
Injecting (Micro)Intelligence in the IoT:
Logic-Based Approaches for (M)MAS

Andrea Omicini(B) and Roberta Calegari

Dipartimento di Informatica — Scienza e Ingegneria (DISI),
Alma Mater Studiorum–Università di Bologna, Bologna, Italy

{andrea.omicini,roberta.calegari}@unibo.it

Abstract. Pervasiveness of ICT resources along with the promise of
ubiquitous intelligence is pushing hard both our demand and our fears
of AI: demand mandates for the ability to inject (micro) intelligence ubiq-
uitously, fears compel the behaviour of intelligent systems to be observ-
able, explainable, and accountable. Whereas the first wave of the new
“AI Era” was mostly heralded by sub-symbolic approaches, features like
explainability are better provided by symbolic techniques. In this paper
we focus on logic-based approaches, and discuss their potential in per-
vasive scenarios like the IoT and open (M)MAS along with our latest
results in the field.

Keywords: Pervasive system · MMAS · Micro-intelligence ·
Logic-based · LPaaS

1 Introduction

Human environment is more and more affected and even shaped by the increas-
ing availability of ICT resources, in particular within the constantly-growing
urban areas all over the world. The ubiquitous availability of personal devices,
along with the increasing diffusion of sensor networks, actuator devices, and
computational resources in general, is rapidly transforming urban environments
into wannabe-smart environments on a massively-large scale.

Whereas model, technology, and methodology aspects are nowadays the sub-
ject of many research activities [47,48], the issue of (ubiquitous) intelligence is the
key to make environment really smart. Many novel approaches to machine intel-
ligence nowadays are increasingly focussing on sub-symbolic approaches – such
as deep learning with neural neural networks, e.g., [42] – and how to make them
work on the large scale. As promising as that may look – on the premise that
those approaches have the potential minimise the engineering efforts towards
large-scale intelligence – what we do also need is that our large-scale intelligent
systems exhibit socio-technical features such as observability, explanability, and
accountability to make ubiquitous intelligence actually work in human organisa-
tions and societies.

c© Springer Nature Switzerland AG 2019
D. Lin et al. (Eds.): MMAS 2018, LNAI 11422, pp. 21–35, 2019.
https://doi.org/10.1007/978-3-030-20937-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20937-7_2&domain=pdf
http://orcid.org/0000-0002-6655-3869
http://orcid.org/0000-0003-3794-2942
https://doi.org/10.1007/978-3-030-20937-7_2


22 A. Omicini and R. Calegari

To this end, more classic AI approaches to intelligence can be of help—such
as agents and multi-agent systems (MAS), as well as declarative and logic-based
approaches. Agents are the most viable abstraction to encapsulate fundamental
features such as control, goals, mobility, intelligence [48]. In particular, agents are
widely recognised as the main abstractions to distribute intelligence in complex
systems of any sort—e.g., [18]. Also, MAS abstractions such as society and envi-
ronment [30] are essential to cope with the complexity of nowadays application
scenarios—as well as to inject intelligence in complex computational systems
[34].

On the other hand, declarative and logic-based technologies quite straightfor-
wardly address issues such as observability and explainability, in particular when
exploiting their inferential capabilities—e.g., [22]. Since logic-based approaches
already have a well-understood role in building intelligent agents [40], we focus
instead on the role that logic-based models and technologies can play when used
to rule agent societies as well as to engineer agent environment.

In this paper we recap some of our research results about the role of logic-
based models and technologies in MAS, discussing how they can be exploited
to inject micro-intelligence [2] in large-scale scenarios. In particular, we show
how Logic Programming as a Service (LPaaS [7]) can be used to distribute intel-
ligence in KIE (knowledge-intensive environments), how Labelled Variables in
Logic Programming (LVLP [4]) can help introducing domain-specific intelligence,
and how the logic-based coordination language ReSpecT [32] can provide for
social intelligence in MAS. Also, we show how logic-based approaches makes
it possible to address in principle issues such as observability, formalisability,
explainability, and accountability.

2 Background and Related Work

2.1 (M)MAS, IoT and Intelligence

Agent-oriented engineering and (massive) multi-agent systems – (M)MAS – have
been already recognised as the most promising way for developing applications
for the Internet of Things (IoT) as well as cyber-physical systems (CPS), since
they are well-suited for supporting decentralised, loosely-coupled and highly
dynamic, heterogeneous and open systems, in which components should be able
to cooperate opportunistically [41]. Along that line, IoT and pervasive systems
can be seen as (M)MAS, devoted to monitor and control our environments where
the MAS abstractions, techniques, and methods are essential to cope with the
complexity of the application scenarios. Several works (e.g., [24,28,43]) propose
agents as the most natural way of approaching IoT systems featuring complexity,
dynamism, situatedness, and autonomy. Moreover, agents are shown to be the
most viable abstractions to encapsulate fundamental features such as control,
goals, mobility and intelligence, in the development of proactive, cooperating,
and context-aware smart objects [18].



Logic-Based Approaches for (M)MAS 23

In the following we focus our attention on the intelligence issue, a hot topic
in current IoT research, following the idea that devices in IoT pervasive sys-
tems have to be massively networked and provided with (different degrees of)
intelligence, in order to interoperate and cooperate to achieve different goals.
To this end, agent-oriented models and technologies are gaining momentum for
embedding decentralised intelligence—as discussed in [23].

