
Chapter 9
Randomized-Blocks Designs

Abstract This chapter introduces permutation methods for multiple matched
samples, i.e., randomized-blocks designs. Included in this chapter are six exam-
ple analyses illustrating computation of exact permutation probability values for
randomized-blocks designs, calculation of measures of effect size for randomized-
blocks designs, the effect of extreme values on conventional and permutation
randomized-blocks designs, exact and Monte Carlo permutation procedures for
randomized-blocks designs, application of permutation methods to randomized-
blocks designs with rank-score data, and analysis of randomized-blocks designs
with multivariate data. Included in this chapter are permutation versions of Fisher’s
F test for a one-way randomized-blocks design, Friedman’s two-way analysis of
variance for ranks, and a permutation-based alternative for the four conventional
measures of effect size for randomized-blocks designs: Hays’ ω̂2, Pearson’s η2,
Cohen’s partial η2, and Cohen’s f 2.

This chapter presents exact and Monte Carlo permutation statistical methods for
tests of experimental differences among three or more matched or otherwise related
samples, commonly called randomized-blocks designs under the Neyman–Pearson
population model of statistical inference. As with matched-pairs tests discussed
in Chap. 7, the samples may either be matched on specific criteria; for example,
age, education, gender, or the same subjects may be observed at different times or
under different treatments or interventions. While most randomized-blocks designs
take observations at two, three, or four time periods, there have been a number of
long-running studies that follow clients over many years. The best-known of these
are the Fels Longitudinal Study founded in 1929 as a division of the Fels Research
Institute in Yellow Springs, Ohio, the Framingham Heart Study initiated in 1948 in
Framingham, Massachusetts, and the Terman Genetic Study of Genius founded at
Stanford University in 1921. All three studies continue today.1

1Studies such as these that observe the same or matched subjects for many years are often referred
to as “panel studies” and require a different statistical approach.
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As in previous chapters, six examples illustrate permutation statistical methods
for randomized-blocks designs. The first example utilizes a small set of data to
illustrate the computation of exact permutation methods for multiple matched
samples, wherein the permutation test statistic, δ, is developed and compared
with Fisher’s conventional F -ratio test statistic for multiple dependent samples.
The second example develops a permutation-based measure of effect size as
a chance-corrected alternative to the four conventional measures of effect size
for randomized-blocks designs: Hays’ ω̂2, Pearson’s η2, Cohen’s partial η2, and
Cohen’s f 2. The third example compares permutation statistical methods based on
ordinary and squared Euclidean scaling functions, with an emphasis on the analysis
of data sets containing extreme values. The fourth example utilizes a larger set
of data to provide a comparison of exact permutation methods and Monte Carlo
permutation methods, demonstrating the efficiency and accuracy of Monte Carlo
permutation statistical methods for multiple matched samples. The fifth example
illustrates the application of permutation statistical methods to univariate rank-score
data, comparing permutation statistical methods to Friedman’s conventional two-
way analysis of variance for ranks. The sixth example illustrates the application of
permutation statistical methods to multivariate data.

9.1 Introduction

The standard univariate test for g ≥ 3 matched samples under the Neyman–
Pearson population model of inference is Fisher’s randomized-blocks analysis of
variance wherein the null hypothesis (H0) posits no mean differences among the g

populations from which the samples presumably have been randomly drawn; that
is, H0: μ1 = μ2 = · · · = μg. Fisher’s randomized-blocks analysis of variance
does not determine whether or not the null hypothesis is true, but only provides
the probability that, if the null hypothesis is true, the samples have been randomly
drawn from populations with identical mean values, assuming normality.

Consider samples of N = bg independent random variables xij with cumulative
distribution functions Fi(x + βj ) for i = 1, . . . , g and j = 1, . . . , b, respectively,
where g denotes the number of treatments and b denotes the number of blocks. For
simplicity, assume that the xij values are randomly drawn from a normal distribution
with mean μi + βj and variance σ 2

x , i = 1, . . . , g and j = 1, . . . , b. Under the
Neyman–Pearson population model, the null hypothesis of no mean differences tests

H0: μ1 = μ2 = · · · = μg versus H1: μi �= μj for some i �= j

for g treatment groups. The permissible probability of a type I error is denoted by α

and if the observed value of Fisher’s F is equal to or greater than the critical value
of F that defines α, the null hypothesis is rejected with a probability of type I error
equal to or less than α, under the assumption of normality.
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For multi-sample tests with g treatment groups and b blocks, Fisher’s F -ratio test
statistic is given by

F = MSTreatments

MSError
,

where the mean-square treatments is given by

MSTreatments = SSTreatments

g − 1
,

the sum-of-squares treatments is given by

SSTreatments = b

g∑

i=1

(
x̄i. − x̄..

)2
,

the mean-square error is given by

MSError = SSError

(b − 1)(g − 1)
,

the sum-of-squares error is given by

SSError =
g∑

i=1

b∑

j=1

(
xij − x̄i. − x̄.j + x̄..

)2
,

the sum-of-squares blocks is given by

SSBlocks = g

b∑

j=1

(
x̄.j − x̄..

)2
,

the sum-of-squares total is given by

SSTotal =
g∑

i=1

b∑

j=1

(
xij − x̄..

)2
,

the mean value for the ith of g treatments is

x̄i. = 1

b

b∑

j=1

xij , i = 1, . . . , g ,
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the mean value for the j th of b blocks is

x̄.j = 1

g

g∑

i=1

xij , j = 1, . . . , b ,

the grand mean over all b blocks and g treatments is given by

x̄.. = 1

gb

g∑

i=1

b∑

j=1

xij ,

and xij denotes the value of the j th block in the ith treatment for j = 1, . . . , b and
i = 1, . . . , g.

Under the Neyman–Pearson null hypothesis, H0: μ1 = μ2 = · · · = μg, Fisher’s
F -ratio test statistic is asymptotically distributed as Snedecor’s F with ν1 = g −
1 degrees of freedom (df ) in the numerator and ν2 = (b − 1)(g − 1) df in the
denominator. If the xij values, i = 1, . . . , g and j = 1, . . . , b, are not randomly
sampled from a normally-distributed population, then Fisher’s F -ratio test statistic
no longer follows Snedecor’s F distribution with ν1 = g−1 and ν2 = (b−1)(g−1)

degrees of freedom.
The assumptions underlying Fisher’s F test for multiple matched samples are

(1) the observations are independent, (2) the data are random samples from well-
defined, normally-distributed populations, (3) homogeneity of variance, and (4)
homogeneity of covariance.

9.2 A Permutation Approach

Alternatively, consider a test for multiple matched samples under the Fisher–Pitman
permutation model of statistical inference. Under the Fisher–Pitman permutation
model there is no null hypothesis specifying population parameters. Instead the
null hypothesis simply states that all possible arrangements of the observations
occur with equal chance [4]. Moreover, there is no alternative hypothesis under
the permutation model and no specified α level. Also, there is no requirement
of random sampling, no degrees of freedom, no assumption of normality, no
assumption of homogeneity of variance, and no assumption of homogeneity of
covariance. This is not to imply that the results of permutation statistical methods
are unaffected by homogeneity of variance and covariance, but homogeneity of
variance and covariance are not requirements for permutation methods as they are
for conventional statistical methods under the Neyman–Pearson population model.

A permutation alternative to Fisher’s conventional F -ratio test for g ≥ 3 matched
samples is given by

δ =
[
g

(
b

2

)]−1 g∑

i=1

b−1∑

j=1

b∑

k=j+1

	
(
xij , xik

)
, (9.1)
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where the symmetric distance functions are given by

	(x, y) =
[(

xi − yi

)2
]v/2

(9.2)

and v > 0. When v = 1, ordinary Euclidean scaling is employed, and when v = 2,
squared Euclidean scaling is employed [7].

Under the Fisher–Pitman permutation model, the null hypothesis states that equal
probabilities are assigned to each of the

M = (
g!)b

possible allocations of the observations to the g treatments within each of the
b blocks. The probability value associated with an observed value of δ is the
probability under the Fisher–Pitman null hypothesis of observing a value of δ that
is equal to or less than the observed value of δ. An exact probability value for δ may
be expressed as

P(δ ≤ δo|H0) = number of δ values ≤ δo

M
,

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the observed data.

When M is large, an approximate probability value for test statistic δ may
be obtained from a Monte Carlo procedure, where a large random sample of
arrangements of the observed data is drawn. Then an approximate probability value
for test statistic δ is given by

P(δ ≤ δo|H0) = number of δ values ≤ δo

L
,

where L denotes the number of the randomly-selected, equally-likely arrangements
of the observed data.

9.3 The Relationship Between Statistics F and δ

When the null hypothesis under the Neyman–Pearson population model states
H0: μ1 = μ2 = · · · = μg and v = 2, the functional relationships between test
statistic δ and Fisher’s F test statistic are given by

F = (b − 1)[2SSTotal − g(b − 1)δ]
g(b − 1)δ − 2SSBlocks

(9.3)
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and

δ = 2[FSSBlocks + (b − 1)SSTotal]
g(b − 1)(F + b − 1)

. (9.4)

Because of the relationship between test statistics δ and F , the exact probability
values given by

P(δ ≤ δo|H0) = number of δ values ≤ δo

M

and

P(F ≥ Fo|H0) = number of F values ≥ Fo

M
.

are equivalent under the Fisher–Pitman null hypothesis, where δo and Fo denote
the observed values of test statistics δ and F , respectively, and M is the number of
possible, equally-likely arrangements of the observed data.

A chance-corrected measure of agreement is given by

� = 1 − δ

μδ
, (9.5)

where μδ, the exact expected value of the M δ test statistic values calculated on all
possible arrangements of the observed measurements, is given by

μδ = 1

M

M∑

i=1

δi . (9.6)

9.4 Example 1: Test Statistics F and δ

A small example will serve to illustrate the relationships between test statistics F

and δ. Consider the example randomized-blocks data listed in Table 9.1 with g = 2
treatment groups, b = 4 blocks, and N = bg = (4)(2) = 8 total observations.

Table 9.1 Example data
with g = 2 treatments and
b = 4 blocks

Treatment

Block 1 2

1 105 21

2 144 52

3 109 97

4 113 32
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Under the Neyman–Pearson population model with treatment means x̄1. =
117.75 and x̄2. = 50.50, block means x̄.1 = 63.00, x̄.2 = 98.00, x̄.3 = 103.00,
and x̄.4 = 72.50, grand mean x̄.. = 84.1250, the sum-of-squares total is

SSTotal =
g∑

i=1

b∑

j=1

(
xij − x̄..

