
Inverse Reinforcement Learning
for Agents Behavior in a Crowd Simulator

Nahum Alvarez(B) and Itsuki Noda

The National Institute of Advanced Industrial Science and Technology (AIST),
Tokyo, Japan

{nahum.alvarez,i.noda}@aist.go.jp

Abstract. Crowd behavior has been subject of study due to its applica-
tions in fields like disaster evacuation, smart town planning and business
strategic placing. However, obtaining patterns from the crowd to make
a working model is difficult, as it requires an enormous quantity of data
from observation and analysis and is impractical in many scenarios due
to logistic and legal issues. Machine learning techniques are a good tool
to overcome these difficulties, using a relatively small training data set
to identify patterns, allowing crowd agents to react to similar situations
accordingly. We implemented a behavioral agent model that uses such
techniques into a large-scale crowd simulator, and apply inverse rein-
forcement learning to adjust agents’ behaviors by examples. The goal of
the system is to provide to the agents a realistic behavior model and
a method to orient themselves without knowing the scenario’s layout,
based in learnt patterns around environment features.

Keywords: Pedestrian simulation · Inverse reinforcement learning ·
Multi-agent systems

1 Introduction

Crowd movement is a topic whose study has a large number of applications
in diverse domains. Naturally, to experimenting or testing scenarios with real
people presents a number of logistic problems and is generally not practical, or
even infeasible in certain instances. Therefore, a widely accepted solution is to
use a simulator to replicate the desired scenario. Then, the simulation can be
used for extracting crowd behavior patterns and predicting its movement. This
could help in improving our understanding of real life tasks like city planning,
disaster prevention, or business strategy. Agent based models are commonly
used to perform the simulations, due to its flexibility and scalability, and allow
to produce complex crowd interactions using simple action patterns. However,
human behavior is a factor difficult to model: people’s actions are goal-driven
but those goals are not usually visible and do not follow optimized plans often.
Also, scalability and performance requirements arise when we need to work in
scenarios involving large numbers of humans, so even basic behaviors pose a
c© Springer Nature Switzerland AG 2019
D. Lin et al. (Eds.): MMAS 2018, LNAI 11422, pp. 81–95, 2019.
https://doi.org/10.1007/978-3-030-20937-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20937-7_6&domain=pdf
http://orcid.org/0000-0003-1717-2506
http://orcid.org/0000-0003-1987-5336
https://doi.org/10.1007/978-3-030-20937-7_6


82 N. Alvarez and I. Noda

challenge to researchers. A possible way to solve this problem is to use machine
learning techniques on available similar data in order to give the agents a way
to react to new situations.

In this paper, we present a model that includes the use of inverse reinforce-
ment learning (IRL from here on) for the agents’ decision making process, train-
ing them with knowledge learnt from previous data. The context of our research
lies in the domain of pedestrian simulation on cities, with the objective of extract-
ing knowledge of the pedestrian flow around concrete points of the map that con-
tain certain features, like shops or restaurants, and predicting which places are
more appropriate for certain business. We aim to deploy a large number of agents
with different profiles depending of their goal (shopping, work, entertainment)
and observe how their behavior is influenced by the features in the environment.
With this information we would be able to decide which spot is best for certain
type of feature and how would change pedestrian affluence if we add new features
or modify the existent ones. This is done by analyzing the crowd movement flow
according of map features and agent characteristics. Previously IRL techniques
has been used to calculate trajectories and plan movements, but as far as we
know its use in agents based simulators or feature map optimization has been
sparse.

We developed a crowd simulator designed to generate pedestrian movement
in city scenarios using real world city maps that originally used simple scripted
agents to calculate trajectories, and we expanded it by adding a behavior module
that works with IRL and is used by the agents to decide which path take. The
decision process is influenced by the preexistent features in the map generating
similar behavior for places with similar features. This module also allows the
agents to traverse maps whose layout is not known. Also, once they have learned
behavior patterns related to the map features, they can be put on a different
map and behave the same way they did in the original scenario.

The rest of the present document is organized as follows: Sect. 2 contains a
review of previous work on reinforcement learning used for agent behavior and
pedestrian simulators and the techniques they use. Section 3 describes in detail
our crowd simulator and its architecture, and Sect. 4 presents our agent model
and the IRL method that generate their behavior. Section 5 contains the tests
we performed to validate the system and the results we obtained from them.
Finally Sect. 6 contains the conclusions of our research.