2.2 Engineering Intelligence in the IoT: Key Challenges

The IoT extends the current Internet technology by connecting different types
of things (objects, devices) with each other, and enable them to communicate
smartly [46]. Consequently, the IoT concept is designed to connect millions of
things together, yet things such a huge number need large storage spaces and
generate heavy traffic, which potentially creates many network issues. Further-
more, while the things are connected with each other, they are not necessarily
able to communicate meaningfully and interoperate effectively with each other
[44]. Their ability to communicate with each other depends on the similarity of
the service they are assigned to do [25]. Such deficiencies are due to the fact that
simple computing things lack of the ability to reason on their environments and
to subsequently make intelligent decisions and actions in order to achieve their
objectives. Typically, the objects used in the IoT – e.g., RFID, sensors, televi-
sions, washing machines, etc. – lacks intelligence due to hardware and software
limitations.

In addition, the issues of security, governance and standardisation have to be
taken in consideration [44]. No consolidated set of software engineering best prac-
tices has emerged so far in the IoT world [26,47] in order to face that issue: so,
properly engineering such a new generation of scalable, highly-reactive, (often)
resource-constrained software systems is still a challenge from the SE viewpoint.

Furthermore, sociotechnical features such as observability, explainability, and
accountability have to be addressed whenever the complexity of automated rea-
soning goes far beyond the human ability to understand—and we are already
there, basically. Understanding at some level how huge aggregates of intelligent
devices and agents evolve and affect our social and organisation processes is to
become essential for technical, social, normative, and ethical reasons. Appar-
ently, there is where symbolic approaches like logic-based ones are going to be
of help.

Along that line, in the following we focus on the practice of engineering
and design intelligence in distributed systems, in particular in the IoT systems,
by discussing our latest results in the field based on logic-based models and
technologies.

3 Logic-Based Approaches for (M)MAS and IoT

In order to face the challenges and the open issues highlighted in Subsect. 2.2 we
proposed a logic-based approach for injecting micro-intelligence in large-scale
MAS, such as IoT pervasive systems.



24 A. Omicini and R. Calegari

Logic-based languages and technologies represent in principle a natural candi-
date for injecting intelligence within computational systems [1]: yet, many issues
have to be addressed—among these, the computational costs, the machinery
often not suited for programming in the large (the intrinsic modularity provided
by predicates does not scale up effectively, and modules are not enough for the
purpose), the “no-types” approach that makes it difficult to deal with domain-
specific applications, the distance from mainstream programming paradigms, the
integration with mainstream technologies. Moreover, MMAS and IoT inherently
call for a fully distributed architecture, which is why the relationship between
logic and physical distribution needs to be addressed and investigated in depth.
Classical logic approaches apparently do not cope well with the current percep-
tion of distributed systems—for instance, the universal notion of consistency of
the logic theory does not fit the incompleteness and inconsistency intrinsically
implied by distributed scenarios.

Anyway, overall, we believe that a logic-based approach can bring some
remarkable benefits in pervasive system, in particular dealing with the AI fears,
by promoting observability, malleability, understandability, formalisability, and
norm compliance—yet, a basic re-interpretation of some basic concepts of logic
programming is clearly needed in order to cope well with the aforementioned
issues.

Along with the re-interpretation of classical logic approach under the IoT
vision, we define the concept of micro-intelligence [2]: small chunks of machine
intelligence, spread all over the system, capable to enable the individual intelli-
gence of any sort of devices, promoting coordination and interoperation among
different entities. The micro-intelligence vision promotes the ubiquitous distri-
bution of intelligence in large pervasive systems such as IoT ones, in particular
when coupled with agent-based technologies and methods, at both the individ-
ual and the collective level—when combined with an overall architectural view of
large-scale systems exploiting logic-based technologies. The idea behind micro-
intelligence is that it can be encapsulated in devices of any sort, making them
smart, as well as capable to work together in groups, aggregates, societies.

As a source of intelligence, we focus here on logic-based engines—in partic-
ular LP (logic programming) engines, offering inference capabilities spread all
over the network. The potential of logic-based model and its extensions is first
of all related to the observability and understandability of the entire system.
Declarativeness and explicit knowledge representation of LP enable knowledge
sharing at the most adequate level of abstraction, while supporting modular-
ity and separation of concerns [29], which are specially valuable in open and
dynamic distributed systems. As a further element, LP sound and complete
semantics naturally enables intelligent agents to reason and infer new informa-
tion in a sound way. Traditional LP has been proven to work well both as a
knowledge representation language and as an inference platform for rational
agents. Logic agents may interact with an external environment by means of a
suitably defined observe–think–act cycle. Finally, LP extensions or logic-based
computational models – such as meta-reasoning about situations [27] – could



Logic-Based Approaches for (M)MAS 25

be incorporated so as to enable complex behaviours tailored to the situated
components.

Accordingly, our result in the field are (i) the Logic Programming as a Ser-
vice – LPaaS henceforth [7] – model for distributing logic programs and logic
engines accordingly to the SOA architecture; (ii) the Labelled Variables in Logic
Programming (LVLP henceforth [4]) extension to the LP model to answer the
domain specificity issue of pervasive system; (iii) the possibility of exploiting
logic-based coordination artefacts and logical tuples with the ReSpecT coordi-
nation language [32] upon the TuCSoN MAS coordination middleware [39].

