
Diversity in Massively Multi-agent
Systems: Concepts, Implementations,

and Normal Accidents

Philip Feldman1,3 and Antonio Bucchiarone2(B)

1 University of Maryland, Baltimore County, MD, USA
2 Fondazione Bruno Kessler, Trento, Italy

bucchiarone@fbk.eu
3 ASRC Federal, Laurel, MD, USA

Abstract. Coordination for Transportation as a Service (TaaS) can be
implemented on a spectrum, ranging from independent agents communi-
cating exclusively through market exchanges to hybrid market/hierarchy
approaches fixed hierarchical control systems. An overview of each app-
roach is described and a detailed description of recent work in simulating
a hybrid solution is presented. The use of diversity as a potential app-
roach to reduce the impact of catastrophic Normal Accidents is discussed.
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1 Introduction

Through most of history, the allocation of transportation resources has not been
an issue. The trouble arose once we started to ride horses, sail boats, ride trains
and travel in cars. Transportation resources can be expensive. In 2016, the aver-
age US consumer spent $8,427 on vehicles [2], or approximately 20% of the
median US household income of $43,290 for that year [3]. Clearly, using trans-
portation services more efficiently can create enormous savings for the individ-
ual, while simultaneously reducing congestion and pollution in areas where these
efficiencies are achieved.

Transportation as a Service (TaaS) is the application of information technol-
ogy to the movement of people at the individual level. Scheduling and allocation
that was previously only cost effective for transportation of users as groups can
now be allocated down to the level of an internet-connected, GPS equipped bicy-
cle or e-scooter. Fifteen years ago, the integration of internet-connected, GPS
equipped trucks disrupted the trucking industry, allowing for the emergence of
markets that allowed individual owner-operators to bid competitively across a
number of freight exchanges [5].

But people are different from cargo. They have agency, and the cost of even
relatively minor errors can be high. They also have requirements that cargo
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doesn’t, like cognitive load and status. How can these transportation needs be
efficiently met? In this paper, we introduce TaaS as a massively multi-agent sys-
tem able to cover a diverse technological spectrum ranging from tightly struc-
tured hierarchies to open markets. We then describe in detail research into a
middle ground consisting of loosely connected ensembles of hierarchies. Lastly,
we discuss some of the implications that can arise from building densely con-
nected, highly responsive transportation networks, particularly with respect to
unanticipated, extreme conditions.

2 The TaaS Spectrum of Coordination

Optimizing transportation isn’t just hard, it’s NP-Hard. As seen with just a
single traveling salesman, the number of paths scales geometrically with the
number of towns to visit. Even such apparently simple transport problems such
as determining the staging and stops for a set of elevators in a skyscraper
remain unsolved, and have recently been analyzed using machine learning
techniques [14]. With distributed systems supporting potentially billions of peo-
ple utilizing millions of devices, a closed form solution is clearly impossible.
Rather, we need to focus on attainable benchmarks to evaluate potential and
actual systems.

Wellman, in his work on market-oriented programming [35] suggests the fol-
lowing criteria for evaluating distributed systems:

– What is the quality of the allocation of resources?
– How computationally intensive is the allocation process?
– How easy is it to design and specify a system?

Since these criteria were developed in 1994, large scale wireless networks have
become a daily reality along with hacking and security breaches. As such, we
suggest adding the following criteria:

– How much bandwidth is needed? Particularly in situations where communi-
cation can be unreliable, the speed and number of bytes needed to achieve a
complete transaction needs to be considered.

– How resilient is the system to unforeseen conditions? Can the system adapt
rapidly and effectively to conditions that significantly disrupt normal trans-
portation patterns, such as evacuations, natural disasters and even wars?

– How secure is the system? Is the system vulnerable as a whole or parts? Can
the system be hacked to the point that a vehicle becomes a danger to its
passengers and others?

With these criteria in mind, we now look to the three main regions that
define this spectrum - market-based, hybrid, and hierarchical.
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2.1 Market Systems

The Oxford English Dictionary defines “stock exchange” as A market for the
buying and selling of public securities; the place or building where this is done;
an association of brokers and jobbers who transact business in a particular place
or market [1].

Although we could find no online exchanges for TaaS for people, there are
online transportation exchanges for cargo have been in existence for about 20
years, and three particular categories have emerged; clearing houses, auctions,
and freight exchanges [25].

