı́rez, M., Geffner, H.: Plan recognition as planning. In: AAAI (2009)
36. Ramı́rez, M., Geffner, H.: Probabilistic plan recognition using off-the-shelf classical

planners. In: AAAI (2010)
37. Roschke, S., Cheng, F., Meinel, C.: A new alert correlation algorithm based on

attack graph. In: Herrero, Á., Corchado, E. (eds.) CISIS 2011. LNCS, vol. 6694,
pp. 58–67. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21323-
6 8

38. Shmaryahu, D.: Constructing plan trees for simulated penetration testing. In:
ICAPS (2016)

39. Shmaryahu, D., Shani, G., Hoffmann, J., Steinmetz, M.: Partially observable con-
tingent planning for penetration testing. In: IWAISe: First International Workshop
on Artificial Intelligence in Security, p. 33 (2017)

40. Shmaryahu, D., Shani, G., Hoffmann, J., Steinmetz, M.: Simulated penetration
testing as contingent planning. In: ICAPS (2018)

41. Shvo, M., Sohrabi, S., Mcllraith, S.: An AI planning-based approach to the multi-
agent plan recognition problem. In: PAIR Workshop in AAAI (2017)

42. Sohrabi, S., Riabov, A., Udrea, O.: Plan recognition as planning revisited. In:
International Joint Conference on Artificial Intelligence, pp. 3258–3264 (2016)

43. Swiler, L., Phillips, C., Ellis, D., Chakerian, S.: Computer-attack graph generation
tool. In: DISCEX, p. 1307. IEEE (2001)

44. Vered, M., Kaminka, G.: Heuristic online goal recognition in continuous domains.
In: International Joint Conference on Artificial Intelligence, pp. 4447–4454 (2017)

https://doi.org/10.1007/978-3-642-21323-6_8
https://doi.org/10.1007/978-3-642-21323-6_8

278 R. Mirsky et al.

45. Vered, M., Pereira, R., Magnaguagno, M., Kaminka, G., Meneguzzi, F.: Towards
online goal recognition combining goal mirroring and landmarks. In: AAMAS
(2018)

46. Wang, L., Liu, A., Jajodia, S.: Using attack graphs for correlating, hypothesizing,
and predicting intrusion alerts. Comput. Commun. 29(15), 2917–2933 (2006)

47. Zhang, S., Li, J., Chen, X., Fan, L.: Building network attack graph for alert causal
correlation. Comput. Secur. 27(5–6), 188–196 (2008)

PeerClear: Peer-to-Peer Bot-net
Detection

Amit Kumar, Nitesh Kumar, Anand Handa(B), and Sandeep Kumar Shukla

C3I Center, Department of CSE, Indian Institute of Technology, Kanpur,
Kanpur, India

{amitkr,niteshkr,ahanda,sandeeps}@cse.iitk.ac.in

Abstract. A bot-net is a network of infected hosts (bots) that works
independently under the control of a Botmaster (Bot herder), which
issues commands to bots using command and control (C&C) servers.
Bot-net architectures have advanced over time, to evade detection and
disruption. Traditionally, bot-nets used a centralized client-server archi-
tecture which had a single point of failure but with the advent of peer-
to-peer technology, the problem of single point of failure seems to have
been resolved. Gaining advantage of the decentralized nature of the P2P
architecture, botmasters started using P2P based communication mech-
anism. P2P bot-nets are highly resilient against detection even after some
bots are identified or taken down. P2P bot-nets provide central frame-
works for different cyber-crimes which include DDoS (Distributed Denial
of Service), email spam, phishing, password sniffing, etc. In this paper,
we propose PeerClear, an approach for identifying P2P bot-nets using
network traffic analysis. PeerClear uses a two-step process for identi-
fying P2P bots. In the first step, the hosts involved in P2P traffic are
detected and in the second step, the detected hosts are further analyzed
to detect bot-nets. Our evaluation shows that our approach PeerClear
outperformed several recent approaches and achieves a high detection
rate of 99.85%. We also implement multiple new approaches reported
in the literature and test on the same dataset to evaluate their relative
performance.

Keywords: Bot-net · Dynamic analysis · Machine learning ·
Malware detection

1 Introduction

According to world Internet user statistics [1], almost 50% of the world popula-
tion is connected to the Internet. Individuals use it for communication, banking
transaction, information seeking, leisure purpose, etc. Organizations use it for
their business, connecting with their customers, partners, suppliers, etc. Such
widespread usage of the Internet leads us to the new era of cyber crimes. Accord-
ing to IANS (Indo-Asian News Service), cyber crimes in India rose 19 times
between 2005 to 2014 and this is based only on the attacks that have been
exposed. Currently, there is a combat between hackers and defense agencies.
c© Springer Nature Switzerland AG 2019
S. Dolev et al. (Eds.): CSCML 2019, LNCS 11527, pp. 279–295, 2019.
https://doi.org/10.1007/978-3-030-20951-3_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20951-3_24&domain=pdf
https://doi.org/10.1007/978-3-030-20951-3_24

280 A. Kumar et al.

Among all the cyber attacks, the bots seem to be one of the biggest players in
many cyber crimes. Bots are infected machines under the control of an attacker
and the network of such infected machines constitutes the bot-net [23]. Bot
malware turns the computer into a robot that carries out tasks based on the
commands sent to it over the Internet. Bot-nets provide a number of resources to
the attackers such as bandwidth, computing power, IP diversity, etc., which allow
attackers to commit cyber crimes on a larger scale. According to Vinton Gray
Cerf known as the “Father of the Internet”, one-quarter of all world computers
are part of one or the other bot-net [4].

Realizing the gravity of bot-nets, researchers started studying bot-nets and
methods to mitigate them. Traditionally bot-nets used client-server architecture
to communicate among themselves, which has a single point of failure and is
easier to detect. To make the bot-net resilient against detection, cyber criminals
started using new architectures for bot-net communication. Peer-to-Peer (P2P)
architecture for bot-net communication comes out to be the most prominent one,
avoiding the single point of failure problem of the client-server architecture. One
such bot-net is Zeus or Zbot that had become the largest bot-net in the world
estimated to affect 3.6 million PCs around the globe according to Damballa [8].
In this paper, we present a new method for P2P bot-net detection and carry
out experiments to compare the performance of our method against recently
reported methods in the literature.

To summarize our contributions:

– We propose a novel approach, PeerClear to detect P2P bot-net over the net-
work using a flow-based approach.

– We have used a two-phase P2P bot-net detection scheme. In the first phase,
we identify the P2P hosts on the network and in the second phase, the iden-
tified hosts are further analysed to detect P2P bot-nets from P2P-benign
applications.

– Our experimental analysis shows that PeerClear achieves high detection accu-
racy of 99.85% which is better as compared to the other authors' work.

In the next section, we discuss the background study of the research. In
Sect. 3, we discuss the related work. Section 4 depicts our approach to detect
P2P bot-nets. We summarise our results in Sect. 5 and lastly, Sect. 6 concludes
the paper.

2 Background

Bot-net is derived from the word “Robot” and “Network.” It is a network of
infected hosts or zombies that run automatically and autonomously under the
control of an individual or organization. Generally, a bot-net has three working
components, first is the attacker, referred to as botmaster or bot herder, second
is the Bot, and third is the Command & Control (C&C) server.

In bot-nets, the Botmasters directly communicate with the bots using C&C
servers. The botmasters are directly connected to the bots because they have

PeerClear: Peer-to-Peer Bot-net Detection 281

a smaller attack domain. However, for bots having larger attack domain such
as Zeus [15], Waledac [18], etc., botmaster is connected to the bots through
intermediate hosts. These intermediate hosts act as a C&C servers. Nowadays
most of the researchers are interested in tracking C&C servers for identifying
structures of the bot-net, and these intermediate hosts complicate the process of
tracing back the botmaster from detected bots. The most important component
in a bot-net is the structure of its command and control channel that prevents
the bot-net from being dismantled easily. The communication used among C&C
servers and bots can be of the following two types:

– Push-Based Approach: In the push based approach, the botmaster pushes
the commands into the bots to attack. The advantage of this approach is
that the botmaster can instantaneously perform certain tasks through bots.
Thus botmaster has higher control over the bots. The main disadvantage of
this approach is that the amount of traffic generated is high and two bots
infected by the same bot-net, thus having similar traffic patterns, may lead
to an easier detection of bots.

– Pull-Based Approach: In the pull based approach, the bots periodically receive
commands from the server. The server can introduce a random delay while
delivering commands, so the bot-net has control over generated traffic. This
prevents easy detection of bots and servers. In this approach, instantaneous
execution of the command is not possible.

In this work, we are more concerned with P2P bot-net detection, which is a
collection of heterogeneously distributed resources connected by a network. The
most distinctive difference between client server networking and P2P networking
is the existence of servents (host that may act both as a server and a client at
the same time) [22].

Peer-to-Peer (P2P) Bot-net: P2P bot-nets are the most complex bot-net
known so far. The primary objective of P2P bot-nets is to remove or minimize
single point of failure problem of the IRC (Internet Relay Chat) /Web bot-nets
[21]. In P2P bot-nets, all bots form a P2P network which enables them to com-
municate and share files across the bot-net. P2P bot-nets help the attacker to
inject commands at any point in the network by routing it to all the bots. This
activity needs commands to be authenticated to prevent unauthorized injection
of commands. Authentication mechanisms such as public key cryptography are
often used. The bots need to have access to atleast one other active node to
remain connected to a P2P bot-net. For this purpose, some bot-nets use hard-
coded lists of peers while some others use network scanning. Examples of P2P
bot-net include storm bot-net, first identified around January 2007 [12]. This
bot-net infected around 50 million systems worldwide.

3 Related Work

In 2014 Yin et al. proposed a node based detection approach for detecting
P2P bot-nets [24]. They extracted network characteristics of individual hosts
with time intervals of 10, 20, 30, 60, 180 min. The captured data is sampled

282 A. Kumar et al.

for reducing the overhead of the defense system. They have used decision tree
classifiers because of its low computational complexity and high performance.
They have used only offline traffic and did not evaluate the performance of their
approach on online traffic.

Rodriguez-Gomez et al. proposed an approach to detect malicious applica-
tions associated with P2P bot-nets based on resources shared by the number of
peers in a P2P network [20]. The bot-net resources are the popular resources
and have a shorter lifetime as compared to legitimate resources. Therefore, the
main inspiration behind the approach is that the resources shared by bots in
a P2P network (bot-net resources) will be accessed in a different way than the
resources shared by the legitimate users in the P2P network. They trained two
models, one for legitimate and other for bot-net resources. Using these models,
they have found potential bot-net resources in the P2P network.

Peerminor [13], a pure behavioural system for classifying P2P bots into fam-
ilies, was presented by Kheir et al. They have used a two-stage classifier for
this purpose. In the first stage, they have built a classifier to ignore benign P2P
traffic and considered only malicious P2P traffic to reduce packet monitoring
overhead. In the second stage, they have built one class classifier for known P2P
bot families to classify the detected bots into respective families further. Peermi-
nor used flow-based features e.g, number of packets sent and received, number of
bytes sent and received, flow duration and protocols used. It is the first detection
approach that gave information about the type of bot-net infecting the systems.
Their training data-set has 794 benign P2P clusters and 1445 malicious P2P
clusters. Peerminor achieves 97% accuracy for all classes collectively.

Dilon designed a P2P bot detection algorithm using live NetFlow data [10].
NetFlow is a network protocol analyzer for observing network traffic and gath-
ering IP traffic data developed by Cisco. In this work, the Zeus bot-net network
traffic was considered and aimed at the detection of individual P2P bots within
a network perimeter. For this, they have filtered P2P traffic, the hosts with
more than four failed connection is considered as P2P host, and others are dis-
carded. For detecting Zeus, they have used two major features. Firstly, they
have used packet ratio, up packets divided by down packets with a threshold of
0.4. Secondly, they have used the traffic patterns. The Zeus bot-net control loop
periodically wakes up and contacts peers for P2P network configuration and can
be detected by the traffic pattern.

Narang et al. have presented, PeerShark [17] for detecting P2P bot-net in
the stealthier state (a state where bot-net network activity is almost negligible).
PeerShark does not require Deep Packet Inspection (DPI). Rather than using the
traditional 5-tuple (source IP, source port, destination IP, destination port, pro-
tocol) based approaches, they have used a two tuple (port oblivious and protocol
oblivious) conversation based approach. They have the following four modules
in their model. Firstly, Packet Filtering Module that filter IPv4 packets from
network traffic. Secondly, the conversation creation module that creates a list of
conversations. Then the conversation aggregation module aggregates conversa-
tions into single conversations based on some higher flow-gap value. Finally, the
classification module that used supervised machine learning algorithms to train

PeerClear: Peer-to-Peer Bot-net Detection 283

their model. Their training data-set consisted of 50,000 conversations. PeerShark
used the packet header information of TCP/UDP/IP to extract a set of features
such as the duration of the conversation, the inter-arrival time of packets, the
amount of data exchanged, a median value of inter-arrival time to classify various
P2P applications with an approximate accuracy of 97%.

In another approach, Hojjat et al. [6] proposed a botnet detection based on
behavioral analysis of the traffic. The proposed model detects P2P botnets in
the command and control phase of the life cycle of the botnet. In this phase, the
bot tries to set up a connection to its command and control server and then com-
municates with the botnet. The proposed model is based on the inferences that
bots of a botnet have uniform traffic behavior and bears specific traffic patterns
during communication. Hence, the methodology is independent of the content
and can also detect P2P botnets which use encrypted traffic. The authors have
considered a total of 9930 botnet traffic packets with 3296 extracted flows and
14680 normal traffic packets with 1233 extracted flows. They have used various
classifiers such as Bayesian Network Classifier, Naive Bayes Classifier, Support
Vector Machine, J48 Decision Tree Classifier, and Random Forest Classifier. The
maximum botnet detection accuracy achieved was 99.26% using Random Forest
Classifier.

Himanshi et al. [9] proposed a model based on the bot behavior. A two-
tier framework was implemented to detect parasitic P2P bots. There are three
stages in a P2P botnet lifecycle namely – infection stage, waiting stage, and exe-
cution stage. The proposed model detects the bot in the waiting stage i.e. before
going into the execution stage. Hence, it did not require any bot signatures. The
proposed model considered the features like bot's lifetime in the P2P network,
search request intensities, and time correlated behavior for detection of the bot-
net. The authors have considered 41,941,536 malicious P2P data packets and
25,913,400 Benign Peers packets. The maximum detection accuracy achieved by
the proposed model was approx 99%.

In 2016, Alauthaman et al. [5] came up with another P2P botnet detection
method which implemented an adaptive multilayer feed-forward NN (Neural
Network) using Decision Trees. A network traffic reduction mechanism was intro-
duced to increase the performance. It being a connection-oriented method did
not require any Deep Packet Inspection (DPI). Hence, the model was indepen-
dent of payload and used only the header information of TCP control packets.
For feature selection, a classification and regression tree method was used. From
these features, a multilayer feed-forward NN was trained using back propagation
learning algorithm. The model achieved an accuracy of 99.20%.

Although the above approaches are able to classify or detect the P2P bot-
net with high accuracy but none of them have sophisticated P2P traffic cate-
gorization methodology. They have used a more straight forward approach for
categorizing P2P traffic like failed connections threshold, destination diversity
threshold, etc. To note that PeerShark, the authors have used conversation based
approach and they have not differentiated the P2P and non-P2P traffic that we
have used in our work. Discarding non-P2P traffic have a greater impact on
the computational overhead of the developed system as less traffic needs to be

284 A. Kumar et al.

monitored. They have a good P2P traffic categorization method, but they are
using the same approach for classifying botnet as used for P2P traffic catego-
rization. Therefore there is a need for a system which can categorize P2P traffic
using all properties shown by P2P hosts and has a separate P2P bot detection
module for detecting bots using distinctive features shown by P2P botnets. Since
the dataset on which these authors calibrated their methods may be different,
we have implemented the models reported in [5,6,9,17] and evaluated them on
our dataset to obtain a fair comparison.