2 Related Work

Crowd simulation have been recently the object of rising interest because it can
deal with a number of important problems in our society. For example, traffic
simulation can be used to improve transportation systems and networks, and
also in obtaining solutions to lowering car pollution [6]. Pedestrian simulation
is useful to design evacuation strategies and identifying potential problems in
concrete scenarios like natural disasters or terrorist incidents, like [22] or [12]. In
these works we can see that not only an accurate model is needed, but a high



Inverse Reinforcement Learning for Agents Behavior in a Crowd Simulator 83

degree of scalability is mandatory, as simulating hundred of thousands people
requires many resources in terms of computational power. Different models has
been used to achieve efficient and accurate simulations: for example, [3] shows the
simulation of the crowd flow in a train station during an event using the Cellular
Automata model, or our own system that uses the Social Force model described
in [7]. However, every model has certain limitations, like the Social Force model
having issues representing realistic collision behavior at high densities due to the
specification of the repulsive interaction forces, or the Cellular Automata model
having issues at modeling agents at high or non homogeneous velocities [17].
Solutions of these shortcomings have been proposed by extending the models,
often making them domain-specific to some degree. For example, the Social Force
model was upgraded in [9] to describe detailed velocity control of pedestrians,
and other works like [23] and [11] add a collision-prediction/-avoidance force
model.

There is another topic where pedestrian simulators can be applied, which is
the one we are interested in: city and business location planning. We want to
analyze people movements and behavior in their daily city life, obtaining insight
of what places attract more people and how different types of locations affect
their actions. Then, once we have a model of the patterns that people follow, we
could simulate them in other environments to assess the effectiveness of certain
spots, or predict how a future potential business or facility could perform at
different locations. We are interested in such kind of application and it is the
objective of the present work.

Aiming to that goal, we developed CrowdWalk, a crowd simulator that uses a
multi-agent model to represent pedestrians. Using agents is a popular approach
due to be able of generate complex behavior with simple agent design and also
escalates well, being appropriate for large scenarios. There are a wide range of
works in pedestrian simulation with agents, using different techniques. Systems
based in video analysis work well, like the one in [24], but in order to remain
practical it narrows their domain, using tile location and pre-generated trajec-
tories. Another common strategy is to model the agents with a dual behavior
system controlling two types of movement (or behavior): micro and macro move-
ment. The first deals with collision avoiding in the near space and adjusting the
agent’s velocity in the crowd’s flow, and the second is the one in charge of driving
the agent towards its goal, creating and updating its route and taking care of
the decision making process [21]. Our simulator handles micro movements in an
autonomous way, with its own subsystem where agents adapt to the crowd flow,
and also allows to control macro movements using behavior scripts. To achieve
our goal, we are focused in macro movements as it is the module that creates
the agent’s behavior.

However, a basic action for an agent macro movement like calculating the
most optimal route to a goal in a crowded scenario is a complex task: an a priori
calculated optimal route can become much slower if an enough large number of
agents take it, and this is the simplest problem that could arise; nevertheless, this
is not what we intend as we only aim to replicate pedestrian behavior. Learning



84 N. Alvarez and I. Noda

such behavior patterns is an interesting question: humans usually do not take
the most optimal route, and even congestion can be seen as a positive factor
(“if there are many people, is because is good”) as noted by [4]. In such kind
of domains, we can take advantage of machine learning techniques. Concretely,
apprenticeship learning methods have been widely used in intelligent agents’
systems to train them to perform tasks in changing environments like [18] or [20].
As we noted, simulating people’s behavior and not only trajectory planning is a
difficult task, as their movements are governed by hidden rules and oriented to
goals that may be hidden as well. We can observe strategies to emulate different
behaviors for agents in [6] but it is a static model with pre-designed driving
styles, having the problem of not being able to simulate unplanned behaviors.
There are previous works where agents are given a behavior cognitive model for
pedestrians like in [14,15] or [4], but they are specific to its domain, escalating
badly, or they take as a given the reward or utility functions that drive the agents
behavior, which often is unknown in complex scenarios. Using IRL is appropriate
to overcome this issue, because IRL methods work on domains where the reward
function is hidden. Hence, it is ideal to model animals and humans behavior [16].
Interestingly, the works that use IRL to manage agent’s behavior are sparse,
but are recently some works are starting to use it [19]. IRL not only allows to
train agents into achieving concrete goals, but also can learn different behavior
patterns, as it is shown in [1] where driving styles are learned by an agent. There
are a number of algorithms to solve IRL problems, like the ones in [8] or [10]. We
decided to use the maximum entropy approach [25] because it works well when
we do not have much information about the solution space, as we are dealing
with city scenarios with a layout a priori unknown by the agents. There are
methods that perform better, like [5] which it works on a subset of MDP, but
it does not match well with our domain, or [13] which could be interesting to
apply in future instances of our research.

