
Climb Your Way to the Model: Teaching UML
to Software Engineering Students

Teaching Case

Naomi Unkelos-Shpigel1,2(&), Julia Sheidin1,2, and Moran Kupfer2

1 Software Engineering Department, Ort Braude College, Karmiel, Israel
{naomius,julia,moran}@braude.ac.il

2 Information Systems Department, University of Haifa, Haifa, Israel

Abstract. Unified Modeling Language (UML) courses are an essential part of
software engineering curricula. There is increasing evidence that embedding
active learning techniques in courses in general, and in UML courses in par-
ticular, increases students’ motivation and performance. In this paper, we con-
tribute to this body of work by presenting model for embedding active learning
in an undergraduate UML course. The model was used throughout a course,
providing interesting results, and promoting students’ participation and moti-
vation. We present our insights and plans for further inspection of the model.

Keywords: UML � Active learning � Motivation

1 Introduction

Software engineering and information systems students are required to take a software-
modeling course, as part of their training as software designers. The course usually
consists of learning several UML (Unified Modeling Language [7]) diagrams. In some
cases, the course is taught before the students have practiced any object-oriented
language (the design-first approach [2]).

The first UML course presents several challenges to both instructors and students
[3]. First, for understanding and fully implementing diagrams, a lot of practice is
needed. Students are usually required to submit 3–4 homework tasks per semester. As
they need a lot of training in understanding and designing, simply performing the tasks
is hardly enough training. Second, as the teaching method is traditionally frontal, the
instructor cannot get a clear picture of students’ perceptions, and in particular, their
misconceptions. Third, as UML diagrams usually consists of a large number of details,
and several modeling variants are available, solving questions with the students on the
board is usually not enough to cover many solution options. Fourth, as the modeling
requires a cognitive resource, students lack the motivation of performing the task [5].

Several teaching mechanisms and tools were offered in recent years to improve
student’s motivation and understanding. These methods all rely on active learning
during the lecture and recitation. In example, the flipped classroom [5] is a learning
method that includes both learning at home and performing practical activities in the

© Springer Nature Switzerland AG 2019
H. A. Proper and J. Stirna (Eds.): CAiSE 2019 Workshops, LNBIP 349, pp. 40–46, 2019.
https://doi.org/10.1007/978-3-030-20948-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20948-3_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20948-3_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20948-3_4&domain=pdf
https://doi.org/10.1007/978-3-030-20948-3_4

classroom. However, this method requires a great deal of time investment from both
students and teachers. Additional teaching method are in order.

This paper presents the summary of a teaching case of a UML modeling course
called “Climb Your Way to The Model”. The teaching method drew inspiration from
the onion model for collaborative learning [9], the 21st century skill movement [4] and
motivation theories such as the Self Determination Theory (called SDT henceforth),
[8], and the 4C’s Model [6]. These motivation theories discuss how to motivate
employees to take active part in the work, and to encourage them to strive for more
productive behavior, mainly by encouraging intrinsic and extrinsic motivation [8], and
by achieving a state where the worker is immersed into the task [8]. The Kahoot!
Application1 was used each lecture, to test students’ knowledge from the previous
lecture, and to present the results to all the class in a gamified manner. The Moodle
environment2 was used to perform additional collaborative exploratory assignment
during class. Google forms were used for a reflection.

Leveraging on the principles of collaborative and gamified tools for education, our
work fills this gap by asking the following research questions: (1) How can we promote
software engineering students’ achievements and participation in UML design courses?
(2) What are the benefits of embedding active learning techniques in UML courses?

In the rest of paper, we first discuss the background for the teaching case. We then
introduce the teaching method (Sect. 3). Section 4 presents students’ responses to the
teaching method. We conclude with a discussion of the findings and further work.

2 Scientific Background

2.1 Active Learning in UML Teaching

Trying to deal with the challenge of teaching an abstract model such as UML, different
research works described tools and techniques for active learning. In example, Hansen
et al. [4], used collaborative tools, involving instructors and students, to achieve a more
usable and functional UML diagrams. However, their research claim that a previous
knowledge in object-oriented programming is needed. Briggs [1] presents another case
of an experiment for active learning in UML teaching, using simple tasks given to the
students, with no special tools required.

Yet, these examples lack the aspect of students’ reflection on the task, and a
rigorous reasoning for the structure of the task, resulting in an increase of students’
motivation and performance.

2.2 Cognitive Theories

Several cognitive theories address the topic of encouraging motivation for increasing
the participation and motivation during the semester in learning tasks. Here we briefly
present two of the most influential theories in this field.

1 https://kahoot.com/.
2 https://en.wikipedia.org/wiki/Moodle.