In the following we shortly discuss each contribution, while trying to provide
a general view of how logic-based models and technologies can be exploited to
inject intelligence into (M)MAS.

4 LPaaS & LVLP for Environment Intelligence

4.1 Vision

The novel LPaaS & LVLP models and architectures – and the corresponding
technology – express the concept of micro-intelligence defined above. In particu-
lar, we define two different, integrated models – namely, Logic Programming as
a Service and Labelled Variables in Logic Programming – designed so as to act
synergistically in order to support the distribution of intelligence in pervasive
systems.

One one side, the LPaaS architecture is designed so that LP can act as a
source of distributed intelligence for the IoT world, by providing an abstract view
of LP inference engines in terms of service. It exploits the XaaS (everything as a
service) metaphor to promote maximum availability and interoperability while
promoting context-awareness: any resource of any sort should be accessible as a
service (possibly an intelligent one) via standard network operations. From the
MAS viewpoint, LPaaS takes care of distributing knowledge as well as reasoning
capabilities in the agent environment based on LP.

On the other side, LVLP extends the LP model to enable diverse compu-
tational models, each tailored to a specific situated component, to coherently
and fruitfully coexist and cooperate within the same (logic-based) framework,
so as to cope with domain-specific aspects. From the MAS viewpoint, LVLP takes
care of embedding domain specific knowledge and reasoning capabilities at the
micro-level [48].

The added value of such a hybrid approach is to make it possible to exploit LP
for what it is most suited for – such as symbolic computation –, while delegating
other aspects – such as situated computation – to other most suitable languages
or computational levels.

4.2 LPaaS in a Nutshell

The LPaaS has been introduced in [5,6]. A detailed discussion on the technology
can be found in [3], whereas a comprehensive account was presented in [7].



26 A. Omicini and R. Calegari

The main idea behind LPaaS is to embed a (possibly situated) logic theory
in every computational device composing the MAS environment, along with a
working logic engine providing the system with basic inferential capabilities. Mul-
tiple theories are intended to be consistent under the fundamental assumption
that each logic theory describes axiomatically what is locally true—so, prevent-
ing logical inconsistency a priori. So, agents exploit both knowledge representa-
tion provided by logic theories and the inferential capabilities provided by logic
engines as a distributed service, injecting intelligence in MAS environment.

To do so, LPaaS promote a radical re-interpretation of some basic facets of
LP, moving LP towards the notion of situated service. Such a notion articulates
along four major aspects: (i) the preservation (with re-contextualisation) of the
SLD resolution process; (ii) stateless interactions; (iii) time-sensitive computa-
tions; (iv) space-sensitive computations. The SLD resolution process remains a
staple in LPaaS: yet, it is re-contextualised in the situated nature of the specific
LP service. This means that, given the precise spatial, temporal, and general
contexts within which the service is operating when the resolution process starts,
the process follows the usual rules of SLD resolution: situatedness is accounted
for through the service abstraction with respect to such three contexts.

From an architectural viewpoint, service-oriented architecture (SOA) nowa-
days represents the standard approach for distributed system engineering: so,
LPaaS adopts the Software as a Service architecture as its architectural ref-
erence [14]. Moreover, LP services in LPaaS can be fruitfully interpreted as
microservices [17].

Accordingly, the LPaaS abstraction represents a form of micro-intelligence,
enabling situated reasoning, interaction, and coordination in distributed systems,
as the process by which an entity is able reason about its local actions and the
(anticipated) actions of others so as to try and ensure the community acts in
a coherent manner. LPaaS means to empower reasoning in distributed systems
taking into account the explicit definition of the spatio-temporal structure of the
environment where situated entities act and interact, thus exploiting the inner
nature of pervasive systems while promoting environment awareness.

4.3 LVLP in a Nutshell

Specificity of local domains, however, might not be easily addressed by the
general-purpose approach of standard LP—in terms of both specific domain
knowledge and domain-specific inference. For instance, the typical LP language,
Prolog, is even untyped—which, roughly speaking, is good for generality, bad
for making applications domain specific.

To this end, specific domain intelligence can be injected in MAS environment
via Labelled Variables in Logic Programming, formally discussed in [4] and fully
developed in [4]. Basically, the LVLP approach is consistent with that part of
AI literature that has established that domain-specific knowledge is a major
determinant of the success of KIE systems such as expert systems [13].

LVLP builds upon the general notion of label as defined by Gabbay [19], and
adopts the techniques introduced by Holzbaur [21] to develop a generalisation of



Logic-Based Approaches for (M)MAS 27

LP where labels are exploited to define computations in domain-specific contexts.
LVLP allows heterogeneous devices in large-scale applications to have specific
application goals and manage specific sorts of information, enabling reactivity
to environment change while capturing diverse logic and domains exploiting the
concept of labelled variable.

An LVLP program is a collection of rules. LVLP rules have the form Head ←
Labelling ,Body , to be read as “Head if Body given Labelling”. There, Head is an
atomic formula, Labelling is the list of labelled variables in the clause, and Body is
a list of atomic formulas. By design, only variables can be labelled in LVLP. Given
two generic LVLP terms, the unification result is represented by the extended
tuple (true/false, θ, �) where true/false represents the existence of an answer, θ
is the most general unifier (mgu), and � is the new label associated to the unified
variables defined by the user defined (label-)combining function. The unification
process is extended by two functions: namely, the (label-)combining function
exploited during the unification of two labelled variables, and the compatibility
function exploited during the unification between a ground term and a labelled
variable, ensuring the term is compatible with the label of the variable when
interpreted in the domain of labels.