)2 = 13,372.8750 ,

the sum-of-squares treatments is

SSTreatments = b

g∑

i=1

(
x̄i. − x̄..

)2 = 9045.1250 ,

the mean-square treatments is

MSTreatments = SSTreatments

g − 1
= 9045.1250

2 − 1
= 9045.1250 ,

the sum-of-squares blocks is

SSBlocks = g

b∑

j=1

(
x̄.j − x̄..

)2 = 2260.3750 ,

the sum-of-squares error is

SSError =
g∑

i=1

b∑

j=1

(
xij − x̄i. − x̄.j + x̄..

)2 = 2067.3750 ,

the mean-square error is

MSError = SSError

(b − 1)(g − 1)
= 2067.3750

(4 − 1)(2 − 1)
= 689.1250 ,

and the observed value of Fisher’s F -ratio test statistic is

F = MSTreatments

MSError
= 9045.1250

689.1250
= 13.1255 .

For computational efficiency, SSError can easily be obtained by simple subtraction;
for example,

SSError = SSTotal − SSBlocks − SSTreatments

= 13,372.8750 − 2260.3750 − 9045.1250 = 2067.3750 .
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Table 9.2 Source table for the data listed in Table 9.1

Factor SS df MS F

Blocks 2260.3750

Treatments 9045.1250 1 9045.1250 13.1255

Error 2067.3750 3 689.1250

Total 13,372.8750

The essential factors, sums of squares (SS), degrees of freedom (df ), mean squares
(MS), and variance-ratio test statistic (F ) are summarized in Table 9.2.

Under the Neyman–Pearson null hypothesis, H0: μ1 = μ2 = · · · = μg, Fisher’s
F -ratio test statistic is asymptotically distributed as Snedecor’s F with ν1 = g − 1
and ν2 = (b−1)(g−1) degrees of freedom. With ν1 = g−1 = 2−1 = 1 and ν2 =
(b− 1)(g− 1) = (4 − 1)(2 − 1) = 3 degrees of freedom, the asymptotic probability
value of F = 13.1255 is P = 0.0362, under the assumptions of normality and
homogeneity.

9.4.1 An Exact Analysis with v = 2

For an exact analysis under the Fisher–Pitman permutation model let v = 2,
employing squared Euclidean scaling for correspondence with Fisher’s F -ratio test
statistic. Following Eq. (9.2) on p. 319 with v = 2 for Treatment 1, the six distance-
function values are

	(1, 2) =
(∣∣105 − 144

∣∣2
)2/2 = 1521 ,

	(1, 3) =
(∣∣105 − 109

∣∣2
)2/2 = 16 ,

	(1, 4) =
(∣∣105 − 113

∣∣2
)2/2 = 64 ,

	(2, 3) =
(∣∣144 − 109

∣∣2
)2/2 = 1225 ,

	(2, 4) =
(∣∣144 − 113

∣∣2
)2/2 = 961 ,

	(3, 4) =
(∣∣109 − 113

∣∣2
)2/2 = 16 ,
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and for Treatment 2, the six distance-function values are

	(1, 2) =
(∣∣21 − 52

∣∣2
)2/2 = 961 ,

	(1, 3) =
(∣∣21 − 97

∣∣2
)2/2 = 5776 ,

	(1, 4) =
(∣∣21 − 32

∣∣2
)2/2 = 121 ,

	(2, 3) =
(∣∣52 − 97

∣∣2
)2/2 = 2025 ,

	(2, 4) =
(∣∣52 − 32

∣∣2
)2/2 = 400 ,

	(3, 4) =
(∣∣97 − 32

∣∣2
)2/2 = 4225 .

Following Eq. (9.1) on p. 318, the observed value of test statistic δ is

δ =
[
g

(
b

2

)]−1 g∑

i=1

b−1∑

j=1

b∑

k=j+1

	
(
xij , xik

)

=
[

2

(
4

2

)]−1 [
	(1, 2) + 	(1, 3) + · · · + 	(3, 4)

]

= 1

12

(
1521 + 16 + 64 + · · · + 400 + 4225

) = 1442.5833 .

Alternatively, in terms of a randomized-blocks analysis of variance model the
observed permutation test statistic is

δ = 2(SSTotal − SSTreatments)

N − g

= 2(13,372.8750 − 9045.1250)

8 − 2
= 1442.5833 .

Based on the expressions given in Eqs. (9.3) and (9.4) on p. 319, the observed
value of test statistic F with respect to the observed value of test statistic δ is

F = (b − 1)[2SSTotal − g(b − 1)δ]
g(b − 1)δ − 2SSBlocks

= (4 − 1)[2(13,372.8750) − (2)(4 − 1)(1442.5833)]
2(4 − 1)(1442.5833) − 2(2260.3750)

= 13.1255
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and the observed value of test statistic δ with respect to the observed value of test
statistic F is

δ = 2[FSSBlocks + (b − 1)SSTotal]
g(b − 1)(F + b − 1)

= 2[(13.1255)(2260.3750)+ (4 − 1)(13,372.8750)]
2(4 − 1)(13.1255 + 4 − 1)

= 1442.5833 .

Because there are only

M = (
g!)b = (

2!)4 = 16

possible, equally-likely arrangements in the reference set of all permutations of the
N = 8 observations listed in Table 9.1, an exact permutation analysis is feasible.
Under the Fisher–Pitman permutation model, the exact probability of an observed
δ is the proportion of δ test statistic values computed on all possible, equally-likely
arrangements of the N = 8 observations listed in Table 9.1 that are equal to or less
than the observed value of δ = 1442.5833. Table 9.3 lists the M = 16 possible δ

values, ordered from the lowest (δ1 = 1442.5833) to the highest (δ16 = 4302.5833).
It is readily apparent from Table 9.3 that there are duplicate arrangements of the

observed scores and duplicate δ values; for example, Order 1 {105, 144, 109, 113}
minus Order 2 {21, 52, 97, 32} yields the same absolute difference as Order 15
{21, 52, 97, 32} minus Order 16 {105, 144, 109, 113}. It is more efficient to fix the

Table 9.3 Permutations of the observed scores listed in Table 9.1 with values for δ based on v = 2
ordered from lowest to highest

Order Treatment 1 Treatment 2 δ

1 {105, 144, 109, 113} { 21, 52, 97, 32} 1442.5833

2 { 21, 52, 97, 32} {105, 144, 109, 113} 1442.5833

3 {105, 144, 97, 113} { 21, 52, 109, 32} 1956.5833

4 { 21, 52, 109, 32} {105, 144, 97, 113} 1956.5833

5 { 21, 52, 97, 113} {105, 144, 109, 32} 3980.5833

6 {105, 144, 109, 32} { 21, 52, 97, 113} 3980.5833

7 { 21, 144, 109, 113} {105, 52, 97, 32} 4032.5833

8 {105, 52, 97, 32} { 21, 144, 109, 113} 4032.5833

9 {105, 52, 109, 113} { 21, 144, 97, 32} 4156.5833

10 { 21, 144, 97, 32} {105, 52, 109, 113} 4156.5833

11 { 21, 52, 109, 113} {105, 144, 97, 32} 4170.5833

12 {105, 144, 97, 32} { 21, 52, 109, 113} 4170.5833

13 { 21, 144, 97, 113} {105, 52, 109, 32} 4210.5833

14 {105, 52, 109, 32} { 21, 144, 97, 113} 4210.5833

15 {105, 52, 97, 113} { 21, 144, 109, 32} 4302.5833

16 { 21, 144, 109, 32} {105, 52, 97, 113} 4302.5833
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Table 9.4 Permutations of the observed scores listed in Table 9.1 with values for δ based on v = 2
ordered from lowest to highest

Order Treatment 1 Treatment 2 δ

1 {105, 144, 109, 113} { 21, 52, 97, 32} 1442.5833

2 {105, 144, 97, 113} { 21, 52, 109, 32} 1956.5833

3 { 21, 52, 97, 113} {105, 144, 109, 32} 3980.5833

4 { 21, 144, 109, 113} {105, 52, 97, 32} 4032.5833

5 {105, 52, 109, 113} { 21, 144, 97, 32} 4156.5833

6 { 21, 52, 109, 113} {105, 144, 97, 32} 4170.5833

7 { 21, 144, 97, 113} {105, 52, 109, 32} 4210.5833

8 {105, 52, 97, 113} { 21, 144, 109, 32} 4302.5833

Total 28,252.6667

scores in one block and permute the remaining blocks. Thus,

M = (
g!)b = (

2!)4 = 16 is replaced by M = (
g!)b−1 = (

2!)4−1 = 8

and the results are listed in Table 9.4. There is only one δ value in Table 9.4 that is
equal to or less than the observed value of δ = 1442.5833. If all M arrangements of
the N = 8 observations listed in Table 9.4 occur with equal chance under the Fisher–
Pitman null hypothesis, the exact probability value of δ = 1442.5833 computed on
all M = 8 arrangements of the observed data with b = 4 blocks preserved for each
arrangement is

P(δ ≤ δo|H0) = number of δ values ≤ δo

M
= 1

8
= 0.1250 ,

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the N = 8 observations listed in Table 9.1.

Alternatively, there is only one F value that is equal to or greater than the
observed value of F = 13.1255, as illustrated in Table 9.5. Thus if all M

arrangements of the N = 8 observations listed in Table 9.1 occur with equal

Table 9.5 Permutations of
the observed scores listed in
Table 9.1 with values for
Fisher’s F -ratio ordered from
highest to lowest

Order Treatment 1 Treatment 2 F -ratio

1 {105, 144, 109, 113} { 21, 52, 97, 32} 13.1255

2 {105, 144, 97, 113} { 21, 52, 109, 32} 6.2364

3 { 21, 52, 97, 113} {105, 144, 109, 32} 0.4435

4 { 21, 144, 109, 113} {105, 52, 97, 32} 0.3889

5 {105, 52, 109, 113} { 21, 144, 97, 32} 0.2654

6 { 21, 52, 109, 113} {105, 144, 97, 32} 0.2520

7 { 21, 144, 97, 113} {105, 52, 109, 32} 0.2144

8 {105, 52, 97, 113} { 21, 144, 109, 32} 0.1311
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chance under the Fisher–Pitman null hypothesis, the exact probability value of
F = 13.1255 is

P(F ≥ Fo|H0) = number of F values ≥ Fo

M
= 1

8
= 0.1250 ,

where Fo denotes the observed value of test statistic F .
There is a considerable difference between the conventional asymptotic proba-

bility value for F (P = 0.0362) and the exact permutation probability value for δ

(P = 0.1250). The difference between the two probability values of

	P = 0.1250 − 0.0362 = 0.0888

is most likely due to the very small number of blocks. A continuous mathematical
function such as Snedecor’s F cannot be expected to provide a precise fit to only
M = 8 discrete data points.