Climb Your Way to the Model 41

https://kahoot.com/
https://en.wikipedia.org/wiki/Moodle

The 4 C’s of 21st century skills [6] are some of the learning strategies in today’s
environment. They state that if students want to compete in today’s global society, they
must be proficient: (1) communicators, being able to identify the information needed
and how to use or leverage it effectively; (2) creators: can create creative design and
possess out of the box thinking ability; (3) critical thinkers: analyze mistakes and
improve their thought processing, and (4) collaborators: work effectively with diverse
teams, making necessary compromises to accomplish a common goal, and assuming
shared responsibility for collaborative work.

The Self Determination Theory (SDT) [8] presents a continuum of motivation
types, from intrinsic motivation that emerges from the employee, to extrinsic moti-
vation created by rules and regulation in the workplace. Although intrinsic motivation
is considered to be linked to positive human behavior, SDT suggests that proper use in
extrinsic motivation can lead to motivated behavior. SDT suggests that there are three
basic needs that need to be fulfilled in order to increase motivation: Competence - seek
to control the outcome and experience mastery; Relatedness - will to interact, be
connected to, and experience caring for others; Autonomy - desire to be causal agents of
one’s own life and act in harmony with one’s integrated self.

The proposed solution is described in the next section.

3 The Course Structure

The course is a mandatory course given in one of the leading academic colleges in
Israel, at the department of software engineering. We covered five main UML diagrams
in our course (see Table 1).

Table 1. Subjects and activities during the course

Subject Active learning task

1 Requirement engineering
methods

Lecture: Collaborative task - software that failed
Recitation: Data collection practice - pairs

2 Use Case diagram Lecture: Use case modeling - pairs
Recitation: Use case modeling - pairs

3 Activity diagram Lecture: Activity diagram - pairs
Recitation: Activity modeling - pairs

4 Class diagram Lecture: Use case modeling and Class - pairs
Recitation: Class modeling - pairs

5 Sequence diagram Lecture: Class and sequence diagram - pairs
Recitation: Exam questions solving, and peer review -
individuals

6 Statechart diagram Lecture: Statechart diagram - pairs
Recitation: Statechart modeling - pairs

42 N. Unkelos-Shpigel et al.

We teach the course for three years, and gradually embedded various individual and
group activities during the classes. The course is taught in the design-first approach [2],
meaning – before the students learnt to program in an object-oriented language.

Building this model, we relied on the principles of the 4 C’s model – students were
treated as creators and communicators, responsible for dealing with new and complex
problems by teamwork. They were also collaborators, as they changed teams each
class. Finally, they were also critical thinkers, as we asked them to refer to other
students’ work from the previous lecture. We also provided them with conditions for
the three basic needs of SDT – they worked on each exercise with little instruction
(autonomy), worked in small teams and helped each other to understand the task
(relatedness), and dealt with tasks that were more challenging than what they learn
during the frontal class (competence).

This paper refers to a semester, which included 175 students, all in the second year
of their studies. The course had a weekly three academic hours lecture, followed by a
two academic hours tutorial (not at the same day) and consisted of three home works
and a final exam. 8% of the grade are given for attending at least 80% of all class
activities (in both lectures and recitations).

Each lecture consisted of three academic hours, which were divided, according to
“Climb Your Way to The Model” model we designed, into three parts. Two parts were
frontal, and the last one active learning (see Fig. 1). The first hour was devoted to recap
of the last lecture, performing Kahoot quizzes, and reviewing students’ models form
the previous week; the second hour consisted of frontal teaching, presenting a new
subject; the third hour was dedicated to active learning. Students worked in small
groups, dealing with the new model they have just learned, and trying to produce a
solution.

Fig. 1. The two-way climb model

Climb Your Way to the Model 43

Each tutorial consisted of two academic hours, which were divided into three parts.
One frontal, one collaboration and the last one active learning (see Fig. 1). The first
30 min were devoted to lecture summarize and exercise example of the new subject
learned in the last lecture. The next 30 min consisted of collaboration to solve an
exercise with discussion on different approaches to solution. The last 20 min included
independent problem solving, where students worked in small groups, dealing with an
exercise where they had to produce a solution on their own.

4 Insights and Students Perceptions Toward the Task

Several insights arose during the semester, which we categorized according to our
research questions:

RQ1 – we noticed that indeed there was a significant increase in both student partic-
ipation and solution quality:

• Student attendance – at the previous to our teaching method semester, where the
teaching was frontal, many students stopped coming to class, usually at week seven.
In this semester, we experienced a high rate of attendance throughout the semester.

• Solutions complexity – as students solved various problems during the classes, their
solutions included interesting and even complex variants, even after a class or two
on a subject. In example, they used constraints in class diagrams, inheritance in use
case diagrams, and loops and multiple objects in sequence diagrams [6], in state
chart [6], they used nested states and variables.

