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Abstract. Autonomous Vehicles (AVs), drones and robots will revolu-
tionize our way of travelling and understanding urban space. In order to
operate, all of these devices are expected to collect and analyze a lot of
sensitive data about our daily activities. However, current operational
models for these devices have extensively relied on centralized models
of managing these data. The security of these models unveiled signifi-
cant issues. This paper proposes BASIC, the Blockchained Agent-based
Simulator for Cities. This tool aims to verify the feasibility of the use
of blockchain in simulated urban scenarios by considering the commu-
nication between agents through smart contracts. In order to test the
proposed tool, we implemented a car-sharing model within the city of
Cambridge (Massachusetts, USA). In this research, the relevant litera-
ture was explored, new methods were developed and different solutions
were designed and tested. Finally, conclusions about the feasibility of the
combination between blockchain technology and agent-based simulations
were drawn.

Keywords: Blockchain · Smart contracts · Autonomous Vehicles ·
Data privacy · Multi-agent based simulation · Smart urban mobility

1 Introduction

In less than 50 years, the global urban population increased from 33 to 54%1,
making the economy of several countries concentrate in cities instead of being
uniformly distributed. This drastically influenced the activity inside of the urban
area, which highly impacts congestion, accidents and air pollution [1]. The most
important source of exposure to pollution for humans is created by road vehicles

1 https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS.

c© Springer Nature Switzerland AG 2019
D. Lin et al. (Eds.): MMAS 2018, LNAI 11422, pp. 144–162, 2019.
https://doi.org/10.1007/978-3-030-20937-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20937-7_10&domain=pdf
https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS.
https://doi.org/10.1007/978-3-030-20937-7_10


BASIC: Towards a Blockchained Agent-Based SImulator for Cities 145

and there already have been some attempts to estimate the impact of the pollu-
tion by changing from car to bicycle journeys [2]. Moreover, because of the high
density of cities and the limited space that is available to parking, cars become
an unsustainable mode of transportation [3] even if it can be more convenient in
term of flexibility, celerity and comfort. In [4], it was showed that during the peak
commuting hours, travel delays increased by 41%, making people more stressed
in their life. Moreover, correlation was for example found between depression
and traffic noise by analyzing a part of the population of Frankfurt international
airport [5].

Cities are changing and urban planning became a new challenge for the world.
In response to this, different tools like CityScope [6] developed by the CityScience
group at MIT Media Lab were created in order to assist novel urban processes
and help to visualize and understand complex urban data and interact with it
by simulating modifications within the urban scenario. This type of tools help
us to understand the urban impact of new technologies in our lives.

Modern cities attempt to flexibly integrate transportation options for resi-
dents and visitors to use buses, trains, taxis, bicycles and cars. They play an
important role in the economy of the city and the quality of life of its resi-
dents. The inadequacy of traditional transportation models is proven by the
growth of alternative and social initiatives aiming at a more flexible, customized
and collective way of transport. To be collective, a mobility service should offer
a way to organize teams of citizens that need to reach equal or closed desti-
nations starting from different locations. In this context, new kinds of trans-
portation are proposed to citizens like Mobility-on-Demand and ride-sharing
transportation [7]. By using shared mobility, the notion of owning a car, using
it for personal transportation and leaving it in a parking disappears and gives
way to the notion of requesting and splitting a service only when it’s needed.
A lot of different studies aimed to quantify the impact of car sharing on car
ownership and CO2 emission [8,9], proving that this mobility actually decreases
the congestion and those emissions.