Following Eq. (9.6) on p. 320, the exact expected value of the M = 8 δ test
statistic values under the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑

i=1

δi = 28,252.6667

8
= 3531.5833 .

Following Eq. (9.5) on p. 320, the observed chance-corrected measure of effect
size is

� = 1 − δ

μδ

= 1 − 1442.5833

3531.5833
= +0.5915 ,

indicating approximately 59% within-block agreement above what is expected by
chance.

9.5 Example 2: Measures of Effect Size

Many researchers deplore the sole reliance on tests of statistical significance
and recommend that indices of effect size—magnitude of experimental effects—
accompany tests of significance. Measures of effect size express the practical or
clinical significance of differences among sample means, as contrasted with the
statistical significance of the differences. Consequently, the reporting of measures
of effect size in addition to tests of significance has become increasingly important
in the contemporary research literature. For example, a 2018 article in The Lancet
sought to establish the risk thresholds for alcohol consumption using a meta-
analysis for 83 observational studies with a total of 599,912 consumers of alcohol,
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concluding that no level of alcohol consumption is safe [11]. A critique of the article
in the New York Times noted that no measure of effect size was included:

[W]hen we compile observational study on top of observational study, we become more
likely to achieve statistical significance without improving clinical significance. In other
words, very small differences are real, but that doesn’t mean those differences are critical [1,
p. A12].

Five conventional measures of effect size for randomized-blocks analysis of
variance designs are described and compared in this section: Hays’ ω̂2, Pearson’s
η2, Cohen’s partial η2, Cohen’s f 2, and Mielke and Berry’s �.

Hays’ ω̂2 measure of effect size is given by

ω̂2 = (g − 1)(MSTreatments − MSError)

SSTotal + MSWithin Blocks
, (9.7)

where the mean-square within blocks is given by

MSWithin Blocks = SSWithin Blocks

b(g − 1)
,

b and g denote the number of blocks and treatments, respectively, and the sum-of-
squares within blocks is given by

SSWithin Blocks = SSTotal − SSBlocks . (9.8)

Pearson’s η2 measure of effect size is given by2

η2 = SSTreatments

SSTotal
. (9.9)

Cohen’s partial η2 measure of effect size is given by

η2
Partial = SSTreatments

SSTotal − SSError
. (9.10)

Cohen’s f 2 measure of effect size is given by

f 2 = SSTreatments

SSTotal − SSTreatments
. (9.11)

Mielke and Berry’s chance-corrected measure of effect size is given by

� = 1 − δ

μδ

, (9.12)

2Pearson’s η2 measure of effect size is often erroneously referred to as the “correlation ratio.”
Technically, η is the correlation ratio and η2 is the differentiation ratio [9, p. 137].
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where δ is defined in Eq. (9.1) on p. 318 and μδ is the exact expected value of test
statistic δ under the Fisher–Pitman null hypothesis given by

μδ = 1

M

M∑

i=1

δi ,

where for a test of g ≥ 3 matched samples, the number of possible arrangements of
the observed data is given by

M = (
g!)b−1

, (9.13)

where g and b denote the number of treatments and blocks, respectively.

9.5.1 An Example Analysis

To illustrate the calculation of the five measures of effect size, suppose that a fast-
food chain of restaurants decides to evaluate the service at four randomly-chosen
restaurants. The customer-service director for the chain hires six evaluators with
varied experiences in food-service evaluations to act as raters. In this example, the
g = 4 restaurants are the treatments and the b = 6 raters are the blocks. The six
raters evaluate the service at each of the four restaurants in random order. A rating
scale from 0 (low) to 100 (high) is used. Table 9.6 summarizes the evaluation data.

Under the Neyman–Pearson population model with treatment means x̄1. =
77.5000, x̄2. = 66.6667, x̄3. = 91.0000, and x̄4. = 79.3333, block means
x̄.1 = 71.7500, x̄.2 = 79.0000, x̄.3 = 78.2500, x̄.4 = 78.7500, x̄.5 = 81.5000,
and x̄.6 = 82.500, grand mean x̄.. = 78.6250, the sum-of-squares total is

SSTotal =
g∑

i=1

b∑

j=1

(
xij − x̄..

)2 = 2295.6250 ,

Table 9.6 Example
restaurant data with g = 4
treatments and b = 6 blocks

Restaurant

Rater A B C D

1 70 61 82 74

2 77 75 88 76

3 76 67 90 80

4 80 63 96 76

5 84 66 92 84

6 78 68 98 86
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the sum-of-squares treatments is

SSTreatments = b

g∑

i=1

(
x̄i. − x̄..

)2 = 1787.4583 ,

the mean-square treatments is

MSTreatments = SSTreatments

g − 1
= 1787.4583

4 − 1
= 595.8194 ,

the sum-of-squares blocks is

SSBlocks = g

b∑

j=1

(
x̄.j − x̄..

)2 = 283.3750 ,

the sum-of-squares error is

SSError = SSTotal − SSBlocks − SSTreatments

= 2295.6250 − 283.3750 − 1787.4583 = 224.7917 ,

the mean-square error is

MSError = SSError

(b − 1)(g − 1)
= 224.7917

(6 − 1)(4 − 1)
= 14.9861 ,

and the observed value of Fisher’s F -ratio test statistic is

F = MSTreatments

MSError
= 595.8194

14.9861
= 39.7581 .

The essential factors, sums of squares (SS), degrees of freedom (df ), mean squares
(MS), and variance-ratio test statistic (F ) are summarized in Table 9.7.

Table 9.7 Source table for
the data listed in Table 9.6

Factor SS df MS F

Blocks 283.3750

Treatments 1787.4583 3 595.8194 39.7581

Error 224.7917 15 14.9861

Total 2295.6250
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Given the summary data in Table 9.7, Hays’ ω̂2 measure of effect size is

ω̂2 = (g − 1)(MSTreatments − MSError)

SSTotal + MSWithin Blocks

= (4 − 1)(595.8194 − 14.9861)

2295.6250 − 111.7917
= 0.7238 ,

where the mean-square within blocks is

MSWithin Blocks = SSWithin Blocks

b(g − 1)
= 2012.2500

6(4 − 1)
= 111.7917 ,

and the sum-of-squares within blocks is

SSWithin Blocks = SSTotal − SSBlocks

= 2295.6250 − 283.3750 = 2012.2500 .

Following Eq. (9.9) on p. 327, Pearson’s η2 measure of effect size is

η2 = SSTreatments

SSTotal
= 1787.4583

2295.6250
= 0.7786 .

Following Eq. (9.10) on p. 327, Cohen’s partial η2 measure of effect size is

η2
Partial = SSTreatments

SSTotal − SSError
= 1787.4583

2295.6250 − 224.7917
= 0.8632 .

Following Eq. (9.11) on p. 327, Cohen’s f 2 measure of effect size is

f 2 = SSTreatments

SSTotal − SSTreatments
= 1787.4583

2295.6250 − 1787.4583
= 3.5175 .

Cohen’s f 2 measure of effect size can also be defined in terms of Pearson’s η2

measure of effect size and calculated as

f 2 = η2

1 − η2 = 0.7786

1 − 0.7786
= 3.5175 .

Following Eq. (9.13) on p. 328 with δ = 50.8167,

M = (
g!)b−1 = (

4!)6−1 = 7962,624 ,
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and following Eq. (9.6) on p. 320 the exact expected value of test statistic δ under
the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑

i=1

δi = 1,560,873,370

7,962,624
= 196.0250 .

Then following Eq. (9.5) on p. 320, Mielke and Berry’s chance-corrected measure
of effect size is

� = 1 − δ

μδ

= 1 − 50.8167

196.0250
= +0.7408 ,

indicating approximately 78% within-blocks agreement above what is expected by
chance.

A number of criticisms have been directed at the four conventional measures of
effect size: Hays’ ω̂2, Pearson’s η2, Cohen’s partial η2, and Cohen’s f 2. As can be
seen in Eq. (9.8) on p. 327, in the unusual case when MSTreatments is smaller than
MSError, yielding F < 1, Hays’ ω̂2 will be negative and it is difficult to interpret a
squared measure of effect size that is negative. Moreover, unless a measure of effect
size norms properly between the limits of 0 and 1, intermediate values are difficult
to interpret.

Because Pearson’s η2 is simply the ratio of SSTreatments to SSTotal, η2 norms
properly between 0 and 1, providing an interpretation of the total variability in the
dependent variable that is accounted for by variation in the independent variable.
Moreover, when there is one degree of freedom in the numerator (g = 2 treatments),
η2 is equal to the product-moment coefficient of determination, r2, and when there is
more than one degree of freedom in the numerator (g ≥ 3 treatments), η2 is equal to
the squared multiple product-moment correlation coefficient, R2. Most researchers
are familiar with Pearson’s r2 and R2 correlation coefficients, making η2 a useful
index to understand the magnitude of effect sizes. Consequently, Pearson’s η2 is the
most widely reported measure of effect size for randomized-blocks designs. On the
other hand, η2 is a biased estimator of effect size, systematically overestimating the
size of treatment effects. Finally, as Sechrest and Yeaton concluded:

As a general proposition it can be stated that all measures of variance accounted for are
specific to the characteristics of the experiment from which the estimates were obtained,
and therefore the ultimate interpretation of proportion of variance accounted for is a dubious
prospect at best [10, p. 592].3

Cohen’s partial η2 is especially troublesome as reported by Kennedy [5], Levine
and Hullett [6], Pedhazur [8, pp. 507–510], and Richardson [9]. In a classical
one-way, completely-randomized analysis of variance design, η2 and η2

Partial yield
identical results. However, η2 and η2

Partial yield different results in randomized-

3Emphasis in the original.
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blocks analysis of variance designs, with η2
Partial values being equal to or greater than

η2 values. Thus if η2 systematically overestimates effect size, η2
Partial overestimates

effect size even more so. As Levine and Hullett concluded in reference to η2:

[B]ecause eta squared is always equal to partial eta squared or smaller, it may be seen as
a more conservative estimate than partial eta squared and this may be appealing to many
readers, reviewers, and editors [6, p. 620].

Since Cohen’s η2
Partial is not a percentage of the total sum-of-squares, it therefore

is not additive like η2. Moreover, η2 has the advantage of being equivalent to the
familiar r2 and R2 Pearson product-moment correlation coefficients.