• Students as thinkers, teachers as mentors – in both lectures and recitations, during
the active learning session, we served as mentors rather than teachers. In many
cases, the students came up with interesting variants that were different from our
solution, so we could encourage them to follow their line of thinking and construct
an interesting new solution. In the following lecture, we shared these variants with
the entire class. This method had two advantages: we exposed the entire class to
multiple solutions and discussed the advantages and drawbacks of each solution.

RQ2– we asked the students to fill a survey, reflecting on the different activities they
performed in the course. 52 students filled the survey. Here we had several interesting
insights (see Table 2):

• Activities cs. Kahoot – Though Kahoot! Quizzes were very popular in previous
semester, 70% of the students this semester thought they were redundant. 72% of
the students said the class activities were helpful for their learning.

• Promoters of iterative work and team work – 55% of the students felt that the tasks
they performed helped them to enrich their knowledge each week. 70% of the
students felt that team work was better than solving the task on their own.

The quotes also comply with the cognitive theories we relied on. The students
expressed in their feedback the characteristics of SDT – they expressed capability to
perform the task (competence); they felt that they had solved the problems on their own

44 N. Unkelos-Shpigel et al.

(autonomy), and they felt related to the task and to their peers, understanding that there
were different ways to solve the same problem (relatedness).

5 Conclusions and Future Work

We conducted a teaching case of a UML modeling course, inspired by existing cog-
nitive theories. 175 students, all in the second year of their studies, took a part at this
mandatory course given in one of the leading academic colleges in Israel, at the
department of software engineering. Our observations indicate that there are benefits of
embedding active learning techniques in UML courses in sense of improving students’
achievements and increasing the participation and motivation during the semester.

Our findings support the students need for being more active during the semester in
order to improve their learning skills. It adds to the growing evidence of the benefits of
promoting students’ work during class - solving problems, creating, communicating,
collaborating and being a critical thinker. However, we further realized that the
workload students face needs to be more balanced throughout the semester and per-
sonal feedback following each assignment is in order. We plan to further embed these
activities in this course, providing students with continuous feedback for their per-
formance. We also plan to adapt this model to additional courses, which require
abstract thinking.

References

1. Briggs, T.: Techniques for active learning in CS courses. J. Comput. Sci. Coll. 21(2), 156–165
(2005)

2. Cooper, S., Dann, W., Pausch, R.: Teaching objects-first in introductory computer science.
ACM SIGCSE Bull. 35(1), 191–195 (2003)

3. Chrysafiadi, K., Virvou, M.: Student modeling approaches: a literature review for the last
decade. Expert Syst. Appl. 40(11), 4715–4729 (2013)

4. Hansen, K.M., Ratzer, A.V.: Tool support for collaborative teaching and learning of object-
oriented modeling. ACM SIGCSE Bull. 34(3), 146–150 (2002)

Table 2. Reflection (representative sample) on the activities from the student’ perspective

Quote SDT 4C’s

The activities helped me to develop a technique for modeling ✓ ✓

Reviewing my peers was useful, as I understood how much time to spend on
a question, and how to plan the solution

✓

I learnt from both my correct and incorrect solutions ✓

The class activities helped me realize that every student has his unique way
to solve the problem

✓ ✓

The class activities encouraged me to look at the problem from different
perspectives

✓

Climb Your Way to the Model 45

5. Jensen, J.L., Kummer, T.A., Godoy, P.D.D.M.: Improvements from a flipped classroom may
simply be the fruits of active learning. CBE—Life Sci. Educ. 14(1), ar5 (2015)

6. National Education Association - Alexandria, VA.: Preparing 21st Century Students for a
Global Society: An Educator’s Guide to the “Four Cs”. National Education Association
(2012)

7. Pilone, D., Pitman, N.: UML 2.0 in a Nutshell. O’Reilly Media Inc., Sebastopol (2005)
8. Ryan, R.M., Deci, E.L.: Self-determination theory and the facilitation of intrinsic motivation,

social development, and well-being. Am. Psychol. 55(1), 68 (2000)
9. Unkelos-Shpigel, N.: Peel the onion: use of collaborative and gamified tools to enhance

software engineering education. In: Krogstie, J., Mouratidis, H., Su, J. (eds.) CAiSE 2016.
LNBIP, vol. 249, pp. 122–128. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
39564-7_13

46 N. Unkelos-Shpigel et al.

http://dx.doi.org/10.1007/978-3-319-39564-7_13
http://dx.doi.org/10.1007/978-3-319-39564-7_13

	Climb Your Way to the Model: Teaching UML to Software Engineering Students
	Abstract
	1 Introduction
	2 Scientific Background
	2.1 Active Learning in UML Teaching
	2.2 Cognitive Theories

	3 The Course Structure
	4 Insights and Students Perceptions Toward the Task
	5 Conclusions and Future Work
	References

