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Abstract. A key Industry 4.0 element is predictive maintenance, which
leverages machine learning, IoT and big data applications to ensure that
the required equipment is fully functional at all times. In this work,
we present a case study of smart maintenance in a real-world setting.
The rationale is to depart from model-based and simple rule-based tech-
niques and adopt an approach, which detects anomalous events in an
unsupervised manner. Further, we explore how incorporation of domain
knowledge can assist the unsupervised anomaly detection process and
we discuss practical issues.

Keywords: Anomaly detection + Predictive maintenance -
Industry 4.0

1 Introduction

Predictive Maintenance (PdM) is considered a key task in Industry 4.0 with
a view to decreasing, if not eliminating, machinery downtime and operational
costs [1]. Modern PdM heavily relies on machine learning, e.g., [10,11,13], where
the key concept is to intensively process event logs and then train models to
identify failure patterns well in advance.

In this work, we advocate a complementary approach, where we employ unsu-
pervised machine learning, and more specifically anomaly detection [2]. We show
that, in addition to devising predictive models, we can continuously monitor the
incoming data and apply state-of-the-art algorithms for streaming outlier detec-
tion. The outliers reported by such a process can be safely regarded as early
signs of failure and thus become part of an advanced PdM solution. The key
strength of our approach is that it does not rely on representative event logs and
model training.
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Fig. 1. Oil level.

1.1 Our Case Study

The case study is motivated by a typical maintenance activity in industrial
plants, such as those of BENTELER Automotive. BENTELER produces and
distributes safety-relevant products, serving customers in automotive technol-
ogy, the energy sector and mechanical engineering. The production of such plants
employs to a large extent machinery with several mechanical and hydraulic sys-
tems, which entail frequent and/or periodic maintenance such as lubrication
oil replacement and refill, given that oil leakages are a common and expected
phenomenon.

More specifically, our study focuses on early detection of oil leakage occur-
rences. Despite the fact that, typically, oil is mostly stored in large tanks
equipped with oil level sensors, oil leakage detection is a challenging problem
due to the continuous movement of oil across the machinery equipment parts.
Such movement results in frequent increases and decreases of oil level, as depicted
in Fig. 1. Therefore, and somehow counter-intuitively, simply monitoring the oil
level is not adequate to provide concrete evidence about oil leakage.

To detect incidents, the main metric needs to be combined with two other
types of information. Firstly, to process the oil level in relation to the concurrent
IoT measurements of other aspects of the same equipment, such as temperature,
current, mechanical part position and movement sensors, accelerometers, pres-
sure sensors and so on. This allows oil level to be regarded in a specific context
but has the drawback that not all other measurements are relevant. Secondly, to
employ domain specific knowledge, which can assist the data analyst to under-
stand whether the system is in idle state, as the oil level will be stabilized.
The most straightforward way is to infer the time periods in which operation
intermission takes place, when such information is not explicitly provided. For
example, in such periods, some mechanical parts are often in a position in which
they can never be during normal operation. Or, specific measurements of some
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other parts are below some threshold. The challenge here is to automatically
detect the data rules that define the operation status of the machinery before
applying anomaly detection.

Overall, the goal is to provide a detection tool to the maintenance engineers,
which can monitor and analyse at runtime key measurements of the system, in
order to detect and report oil leakages at early stages. We consider that the
measurement collection and fault reporting mechanisms are already provided,
as the description of their development is out of the scope of this paper.

1.2 Summary and Paper Structure

In summary, in our case study, the aim is to detect oil leakage through combin-
ing oil level sensor measurements with other IoT device readings and inferring
through data pre-processing the stabilized time periods. From the machine learn-
ing point of view, the goal is to devise unsupervised learning solutions that do
not rely on a well-defined training set of past problematic states. The techniques
are described in Sect.2 and evaluated in Sect.3. We conclude in Sect. 4. Non-
essential technical details regarding our solutions are deferred to the Appendix.

