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Abstract. This paper presents an initial exploitative study of how the
relational and blockchain databases compare in defining and deploying
data structures, populating these with new entries, and retrieving the
relevant data for further use. The aim of this study is to better inform the
software developers in general and the distributed application developers
in particular.
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1 Introduction

Traditionally software systems store data in relational database management sys-
tems (RDBMS), occasionally using other means of storing data like File systems
(for storing documents). Off late No-SQL databases for storing discrete data like
documents, search results etc. have gained popularity. Yet, the RDBMSs con-
tinue to be preferred for storing data generated out of enterprise systems. Under
these solutions the responsibility for maintaining the database, ensuring data
integrity and providing secured access to different users based on their roles, lies
with a select set of people - called administrators - who are employed by the
database owners. This centralized authority which maintains the database also
ensures the administrative activities, like regular backups etc.

On the other hand, (public) distributed ledger technologies (a.k.a.
blockchains) are gaining more recognition as decentralized data stores and as
an alternative to the traditional data storage systems. Initially these technolo-
gies arose to support cryptocurrencies [14]. However, their distinguishing fea-
tures - distributed consensus, non-dependency on a centralized authority, built-
in trust, low entry barriers for joining the network - are attracting many diverse
domains to adapt this technology. Yet, in order to confidently develop an enter-
prise application that would rely on a distributed ledger solution as it’s main
database, we must have confidence that all the necessary services supported by
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the current solutions (primarily RDMSs) can be adequately delivered through
the distributed ledger solutions.

To this end we present an initial exploitative study of how the relational and
blockchain databases compare in defining and deploying data structures, popu-
lating these with new entries, and retrieving the relevant data for further use.

One of the most popular distributed ledger environments today is the
blockchain-based Ethereum platform which supports building decentralized
applications [1], and provides the flexibility of writing arbitrary state transi-
tion functions via scripts. The scripts are executed by the Ethereum Virtual
Machine (EVM). In Ethereum the state is made of two types of accounts: Exter-
nal (private key) accounts, and Contract (contract code) accounts [2]. External
accounts can send messages, by creating transactions, to Contract accounts. Con-
tract accounts, upon receipt of the transaction request messages, execute their
contract code with the given transaction parameters. Contract accounts also can
send messages to other contracts. The contract accounts contain their contract
code and store the values of persistent variables. Each action undertaken by a
contract account when executing code, storing a data value, or calling another
contract account, should be paid for by the initiator of the contract’s transaction.

As Ethereum is the most used blockchian development platform today, we
too use it for our exploitative study. As a relational database counterpart to
Ethereum we use the MySQL RDBMS. MySQL provides a comprehensive set of
advanced RDBMSs features, and, in its own right, is also one of the most well
used RDBMSs.

This paper discusses an experiment where we set out to create a set o data
structures for an application using both RDBMS and a blockchain-based solu-
tion. We aim to identify the correspondent activities needed to carry out a given
task with these two alliterative technologies (as discussed in Sect. 2). We then
draw out the challenges and opportunities identified through this exploitative
comparison (see Sect. 3) and discuss these. The aim of this study is to better
inform the software developers in general and the distributed application devel-
opers in particular on the issues that one has to address when using either of
these technologies as a main database.

2 Experiment

This section describes the experiment that is conducted to evaluate each of above
discussed database solution alternatives. The experiment is carried out using the
context of a peer-to-peer energy trading scenario [13].

Energy Trading Scenario: A number of households (or farms, and other non-
energy small businesses) generate renewable energy (e.g., via solar PV panels,
wind turbines, etc.) for own use, and wish to sell the excess generation to other
households. For this the excess generation is advertised through “sell requests”
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over a trading platform. Similarly, those wishing to purchase a certain amount of
energy advertise their “buy requests”. A peer-to-peer energy trading algorithm
(ETA) [13] that runs on the trading platform, works to match the sell and buy
requests declared by the market participants for a given time period. The sell
and buy requests are matched on the basis of scores calculated by the ETA for
all trade participants. The scores are based on participants’ preferences, which
are provided by the participants when they join the trading platform (e.g., sell
cheaper if buyer is local, e.g., within 2 miles, buy solar if possible, etc.).