Among the many differences w.r.t. the approaches in the state of the art is the
fact that our approach does not change the basic of the logic language, which
remains the same, but allows for different specific extensions tailored to local
needs. Overall, the main idea behind LVLP is to enable diverse computational
models via labelled variables: each logic engine can exploit its own local label
systems tailored to the specific needs of situated components, to coherently and
fruitfully coexist side by side, interacting within a logic-based framework.

4.4 LPaaS & LVLP in (M)MAS

In [8] we discuss how the LPaaS architecture can be exploited to inject micro-
intelligence in MAS, by enriching the overall MAS architecture with the notion
of LPaaS agent/service, which allows for situated reasoning on locally-available
data by design. The LPaaS model can be further extended towards domain-
specific computations via LVLP.

As mentioned above, the multi-agent paradigm offers a powerful mecha-
nism for autonomous and situated behaviour, supporting social and cooperative
exchanges within organisations that are required for large-scale systems. Besides
autonomy, situatedness, and sociality, large-scale application scenarios such as
the IoT may benefit from other agent features – e.g., mobility and intelligence –
that could straightforwardly map onto the multitude of heterogeneous devices.
However, whereas mobility may come at a reasonable cost, intelligence is consid-
erably a more challenging issue, in particular when computationally expensive
technologies – such as machine learning, common-sense reasoning, natural lan-
guage processing, advanced situation recognition and context awareness – are
involved. Along this line, whenever local agent intelligence cannot be available
for any reason – i.e. memory constraints hindering the opportunity to have a local
KB, CPU constraints limiting efficiency of reasoning, etc. – a given agent may



28 A. Omicini and R. Calegari

Fig. 1. Overview of a LPaaS-LVLP MAS

simply request to another, “more intelligent” one, to perform some intelligent
activity on its behalf.

More interestingly here, intelligent activity could be also delegated to the
environment—for instance, relying on LPaaS-LVLP services instead of the agents.
In such a scenario, agents are always computationally efficient and responsive,
since they are able to delegate reasoning-related tasks – such as situation recogni-
tion, planning, inference of novel information, etc. – to dedicated infrastructural
services based on LPaaS-LVLP.

Figure 1 illustrates the model of the LPaaS-LVLP approach depicting the whole
picture where (1) some agents are designed as lightweight ones, and rely on infras-
tructural services (or other more “intelligent” agents) to get LPaaS functionalities;
(2) some agents embed the LPaaS-LVLP functionalities; (3) some LP functional-
ities are embedded in some services provided by the middleware (namely, by the
containers). In particular, at the bottom layer, the physical/computational envi-
ronment lives, with boundary artefacts [35] taking care of its representation and
interactions with the rest of the MAS. Then, typically, some middleware infras-
tructure provides common API and services to application-level software – i.e., the
containers where service components live – there including the coordination arte-
facts [35] governing the interaction space. Finally, on top of the middleware, the
application/system as a whole lives, viewed as a mixture of services and agents.



Logic-Based Approaches for (M)MAS 29

5 ReSpecT and Logical Tuples for Social Intelligence

5.1 Vision

In general, coordination artefact [37] are meant to encapsulate coordination poli-
cies for distributed systems, so as to inject social intelligence within computa-
tional systems [9]. By designing them as observable, coordination artefacts have
the potential to make social intelligence potentially explainable. By designing
them as malleable, coordination artefacts can make social intelligence adapt-
able [36]. In particular, logic-based coordination artefacts could in principle be
exploited to represent coordination policies in a declarative way, and also possi-
bly pave the way towards (partial) formalisation of large-scale systems.

In the context of MAS, social intelligence is another dimension that agent-
based models and technologies can fruitfully exploit—in particular by build-
ing agent societies around programmable, observable and malleable coordination
abstractions [35]. This is in fact the role of coordination models and technologies
[10], where coordination media are the basic abstractions around which agent
societies can be designed [11].

Agents and MAS are typically provided with coordination media via coordi-
nation middleware [12]: there, a multiplicity of distributed coordination media
are made available to the MAS so that each group of agents can interact within
a shared environment via a locally-deployed coordination medium The notion
of coordination as a service expresses precisely that: autonomous agents submit
themselves to the coordination policies embedded in a coordination medium by
choosing to interact with other agents through the medium itself, thus consti-
tuting an agent society [45].

5.2 TuCSoN and ReSpecT in a Nutshell

The TuCSoN coordination model [39] provides MAS with tuple centres [32]
that extend Linda tuple spaces [20] with programmability [15] based on the
ReSpecT [31] logic-based language. In particular, ReSpecT tuple centres contain
logic tuples in the tuple space, and ReSpecT specification tuples in the specifica-
tion space, which sets the coordinative behaviour of the medium by defining the
reaction of the tuple centres to relevant MAS events.

More precisely, a ReSpecT specification tuple is a special kind of first-order
logic tuple of the form reaction(E ,G ,R ), where: E is the triggering event of the
reaction, that is, the coordination-related event – represented by the coordination
primitive invoked – whose occurrence triggers evaluation of the reaction; G is
the (set of) guard predicate(s) which must evaluate to true for the reaction to
actually execute—enabling fine-grained control over reactions execution; R is the
reaction body, that is, the set of Prolog computations and ReSpecT primitives to
execute to bring about the reaction effects.