2 Timely Failure Detection Approaches

2.1 Rule-Based Approach

Traditionally, thresholds are set to sensor measurements to trigger alerts on
their violation. In the evaluation, a rule-based mechanism is used as a base-
line approach. The simplicity of such a reactive approach is both an advantage
and a disadvantage, as it is simple enough to be easily understood, developed
and deployed, but rather naive to detect more complex events, which poten-
tially encapsulate valuable information and to adapt in unstable environments,
producing lots of false positive reports. As already explained in the use case
presentation, due to the movement of the oil inside the machinery and the stor-
age tank, the definition of a static rule for the detection of an oil leakage is a
challenging task and if the requirement of an early detection is considered, more
advanced solutions are required as explained hereby.

2.2 Outlier Detection Approach

Outlier detection is a vivid research field that has developed broad and multi-
faceted algorithmic solutions. Through a variety of unsupervised learning solu-
tions, ranging from basic clustering techniques like k-means [6], to Neural Net-
work solutions like self-organised maps [8], we have selected an efficient and
effective algorithm proposed in [9], namely the Micro-cluster Continuous Out-
lier Detection (MCOD) technique. For the challenging task of detecting out-
liers in data streams, MCOD provides low memory and processing footprint
and its results are easily understandable, compared to the other solutions.
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As the comparative study [12] suggests, the MCOD algorithm is considered as
a state-of-the-art solution in the streaming data processing for distance-based
outlier detection. Utilizing the MCOD algorithm in our case study, we can detect
sudden changes (i) in the oil level or (ii) in other measurements related to the oil
level, or (iii) combinations of measurements related to each other and to the oil
level. The detected sudden changes may or may not be an indication of a fault.

MCOD on Raw Data. In this scenario, we apply the MCOD algorithm to the
(normalized) raw measurements, without applying any filtering to the incoming
data of a hot forming line. Maintenance experts have defined a short list of
measurements (8 out of ~1000) that might be correlated to the oil leakage use
case. In the evaluation section we presents results from the application of the
MCOD algorithm to a subset of these measurements. This setup increases the
flexibility of the monitoring tool since it can be easily transferred to other use
cases without the need of any prior knowledge of the production cycle.

MCOD Combined with Prior Domain Knowledge. Domain knowledge is
important to interpret the machinery functionality and provide more specialized
solutions, which can potentially give an edge over any other application agnostic
proposal. In this scenario we have utilized domain expert knowledge to identify
the status of the machinery (healthy/unhealthy) and obtain more stable results
considering the oil level. Oil level is stabilized within 10s after the machinery
functionality is halted. Analyzing the incoming measurements considering the
position of specific moving parts of the machinery, as in Fig. 2 (red line), we are
able to define when the machinery is halted, and after a 10s interval (green area
of the Figure), apply the MCOD algorithm.
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Fig. 2. Mechanical part movement in relation to oil level (Color figure online)
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Algorithm 1. Outlier Reporting Filtering
minQutlierLife is a user defined parameter
po represents the last reported outlier
while true do

sensor_meas < fetch_measurements ()
outliers «+—detect_outliers(sensor_meas)
for all o in outliers do
if olife <minOutlierLife then
if o.time >po.time + 5mins then
report_outlier()
PO — 0

Practical Considerations. In distance-based outliers, a data point that has
less than k neighbours inside a radius R, is an anomaly (see more details in the
Appendix).

MCOD applies on data streams using a sliding window, hence there are user-
defined parameters considering both the actual functionality of the algorithm
and the streaming approach. There are four main parameters: (1) the window
size W, which to either the time duration of the amount of the most recent data
points considered; (2) the slide size S, which defines how fast/far the window
moves in each algorithm step; (3) the threshold k& on the number of neighbors in
order a point to be labeled either as an inlier or an outlier in each step; and (4)
the radius R that defines the radius of the neighborhood.

In continuous outlier detection, the detected outliers between all the active
points are reported for every slide. If the slide size is lower than the window
size (which is the usual case), then outliers will be reported multiple times.
In a real case scenario of deployment of the algorithm in the production line,
multiple reports of outliers can lead to frustration of the maintenance engineers.
In addition, it is not practical to report all the outliers spotted in a short time
range, as the maintenance engineers can physically investigate the machinery
upon the first report of an outlier and usually the investigation requires more
than some seconds or even minutes.