The experiment consists of:

– Defining data structures to represent sellers and buyers: Each participant
will have name, address, physical location details like longitude and latitude,
contact details, as well as preferences on how (s)he wants to trade.

– Deploying the data structures: enabling their use either through a relational
database or a blockchain;

– Storing the data generated per data structure: to replicate participation of
a large number of users (here we use the Random() function to randomly
generate values for user data).

– Retrieving the stored data to carry out transactions: data will be retrieved in
order to form transactions between sellers and buyers. The transactions will
be formed via the a Peer-To-Peer (P2P) energy trading algorithm (ETA).

– Storing trade transactions back into the databases.

Figures 1 and 3 depict the process of experiment realisation using a tradi-
tional relational database (MySQL RDBMS) and a blockchain-based solution
(Ethereum). Both of these solutions are chosen due to their widespread popu-
larity and availability of free access.

2.1 Implementing with MySQL RDBMS

As in any relational database, the data structures in MySQL are to be repre-
sented via relations (i.e., tables in a database). As shown in Fig. 1, the process
starts with:

Fig. 1. Data storage and retrieval with MySQL
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Defining tables and relationship among them. This requires that the data
must be normalised and related, where:

– Normalization is the removal of the redundancy in data, leading to assured
cohesion among entities and increased consistency.

– After normalization the data is arranged into a set of related entities (also
called relations, tables). The relations for this study are depicted in Fig. 2.
Unique identifiers (called keys) are defined for each record entry; these keys
are referred in other records when a link is to be established between two
pieces of data. Use of such keys ensures referential integrity between entities
(i.e., making sure that the data integrity is preserved when two or more pieces
of data need to refer to each other).

Fig. 2. Entities and relationships identified after normalization

With MySQL all the steps of our experiment (i.e., relation definition, deploy-
ment, data storage, and retrieval) are fully supported by the database manage-
ment system itself, where a command line and/or a web interface tool/site can
be used to carry out all the required actions. Thus:

– Deployment of the relations is reduced to CREATE TABLE command within
the RDBMS (e.g., for a user table: CREATE TABLE IF NOT EXISTS
User (UserId varchar(255) NOT NULL, UserName varchar(255) NOT NULL,
UserAddress varchar(255) NOT NULL, Postcode varchar(255) NOT NULL,
UserEmail varchar(255) NOT NULL, UserPhone varchar(255) NOT NULL,
Longitude FLOAT NOT NULL, Latitude FLOAT NOT NULL, PRIMARY
KEY (UserID));
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– Data storage is reduced to INSERT command with reference to the specific
table name, and a new record line is inserted and stored in the referenced
table (e.g., INSERT INTO EnergyType VALUES (1, ‘PV’, ‘Solar Energy’)).

– Retrieval of particular records is carried out through the SELECT command
by referencing the unique keys within each data record, whereby the related
data is identified by repeated use of this same key in other tables.

2.2 Blockchain Based Approach

Fig. 3. Data storage and retrieval with Blockchain. Note: Tools listed here were used
in this experiment, other tools could be chosen instead.

With the Ethereum alternative:

Defining the data structures is carried out through the creation of smart
contracts (as shown in Listing 1.1) which will also contain the data to be stored
in the blockchain. Hence, for this purpose, smart contracts are equivalent to
tables in RDBMS.

Ethereum allows for the removal of duplication (akin to data normalisation
in RDBMS) to be carried out by breaking data structures into multiple con-
tracts then each refer to the other. As contracts may include references to other
contracts via their contract addresses, this parallels to a kind of foreign key ref-
erencing. However, these references point to the whole of the contract (and its’
entire data)and not to individual records; this is a contrast to the per individual
record referencing of the RDBMSs.