4 Our Approach

In the previous section, we have discussed various P2P bot-net detection methods
proposed by multiple researchers. Studying their approaches, detection methods,
and future work, we propose a two-step approach to detect P2P bot-net in
the stealthy state (a state where bot-net network activity is almost negligible).
Firstly, we have identified all the hosts which are involved in the P2P activity
and secondly, we have detected P2P bots in the identified P2P hosts as shown
in Fig. 1.

Fig. 1. Flow chart of our approach to detect P2P bot-net.

PeerClear: Peer-to-Peer Bot-net Detection 285

Dataset. For our experiment we have collected three types of data, i.e., P2P-
Benign, P2P bot-net and Non-P2P network traffic.

– P2P-Benign network Traffic: It was collected by 11 distinct hosts which exe-
cuted five different P2P benign applications (Skype, eMule, μ-Torrent, Frost-
wire, and Vuze.) for several days.

– P2P bot-net Traffic: This data was collected from Peerrush [2] dataset which
contains the P2P bot-net traffic of Storm [12], Waledac [18], and Zeus [15]
and also the P2P bot-net traffic generated from Vinchuca bot-net [16].

– Non-P2P Traffic: It was obtained from the departmental network which was
being observed over five days. Network sniffing tool based on libpcap was used
to capture the packets.

All the above data was captured in the form of a .pcap file which contains
the network information.

4.1 P2P Host Detection

The main aim of this phase is to detect all the hosts which were engaged in
P2P activity. It consists of four modules namely packet filter, feature extraction,
feature selection and classification.

Packet Filter. In this module, unwanted packets such as multicast, broadcast
and DNS generated traffic (P2P network does not use DNS) were filtered out and
the rest was sent to feature extraction module as shown in Fig. 2. This filtering
reduce the packet monitoring overhead and the processing time.

Fig. 2. Packet filter module.

286 A. Kumar et al.

Feature Extraction. To find out the prominent features for the detection of
P2P hosts, the distinctive properties shown by the hosts engaged in the P2P
activity as opposed to the hosts with Non-P2P activities were studied and dis-
cussed as follows:

– Failed Connections: In the P2P network, nodes may continuously join and
leave the network. To remain connected, the peers must be connected to at
least one of the peers. So peers in the P2P network continuously search for
new peers. While searching for new peers, many peers may not be available
in P2P network because of the continuous process of joining and leaving,
so the number of failed connection attempts in the P2P network is usually
higher. Regular Internet traffic did not encounter such a high number of failed
connection attempts.

– DNS filter: Peers in the P2P network operate outside of the DNS system.
Peers did not use the DNS queries to search other peers. They get it directly
from the overlay network’s routing table. Although for connecting to the
central server, they may need to make a DNS request, which was very rare. A
regular Internet user usually uses the Internet browser to visit some popular
websites which were mostly resolved by DNS requests. We implemented this
component in the packet filter module.

– Destination diversity: Since the IPs of the peers are usually scattered across
many different networks, the diversity of IPs (IP domain) contacted by P2P
peers in the P2P network is typically large. For all the IPs contacted by a
peer, we have computed a set of/16 prefix of each destination IP. It gives an
approximate idea of IP domains visited by the peer. The size of this set is
the destination diversity of the peer. We have also used destination diversity
ratio calculated by dividing destination diversity with the total number of
distinct IPs contacted by the peers.

Based on the above properties, we have used tshark (a network protocol
analyzer) [3] tool to extract the features from pcap files (Table 1).

Feature Selection. In feature extraction, we have extracted fourteen features
based on the P2P host behavior. However, we found that all the features are not
important while training the classifiers. There may be some features which do
not affect the performance of the classification or perhaps make the results worse.
Therefore, in this section, we apply the feature reduction technique to reduce the
dimensionality of the feature vector. Information gain algorithm is used as a mea-
sure for feature reduction. As shown in Fig. 3, top 2 to 14 features with highest
info-gain score were selected for classification. The final feature vectors consist
of the extracted top 10 features because we ran the classifiers on top 2 to 14 fea-
tures and then ten-fold cross validation, and the accuracy comes out to be maxi-
mum for the top 10 features which are demonstrated in Fig. 4. Fourteen features
(Table 1) based on the P2P host behavior were extracted. The final feature vector
used for the classification is: <F2, F3, F4, F5, F8, F9, F11, F12, F13, F14, label>

PeerClear: Peer-to-Peer Bot-net Detection 287

Table 1. Extracted network traffic features for P2P host detection

Feature Id Feature Description

F 1 ret count Retransmitted packet count

F 2 diversity Destination diversity

F 3 diversity ratio Destination diversity ratio

F 4 no pkt out Number of connection attempts made on distinct
port

F 5 distinct ip Number of distinct IPs contacted

F 6 reset Reset packets count

F 7 out of ord Out of order packets count

F 8 icmp ICMP destination unreachable packets count

F 9 flows Number of packets sent and received

F 10 byte in Bytes per packet in forward direction

F 11 byte out Bytes per packet in backward direction

F 12 dis ret count Average retransmitted packets per host count

F 13 dup ack Duplicate ack packets count

F 14 ctrl pkt Total number of control packets (packet without
data) sent and received

Classification. The collected traffic data were categorised into two groups, first
group is used to train the classifier, and the other group is used to test the
classifier. The training group consisted of 70% of the instances, and our testing
group consisted of 30% of the instances. For the selection of classification model,
we have used 10-fold cross validation on Random forest [11], Decision Tree [19]
and XGBoost [7] classifiers to detect P2P hosts from the captured traffic.

For P2P host detection, the data were extracted for three different time
windows of 10 min duration and the results are shown in Table 2. The results
in terms of true-positive rate (TPR), false-positive rate (FPR), precision and
accuracy are summarized in Table 2.

Table 2. P2P host detection results (R1)

Classifier TPR FPR Precision Accuracy

Random forest 99.91% 0.003% 99.98% 99.93%

Decision tree 99.89% 0.001% 99.92% 99.88%

XGBoost 99.73% 0.001% 99.92% 99.78%

288 A. Kumar et al.

Fig. 3. Information gain

4.2 P2P Bot-net Detection

After the identification of P2P hosts over the network, in this phase, the bot-net
was detected from the identified P2P hosts. This phase consists of three modules,
i.e., feature extraction, feature selection and classification.

Feature Extraction. For the P2P bot-net detection, the flow-based approach
was used and the data was extracted for 1-hour time window, to trace the stealth-
ier nature of P2P bots. A network flow is a set of packets exchanged between two
hosts. Network traffic flow is uniquely identified by five tuples 〈source IP, source
port, destination IP, destination port, protocol〉. The conversation is defined by
the help of binary tuple 〈source IP, destination IP〉 and vice versa. All the con-
versations are categorized as port and protocol oblivious. In this work, we have
used only flow-based features.

P2P protocols use transport layer protocols to share the files, so both the
TCP and UDP traffic are captured for our experimental analysis. To distinguish
between the P2P benign traffic and the P2P bot-net traffic, we have focused
on management flows, i.e., the network traffic which is used to maintain the
updated information about the network. Once the bot-net infects any host, in
order to remain connected to that host, bot-net continuously sends the control
packets as keep-alive messages to the bot. Bots’ communication in the waiting
state is quite stealthy. These control packets provide useful insights into the
bot-net communication pattern.

Moreover, the management flow depends on the protocol design whereas the
data flow depends on the user. The data flows are usually regulated by the user
interaction with the P2P applications. The usage of the P2P applications varies
from user to user. Relying on the management flows allow more universally, user-
independent P2P bot-net detection approach. We have not completely discarded
the data flows. Some of the features were also obtained from the data flows as
well.

PeerClear: Peer-to-Peer Bot-net Detection 289

Fig. 4. Ten-fold cross validation

Now the question arises, how to separate the management and data packets.
This is because management packets are generally embedded inside the data
packets, and sometimes are sent separately. Below are few heuristics considered
to separate management from data packets.

– Inter packet time: The management packets are exchanged periodically
whereas the data packets are sent continuously one after another. There-
fore, inter packet time between the data packets are usually very small. On
the other hand in the management packets inter packet time is large. We con-
sider only those flows in which inter packet time was greater than a particular
threshold θ. For example, consider a packet Pi and packets seen before and
after Pi as Pi−1 and Pi+1. Now say inter packet time between packets Pi and
Pi−1 was Δi−1 and that of between Pi and Pi+11 was Δi+1 then we consider
Pi as management packet if Δi−1 and Δi+1 both are greater than θ.

– Duration of Flow: P2P network flows are generally long-lasting. Instead of
creating a new connection, peers exchange the management packets to keep
the connection alive. Same as in the case of the P2P bot-net, to prevent losing
connection with a bot, they periodically exchange control messages.

Our main concern is to extract those features which distinguish the P2P bot-
net from P2P benign traffic. The communications used by P2P bot are low in
volume because the bots are controlled by the bot-master and they continuously
communicate with each other to remain connected. Hence, the duration of this
communication is large. For P2P benign applications like μ-Torrent, users gen-
erally download large files such as music, videos, etc. On the other hand, Bots
do not download such large files. Rather they continuously send information
to the bot-master. Also, the inter-arrival time between the packets for bots is
more as compared to P2P benign applications, because of the reasons discussed
above. Therefore by using these features, we can prominently distinguish P2P

290 A. Kumar et al.

bot-net traffic from P2P-benign traffic. Table 3 shows the used features captured
by pyshark [14].

– Host Access Features: These features were used to capture the host accessing
pattern of the bot-nets. These include features like inter-arrival time of pack-
ets, maximum inter-arrival time, minimum inter-arrival time, etc. to capture
the distribution of inter-arrival time of flow at any host.

– Flow Size Features: These features were used to capture the distribution of
both incoming and outgoing flows at a specific host. These include features
like packets or bytes sent and received in the flow, to capture their distribution
of the flow at any host. Other examples of flow size features include the
number of bytes sent or received in the flow, smallest packet seen in the flow,
the largest packet seen in the flow, etc.

Table 3. Extracted network traffic features for P2P bot-net detection

ID Features Description

F1 mean inter time Mean of the Inter-arrival time between packets

F2 fwd pkt Number of packets sent in flow

F3 bkd pkt Number of packets received in flow

F4 frwd bytes Number of Bytes sent in flow

F5 bkd bytes Number of Bytes Received in flow

F6 total data Total data sent and received in flow including headers

F7 small pkt Smallest packet in flow

F8 large pkt Largest packet in flow

F9 max inter time Maximum Inter-arrival time between any two packets
in flow

F10 min inter time Minimum Inter-arrival time between any two packets
in flow

F11 total duration Total duration of flow

F12 pkt frequency Packet frequency (flow duration/ number of packets
in flow)

F13 mean fwd inter time Mean inter-time between packets sent in forward
direction

F14 mean bkd inter time Mean inter-time between packets sent in backward
direction

F15 max fwd inter time Maximum inter-time between packets sent in forward
direction

F16 min frwd inter time Minimum inter-time between packets sent in forward
direction

F17 max bkd inter time Maximum inter-time between packets sent in
backward direction

F18 min bkd inter time Minimum inter-time between packets sent in
backward direction

PeerClear: Peer-to-Peer Bot-net Detection 291

Feature Selection. The extracted 18 features based on host access patterns
and flow size features were further reduced for bot-net detection. We have used
information gain feature selection algorithm to reduce the dimensionality of the
feature vector. The top 2 to 18 features with highest info-gain scores were selected
(Fig. 5) and respectively used for the classification.

Fig. 5. Information gain

Bot-net Classification. For P2P bot-net detection, we have used the same
classification algorithm used in P2P host detection (Random forest, Decision
tree, and XGBooost) for the classification of P2P botnet detection. To find the
best number of features for the best performance of all selected classifiers, we
ran classifiers on 2 to 18 features with the highest info-gain score and obtained
results are shown in Fig. 6 and Table 4. The observation of results shows that all
the classifier performs with more than 99% accuracy and among them, Random
forest outperformed with 99.99% accuracy while using only top 6 features.

Table 4. P2P bot-net detection result (R2)

Classifiers TPR FPR Precision Accuracy

Random forest 99.98% 0.002% 99.99% 99.99%

Decision tree 99.97% 0.004% 99.97% 99.97%

XGBoost 99.77% 0.024% 99.97% 99.88%

We have also trained the model for P2P bot-net detection using traffic from
three bot-nets namely Waledac, Vinchuca, and Zeus. For P2P benign applica-
tions, we have used traffic from Skype, eMule, Frostwire, and Vuze. The model

292 A. Kumar et al.

Fig. 6. P2P botnet detection accuracy of selected classifiers

is tested using unseen traffic from a different bot-net i.e. Storm for P2P bot-net
and μ-Torrent for P2P benign applications. The model achieves an accuracy of
97% for above-mentioned experiments. This leads us to believe that the app-
roach can be generalized for other bot-net detection. This is perhaps due to the
fact that traffic flow features of most P2P bot-nets are very similar.

5 Results and Comparison with Past Work

The overall performance of our system is determined by passing the entire traffic
into P2P host detection module. The entire traffic consists of non P2P traffic
and P2P traffic. The first module filters P2P hosts from non-P2P hosts. The
filtered P2P hosts can be P2P bot-net hosts or P2P benign hosts. This traffic
is now fed into the other module i.e. P2P bot-net detection module. P2P Bot-
net detection module differentiates P2P bot-nets from P2P benign traffic. The
overall accuracy of the system as a whole is 99.85%. The results show that
our approach outperforms the results reported previously in the literature. We
have also performed experiments using other proposed approaches on our traffic
flows to check how much better is our proposed model in terms of accuracy. It
shows that our model performs better as compared to their models and achieves
better accuracy. We have considered the most recent models discussed in the
literature. The results presented in their papers and the ones obtained by using
their approach on our dataset are summarised in Table 5.

In our proposed model, there are 7,11,149 P2P botnets, and 8,15,659 benign
P2P traffic flows taken into account. Table 5 shows the exact amount of traffic
flows, conversations, and packets considered by the different authors. In [9] and
[5], the authors notified the packets but not the flows. Similarly, in [17] authors
notified the number of conversations. We want to mention here that there were
few other work discussed in Sect. 3, but we did not compare them as the infor-
mation about the features, or the statistical methods was missing from their
papers to faithfully reimplement them (Fig. 7).

PeerClear: Peer-to-Peer Bot-net Detection 293

97 98.37 99 99.72 99.2
94.25

99.26 99.77 99.92

0

10

20

30

40

50

60

70

80

90

100

110

Ac
cu

ra
cy

-->

P. N
ara

ng
 et

 al
. [2

0]

Him
an

sh
i e

t a
l. [

10
]

M. A
lau

tha
man

 et
 al

. [6
]

Hojj
at

et
al.

 [8
]

Our
Work

Authors-->

Proposed model accuracy (%) on respective traffic.
Authors proposed model accuracy (%) on our traffic.

Fig. 7. Accuracy(%) of Authors’ proposed model on their’s and as well as on our traffic.

Table 5. Accuracy (%) comparison.

Authors Dataset Approach Author reported

accuracy %

Authors proposed

model accuracy on

our traffic

Narang

et al. [17]

P2P Botnet

Conversations - 50000

P2P Benign

Conversations - 50000

Conversation-based Approx 97% 98.37%

Hojjat et al.