Hence, as it is presented in Algorithm 1, to provide a solution that is prac-
tically usable, we have defined a period of time (i.e. 5min) after the first report
of an outlier, where no other detected outlier is reported. We have also specified
a parameter (minQOutlier Life), which defines the amount of time (expressed in
percentage of total number of slides inside a window) an outlier should be active
before been reported.

3 Evaluation

The evaluation is based on real data obtained from the machinery of inter-
est, working in the actual production line. The available data extend through
7months. We have divided the available data into 2 datasets, which are exam-
ined separately. The first dataset, includes the first 4 months and its sampling
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Table 1. Parameters for the first experiment

Parameter | Techniques
RL MCOD | MCOD_DK | MCOD_M
meas. oilLevel | oilLevel | oilLevel oilLevel meas_1
\W% - 3600 3600 3600
S - 360 360 360
R - 0.17 0.11 0.2
k - 70 550 45
outlierLife | - 1 1 1
rule <8800 |- - -

rate is unstable but ground truth data exist. The ground truth reveals that in
13 days, maintenance tasks either explicitly or implicitly related to oil leakage
have been reported. The second dataset includes the last month of the available
data, where the measurements sampling rate is stabilized but there is no ground
truth.

3.1 Proof of Concept Experimentation

In the initial set of experiments, we have used the first dataset and we have
applied four variants: (i) rule-based (RL), (ii) MCOD on raw data (MCOD),
(iii) MCOD with domain knowledge (MCOD_DK), and (iv) MCOD on multiple
fields (MCOD_M).

The parametrization for each technique variant is presented in Table 1. The
difference is in the R and k values. For the MCOD_DK approach, k is set to a
higher value, while R to a lower than the other approaches, as the oil level mea-
surement is much more stable, hence it is “safe” to set more strict thresholds to
the algorithm (i.e. it will not produce too many outlier detection reports). Con-
sidering the R value, when more than one measurements are used for monitoring
(i.e. the MCOD_M case), the R value should be increased, as the Euclidean dis-
tance is computed between pairs of points, not single points; otherwise, multiple
false positives outlier reports will be created. For the RL approach the minimum
acceptable value is 8300, however this threshold was never reached by the mea-
surements of the date range of the experiment. Hence, we set the threshold to
8800, to maintain the number of the reported violations to an acceptable level,
while detecting as much maintenance incidents as possible.

Table 2, presents the results for each one of the four experiments. In the
Table, an X is placed if there is an outlier reported in the correct shift!, a
dash if there is no outlier reported and an e[1]2], if an outlier is reported on an
earlier shift (el: one shift earlier, e2: two shifts earlier) than when it should be

! For D3 there are two maintenance tasks, hence we have used two places for an X
divided by a slash.
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Table 2. Results of the first experiment.

Dates | Techniques

RL |MCOD MCOD_DK | MCOD-M
Dayl X X X X
Day2 |- X X -
Day3 |- -/X X/X X/X
Day4d | X el el X
Days X X X X
Day6 | X - X X
Day7 | X - el X
Day8 X - e2 X
Day9 |- X X X
Day10 | - el X e2
Dayl1 |- X X X
Dayl12 | - X X
Day13 | X X el -
FPD |3 15 10 12
#R 2790 | 56 32 39

reported based on the maintenance task logs. In the last two rows of Table 2, we
present the number of false positive dates (FPD). FPD represents the number
of days that the approaches reported at least one outlier unnecessarily. #R
represents the total number of reported outliers. The lower the values of these
two measurements, the better the possibility of acceptance of the approach by
the maintenance engineers.

As it is observed, MCOD_DK achieves more balanced results, being able to
detect all the incidents reported in the maintenance logs, with an exception of
D4, D7, D8 and D12 where there was an outlier reported on an earlier shift. If
this is considered a correct proactive warning, then the recall of the technique
becomes optimal (i.e., 100%). MCOD also achieved remarkable results, if we take
into consideration the unstable environment that it was applied on. Monitoring
two measurements (i.e. MCOD_M) lowered both the number of FPDs and #R,
detecting 5 more maintenance incidents and missing 2 compared to the MCOD
approach. The RL approach produced the least number of FPDs, however it cre-
ated too many violation reports (i.e. highest #R), missing the most maintenance
incidents. The precision of MCOD_DK in terms of days remains above 50%.