Contracts may also emit events. An event affiliated to a contract, defines an
indexing for quick filtering of the contract’s data for outside of the blockchain
access.
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contract ETPAccount {

bytes18 public postcode;

bytes32 public latitude;

bytes32 public longitude;

uint16 public pricePreference ;

uint16 public distancePreference ;

event ElectricityExported (uint period , uint exports );

event ElectricityImported (uint period , uint imports );

constructor(bytes18 _postcode , bytes32 _lat ,bytes32 _lng ,

uint16 _ppref , uint16 _dpref) public {

postcode = _postcode;

latitude = _lat;

longitude = _lng;

pricePreference = _ppref;

distancePreference = _dpref;

}

function setPricePreference (uint16 _ppref) external {

pricePreference = _ppref;

}

function setDistancePreference (uint16 _dpref) external {

distancePreference = _dpref;

}

function storeExports(uint _period , uint _exports) external {

emit ElectricityExported (_period , _exports );

}

function storeImports(uint _period , uint _imports) external {

emit ElectricityExported (_period , _imports );

}

}

Listing 1.1. Listing of smart contract for seller’s data.

Deployment
Interaction with a blockchain is divided into two categories, calls - read-only
interactions - and transactions - potentially state changing interactions. The
reason for this distinction is the way each is processed. A call reads directly
from a blockchain node and therefore does not require the involvement of the
other parties in the network. Instead, a transaction must be broadcast, processed
and included inside the distributed ledger. To account for this processing and
storage requirement of other nodes in the network, transactions must be signed
by an external account. This external account must have sufficient funds to pay
for the costs incurred by the network.

Deployment of a smart contract therefore must take place via a transaction to
a blockchain network which will record it into a permanent register (the chain)
and validate that it concurs with the expected formats and rules (e.g., set by
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the consensus protocol). As noted before, our experiment was carried out on the
Ethereum platform. Our contracts were deployed on the Ropsten test network
[4] - an Ethereum test network that replicates the main network but provides
free funds to accounts.

MetaMask – a Chrome browser extension – was used to create the external
account in this experiment. The new account always contains zero funds balance.
However, as noted before, use of the Ropsten network is free, so it provides test
websites (https://faucet.metamask.io/ and https://faucet.ropsten.be/) to top up
the testing pseudo-funds in the newly created external accounts.

Once the contract is deployed to the network, a contract address (e.g.,
“0xb0665117611910d3623358148dc6585f90ed7c3c5”) will be provided that iden-
tifies it on the network.

Data Storage: Using the contract address, we can then interact with the pub-
lic methods of the deployed smart contract. For example, in the smart con-
tract (Listing 1.1) we could create transactions to supply data to our ‘storeEx-
ports()‘function which would permanently store the data in an accessible manner
on the blockchain (in terms of an RDBMS, this corresponds to inserting rows of
data into the newly created data structure).

In this experiment, to insert Buyer/Seller Data into the blockchain, we devel-
oped a single-page application (SPA, using HTML and JavaScript via React JS
and Web3 tools). While inserting seller details (e.g.: “BS81UB”, “−2.345672”,
“50.234098”, “10”, “12.31”, “v10”, “1”), a new transaction would be created by
the blockchain network. This transaction would be placed into a block, along
with many other transactions so as the pre-defined size of the block is achieved.
The block is then validated (or, in other words, mined) by the miners of the
network. The validated block will then be inserted into the Blockchain under
the contract’s account space.

Prior to the transaction processing (mining) a fee would be levied on the
contract user for the miners work. The user has to confirm the payment of the
fee. In our case, the fee would be charged to the funds of the external account
used. Only after confirming the proposed fee charging, and charge collection,
would the transaction be inserted into a block, which would then be minded and
stored within the block. Figure 4 shows a number of data insertion transactions
for some Seller data. (Note that in Fig. 4 each transaction is part of a discrete
block indicated by block number, this is a peculiarity of our design, chosen for
clear action traceability for this study; in a more general case many transactions
would be grouped into the same block).

Retrieval : as each block in a Blockchain contains a set of discrete transactions,
it is not inherently possible to retrieve a sub-set of data from the chain by
simply referencing the per-record keys explicitly across several contracts (which
is possible in case of RDBMS through per-record foreign keys).