3 Pedestrian Simulator

CrowdWalk is a pedestrian simulator we developed to perform crowd behavior
prediction in disaster scenarios in order to identify potential bottleneck issues
when coordinating evacuation routes. Aside of this type of scenarios, CrowdWalk
was actually designed for generic uses, so it is possible to create pedestrian
simulation with other purposes. In CrowdWalk, each agent (pedestrian) walks
on a map toward its own goal. It can simulate movements of more than 1 million
agents in a large area like complex building or town blocks in a city. Maps
and agents’ behaviors are configurable so that we can conduct simulations with
various situations of maps and policies of agents. The architecture of CrowdWalk
is depicted in Fig. 1, and shows its principal work modules. We omitted from the
diagram the modules related to the IRL process as in this section we want to
describe in depth the application where we built learning agents on. We will focus
in the IRL process flow and the new agents with detail in the next section. First,
CrowdWalk has two main working modules: an Agent handler and the Simulation



Inverse Reinforcement Learning for Agents Behavior in a Crowd Simulator 85

Fig. 1. The architecture diagram of CrowdWalk. It has two main modules: one man-
aging the agents and other in charge of the environment simulation. Each one of these
modules is configured by different files containing the specifications of the simulations.
Some of those files can be automatized using the system preprocessing tools to some
extent for easier construction.

manager. The Agent handler contains an agent factory, that generates one agent
per pedestrian. Each agent contains its own decision model that its composed
by the micro and macro behavior modules. The micro behavior module in each
agent takes care of micro movements automatically, calculating when an agent
has to stop, walk slower or even try take other route due to be unable to continue
its original path. However, the final decision of selecting other path is left to the
macro behavior module, and actually, the macro behavior module is able to
override any orders from the micro movements module if deems so. The speed
of an agent is given in relation with the density of the link he is currently in,
being slower as the link is more crowded, until a maximum capacity limit where
it is not possible to continue advancing. Concretely, it is determined according
to the social force model as following:

dvi
dt

= A0 (v∗
i − vi) − A1

∑

j∈Hi

exp (A2 (s − ‖pi − pj‖))

where vi, v∗
i and pi is the current and max speed, and the current location of

agent i, respectively. §Hi is the set of agents located in front of the agent i.
And s is the radius of a personal space. A0, A1 and A2 are constant parameters
whose purpose is to adjust the formula. Through experimental observations in
real scenarios we set these parameters, the personal space radius and the max
speed to a default of A0 = 0.962, A1 = 0.869, A2 = 4.682, v∗

i = 1.023 and



86 N. Alvarez and I. Noda

s = 1.044, however these parameters can be customized in the configuration files
of CrowdWalk.

The macro behavior module is the one in charge of calculating the agent’s
route to its goal, and updating it if necessary. This module contains some pre-
defined behaviors, built using a nested hierarchy where the most basic behavior
consists in an agent that just calculates the shortest path to the goal without
taking in account the degree of agglomeration of each link, and other behaviors
increase in complexity by changing the path if there is too much agent density, or
avoiding roads it used previously. On the top of the most complex class, there is a
special class that enables the agent to be controlled by an external script. Using
this last behavior class, CrowdWalk can use external scripts defining agent’s
macro behavior, allowing more flexibility.

The other important module within the system is the Scenario Engine, which
is the one in charge of actually run the simulation. It receives as input a con-
figuration file containing the scenario information and recreates it as a virtual
environment. Internally, CrowdWalk uses a Network-based model capable of high
speed simulations of large numbers of agents. We simplified the map into a 1-
dimensional network consists of nodes and links instead of 2D free space. Our
main focus is to investigate phenomena and behaviors of a large scale crowd in a
large area, so we need to execute exhaustive simulations with a large number of
configurations. Therefore, we chose a light computational 1D model rather than
a 2D model one. However, it is capable of simulate 3-dimensional structures as
well, being capable of representing the internal layout of a building.

CrowdWalk uses five configuration files to setup simulation environments.
The five files are described as follows:

Properties file: specifies top-level configurations of the simulation. Other
configuration files listed below are specified in this file.
Map file: specifies a map for the simulation.
Generation file: specifies the rules to generate agents. Each generation rule
specify agent classes, other parameters like the max speed and personal space
radius, populations, goals, and generation time independently.
Scenario file: specifies a sequence of events occur during the simulation.
Fallback file: specifies the default values for the simulation parameters, like
the ones in the social force model.