In order to go even further in the congestion reduction and the mobility
paradigm change, new technologies like Autonomous Vehicles (AV) were pro-
posed because they have the potential to impact on vehicle safety, travel behavior
and flow distribution [10]. These vehicles are not totally accepted yet in urban
areas because some modifications in the legislation are still needed [11], but new
methods are currently investigated and developed to make these vehicles more
efficient in data analyzing and decision making [12]. While the National High-
way Traffic Safety Administration (NHTSA) statistics tell us that human error
is the main reason of road crashes, AVs allows users to enjoy their mobility by
reducing the time that they have to monitor the dangers of the road [13]. In
an ideal world, it seems that this technology only needs time to be accepted
as a regular mode of transportation as well as bus, tram or subway. However,
despite all these advantages, some barriers still remain and are the major drag
for citizens and users.
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Despite the fact that personalized services can be proposed to users by ana-
lyzing their personal information, the question of data privacy is becoming more
and more relevant with new technologies [14]. According to the literature, 20% of
the world’s data was collected during this last couple of years [15] and people are
starting to understand that these data actually have a real economic value [16].
Nowadays, the most common way to store and access this data is to use cen-
tralized databases [17]. However, this centralization encounters more and more
issues. First, since the server is the entity that can provide the service, if it stops,
the entire system will paralyze. The users will thus not be able to access to the
service during the failure time. Second, there is the problem of data privacy. In
most cases, all data remain unencrypted, therefore, the entity who has it in its
possession can breach the privacy of users [18]. Finally, these databases can be
easily modified at the server side, which means that the producers (i.e., users)
of the data don’t have any control over it and don’t know how it is being used
[19,20].

One of the most promising technologies to tackle both problems of data
centralization and privacy is blockchain. More than a mean for exchanging cryp-
tocurrencies without intermediaries, blockchain technology is starting to intro-
duce different methods in order to achieve a secure and accountable way to share
data. For instance, [21] outlined a framework for sharing machine learning mod-
els between hospitals, [22] described a method to manage byzantine agents in
a swarms of robots, [23] introduced a secure architecture for Internet of things
(IoT), and [24] proposed a scoring protocol for autonomous systems to increase
their reputation. Complementarily, the urban mobility and smart cities fields
are also paying an increasing amount of attention to this evolution. In fact, in
order to achieve efficient urban mobility models and smarter cities data needs to
be collected and processed to improve urban processes. This concern has driven
recent works where the problem of communication among AVs was explored [25],
by using a blockchain-based solution.

In response to these concerns, this work addresses the use of blockchain in
the urban mobility and smart cities fields by proposing a data-sharing frame-
work among different agents based on smart contracts. BASIC (Blockchained
Agent-based SImulator for Cities) aims to combine an agent-based simulator
with blockchain technology in order to conduct research on urban scenarios where
data are involved and needs to securely shared. The potential of this framework
is illustrated in a car-sharing service where a non-negligible number of personal
data is usually collected about users with the current proposed applications.
The following sections are structured as follow. Section 2 describes background
notions of the simulator and the blockchain technologies used in the framework
proposed. Section 3 presents the architecture of the framework and the different
parts involved in it and how they interact together. Section 4 describes the results
of using the proposed tool in a car-sharing scenario. Finally, Sect. 5 concludes
this paper with the discussion and the future work of this simulator.
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2 Background

2.1 Car-Sharing Scenario

Today, a new kind of mobility is emerging, with the aim of making our city
smarter and more connected. Congestion control, autonomy of users, environ-
mental impact and reduction of accidents are several reasons that motivate the
use of Autonomous Vehicles (AVs) in urban areas. However, this new kind of
mobility needs to be protected, controlled, and managed. For this purpose, we
tested BASIC in a car-sharing scenario in the city of Cambridge (MA, USA),
where simulated users and AVs interact. When users need to move around the
city, they can request an AV, then, the system forms a group, sends the corre-
spondent AV to users’ pick-up points and finally drops them off. BASIC adds a
blockchain component to achieve a secure data-sharing approach between users
and AVs. BASIC should thus be able to support that kind of infrastructure and
should also be stable when the number of AVs and users increase. Finally, all
AVs and users have to be connected in order to avoid desynchronization issues.

2.2 Agent-Based Simulation

BASIC is based on a generic existing ABM model [26] design to be easily cus-
tomized for more specific applications [27]. The ABM model is developed using
Gama Platform [28]2. GAMA allows to model and simulate spatially explicit
agent-based simulations where real-world maps, streets, buildings, etc. are inte-
grated by using GIS data. Moreover, different types of agents can be programmed
each one with their own behavior and attributes. The behavior of each agent is
supported by functions, which can represent reflexes (automatically called every
step) or actions (executed when another part of the code calls it). To realize the
motivating scenario, two agent species were coded. First, users were developed
in order to recreate the daily activity of citizens moving from one starting loca-
tion to a certain destination. Second, AVs were developed in order to wander
around the urban area and fulfill the car-sharing application. The behavior of
both species is explained with more details in Sect. 3.1.