Clearing houses collect the loads posted by the shippers or capacity posted by
carriers. Both parties search for their preferred choice and negotiate one-on-one
for the price of delivery. Lyft, Uber and other transportation network companies
(TNCs) tend to incorporate a private version of this model as private clearing
houses for matching user requests and ride providers.

Auction houses engage both carriers and shippers to sell their capacity or
delivery services at the best price. The auction system has been found to improve
their occupancy rate of transport vehicles while shippers can obtain better rates
under spot market circumstances.

Freight exchanges let shippers post their demands and carriers posts their
capacity in an online marketplace where each of them will be allocated to their
respective services required at a competitive price.

Market systems are generally regarded to be an extremely efficient way to
allocate resources. Agent-based simulation [33] shows that transportation mar-
kets can achieve Pareto equilibrium, where no user can improve their position
without making another agent’s position worse. Markets can be gamed however.
For example, in eBay auctions users tend to pile on bids an the last few sec-
onds of an auction in a process called sniping. This tends to force a lower price,
benefiting the bidder.

The amount of computation scales geometrically with the number of users
and providers. Multiple heuristics can be applied to the data to reduce the
amount of computation. For example, riders and providers that are near enough
to each other need be evaluated. That being said, in dense urban environ-
ments, that could still be a computationally intensive task, where “good enough”
answers would have to be accepted.

Since private clearing houses for TaaS have been deployed, it is clear that
such systems can be built and deployed at scale. Lyft and Uber both offer APIs
for external developers to integrate other products into their respective corpo-
rate ecosystems. This is only front end interaction though. The full stack that
performs global scale interactions clearly depends on hundreds of developers.

Bandwidth for market systems does not need to be large. At a minimum there
needs to be a request by the consumer and a response by the provider. Additional,
market-specific information such as time remaining on an auction adds very little
data to a given payload. No real-time communication is required for the market,
though meeting particular deadlines can be critical. Where bandwidth permits,
companies often provide UIs where real-time information like vehicle location to
the user.
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Security in regulated exchanges such as the New York Stock Exchange seems
surprisingly effective, even though glitches such as Flash Crashes occur [20]. One
reason is that these systems are often on their own networks, and have circuit
breakers that halt all trading. Also, each transaction is directly associated with a
registered user who is financially liable for all transactions. This fiscal obligation
has resulted in massive losses due to software glitches [13], so there is considerable
motivation on the part of traders to self-police.

Markets can adapt quickly to changing conditions as long as the basic frame-
work of the market remains intact. A power failure at a server farm could shut
down a centralized exchange. Another issue is the fundamental nature of a mar-
ket, where prices fluctuate, based on supply and demand. In the case of an
evacuation order, a market-based TaaS could easily favor the rich as the price
for transportation rises inversely with respect to supply. An example of this is
surge pricing, which raises the cost of a ride at times of high demand. A mar-
ket can’t adjust organically to such issues, so specific policies have to be put in
place. For example, Uber put a cap on fares during the evacuation of sections of
Florida prior to the landfall of hurricane Irma [22].

Research Challenges. As stated in the previous section, a private, central
exchange is vulnerable to a sufficiently widespread catastrophe. Distributed,
public exchanges could address this weakness, but building distributed trustwor-
thy systems is difficult. Yuan and Wang develop a blockchain-based mechanism
for intelligent transportation services [37], but there are high computation costs
associated with creating ledgers. Furthermore, blockchain requires all transact-
ing computers to be connected. An orphan network, such as might occur during a
catastrophe would have to halt transactions. Other, tangle-based systems could
be more resilient, and support isolated networks [28]. This would be important
research, because a system that could support isolated markets could support
any technology that can interact with the exchange, for example, the use of
horses could emerge in the case of chronic fuel shortages.

2.2 Hierarchical Control Systems

Hierarchical control predates digital embodiments, with examples as diverse as
companies, armies, and governments. As such, it is an intuitive concept for con-
trol systems that was described in considerable detail by Roth, in 1962 [30]. In
his article, Roth describes the major components, communication requirements,
separation of responsibility, and human integration that are still the basis for
today’s systems.

The National Institute of Standards and Technology has implemented a
framework for large scale real-time control, the NIST Real-time Control (RCS)
Reference Model Architecture [29]. NIST formalized RCS as a standard reference
architecture and implemented this framework across multiple domains, ranging
from vehicle control to robot control to manufacturing.