Pedhazur pointed to another limitation of both η2 and η2
Partial as measures of effect

size. While both η2 and η2
Partial have a logical upper bound of 1, the only situation

in which η2 and η2
Partial can achieve an upper limit of 1 is when all values in each

treatment are of one score, but differ among treatments. Pedhazur demonstrated that
if the dependent variable is normally distributed, both η2 and η2

Partial have an upper
limit of approximately 0.64 [8, p. 507]. Finally, Levine and Hullett concluded that
“[O]ur examination of the literature revealed little reason for the reporting of partial
eta squared” [6, p. 620].

Cohen’s f 2 measure of effect size is seldom found in the literature as it is simply
a function of Pearson’s η2. Cohen’s f 2 is difficult to interpret as it varies between
zero and infinity; for example, anytime Pearson’s η2 > 0.50, f 2 will exceed unity.
Cohen suggested that small, medium, and large effects are reflected in values of f 2

equal to 0.01, 0.0625, and 0.16, respectively. In general, researchers desire more
precision than simply small, medium, and large effect sizes.

On a more positive note, � is a measure of effect size that possesses a clear
and useful chance-corrected interpretation. Positive values of � indicate agreement
greater than expected by chance, negative values of � indicate agreement less than
expected by chance, and a value of zero indicates chance agreement. Moreover, �
is a universal measure of effect size and can be used in a wide variety of statistical
applications, including one-sample t tests, matched-pairs t tests, simple and multiple
regression, all manner of analysis of variance designs, and numerous contingency
table analyses.

9.6 Example 3: Analyses with v = 2 and v = 1

For a third example of tests of differences among g ≥ 3 matched samples, consider
the example data set given in Table 9.8 with g = 3 treatments, b = 8 blocks, and
N = bg = 24 total observations. Under the Neyman–Pearson population model
with treatment-group means x̄1. = 229.25, x̄2. = 236.25, and x̄3. = 247.00,
block means x̄.1 = 241.00, x̄.2 = 290.00, x̄.3 = 118.6667, x̄.4 = 246.3333,
x̄.5 = 122.6667, x̄.6 = 336.00, x̄.7 = 176.3333, and x̄.8 = 369.00, grand mean
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Table 9.8 Example data for
comparing analyses with
v = 2 and v = 1 given g = 3
treatments and b = 8 blocks

Treatment

Block 1 2 3

1 221 247 255

2 283 302 285

3 103 130 123

4 254 223 262

5 115 113 140

6 322 344 342

7 161 181 187

8 375 350 382

x̄.. = 237.50, the sum-of-squares total is

SSTotal =
g∑

i=1

b∑

j=1

(
xij − x̄..

)2 = 186,448.00 ,

the sum-of-squares treatments is

SSTreatments = b

g∑

i=1

(
x̄i. − x̄..

)2 = 1279.00 ,

the mean-square treatments is

MSTreatments = SSTreatments

g − 1
= 1279.00

3 − 1
= 639.50 ,

the sum-of-squares blocks is

SSBlocks = g

b∑

j=1

(
x̄.j − x̄..

)2 = 182,671.3333 ,

the sum-of-squares error is

SSError = SSTotal − SSBlocks − SSTreatments

= 186,448.00 − 182,671.3333 − 1279.00 = 2497.6667 ,

the mean-square error is

MSError = SSError

(b − 1)(g − 1)
= 2497.6667

(8 − 1)(3 − 1)
= 178.4048 ,
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Table 9.9 Source table for
the data listed in Table 9.8

Factor SS df MS F

Blocks 182,671.3333

Treatments 1279.0000 2 639.5000 3.5845

Error 2497.6667 14 178.4048

Total 186,448.0000

and the observed value of Fisher’s F -ratio test statistic is

F = MSTreatments

MSError
= 639.50

178.4048
= 3.5845 .

The essential factors, sums of squares (SS), degrees of freedom (df ), mean squares
(MS), and variance-ratio test statistic (F ) are summarized in Table 9.9.

Under the Neyman–Pearson null hypothesis, H0: μ1 = μ2 = · · · = μg, Fisher’s
F -ratio test statistic is asymptotically distributed as Snedecor’s F with ν1 = g − 1
and ν2 = (b − 1)(g − 1) degrees of freedom. With ν1 = g − 1 = 3 − 1 = 2 and
ν2 = (b − 1)(g − 1) = (8 − 1)(3 − 1) = 14 degrees of freedom, the asymptotic
probability of F = 3.5845 is P = 0.0553, under the assumptions of normality and
homogeneity.

9.6.1 An Exact Analysis with v = 2

For the example data listed in Table 9.8 with g = 3 treatments, b = 8 blocks, and
N = bg = 24 observations, the observed value of the permutation test statistic with
v = 2 is

δ = 2[FSSBlocks + (b − 1)SSTotal]
g(b − 1)(F + b − 1)

= 2[(3.5845)(182,671.3333) + (8 − 1)(186,448.00)]
3(8 − 1)(3.5845 + 8 − 1)

= 17,635.1430 .

Alternatively, in terms of a randomized-blocks analysis of variance model the
observed permutation test statistic is

δ = 2(SSTotal − SSTreatments)

N − g

= 2(186,448.00 − 1279.00)

24 − 3
= 17,635.1430 .
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Because there are only

M = (
g!)b−1 = (

3!)8−1 = 279,936

possible, equally-likely arrangements in the reference set of all permutations of the
observations listed in Table 9.8, an exact permutation analysis is feasible. Under
the Fisher–Pitman permutation model, the exact probability of an observed δ is
the proportion of δ test statistic values computed on all possible, equally-likely
arrangements of the N = 24 observations listed in Table 9.8 that are equal to or
less than the observed value of δ = 17,635.1430. There are exactly 15,840 δ test
statistic values that are equal to or less than the observed value of δ = 17,635.1430.
If all M arrangements of the N = 24 observations listed in Table 9.8 occur with
equal chance under the Fisher–Pitman null hypothesis, the exact probability value
computed on the M = 279,936 possible arrangements of the observed data with
b = 8 blocks preserved for each arrangement is

P(δ ≤ δo|H0) = number of δ values ≤ δo

M
= 15,840

279,936
= 0.0566 ,

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the N = 24 observations listed in Table 9.8.

There are exactly 15,840 F values that are equal to or greater than the observed
value of F = 3.8582. Thus, if all M arrangements of the N = 24 observations listed
in Table 9.8 occur with equal chance under the Fisher–Pitman null hypothesis, the
exact probability value of F = 3.8582 is

P(F ≥ Fo|H0) = number of F values ≥ Fo

M
= 15,840

279,936
= 0.0566 ,

where Fo denotes the observed value of test statistic F .
Following Eq. (9.6) on p. 320, the exact expected value of the M = 279,936 δ

test statistic values under the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑

i=1

δi = 4,958,224,209

279,936
= 17,711.9921 .

Following Eq. (9.5) on p. 320, the observed chance-corrected measure of effect
size is

� = 1 − δ

μδ

= 1 − 17,635.1430

17,711.9921
= +0.4339×10−2 ,

indicating approximately chance within-block agreement.
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9.6.2 Measures of Effect Size

Given the summary data in Table 9.9, Hays’ ω̂2 measure of effect size is

ω̂2 = (g − 1)(MSTreatments)

SSTotal + MSWithin Blocks

= (3 − 1)(639.50 − 178.4048)

186,448.00 + 236.0417
= 0.4940×10−2 ,

where the mean-square within blocks is

MSWithin Blocks = SSWithin Blocks

n(g − 1)
= 3776.6667

8(3 − 1)
= 236.0417

and the sum-of-squares within blocks is

SSWithin Blocks = SSTotal − SSBlocks

= 186,448.00 − 182,671.3333 = 3776.6667 .

Pearson’s η2 measure of effect size is

η2 = SSTreatments

SSTotal
= 1279.00

186,448.00
= 0.6860×10−2 .

Cohen’s partial η2 measure of effect size is

η2
Partial = SSTreatments

SSTotal − SSError
= 1279.00

186,448.00 − 2497.6667
= 0.6953×10−2 .

And Cohen’s f 2 measure of effect size is

f 2 = SSTreatments

SSTotal − SSTreatments
= 1279.00

186,448.00 − 1279.00
= 0.6813×10−2 .

For comparison, Mielke and Berry’s � chance-corrected measure of effect size is

� = 1 − δ

μδ

= 1 − 17,635.1430

17,711.9921
= +0.4339×10−2 .

In this case, the five measures of effect size yield about the same magnitude of
experimental effect.
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9.6.3 An Exact Analysis with v = 1

Following Eq. (9.1) on p. 318, for the example data listed in Table 9.8 on p. 333 with
g = 3 treatments, b = 8 blocks, and N = bg = 24 observations, the observed value
of the permutation test statistic with v = 1 is δ = 114.0238. Under the Fisher–
Pitman permutation model, the exact probability of an observed δ is the proportion
of δ test statistic values computed on all possible, equally-likely arrangements of the
N = 12 observations listed in Table 9.8 that are equal to or less than the observed
value of δ = 114.0238. There are exactly 172,986 δ test statistic values that are equal
to or less than the observed value of δ = 114.0238. If all M arrangements of the
N = 24 observations listed in Table 9.8 occur with equal chance under the Fisher–
Pitman null hypothesis, the exact probability value computed on the M = 279,936
possible arrangements of the observed data with b = 8 blocks preserved for each
arrangement is

P(δ ≤ δo|H0) = number of δ values ≤ δo

M
= 163,296

279,936
= 0.5833 ,

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the N = 24 observations listed in Table 9.8.
No comparison is made with Fisher’s F -ratio test statistic as F is undefined for
ordinary Euclidean scaling.

Following Eq. (9.6) on p. 320, the exact expected value of the M = 279,936 δ

test statistic values under the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑

i=1

δi = 31,883,815

279,936
= 113.8968 ,

and following Eq. (9.5) on p. 320, the observed chance-corrected measure of effect
size is

� = 1 − δ

μδ

= 1 − 114.0238

113.8968
= −0.1114×10−2 ,

indicating slightly less than chance within-block agreement. No comparisons are
made with Hays’ ω̂2, Pearson’s η2, Cohen’s partial η2, or Cohen’s f 2 measures of
effect size as ω̂2, η2, η2

Partial, and f 2 are undefined for ordinary Euclidean scaling.