The model of the map consists in a custom xml that describes the map in
the form of a road network represented by nodes (intersections) and links (road
path) composing a graph. A link has a length (how long agents need to walk
from a end to another) and width (how many agents can walk in parallel), and
can be two-way or one-way. Nodes and links can have tags as labels to indicate
goals and other features information, like what kind of facilities are on that
location. The xml model can be created automatically using a tool included in
CrowdWalk that converts maps obtained from the open source software Open
Street Map1 into our custom format. This allows us to use any possible city map
in the world with no additional effort.
1 https://www.openstreetmap.org.

https://www.openstreetmap.org


Inverse Reinforcement Learning for Agents Behavior in a Crowd Simulator 87

The agent generation script is a file containing the rules of agent generation,
i.e. what number of agents are created, which type of agents will be and if they
are not any default type, which agent behavior file the system will use, which
point they come from, and which point they are going to. CrowdWalk also has
a tool to automatically generate this file by providing some simple rules and the
map model. Finally, the agent behavior is contained in a script and describes
the macro behavior of the agent. This script optional, as there are a number of
predefined agents, like agents that move randomly, or agents that move directly
towards their goal. For our current research we created an IRL agent we will
describe in depth in the next section.

The Agent handler is called by the Simulation manager in order to generate
the agents in the virtual environment following the rules given in the agent
generation script. When running, the simulation engine represents the scenario
as a graphic simulation where the agents will behave according to each one’s
own behavior modules, allowing pausing the simulation at any moment and
inspecting every element part of it (like the current internal state of any agent,
and any node or link).

Once CrowdWalk is running it shows a simulation of the agents traversing
the city map until all the agents reach their goal point; When the agents are
walking freely they are colored green, but when they have to stop or walk slower
they become red, showing bottlenecks in the map. The simulator screen allows
to pause the simulation and examine every agent, map node or link information.
The simulation is run at accelerated time, but it shows the real world time it
is taking given the velocity of the agents. When finished, it records each agent
path in a log with timestamps for posterior replication or analysis purposes.

4 Agent Model

IRL techniques work on domains that can be modeled by a Markov decision pro-
cess (MDP, from here on after) and are used to learn its hidden reward function.
MDP are defined by a tuple M = {S, A, T , γ, r}, where S is the state space
of the model, A is the set of actions that can be performed, T is the transi-
tion function, which returns the probability of transition from one state to other
given a concrete action, and usually is given in the form of a matrix, r is the
reward function that generates a reward value from reaching a state, and γ is a
discount factor, that applies when calculating accumulated reward through con-
secutive actions. When working with models with an unknown reward function,
IRL methods provide us a way to obtain it. In order to get r, it is also provided
a set of expert trajectories T , consisting of “paths” composed of pairs of states
and actions.

We developed an automatic module that converts the city map used in
CrowdWalk into a MDP, ready to be used by our IRL method. This tool trans-
lates map nodes into states, and creates a possible action for each link that it
has. Also, in order to optimize the model, all the nodes that only have two links
are trimmed, as there are no other possible decisions once a pedestrian enter in



88 N. Alvarez and I. Noda

one other than continue walking or going back. Once we have the MDP model
for the map, we run the CrowdWalk IRL module, that consists on an instance
of the IRL algorithm, using a modified version of the maximum entropy method
found in [2]. We adapted this module in order to use a variable number of pos-
sible actions on each state, as each map node has a different number of possible
links to take. The input of this module is the MDP representing the current
map, and a file containing the training trajectories we want to train. It is pos-
sible to run this process using trajectories for each available behavior we want
to train, but also we can run it only once training all the behaviors at the same
time. For example, we can train shopping behavior using routes that go to the
shops on the map, preferring shops hubs like malls or shops surrounded by other
entertainment facilities, or business behavior by training the routes that working
people would do, preferring wide avenues over small and crowded streets; we can
do this once per each behavior or put together all of the trajectories and train
them as a whole. The resulting product of the module is a file containing the
optimal policy function derived from the reward function generated by the IRL
algorithm. This policy function takes the form of a lookup table stored in a file,
which will be used by the system’s agents. All of these actions are performed
before the simulation is executed as a pre-processing task. Thus, even if this
pipeline can take a long time depending of the complexity of the map (about
one hour for a map for one Tokyo district, with around 2000 nodes), it does not
represent a big impact in the simulation speed as the policy selection once we
have this file is enough to use it in real time. The process flow once included in
the architecture we explained in the previous section is depicted in Fig. 2.