2.3 Blockchain and Smart Contracts

The most famous application of blockchain is Bitcoin3. Bitcoin is a cryptocur-
rency introduced in 2008 and the idea behind it is to create a new way to make
transactions between peers without a third party in a transparent and secure
way. In order to send a transaction from one user to another, a peer-to-peer
network is used, which allows to delete the central unit from the process.

The blockchain can be seen as a incorruptible ledger of transactions that is
decentralized since the information held on it is duplicated in each one of the

2 http://www.gama-platform.org/.
3 https://bitcoin.org/.

http://www.gama-platform.org/
https://bitcoin.org/
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different computers (nodes) of the peer-to-peer network. In order to add transac-
tions in the blockchain, every nodes must verify and validate the content of the
block. This technology allows thus to create trust between agents who don’t trust
in each other. Each block is composed by transactions. In each transaction, we
can find the sender, the receiver, the amount but also additional information can
be added. Transactions are made from one address to another. Only nodes with
access to the private key of the corresponding address can make a transaction
from this address (in other words, if you don’t have the secret key of the address
A, you will not be able to send a transaction from address A). In addition to
transactions, each block contains information about previous blocks. Blocks are
thus linked in a chain. Therefore, if the content of the previous block changes
(for example, if someone tries to attack the system by modifying a block), the
value of this information will also change and will create an inconsistency in the
blockchain. For this reason, when something is written in the blockchain, it is
very difficult to modify it.

A genesis block4 is created as the starting point of the configuration of the
chain. With this block for instance, it is possible to initialize accounts with some
amount of cryptocurrency inside. This method is useful to generate tokens in
the system, and can only be used when the blockchain system is in the design
phase. A second way to generate tokens in the system is mining. In order to
validate blocks in the blockchain, the content of the block must be first verified.
This is the role of miners. Miners are nodes of the network. The goal of them, as
we just said previously, is to verify and add blocks at the end of the blockchain.
To do so, they have to compete with each other. In fact, in order to validate
a block, a computational problem needs first to be solved by miners. The first
miner who solves it is considered the winner and can add his block at the end of
the blockchain. When a miner succeeds, he is rewarded with a certain amount
of cryptocurrency (Ether5 in case of using the Ethereum blockchain).

In our approach, the Ethereum6 blockchain is used. The ethereum plat-
form provides the additional capability of deploying smart contracts7 in the
blockchain. The advantage of smart contracts is that Turing-complete code can
be added to the blockchain. Due to this functionality, more elaborated and
autonomous operations beyond sending and receiving transactions are possible.
A smart contract can be seen as a digital contract with rules and conditions.
This code is thus composed by variables and functions and is deployed within a
certain address in the blockchain. Each node of the network has the possibility
to interact with the smart contract in a peer-to-peer way. First, interacting with
the contract implies to call one of its functions. However, such operation is costly
since the user needs to register a transaction in the blockchain. Second, when
interacting with the smart contract the content of this interaction stays secret
and it is held by the smart contract, however, the proof that this interaction took

4 https://en.bitcoin.it/wiki/Genesis block.
5 https://www.ethereum.org/ether.
6 https://www.ethereum.org/.
7 https://en.wikipedia.org/wiki/Smart contract.

https://en.bitcoin.it/wiki/Genesis_block
https://www.ethereum.org/ether
https://www.ethereum.org/
https://en.wikipedia.org/wiki/Smart_contract.
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contract AskingCar {

struct Transaction{

bytes32 idTransaction;

bytes32 idPassenger;

bytes32 idCar;

...

}

string private idCar;

mapping (bytes32 => Transaction) private transactions;

bytes32 [] private idsTransaction;

/* Constructor of the contract */
function AskingCar(string id) public {

idCar = id;

}

/* Function that will add the info of the passenger */
function addTransactionInfo(bytes32 idTrans , bytes32

idPass , bytes32 idCar , bytes32 start , bytes32 end ,

int hour){

var transaction = transactions[idTrans ];

transaction.idTransaction = idTrans;

transaction.idPassenger = idPass;

transaction.idCar = idCar;

...