9.6.4 The Effects of Extreme Values

To illustrate the robustness of ordinary Euclidean scaling with v = 1, consider the
example data listed in Table 9.8 on p. 333 with changes made to the observations
in Block 8. Suppose that an additional 20 points have been added to each of the
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Table 9.10 Comparisons of
exact permutation probability
values with v = 2 and v = 1
for extreme block values

Probability

Change Block 8 v = 2 v = 1

+0 375, 350, 382 0.057474 0.583333

+20 395, 370, 402 0.057474 0.583333

+40 415, 390, 422 0.057474 0.583333

+60 435, 410, 442 0.057474 0.583333

+80 455, 430, 462 0.057474 0.583333

+100 475, 450, 482 0.057474 0.583333

+120 495, 470, 502 0.057474 0.583333

+140 515, 490, 522 0.057474 0.583333

+160 535, 510, 542 0.057474 0.583333

+180 555, 530, 562 0.057474 0.583333

+200 575, 550, 582 0.057474 0.583333

g = 3 treatment values in Block 8. Block 8 contains the three largest values in
each of the g = 3 treatments, making it the most extreme of all b = 8 blocks. The
addition of 20 points increases the three values in Block 8 from {375, 350, 382} to
{395, 370, 402}. A reanalysis of the data with the additional 20 points reveals that
the probability values for v = 2 and v = 1 are unaffected by the extra 20 points. In
fact, adding an additional 20 points (40 points total) does not alter the probability
values. Table 9.10 illustrates the successive addition of 20 points, increasing up to
an additional 200 points, demonstrating that the two permutation probability values
remain constant. Thus tests under the Fisher–Pitman permutation model with both
squared Euclidean scaling with v = 2 and ordinary Euclidean scaling with v = 1
are shown to be robust to an extreme block of data.

The same pattern holds with Fisher’s F -ratio test statistic and asymptotic proba-
bility values. Table 9.11 lists the same block data as Table 9.10 with increments of
20 points added to the most extreme block, along with the associated F -ratio test
statistic values and asymptotic probability values. The addition of extreme values

Table 9.11 Comparisons of
Fisher’s F -ratio test statistics
and associated asymptotic
probability values for extreme
block values

Change Block 8 F -ratio Probability

+0 375, 350, 382 3.584545 0.055334

+20 395, 370, 402 3.584545 0.055334

+40 415, 390, 422 3.584545 0.055334

+60 435, 410, 442 3.584545 0.055334

+80 455, 430, 462 3.584545 0.055334

+100 475, 450, 482 3.584545 0.055334

+120 495, 470, 502 3.584545 0.055334

+140 515, 490, 522 3.584545 0.055334

+160 535, 510, 542 3.584545 0.055334

+180 555, 530, 562 3.584545 0.055334

+200 575, 550, 582 3.584545 0.055334
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Table 9.12 Comparisons of
exact permutation probability
values with v = 2 and v = 1
for a single extreme value

Probability

Change Block 8 v = 2 v = 1

+0 375, 350, 382 0.057474 0.583333

+20 375, 350, 402 0.040431 0.583333

+40 375, 350, 422 0.036912 0.583333

+60 375, 350, 442 0.032968 0.583333

+80 375, 350, 462 0.029635 0.583333

+100 375, 350, 482 0.027449 0.583333

+120 375, 350, 502 0.026299 0.583333

+140 375, 350, 522 0.025524 0.583333

+160 375, 350, 542 0.024945 0.583333

+180 375, 350, 562 0.024291 0.583333

+200 375, 350, 582 0.023823 0.583333

to a block does not change either the value of Fisher’s F -ratio test statistic or the
asymptotic probability value.

Now consider a different scenario. Suppose that an additional 20 points is added
to only one treatment value in Block 8 in Table 9.8 on p. 333. The third value
in Block 8 (382) is the largest of the N = 24 values. An additional 20 points
increases value 382 to 402. In this case, the probability value based on ordinary
Euclidean scaling with v = 1 is unchanged, remaining at P = 0.583333. However,
the probability value based on squared Euclidean scaling with v = 2 decreases to
P = 0.040431 from P = 0.057474. Table 9.12 illustrates the successive addition
of 20 points, increasing up to an additional 200 points, demonstrating that ordinary
Euclidean scaling with v = 1 under the Fisher–Pitman permutation model is robust
to individual extreme values in randomized-blocks designs, while squared Euclidean
scaling with v = 2 is not robust under the same model. The final probability value
based on v = 2 of P = 0.023823 is less than half of the original probability value
of P = 0.057474. The difference between the two exact probability values is

	P = 0.057474 − 0.023823 = 0.033651 .

For comparison, consider the block data listed in Table 9.13. The data listed
in Table 9.13 are the same data listed in Table 9.12, but Table 9.13 also contains
the F -ratio test statistic values and associated asymptotic probability values. As is
clear from the results given in Table 9.13, Fisher’s F -ratio test statistic values are
strongly affected by the inclusion of a single extreme value in one block, as are the
associated asymptotic probability values. The difference between the two F -ratio
test statistics is

	F = 3.584545 − 2.162474 = 1.422071

and the difference between the two asymptotic probability values is

	P = 0.151914 − 0.055334 = 0.096580 .
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Table 9.13 Comparisons of
Fisher’s F -ratio test statistic
values and associated
asymptotic probability values
for a single extreme value

Change Block 8 F -ratio Probability

+0 375, 350, 382 3.584545 0.055334

+20 375, 350, 402 4.126205 0.039017

+40 375, 350, 422 4.097638 0.039726

+60 375, 350, 442 3.793197 0.048265

+80 375, 350, 462 3.434890 0.061132

+100 375, 350, 482 3.109992 0.076284

+120 375, 350, 502 2.838128 0.092321

+140 375, 350, 522 2.615944 0.108329

+160 375, 350, 542 2.434712 0.123762

+180 375, 350, 562 2.285893 0.138331

+200 375, 350, 582 2.162474 0.151914

9.7 Example 4: Exact and Monte Carlo Analyses

For a fourth example of tests for differences, consider the example data given in
Table 9.14. It is generally understood that repeated experience with the Graduate
Record Examination (GRE) leads to better scores, even without any intervening
study. Suppose that eight subjects take the GRE verbal examination on successive
Saturday mornings for three weeks. The data with g = 3 treatments, b = 8 blocks,
and N = 24 scores are listed in Table 9.14.

Under the Neyman–Pearson population model with treatment means x̄1. =
552.50, x̄2. = 564.3750, and x̄3. = 574.3750, block means x̄.1 = 568.3333,
x̄.2 = 450.00, x̄.3 = 616.6667, x̄.4 = 663.3333, x̄.5 = 436.6667, x̄.6 = 696.6667,
x̄.7 = 505.00, and x̄.8 = 573.3333, grand mean x̄.. = 563.75, the sum-of-squares
total is

SSTotal =
g∑

i=1

b∑

j=1

(
xij − x̄..

)2 = 194,512.50 ,

Table 9.14 Example GRE
scores for exact and Monte
Carlo analyses with b = 8
blocks and g = 3 treatments

Treatment

Block 1 2 3

1 550 575 580

2 440 440 470

3 610 630 610

4 650 670 670

5 400 460 450

6 700 680 710

7 490 510 515

8 580 550 590



9.7 Example 4: Exact and Monte Carlo Analyses 341

the sum-of-squares treatments is

SSTreatments = b

g∑

i=1

(
x̄i. − x̄..

)2 = 1918.75 ,

the mean-square treatments is

MSTreatments = SSTreatments

g − 1
= 1918.75

3 − 1
= 959.3750 ,

the sum-of-squares blocks is

SSBlocks = g

b∑

j=1

(
x̄.j − x̄..

)2 = 189,112.50 ,

the sum-of-squares error is

SSError = SSTotal − SSBlocks − SSTreatments

= 194,512.50 − 189,112.50 − 1918.75 = 3481.25 ,

the mean-square error is

MSError = SSError

(b − 1)(g − 1)
= 3481.25

(8 − 1)(3 − 1)
= 248.6607 ,

and the observed value of Fisher’s F -ratio test statistic is

F = MSTreatments

MSError
= 959.3750

248.6607
= 3.8582 .

The essential factors, sums of squares (SS), degrees of freedom (df ), mean squares
(MS), and variance-ratio test statistic (F ) are summarized in Table 9.15.

Under the Neyman–Pearson null hypothesis, H0: μ1 = μ2 = · · · = μg, Fisher’s
F -ratio test statistic is asymptotically distributed as Snedecor’s F with ν1 = g − 1
and ν2 = (b − 1)(g − 1) degrees of freedom. With ν1 = g − 1 = 3 − 1 = 2 and
ν2 = (b − 1)(g − 1) = (8 − 1)(3 − 1) = 14 degrees of freedom, the asymptotic
probability value of F = 3.8582 is P = 0.0463, under the assumptions of normality
and homogeneity.

Table 9.15 Source table for
the GRE data listed in
Table 9.13

Factor SS df MS F

Blocks 189,112.5000

Treatments 1918.7500 2 959.3750 3.8582

Error 3481.2500 14 248.6607

Total 194,512.5000
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9.7.1 An Exact Analysis with v = 2

For the first analysis of the data in Table 9.14 under the Fisher–Pitman permutation
model let v = 2, employing squared Euclidean scaling for correspondence with
Fisher’s F -ratio test statistic. Because there are only

M = (
g!)b−1 = (

3!)8−1 = 279,936

possible, equally-likely arrangements in the reference set of all permutations of the
N = 24 GRE scores listed in Table 9.14, an exact permutation analysis is feasible.
Following Eq. (9.1) on p. 318, the observed value of the permutation test statistic is
δ = 18,342.2620. Based on the expressions given in Eqs. (9.3) and (9.4) on p. 319,
the observed values of test statistics F and δ are

F = (b − 1)[2SSTotal − g(b − 1)δ]
g(b − 1)δ − 2SSBlocks

= (8 − 1)[2(194,512.50) − 3(8 − 1)(18,342.2620)]
3(8 − 1)(18,342.2620) − 2(189,112.50)

= 3.8582

and

δ = 2[FSSBlocks + (b − 1)SSTotal]
g(b − 1)(F + b − 1)

= 2[(3.8582)(189,112.50) + (8 − 1)(194,512.50)]
3(8 − 1)(3.8582 + 8 − 1)

= 18,342.2620 .

Alternatively, in terms of a randomized-blocks analysis of variance model the
observed permutation test statistic is

δ = 2(SSTotal − SSTreatments)

N − g

= 2(194,512.50 − 1918.75)

24 − 3
= 18,342.2620 .

Under the Fisher–Pitman permutation model, the exact probability of an
observed δ is the proportion of δ test statistic values computed on all possible,
equally-likely arrangements of the N = 24 observations listed in Table 9.14 that
are equal to or less than the observed value of δ = 18,342.2620. There are exactly
12,063 δ test statistic values that are equal to or less than the observed value
of δ = 18,342.2620. If all M arrangements of the N = 24 observations listed
in Table 9.14 occur with equal chance under the Fisher–Pitman null hypothesis,
the exact probability value of δ = 18,342.2620 computed on the M = 279,936
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possible arrangements of the observed data with b = 8 blocks preserved for each
arrangement is

P(δ ≤ δo|H0) = number of δ values ≤ δo

M
= 12,063

279,936
= 0.0431 ,

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the GRE data listed in Table 9.14.