RCS is based on the concept of hierarchical task decomposition. A compli-
cated task, such as painting a car, can be broken down along levels of abstraction.
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At the highest level is the overall command paint the next car red. This com-
mand is then broken down into commands that are issued to the subcomponents,
such as the painting robot and the auto body transport elements. At the lowest
levels of abstraction the servos that move the various actuators are controlled.
At the lowest levels of the system, updates rates are thousands of times a second.
At the highest levels updates need only occur every few minutes.

The logic to perform a task is contained in an RCS Controller Module. All
controllers have the same structure:

1. A command buffer, which contains the command (e.g. MOVE TO START),
and a serial number.

2. A response buffer which contains an echo of the command, a status (e.g.
WORKING, DONE, ERROR) and a serial number.

3. A set of command and response buffers for any child controllers.
4. A window to world data, that contains environmental information. Sensors

controlled modules that could be useful to other modules are published here.
5. A preprocess that reads in any parent commands, child responses, and envi-

ronmental data.
6. A decision process, that takes the command and the current state of the

controller and decides what task is active.
7. A collection of finite state machines that perform the amount of the task

within the update rate.
8. A postprocess where responses to the parent, commands to the children, and

any useful sensor data is published.

Modules are connected in a strict hierarchy - no module may have two par-
ents. Because each command has a serial number that is echoed back in the
response, all direct interaction between modules is deterministic, and can tolerate
poor communication - a command can’t be sent until the response echoes back
the serial number. RCS can also be used in simulations. The controllers interact
with a physics based environment that provides enough information for the sen-
sors and actuators to behave within reasonable parameters. Because controllers
contain all process knowledge related to a task at their level of abstraction, com-
munication between controllers is typically minimal. This in turn affords easy
modification and adjustment of the hierarchy, so as a task or technology changes,
only small parts of the running system need to be modified.

Hierarchies do not allocate resources well. The top-down nature of the con-
trol stands in opposition to the bottom-up self organization of market systems.
What this means is that the allocation scheme has to be encoded in the struc-
ture of the particular control hierarchy. When this is done, and for those explicit
instances, allocation can be extremely rapid and efficient. The moment the prob-
lem envelope exceeds the ability of the hierarchy to accommodate it, the control
hierarchy can no longer adapt.

Control hierarchies can be designed to be optimally efficient, since the entire
structure is known. Further, each component is trusted, additional work to
determine trustworthiness (e.g. Blockchain calculations) is not needed. Short
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of a monolithic system, a control hierarchy should be able to embody the lowest
computational intensity for well-defined tasks.

NIST RCS in particular is designed specifically to reduce cognitive load.
Controllers handle a single task, using the same preprocess/decision process/state
table/post process pattern. Developers quickly learn this methodology and can
easily contribute to developers working on different controllers. Debugging tools
that monitor the commands and responses between controllers provide high level
views of the functioning of the overall system, while drilldown into the common
state table operations within each controller can also be visualized using tools
that understand the RCS implementation.

A properly designed hierarchy has very low bandwidth requirements due to
the compartmentalization of the tasks within controllers. In places like high-
speed servo control, where multiple child controllers may need to react to rapid
commands by a parent controller, the system can be designed such that all
hardware shares a high-speed communication channel.

Because they are designed to deal with a particular environment, a factory
floor, a submarine, an autonomous vehicle, hierarchical control systems do not
have an inherent capacity to adapt to a different control environment. If new
hardware replaces old hardware on the factory floor, the control system must be
adjusted too. A good hierarchy makes this easy to do, with minimum impact on
the rest of the running system, but that is different from expecting the hierarchy
to adapt to the new hardware.

Due to the explicit design of the system and the reuse of common components
such as controllers, it is possible to design and build an extremely secure control
hierarchy. That being said, if the top level controller is hacked, the rest of the
system will blindly follow. As a rule, the risks of broken security lessen as the
control system moves away from the hierarchical side of the spectrum.

Research Challenges. A great deal of research has been performed on adaptive
hierarchical control systems [19,32]. Hierarchical systems have inherent disad-
vantages in that they need complete information across sub-systems to coordi-
nate control down to the individual actuators. As such, a designer of a large
scale, low response time system (such as a nuclear reactor) has to be aware of all
possible interactions within the system, since an actuator far down a one branch
of software involved with emergency response may vent high-pressure radioac-
tive steam into a section of plumbing normally involved with the steam used for
powering turbines [27]. The issue here is one of the combinatorial explosion of
possibilities that can occur in monolithic systems. Working though all potential
combinations is possible on small systems, but rapidly becomes uncomputable
as the hierarchy grows.