Data is retrieved from a blockchain using the address of the smart contract in
which the data was stored. The method to retrieve this data is then dependant
on the type of storage used inside the smart contract. If a smart contract emits
events to the network, we can query these events using filters on any indexed

https://faucet.metamask.io/
https://faucet.ropsten.be/
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Fig. 4. Caption

parameters (similarly to SELECT statements in SQL). However, these filters
are quite limited, with only three indexable parameters per event. Events may
also be filtered upon their block number - essentially limiting the search space
- but this requires some knowledge of the data stored to be used effectively. If,
however, the data is stored directly in the smart contracts storage, this can be
accessed directly using calls to read the variables inside the contract.

3 Technological Limitations and Discussion

Having implemented a backend database for a p2p energy trading domain with
two alternative technologies, we observe a number of limitations and alternatives,
as discussed below.

3.1 Observations on Use of MySQL

MySQL was simple and easy to install and use.
The Management System (MS) in any RDBMS creates a secured application

layer around the database. The MS efficiently takes care of role based access
on relations, consistency and reliability while inserting and retrieving data and
simultaneous request for change-read-update-write operations.

The standard Query Language based on ANSI-SQL provides an efficient and
sophisticated way of querying granular data from this database. Additionally,
new relationships between existing tables can be defined in an “additive” way,
without invalidating previously existing ones.



Data Management: Relational vs Blockchain Databases 197

However, a number of limitations related to the use of the traditional RDBMS
also arose:

– Transparency: As the data in the RDBMS is updated or changed, the changes
are not visible to the users. This reduces the confidence in the data that is
stored in the database.

– Immutability: After the data is inserted into the RDBMS, it can be changed
at any time.

– Openness: The RDBMS are not open usually because enterprises own them.
– Data Formats: The data should be engineered (normalised and interlinked

via foreign keys) before storing it in RDBMS. This reduces the flexibility.
Disparate data sources having different data formats can not use RDBMSs
to store the data.

3.2 Observations on Use of Blockchain

Blockchains offer an open, transparent, immutable and distributed platform for
storing data, which addresses rather well the above mentioned shortcomings of
the RDBMSs. Yet, we also observed a number of limitations of the Blockchain
based approach:

– Querying data from Blockchain: blockchains don’t have any sophisticated
data query mechanism to interrogate the data that is stored in them. There
are several ways in which a user can get data from a blockchain. Two of these
require that the smart contract address is known.
(a) In the first case “allEvents” quantifier provided by Web3 framework can

be used, which returns all the events that are registered with the given
Smart Contract since its deployment. Under this option, there is no con-
trol over the amount of data that can be obtained from it and on the
time it takes to retrieve it. The user must retrieve all data and only then
choose the entries relevant to her.

(b) In the second case, the smart contract specifies data returning functions.
This could work well for cases where all data of a particular type is to
be returned for every call of this function (e.g., all users registered to
this platform). Yet, the flexibility on what can be queried is very lim-
ited here (e.g., cannot return only users registered in the current year,
unless this specific function is specified prior to the contract deployment).
Clearly, inventive solutions could be thought to tackle such lack of flex-
ibility (e.g., instantiate a new smart contract for user registration every
year, then annual registrations can be accessed through the annual con-
tract address).

We have previously noted that if a smart contract emits events to the network,
we can query these events using filters on any indexed parameters.
These, however, are all pre-designed solutions, as the deployed smart contracts
are immutable, and the data to be returned and indexing to be used must all
be set pre-deployment. These options lack flexibility of the general SQL-like
queries over RDBMSs.
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Other ways to get data require explicit knowledge of its transaction hash or
block number. However maintaining the transaction hash or Block number
for all transactions on a smart contract is not realistically possible.

– Data Formats: a smart contract along with its’ functions is to be written per
data type. However, data types in Solidity (language for smart contracts used
in Ethereum) are limited and could cause difficulties if the data source were
to evolve/change. However, some generic types also exist, e.g., “String” type
could be used to store Json format, which is also a type of string. Nevertheless,
this limited type availability requires careful pre-planning for evolution, which
cannot always be foreseen.