[6]

P2P Botnet Flows - 3296

P2P Benign Flows - 1233

Flow based 99.26% 99.77%

Himanshi

et al. [9]

P2P Botnet Packets -

41941536

P2P Benign packets -

25913400

Flow based Approx 99% 99.72%

Alauthaman

et al. [5]

P2P Botnet

Control packets - 114087

P2P Benign

Control packets - 331526

Flow based 99.20% 94.25%

Our

approach

P2P Botnet flows - 711149

P2P Benign flows - 815659

Flow based 99.85% N/A

6 Conclusion

In this work, we have discussed PeerClear, an approach for detecting P2P bot-
nets using network traffic analysis. The detection of bots was done in two steps,
i.e., P2P host detection and P2P bot-net detection. In P2P host detection
phase, we have performed packet filtering, feature extraction, and classification.
Packet filtering module filters unwanted packets which were not contributing to
the classification. Feature extraction module converts network traffic into the

294 A. Kumar et al.

host-based feature vectors. Classification module uses decision tree for classifi-
cation of extracted feature vectors into P2P or non-P2P. After the identification
of P2P hosts, we have detected P2P bot-net by three other modules i.e., feature
extraction, feature selection, and classification. The feature extraction module
extracts the flow-based feature vectors from the network traffic. The feature
selection module selects essential features based on the information gain ratio
algorithm. Finally in the classification module, Random Forest, XGBoost and
decision tree, classified the P2P bot with more than 99% of accuracy. The over-
all accuracy of PeerClear is (99.85%). We also implemented methods for P2P
bot-net detection reported in other papers an evaluated them on our dataset.
The results indicate our approach does better than others on the same dataset.

Acknowledgement. This work was partially funded by Science and Engineering
Research Board, Government of India.

References

1. Internet world stats (2018). https://www.internetworldstats.com/stats.htm
2. Peerrush (2018). http://peerrush.cs.uga.edu/peerrush/
3. Tshark - Dump and Analyze Network Traffic, March 2018. https://www.wireshark.

org/docs/man-pages/tshark.html
4. Vint Cerf: One Quarter of All Computers part of a Botnet (2018). http://www.

tmttlt.com/archives/5289/
5. Alauthaman, M., Aslam, N., Zhang, L., Alasem, R., Hossain, M.A.: A P2P botnet

detection scheme based on decision tree and adaptive multilayer neural networks.
Neural Comput. Appl. 29(11), 991–1004 (2018)

6. Beiknejad, H., Vahdat-Nejad, H., Moodi, H.: P2P botnet detection based on traf-
fic behavior analysis and classification. Int. J. Comput. Inf. Technol. 6(1), 01–12
(2018)

7. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 785–794. ACM (2016)

8. Comodo: Latest malware attacks, May 2018. https://enterprise.comodo.com/blog/
tag/latest-malware-attacks/

9. Dhayal, H., Kumar, J.: Peer-to-Peer botnet detection based on bot behaviour. Int.
J. Adv. Res. Comput. Sci. 8(3), 172–175 (2017)

10. Dillon, C.: Peer-to-Peer botnet detection using NetFlow. Master’s thesis, University
of Amsterdam (2014)

11. Donges, N.: The Random Forest Algorithm (2018). https://towardsdatascience.
com/the-random-forest-algorithm-d457d499ffcd

12. Holz, T., Steiner, M., Dahl, F., Biersack, E., Freiling, F.: Measurements and miti-
gation of peer-to-peer-based botnets: a case study on storm worm. In: Proceedings
of the 1st Usenix Workshop on Large-Scale Exploits and Emergent Threats (2008)

13. Kheir, N., Han, X., Wolley, C.: Behavioral fine-grained detection and classification
of P2P bots. J. Comput. Virol. Hacking Tech. 11(4), 217–233 (2015)

14. KimiNewt: Python wrapper for tshark, allowing python packet parsing using wire-
shark dissectors, June 2018. https://github.com/KimiNewt/pyshark

https://www.internetworldstats.com/stats.htm
http://peerrush.cs.uga.edu/peerrush/
https://www.wireshark.org/docs/man-pages/tshark.html
https://www.wireshark.org/docs/man-pages/tshark.html
http://www.tmttlt.com/archives/5289/
http://www.tmttlt.com/archives/5289/
https://enterprise.comodo.com/blog/tag/latest-malware-attacks/
https://enterprise.comodo.com/blog/tag/latest-malware-attacks/
https://towardsdatascience.com/the-random-forest-algorithm-d457d499ffcd
https://towardsdatascience.com/the-random-forest-algorithm-d457d499ffcd
https://github.com/KimiNewt/pyshark

PeerClear: Peer-to-Peer Bot-net Detection 295

15. Lelli, A.: Zeusbot/Spyeye P2P Updated, Fortifying the Botnet (2018). https://
www.symantec.com/connect/blogs/zeusbotspyeye-p2p-updated-fortifying-botnet

16. Lontivero: A Resilient Peer-to-Peer Botnet Agent in.NET, April 2017. https://
github.com/lontivero/vinchuca

17. Narang, P., Ray, S., Hota, C.: PeerShark: detecting peer-to-peer botnets by tracking
conversations. In: IEEE Security and Privacy Workshops (2014)

18. Nunnery, C., Sinclair, G., Kang, B.B.: Tumbling down the rabbit hole: exploring
the idiosyncrasies of botmaster systems in a multi-tier botnet infrastructure. In:
Proceedings of the 3rd USENIX Conference on Large-Scale Exploits and Emergent
Threats: Botnets, Spyware, Worms, and More (2010)

19. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)
20. Rodriguez-Gomez, R.A., Macia-Fernandez, G., Garćıa-Teodoroa, P., Steiner, M.,

Balzarotti, D.: Resource monitoring for detection of parasite P2P botnets. Comput.
Netw. 70, 302–3011 (2014)

21. Saiyod, S., Chanthakoummane, Y., Benjamas, N., Khamphakdee, N., Chaicha-
wananit, J.: Improving intrusion detection on snort rules for botnet detection.
Softw. Netw. 2018(1), 191–212 (2018)

22. Schollmeier, R.: A definition of peer-to-peer networking for the classification of
peer-to-peer architectures and applications. In: First International Conference on
Peer-to-Peer Computing (2002)

23. Singh, S.C.: High-tech and computer crimes: global challenges, global responses. In:
Nirmal, B., Singh, R. (eds.) Contemporary Issues in International Law, pp. 413–
437. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-6277-3 30

24. Yin, C.: Towards accurate node-based detection of P2P botnets. Sci. World J.
2014, 10 p. (2014)

https://www.symantec.com/connect/blogs/zeusbotspyeye-p2p-updated-fortifying-botnet
https://www.symantec.com/connect/blogs/zeusbotspyeye-p2p-updated-fortifying-botnet
https://github.com/lontivero/vinchuca
https://github.com/lontivero/vinchuca
https://doi.org/10.1007/978-981-10-6277-3_30

Rethinking Identification Protocols
from the Point of View of the GDPR

Miros�law Kuty�lowski1,2(B), �Lukasz Krzywiecki1, and Xiaofeng Chen2

1 Department of Computer Science, Faculty of Fundamental Problems of Technology,
Wroc�law University of Technology, Wroc�law, Poland

miroslaw.kutylowski@pwr.edu.pl
2 School of Cyber Engineering, Xidian University, Xi’an, People’s Republic of China

Abstract. An identification protocol has to deliver a proof that the
protocol participants are who they claim to be. Related to the circum-
stances, the proof must be sufficiently convincing for the addressee. On
the other hand, as long as the data minimality principle is concerned, the
proof should be useless for any party that is not the intended addressee.
While the first goal has attracted a lot of attention, the second one has
been rather neglected.

In this paper we discuss requirements for identification protocols from
the point of view of privacy protection requirements of the GDPR reg-
ulation introduced in Europe. We concern the problem of cryptographic
data created by identification protocols and misusing them as an evi-
dence presented to third parties. We concern in particular the case when
it appears that a malicious participant follows the protocol, however the
privacy protection guarantees supposedly provided by the scheme are
effectively broken.

We show that from the point of view of GDPR the classical schemes
like static Diffie-Hellman, Schnorr, Wu, Stinson-Wu, and Di Raimondo-
Gennaro fail to comply with the EU Regulation even if they are deniable.

Keywords: Identification scheme · Privacy protection · GDPR ·
Attack · Deniability · Simulatability

1 Introduction

By executing an identification protocol, the party called here the Prover has to
convince the other party, called the Verifier, about their identity. Identification
is usually one of the first steps executed when communication is started between
two actors of a system. More and more frequently, this process concerns not

This work has been initiated under support of the Polish National Science Centre, con-
tract OPUS no 2014/15/B/ST6/02837, and later supported by grant S50129/K1102 at
Wroc�law University of Science and Technology. This work was also partially supported
by China 111 Project (No. B16037) and Key Project of Natural Science Basic Research
Plan in Shaanxi Province of China (No. 2016JZ021).

c© Springer Nature Switzerland AG 2019
S. Dolev et al. (Eds.): CSCML 2019, LNCS 11527, pp. 296–315, 2019.
https://doi.org/10.1007/978-3-030-20951-3_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20951-3_25&domain=pdf
https://doi.org/10.1007/978-3-030-20951-3_25

GDPR versus Identification Protocols 297

only identification of physical persons (holding some electronic artefacts), but
also identification of IoT devices in ad hoc systems.

Identification is a process run either independently from establishing a session
key or it is integrated with this process. One of the options is to run identifica-
tion separately after establishing a secure channel (i.e. via Diffie-Hellman Key
Exchange), then an eavesdropper does not learn who is communicating with
whom. Sometimes, identification is run before session keys are derived, and its
output is used for the key exchange protocol. If both functionalities are inte-
grated into a monolithic protocol – Authenticated Key Establishment (AKE) –
then it might be difficult to separate the identification process from the key
exchange activities.

Here, we need to state that in some scenarios identification is enough and
establishing shared keys is unnecessary (or even should be avoided as a potential
threat). A convincing example is a physical access control mechanism in a build-
ing. In this case, an identification token interacts with a door lock and once the
token becomes authenticated the holder of the token may pass through the door.
(The verification of the holder’s rights may be performed according to an Access
Control List, with certificates or any other mechanism that is outside the scope
of the identification protocol.) No further communication between the token and
the door lock is necessary. For this scenario, we have to respect the data min-
imality principle: no data should be created and processed in the system that
is not necessary for realization of the required functionalities. For example, if
such a system of physical access control becomes deployed, say, in the Pentagon
building, then leaking the data which token has been used to open which door
might pose a serious threat to the US national security. If the leaked identifi-
cation protocol transcripts additionally provide strong cryptographic arguments
that the leaked data are authentic, then it is more likely to sell the data to,
say, terrorists or foreign intelligence. Note that in this case the threat becomes
much higher despite that application of a strong cryptography could have been
intended to lower the risks.

The research and development of identification protocols is a process initiated
by the seminal work of Diffie and Hellman [1]. It has been followed by a number
of proposals motivated by discovering new attack scenarios and corresponding
weaknesses of the previous schemes. Gradually, this heuristic approach has been
replaced by a more formal treatment, where security models are formulated
and the protocols are analyzed with respect to these models. Such an approach
makes it easier to compare the schemes and enables better understanding of
their features. On the other hand, it has been stated many times that a formal
model may fail to reflect the real attack scenarios and therefore formal security
proofs may provide false security feelings (see e.g. [2]).

2 GDPR and Privacy Protection Principles for
Identification Protocols

Recent General Data Protection Regulation introduced in Europe [3] creates
a new framework of legal requirements for the design and implementation of

298 M. Kuty�lowski et al.

the IT systems. Its heavy impact is due to a couple of factors, where the most
important for the system designers might be the following ones:

– privacy-by-design principle,
– demonstrability of security and privacy features,
– heavy financial responsibility of the parties processing personal data not only

for damages (material and immaterial), but also for failures to comply with
the GDPR regulation.

2.1 Scope

Personal Data. Even if the same or similar technical measures might be appro-
priate in other areas, GDPR concerns exclusively processing of personal data.
However, unlike in the USA, the definition of personal data is very broad:

‘personal data’ means any information relating to an identified or identi-
fiable natural person (‘data subject’); an identifiable natural person is one
who can be identified, directly or indirectly,

First, the purpose of an identification protocol is to identify a protocol partic-
ipant in reliable way. Therefore all data exchanged become the legal status of
personal data. Even if some of those data are apparently useless for anybody,
the other like the location and the time of interaction deserve careful protection
(preventing tracing).

Of course, GDPR applies directly, if electronic identification is used to iden-
tify a physical person holding the device participating in electronic communi-
cation (‘natural person’ in the legal language). It does not apply directly to
IoT devices and their mutual identification. However, the IoT devices may fre-
quently be linked to natural persons – this concerns for instance wearable medi-
cal devices, electric scooters, electronic keys and tokens, etc.. Making a decision
whether a given artefact creates data about identifiable natural person, might be
difficult, especially if the answer has to be created in a fully automated way. Last
not least, creating separate identification protocols for natural and ‘virtual’ per-
sons seems to be irrational from the technical point of view. A pragmatic solution
would be to create schemes where privacy protection is granted by design and
apply them irrespectively of whether the person identified is natural or ‘virtual’.

Material Scope. Due to Article 2, GDPR applies among others to “processing
of personal data wholly or partly by automated means”. As we are talking about
electronic identification, the process is at least partly automatic (possibly with
some manual operations like inserting a password).

There are two notable exceptions from applying GDPR. The first one is
processing personal data

by a natural person in the course of a purely personal or household activity.

GDPR versus Identification Protocols 299

So, for instance a hobbyist creating a smart home solutions for own household
need not to worry about GDPR and can deploy any identification scheme of his
choice. The second exemption is processing

by competent authorities for the purposes of the prevention, investigation,
detection or prosecution of criminal offenses or the execution of criminal
penalties, including the safeguarding against and the prevention of threats
to public security

It says, among others, that a manufacturer can install trapdoors enabling “com-
petent authorities” to break privacy where otherwise the product concerned
satisfies the “privacy-by-design” principles.

Territorial Scope. The rules concerned in the GDPR have to be applied to
entities processing data having their establishment in the Union, regardless of
the place of processing. It means that an European company providing an iden-
tification system must respect the requirements of GDPR. The second case is
dual and concerns processing by entities having their establishment outside the
Union (so in general not in the scope of the Union’s law). In this case again the
GDPR applies, but limited to processing of data concerning activities that take
place in the Union as long as the processing concerns:

(a) the offering of goods or services, irrespective of whether a payment of
the data subject is required, to such data subjects in the Union; or
(b) the monitoring of their behavior as far as their behavior takes place
within the Union.

In case of any system offering identification means it would be hard to claim
that it does not provide services. Therefore a designer of an identification system
has to choose either to comply with the requirements of GDPR, or to offer its
products only for the use outside the Union. In the case of a global market such
customization of products is costly.

Moreover, the legal impact of GDPR is not limited to the European Union,
quite many countries adopt very similar regulations. Some countries (among oth-
ers Israel) have been recognized by the Union to have appropriate legal standard
concerning personal data protection, so that transferring personal data there can
be processed as in the internal EU market.

Technical Principles. The GDPR regulation dramatically changes the legal
situation concerning deployment of identification schemes by imposing the
requirements having a major impact on the technical reality.

One of the basic rules of security good practices is data minimality: the
system should not gather more data than it is necessary to achieve its purpose.
Any excessive data creates an additional risk: in case of a security breach an
intruder gets access to more data. Moreover, additional data may be further
processed by a malicious system participant and misused in some way.

300 M. Kuty�lowski et al.

GDPR adopts data minimality principle as a legal requirement. Data mini-
mality concerns not only data processed explicitly, but also data that are created
in an implicit way. Consequently, if a scheme A uses personal data R and for
the same purpose a scheme B uses a data collection R′, where R � R′, then one
can claim that B violates the data minimality principle. Furthermore, the data
subject may claim that their consent to process personal data does not apply to
the additional data from R′ \ R. One may conclude that there might be serious
legal reasons to claim that the system B is ill defined (regardless of the other,
maybe good, features).

Another key principle adopted by the GDPR into the legal system is the
purpose limitation. Namely:

“personal data shall be collected for specified, explicit and legitimate pur-
poses and not further processed in a manner that is incompatible with those
purposes”

The problem is that once a data is created, it becomes very hard to guarantee
that it is not processed in a way incompatible with the initial purpose. This
concerns in particular the case of wireless identification and third parties that
merely eavesdrop the communication channel. Moreover, since an identification
scheme may be run by devices that are not controlled by the identification system
provider, particular care is needed to ensure that these devices will not process
the data created by the identification protocol in a way that is incompatible with
the initial identification purpose.