If, on the other hand, small, testable hierarchies can be linked so that rapid
response and control happens within the hierarchy, but looser interactions can
exist between hierarchies then more resilient systems can be designed. These
sets of smaller hierarchies can operate in clusters or ensembles could have the
ability to operate using local information and respond in more adaptive, flexible
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ways to a scoped set of problems. This approach is discussed in the next section,
where we use urban mobility to explore how adaptive ensembles of hierarchies
can blend market flexibility and hierarchical control.

3 Ensembles of Hierarchies

Modern cities are complex socio-technical entities that exist to provide services
effectively to their residents and visitors. Networks for water, electricity, com-
munications, and finance permeate the urban environment. Further, people need
to travel quickly and conveniently between locations at different scales, ranging
from a trip of a few blocks to a journey across town or further. Each trip has
its set of requirements. Time may be of the essence. Cost may be paramount
and the convenience of door-to-door travel may be important. In each case, the
transportation infrastructure should seamlessly provide the best option. A mod-
ern city needs to flexibly integrate transportation options including buses, trains,
taxis, bicycles and cars. The combinatorial complexity of all these possibilities
negates the option of a single, monolithic control system. How would a grouping,
or ensemble of hierarchies perform in this situation?

In this section, we consider a simplified urban mobility system (UMS), that
comprises several means of transportation that are collectively managed. We
focus on the aspect of adaptivity in situations where computational agents and
affected human (e.g passengers, drivers) collectively reach adaptation decisions.
In the following we describe the scenario and demonstrate the challenges it poses
to collectively adapting socio-technical systems like UMS.

Our UMS consists of the following means of transportation:

– Regular bus service, a network of fixed bus routes with fixed timetable;
– Flexible Bus (FB), a service that collects trip requests from customers and

organizes on-demand routes that efficiently serve the requests;
– Car Pool, a service to share car journeys so that more than one person travels

in a car;
– Taxi, a conventional taxi service;

Each means of transportation has a complex internal substructure. For example
the FB service allows third party minibus owners to register their availability for
serving trips, and for customers to register trip requests (e.g., location, time).
The service dynamically creates routes on the basis of time and location of
the trips requested and the availability of vehicles. Each FB route is an unit
comprised of the vehicle (or FB driver) that is supposed to serve the route,
and passengers traveling within similar time and location spans. A FB route
is supervised by the FB company that provides all necessary infrastructure. It
is easy to see that a FB route is a good example of collaborative behavior:
passengers sacrifice part of their flexibility in order to travel cheaper, compared
to a taxi, and quicker compared to conventional buses.
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As shown in Fig. 1, our simulation of this system connects transportation
with a set of agents that can interact in different ways. Agents can be part of
several possible ensembles (i.e., from E1 to E9) according to their needs. Figure 1
shows the topology of the UMS example. It includes a hierarchical pattern but
also direct relations, as in the Ensemble E9 composed by the FlexiBus Company
(FBC) and the Car Pool Company (CPC).

To illustrate this, let us consider a messy but not unlikely scenario: A passen-
ger is late for her FB, so the bus waits until she arrives. A current passenger, fed
up by the extra waiting, leaves the bus to walk the remaining distance. To make
up time the driver speeds and is involved in an accident, blocking traffic and
requiring the FB company to rout around the congestion. This is not only a bad
day for the passengers, it is an extremely complicated and expensive problem
for the FB company. Its options include, among others:

1. refund passengers who cannot reach their destinations in time
2. reroute the running buses to prioritize the most affected customers
3. reroute the running buses so that the largest number of passengers reach their

destinations on time
4. reassign passengers to other routes
5. reassign (groups of) passengers to other means of transportation

In the following subsection we analyze the challenges posed by this UMS
scenario.

Fig. 1. Types of agents and ensembles in the UMS.