Alternatively, there are exactly 12,063 F -ratio test statistic values that are equal
to or greater than the observed test statistic value of F = 3.8582. Thus, if all M

arrangements of the N = 24 observations listed in Table 9.14 occur with equal
chance under the Fisher–Pitman null hypothesis, the exact probability value of F =
3.8582 computed on the M = 279,936 arrangements of the observed data with
b = 4 blocks preserved for each arrangement is

P(F ≥ Fo|H0) = number of F values ≥ Fo

M
= 12,063

279,936
= 0.0431 ,

where Fo denotes the observed value of test statistic F .
Following Eq. (9.6) on p. 320, the exact expected value of the M = 279,936 δ

test statistic values under the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑

i=1

δi = 5,167,818,515

279,936
= 18,460.7143 .

Following Eq. (9.5) on p. 320, the observed chance-corrected measure of effect
size is

� = 1 − δ

μδ

= 1 − 18,342.2620

18,460.7143
= +0.6416×10−2 ,

indicating approximately chance within-block agreement.

9.7.2 Measures of Effect Size

For the GRE data listed in Table 9.14, Hays’ ω̂2 measure of effect size is

ω̂2 = (g − 1)(MSTreatments)

SSTotal + MSWithin Blocks

= (3 − 1)(959.3750 − 248.6607)

194,512.00 + 337.50
= 0.7295×10−2 ,
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where the mean-square within blocks is

MSWithin Blocks = SSWithin Blocks

n(g − 1)
= 5400.00

8(3 − 1)
= 337.50

and the sum-of-squares within blocks is

SSWithin Blocks = SSTotal − SSBlocks

= 194,512.00 − 189,112.50 = 5400.00 .

Pearson’s η2 measure of effect size is

η2 = SSTreatments

SSTotal
= 1918.75

194,512.50
= 0.9864×10−2 ,

Cohen’s partial η2 measure of effect size is

η2
Partial = SSTreatments

SSTotal − SSError
= 1918.75

194,512.00 − 3481.25
= 0.1004×10−1 ,

and Cohen’s f 2 measure of effect size is

f 2 = SSTreatments

SSTotal − SSTreatments
= 1918.75

194,512.50 − 1918.75
= 0.9963×10−2 .

For comparison, Mielke and Berry’s � chance-corrected measure of effect size is

� = 1 − δ

μδ

= 1 − 18,342.2620

18,460.7143
= +0.6416×10−2 .

Thus, the five measures of effect size yield about the same magnitude of experimen-
tal effect for this example analysis.

9.7.3 A Monte Carlo Analysis with v = 2

Although there are only M = 279,936 possible arrangements of the data listed
in Table 9.14, making an exact permutation analysis feasible, many computer
programs for permutation methods do not provide an option for an exact analysis.
Moreover, over-sampling of the M possible arrangements is quite common in
the permutation literature because of its efficiency in certain applications; for
example, permutation analyses of contingency tables. In this section, over-sampling
is demonstrated where L = 1,000,000 random arrangements is greater than the
M = 279,936 possible arrangements.
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For the example data listed in Table 9.14 on p. 340 with v = 2, the observed
value of the permutation test statistic with v = 2 is δ = 18,342.2620. Under the
Fisher–Pitman permutation model, the Monte Carlo probability of an observed δ is
the proportion of δ test statistic values computed on the randomly-selected, equally-
likely arrangements of the N = 24 observations listed in Table 9.14 that are equal to
or less than the observed value of δ = 18,342.2620. There are exactly 44,421 δ test
statistic values that are equal to or less than the observed value of δ = 18,342.2620.
If all M arrangements of the N = 24 observations listed in Table 9.14 occur with
equal chance under the Fisher–Pitman null hypothesis, the Monte Carlo probability
value computed on a sample of L = 1,000,000 random arrangements of the
observed data with b = 8 blocks preserved for each arrangement is

P(δ ≤ δo|H0) = number of δ values ≤ δo

L
= 44,421

1,000,000
= 0.0444 ,

where δo denotes the observed value of test statistic δ and L is the number
of randomly-selected, equally-likely arrangements of the GRE data listed in
Table 9.14.

Alternatively, there are 44,421 F -ratio test statistic values that are equal to or
greater than the observed value of F = 3.8582. Thus, if all M arrangements of
the N = 24 observations listed in Table 9.14 occur with equal chance under the
Fisher–Pitman null hypothesis, the Monte Carlo probability value of F = 3.8582 is

P(F ≥ Fo|H0) = number of F values ≥ Fo

L
= 44,421

1,000,000
= 0.0444 ,

where Fo denotes the observed value of test statistic F .
The Monte Carlo probability value of P = 0.0444 based on L = 1,000,000

randomly-selected arrangements of the observed data compares favorably with the
exact probability value of P = 0.0431 based on all M = 279,936 possible
arrangements of the observed data.

Following Eq. (9.6) on p. 320, the exact expected value of the M = 279,936 δ

test statistic values under the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑

i=1

δi = 5,167,818,515

279,936
= 18,460.7143 ,

and following Eq. (9.5) on p. 320, the observed chance-corrected measure of effect
size is

� = 1 − δ

μδ

= 1 − 18,342.2620

18,460.7143
= +0.6416×10−2 ,

indicating approximately chance within-block agreement.
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9.7.4 An Exact Analysis with v = 1

Consider a second analysis of the example data listed in Table 9.14 on p. 340
under the Fisher–Pitman permutation model with v = 1, employing ordinary
Euclidean scaling between observations. For the data listed in Table 9.14 with g = 3
treatments, b = 8 blocks, and N = bg = (8)(3) = 24 observations, the observed
permutation test statistic with v = 1 is δ = 116.3095.

Because there are still only

M = (
g!)b−1 = (

3!)8−1 = 279,936

possible, equally-likely arrangements in the reference set of all permutations of the
N = 24 GRE scores listed in Table 9.14, an exact permutation analysis is feasible.

Under the Fisher–Pitman permutation model, the exact probability of an
observed δ is the proportion of δ test statistic values computed on all possible,
equally-likely arrangements of the N = 24 observations listed in Table 9.14 that
are equal to or less than the observed value of δ = 116.3095. There are exactly
186,624 δ test statistic values that are equal to or less than the observed value
of δ = 116.3095. If all M arrangements of the N = 24 observations listed in
Table 9.14 occur with equal chance under the Fisher–Pitman null hypothesis,
the exact probability value of δ = 116.3095 computed on the M = 279,936
possible arrangements of the observed data with b = 8 blocks preserved for each
arrangement is

P(δ ≤ δo|H0) = number of δ values ≤ δo

M
= 186,624

279,936
= 0.6667 ,

where δo denotes the observed value of test statistic δ and M is the number
of possible, equally-likely arrangements of the GRE data listed in Table 9.14.
No comparison is made with Fisher’s F -ratio test statistic as Fisher’s F -ratio is
undefined for ordinary Euclidean scaling.

Following Eq. (9.6) on p. 320, the exact expected value of the M = 279,936 δ

test statistic values under the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑

i=1

δi = 32,514,790

279,936
= 116.1508 ,

and following Eq. (9.5) on p. 320, the observed chance-corrected measure of effect
size is

� = 1 − δ

μδ

= 1 − 116.3095

116.1508
= −0.1367×10−2 ,
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indicating slightly less than chance within-block agreement. No comparisons are
made with Hays’ ω̂2, Pearson’s η2, Cohen’s partial η2, or Cohen’s f 2 measures of
effect size as ω̂2, η2, η2

Partial, and f 2 are undefined for ordinary Euclidean scaling.
For comparison, a Monte Carlo analysis based on L = 1,000,000 randomly-

selected arrangements of the observed data listed in Table 9.14 with v = 1 yields
δ = 116.3095. Under the Fisher–Pitman permutation model, the Monte Carlo
probability of an observed δ is the proportion of δ test statistic values computed
on the randomly-selected, equally-likely arrangements of the N = 24 observations
listed in Table 9.14 that are equal to or less than the observed value of δ = 116.3095.
There are exactly 666,384 δ test statistic values that are equal to or less than
the observed value of δ = 116.3095. If all M arrangements of the N = 24
observations listed in Table 9.14 occur with equal chance under the Fisher–Pitman
null hypothesis, the Monte Carlo probability value of δ = 116.3095 computed on
a sample of L = 1,000,000 randomly-selected arrangements of the observed data
with b = 8 blocks preserved for each arrangement is

P(δ ≤ δo|H0) = number of δ values ≤ δo

L
= 666,384

1,000,000
= 0.6664 ,

where δo denotes the observed value of test statistic δ and L is the number
of randomly-selected, equally-likely arrangements of the GRE data listed in
Table 9.14.

It is perhaps interesting that, for the example data listed in Table 9.14, the
asymptotic probability value of F = 3.8582 with ν1 = 2 and ν2 = 14 degrees of
freedom is P = 0.0463, the exact permutation probability value of δ = 18,342.2620
with v = 2 is P = 0.0431, the Monte Carlo probability value of δ = 18,342.2620
based on L = 1,000,000 random arrangements of the observed data is P = 0.0444,
but the exact permutation probability value of δ = 116.3095 with v = 1 is
P = 0.6667. Thus the difference in exact probability values between analyses based
on v = 1 and v = 2 is

	P = 0.6667 − 0.0431 = 0.6236 ,

which is a considerable discrepancy.
To be sure, the set of example data listed in Table 9.14 is rather innocuous—

nothing unusual or extreme immediately presents itself. However, two values are
somewhat extreme and it is extreme values that usually account for large differences
in probability values based on squared Euclidean scaling with v = 2 and ordinary
Euclidean scaling with v = 1. The two somewhat extreme values are x6,1 = 700 in
Treatment 1 and x6,3 = 710 in Treatment 3. The value of 700 is 147.50 points above
the average of Treatment 1 (x̄1. = 552.50) and 1.42 standard deviations above the
average value in Treatment 1. The value of 710 is 135.6250 points above the average
of Treatment 3 (x̄3. = 574.3750) and 1.48 standard deviations above the average
value in Treatment 3.
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The effects of these two values can be revealed by reducing the two values and
re-analyzing the revised data. Consider reducing value x6,1 = 700 to x6,1 = 600,
which with a standard score of +0.46 is closer to the mean of x̄.1 = 552.50, and
also reducing value x6,3 = 710 to x6,3 = 600, which with a standard score of
+0.28 is closer to the mean of x̄.3 = 574.3750. The result is to bring the probability
values closer together, with an exact probability value based on squared Euclidean
scaling with v = 2 of P = 0.0799, an exact probability value based on ordinary
Euclidean scaling with v = 1 of P = 0.2716, and a difference between the two
exact probability values of

	P = 0.2716 − 0.0799 = 0.1917

instead of a difference of

	P = 0.6667 − 0.0431 = 0.6236 .