Whereas the ReSpecT tuple space contains the (logic) tuples used for the com-
munication among agents, the ReSpecT specification space contains the (logic)
specification tuples used for the coordination of agents. So, ReSpecT tuple centres



30 A. Omicini and R. Calegari

exploit logic for both knowledge representation (in the communication space)
and coordination policies (in the coordination space) in agent societies.

Overall, ReSpecT tuple centres are programmable – via ReSpecT specifica-
tion tuples –, observable – in that both the basic and the specification tuples
can be accessed by the agents – and malleable—in that suitable specification
primitives can be used to change the ReSpecT behaviour specification at run-
time. Programmability of the coordination medium – along with the Turing-
equivalence of ReSpecT [16] – makes it possible to embed any computable coor-
dination policy within the coordination media, possibly allowing for intelligent
social behaviour—e.g., [33]. Observability of all tuples in a tuple centre makes
it possible to reason about the state and behaviour of the corresponding agent
society. Malleability of the tuple centre behaviour makes it possible to change
the (possibly intelligent) coordinative behaviour at run-time, thus paving the
way towards adaptability.

Moreover, a typical feature of tuple-based middleware – which clearly fits
large-scale scenarios – is the multiplicity of distributed coordination media made
available to the MAS: each group of agents can interact within a shared envi-
ronment via a locally-deployed coordination medium. Along this line, TuCSoN
middleware supports multiple ReSpecT tuple centres, which can be spatially dis-
tributed and connected via linkability [38]. Accordingly, ReSpecT tuple centres
can be designed to be locally deployed within a physically-distributed environ-
ment, with a (possibly huge) number of spatial containers and physical devices,
and correspondingly embodying the laws for local coordination, ruling the social
behaviour of the locally-interacting agents. Any coordination policy can then
be tailored to the specific needs of every locality in a large-scale scenario—thus
providing a way towards scalable coordination.

6 Conclusion

When properly integrated within agent-based models and technologies, logic-
based approaches have the potential to be exploited for knowledge representation
and reasoning at the large scale. In this invited paper we intentionally ignore
the role of logic within agents, by focussing instead on how logic-based models
can be exploited to inject micro-intelligence through agent societies and MAS
environment. By adopting LPaaS, LVLP, and ReSpecT as our reference logic-
based models and technologies, we discuss their potential impact upon large-
scale MAS for complex application scenarios such as the IoT.

Altogether, the logic-based approaches discussed in this paper can lead to
the overall architecture depicted in Fig. 2. There,

– distributed logic engines augment MAS environment with widespread micro-
intelligence

– exploited as standard services by components of any sorts, including intelli-
gent agents via LPaaS

– possibly enhanced as situated and domain-specific extensions via LVLP



Logic-Based Approaches for (M)MAS 31

Fig. 2. Overview LPaaS-LVLP-ReSpecT MAS architecture

– coordinated via ReSpecT logic-based artefacts, encapsulating social intelli-
gence

– based on a logic-based middleware like TuCSoN

In the end, whereas sub-symbolic approaches to AI are currently taking the
stage – especially in the eye of the public opinion – symbolic approaches, yet
with a long road ahead, still have the potential to be key players in the future
of large-scale intelligent systems.

References

1. Brownlee, J.: Clever Algorithms: Nature-inspired Programming Recipes (2011)
2. Calegari, R.: Micro-intelligence for the IoT: logic-based models and technolo-

gies. Ph.D. thesis, Alma Mater Studiorum—Università di Bologna, Bologna, Italy
(2018). https://doi.org/10.6092/unibo/amsdottorato/8521

3. Calegari, R., Ciatto, G., Mariani, S., Denti, E., Omicini, A.: Micro-intelligence
for the IoT: SE challenges and practice in LPaaS. In: 2018 IEEE International
Conference on Cloud Engineering (IC2E 208), 17–20 April 2018, pp. 292–297. IEEE
Computer Society (2018). https://doi.org/10.1109/IC2E.2018.00061

4. Calegari, R., Denti, E., Dovier, A., Omicini, A.: Extending logic programming
with labelled variables: model and semantics. Fundam. Inform. 161, 53–74 (2018).
https://doi.org/10.3233/FI-2018-1695. Special Issue CILC 2016

https://doi.org/10.6092/unibo/amsdottorato/8521
https://doi.org/10.1109/IC2E.2018.00061
https://doi.org/10.3233/FI-2018-1695


32 A. Omicini and R. Calegari

5. Calegari, R., Denti, E., Mariani, S., Omicini, A.: Towards logic programming as
a service: experiments in tuProlog. In: Santoro, C., Messina, F., De Benedetti, M.
(eds.) WOA 2016 – 17th Workshop “From Objects to Agents”, 29–30 July 2016.
CEUR Workshop Proceedings, vol. 1664, pp. 91–99. Sun SITE Central Europe,
RWTH Aachen University (2016). http://ceur-ws.org/Vol-1664/w14.pdf, Proceed-
ings of the 17th Workshop “From Objects to Agents” co-located with 18th Euro-
pean Agent Systems Summer School (EASSS 2016)