}

/* Function that will add the end hour of
the drive when the drive is finished

*/
function addEndHour(bytes32 idTransaction , int endHour){

if(validTransaction(idTransaction)){

transactions[idTransaction ]. endHour = endHour;

}

}

/*Check if the transaction is assigned to this contract */
function validTransaction(bytes32 idTrans) view public

returns (bool) {

for(uint i = 0; i < idsTransaction.length; i++) {

if (idsTransaction[i] == idTrans) {

return true;

}

}

return false;

}

}

Fig. 1. Smart contract used when a user needs an AV.
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place is stored in the blockchain and remains public to its participants. Figure 1
shows a portion of a smart contract, implemented in each AV. It is composed
by two main functions: addTransactionInfo, used to add info related to the
user that needs an AV, and addEndHour, used to add the end hour of the
journey when the user reaches her/his destination.

In this research, the ethereum network was simulated by using Docker8.
Docker provides container-based virtualization and allows to build networks of
agents running specific software in an easy way. The code used to build the con-
tainers and the simulations described in this research is publicly available in the
following github repository9.

3 The BASIC Architecture

In order to provide a modular framework that can be customized for different
urban applications, BASIC’s architecture has been specified and is composed by
different layers, defined one above the other. A graphical representation of this
stack is shown in Fig. 2. In the following sections we give a description of each
layer with the aim of giving details on how the BASIC framework works.

Fig. 2. Multilayer decomposition of BASIC (from bottom to top). First, the data layer
represents the actual data used in order to simulate a realistic urban scenario (popu-
lation information, GIS files, etc). With these data, we were able to build the second
layer; the simulation layer was implemented using GAMA which provided different
agents such as AVs and users. Third, the blockchain layer creates the infrastructure for
the data management in the system. Four, the planner layer aims to guide the system
by helping the routing and decision making processes. Finally, the analysis layer sheds
some light about the feasibility of the proposed approach.

8 https://www.docker.com/.
9 https://github.com/agrignard/Basic.git.

https://www.docker.com/
https://github.com/agrignard/Basic.git
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3.1 Data and Simulation Layers

The Data Layer of the BASIC architecture has the objective of creating a
virtual environment that replicates a realistic urban scenario.

Fig. 3. Simulation of AVs (green triangles) and users (blue dots) in the Kendall urban
area, in Cambridge (MA, USA). Two zones are depicted: the residential zone (A) where
users live and the working zone (B) where users work. The number of users and AVs
were adjusted in the image in order to increase readability. (Color figure online)

The Simulation Layer is an extension of the CityScope framework pro-
posed in [26] where buildings, roads and citizens have been already modeled and
formed the starting point of our simulations. GIS files have been used in order to
replicate the environment and allow us to have a representation of the Kendall
area in Cambridge (MA, USA). On top of this, two types of agents have been
specified:

Users. These agents represent citizens of the Kendall area. In this simulation,
a simple behavior was implemented (see the User Model in Fig. 5). Each user
is assigned to a residential (A) and a working (B) zone (see Fig. 3). The only
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possibility for the user to go between these two zones is to use an AV. All users
are located in zone A when the simulation starts. Then, during the morning
hours (i.e., 6–9 AM), at a random point in time, they go to work. After this,
during the afternoon hours (i.e., 5–8 PM), at a random point in time, all users
leave the working zone to return to the residential zone.

Autonomous Vehicles (AVs). The second class of agents of this system are
autonomous vehicles. The unique role of them is to respond to the request of users
around the city. Initially, they wander around the map performing a random walk
until they receive a user request (see the AV Model in Fig. 6).

As mentioned previously, two types of zones are represented in the simulation.
First, we can identify a residential zone (zone [A] in Fig. 3). This zone is composed
by houses and apartments. In contrast, the working zone (zone [B] Fig. 3) is
composed of company offices and educational institutions.

3.2 Blockchain Layer

This section explains how the blockchain layer is built and how it interacts
with its previous layer. Figure 4 represents this connection that we describe in
the following steps:

Fig. 4. Process flow of a request of a AV from a user. The starting point is the agent-
based simulation. When a user needs an AVs, a transaction is created and sent to the
Docker container trough a Python interface. Finally, the container will interact with
the blockchain in order to add the transaction in it.
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species User skills :[ moving ]{

building home;

building work;

AV myAV <- nil;

bool waitingForCar <- false;

...

action movement(building start , building end){

if(currentTransaction = nil){

do createAndAddTransaction(start , end);

waitTime <- step*cycle;

}

if(myAV = nil){

askingForCar <- true;

if(inAGroup = false){

copassengers <- findPeople ();

if(length(copassengers) > 1 or (step*

cycle - waitTime) > maxWaitTime){

.....