The purpose limitation has to be considered jointly with the storage limi-
tation principle, which says that the data should be:

“kept in a form which permits identification of data subjects for no
longer than is necessary for the purposes for which the personal data are
processed”

As in case of heterogeneous identification systems it is hard to control where and
for how long the data concerning identification attempts are stored, a pragmatic
solution is to minimize the data created during an identification session. This
minimization should concern not only the amount of data but first of all their
quality and probative value. A pragmatic strategy in this situation is to design a
scheme where the data created through the protocol execution stored by a rogue
participant could have been created by the rogue participant without execut-
ing the identification protocol. Therefore the responsibility is shifted from the
identification system designer as the scheme does not increase the privacy viola-
tion risks. Such an approach is in line with the integrity and confidentiality
principle, which states that

personal data shall be processed in a manner that ensures appropriate
security of the personal data, including protection against unauthorized
or unlawful processing [. . .] using appropriate technical or organizational
measures.

GDPR versus Identification Protocols 301

Indeed, in the case of pervasive and heterogeneous IoT systems the organizational
measures against unauthorized and unlawful processing could hardly be effective;
the main focus must be on the guarantees provided by the technical properties
of the system.

Finally, the GDPR states that not only the above rules must be implemented,
but also the data controller must be able to prove compliance with the rules.
Namely, the accountability principle states that

The controller shall be responsible for, and be able to demonstrate compli-
ance with [the principles stated in GDPR]

So GDPR requests to go beyond the “provable security” known from the liter-
ature: apart from showing that a protocol fulfills the properties formulated in a
formal security model, the data controller has to prove that the formal model
covers all relevant attack scenarios. This might be much harder than proposing
a seemingly reasonable model and providing a formal security scheme for a given
model.

Particular obligations of a party responsible for a system processing personal
data – called the controller – are stated in Article 25 of the Data protection by
design and by default section of GDPR:

1. Taking into account the state of the art, the cost of implementation and
the nature, scope, context and purposes of processing as well as the risks
of varying likelihood and severity for rights and freedoms of natural per-
sons posed by the processing, the controller shall, both at the time of the
determination of the means for processing and at the time of the process-
ing itself, implement appropriate technical and organizational measures, ...
which are designed to implement data-protection principles ... in an effec-
tive manner and to integrate the necessary safeguards into the processing
in order to meet the requirements of this Regulation and protect the rights
of data subjects.

The norms that follow from this formulation are among others the following:

1. the controller shall evaluate the risks,
2. the security measures may be proportional to risks and assets protected,
3. the controller shall take into account the state-of-the art during system imple-

mentation as well as during the processing time,
4. the controller shall implement the system together with technical and orga-

nizational security measures,
5. the controller shall integrate the safeguards into the processing.

A common practice on the market has been quite different: the risk analysis was
the problem of the customer, the security measures could be disproportionally
low and outdated, the system could be composed from untested components
delivered by third parties, and installed in an environment not suited for such a
system.

From the point of view of identification systems equally important is the
second point of this Article:

302 M. Kuty�lowski et al.

The controller shall implement appropriate technical and organizational
measures for ensuring that, by default, only personal data which are nec-
essary for each specific purpose of the processing are processed. That obli-
gation applies to the amount of personal data collected, the extent of their
processing, the period of their storage and their accessibility. In particu-
lar, such measures shall ensure that by default personal data are not made
accessible without the individual’s intervention to an indefinite number of
natural persons.

A designer of an identification system is faced with the problem that, for instance,
a malicious participant may retrieve data that are not related to the purpose of
identification and post it online.

2.2 Security Reality

In the real world, even if an identification protocol is carefully designed in terms
of privacy protection rules (at least in the theoretical sense), there are many
reasons why it may fail in practice:

poor implementation: a common source of problems is that a software engi-
neer may misinterpret the system specification, or create a software that
contains bugs undetected during the testing phase. High complexity of a
scheme, large size of the code, and integrating third party components, make
this more likely to happen. Ideally, a scheme should defend itself by-design
against these kind of problems. There are very few techniques that make
mistakes of this kind self-evident for an external observer, however there are
some possibilities of advance in this area [4].

leakage: in the case of a cheap or faulty hardware we have to deal with the prob-
lem of leaking the secrets used by the cryptographic procedures. This may
concern leakages of long term private keys, leakages of ephemeral values, leak-
ages of the internal state of pseudorandom number generator as well as simple
weakening such a generator so that it becomes predictable. Unless we take
care of the features like forward-security, substantial violations of personal
data protection rules might follow. While leakage problems have attracted
recently a lot of attention in the research community, most research is con-
centrated on limited leakage. On the other hand, in case of compromising an
operating system, the adversary may get access to complete data.

malicious cryptography: if a device is running as a black box, there is a risk
that internally it runs a more sophisticated protocol enabling the attacker
to get data in a covert way. The deceitfulness of malicious cryptography
methods lies in lack of any change of behavior – of course from the point of
view of an external observer unaware of certain secret keys [5] (that are not
installed in the devices).
Within this category we concern not only malicious smart cards, but most of
all the devices like smart phones that might be attacked and subverted by a
malicious software.

GDPR versus Identification Protocols 303

rogue Verifier: we have to consider the case when a Verifier is dishonest and,
for instance, attempts to sell the data about interactions to a third party.
Of course, no protocol can prohibit the Verifier to do it, but, somewhat
unexpectedly, a strong protocol may ease such an illegal trade of personal
data by providing cryptographic proofs of data validity.

rogue Prover: one can mistakenly assume that a Prover will always protect
their personal data and therefore should not be regarded as an adversary
attacking an identification protocol. An example showing that this assump-
tion might be wrong is e-voting. An adversary may reward the voter merely
for a proof that the voter has logged into an election server to cast a vote.
This might be enough for the adversary as in some cases (a referendum) the
turnout is crucial for the voting result.

All these situations should be taken into account during risk analysis for a par-
ticular identification system. Failure to address some of the problems may result,
apart from civil responsibility for damages, in very heavy administrative fines
[3].

3 Privacy Threats and Privacy Requirements

The aim of this section is to formulate the privacy goal for identification pro-
tocols. We follow a semi-formal approach describing problems and resulting
requirements in a legal style – generalizing as much as possible to create a sim-
ple rule that would be understandable and acceptable by all stake-holders – not
necessarily the information security engineers. The rule should be necessary, in
the sense that violating it would endanger privacy in one of the ways described
in Sect. 2. In Sect. 4 we shall examine some most popular schemes from the lit-
erature. We shall see not only that this rule is violated, but also that there are
serious privacy threats corresponding to these violations.

Identification Protocol Purpose. In order to answer whether a given way of
processing complies with the GDPR regulation it is necessary define the process-
ing purpose. In the case of an identification protocol it can be stated as follows:

Purpose 1. If a Prover A executes an identification protocol with a Verifier B
aiming to present and prove its identity, then the result should be that B gets
convinced that it is talking with A.

Unless otherwise specified (which may happen in some particular application
cases), there are no other purposes of executing an identification protocol. So
the following cases shall be considered as violations of the purpose limitation
principle from GDPR formulated in Article 25.1:

1. a Prover A may convince a third party E that an interaction between A and
B has taken place,

304 M. Kuty�lowski et al.

2. a Verifier B may convince a third party E that a Prover A has authenticated
itself against B,

3. a third party E may convince itself that an interaction between A and B has
taken place – without any help from A and B but possibly with the help of
other parties including in particular the system provider, manufacturer of the
hardware used by A and B etc.

Note that it does not suffice that the above situations are not features given by
an identification scheme (direct or indirect ones). It should be ensured by default
that these situations will not occur (Article 25.2). Moreover, the controller pro-
viding the identification system is responsible for possible failures to guarantee
this (Article 24).

The key danger created by an execution of an identification protocol for
violating purpose limitation is creating digital data, sometimes with high cryp-
tographic proof value. These data can be protected against misuse in different
ways. In case of the communication channel we may have the following options:

– the data are communicated over an encrypted channel between the Prover
and the Verifier,

– the data are sent in plaintext, however the physical properties of the channel
practically eliminate the risk of eavesdropping,

– the data are sent in plaintext, but they are useless for violating purpose
limitation.

The first approach is difficult in practice as a process of creating a secure channel
requires typically the public key (and thereby indirectly the identity) of at least
one of the parties. (There are possibilities to overcome this problem – see e.g. [6]
– but they are nontrivial and too heavy to be used as a universal solution). The
second approach is applicable in some cases. Primary examples seem to be the
quantum channels and the small proximity communication channels. However,
one can hardly imagine that this strategy can be used as a universal solution.

More complicated is protection of the data available to the devices of the
Prover and the Verifier. Again, different protection strategies may be applied:

– the technical properties of the device ensure that the data from the device
cannot be leaked or predicted by an external observer,

– the data from the device is useless for violating the purpose limitation prin-
ciple.

The first strategy is problematic. It requires at least tamper-proof devices, secure
operating systems, and secure random number generators (if used by the identifi-
cation scheme). Accomplishing these goals is hard, costly and practically impos-
sible. Even if a moderate assurance level is sufficient due to low risk level for a
given practical application, the analysis of the situation might be a challenging
task with a high probability of overlooking certain issues. So the second strategy
seems to be a better choice – the only problem is to design proper schemes.

Based on the above discussion we may formulate the following rule that
would provide GDPR-compliant purpose limitation. It is based on the concept

GDPR versus Identification Protocols 305

of moving the burden of privacy features proof from the technical design to the
cryptographic protocol:

Rule 2. If a party A is involved in an execution of the identification protocol,
then the data, which is related to the protocol execution and available to A includ-
ing in particular it internal state [evidence data], shall be useless for proving to a
third party that the identification protocol has been really executed by the Prover.

Remark 1. In the above rule by a third party we understand any party for which
the proof created by an execution of the identification protocol is not explicitly
intended according to the protocol specification. In most cases by a third party
we understand all parties except for the Prover and the Verifier.

Remark 2. The evidence data in Rule 2 is primarily the data exchanged over
the communication channel – so called transcript of a protocol execution. This
follows from the fact that generally we cannot protect message sent over wireless
channels. Of course, we talk here about the ciphertexts (and not the plaintexts),
if the communication is encrypted. However, we may have to deal here with
other data provided (leaked) by the protocol participants. Therefore, the risk
analysis should determine which data might be available for presentation as an
evidence data.

In order to systematize properties of protocols in various scenarios we define
the following scopes of the evidence data:

Transcript only: in this case the evidence data is merely the transcript of
communication: all messages exchanged between the Verifier and the Prover.

Verifier’s data: apart from the communication transcript, the Verifier may add
some (or all) values used during a protocol execution – ephemeral values, as
well as some long period secrets or values derived from them.

Prover’s data: this case is symmetric to the previous one, now the internal
knowledge of the Prover is included in the evidence data.

Prover’s and Verifier’s data: in the last scenario the Prover and the Verifier
collude to prove that an interaction between them took place. Consequently
they reveal some (or all) of their internal data.

Let us motivate shortly why the last three scenarios deserve consideration.
First, a Verifier may offer some services after identification of a customer. How-
ever, the Verifier may also earn by selling (strongly authenticated) data about
activities of their customers. For the second case we may consider a mobile phone
used as identification token. Even if the phone owner is interested in preserv-
ing privacy, the app used for running the identification protocol may be rogue.
For the last case one can concern a physical access control system, where both
the devices granting access and the tokens used as provers are provided by the
same malicious manufacturer. Then the system deployed for improving physical
security may at the same time become a “Big Brother” system where tracing
data may be offered to third parties together with a strong evidence of their
authenticity.

306 M. Kuty�lowski et al.

Remark 3. A limited version of Rule 2 have been considered in the literature and
called deniability. The idea is that given a transcript of a protocol execution, one
can deny that the transcript corresponds to a real interaction based on the argu-
ment that it could be created by a simulation. The definition of deniability has
been extended to the cases that we are talking about: for instance, Di Raimondo
and Gennaro [7] include the case that the Prover aims to prove to a third party
that a given transcript corresponds to a real execution.

Knowledge from Past and Future Executions. Unfortunately, while examining a
scheme we are not talking about a single protocol execution but maybe about a
whole sequence of interactions, including different parties, executed in the past
and in the future of the protocol execution under consideration. In some cases
there is a priori knowledge that certain data correspond to genuine interactions
between indicated parties, even if this cannot be derived from the evidence data.

The situation becomes even more complex, if the secret keys intended for
identification are used for other purposes as well. To ease security analysis, it
is helpful to assume that the secret keys are dedicated to a single scheme. On
the other hand, it is helpful to reduce storage requirements of IoT devices, and
therefore one might be tempted to reuse the same key for different purposes. For
instance, the key used for the Schnorr identification scheme might be used for
creating Schnorr signatures (such an approach has been indirectly suggested in
[8]). Moreover, one can be tempted to use one scheme as a plug-in component in
another scheme, just saving space necessary to store the binary code for executing
the scheme.

In the above cases it would be desirable to provide a security proof even in
presence of another schemes based on the same secret key(s). In general, it would
be hard to create such a proof in case of interaction of different schemes - espe-
cially if one of the schemes in the environment of the scheme under consideration
is yet unknown.

4 Example Identification Schemes and Their Privacy
Threats

4.1 Static Diffie-Hellman Scheme

The static Diffie-Hellman protocol is one of the very first identification and key
establishment protocols [1] (Fig. 1). Many follow-up protocols based on it have
been proposed later (see for instance the survey [2]).

For the sake of simplicity, in the description below and in the description of
other schemes based on the Discrete Logarithm Problem (DL) we skip the details
that emerge if G is chosen to be a prime order subgroup of Zp. Consequently, we
skip all steps necessary to check that the elements belong to the proper groups.

Discussion. First let us recall the basic property of this protocol:

GDPR versus Identification Protocols 307

params ← ParGen(1λ): Let G = (q, g, G) ← G(1λ), s.t. G i a group of order q where
DL assumption holds, g is a generator of G. Set params = (q, g, G).

KeyGen(): sk = a ←$ Z
∗
q , pk = A = ga. Output (sk, pk).

Identification(P(a, A), V(A): The Prover P(a, A) and the Verifier V(A) run the follow-
ing protocol:
1. V: chooses x ←$ Z

∗
q , computes X = gx, and sends X to the Prover P .

2. P : computes Z = Xa.
3. P : sends Z to the Verifier V .
4. V : accepts iff Z == Ax.

Fig. 1. The static Diffie-Hellman identification scheme.

Observation 3. A valid protocol execution transcript of the static Diffie-
Hellman identification protocol can be created without knowledge of the secret
key a of the Prover. Moreover, one can create such transcripts so that their
probability distribution is exactly the same as in case of transcripts coming from
genuine executions.

Observation 3 follows from the fact that a forger can mimic the work of the
Verifier. Then instead of waiting for response Z from the Prover, the forger
derives Z as Ax and this value is written into the transcript as the response of
the Prover. Moreover, if the Prover creates challenges A at random, the forger
may do the same. So we may conclude as follows:

Corollary 1. One cannot claim that a valid transcript of a protocol execution
corresponds to a genuine interaction between the Prover and the Verifier, as any-
body could create such a transcript with exactly the same probability distribution.

Unfortunately, in case of a rogue Verifier there is a simple way to create an
undeniable proof of interaction with a Prover Alice:

Step 1: the Verifier performs the identification protocol to make sure that he
interacts with Alice. However, the Verifier claims to fail to receive Z and
therefore restarts the identification procedure.