6. Calegari, R., Denti, E., Mariani, S., Omicini, A.: Logic Programming as a Service
(LPaaS): intelligence for the IoT. In: Fortino, G., et al. (eds.) 2017 IEEE 14th
International Conference on Networking, Sensing and Control (ICNSC 2017), pp.
72–77. IEEE, May 2017. https://doi.org/10.1109/ICNSC.2017.8000070

7. Calegari, R., Denti, E., Mariani, S., Omicini, A.: Logic programming as a service.
Theory Pract. Log. Program. 18(5–6), 846–873 (2018). https://doi.org/10.1017/
S1471068418000364. Special Issue “Past and Present (and Future) of Parallel and
Distributed Computation in (Constraint) Logic Programming”

8. Calegari, R., Denti, E., Mariani, S., Omicini, A.: Logic programming as a service
in multi-agent systems for the Internet of Things. Int. J. Grid Util. Comput. (in
press)

9. Castelfranchi, C.: Modelling social action for AI agents. Artif. Intell. 103(1–2),
157–182 (1998). https://doi.org/10.1016/S0004-3702(98)00056-3

10. Ciancarini, P.: Coordination models and languages as software integrators. ACM
Comput. Surv. 28(2), 300–302 (1996). https://doi.org/10.1145/234528.234732

11. Ciancarini, P., Omicini, A., Zambonelli, F.: Multiagent system engineering: the
coordination viewpoint. In: Jennings, N.R., Lespérance, Y. (eds.) ATAL 1999.
LNCS (LNAI), vol. 1757, pp. 250–259. Springer, Heidelberg (2000). https://doi.
org/10.1007/10719619 19

12. Ciatto, G., Mariani, S., Omicini, A., Zambonelli, F., Louvel, M.: Twenty years
of coordination technologies: state-of-the-art and perspectives. In: Di Marzo Seru-
gendo, G., Loreti, M. (eds.) COORDINATION 2018. LNCS, vol. 10852, pp. 51–80.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92408-3 3

13. Crevier, D.: AI: The Tumultuous History of the Search for Artificial Intelligence.
Basic Books, New York (1993)

14. Cusumano, M.: Cloud computing and SaaS as new computing platforms. Commun.
ACM 53(4), 27–29 (2010). https://doi.org/10.1145/1721654.1721667

15. Denti, E., Natali, A., Omicini, A.: Programmable coordination media. In: Garlan,
D., Le Métayer, D. (eds.) COORDINATION 1997. LNCS, vol. 1282, pp. 274–288.
Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63383-9 86

16. Denti, E., Natali, A., Omicini, A.: On the expressive power of a language for pro-
gramming coordination media. In: 1998 ACM Symposium on Applied Computing
(SAC 1998), Atlanta, GA, USA, 27 February–1 March 1998, pp. 169–177. ACM,
New York (1998). https://doi.org/10.1145/330560.330665. Special Track on Coor-
dination Models, Languages and Applications

17. Familiar, B.: Microservices, IoT, and Azure: Leveraging DevOps and Microservice
Architecture to Deliver SaaS Solutions, 1st edn. Apress, Berkely (2015)

18. Fortino, G., Guerrieri, A., Russo, W.: Agent-oriented smart objects development.
In: 2012 IEEE 16th International Conference on Computer Supported Cooperative
Work in Design (CSCWD 2012), pp. 907–912. IEEE, May 2012. https://doi.org/
10.1109/CSCWD.2012.6221929

19. Gabbay, D.M.: Labelled Deductive Systems, vol. 1. Oxford Logic Guides, vol.
33. Clarendon Press, Oxford (1996). http://global.oup.com/academic/product/
labelled-deductive-systems-9780198538332

http://ceur-ws.org/Vol-1664/w14.pdf
https://doi.org/10.1109/ICNSC.2017.8000070
https://doi.org/10.1017/S1471068418000364
https://doi.org/10.1017/S1471068418000364
https://doi.org/10.1016/S0004-3702(98)00056-3
https://doi.org/10.1145/234528.234732
https://doi.org/10.1007/10719619_19
https://doi.org/10.1007/10719619_19
https://doi.org/10.1007/978-3-319-92408-3_3
https://doi.org/10.1145/1721654.1721667
https://doi.org/10.1007/3-540-63383-9_86
https://doi.org/10.1145/330560.330665
https://doi.org/10.1109/CSCWD.2012.6221929
https://doi.org/10.1109/CSCWD.2012.6221929
http://global.oup.com/academic/product/labelled-deductive-systems-9780198538332
http://global.oup.com/academic/product/labelled-deductive-systems-9780198538332


Logic-Based Approaches for (M)MAS 33

20. Gelernter, D.: Generative communication in Linda. ACM Trans. Program. Lang.
Syst. 7(1), 80–112 (1985). https://doi.org/10.1145/2363.2433

21. Holzbaur, C.: Metastructures vs. attributed variables in the context of extensible
unification. In: Bruynooghe, M., Wirsing, M. (eds.) PLILP 1992. LNCS, vol. 631,
pp. 260–268. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55844-
6 141

22. Idelberger, F., Governatori, G., Riveret, R., Sartor, G.: Evaluation of logic-based
smart contracts for blockchain systems. In: Alferes, J.J., Bertossi, L., Governatori,
G., Fodor, P., Roman, D. (eds.) RuleML 2016. LNCS, vol. 9718, pp. 167–183.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42019-6 11