}

}

}

if(inAGroup = true and myAV = nil){

do findCarAndUpdateGroup;

}

......

}

action findCarAndUpdateGroup{

do askAV;

loop user over: copassengers{

user.myAV <- self.myAV;

}

ask myAV{

do addPassengers(myself.copassengers);

}

}

AV askAV{

freeAVs <- AV where(each.isFree = true);

myAV <- freeAVs closest_to(self);

return myAV;

}

....

}

Fig. 5. User model.
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species AV skills :[moving , network ]{

list <point > startPoints <- [];

list <point > endPoints <- [];

list <User > passengers <- [];

...

action dropOff(User user){

(user.currentTransaction).endHour <- currentHour;

ask user{

ask userClient{

string info <- myself.currentTransaction.

getStringEndHour ();

do sendMessage("User;addEndHour;","User",

myself.name , info);

}

}

...

}

action addPassengers(list <User > users){

isFree <- false;

self.passengers <- users;

loop user over: users{

add user.location to: startPoints;

if(user.nextObjective = "home"){

add any_point_in(user.home) to: endPoints;

}

else{

add any_point_in(user.work) to: endPoints;

}

}

objective <- "pickUp";

}

}

Fig. 6. Autonomous Vehicle (AV) model.

1 Agent-based simulation. This simulation is composed by AVs and users.
Each AV is associated to a mining node in the network and deploys its own
smart contract (as shown in Fig. 1). Each user is associated to a wallet in the
blockchain with a certain amount of ether pre-filled.

2 Order of an AV. When it’s time to move from home to work (or vice-versa),
the user needs to order a AV. Due to the interaction with the car-sharing
algorithm explained in the next section, a AV is assigned to the user.

3 Sending request to the Python server. First, a TCP connection is made
between GAMA and a Python script. Each user is connected to this code
which acts as a client interface. This script acts as an interface between the
simulation internals and an external system such as the blockchain. Finally,
when an AV is assigned to the user (output of step 2), the same user sends
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a message through this interface with the address of the smart contract to
query (i.e., the one of the requested AV).

4 Connection to the Docker Container. To connect with docker, a Docker
API10 is used for the Python language. By using this API, we developed
a Python client connected to Docker. Due to this connection, it is possible
to enter inside the container and launch code (i.e. script for deploying or
querying a contract). For the purpose of this work, we deployed a private
blockchain composed of a network docker nodes. Each nodes is associated to
one AV and runs geth inside.

5 Adding the transaction in the Blockchain. The last step of the work-
flow is to add the transaction in the blockchain. To this end, the web3-eth
JavaScript API11 is used. This API allows to run geth12 commands inside of
a JavaScript script, which is useful in order to interface with ethereum nodes
inside the Docker container (as explained at step 4). By using the Javascript
API and a network of interconnected geth nodes, the transaction can thus be
sent and added to the network.

3.3 Planner Layer

As mentioned before, the planner layer aims to coordinate the fleet of AVs
in order to pick up and drop off users. For this purpose, a simple car-sharing
model that aggregates users into groups is depicted in Fig. 7.

Fig. 7. Workflow of the planner layer. Step 1 consists to change the internal state of
the user. By changing this variable, the system knows that this specific user needs an
AV. Step 2 is the grouping phase. A car-sharing algorithm will take into account all
users that need an AV in order to make groups. Finally, step 3 is route operation phase.
Now that a group is formed, the assigned AV is sent to this group in order to pick users
up and drop them off.

10 https://docker-py.readthedocs.io/en/stable/client.html.
11 https://web3js.readthedocs.io/en/1.0/web3-eth.html.
12 https://github.com/ethereum/go-ethereum/wiki/geth.

https://docker-py.readthedocs.io/en/stable/client.html
https://web3js.readthedocs.io/en/1.0/web3-eth.html
https://github.com/ethereum/go-ethereum/wiki/geth
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This algorithm is composed of 3 main steps:

1 Modification of the internal state of users. In the simulation, each user
has a variable which is modified when he/she needs to move. Thus, when a
user needs an AV, he/she will change the value of this variable first. This
change of internal state takes place at a random point in time during the
morning/afternoon shifts explained in Sect. 3.1.