– Cost: Our experience suggests that the data storage in a blockchain comes
always with an incurred transaction cost. The cost is incurred in any network –
Public, Private or Consortium - whenever the state of the blockchian is
changed via a new transaction, where any data insertion constitutes a new
transaction. In our example the, however, publication of the data on gen-
eration and consumption, as well as registering as participants on the p2p
network does not provide any financial benefits to the participants. It is only
the actual trade recording (carried out upon retrial of the previously submit-
ted data) that would lead to financial gains. The parties that publish the row
data may not even prosper from the matching. Thus, we suggest that a more
flexible pricing model is necessary.

– Technological barriers: two main versions of Ethereum blockchain implemen-
tations are currently available: JavaScript based and GOLang based. This
experiment is performed mainly using JavaScript based implementations. The
tools that are used in both streams are different. JavaScript uses software
packages from web3, where as GoLang has its own packages like solc, abi-
gen etc. As of now work done in one stream is not interchangeable/reusable
within the another. While doing this experiment we ourselves had frequent
mis-communication as collaborators had backgrounds in different streams.
We suggest that better integration of the technology streams would improve
both the development experience and the quality of the end result.

– The Maturity of Technology: The Blockchain technology used in this
approach – Solidity, Web3.js, Ropsten test network, Metamask and Remix
Editor are evolving and backward compatibility of features could be an issue.

4 Related Work and Conclusion

Since the emergence of Bitcoin [14] a wide range of research and development
activities is under way on using blockchain as a data storage mechanism.

There are a number of areas which relate to the study presented in this paper,
some focusing on comparing the utility of blockchain solutions to the centralised
databases, some on working on the unification of both technologies. A small
selection of such related work is presented below.

In [16] authors analyse which blockchain properties are relevant to vari-
ous application domains and problem requirements. They review three domains
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(supply chain management, inter-bank payments and decentralised autonomous
organisations) and argue that various types of blockchain would best suite these
various domains.

Greenspan [12] studies differences between private blockchains and SQL
databases focusing on such issues as trust building and robustness.

A survey on literature describing scenarios where blockchain is applied is
presented in [7]. Here the authors attempted to find what factors (i.e., why
and how) contributed to the use of blockchain. By comparing blockchain vs a
centralised database for such issues as robustness, fault tolerance, performance
and redundancy, the paper proposes a decision tree to check whether the use
case in hand is advantaged by using a blockchian solution.

Another area of research is in transferring properties of blockchain to cen-
tralised databases and/or database properties to blockchains. For instance,
BigchainDB [6] integrates properties of a blockchain into a database, while using
an Asset as a key-concept. Asset represents a physical or digital entity which
starts its’ life in BigchainDB with CREATE Transaction and lives further using
TRANSFER Transaction. Each Asset contains Metadata to specify details about
the Asset. The Life-cycle of a BigchainDB Transaction is described in [8]. Each
node in BigchainDB will have a MongoDb [11] instance and maintains same set
of data. The Tendermint [15] is used as consensus protocol, which ensures the
data safety even if 1/3 of nodes are down in the network. Traditional database
features, like indexing and query support are carried out through the underlying
MongoDB.

Hyperledger [5] is a permissioned blockchain system focused on scalability,
extensibility and flexibility through modular design. Different consensus algo-
rithm can be configured to this solution (e.g., Kafka, RBFT, Sumeragi, and
PoET) while smart contracts [2] can be programmed using platform called
Chaincode with Golang [3]. Hyperledger uses Apache Kafka to facilitate pri-
vate communication channels between the nodes. It can achieve up to 3,500
transactions per second in certain popular deployments. Work to support query
[9] and indexing [10] on temporal data in blockchain using Hyperledger is also
underway.

In conclusion, we reiterate that this study contributes to better understand-
ing of the issues to be faced when selecting a database solution. We have car-
ried out an exploratory implementation of a particular application (p2p energy
trading) using both centralised database and a blockchian-based alternative, and
reported the observations emerging from this experience.
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