The effects of the two extreme values can further be revealed by eliminating the two
values. When the two values are eliminated—set equal to zero—and re-analyzed,
the exact probability value based on squared Euclidean scaling with v = 2 is P =
0.2651 and the exact probability value based on ordinary Euclidean scaling with
v = 1 is P = 0.3914 with a difference between the two exact probability values of
only

	P = 0.3914 − 0.2651 = 0.1263 .

Table 9.16 lists the raw GRE scores from Table 9.14 on p. 340 along with
associated standard scores, given in parentheses. To emphasize that the standard
scores +1.48 and +1.42 are extreme relative to other scores listed in Table 9.16, a
listing of the 13 positive standard scores in order is

Standard score: + 1.48, +1.42, +1.27, +1.27, +1.04, +0.94,

+ 0.72, +0.55, +0.39, +0.27, +0.17, +0.16, +0.12 .

Table 9.16 Example data
from Table 9.14 with raw
GRE scores and associated
standard scores (in
parentheses)

Treatment

Block 1 2 3

1 550 (−0.02) 575 (+0.12) 580 (+0.06)

2 440 (−1.09) 440 (−1.36) 470 (−1.14)

3 610 (+0.55) 630 (+0.72) 610 (+0.39)

4 650 (+0.94) 670 (+1.16) 670 (+1.04)

5 400 (−1.47) 460 (−1.14) 450 (−1.36)

6 700 (+1.42) 680 (+1.27) 710 (+1.48)

7 490 (−0.60) 510 (−0.52) 515 (−0.65)

8 580 (+0.27) 550 (−0.16) 590 (+0.17)
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9.8 Example 5: Rank-Score Permutation Analyses

It is often necessary to analyze rank-score data when the required parametric
assumptions of randomized-blocks designs cannot be met. However, with permu-
tation methods it is never necessary to convert raw-score data to ranks [2]. The
conventional approach to multi-sample rank-score data is Friedman’s two-way
analysis of variance for ranks [3].

9.8.1 The Friedman Analysis of Variance for Ranks

Let b denote the number of blocks and g denote the number of objects to be ranked.
Then Friedman’s test statistic is given by

χ2
r = 12

bg(g + 1)

g∑

i=1

R2
i − 3b(g + 1) ,

where Ri for i = 1, . . . , g is the sum of the rank scores for the ith object and
there are no tied rank scores. A number of statistics are either identical, related, or
equivalent to Friedman’s χ2

r test statistic. Among these are Kendall and Babington
Smith’s coefficient of concordance, the average value of all pairwise Spearman’s
rank-order correlation coefficients, and the Wallis rank-order correlation ratio.

To illustrate Friedman’s analysis of variance for ranks, consider the rank scores
listed in Table 9.17; that is, rank scores rij for i = 1, . . . , g and j = 1, . . . , b. For
the rank-score data listed in Table 9.17, the sum of the squared rank scores is

g∑

i=1

R2
i = 42 + 142 + 152 + 132 + 112 + 62 = 763 ,

Table 9.17 Example data for
the Friedman analysis of
variance for ranks with b = 3
blocks and g = 6 objects

Block

Object 1 2 3 R

1 1 1 2 4

2 6 5 3 14

3 3 6 6 15

4 4 4 5 13

5 5 2 4 11

6 2 3 1 6

Sum 63
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and the observed value of Friedman’s test statistic is

χ2
r = 12

bg(g + 1)

g∑

i=1

R2
i − 3b(g + 1)

= 12

(3)(6)(6 + 1)
763 − (3)(3)(6 + 1) = 9.6667 .

Friedman’s χ2
r test statistic is asymptotically distributed as Pearson’s chi-squared

under the Neyman–Pearson null hypothesis with g − 1 degrees of freedom. Under
the Neyman–Pearson null hypothesis, the observed value of χ2

r = 9.6667 with
g − 1 = 6 − 1 = 5 degrees of freedom yields an asymptotic probability value of
P = 0.0853.

9.8.2 An Exact Analysis with v = 2

For the first analysis of the rank-score data listed in Table 9.17 under the Fisher–
Pitman permutation model let v = 2, employing squared Euclidean scaling between
the pairs of rank scores for correspondence with Friedman’s χ2

r test statistic, and let

x ′
ij = (x1ij , x2ij , x3ij , . . . , xrij )

denote a transposed vector of r measurements associated with the ith treatment and
j th block. Then the permutation test statistic is given by

δ =
[
g

(
b

2

)]−1 g∑

i=1

b−1∑

j=1

b∑

k=j+1

	(xij , xik) , (9.14)

where 	(x, y) is a symmetric distance-function value of two points x ′ =
(x1, x2, . . . , xr) and y ′ = (y1, y2, . . . , yr) in an r-dimensional Euclidean space.
In the context of a randomized-block design,

	(x, y) =
r∑

i=1

∣∣xi − yi

∣∣v ,

where v > 0.
For the rank-score data listed in Table 9.17 there are only

M = (
g!)b−1 = (

6!)3−1 = 518,400
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possible, equally-likely arrangements in the reference set of all permutations of the
rank-score data listed in Table 9.17, making an exact permutation analysis feasible.
For the rank scores listed in Table 9.17 let v = 2, employing squared Euclidean
scaling between the pairs of rank scores for correspondence with Friedman’s χ2

r

test statistic, the observed value of the permutation test statistic with v = 2 is δ =
3.1111.

Under the Fisher–Pitman permutation model, the exact probability of an
observed δ is the proportion of δ test statistic values computed on all possible,
equally-likely arrangements of the N = 18 rank scores listed in Table 9.17 that are
equal to or less than the observed value of δ = 3.1111. There are exactly 29,047 δ

test statistic values that are equal to or less than δ = 3.1111. If all M arrangements
of the N = 18 rank scores listed in Table 9.17 occur with equal chance under the
Fisher–Pitman null hypothesis, the exact probability of δ = 3.1111 computed on
the M = 518,400 possible arrangements of the observed rank scores with b = 3
blocks preserved for each arrangement is

P(δ ≤ δo|H0) = number of δ values ≤ δo

M
= 29,047

518,400
= 0.0560 ,

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the N = 18 rank scores listed in Table 9.17.

The functional relationships between test statistics χ2
r and δ with v = 2 are given

by

χ2
r = b(g2 − 1) − 6(b − 1)δ

g + 1
(9.15)

and

δ = b(g2 − 1) − (g + 1)χ2
r

6(b − 1)
. (9.16)

Following Eq. (9.15) for the N = 18 rank scores listed in Table 9.17, the observed
value of test statistic χ2

r with respect to the observed value of test statistic δ is

χ2
r = 3(62 − 1) − 6(3 − 1)(3.1111)

6 + 1
= 9.6667

and following Eq. (9.16), the observed value of test statistic δ with respect to the
observed value of test statistic χ2

r is

δ = 3(62 − 1) − (6 + 1)(9.6667)

6(3 − 1)
= 3.1111 .
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Following Eq. (9.6) on p. 320, the exact expected value of the M = 518,400 δ

test statistic values under the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑

i=1

δi = 3,024,000

518,400
= 5.8333 .

Alternatively, in terms of a randomized-blocks analysis of variance model the exact
expected value of test statistic δ is

μδ = 2SSTotal

N
= 2(52.50)

18
= 5.8333 ,

where

SSTotal =
g∑

i=1

b∑

j=1

r2
ij −

⎛

⎝
g∑

i=1

b∑

j=1

rij

⎞

⎠
2/

bg

= 273 − (63)2/(3)(6) = 52.50 .

Following Eq. (9.5) on p. 320, the observed chance-corrected measure of effect
size is

� = 1 − δ

μδ

= 1 − 3.1111

5.8333
= +0.4667 ,

indicating approximately 47% within-block agreement above what is expected by
chance. No comparisons are made with Hays’ ω̂2, Pearson’s η2, Cohen’s partial η2,
or Cohen’s f 2 measures of effect size as ω̂2, η2, η2

Partial, and f 2 are undefined for
rank-score data.

9.8.3 An Exact Analysis with v = 1

For a second analysis of the rank-score data listed in Table 9.17 under the Fisher–
Pitman permutation model let v = 1, employing ordinary Euclidean scaling
between the rank scores. For the rank scores listed in Table 9.17 there are still only

M = (
g!)b−1 = (

6!)3−1 = 518,400

possible, equally-likely arrangements in the reference set of all permutations of
the rank-score data listed in Table 9.17, making an exact permutation analysis
feasible. For the N = 18 rank scores listed in Table 9.17 the observed value of
the permutation test statistic with v = 1 is δ = 1.4444.
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Under the Fisher–Pitman permutation model, the exact probability of an
observed δ is the proportion of δ test statistic values computed on all possible,
equally-likely arrangements of the N = 18 rank scores listed in Table 9.17 that
are equal to or less than the observed value of δ = 1.4444. There are exactly
55,528 δ test statistic values that are equal to or greater than δ = 1.4444. If all
M arrangements of the N = 18 rank scores listed in Table 9.17 occur with equal
chance under the Fisher–Pitman null hypothesis, the exact probability of δ = 1.4444
computed on the M = 518,400 possible arrangements of the observed rank scores
with b = 3 blocks preserved for each arrangement is

P(δ ≤ δo|H0) = number of δ values ≤ δo

M
= 55,528

518,400
= 0.1071 ,

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the N = 18 rank scores listed in Table 9.17.
No comparison is made with Friedman’s χ2

r analysis of variance for ranks as χ2
r is

undefined for ordinary Euclidean scaling.
Following Eq. (9.6) on p. 320, the exact expected value of the M = 518,400 δ

test statistic values under the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑

i=1

δi = 1,008,000

518,400
= 1.9444

and following Eq. (9.5) on p. 320, the observed chance-corrected measure of effect
size is

� = 1 − δ

μδ

= 1 − 1.4444

1.9444
= +0.2571 ,

indicating approximately 26% within-block agreement above what is expected by
chance. No comparisons are made with Hays’ ω̂2, Pearson’s η2, Cohen’s partial η2,
or Cohen’s f 2 measures of effect size as ω̂2, η2, η2

Partial, and f 2 are undefined for
rank-score data.