Fig. 2. The IRL process integrated in the system. We added two extra modules to the
system in order to create a MDP based in the simulated scenario and train the agents
with expert trajectories. This pipeline integrates naturally with the architecture of the
system.



Inverse Reinforcement Learning for Agents Behavior in a Crowd Simulator 89

As we described in the previous section, when a simulation runs in Crowd-
Walk, the agents have a macro behavior module which is in charge of the decision
making process by selecting a type of behavior for the agents. We developed a
type of agent, called IRL agent, that works with an input behavior script and
the IRL’s resulting policy and decides which link to take on the probabilities
contained in it. The behavior script contains a list of goals, which describes the
features the agent wants to visit. They can be generic (like “visiting three restau-
rants”) or a concrete one (like “visiting the restaurant located in the node labeled
as nd00327”). Each goal in the list also contains the conditions for its satisfac-
tion, which can be reaching the goal, staying in the goal a defined time, reaching
a number of goals of that type (in case of the generic goal), or a combination of
them. Also, the script contains an evacuation point, where the agent will go after
completing its goals. The agent has access to the optimal policy learned from
the IRL process (stored as a lookup table), and also the set of rules contained in
its behavior script, whose decision making process is shown in Fig. 3. The agent
starts in an state called “wandering”. In this state, on each map node, the agent
obtains from the policy table a list containing the probabilities of taking each
one of the available links on that node. Then the agent chooses which path it
will take based on that probability list. Whenever the agent visits a goal node it
checks and updates its satisfaction conditions. If that goal is satisfied, the agent
enter briefly into another state, called “pathfinder”, which makes it go to its next
goal using the most optimal path. However, it leaves this state as soon as it has
left the featured area containing the previous goal, and returns to “wandering”.
The agents decide they left the area of a goal by have a distance threshold from
the goal they are leaving.

The rationale behind the pathfinder state is to avoid returning to the pre-
viously visited nodes (on a side note, goals already visited do not count when
returning to them), as the nearly policies would drive back the agent to them.
Currently this is controlled by the distance threshold, but in future installments
of the system we will use multiple policy functions with a smart selection method
between them. Once all the goals have been completed, the agent enters again in
“pathfinder” mode and goes straightly to its evacuation point, leaving the map.

5 Preliminary Validation

We performed a preliminary set of tests to validate two aspects of our method:
first, if the intended behavior is observed in the agents, and how the policy and
reward values are distributed on a featured map, and second, that the agents are
capable to reach their goal points. Additionally, we aimed to identify unpredicted
issues and deviations from our expectations.

First, we selected a map from a portion of Tokyo containing commercial
areas, touristic spots, a train station, and residential zones. In the map there
were a total of 36 features, which we classified in three groups: shops, restaurants
or entertainment. We generated by hand 3000 routes representing pedestrians
making errands (we observed in previous tests that training that number of



90 N. Alvarez and I. Noda

Fig. 3. The algorithm followed by the IRL agents: once they reach a map node, they
use the optimal policy function to choose the next node they will go to. If they satisfy
a goal, they leave the area and start wandering again. Also they check their list of goals
and leave the map when all of them were visited.

sample routes results in a better performance than using bigger data sets). The
routes start on 20 random points in the map, covering a 60% of it (a bit more,
they cover 165 nodes from 273) and evacuate on a designated area. We are aware
that for a complete validation we will need to use trajectory data from real
humans. However, we are expecting to obtain a data set containing pedestrian
behavior from other domains, like a department store or a fireworks festival, so
we will adapt our simulator to represent these new environments and perform
more definitive tests.

We prepared two different maps for training the routes: one was designed
to train only shopping patterns; i.e. we deleted from the map any feature not
classified as shop. The second map was prepared using the original, containing all
three groups of features. We trained the routes in these two maps, and generated
two different optimal policy files. Figure 4 depicts how the rewards influence in
the map. Links in red have a probability greater than 80% to be selected as the
next path, in yellow when is between 40% and 80%, and in green when it is lower
than 40% but greater than 20%. As we can see in the figure, training with three
groups of features generates new colored links but also increases the probability
of taking the links in areas where different features are contained. We want to
note that colored links appear over the whole map, and not only in the areas
where routes were trained.