Step 2: in the second run the Verifier chooses an element µ for which the
discrete logarithm is unknown. For this purpose one can apply a standard
trick: µ = Hash(T), where T is some data like Verifier’s signature over the
current stock exchange rating. (Note that T is unpredictable by Alice and
therefore Alice cannot test that this attack is going on.) Alice returns Z = µa

and the Verifier accepts (without checking Z).
Step 3: the Prover may prove to Bob that he has interacted with Alice in the

following way:
– the Prover presents T, r and Z,
– Bob can recompute µ (and convince himself that the discrete logarithm

of µ is unknown),

308 M. Kuty�lowski et al.

– now Bob can interact with Alice providing the challenge µj for j chosen
at random.

If Alice returns Zj , then Bob may conclude that Z is indeed of the form µa

and accepts the Verifier’s proof.

The above procedure is based on the KEA1 assumption [9]: If the data
(g, ga, µ, µa) are created for a random µ with an unknown discrete logarithm,
then a party knowing a must have been involved in creating this tuple. So we
may conclude as follows:

Observation 4. The static Diffie-Hellman identification scheme enables the
Verifier to create a strong proof of interaction with the Prover. Thereby the
protocol fails to fulfill the Rule 2.

The problem with the static Diffie-Hellman identification is that it can be
simulated as long as the challenge X has known discrete logarithm. For the
opposite case, the situation is totally different and the Verifier gets a response
that can be created exclusively by the Prover.

4.2 Schnorr Identification Scheme

The Schnorr identification scheme from [10] is one of the most known schemes
– its non-interactive version is the Schnorr signature scheme (Fig. 2).

params ← ParGen(1λ): Let G = (q, g, G) ← G(1λ), s.t. G i a group of order q where
DL assumption holds, g is a generator of G. Set params = (q, g, G).

KeyGen(): sk = a ←$ Z
∗
q , pk = A = ga. Output (sk, pk).

Identification(P(a, A), V(A): The Prover P(a, A) and the Verifier V(A) run the follow-
ing protocol:
1. P: chooses x ←$ Z

∗
q , computes X = gx and sends X to the Verifier V .

2. V : chooses c ←$ Z
∗
q , and sends c to the Prover P .

3. P : computes s = x + ac mod q and sends s to the Verifier V .
4. V : accepts iff gs == X · Ac.

Fig. 2. The Schnorr identification scheme.

Discussion. Let us recall the following argument in favor of this scheme:

Observation 5. A valid protocol execution transcript of the Schnorr identifica-
tion protocol can be created without knowledge of the secret key a of the Prover.
Moreover, one can create such transcripts so that their probability distribution
is exactly the same as in case of transcripts coming from genuine executions.

GDPR versus Identification Protocols 309

Recall that a valid transcript (X, c, s) can be created as follows:

– choose s and c at random,
– compute X = gs/Ac.

Obviously, the probability distribution is exactly the same as in case of gen-
uine executions. So again an eavesdropper cannot convince a third party that a
presented transcript is a transcript of a genuine interaction with the Prover.

Unfortunately, again the Verifier may create an undeniable proof of an inter-
action with the Prover. Namely, in the second step, instead of:

V : chooses c ←$ Z∗
q , and sends c to the Prover P

we have:

V : chooses r at random, computes c = Hash(X, r) and sends c to the Prover P
Note that the change is not detectable by the Prover as long as the hash function
behaves like a random function mapping into Z∗

q .
The evidence of an interaction is a tuple (X, r, s). Namely, if a good hash

function is used, then X must be created before c and the simulation above does
not work. Moreover, essentially in this way the Verifier converts a communication
transcript into a Schnorr signature. So, a third party should believe the evidence
provided by the Verifier as long as they believe in existential unforgeability of
Schnorr signatures. So we may conclude as follows:

Observation 6. The Schnorr identification scheme enables the Verifier to cre-
ate a strong proof of interaction with the Prover based on existential unforgeabil-
ity of Schnorr signatures. Thereby the protocol fails to fulfill the Rule 2.

One can defer this attack by a slight modification of the Schnorr protocol:

1. V: chooses c ←$ Z∗
q , creates a cryptographic commitment c′ = Commit(c)

and sends c′ to the Prover P.
2. P: chooses x ←$ Z∗

q , computes X = gx and sends X to the Verifier V.
3. V : sends c and an opening of the commitment c′ to the Prover P.
4. P : checks that c corresponds to c′, computes s = x + ac mod q and sends s

to the Verifier V.
5. V : accepts iff gs == X · Ac.

We do not further discuss effectiveness of this countermeasure, since we have a
substantial problem on the Prover’s side. We aim to show the following

Observation 7. The Schnorr identification scheme enables the Prover to create
a strong proof authenticating an interaction transcript. Thereby the protocol fails
to fulfill the Rule 2.

310 M. Kuty�lowski et al.

Note that revealing the exponent x does not prove that an transcript (X, c, s)
originates from a real interaction with the Prover. Namely, if a transcript (X, c, s)
satisfies gs = X · Ac, then X = gs−a·c. Consequently, the Prover can compute
x = s − a · c even in case when (X, c, s) has been created by the simulation as
described above.

The attack presented below enables the Prover to present a proof that X has
been created before s and the transcript could not be forged in the way discussed
above. For this attack, we reuse a trick used in [4] (the difference is that in [4]
the trick was used to protect while now it is used for evil purposes). Namely, the
step of creating X is modified to the following form:

1. P: chooses x0 ←$ {0, 1}l and retains gx0 ;
alternatively P may compute x0 = PRNG(seed, i), where seed is a secret
long period seed of the pseudorandom generator PRNG and i is a value of a
counter. Moreover, 2l � q (for instance 2l < q/230) while x0 should still be
sufficiently large.

2. P: computes x1 = Hash(Ax0) and X = gx0·x1 .

The rest of the protocol is executed according to the original specification of the
Schnorr identification scheme.

Later, the Prover can prove to a third party Eve that a transcript (X, c, s)
originates from the Prover. The following steps are executed:

1. P presents z0 = gx0 and z1 = Ax0 ,
2. The Prover P and Eve perform an interactive proof of equality of discrete

logarithms for (g, z0) and (X, z1).
3. Eve checks that X = z

Hash(z1)
0 .

The presented proof shows that the Prover knows x0 such that X = gx0·Hash(Ax0).
In order to cheat, the Prover would have to find x0 < q/230 for a given x, such
that

x = x0 · Hash(Ax0)

As Hash behaves as a random function it is very unlikely that for a random X
such an x0 really exists. Even if it exists, it might be extremely difficult to find
it – presumably there is no other choice than the brute force search. So Eve can
conclude that X has been chosen before s and therefore s can be treated as a
Schnorr signature.

We do not discuss further the attack and the strength of the proof created by
the Prover for a third party. There are two-fold reasons for that. First, it serves
as an argument that there might be severe problems to prove that the Prover
is not manipulating somehow the step in which they choose x and compute X.
Any amendment solving this problem may in turn create new places where the
Prover may manipulate the execution and create a proof of interaction.

The second reason is that finally we have to do with the case that the Prover
and the Verifier may collude and manipulate the execution so that for an external
observer everything looks fine, while evidence data provided by the Prover and
the Verifier may strongly authenticate a communication transcript. Preventing

GDPR versus Identification Protocols 311

such a collusion seems to be a challenging task. On the other hand, we shall see
that this effort is very likely to be unnecessary, as there are schemes where this
line of attack does not work.

4.3 Wu and Stinson-Wu Identification Schemes

The identification protocols from [11] and [12] are closely related (Figs. 3 and
4). The first impression might be that there are only minor differences between
them having no substantial impact on their privacy features. We shall see that
this is not the case.

params ← ParGen(1λ): Let G = (q, g, G) ← G(1λ), s.t. G i a group of order q where
DL assumption holds, g is a generator of G. Set params = (q, g, G).

KeyGen(): sk = a ←$ Z
∗
q , pk = A = ga. Output (sk, pk).

Identification(P(a, A), V(A): The Prover P(a, A) and the Verifier V(A) run the follow-
ing protocol:
1. V: chooses x ←$ Z

∗
q , computes X = gx, and sends X to the Prover P .

2. P : computes Z = Hash(Xa) and sends Z to the Verifier V .
3. V : accepts iff Z == Hash(Ax).

Fig. 3. The Wu identification scheme.

params ← ParGen(1λ): Let G = (q, g, G) ← G(1λ), s.t. G i a group of order q where
DL assumption holds, g is a generator of G. Set params = (q, g, G).

KeyGen(): sk = a ←$ Z
∗
q , pk = A = ga. Output (sk, pk).

Identification(P(a, A), V(A): The Prover P(a, A) and the Verifier V(A) run the follow-
ing protocol:
1. V: chooses x ←$ Z

∗
q , computes X = gx, Y = Hash(Ax) and sends X, Y to the

Prover P .
2. P : computes Z = Xa and aborts if Y �= Hash(Z).
3. P : sends Z to the Verifier V .
4. V : accepts iff Z == Ax.

Fig. 4. The Stinson-Wu identification scheme.

First let us point to two positive properties of the scheme of Wu:

Observation 8. Without knowing the secret of the Prover one can generate pro-
tocol communication transcripts for the protocol of Wu with the same probability
as for the transcripts generated in the genuine protocol executions. So Rule 2
holds when no further evidence data is provided.

312 M. Kuty�lowski et al.

Generating a transcript is possible by mimicking the steps of the Verifier and
replacing the answer Z with the value computed as Hash(Ax).

The second property is much more important (particularly with respect to
the difficulties concerning the Schnorr identification scheme at this point).

Observation 9. The identification protocol of Wu is immune against attempts
to break Rule 2 by the Prover.

This property follows from the sheer reason that the Prover executes a deter-
ministic algorithm. So there is no place to “inject” anything that may serve as
a proof presented to third parties. On the other hand, the Prover can create a
protocol transcript by simulation.

On the other hand, the protocol of Wu enables the Verifier to create an evi-
dence that later cannot be denied by the Prover. The situation is somewhat
better than in the case of the static Diffie-Hellman protocol, but still raise sub-
stantial concerns.

Observation 10. The Verifier can present a value X for which the discrete
logarithm is unknown and store the response Z of the Prover. At a later time
the Prover might be forced to present Y = Xa and a proof of equality of discrete
logarithms for the pairs (g,X) and (A, Y). The judge then checks whether Z =
Hash(Y).

The scenario from Observation 10 is not unlikely in practice: there might be
several reasons why the Prover cannot refuse the request, e.g. from his employer.
Last not least, it is always possible to capture the device of the Prover and
perform a test execution with the same challenge.

Now let us turn our attention to the identification scheme of Stinson and
Wu. First note the following:

Observation 11. The properties presented in Observations 8 and 9 hold also
for the identification scheme of Stinson and Wu.

The main difference between the scheme of Wu and Stinson-Wu is that in
the later case the device of the Prover can defend itself against being used as an
oracle to raise into the power a:

Observation 12. Assuming KEA1 assumption and the Random Oracle Model
for the hash function, the Prover in the Stinson-Wu identification protocol does
respond to the challenge X of the Verifier only if X has been generated so that
the discrete logarithm of X has been known.

Proof. By the Random Oracle Model computing the correct value of Y requires
knowledge of the argument Ax of the hash function. So we see that the party
that has created the challenge has the following pairs (g,A), (gx, Ax). Then, by
the KEA1 assumption, we can conclude that this party can extract x. ��

GDPR versus Identification Protocols 313

Note that we cannot assure that the challenge (X,Y) has been created by
the Verifier himself – the Verifier can serve only as a man-in-the-middle.

Unfortunately, the above observations are not enough to conclude that
the Stinson-Wu identification scheme is fully compliant with the Rule 2. This
becomes evident when we consider the following attack scenario:

Attack 13 Phase 1: Eve promises the Verifier to pay for being informed that
the Prover Alice executes the identification protocol with the Verifier. For
this purpose, Eve generates in advance the following data: X = gx and
Y = Hash(Ax) for x chosen at random. Then Eve passes the pair (X,Y)
to the Verifier. (Of course, the Verifier cannot check that (X,Y) are valid,
but one cannot hope that the malicious parties are not trusting each other to
some degree. Last not least, it is in Eve’s advantage to present a correct pair.)
Additionally, Eve presents to the Verifier a ciphertext e = EncHash(Ax)(x).
Even if x is contained inside as a plaintext, it is infeasible to decrypt until
the Verifier learns Ax which is the expected answer from the Prover.

Phase 2: Once Alice contacts the Verifier and intends to identify herself, the
Verifier presents the challenge (X,Y) obtained from Eve. As (X,Y) is pre-
sumably correct, the Prover will respond with Xa. As Xa = Ax, the Verifier
may now decrypt e and learn x. From this point, the Prover is back in the
standard situation for identity verification.

Phase 3: Finally, the Prover can present Xa to Eve as a proof that an interaction
with Alice has taken place.

The proof presented by the Prover to Eve is a strong one as it is infeasible to
find a preimage of Y for the hash function as well as it is infeasible to solve
Computational Diffie-Hellman Problem (CDH) [1] for the tuple (g,A,X). If Eve
is not itself pretending to be Alice against the Verifier, then Eve knows that
Alice was involved in the interaction.

In the attack scenario above, the Prover might be exposed to a cheating
attempt from Eve: first Eve offers money and presents the tuple (X,Y, e) to the
Verifier. Then Eve herself pretends to be Alice in an interaction with the Prover.
The Prover mistakenly assumes that they talk with Alice.

If the Prover fears such a scenario, then the same trick can be used as before:
the Prover executes two identification rounds with Alice, claiming that in the
first round the response has been unreadable due to physical distortions. In
one round, the Prover uses the data obtained from Eve, while in the another
round the Prover executes the protocol according to the specification – thereby
checking Alice’s identity.

Corollary 2. The Stinson-Wu scheme violates the Rule 2 in the sense that the
Verifier can convince Eve that a session with the Prover has taken place, provided
that Eve can present a challenge to the Verifier before the Prover and the Verifier
start this identification session.

314 M. Kuty�lowski et al.

4.4 Raimondo-Gennaro Deniable Identification

A generic approach to create deniable identification protocols – together with a
broad discussion on deniability model and its role in the design of identification
protocols has been presented in [7]. Figure 5 presents an instantiation of such a
protocol (in this figure we skip some details concerning specification of the hash
functions H, H.)

params ← ParGen(1λ): Let G = (q, g1, g − 2, G) ← G(1λ), s.t. G is a group of or-
der q where DDH assumption holds, g1, g2 are generators of G, such that recipro-
cal discrete-logs of g1, g2 are unknown. Let H, H be hash functions. Set params =
(q, g1, g2, G, H, H).

KeyGen(): sk = (x1, x2, y1, y2) ←$ (Z∗
q)4, c = gx1

1 gx2
2 , d = gy1

1 gy2
2 , pk = (c, d). Output

(sk, pk).
Identification(P(x1, x2, y1, y2), V(c, d): The Prover P(x1, x2, y1, y2) and the Verifier

V(c, d) run the following protocol:
1. V: chooses r ←$ Z

∗
q , computes u1 = gr

1 ,u2 = gr
2 , α = H(m, P), v = crdrα,

h1 = �H�(v) and sends (m, u1, u2, h1) to the Prover P .
2. P : computes α = H(m, P), v = ux1+αy1

1 ux2+αy2
2 , h2 = �H�(v)

3. P : if h1 == �H�(v), he sends (m, h2) to the Verifier V , otherwise he aborts.
4. V : accepts iff h2 == �H�(v).

Fig. 5. Di Raimondo-Gennaro identification scheme based on DDH. �H�(v) (�H�(v))
denotes the prefix (resp. the suffix) of H(v) of length k, where k is at most the half of
the length of H(v)

One can easily see that despite all additional features (see [7]) one can adjust
Attack 13 to the case of Di Raimondo-Gennaro identification scheme:

Corollary 3. The Di Raimondo-Gennaro scheme violates the Rule 2 in the
sense that the Verifier can convince Eve that a session with the Prover has taken
place, provided that Eve can present a challenge to the Verifier before the Prover
and the Verifier start this identification session.