3.2 Sensitivity Analysis

To demonstrate the sensitivity due to the R and k parameters, we present an
experiment using the second dataset and the MCOD_DK technique. The used
parametrization is presented in Table3. The results are presented in Table4,
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Table 3. Sensitivity analysis parameters.

Parameters | Techniques
MCOD_DK1 | MCOD_DK2 | MCOD_DK3
meas. oilLevel oilLevel oilLevel
\W% 3600 3600 3600
S 360 360 360
R 0.19 0.1 0.19
k 180 180 360
outlierLife |1 1 1

Table 4. Sensitivity analysis results.

Parameters | Techniques

MCOD_DK1 | MCOD_DK2 | MCOD_DK3
DA 9 19 14
#R 12 75 47

in terms of total number of days with alerts (DA) and total number of detected
outliers (#R). The first parameterization is one achieved through combining
fine-tuning and visual inspection of the raw data logs. This experiment reveals
the most important weak point of an unsupervised learning approach, such as
MCOD, namely its sensitivity to the input parameters: decreasing the R or
increasing the k parameter (i.e. providing more strict parameters to the MCOD
algorithm) creates more outlier reports.

4 Discussion

In this work, we considered a real industrial case study, where the main aim
has been to detect oil leakages in a manner that (i) is automated; and (ii) can
be used as an early notice for maintenance, in line with the PdM vision. In our
techniques, we employed a state-of-the-art streaming outlier detection algorithm
and we combined it with (i) domain knowledge and (ii) filtering mechanisms in
order not to produce spurious or repeating results. The experimental results are
particularly encouraging, given that we managed to report outliers for all or the
immediate preceding shifts, where a maintenance task was reported.

The most important lesson learnt is that pure unsupervised learning tech-
niques are inadequate to provide effective solutions. Domain knowledge, even in
a simple form, can play a key role in devising techniques with very high accuracy
and capability in detecting events in a timely manner. We have further verified
this fact by repeating the experiments using another type of domain knowl-
edge, where the machinery was in full operation and the results were similarly
encouraging.



Detecting Anomalous Behavior Towards Predictive Maintenance 81

This work can be extended in several ways. For example, it can be combined
with a machine learning-based predictor that can report on the estimated time
of future failure. This direction calls for more holistic solutions based on an
ensemble of techniques with complementary strengths. Also, further work is
needed to render the technique less sensitive to its parameters capitalizing on
existing work in the field of multi-parameter outlier detection, e.g., [4].

Acknowledgement. This research work is funded by the BOOST4.0 project funded
by European Union’s Horizon 2020 research and innovation program under grant agree-
ment No 780732.

Appendix

Distance-Based Outlier Definition. A data point that has less than k& neigh-
bours inside a radius R, is called a distance-based outlier [7]. Figure 3 shows an
example of a dataset that has two outliers with k = 4. The points o1 and 02
are outliers since they have 3 and 1 neighbours, respectively inside the R radius.
In a data stream, we assume that we keep in a sliding window the most recent
points, and the challenge is to continuously report all the outliers among the
objects in that window. Apart from the technique in [9], additional streaming
solutions are proposed in proposals, such as [3,5].

Fig. 3. Outliers example.

MCOD Algorithm. Finding the neighbours of each alive data object in a
streaming scenario is a particularly computation-intensive process. The MCOD
algorithm uses micro-clusters, as depicted in Fig.4 (i.e. MC1. MC2, MC3) of
radius R/2, inside which all the data points are inliers. Hence it alleviates the
need of (re-)computing distances between all the data points on every window
movement. The rationale is that, normally, most data points fall into one of
such clusters and thus need not be further processed. Therefore, only a small
portion of all objects needs to be examined. More details about the algorithm’s
functionality are provided in [9].
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