Algorithm 1. Formation of group for the planner layer.
1: for user in userWithChangedState do
2: group ← emptyList
3: add user in group
4: remove user from userWithChangedState
5: while user.waintingTime < maxTime AND group.length = 1 do
6: for other in userWithChangedState do
7: if group.length < 5 AND dist(user.start,other.start) < ThresholdStart

AND dist(user.stop,other.stop) < ThresholdStop then
8: add other in group
9: remove other from userWithChangedState

10: end if
11: end for
12: end while
13: end for

2 Formation of a group. The next step is the creation of groups. This pro-
cess is described in Algorithm 1. In line 1, we can see that this algorithm is
executed for each user with a changed state (the state is changed when a user
needs an AV). A group will be assigned to this user and the idea is to add
other users in this group. To do so, the block (from line 5 to 12) is executed.
However, there are two conditions for the execution of this part. First, a limit
of time is expressed in line 5. In fact, if a user is looking for a group but
no one fits in this group, he will be able to take an AV. Second, when the
group is composed of more than one user (the initial one), there is no need
to execute again this loop.
Inside this block, the formation of a group is done as follows: Every other
users will be taken into account (as shown in line 6), and if he meets some
condition, he is added to the group. These users need to be within a threshold
distance (ThresholdStart) from each other. Moreover, these user’s destina-
tions need to be in a place within a certain distance (ThresholdStop) from
each other. This is represented in line 7.

3 Route Operation. If the conditions are met, a group is formed and the
closest AV is assigned to the group. This AV picks up and drops off users
by always going to the closest stop. If it is not possible to form a group, a
maximum waiting time (line 5) was included to prevent lockout periods. If,
after this time, the algorithm doesn’t find any group, an AV is assigned to a
single user as it was explained before.



BASIC: Towards a Blockchained Agent-Based SImulator for Cities 157

4 Experiment, Results and Analysis

This section describes the last layer of the BASIC system architecture: the
Analysis Layer. As described previously, during the experimental phase of
this framework, the feasibility of the integration of blockchain in urban scenario
was tested by implementing a car-sharing model. This model focused on the
population that uses car and ride-sharing to go work. Some parameters were
fixed during the experiments and are explained below:

– Number of AVs. In our system, the number of vehicles available in the city
was fixed at ten. Because each car is a node of the blockchain network, we have
thus ten mining nodes in the system. The first idea was to test the tool and
its feasibility with a small amount of AVs. After doing that, extrapolations
will be used to draw conclusions about the scalability of the system.

– Period of time. During these experiments, we analyze the behaviour of the
simulation representing seven days (one week). Each day is the same and the
agents have the same behaviour (i.e., go to work and go back home).

– Distance thresholds for the grouping phase. During the grouping phase,
the distance between starting points of users was fixed to one kilometer. The
exact same value was fixed for the ending points of users.

– Maximum waiting time. During the grouping phase, it was decided to put
a limit on the time that a user can spend for finding a group. This limit was
fixed at 15 min.

– Difficulty of the blockchain. The difficulty fixes the time needed to mine
a block and therefore include new transactions. A too high difficulty value
could provoke a slow-down of the system while a too low difficulty value might
impact the security of the system. Therefore, in the experiments conducted
in the research, we decided to fix the difficulty level.

– Gas used. When a transaction is made in the blockchain, it implies to pay
a fee for the miner. Each user can choose the fee he/she would like to pay for
the transaction by tuning the gas parameter. If the user selects a high value
for the gas, the transaction will be mined faster. On the contrary, when the
value of gas is low, it might take more time for the transaction to be mined.
In this case, the gas was fixed at 25000000 for all transactions. This value
remained fixed throughout the experiments.

– Genesis block. In order to initialize the blockchain, a genesis block was
created. This genesis block contains accounts that were pre-filled with Ether.
For the experiments described in this work, ten accounts were initially created
and filled up with twenty Ether.