Final Remarks. The scenario of Attack 13 seems to be a quite important one
and realistic from the practical point of view. On the other hand, it seems to be
infeasible to create a countermeasure against such attacks in the current setting.
The reason is that the Prover may always serve as a man-in-the-middle. As long
as the Verifier sends only one message and this message initiates the protocol,
this message can be created in advance by Eve. On the other hand, building a
protocol where the Prover sends the first challenge may open many doors for
breaking Rule 2 by the Prover. Moreover, the protocols where the Prover and
the Verifier exchange more than 2 messages are less attractive from the practical
point of view.

GDPR versus Identification Protocols 315

A pragmatic way to solve the problem might be to allow the Verifier to use its
public key. Then one can imagine a protocol where the challenge created by the
Verifier contains an implicit proof (checkable by the Prover) that the challenge
has indeed been created by the Verifier. However, it should be emphasized that
the introduction of an additional public key (and the data created with the
corresponding secret key) may create a new room for weaknesses.

References

1. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. The-
ory 22(6), 644–654 (1976). https://doi.org/10.1109/TIT.1976.1055638

2. Blake-Wilson, S., Menezes, A.: Authenticated Diffe-Hellman key agreement proto-
cols. In: Tavares, S., Meijer, H. (eds.) SAC 1998. LNCS, vol. 1556, pp. 339–361.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48892-8 26

3. The European Parliament and the Council of the European Union: Regulation
(EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on
the protection of natural persons with regard to the processing of personal data
and on the free movement of such data, and repealing Directive 95/46/ec (General
Data Protection Regulation). Off. J. Eur. Union 119(1) (2016)

4. Hanzlik, L., Kluczniak, K., Kuty�lowski, M.: Controlled randomness – a defense
against backdoors in cryptographic devices. In: Phan, R.C.-W., Yung, M. (eds.)
Mycrypt 2016. LNCS, vol. 10311, pp. 215–232. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-61273-7 11

5. Young, A.L., Yung, M.: Malicious Cryptography - Exposing Cryptovirology. Wiley,
Hoboken (2004)

6. B�laśkiewicz, P., et al.: Pseudonymous signature schemes. In: Li, K.-C., Chen, X.,
Susilo, W. (eds.) Advances in Cyber Security: Principles, Techniques, and Applica-
tions, pp. 185–255. Springer, Singapore (2019). https://doi.org/10.1007/978-981-
13-1483-4 8

7. Di Raimondo, M., Gennaro, R.: New approaches for deniable authentication. J.
Cryptol. 22(4), 572–615 (2009). https://doi.org/10.1007/s00145-009-9044-3

8. Bender, J., Dagdelen, Ö., Fischlin, M., Kügler, D.: The PACE|AA protocol for
machine readable travel documents, and its security. In: Keromytis, A.D. (ed.) FC
2012. LNCS, vol. 7397, pp. 344–358. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-32946-3 25

9. Damg̊ard, I.: Towards practical public key systems secure against chosen ciphertext
attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 36

10. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–
174 (1991)

11. Wu, J.: Cryptographic protocols, sensor network key management, and RFID
authentication. Ph.D. thesis, University of Waterloo, Ontario, Canada (2009).
http://hdl.handle.net/10012/4501

12. Stinson, D.R., Wu, J.: An efficient and secure two-flow zero-knowledge identifica-
tion protocol. J. Math. Cryptol. 1(3), 201–220 (2007). https://doi.org/10.1515/
JMC.2007.010

https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1007/3-540-48892-8_26
https://doi.org/10.1007/978-3-319-61273-7_11
https://doi.org/10.1007/978-3-319-61273-7_11
https://doi.org/10.1007/978-981-13-1483-4_8
https://doi.org/10.1007/978-981-13-1483-4_8
https://doi.org/10.1007/s00145-009-9044-3
https://doi.org/10.1007/978-3-642-32946-3_25
https://doi.org/10.1007/978-3-642-32946-3_25
https://doi.org/10.1007/3-540-46766-1_36
http://hdl.handle.net/10012/4501
https://doi.org/10.1515/JMC.2007.010
https://doi.org/10.1515/JMC.2007.010

Temporal Pattern-Based Malicious
Activity Detection in SCADA Systems

(Brief Announcement)

Meir Kalech(B), Amit Shlomo, and Robert Moskovich

Ben-Gurion University of the Negev, Beersheba, Israel
{kalech,amitsh,robertmo}@bgu.ac.il

Keywords: Cyber-security · SCADA · Temporal pattern recognition

1 Scientific Background

Supervisory Control and Data Acquisition (SCADA) is a system which is used to
monitor and control various industrial and infrastructure systems, such as power
plants, water disposal and distribution, and other systems which are crucial for
our modern way of life. There has been an increasing awareness to the protec-
tion of infrastructure systems; more and more reports regarding suspected cyber
attacks on such systems have been surfacing in the media. The Stuxnet worm
is one of the most famous attacks [4]. Attacks on a SCADA system can cause
an enormous damage to an organization or even an entire country, therefore,
governments and organizations are trying to increase security by adjusting and
improving existing solutions to SCADA and by developing new methods to cope
with such attacks.

SCADA is comprised of one or more Human Machine Interface (HMI), while
each HMI controls several PLCs (Programmable Logic Controllers). The com-
munications between these components can be done in several ways. In this work,
we focus on the MODBUS protocol, which communicates over the TCP/IP pro-
tocol. MODBUS protocol is simple, and it defines a set of functions, which are
used to read/write data from/to the PLCs registers. The PLCs and the HMI
take actions according to the registers’ values read/written.

The MODBUS communication is usually highly periodic, which is a key
observation made by almost all studies in this field [2,6]. This enables to find
patterns in the communication and build effective intrusion detection systems.
Indeed, previous work considered the type of the command (Read/Write) [2]
but, to the best of our knowledge, no work considered the values of the com-
mand’s parameters (the content of the information to be read/written) neither
the duration time of the parameters.

Ignoring the content and time of the parameters, may provide opportunities
to sophisticated attacks, which manipulate the MODBUS packets while remain-
ing undiscovered. For instance, instead of opening and closing a water main

Supported by the The BGU Cyber Security Research Center.

c© Springer Nature Switzerland AG 2019
S. Dolev et al. (Eds.): CSCML 2019, LNCS 11527, pp. 316–319, 2019.
https://doi.org/10.1007/978-3-030-20951-3_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20951-3_26&domain=pdf
https://doi.org/10.1007/978-3-030-20951-3_26

Temporal Pattern-Based Malicious Activity Detection in SCADA Systems 317

valve every 30 min, an attacker may make these operations occur at a frequency
of twice a minute, causing the valve to break. To address this challenge, we
propose a machine learning approach to detect temporal patterns in the data
payload of the SCADA communication protocols. Our algorithm segments first
each register based on its values to states, where each state combines similar val-
ues. Then we apply a frequent temporal pattern discovery algorithm based on
[5], which finds patterns based on the temporal relations between the registers’
states. The discovered frequent patterns are then detected in the whole data and
their metrics, such as their time duration and frequency, are fed as features into
a classifier that learns malicious activities.

To evaluate our algorithm we use a real MODUBS-SCADA dataset from
Ben-Gurion University in Israel. The results show that our algorithm is better
than a baseline data-driven algorithm that considers only the mean and standard
deviation. In addition, we show that our algorithm is sensitive to the way we
discretize the data.

The contributions of this paper are: (1) the use of temporal abstraction and
duration time mining to detect malicious activities in SCADA systems, and (2)
a rigorous evaluation of the classification framework on real world data.

2 Method Description

SCADA systems tend to repeat themselves within a well-defined time period [2],
which leads us to apply a malicious activity detection method based on temporal
patterns.

To learn the temporal relations between registers’ values we discover temporal
relations among the symbolic time intervals (concatenated time series having the
same value) that were created from the registers’ values [3]. A time interval of
an event is defined by start and end times. To represent the relation between
two events Allen [1] defines temporal relations. In this paper, we are inspired
by this approach to find frequent patters inside the SCADA PLCs’ registers by
tracking the MODBUS communication. We define an event 〈X, v〉 as the time
interval in which register X holds value v. e.ts and e.tf denote the start and end
times of the event. Namely, once a register is assigned by a new value, a new
event is defined and this indicates the start time of the event. In the next time
the register will change its value, the end time of the event will be declared.

In Fig. 1(a) we can see an example for a portion of the raw data which holds
the values of three registers along time T . Each row contains a time stamp in the
first column and a vector of the registers’ values, as captured and updated by a
MODBUS packet. Figure 1(b) shows the events discovered. Each color represents
an event.

We are interested to identify patterns between the registers’ values (events)
using Allen’s relations. For that we employ the KarmaLego algorithm for TIRPs
discovery [5]. Shortly, KarmaLego algorithm consists of two main steps: Karma,
in which the entire set of E entities (in the database) are scanned. Through that
all the symbols are counted, and each pair of symbolic time intervals (according

318 M. Kalech et al.

Fig. 1. (a) Raw data - registers.
(b) Processed data – events. (Color
figure online)

Fig. 2. Patterns discovered by
KarmaLego. (Color figure online)

to the lexicographical order) and the temporal relation among them are indexed
in an index called the DharmaIndex. The DharmaIndex contains all the fre-
quent 2-sized TIRPs (K = 2). Later the Lego algorithm extends recursively the
frequent 2-sized TIRPs, which results with the entire enumerated tree of TIRPs.

In our algorithm, the entities are the PLC’s registers while the symbols are
the events defined earlier. Figure 2 shows an example of a temporal pattern
discovered by the KarmaLego algorithm for the events in Fig. 1. In the first
iteration, the Pattern “Reg1 = 4 starts Reg2 = 34” is discovered (the marked red
line in the left table). In the next iteration the pattern is extended and a new
pattern is discovered: “(Reg1 = 4 starts Reg2 = 34) overlaps Reg3 = 67” (right
table). Using KarmaLego, we discover the patterns which will be fed as features
into a machine learning algorithm, as described in the next section. A detailed
description of KarmaLego can be found in [5].

The registers’ values are continuous and may have many distinct values.
This may lead to the number of patterns to explode. Thus, in order to discover
frequent temporal patterns, the values are discretized and transformed into sym-
bolic time intervals . For that, in this work we apply three types of discretization:
K-Means, Equal Width Discretization (EWD) and Equal Frequency Discretiza-
tion (EFD). A machine-learning algorithm is then fed by a training set, where
each instance in the training set represents a set of features and their class. We
define an instance in the MODBUS communication by a time window, where the
features are the patterns discovered by the KarmaLego algorithm for that win-
dow. Additional features are the vertical support (frequency) and mean duration
(the average time) of each pattern within the time window. The class is whether a
malicious activity exists in this time window or not. Finally, a malicious activity
classifier is trained.

3 Evaluation

The SCADA system at Ben-Gurion University controls the entire computerized
systems in the university: security, lights, heating, air-conditioning, etc. This
gives us a unique opportunity to test our method with a real SCADA system. We
have recorded the entire data from the central HMI station for 5 days. This gave
us an access not only to one SCADA PLC, but to all 31 MODBUS/TCP PLCs in
the university controlled by the central HMI. The data was recorded using Wire-
shark and the registers’ values were extracted from the MODBUS/TCP packets

Temporal Pattern-Based Malicious Activity Detection in SCADA Systems 319

according to MODBUS/TCP documentation. The total size of the dataset is 18.9
Gb, and it is composed of approximately 20 million packets directed to port 502
(MOSBUS/TCP default port). Unfortunately, we do not have real attacks and
thus we injected attacks by extending the periods of time a register holds a
certain value.

Fig. 3. K-Means outperforms the other methods.

We used the ran-
dom forest classifier. In
order to evaluate the
classification model, we
use the standard met-
rics of Area Under
Curve (AUC). Each
data point in the results
is an average of the
thirty classification eval-
uation runs. Our base-
line for comparison con-
siders the mean and
standard deviation of
the values of each reg-
ister during the time window, which are used as features for a classifier. For each
time window, the mean values and the standard deviation of each register are
calculated and added as features to a training set. Then, a malicious activity
classifier is trained with these features.

Figure 3 shows the AUC of the various discretization methods. K-Means per-
forms better than the other discretization methods since K-Means assigns values
to the closest bin, rather than just assigning values by width or frequency. The
AUC of the baseline is much below the results achieved with our method. These
results show that time TIRPs based classification that consider the time are
much more effective.

References

1. Allen, J.F.: Maintaining knowledge about temporal intervals. In: Readings in Qual-
itative Reasoning about Physical Systems, pp. 361–372. Elsevier (1990)

2. Goldenberg, N., Wool, A.: Accurate modeling of Modbus/TCP for intrusion detec-
tion in SCADA systems. Int. J. Crit. Infrastruct. Prot. 6(2), 63–75 (2013)

3. Kam, P., Fu, A.W.: Discovering temporal patterns for interval-based events. In:
Kambayashi, Y., Mohania, M., Tjoa, A.M. (eds.) DaWaK 2000. LNCS, vol. 1874, pp.
317–326. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44466-1 32

4. Kushner, D.: The real story of stuxnet. IEEE Spectrum 3(50), 48–53 (2013)
5. Moskovitch, R., Shahar, Y.: Fast time intervals mining using the transitivity of

temporal relations. Knowl. Inf. Syst. 42(1), 21–48 (2015)
6. Zhu, B., Sastry, S., Joseph, A.: A taxonomy of cyber attacks on SCADA systems.

In: 2011 IEEE International Conference on Internet of Things, pp. 380–388 (2011)

https://doi.org/10.1007/3-540-44466-1_32

Anonymous Deniable Identification in
Ephemeral Setup and Leakage Scenarios

(Brief Announcement)

�Lukasz Krzywiecki(B), Miros�law Kuty�lowski, Jakub Pezda, and Marcin S�lowik

Department of Computer Science, Faculty of Fundamental Problems of Technology,
Wroc�law University of Science and Technology, Wroc�law, Poland

{lukasz.krzywiecki,miroslaw.kutylowski,marcin.slowik}@pwr.edu.pl

Abstract. We present anonymous identification schemes, where a ver-
ifier can check that the user belongs to an ad-hoc group of users (just
like in case of ring signatures), however a transcript of a session exe-
cuted between a user and a verifier is deniable: neither the verifier nor
the prover can convice a third party that a given user has been involved
in a session but also he cannot prove that any user has been interacting
with the verifier. Our realization of this idea is based on Schnorr iden-
tification scheme and ring signatures. We present two constructions, a
simple 1-of-n case and a more advanced k-of-n, where the prover must
use at least k private keys. They are immune to leakage of ephemeral
keys and with minor modifications this property can be sacrificed for a
simpler construction.

1 Introduction

The primary purpose of identification and authentication procedure performed
before granting access to certain resources is to check that the applicant – called
a prover – belongs to a group of users entitled to access these resources. In many
cases, there is no need to reveal the real identity of the user and to provide a
proof for a future inspection. Nevertheless, in a traditional approach:

– the verifier requests the prover to reveal their identity,
– the prover has to provide a proof of knowledge of a secret related to them,

e.g. to sign a challenge presented by the verifier.

This way not only potentially sensitive identity information are introduced into
the system, but also a non-volatile cryptographic data of high quality are created.

There are several approaches to anonymity in case of signatures. Pseudony-
mous signatures are related to pseudonymous identity, which is unique per user

This research was initially supported by Polish National Science Centre under grant
OPUS no 2014/15/B/ST6/02837 and further funded by Wroclaw University of Tech-
nology grant S50129/K1102.
Full version of the paper is available in the IACR Cryptology ePrint Archive [1].

c© Springer Nature Switzerland AG 2019
S. Dolev et al. (Eds.): CSCML 2019, LNCS 11527, pp. 320–323, 2019.
https://doi.org/10.1007/978-3-030-20951-3_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20951-3_27&domain=pdf
https://doi.org/10.1007/978-3-030-20951-3_27

Anonymous Deniable Identification in Ephemeral Setup 321

and an identification sector, but unlinkable between different sectors. Another
approach are group or ring signatures – they prove membership in a predefined
or ad-hoc group, but reveal no identity. In the signature based approaches, an
interaction leaves a cryptographic trace that can be used as a proof of interaction
against third parties. From the privacy preserving perspective, in the interactive
identification process, we require quite opposite feature: the transcript of that
interaction should not be used, later on, as a proof that the interaction occured.