Then, we performed three different sets of simulations using 3000, 6000 and
10000 IRL agents with the two different policy files. The agents start from 20
different random points and have a goal of visit 4 featured spots. Also, in order
to compare the agents behavior, we performed a parallel simulation using other
type of agent called “pathfinder agent”, capable of calculate optimal routes and
going directly to its goals (so it is always in the pathfinder state), as we wanted to



Inverse Reinforcement Learning for Agents Behavior in a Crowd Simulator 91

compare our theoretically more realistic behavior with an agent capable of reach-
ing scripted route points. We designed routes for these agents placing waypoints
on certain featured areas (but not in feature spots); the agents are programmed
to walk to those points in order and then evacuate at the final point.

Fig. 4. The rewarded links in the map when training with one and three different types
of features. The links are colored depending of their reward value, with no coloring in
case of no reward, green if there is a low reward, yellow if it is moderate and red for
high rewards. (Color figure online)

All the simulations showed similar results in terms of population in featured
areas and number of features visited. In Fig. 5 we can observe the distribution
of the pedestrians in the simulation of 6000 agents with only one feature group
trained. The pathfinder agents crowd around the waypoints, but since they are
programmed to only follow the best path, they avoid other similar featured areas
that are not part of it. They also concentrate in other areas that do not contain
such features, but are just the optimal path to the goal (for example, the big
avenue that runs vertically across the map, which is a navigational hub). On the
other hand, IRL agents tend to disperse themselves when they are not in featured
areas. Figure 6 shows a caption of the simulation with the three types of featured
areas marked with different colors. IRL agents populate almost all of the featured
areas, but as the agents have a much more varied featured-driven behavior, the
crowd in some of them is not as clear-cut as the in the first experiment.

We also extracted population density data from our tests with the full fea-
tures in the map. The IRL agents visited all the 36 featured nodes in the map,
with an average of 7.11 featured spots, whilst the pathfinder agents visited an
average of 2.23, leaving 9 nodes that were untouched by them. Naturally, the
pathfinder agents only went to the featured nodes that were by chance in their
path to the goal, but, interestingly this means that not all business are in the
most optimal paths and agents that does not take in account behavioral pat-
terns, will ignore places that may be important. Finally, we observed space to



92 N. Alvarez and I. Noda

Fig. 5. Comparison between the simulations with one feature trained, both of them
with 6000 agents. Featured areas are marked in yellow. (Color figure online)

Fig. 6. Comparison between the behavior of the agents used in a simulation with the
three groups of features trained, both of them with 6000 agents. The colors used mark
different areas: yellow for shops, blue for restaurants, and green for entertainment.
(Color figure online)

improvement, identifying a number of issues in the IRL agents. First, we noticed
deadlocks emerging when there are a high number of agents, and we plan to solve
that problem in the next version of the system; however, the deadlocks appear
much more often using pathfinder agents. We will add reactive behavior to the
agents in order make them able to detect when they cannot continue their path
and even warn other agents of it.

Also, we think we could improve the agents behavior when shifting between
behavior patterns, because currently switching behaviors is predefined and we
think that is more a way to circumvent the fact that the agents still do not
switch policy functions (and even it may not be suitable to real situations). We
plan to perform an additional layer of learning to obtain a cognitive model for
changing behaviors from the data used for training, and then we can manage



Inverse Reinforcement Learning for Agents Behavior in a Crowd Simulator 93

different policies for different behaviors. Once we finish this behavior manage-
ment method, we will test if its better to have one unique policy and reward
functions for multiple trained behaviors, or to maintain one per behavior, shift-
ing the policy depending of the goal.

6 Conclusions

In this paper we presented an agent-based pedestrian simulator that uses
inverse reinforcement learning in order to imitate behavior patterns learned from
expert’s trajectories. Current pedestrian or crowd simulators rarely use this app-
roach in order to simulate the crowd behavior, preferring to use this method for
optimal trajectory generation instead. However, such kind of system would have
a wide array of applications in fields: for example it can be used for smart
city planning by extracting the movement patterns of pedestrians and applying
those patterns to create optimal paths to key areas; it can be used for disaster
prevention by identifying which areas are more likely to create bottlenecks in
evacuations, and avoid undesirable paths that would be nonetheless taken by
fleeing pedestrians; it also can be applied to take business strategy decisions in
where to place certain types of business by predicting how they can perform in
attracting customers depending of their surrounding features.