3.1 Research Challenges

The principal agents in the UMS scenario (i.e., passengers, FB drivers, FB com-
pany, etc.) are generally autonomous and act independently. This makes the
system highly dynamic and distributed. The surrounding environment of an
agent changes frequently and unpredictably (e.g. as other agents change their
minds) and therefore the system requires constant monitoring and adaptation.
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Existing approaches [34,36,39], normally deal with multi-agent adaptive sys-
tems through isolated adaptation: each agent adapts itself independently from
each other. However, in our scenario the problem is complicated by collective
behavior. Even though agents are generally autonomous, they dynamically form
collaborative groups, called ensembles, to gain benefits that otherwise would not
be possible. The example of such an ensemble is a FB route (E1 in Fig. 1) which
coordinates the adaptation behavior of multiple agents (FB driver, passengers,
and FB company) and in return gives them certain benefits (e.g., cheap and
fast transportation). Membership of an ensemble may temporarily reduce the
flexibility of its agents. Within this context, isolated agent self-adaptation is not
effective. We can easily imagine what happens if a passenger books a trip with a
FB and then silently changes their mind and decide not to travel. It is likely to
cause unnecessary delay for the route (e.g. the bus will have a redundant stop)
and raise the cost of the trip for the remaining passengers, including potential
charges for the canceling passenger.

Even more serious consequences arise if a bus gets damaged: isolated adapta-
tion by the bus driver could totally break the passengers’ travel plans. Adapta-
tion has to take into account not only customers trip requests but also customers
constraints and preferences. For example, a particular passenger may want to
avoid traveling through unsafe areas in the city, but a possible re-planned route
may pass through such area.

The term ensemble has recently been introduced in the literature to denote
very large-scale systems of systems that may present substantial socio-technical
embedding [17,38]. They typify systems with complex design, engineering and
management, whose level of complexity comes specifically from bringing together
and combining in the same operating environment many heterogeneous and
autonomous components, systems and users, with their specific concerns. To
be robust against the high degree of unpredictability and dynamism of their
operating environments, and to sustain the continuous variations induced by
their socio-technical nature, ensembles need to self-adapt.

In adaptive systems with collective behavior, new approaches for adaptation
are therefore needed that allow (i) multiple agents to collectively adapt with (ii)
negotiations to decide which collective changes are best.

Collective adaptation also raises a second important challenge: which parts
of the system should be engaged in an adaptation? This is not at all trivial, since
solutions for the same problem may be generated at different levels. For instance,
a passenger’s delay may be resolved in the scope of a FB route, by re-planning
the route, or in the wider scope of the FB company, with the engagement of other
routes, or even in the scope of the whole UMS, with the engagement of other
means of transportation such as a car pool. The challenge here is to understand
these levels, formalize them and create a mechanism that decides the right scope
for an adaptation for a given problem.

Within our scenario, we can identify several levels of abstraction that operate
at different scales in time and space. An FB route combines passengers with
a driver, a Flexibus company combines FB routes, and an UMS combines a
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Flexibus company and other means of transportation. The higher the level of
abstraction, the wider the scope of adaptation.

The continuous and distributed adaptation is a key feature of Collective Adap-
tive Systems (CAS), when it comes to operating in constantly changing environ-
ment. Concepts that are close to those introduced above, and that characterize
CAS, have been studied in various domains such as, Swarm Intelligence, where
actors are essentially homogeneous and are able to adapt their behavior con-
sidering only local knowledge [11,21], or Autonomic computing, where the actor
types are typically limited and the adaptation is guided by predefined policies
with the objective to optimize the system rather than evolve it [4], or Service-
based systems where services are designed independently by different service
providers and are composed to achieve a predefined goal (i.e., user tasks [6] or
business goals [23]), or Multi-agent based systems where activities of different
actors are regulated by certain collectively defined rules (i.e., norms) [12]. Most
of the results obtained in these domains are tailored to solve a specific problem
using a specific language or model and lack of generality.

At the same time, these studies tackle only some of the challenges for individ-
ual agents, while leaving decision-making for group, collective, and larger scales
relatively unexamined.

For these reasons, we should move from individual based applications to col-
lective systems with techniques that support adaptation of collectives. This will
be achieved by defining new software engineering methods (i.e., models, theo-
ries and tools) that are highly flexible and can be specialized to fulfill different
tasks in different ways. At the same time, they will introduce features for the
collaboration and coordination among agents, as this is an essential prerequisite
for building collective adaptive systems (CAS). The collective nature of software
systems, with the important aspect of the diversity that different agents bring
in, makes the theme issue completely new and different with respect to previous
issues in the field of engineering complex and adaptive systems. Models for CAS
need to be adaptable by design; this means that each agent in the system must be
able to adapt its behavior taking into account the current context/situation. The
model should be flexible and extensible, fusing a priori and learned knowledge.
The local knowledge of an agent should be extendable during its lifetime, based
on collaboration with other agents and the current context of the adaptation.
Finally, the model should consider the heterogeneity and diversity of the agents,
incorporating the specific roles that they play in the collective.