This can be achieved by the deniability property of the protocol, which is
simulatable without any secrets by any party. Anonymous identification can
be viewed as an extension to regular identification, where the actual prover is
hidden within a group of potential provers. It interactively convinces the verifier,
holding the set of the public keys, that it possesses one corresponding secret key.

We consider scenarios, where users do not control the production process of
their devices. Malicious producers can leave back doors for randomness leakage
or setting. Particularly we consider Chosen Prover, Leaked Verifier Ephemeral
(CPLVE) model from [2]. Note that anonymous ring authentication of Naor [3]
and deniable identification schemes of Stinson and Wu [4], and Di Raimondo
and Gennaro [5], are not secure in this model, because they are based on the
random ephemeral coined at the verifiers device.

Contribution. The contribution of the paper is the following:

– we propose a k-of-n anonymous and deniable identification scheme;
– we propose a simplified version for case k = 1;
– we prove the security of the schemes in the CPLVE model from [2] in the full

version of the paper [1].

A case of k > 1 can be used when a strong multifactor authentication is required.
E.g. for k = 2, the user has to use two different keys – one located on an identity
card and one located on his laptop. Our proposals are deniable in honest verifier
setting; privacy-preserving due to their anonymous nature and secure in case
of ephemeral leakage or setting.

2 Proposed Anonymous Identification Schemes Secure in
CPLVE

We propose two AIS secure in CPLVE: a general k-of-n scheme and a more efficient
1-of-n scheme. We apply the technique from [6] to immune against ephemeral
setup values on provers devices.

Efficient 1-of-n AIS Secure in CPLVE. The construction is depicted in Fig. 1.
Assume the prover has a secret key aj . The anonymity is achieved in as fol-
lows: for all public keys for which the prover does not possess the secret key, it
simulates Schnorr IS transcripts, selecting ci values at random. Subsequently it
computes missing cj = c − ∑

i�=j ci after obtaining challenge c from the verifier
and performs IS for his private key in a regular way.

322 �L. Krzywiecki et al.

params ← ParGen(1λ):
Let G ← G(1λ), s.t. CcDH assumption holds; ê : G1 × G2 → GT be a bilnear map;
H : {0, 1}∗ → G2 be a hash function. Set params = (G1, G2, GT , g1, g2, q, H, ê).

KeyGen():
For a key pair i do ski = ai ←$ Z

∗
q , pki = Ai = gai

1 . Output (ai, Ai).
π(P({aj}J , {A}n

1), V({A}n
1):

1. P : for i ∈ 1, . . . , n s.t. i �= j compute: ci, si ←$ Z
∗
q , Xi = gsi

1 /Aci
i

2. P : choose xj ←$ Z
∗
q , Xj = g

xj

1 , X =
∏

Xi and send X to the verifier V .
3. V : choose c ←$ Z

∗
q , and send c to the prover P .

4. P : compute cj = c − ∑
i�=j ci, then sj = xj + ajcj , ĝ2 = H (X|c), s = si, S = ĝs

2

and send S, c1, . . . , cn to the verifier V .
5. : compute ĝ2 = (X c) and accept iff c = ci and ê (g1, S) = ê (X Aci

i , ĝ2).

Fig. 1. 1-of-n AIS secure in CPLVE.

General k-of-n Anonymous AIS Secure in CPLVE. The construction is
depicted in Fig. 2. Let k + z = n. For a polynomial L(x) of degree z − 1, and a
set of shares P = {(xi, yi)}n1 , s.t. yi = L(xi) then the following are true:

– each z-element subset of from P can be used to interpolate L;
– a least k shares (xj , L(xj)) were added to P after L was constructed.

The scheme follows a similar principle of simulating z transcripts and perform-
ing honest proofs for the remaining k. To ensure that, the verifier generates a
set of k random polynomial points. The prover then inserts z points for the
simulated transcripts, interpolates a polynomial and extracts the remaining n
challenge values. The verifier finally checks if c values (z simulated and n honest)
interpolate a polynomial that still includes the original set of random points.

Security Without CPLVE. Security against ephemeral leakage and setting can
be easily removed from the schemes making them insecure in CPLVE model, but
more efficient and still secure in scenarios where such attacks are not considered.
We modify the 1-of-n scheme (Fig. 1) protocol π in the following way. In step 4.
the prover sends to the verifier the value s instead of S, and in step 5. the
verifier checks if gs = X

∏
Aci

i instead of ê (g1, S) = ê (X
∏

Aci
i , ĝ2). Similarly,

we modify the k-of-n scheme (Fig. 2) protocol π in the following way. In step 10.
the prover sends to the verifier {ci, si}n1 instead of {ci, Si}n1 , and in step 13. the
verifier checks for each i ∈ I if gsi = XiA

ci
i instead of ê (g1, Si) = ê (XiA

ci
i , ĝ2).

In both cases, this effectively removes the need for pairing-friendly groups, as
all operations are performed in G1 and Zq. The resulting schemes are deniable,
secure for impersonation, and anonymous.

3 Conclusion

We proposed 1-of-n and k-of-n interactive anonymous identification schemes, that
support privacy of users two-fold :privacy regarded as ability to deny the partic-
ipation in the protocol interaction and privacy regarded as anonymity within a

Anonymous Deniable Identification in Ephemeral Setup 323

Let I = {i}n
1 , J = {j1, . . . , jk} ⊂ I , Z = {i1, . . . , iz} ⊂ I , J ∪ Z = I , J ∩ Z = ∅.

params ← ParGen(1λ):
Let G ← G(1λ), s.t. CcDH assumption holds; ê : G1 × G2 → GT be a bilnear map;
Hg2 : {0, 1}∗ → G2, and H : {0, 1}∗ → Z

∗
q be hash functions.

Set params = (G1, G2, GT , g1, g2, q, Hg2 , H, ê).
KeyGen():

For a key pair i do ski = ai ←$ Z
∗
q , pki = Ai = gai

1 . Output (ai, Ai).
π(P({aj}J , {Ai}n

1), V({Ai}n
1)):

1. P: set XZ = {Xi}Z , s.t. si, ci ←$ Z
∗
q , Xi = gsi

1 /Aci
i for each i ∈ Z.

2. P: set XJ = {Xj}J , s.t. for each j ∈ J compute xj ←$ Z
∗
q , Xj = g

xj

1 .
3. P: send X = XZ ∪ XJ to the verifier V .
4. V : set PC = {(xi, yi)}k

1 , where each pair xi, yi ←$ Z
∗
q .

5. V : compute ĝ2 = Hg2(X, PC), send PC to the provers P .
6. P : compute the set PZ = {(xi, yi)}Z , s.t. xi = H(Xi), yi = ci for each i ∈ Z.
7. P : set P = PC ∪ PZ , interpolate a polynomial LP (x) for points P .
8. P : compute ĝ2 = Hg2(X, PC)
9. P : for each j ∈ J , compute cj = LP (H(Xj)), sj = xj + ajcj .

10. P : for each i ∈ I compute Si = ĝsi
2 , send {ci, Si}n

1 to the verifier V .
11. V : set P̄ = {(xi, yi)}n

1 , s.t. xi = H(Xi), yi = ci for each i ∈ I .
12. V : interpolate a polynomial LP̄ (x) for points P̄ .
13. : accept iff (xi,yi) PC

LP̄ (xi) = yi and i∈I ê (g1, Si) = ê (XiA
ci
i , ĝ2).

Fig. 2. k-of-n AIS secure in CPLVE.

set of potential provers. The schemes withstand impersonation attacks in the
strong CPLVE model. This justifies for implementation on devices, which man-
ufacturing process is not under the sole control of the end-users, and when fair
randomness cannot be guaranteed.

References

1. Krzywiecki, �L., Kuty�lowski, M., Pezda, J., S�lowik, M.: Anonymous deniable identi-
fication in ephemeral setup & leakage scenarios. Cryptology ePrint Archive, Report
2019/337 (2019). https://eprint.iacr.org/

2. Krzywiecki, �L., S�lowik, M.: Strongly deniable identification schemes immune to
prover’s and verifier’s ephemeral leakage. In: Farshim, P., Simion, E. (eds.) SecITC
2017. LNCS, vol. 10543, pp. 115–128. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-69284-5 9

3. Naor, M.: Deniable ring authentication. In: Yung, M. (ed.) Annual International
Cryptology–CRYPTO 2002 CRYPTO 2002. LNCS, vol. 2442, pp. 481–498. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9 31

4. Stinson, D.R., Wu, J.: An efficient and secure two-flow zero-knowledge identification
protocol. Cryptology ePrint Archive, Report 2006/337 (2006)

5. Raimondo, M.D., Gennaro, R.: New approaches for deniable authentication. J.
Cryptology 22(4), 572–615 (2009)

6. Krzywiecki, �L.: Schnorr-like identification scheme resistant to malicious subliminal
setting of ephemeral secret. In: Bica, I., Reyhanitabar, R. (eds.) SECITC 2016.
LNCS, vol. 10006, pp. 137–148. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-47238-6 10

https://eprint.iacr.org/
https://doi.org/10.1007/978-3-319-69284-5_9
https://doi.org/10.1007/978-3-319-69284-5_9
https://doi.org/10.1007/3-540-45708-9_31
https://doi.org/10.1007/978-3-319-47238-6_10
https://doi.org/10.1007/978-3-319-47238-6_10

Randomized and Set-System Based
Collusion Resistant Key Predistribution

Schemes (Brief Announcement)

Vasiliki Liagkou1,4(B), Paul Spirakis2,3, and Yannis C. Stamatiou1,5

1 Research and Academic Computer Technology Institute, N. Kazantzaki,
University of Patras, 26500 Rio, Patras, Greece
liagkou@cti.gr, stamatiu@ceid.upatras.gr

2 Department of Computer Science, University of Liverpool, Liverpool, UK
P.Spirakis@liverpool.ac.uk

3 Department of Computer Engineering, University of Patras,
26500 Rio, Patras, Greece

4 Department of Informatics and Telecommunications, University of Ioannina,
47100 Koatakioi Arta, Greece

5 Department of Business Administration, University of Patras, University Campus,
26500 Rio, Patras, Greece

Abstract. One problem that frequently arises is the establishment of
a secure connection between two network nodes. There are many key
establishment protocols that are based on Trusted Third Parties or pub-
lic key cryptography which are in use today. However, in the case of
networks with frequently changing topology, such an approach is dif-
ficult to apply. In this paper we give a formal definition of collusion
resistant key predistribution schemes and then propose such a scheme
based on probabilistically created set systems. The resulting key sets are
shown to have a number of desirable properties that ensure the confiden-
tiality of communication sessions against collusion attacks by other net-
work nodes. Moreover we associate our deterministic key pre-distribution
scheme with the theory of set family construction methods showing that
the mathematical properties possessed by the sets of such families lead
to key sets with the aforementioned desirable properties.

Keywords: Key management · Key pre-distribution ·
Ad-hoc network security · Set systems

1 Introduction

Key predistribution is one of the most effective method for enabling two nodes
of a network (especially ad-hoc networks) to establish secure communication.
Several proposals exist which deal with key pre-distribution. Here we will focus
specifically on probabilistic and deterministic pre-distribution schemes, which
have in some way incorporated the use of set systems, and schemes on which
these have based their work.
c© Springer Nature Switzerland AG 2019
S. Dolev et al. (Eds.): CSCML 2019, LNCS 11527, pp. 324–327, 2019.
https://doi.org/10.1007/978-3-030-20951-3_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20951-3_28&domain=pdf
https://doi.org/10.1007/978-3-030-20951-3_28

Randomized and Set-System Based Collusion Resistant Key Predistribution 325

Related Work
Several proposals exist for distributing keys to sensor nodes prior to deployment
by using a key pool generated by a polynomial ([1,2,5] and [3]). The authors
of [5] propose a key pre-distribution scheme consisting where each node of the
network is assigned a random subset of keys from a key pool which is loaded
into the memory of each node. The key pre-distribution scheme in [8] follows
that of [5]. The difference being that the latter is a probabilistic scheme whereas
the former adopts a deterministic approach. A q-composite random key pre-
distribution scheme proposed in [2] which address the bootstrapping problem,
and it is based primarily on the work described in [5]. Authors in [6] examine
also a q-composite scheme and they schemes provide resilience to node captures
but at the expense of increased communication overhead.

The interesting point here is that increasing the least number of keys that
need to be shared by two nodes in order to establish communication, necessitates
a decrease in the key pool size. Du et al. in [4] tried to reduce the size of key
ring by assigning larger key ring size to high end sensors and minimum key ring
size to low end sensors. Here we try to solve this trade-off between increasing
the number of required shared keys and increasing the random key pool size by
constructing keys that have properties for preventing collusion attacks.

Our Contribution
In this paper we present simple, probabilistic, key ring constructions for use in
key management protocols in Mobile Ad-Hoc Networks (MANETs). Our con-
structions are based on two new key ring properties: (i) the intersection of key
rings is not a subset of the union of a disjoint set of key rings, and (the stronger,
but more difficult to attain, property) (ii) the intersection of key rings is disjoint
from the union of a disjoint set of key rings. These properties can help towards
preventing collusion attacks from compromised nodes since they allow honest
nodes to always locate communication keys that are not shared with the key
rings of compromised nodes. In addition, we present some set system based con-
structions based on special combinatorial set designs as well as special classes of
polynomials. Our goal is to link deterministic key pre-distribution with the the-
ory of set family construction methods showing that the mathematical properties
possessed by the sets of such families lead to key sets with the aforementioned
desirable properties.

2 A Probabilistic Key Predistribution Scheme and Its
Security Properties

In this section we will introduce a simple probabilistic key predistribution scheme
and show that it possesses a number of good properties with regard to security.
Let M, with |M| = m, denote the set of available keys. During the key predis-
tribution phase, node i selects each key j ∈ M, independently, with probability
pj and forms its key ring, denoted with Si. All these sets form a set system. In
what follows, given a node u, by Su we denote its key ring. Below, we define two

326 V. Liagkou et al.

properties of such set systems that, if obeyed, the key sets they contain have a
number of desirable properties:

Definition 1 (Exclusion property - Ek,l). The intersection of the key rings of
any set of k nodes is not a subset of the union of the key rings of any set of l
nodes, provided the two sets of k and l nodes are disjoint.

The following property is stronger since it does not allow the intersection and
the union of the key sets to have a common element.

Definition 2 (Isolation property - Ik,l). The intersection of the key rings of
any set of k nodes is disjoint from the union of the key rings of any set of l
nodes, provided the two sets of k and l nodes are disjoint.

3 Key Rings and Set Systems Based on Combinatorial
Designs

In this section we turn our attention to key rings based on combinatorial designs.
We, first, define the notion of r-union-freeness (see, e.g., [7]):

Definition 3 (r-union-freeness). A family of sets F is called r-union-free if
A0 �⊆ A1 ∪ A2 ∪ . . . ∪ Ar holds for all distinct A0, A1, . . . , Ar ∈ F .

In our context this property states that for any distinct r + 1 sets, any one of
them is not contained in the union of the rest r of the sets. This, in turn, implies
that the key ring of any node in a communications network always contains
some key that is not contained in any set of r of the rest of the nodes, which
is important to avoid, e.g., collusion attacks from a set of r compromised nodes
(i.e. there is always a key that does not lie in the combined key rings of the
compromised nodes). Let us assume, for simplicity, that our goal is to create
k-uniform key rings, i.e. key rings with k elements each, with k > r. Then, the
condition in inequality becomes: |Ai ∩ Aj | < k

r for all i �= j.
Let us fix a key set of m candidate keys for the nodes, for a sufficiently (see

below) large positive integer m. Let, also, l be an integer l, such as 0 < l < k
r ,

which will be the number of elements of the intersection of any pair of key rings.
Then we take the following steps:

1. To each pair Ai, Aj we assign a different set of l shared keys out of the pool
of the m available keys. (We can, also, let l vary depending on i, j, keeping
it, however, in the range 0 < l < k

r .)
2. For each of the n sets A, k − l keys remain to be determined since the family

of sets is k-uniform. We select, for each set, a different set of k − l keys out
of the pool of m keys.