By using a blockchain solution for storing data, we know that a full copy
of the ledger is kept in all nodes (AVs). It is important to note that, even
though, recent literature suggests that storing data directly into the blockchain
might impact the scalability of the system leading to bloat [29], the aim of our
experiments is to analyze how much memory is needed in each AV according to
the number of users in the simulation and whether a realistic projection of these
requirements might exceed current state-of-the-art specifications in the AV field.
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Fig. 8. Amount of memory needed for one AV (node) after seven days of operation in
relation to the number of users in the simulation.

Figure 8 shows the amount of memory needed per node (AV) in relation to
the number of users active in the simulation. During this test, the number of
users was increased from one to twenty. This allowed us to see the evolution of
the memory needed per AV. Let’s remember that, each day, users need an AV
to go to work in the morning, and to come back home during the afternoon. The
AV is thus requested two times per day per user. The maximum number of users
in an AV is fixed at five, which also correlated to the maximum capacity for user
groups introduced in the previous section. According to Fig. 8, when the number
of users increase, the size of the blockchain also increases. This phenomenon
can be explained by the fact that the size of the blockchain is proportional to
the number of transactions. If more users are present in the system, more users
will need to travel and thus, more transactions will be created. Let’s remember
that the only way for users to move, is to use car-sharing. Everyday, each user
needs two AVs. However, each request for having an AV corresponds to two
transactions. The first transaction represents the request itself. Each user queries
the AV by providing all the needed information like the starting and destination
points, user address (public key), hour, etc. When the drive is completed, there
is the second transaction. The second transaction aims to validate the drive by
adding the ending hour when the user finally arrived at his destination point.
In conclusion, because users need to travel two times each day, four transactions
are added per user per day.

Let’s now analyze the memory needed for such a system. As we can see in
Fig. 9, after seven days, the size of the blockchain for this system when there is
20 users is 5.1 MB. This amount of data will be stored in each AV. By using this
information, we can extrapolate what will be the size of the blockchain after a
year. After 52 weeks, by making the assumption that this growth will be linear,
the size will be around 265 MB. Due to previous research [6], the population
in the Kendall area was roughly estimated to 10.000 people. Moreover, in 2016,
3.5% of the population in Cambridge (where Kendall belongs to) used carpooling
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as method of travel13. By using this, we can estimate the number of carpoolers
to 350. By making the same linear assumption than before and by considering
these 350 citizens, the amount of needed memory is thus 4641 MB (4.641 GB).
Today, storing that amount of data in an AV is feasible according to current AV
specifications.

5 Discussion and Future Work

During this work, we tested the feasibility of the combination between
blockchain, agent-based modelling, and urban mobility by proposing a tool
named BASIC. This tool was validated by implementing a car-sharing simu-
lation within the city of Cambridge (MA, USA). The blockchain component was
introduced in our work to store and share data among a distributed system
of AVs and users in order to avoid a centralized controlling entity. First, this
study suggests that the memory needed for each AV increased when the num-
ber of users increased. However, the simulation process was feasible and fully
operational with 30 agents (20 users and 10 cars).

Fig. 9. Extrapolation of the memory needed for one AV (node) with 20 users.

Today, mobility in urban areas is still a big challenge and it remains com-
plicated to test new infrastructures in real life. Due to BASIC, it is now possi-
ble to simulate different kinds of urban scenarios where agents interact with a
blockchain layer. In the future, other implementation works are possible in order
to increase the performance of the system. Improving the car-sharing algorithm
is a first idea and will allow to have less cars in the city. The impact on the traf-
fic will also be an interesting feature to analyze in this case. Since this research
suggests that storing the data in a decentralized way is feasible, continuing with

13 https://datausa.io/profile/geo/cambridge-ma/.

https://datausa.io/profile/geo/cambridge-ma/
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the idea of data privacy is an interesting direction to make citizens control their
own data. Along those lines, people are realizing the real economic value of their
data. Allowing them (by using the smart contract technology for example) to
choose who can see this information, for how long, and for what purposes, can be
another interesting next step that can be implemented by using BASIC. Finally,
since a modern city needs to flexibly integrate transportation options including
different means (i.e., cars, buses, trains, taxis, and bicycles), the combinatorial
complexity of all these possibilities negates the options of a single monolithic
control system. How would a grouping, or ensemble of hierarchies perform in
this situation? In the near future, we want to extend our approach to deal with
Collective Adaptive Systems (CAS) [30]14 able to emerge and continuous adapt
in a changing environment.
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