In the next sections we introduce our approach that addresses the challenges
above in order to facilitate collective adaptation.

3.2 General Framework

Our approach addresses the challenge of collective adaptation by proposing a new
notion of ensembles that enables systems with collective adaptability to be built
as emergent aggregations of autonomous and self-adaptive agents. Key properties
of our approach include (i) the emphasis on collaboration towards fulfillment
of individual, diverse goals, and (ii) the heterogeneous nature of an ensemble
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with respect to roles, behaviors and goals of its participants. These properties
distinguish our approach from other types of ensemble models, like for instance
swarms, where all elements of a community have a uniform behavior and global
shared goal [11,21], and multi-agent systems and agent-based organizations [16],
where there may be several distinct roles and behaviors, but the differentiation
is still limited and often pre-designed.

We define an ensemble in terms of a set of roles that can be taken by par-
ticipating agents. A role can be seen as a component (or a type) that can be
instantiated by agents of different types (e.g. a user can either play the role of a
carpool passenger or a driver).

Each agent role (as depicted in Fig. 2, left-side) is modeled by a core process
(i.e., Agent Behavior) and a Scope artifact used to understand when and how a
role must be involved in a collective adaptation problem resolution. Each Scope is
formed by an Handler (H) capable to catch an Issue and trigger the appropriate
Solver.

Solvers model the ability of an agent to handle one or more issues. Each
solver relates to the particular issue that it can handle. Moreover, each handler
refers to a finite scope in the process of an agent, and it can be of two different
types: (i) external handlers are used to catch issues coming from other agents in
the system (both in the same or in a different ensembles); (ii) internal handlers
are devoted to monitor internal property and catch the issues arising when this
properties are violated.

Fig. 2. Agent and ensemble models.

During the normal execution of the system, interactions between agents and
ensembles are formed. Ensembles can be created spontaneously and change over
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time: different agents may join or leave an existing ensemble dynamically and
autonomously. Their termination is also spontaneous: participants have reached
their goals, or the ensemble itself has ceased to provide benefit.

For instance, in the carpooling scenario (see Fig. 2, right-side), users subscribe
to a carpool ride by exploiting functionalities of the carpool manager, which has
previously set up the ride and assigned a driver to it. In this way, the ensemble
made by the carpool manager, the driver and the passengers is constructed1.

During execution, the ensemble can evolve. New passengers can subscribe to
the ride, while others can leave. However, to deal with unpredictable changes,
local adaptation is not enough, since the scope of these changes goes beyond the
single agent. Typical changes occurring in dynamic environments are character-
ized by the fact of affecting different agents, who can also belong to different
ensembles:

– the agent directly related to the change (e.g., a ride interrupted directly affects
the driver);

– the agents belonging to the same ensemble (e.g., both the passengers on board
and the ones waiting at the pickup points);

– the agents involved as a consequence of the adaptation executed to solve
the problem (e.g., the Carpool company provides a new plan for the waiting
passengers).

This demonstrates the need for collective adaptation approaches able to deal
with dynamic changes, and whose scope can be, in the worst case, the entire
system. Thus, such an approach must provide one or more decision management
strategies, to allow different agents to communicate and cooperate in a collective
manner.

The collective adaptation process is handled in a decentralized manner by
the agents involved, directly or indirectly, in an adaptation issue. Each agent
implements a Monitor - Analyze - Plan - Execute (MAPE) loop [18] (as depicted
in Fig. 3) that allows for the dynamic interaction with the other agents. We use a
color code to distinguish the four phases of the MAPE loop. In the following, we
highlight the most interesting states of the SM. In the Monitoring phase, each
agent monitors the environment through active handlers. Issues can come either
from the agent itself (Issue Triggered) or from a different agent, asking support
for solving an issue (Issue Received).

The sequence begins with the Analyze phase, where the issue solver is called
(Local Solver Called). In the Planning phase, if the solver has found a solution
(Solution Found), the Collective Planning phase begins. All the agents involved
in the issue resolution process will collectively collaborate to solve it.

In this example, a solution provided by the solver foresees the involvement of
other agents, which are first found (Targets Found), and then triggered (Issues
Targeted) to be involved in the resolution process. Once the current agent

1 In this paper, we focus only on the collective adaptation aspect for agents. Their
normal execution can be handled using the technique presented in [8], which is
compatible with the approach we are proposing.
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receives feedback from the triggered agents (Solution Received), it selects the
best solution (Solution Chosen) (e.g., by applying approaches like [7,31]).