To accommodate these two steps, we need m ≥ l · (n2
)
+n · (k− l) candidate keys

and the resulting key rings are r-union-free.

Randomized and Set-System Based Collusion Resistant Key Predistribution 327

4 Conclusions

In this paper we have provided a number of key-ring constructions based on two
new properties of set families, the exclusion and the isolation properties as well
as combinatorial designs for set systems. Our approach combines the simplicity
of probabilistic key management schemes with the strength of the deterministic
ones.

With respect to the probabilistic schemes, we provided conditions on the key
selection probabilities that dictate when the exclusion and isolation properties
hold for the resulting key rings. The key selection algorithm is the simplest one,
i.e. each node chooses its key ring by selecting uniformly at random from the
pool of candidate keys. Depending on the values of the probabilities, we have
shown that the properties hold with high probability.

With respect to deterministic key ring management, we provided some con-
structions based on set systems that ensure good resulting key ring properties.
To this end, we used special classes of polynomials as well as extremal set theory.

As future research, we plan to exploit results from extremal set theory further
and combine them with probabilistic schemes in order to combing simplicity with
strength in key ring management.

References

1. Blundo, C., De Santis, A., Herzberg, A., Kutten, S., Vaccaro, U., Yung, M.:
Perfectly-secure key distribution for dynamic conferences. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 471–486. Springer, Heidelberg (1993). https://
doi.org/10.1007/3-540-48071-4 33

2. Chan, H., Perrig, A., Song, D.: Random key predistribution schemes for sensor
networks. In: IEEE Symposium on Security and Privacy, Berkeley, California, vol.
197 (2003)

3. Delgosha, F., Fekri, F.: Key pre-distribution in wireless sensor networks using mul-
tivariate polynomials. In: 2005 Second Annual IEEE Communications Society Con-
ference on Sensor and Ad Hoc Communications and Networks, IEEE SECON 2005,
pp. 118–129. IEEE (2005)

4. Du, X., Xiao, Y., Guizani, M., Chen, H.H.: An effective key management scheme
for heterogeneous sensor networks. Ad Hoc Netw. 5(1), 24–34 (2007)

5. Eschenauer, L., Gligor, V.D.: A key-management scheme for distributed sensor net-
works. In: Proceedings of the 9th ACM Conference on Computer and Communica-
tions Security, pp. 41–47. ACM (2002)

6. Gandino, F., Ferrero, R., Rebaudengo, M.: A key distribution scheme for mobile
wireless sensor networks: q-s-composite. IEEE Trans. Inf. Forensics Secur. 12(1),
34–47 (2017)

7. Jukna, S.: Extremal Combinatorics: With Applications in Computer Science.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-17364-6

8. Lee, J., Stinson, D.R.: A combinatorial approach to key predistribution for dis-
tributed sensor networks. In: WCNC, pp. 1200–1205 (2005)

https://doi.org/10.1007/3-540-48071-4_33
https://doi.org/10.1007/3-540-48071-4_33
https://doi.org/10.1007/978-3-642-17364-6

Author Index

Arnon, Shlomi 67
Ashur, Tomer 16

Barshap, Guy 178
Binun, Alex 249
Binun, Alexander 106
Borzacchiello, Luca 121
Boura, Christina 212

Chen, Xiaofeng 296
Cohen, Asaf 1
Coppa, Emilio 121

D’Elia, Daniele Cono 121
Demetrescu, Camil 121
Derbeko, Philip 93
Dinitz, Yefim 249
Dinur, Itai 198
Dolev, Shlomi 93, 101, 106, 249
Drayer, Elisabeth 97
Drucker, Nir 33, 141
Dunkelman, Orr 16

Elmakies, Mor 156
Elul, Natan 198

Felner, Ariel 260
Frenkel, Sergey 249

Gal, Kobi 260
Gama, Nicolas 212
Georgieva, Mariya 212
Gilboa, Shoni 111
Gudes, Ehud 93, 156
Gueron, Shay 33, 111, 141
Gurewitz, Omer 1

Hadad, Tal 106
Hadar, Ofer 47
Handa, Anand 75, 279

Jetchev, Dimitar 212

Kalech, Meir 316
Khankin, Daniel 249
Krzywiecki, Łukasz 296, 320
Kumar, Amit 279
Kumar, Nitesh 75, 279
Kupferman, Judy 67
Kutyłowski, Mirosław 296, 320

Leiba, Oded 178
Levy, Priel 156
Liagkou, Vasiliki 324
Lodha, Sachin 231

Majadly, Ahmad 260
Masalha, Nael 16
Mirsky, Reuth 260
Moskovich, Robert 316

Nadler, Sima 208

Permuter, Haim 202
Pezda, Jakub 320
Poleg, Yuval 101
Puzis, Rami 178, 260

Raz, Orna 208
Routtenberg, Tirza 97

Segal, Yoram 47
Shalom, Ya’ar 260
Shlomo, Amit 316
Shmuel, Ori 1
Shoham, Ron 202
Shukla, Sandeep Kumar 75, 279
Singh, Ajay 75

Singh, Ajeet Kumar 231
Słowik, Marcin 320
Spirakis, Paul 324
Stamatiou, Yannis C. 324

Tupsamudre, Harshal 231

Veeramachaneni, Kalyan 169
Voloch, Nadav 156

Zalmanovici, Marcel 208
Zhang, Kevin Alex 169
Zilberman, Polina 178

330 Author Index

	Preface
	Organization
	Contents
	Jamming Strategies in Covert Communication
	1 Introduction
	2 System Model
	2.1 Covert Criteria

	3 Covert Criteria Compliance
	4 Detection at Bob
	4.1 Bob's Antennas M=1
	4.2 Bob's Antennas M>1

	5 The Jammer's Strategies
	5.1 The Case Where M=1
	5.2 The Case Where M>1

	6 Conclusion
	References

	Linear Cryptanalysis Reduced Round of Piccolo-80
	1 Introduction
	2 A Brief Description of Piccolo
	3 Previous Analysis of Piccolo
	4 A Linear Attack on Reduced Round of Piccolo-80
	4.1 Linear Approximation of the F-Function
	4.2 Linear Approximation of 6 Round Piccolo-80
	4.3 A Linear Attack on 7 Rounds of Piccolo-80
	4.4 A Linear Attack on 8 Rounds of Piccolo-80
	4.5 Input MSB of the F-Function as a Partitioning Distinguisher
	4.6 Extracting the MSB Values of the Whitening Keys wk0 and wk1

	5 Experimental Verification of a Reduced-Round Attack
	5.1 Partial Verification of 2 Rounds and 4 Rounds Linear Attack
	5.2 Verification of MSB as a Partitioning Distinguisher

	6 Conclusion
	References

	Continuous Key Agreement with Reduced Bandwidth
	1 Introduction
	2 Notation and Background
	2.1 Continuous Key Agreement (CKA)
	2.2 Key Encapsulation Mechanism (KEM)

	3 Merged KEM (MKEM)
	4 BIKE-MKEM
	4.1 BIKE1-MKEM Transformation
	4.2 CKA, MKEM and DFR

	5 A Hybrid CKA Constructions
	6 Conclusion
	References

	Covert Channel Cyber-Attack over Video Stream DCT Payload
	Abstract
	1 Introduction and Motivation
	2 Glossary
	3 Objective
	3.1 Attack Perspective
	3.2 Infrastructure Implementation Method
	3.3 Research Structure and Lab Setup
	3.4 Attack Algorithm and Related Work
	3.5 Implementation

	4 Results
	5 Comparative Analysis DCT Steganography Techniques
	6 Conclusion and Future Research Directions
	Acknowledgment
	References

	Effects of Weather on Drone to IoT QKD
	Abstract
	1 Introduction
	2 Scenario Under Consideration
	3 Discussion
	References

	Malware Classification Using Image Representation
	1 Introduction
	2 Related Work
	2.1 Visualization Approaches

	3 Our Methodology
	3.1 Dataset Collection and Pre-processing

	4 Model Configuration
	4.1 Dense CNN Configuration
	4.2 ResNet-50 Architectural Details

	5 Experimental Results and Comparison with Previous Work
	6 Limitations and Future Work
	7 Conclusion
	References

	MLDStore
	1 Introduction
	2 Motivation and Related Work
	3 Data Sharing Protocol
	4 Ownership of the Model
	5 Conclusion
	References

	Cyber Attack Localization in Smart Grids by Graph Modulation (Brief Announcement)
	1 Introduction and Motivation
	2 Methodology
	3 Case Study
	References

	Beyond Replications in Blockchain
	1 Introduction
	2 On-Blockchain Scheme
	3 Off-Blockchain Scheme
	References

	Self-stabilizing Byzantine Consensus for Blockchain
	1 Introduction
	2 Terminology
	3 Transient Error that Incapacitates BFT
	4 Byzantine Self-stabilization for Orderers
	References

	The Advantage of Truncated Permutations
	1 Introduction
	2 Notation and Preliminaries
	3 Proof of Theorem1.1
	4 Conclusions
	References

	Reconstructing C2 Servers for Remote Access Trojans with Symbolic Execution
	1 Introduction
	2 Approach
	2.1 Overview
	2.2 Steps
	2.3 Discussion

	3 Experimental Evaluation
	3.1 NetWire
	3.2 GoldSun

	4 Related Work
	5 Conclusion
	References

	Generating a Random String with a Fixed Weight
	1 Introduction
	2 Preliminaries, Notation, and Conventions
	2.1 The Shuffling Method
	2.2 Rejection Method
	2.3 Sorting Method

	3 RepeatedAND method
	4 Different Representations of Strings
	5 Handling the Case q=3
	6 Results
	7 Conclusion
	A A variant of the RepeatedAND method
	B Bounding the probability that the RepeatedAND algorithm does not stop
	References

	An Access Control Model for Data Security in Online Social Networks Based on Role and User Credibility
	Abstract
	1 Introduction
	2 Background and Related Work
	3 OSN Role and Trust Based Access Control (RTBAC)
	3.1 The RTBAC Model
	3.2 Criteria Choice for Trust Estimation
	3.3 Calculating Trust Parameters’ Values
	3.4 The Model’s Algorithm
	3.5 Experimental Assessment and Real OSN Data Estimation of Trust

	4 Discussion
	5 Conclusion and Future Work
	References

	Enhancing Image Steganalysis with Adversarially Generated Examples
	1 Introduction
	2 Steganography
	2.1 Least Significant Bits
	2.2 HiDDeN
	2.3 SteganoGAN

	3 Steganalysis
	3.1 StegExpose
	3.2 YeNet

	4 Experiments
	5 Analysis
	6 Conclusion
	References

	Controllable Privacy Preserving Blockchain
	1 Introduction
	2 Related Work
	3 Cryptographic Toolkit
	3.1 Pedersen Commitment
	3.2 Ring Signature
	3.3 Multi-Party Computations
	3.4 Feldman's Verifiable Secret Sharing Scheme (VSS)

	4 Background on Monero
	5 Terminology and Requirements
	5.1 Security Model

	6 FiatChain Protocols
	6.1 Client's Registration
	6.2 Transaction Keys and Stealth Address Generation
	6.3 Verifying a Payment Transaction

	7 Disclosure
	7.1 Disclosure of a Transaction in Which the Suspected Client Is One of the Receivers
	7.2 Disclosure of a Transaction Where the Suspected Client Is the Sender

	8 Implementation Details
	9 Conclusion
	References

	A Relay Attack on a Tamper Detection System (Brief Announcement)
	1 Introduction
	2 The Tamper Detection System of Bagci et al.Ethem
	3 The Relay Attack on the Tamper Detection System
	4 Summary of Results
	Reference

	Amended Cross-Entropy Cost: An Approach for Encouraging Diversity in Classification Ensemble (Brief Announcement)
	1 Introduction
	2 Regression with Negative Correlation Learning
	3 Classification
	4 Stacked Diversified Mixture of Classifiers
	5 Results
	5.1 MNIST Using Vanilla Diversified Classifiers
	5.2 CIFAR-10 Using SDMC

	6 Conclusion
	References

	Governance and Regulations Implications on Machine Learning (Brief Announcement)
	1 Introduction and Background
	2 Method, Feasibility Results and Summary
	References

	Simulating Homomorphic Evaluation of Deep Learning Predictions
	1 Introduction
	2 Homomorphic RLWE Encryption Schemes and Noise Propagation
	2.1 HEAAN and TFHE Through the Chimera Framework
	2.2 Noise Models for Homomorphic Operations

	3 Evaluation of Nonlinear Functions in Neural Networks
	3.1 Non-linear Functions in TFHE
	3.2 Non-linear Functions in HEAAN

	4 Predictions for Deep Learning
	4.1 Robustness Against the FHE Error Models
	4.2 Experiments
	4.3 Conclusion/Discussion

	References

	Everything Is in the Name – A URL Based Approach for Phishing Detection
	1 Introduction
	1.1 Contributions

	2 Related Work
	2.1 Making Things Invisible
	2.2 Better Interfaces and Training

	3 Approach
	3.1 Datasets
	3.2 Features
	3.3 Logistic Regression for URL Classification

	4 Results and Discussion
	5 Conclusion and Future Work
	References

	Network Cloudification
	1 Introduction
	2 Formal Problem Statement and Its Reduction to ILP
	3 Heuristic Approach
	4 Launching the Cloudified Version
	5 Conclusions
	References

	New Goal Recognition Algorithms Using Attack Graphs
	1 Introduction
	2 Goal Recognition
	2.1 Other Goal Recognition Works

	3 Attack Graphs
	3.1 Definitions and Background
	3.2 Attack Graphs as PDDL

	4 Planning-Based Algorithms for GR
	4.1 The R&G Approach
	4.2 The M&S Approach
	4.3 Improvement 1: Realtime Reasoning and Generalization (R&G+)
	4.4 Improvement 2: Sunk Cost (SC)

	5 Metric-Based Algorithms for GR
	5.1 Plan Edit Distance (PED)
	5.2 Alternative Plan Cost

	6 Empirical Evaluation
	6.1 Prediction Quality
	6.2 Noisy Observations
	6.3 Missing Observations
	6.4 Running Times

	7 Summary, Discussion and Conclusions
	References

	PeerClear: Peer-to-Peer Bot-net Detection
	1 Introduction
	2 Background
	3 Related Work
	4 Our Approach
	4.1 P2P Host Detection
	4.2 P2P Bot-net Detection

	5 Results and Comparison with Past Work
	6 Conclusion
	References

	Rethinking Identification Protocols from the Point of View of the GDPR
	1 Introduction
	2 GDPR and Privacy Protection Principles for Identification Protocols
	2.1 Scope
	2.2 Security Reality

	3 Privacy Threats and Privacy Requirements
	4 Example Identification Schemes and Their Privacy Threats
	4.1 Static Diffie-Hellman Scheme
	4.2 Schnorr Identification Scheme
	4.3 Wu and Stinson-Wu Identification Schemes
	4.4 Raimondo-Gennaro Deniable Identification

	References

	Temporal Pattern-Based Malicious Activity Detection in SCADA Systems (Brief Announcement)
	1 Scientific Background
	2 Method Description
	3 Evaluation
	References

	Anonymous Deniable Identification in Ephemeral Setup and Leakage Scenarios (Brief Announcement)
	1 Introduction
	2 Proposed Anonymous Identification Schemes Secure in CPLVE
	3 Conclusion
	References

	Randomized and Set-System Based Collusion Resistant Key Predistribution Schemes (Brief Announcement)
	1 Introduction
	2 A Probabilistic Key Predistribution Scheme and Its Security Properties
	3 Key Rings and Set Systems Based on Combinatorial Designs
	4 Conclusions
	References

	Author Index