We developed a module that provides behavioral learning to the agents in
our crowd simulator. This module works using an inverse reinforcement learning
technique by converting the domain of pedestrians walking across a city into
a Markov decision process. We performed two sets of experiments obtaining
promising results when replicating the intended behavior. Our IRL agents visit
spots in the map that are ignored by agents that only calculate the most optimal
route to the goal, generating better behavior. Also, by observing the reward
values of the links on the map we can detect which places are more optimal for
certain business. We observed interesting aspects in our tests. First, when the
number of agents increase, pedestrian congestion was much more common with
pathfinder agents than using the IRL agents, hindering their performance or even
generating deadlocks at certain junctions. This is mostly due to the wandering
nature of the IRL agents around zones that match their behavior pattern but are
not part of optimal paths. We also observed that IRL agents have a consistent
behavior independently of the number of simulated agents.

In the next steps of our research, we plan to improve the agents with further
machine learning techniques, in order to teach them when to switch between
different behavior patterns. We also plan to validate the behavior of our agents
by comparing them with live data from real pedestrians. In order to do this and
due to difficulties to track effectively massive numbers of people, we will apply
our system to concrete environments more manageable, like crowd movement in
controlled events or customer behavior inside of supermarkets. We think IRL
techniques opened an interesting path that was not enough explored although
they are well known from long ago, maybe because a lack of simulation technol-
ogy. Thus, we aim to provide better understanding of crowd simulation using
IRL and usable tools for its potential applications.



94 N. Alvarez and I. Noda

References

1. Abbeel, P., Ng, A.Y.: Apprenticeship learning via inverse reinforcement learning.
In: Proceedings of the Twenty-First International Conference on Machine Learning,
p. 1. ACM (2004)

2. Alger, M.: Deep inverse reinforcement learning (2015)
3. Crociani, L., Lämmel, G., Vizzari, G.: Multi-scale simulation for crowd manage-

ment: a case study in an urban scenario. In: Osman, N., Sierra, C. (eds.) AAMAS
2016. LNCS (LNAI), vol. 10002, pp. 147–162. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-46882-2 9

4. Crociani, L., Vizzari, G., Yanagisawa, D., Nishinari, K., Bandini, S.: Route choice
in pedestrian simulation: design and evaluation of a model based on empirical
observations. Intell. Artif. 10(2), 163–182 (2016)

5. Dvijotham, K., Todorov, E.: Inverse optimal control with linearly-solvable MDPs.
In: Proceedings of the 27th International Conference on Machine Learning (ICML
2010), pp. 335–342 (2010)

6. Faccin, J., Nunes, I., Bazzan, A.: Understanding the behaviour of learning-based
BDI agents in the Braess’ paradox. In: Berndt, J.O., Petta, P., Unland, R. (eds.)
MATES 2017. LNCS (LNAI), vol. 10413, pp. 187–204. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-64798-2 12

7. Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Phys. Rev. E
51(5), 4282–4286 (1995)

8. Herman, M., Gindele, T., Wagner, J., Schmitt, F., Quignon, C., Burgard, W.:
Learning high-level navigation strategies via inverse reinforcement learning: a com-
parative analysis. In: Kang, B.H., Bai, Q. (eds.) AI 2016. LNCS (LNAI), vol. 9992,
pp. 525–534. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50127-
7 45

9. Johansson, A., Helbing, D., Shukla, P.K.: Specification of the social force pedestrian
model by evolutionary adjustment to video tracking data. Adv. Complex Syst.
10(2), 271–288 (2007). https://doi.org/10.1142/S0219525907001355

10. Kohjima, M., Matsubayashi, T., Sawada, H.: What-if prediction via inverse rein-
forcement learning. In: Proceedings of the Thirtieth International Florida Arti-
ficial Intelligence Research Society Conference, FLAIRS 2017, Marco Island,
Florida, USA, 22–24 May 2017, pp. 74–79 (2017). https://aaai.org/ocs/index.php/
FLAIRS/FLAIRS17/paper/view/15503

11. Lämmel, G., Plaue, M.: Getting out of the way: collision-avoiding pedestrian mod-
els compared to the RealWorld. In: Weidmann, U., Kirsch, U., Schreckenberg, M.
(eds.) Pedestrian and Evacuation Dynamics 2012, pp. 1275–1289. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-02447-9 105

12. Lämmel, G., Grether, D., Nagel, K.: The representation and implementation
of time-dependent inundation in large-scale microscopic evacuation simulations.
Transp. Res. Part C Emerg. Technol. 18(1), 84–98 (2010)

13. Levine, S., Popovic, Z., Koltun, V.: Nonlinear inverse reinforcement learning with
Gaussian processes. In: Advances in Neural Information Processing Systems, pp.
19–27 (2011)