At this point, we should distinguish two cases. If the issue was triggered
internally (root node edge), the agent asks the involved targets to commit their
local best solution (Ask Partners To Commit), it waits for their commit to be
done (All Partners Commit Done), and eventually it commits its local solution
(Commit Local Solution). Otherwise, if the issue was coming from outside (not
root node edge), the agent reports the feedback to the issues sender (Solution
Forwarded), and it waits for a future commit (Commit Requested).

The agent can receive a positive or a negative reply for its proposed solution.
In both cases, it executes a solution commit (Commit Local Solution), which will
be empty in the negative case.

Fig. 3. MAPE state machine.

3.3 Hierarchical Adaptation

As we have seen so far, an agent instance resembles an ensemble instance in that
both of them are essentially sets of role instances. However, an agent instance
includes role instances belonging to different ensembles but played by a single
agent. This architecture allows us to model more complex agents that can run
multiple tasks simultaneously (e.g, a person can easily take/plan many activities
at a time: travelling, visiting a cinema, organizing a meeting with colleagues etc.).
However, a much more interesting application for agents with multiple roles is
establishing links between different ensembles. If we assume that, similarly to
ensemble instances, roles instances within an agent can also communicate with
each other, this can be used to organize coordination of multiple ensembles.
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Fig. 4. Ensembles hierarchy.

To demonstrate this, let us consider the example in Fig. 4. Here we see two
different ensembles: one (FlexiBus Ensemble) is devoted to managing the whole
FlexiBus system and includes the roles of a manager and a route.

Multiple routes can exist at a time. Moreover, there is Route Ensemble
devoted to managing a particular FlexiBus route. Multiple ensemble instances
of this type can exist. If we try to place in this picture an agent (e.g., a piece of
software) that manages a route, it is clear that its role will be twofold: on the
one hand it is a subordinate (with role route) in a higher level ensemble that
manages the whole FlexiBus system, and at the same type it is a leader in the
lower level ensemble that manages participants of a single route.

As such, it plays two roles in these two ensemble simultaneously. By letting
role instances within an agent talk to each other (e.g., using principles similar to
issue communication), we can efficiently establish control links between ensem-
bles. In the figure, it is exemplified with bold bidirectional arrows. For example,
we can imagine that, for some intrinsic reasons, the FlexiBus manager requests
a certain route to change its itinerary (e.g., in order to accommodate another
passenger).

The issue communication is sent to the corresponding role instance (arrow 1).
Trying to resolve this issue, the route role instance rethrows the issue to the RM
role instance within the same agent (arrow 2). Consequently, the RM role instance
triggers negotiation within the route ensemble to understand the possible solu-
tions. Finally, throw the same links the resolution options are returned back to
the FlexiBus manager, who makes the decision. We can see that everything works
similarly to the collective adaptation within an ensemble, but now the changes
happen on the inter-ensemble scale.

It is worth to remark that inter-ensemble communication can be used not
only for propagating decisions to the lower level of abstraction, but also to scale
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up an issue in case it cannot be resolve on the lower level. For example, if the
RM instance cannot resolve bus delay alone, it may scale the problem up to the
level of the FlexiBus system to possibly find a solution that engages other routes
(arrows 4, 5, 6). By joining all the communications into a single picture, we can
derive even a more complex scenario, where the bus delay is resolved on the level
of FlexiBus system (arrows 4, 5, 6) by reassigning some passengers to another
route (arrows 1, 2, 3).

Even though our example shows how our architecture can be used to build
arbitrarily large hierarchical systems with flexible collective adaptation, its use
is not limited to hierarchies and can be exploited to design any topology based
on peer-to-peer links between elements.

3.4 Collective Adaptation Engine

We have released a standalone Java implementation of the Collective Adapta-
tion Engine (CAE), approach described in the previous sections. It has been first
released as a standalone component2, and used in the DeMOCAS framework [10]3.

DeMOCAS is a framework for the modeling and execution of Collective
Adaptive Systems (CAS). It includes mechanisms for services specialization and
adaptation using the concept of Domain Objects [9]. This allows the system to
model customizable and adaptable services. DeMOCAS is build around three
main aspects:

– dynamic settings: each CAS is a collection of autonomous agents entering and
exiting the system dynamically;

– collaborative nature of systems: agents can collaborate in groups (i.e., ensem-
bles) for their mutual benefit;

– collective adaptation: multiple agents must adapt their behavior in concert
to respond to critical run-time impediments.