23. Jamont, J.P., Occello, M.: Meeting the challenges of decentralised embedded appli-
cations using multi-agent systems. Int. J. Agent-Oriented Softw. Eng. 5(1), 22–68
(2016). https://doi.org/10.1504/IJAOSE.2015.078435

24. Kato, T., Chiba, R., Takahashi, H., Kinoshita, T.: Agent-oriented cooperation of
IoT devices towards advanced logistics. In: 2015 IEEE 39th Annual Computer
Software and Applications Conference (COMPSACW 2015), vol. 3, pp. 223–227,
July 2015. https://doi.org/10.1109/COMPSAC.2015.237

25. Khan, R., Khan, S.U., Zaheer, R., Khan, S.: Future internet: the Internet of Things
architecture, possible applications and key challenges. In: 10th International Con-
ference on Frontiers of Information Technology (FIT 2012), pp. 257–260, December
2012. https://doi.org/10.1109/FIT.2012.53

26. Larrucea, X., Combelles, A., Favaro, J., Taneja, K.: Software engineering for the
Internet of Things. IEEE Softw. 34(1), 24–28 (2017). https://doi.org/10.1109/MS.
2017.28

27. Loke, S.W.: Representing and reasoning with situations for context-aware pervasive
computing: a logic programming perspective. Knowl. Eng. Rev. 19(3), 213–233
(2004). https://doi.org/10.1017/S0269888905000263

28. Manzalini, A., Zambonelli, F.: Towards autonomic and situation-aware communi-
cation services: the CASCADAS vision. In: IEEE Workshop on Distributed Intelli-
gent Systems: Collective Intelligence and Its Applications (DIS 2006), pp. 383–388,
June 2006. https://doi.org/10.1109/DIS.2006.71

29. Oliya, M., Pung, H.K.: Towards incremental reasoning for context aware sys-
tems. In: Abraham, A., Lloret Mauri, J., Buford, J.F., Suzuki, J., Thampi, S.M.
(eds.) ACC 2011, Part I. CCIS, vol. 190, pp. 232–241. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22709-7 24

30. Omicini, A.: SODA: societies and infrastructures in the analysis and design of agent-
based systems. In: Ciancarini, P., Wooldridge, M.J. (eds.) AOSE 2000. LNCS,
vol. 1957, pp. 185–193. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44564-1 12

31. Omicini, A.: Formal ReSpecT in the A&A perspective. Electron. Notes Theor.
Comput. Sci. 175(2), 97–117 (2007). https://doi.org/10.1016/j.entcs.2007.03.006.
5th International Workshop on Foundations of Coordination Languages and Soft-
ware Architectures (FOCLASA 2006), CONCUR 2006, Bonn, Germany, 31 August
2006. Post-proceedings

32. Omicini, A., Denti, E.: From tuple spaces to tuple centres. Sci. Comput. Program.
41(3), 277–294 (2001). https://doi.org/10.1016/S0167-6423(01)00011-9

33. Omicini, A., Denti, E., Natali, A.: Agent coordination and control through logic
theories. In: Gori, M., Soda, G. (eds.) AI*IA 1995. LNCS, vol. 992, pp. 439–450.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60437-5 43

https://doi.org/10.1145/2363.2433
https://doi.org/10.1007/3-540-55844-6_141
https://doi.org/10.1007/3-540-55844-6_141
https://doi.org/10.1007/978-3-319-42019-6_11
https://doi.org/10.1504/IJAOSE.2015.078435
https://doi.org/10.1109/COMPSAC.2015.237
https://doi.org/10.1109/FIT.2012.53
https://doi.org/10.1109/MS.2017.28
https://doi.org/10.1109/MS.2017.28
https://doi.org/10.1017/S0269888905000263
https://doi.org/10.1109/DIS.2006.71
https://doi.org/10.1007/978-3-642-22709-7_24
https://doi.org/10.1007/3-540-44564-1_12
https://doi.org/10.1007/3-540-44564-1_12
https://doi.org/10.1016/j.entcs.2007.03.006
https://doi.org/10.1016/S0167-6423(01)00011-9
https://doi.org/10.1007/3-540-60437-5_43


34 A. Omicini and R. Calegari

34. Omicini, A., Mariani, S.: Agents & multiagent systems: en route towards complex
intelligent systems. Intell. Artif. 7(2), 153–164 (2013). https://doi.org/10.3233/IA-
130056. Special Issue Celebrating 25 years of the Italian Association for Artificial
Intelligence

35. Omicini, A., Ricci, A., Viroli, M.: Agens Faber: toward a theory of artefacts for
MAS. Electron. Notes Theor. Comput. Sci. 150(3), 21–36 (2006). https://doi.org/
10.1016/j.entcs.2006.03.003

36. Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A&A meta-model for multi-agent
systems. Auton. Agents Multi-Agent Syst. 17(3), 432–456 (2008). https://doi.org/
10.1007/s10458-008-9053-x. Special Issue on Foundations, Advanced Topics and
Industrial Perspectives of Multi-Agent Systems

37. Omicini, A., Ricci, A., Viroli, M., Castelfranchi, C., Tummolini, L.: Coordination
artifacts: environment-based coordination for intelligent agents. In: Jennings, N.R.,
Sierra, C., Sonenberg, L., Tambe, M. (eds.) 3rd International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2004), vol. 1, pp. 286–293.
ACM, New York, 19–23 July 2004. https://doi.org/10.1109/AAMAS.2004.10070