14. Luo, L., et al.: Agent-based human behavior modeling for crowd simulation. Com-
put. Animat. Virtual Worlds 19(3–4), 271–281 (2008)

15. Martinez-Gil, F., Lozano, M., Fernández, F.: Emergent behaviors and scalability for
multi-agent reinforcement learning-based pedestrian models. Simul. Model. Pract.
Theory 74, 117–133 (2017)

https://doi.org/10.1007/978-3-319-46882-2_9
https://doi.org/10.1007/978-3-319-46882-2_9
https://doi.org/10.1007/978-3-319-64798-2_12
https://doi.org/10.1007/978-3-319-50127-7_45
https://doi.org/10.1007/978-3-319-50127-7_45
https://doi.org/10.1142/S0219525907001355
https://aaai.org/ocs/index.php/FLAIRS/FLAIRS17/paper/view/15503
https://aaai.org/ocs/index.php/FLAIRS/FLAIRS17/paper/view/15503
https://doi.org/10.1007/978-3-319-02447-9_105


Inverse Reinforcement Learning for Agents Behavior in a Crowd Simulator 95

16. Ng, A.Y., Russell, S.J., et al.: Algorithms for inverse reinforcement learning. In:
ICML, pp. 663–670 (2000)

17. Schadschneider, A., Klingsch, W., Klüpfel, H., Kretz, T., Rogsch, C., Seyfried, A.:
Evacuation dynamics: empirical results, modeling and applications. In: Meyers, R.
(ed.) Extreme Environmental Events, pp. 517–550. Springer, New York (2011).
https://doi.org/10.1007/978-1-4419-7695-6 29

18. de Albuquerque Siebra, C., Botelho Neto, G.P.: Evolving the behavior of
autonomous agents in strategic combat scenarios via sarsa reinforcement learning.
In: Proceedings of the 2014 Brazilian Symposium on Computer Games and Dig-
ital Entertainment, SBGAMES 2014, Washington, DC, USA, pp. 115–122. IEEE
Computer Society (2014). https://doi.org/10.1109/SBGAMES.2014.36

19. Šošić, A., KhudaBukhsh, W.R., Zoubir, A.M., Koeppl, H.: Inverse reinforcement
learning in swarm systems. In: Proceedings of the 16th Conference on Autonomous
Agents and MultiAgent Systems, pp. 1413–1421. International Foundation for
Autonomous Agents and Multiagent Systems (2017)

20. Svetlik, M., Leonetti, M., Sinapov, J., Shah, R., Walker, N., Stone, P.: Automatic
curriculum graph generation for reinforcement learning agents, November 2016.
http://eprints.whiterose.ac.uk/108931/

21. Torrens, P.M., Nara, A., Li, X., Zhu, H., Griffin, W.A., Brown, S.B.: An extensible
simulation environment and movement metrics for testing walking behavior in
agent-based models. Comput. Environ. Urban Syst. 36(1), 1–17 (2012)

22. Yamashita, T., Soeda, S., Noda, I.: Evacuation planning assist system with network
model-based pedestrian simulator. In: Yang, J.-J., Yokoo, M., Ito, T., Jin, Z., Scerri,
P. (eds.) PRIMA 2009. LNCS (LNAI), vol. 5925, pp. 649–656. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-11161-7 52

23. Zanlungo, F., Ikeda, T., Kanda, T.: Social force model with explicit collision pre-
diction. EPL (Europhys. Lett.) 93(6), 68005 (2011)

24. Zhong, J., Cai, W., Luo, L., Zhao, M.: Learning behavior patterns from video
for agent-based crowd modeling and simulation. Auton. Agents Multi-Agent Syst.
30(5), 990–1019 (2016)

25. Ziebart, B.D., Maas, A.L., Bagnell, J.A., Dey, A.K.: Maximum entropy inverse
reinforcement learning. In: AAAI, Chicago, IL, USA, vol. 8, pp. 1433–1438 (2008)

https://doi.org/10.1007/978-1-4419-7695-6_29
https://doi.org/10.1109/SBGAMES.2014.36
http://eprints.whiterose.ac.uk/108931/
https://doi.org/10.1007/978-3-642-11161-7_52

	Inverse Reinforcement Learning for Agents Behavior in a Crowd Simulator
	1 Introduction
	2 Related Work
	3 Pedestrian Simulator
	4 Agent Model
	5 Preliminary Validation
	6 Conclusions
	References