In this framework, collective adaptation is used to handle unpredictable
changes, which usually affect different running agents. Collective adaptation
makes the system robust and resilient in the face of situations that could cause
more rigid approaches to fail. The collective adaptation is performed by exploit-
ing the handler and solver constructs, and by associating a MAPE (Monitor,
Analyze, Plan, Execute) loop to each agent, as described in previous sections.

In Fig. 5 we show the Collective Adaptation Viewer of DeMOCAS. This
screen capture shows a report issue resolution result for an Intense Traffic Issue
triggered by a Flexibus Driver in mid-route. On the left side, all the agents
involved in the issue resolution process are listed. The issue resolution tree of
the Route Manager agents that owns the solver for the triggered issue, is shown
on the right side.

2 For the interested reader, the prototype is available in its entirety on a GitHub repos-
itory https://github.com/das-fbk/CollectiveAdaptationEngine.

3 https://github.com/das-fbk/DeMOCAS.

https://github.com/das-fbk/CollectiveAdaptationEngine
https://github.com/das-fbk/DeMOCAS
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Fig. 5. Collective adaptation viewer.

This type of approach, where responsive hierarchies are loosely coupled into
adaptive systems provides a war of addressing the types of system errors that can
emerge when large numbers of components are tightly connected in geometrically
complex networks. We discuss this in more detail in the following section.

4 Resilience Engineering for Normal Accidents

Charles Perrow established the concept of Normal Accidents [27] as property of
complex, high-risk systems. These are unpredictable, yet inevitable combinations
of small failures that build upon each other within an unforgiving environment.
Normal accidents include catastrophic failures such as reactor meltdowns, air-
plane crashes, and stock market collapses. Though each failure is unique, all
these failures have common properties:

– The system’s components are stiffly connected. A change in one rapidly
impacts one or more other components;

– The system is densely connected, so that the actions of one part affects many
others, regardless of the speed of action;

– The system’s internals are difficult to observe, so that failure can appear
without warning.

The systems that live on the TaaS spectrum are complex - they consist
of large numbers vehicles integrated in a complicated physical, electronic, and
software webs. They are high risk, both at the individual level, as the vehicles
themselves are inherently dangerous, and in a broader context, where misallo-
cation of transport during an emergency could result in large scale suffering or
death.

To see how easy it would be to create a single TaaS network, consider the
case where blockchain-mediated transactions have become the exclusive payment
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scheme for transportation. There are many potential benefits for such a dis-
tributed payment system, among them a greater level of purchasing anonymity
in an environment where every transaction can be tracked. But this decision to
use a decentralized system means that every transaction has to have visibility
to the distributed blockchain ledgers [15]. In essence, every node in the financial
system is now closely coupled. If an accident occurs that breaks the network,
financial transactions become impossible.

For example, consider a near-future case of a TaaS using self-driving vehicles
that depends on blockchain in an island network created by an earthquake that
has cut communication lines to the outside world. If the system were like the
New York Stock Exchange (NYSE)4, the entire system would suspend trading
until the blockchain ledger servers could be reached, preventing evacuations. Or
consider another example, where thousands of identical self-driving cars are sub-
tly hacked so that they perceive squirrels as children in the street [24]. Adhering
to the social consensus on trolley problem issues [26], thousands of self-driving
cars crash into trees.

These particular accidents probably will not happen, but we can be confident
that if the systems we design have Perrow’s properties, something like them
will. So how do we design systems for problems that are unknown? Ideally, the
answer would be to ensure that any deployed systems are not densely and tightly
connected, and that the elements control behavior are visible to those with the
appropriate credentials.

It is not always easy to meet these three constrains short of legislation. But
a proxy for addressing the stiffness and tightness of the connections in a single
system is to ensure that multiple, distinct TaaS systems are always present in
the communities they serve. Although each system may be dense, stiff hierarchy,
the connections between the systems should be few and slack. This enforces a
level of resilience at a minor cost in efficiency. Every vehicle and user doesn’t
need to be a individual competing across multiple markets, but neither should
there only be one rigid hierarchy. We believe that distributed ensembles is an
appropriate compromise between responsiveness and resiliency.

Acknowledgments. We’d like to thank Aaron Dant of ASRC Federal for his contri-
bution to the direction and development of the market section of this paper.
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