38. Omicini, A., Ricci, A., Zaghini, N.: Distributed workflow upon linkable coordi-
nation artifacts. In: Ciancarini, P., Wiklicky, H. (eds.) COORDINATION 2006.
LNCS, vol. 4038, pp. 228–246. Springer, Heidelberg (2006). https://doi.org/10.
1007/11767954 15

39. Omicini, A., Zambonelli, F.: Coordination for Internet application development.
Auton. Agents Multi-Agent Syst. 2(3), 251–269 (1999). https://doi.org/10.1023/
A:1010060322135. Special Issue: Coordination Mechanisms for Web Agents

40. Omicini, A., Zambonelli, F.: MAS as complex systems: a view on the role of declar-
ative approaches. In: Leite, J., Omicini, A., Sterling, L., Torroni, P. (eds.) DALT
2003. LNCS (LNAI), vol. 2990, pp. 1–16. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-25932-9 1

41. Savaglio, C., Fortino, G., Ganzha, M., Paprzycki, M., Bădică, C., Ivanović, M.:
Agent-based computing in the Internet of Things: a survey. In: Ivanović, M.,
Bădică, C., Dix, J., Jovanović, Z., Malgeri, M., Savić, M. (eds.) IDC 2017. SCI,
vol. 737, pp. 307–320. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
66379-1 27

42. Silver, D., et al.: Mastering the game of Go with deep neural networks and tree
search. Nature 529, 484–489 (2016). https://doi.org/10.1038/nature16961

43. Spanoudakis, N., Moraitis, P.: Engineering ambient intelligence systems using agent
technology. IEEE Intell. Syst. 30(3), 60–67 (2015). https://doi.org/10.1109/MIS.
2015.3

44. Tan, L., Wang, N.: Future internet: the Internet of Things. In: 3rd International
Conference on Advanced Computer Theory and Engineering (ICACTE 2010), vol.
5, pp. V376–V380, August 2010. https://doi.org/10.1109/ICACTE.2010.5579543

45. Viroli, M., Omicini, A.: Coordination as a service. Fundam. Inform. 73(4), 507–534
(2006). http://content.iospress.com/articles/fundamenta-informaticae/fi73-4-04.
Special Issue: Best papers of FOCLASA 2002

46. Xiang, C., Li, X.: General analysis on architecture and key technologies about
Internet of Things. In: IEEE International Conference on Computer Science and
Automation Engineering (CSAE 2012), pp. 325–328, June 2012. https://doi.org/
10.1109/ICSESS.2012.6269471

https://doi.org/10.3233/IA-130056
https://doi.org/10.3233/IA-130056
https://doi.org/10.1016/j.entcs.2006.03.003
https://doi.org/10.1016/j.entcs.2006.03.003
https://doi.org/10.1007/s10458-008-9053-x
https://doi.org/10.1007/s10458-008-9053-x
https://doi.org/10.1109/AAMAS.2004.10070
https://doi.org/10.1007/11767954_15
https://doi.org/10.1007/11767954_15
https://doi.org/10.1023/A:1010060322135
https://doi.org/10.1023/A:1010060322135
https://doi.org/10.1007/978-3-540-25932-9_1
https://doi.org/10.1007/978-3-540-25932-9_1
https://doi.org/10.1007/978-3-319-66379-1_27
https://doi.org/10.1007/978-3-319-66379-1_27
https://doi.org/10.1038/nature16961
https://doi.org/10.1109/MIS.2015.3
https://doi.org/10.1109/MIS.2015.3
https://doi.org/10.1109/ICACTE.2010.5579543
http://content.iospress.com/articles/fundamenta-informaticae/fi73-4-04
https://doi.org/10.1109/ICSESS.2012.6269471
https://doi.org/10.1109/ICSESS.2012.6269471


Logic-Based Approaches for (M)MAS 35

47. Zambonelli, F.: Key abstractions for IoT-oriented software engineering. IEEE
Softw. 34(1), 38–45 (2017). https://doi.org/10.1109/MS.2017.3

48. Zambonelli, F., Omicini, A.: Challenges and research directions in agent-oriented
software engineering. Auton. Agents Multi-Agent Syst. 9(3), 253–283 (2004).
https://doi.org/10.1023/B:AGNT.0000038028.66672.1e. Special Issue: Challenges
for Agent-Based Computing

https://doi.org/10.1109/MS.2017.3
https://doi.org/10.1023/B:AGNT.0000038028.66672.1e

	Injecting (Micro)Intelligence in the IoT: Logic-Based Approaches for (M)MAS
	1 Introduction
	2 Background and Related Work
	2.1 (M)MAS, IoT and Intelligence
	2.2 Engineering Intelligence in the IoT: Key Challenges

	3 Logic-Based Approaches for (M)MAS and IoT
	4 LPaaS & LVLP for Environment Intelligence
	4.1 Vision
	4.2 LPaaS in a Nutshell
	4.3 LVLP in a Nutshell
	4.4 LPaaS & LVLP in (M)MAS

	5 ReSpecT and Logical Tuples for Social Intelligence
	5.1 Vision
	5.2 TuCSoN and ReSpecT in a Nutshell

	6 Conclusion
	References