9.9 Example 6: Multivariate Permutation Analyses

It is oftentimes necessary to test for differences among g ≥ 3 treatment groups
where r ≥ 2 measurements scores have been obtained from each of b ≥ 2 blocks.
To illustrate the analysis of randomized blocks with multivariate measurements,
consider the data listed in Table 9.18 wherein each of two observers is asked to
estimate distance and elevation in meters of 12 distant objects.
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Table 9.18 Example data
with g = 12 objects, b = 2
blocks, and r = 2
measurements

Observer A Observer B

Object Distance Elevation Distance Elevation

1 120 10 125 10

2 80 15 85 20

3 100 5 95 10

4 150 20 140 15

5 75 10 60 5

6 50 5 60 10

7 50 20 50 25

8 20 20 25 15

9 90 15 90 15

10 95 25 90 20

11 100 25 90 20

12 70 5 70 5

9.9.1 A Monte Carlo Analysis with v = 2

For the example data listed in Table 9.18 with g = 12 treatments (objects), b = 2
blocks (observers), r = 2 measurements, and N = bg = (2)(12) = 24 multivariate
observations, the observed value of the permutation test statistic with v = 2 is
δ = 72.9167. There are

M = (
g!)b−1 = (

12!)2−1 = 479,001,600

possible, equally-likely arrangements in the reference set of all permutations of the
multivariate data listed in Table 9.18, making an exact permutation analysis imprac-
tical and a Monte Carlo analysis advisable. Under the Fisher–Pitman permutation
model, the Monte Carlo probability value of an observed δ is the proportion of δ test
statistic values computed on the randomly-selected, equally-likely arrangements of
the N = 24 multivariate observations listed in Table 9.18 that are equal to or less
than the observed value of δ = 72.9167.

For the example data listed in Table 9.18 and L = 1,000,000 random
arrangements of the observed data, there are exactly four δ test statistic values that
are equal to or less than the observed value of δ = 72.9167. If all M arrangements
of the N = 24 observations listed in Table 9.18 occur with equal chance under the
Fisher–Pitman null hypothesis, the Monte Carlo probability value of δ = 72.9167
computed on L = 1,000,000 random arrangements of the observed data with b = 2
blocks preserved for each arrangement is

P(δ ≤ δo|H0) = number of δ values ≤ δo

L
= 4

1,000,000
= 0.4000×10−5 ,
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where δo denotes the observed value of test statistic δ and L is the number of
randomly-selected, equally-likely arrangements of the distance-elevation data listed
in Table 9.18.

When the probability value is very small, as it is in this case, Monte Carlo
permutation methods are not very precise with only L = 1,000,000 random
arrangements of the observed data. A reanalysis of the multivariate data listed
in Table 9.18 with L = 100,000,000 random arrangements yields a probability
value of

P(δ ≤ δo|H0) = number of δ values ≤ δo

L
= 5

100,000,000
= 0.5000×10−7 .

Following Eq. (9.6) on p. 320, the exact expected value of test statistic δ under
the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑

i=1

δi = 1,001,246,506,445

479,001,600
= 2090.2780

and following Eq. (9.5) on p. 320, the observed chance-corrected measure of effect
size is

� = 1 − δ

μδ

= 1 − 72.9167

2,090.2780
= +0.9651 ,

indicating approximately 97% within-block agreement above what is expected by
chance. No comparisons are made with Hays’ ω̂2, Pearson’s η2, Cohen’s partial η2,
or Cohen’s f 2 measures of effect size as ω̂2, η2, η2

Partial, and f 2 are undefined for
multivariate data.

9.9.2 An Exact Analysis with v = 2

Although an exact permutation analysis with M = 479,001,600 possible arrange-
ments of the observed data is not practical for the example data listed in Table 9.18,
it is not impossible. For an exact permutation analysis with v = 2, the observed
value of δ is δ = 72.9167. There are exactly 20 δ test statistic values that are equal
to or less than the observed value of δ = 72.9167. If all M arrangements of the
observed data occur with equal chance under the Fisher–Pitman null hypothesis, the
exact probability value computed on the M = 479,001,600 possible arrangements
of the observed data with b = 2 blocks preserved for each arrangement is

P(δ ≤ δo|H0) = number of δ values ≤ δo

M
= 20

479,001,600
= 0.4175×10−7 ,
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where δo denotes the observed value of test statistic δ and M is the number
of possible, equally-likely arrangements of the distance-elevation data listed in
Table 9.18.

Following Eq. (9.6) on p. 320, the exact expected value of test statistic δ under
the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑

i=1

δi = 0.1001×1013

479,001,600
= 2090.2780

and following Eq. (9.5) on p. 320 the observed chance-corrected measure of effect
size is

� = 1 − δ

μδ

= 1 − 72.9167

2090.2780
= +0.9651 ,

indicating approximately 97% within-block agreement above what is expected by
chance. No comparisons are made with Hays’ ω̂2, Pearson’s η2, Cohen’s partial η2,
or Cohen’s f 2 measures of effect size as ω̂2, η2, η2

Partial, and f 2 are undefined for
multivariate data.

9.9.3 A Monte Carlo Analysis with v = 1

For the data listed in Table 9.18 with v = 1, the observed value of δ is δ = 7.1305.
Since there are still

M = (
g!)b−1 = (

12!)2−1 = 479,001,600

possible, equally-likely arrangements in the reference set of all permutations of the
multivariate data listed in Table 9.18, a Monte Carlo analysis is preferred. Under
the Fisher–Pitman permutation model, the Monte Carlo probability value of an
observed δ is the proportion of δ test statistic values computed on the randomly-
selected, equally-likely arrangements of the N = 24 multivariate observations listed
in Table 9.18 that are equal to or less than the observed value of δ = 7.1305. For the
data listed in Table 9.18 and L = 1,000,000 random arrangements of the data, there
are exactly three δ test statistic values that are equal to or less than the observed value
of δ = 7.1305. If all M arrangements of the N = 24 multivariate observations listed
in Table 9.18 occur with equal chance under the Fisher–Pitman null hypothesis, the
Monte Carlo probability value of δ = 7.1305 is

P(δ ≤ δo|H0) = number of δ values ≤ δo

L
= 3

1,000,000
= 0.3000×10−5 ,
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where δo denotes the observed value of test statistic δ and L is the number of
randomly-selected, equally-likely arrangements of the distance-elevation data listed
in Table 9.18.

Following Eq. (9.6) on p. 320, the exact expected value of test statistic δ under
the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑

i=1

δi = 17,916,053,734

479,001,600
= 37.4029

and following Eq. (9.5) on p. 320, the observed chance-corrected measure of effect
size is

� = 1 − δ

μδ

= 1 − 7.1305

37.4029
= +0.8094 ,

indicating approximately 81% within-block agreement above that is expected by
chance. No comparisons are made with Hays’ ω̂2, Pearson’s η2, Cohen’s partial η2,
or Cohen’s f 2 measures of effect size as ω̂2, η2, η2

Partial, and f 2 are undefined for
multivariate data.

9.9.4 An Exact Analysis with v = 1

For an exact permutation analysis with v = 1, the observed value of δ is δ =
7.1305. There are exactly four δ test statistic values that are equal to or less than the
observed value of δ = 7.1305. If all M arrangements of the N = 24 multivariate
observations listed in Table 9.18 occur with equal chance under the Fisher–Pitman
null hypothesis, the exact probability value of δ computed on the M = 479,001,600
possible arrangements of the observed data with b = 2 blocks reserved for each
arrangement is

P(δ ≤ δo|H0) = number of δ values ≤ δo

M

= 4

479,001,600
= 0.8351×10−8 ,

where δo denotes the observed value of test statistic δ and M is the number
of possible, equally-likely arrangements of the distance-elevation data listed in
Table 9.18.

Following Eq. (9.6) on p. 320, the exact expected value of test statistic δ under
the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑

i=1

δi = 17,916,053,734

479,001,600
= 37.4029
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and following Eq. (9.5) on p. 320 the observed chance-corrected measure of effect
size is

� = 1 − δ

μδ

= 1 − 7.1305

37.4029
= +0.8094 ,

indicating approximately 81% within-block agreement above what is expected by
chance. No comparisons are made with Hays’ ω̂2, Pearson’s η2, Cohen’s partial η2,
or Cohen’s f 2 measures of effect size as ω̂2, η2, η2

Partial, and f 2 are undefined for
multivariate data.

9.10 Summary

This chapter examined statistical methods for multiple dependent samples where
the null hypothesis under the Neyman–Pearson population model posits no exper-
imental differences among the g ≥ 3 populations that the g random samples
are presumed to represent. Under the Neyman–Pearson population model of
statistical inference the conventional randomized-blocks analysis of variance and
four measures of effect size were described and illustrated: Fisher’s F test statistic,
and Hays’ ω̂2, Pearson’s η2, Cohen’s η2

Partial, and Cohen’s f 2 measures of effect
size, respectively.

Under the Fisher–Pitman permutation model of statistical inference, test statistic
δ and associated measure of effect size � were described and illustrated for
randomized-blocks designs. For tests of g ≥ 3 dependent samples, test statistic δ

was demonstrated to be applicable to both ordinary Euclidean scaling functions with
v = 1 and squared Euclidean scaling functions with v = 2. Effect size measure, �,
was shown to be applicable to either v = 1 or v = 2 without modification with a
chance-corrected interpretation.

Six examples illustrated permutation-based test statistics δ and � for
randomized-blocks designs. In the first example, a small sample of N = 8
observations in g = 2 treatment groups and b = 4 blocks was utilized to describe
and illustrate the calculation of test statistics δ and � for randomized-blocks
designs. The second example with N = 24 observations in g = 4 treatment groups
and b = 6 blocks demonstrated the chance-corrected measure of effect size, �, for
randomized-blocks designs and compared � to the four conventional measures of
effect size for g ≥ 3 dependent samples: Hays’ ω̂2, Pearson’s η2, Cohen’s partial η2,
and Cohen’s f 2. The third example with N = 24 observations in g = 3 treatment
groups and b = 8 blocks illustrated the effects of extreme values on analyses based
on v = 1 for ordinary Euclidean scaling and v = 2 for squared Euclidean scaling.
The fourth example with N = 24 observations in g = 3 treatment groups and
b = 8 blocks compared exact and Monte Carlo permutation statistical methods for
randomized-blocks designs, illustrating the accuracy and efficiency of Monte Carlo
analyses. The fifth example with N = 18 observations in g = 6 treatment groups
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and b = 3 blocks illustrated an application of permutation statistical methods to
univariate rank-score data, comparing a permutation analysis of rank-score data
with Friedman’s g-sample analysis of variance for ranks. In the sixth example,
both test statistic δ and effect-size measure � were extended to multivariate data
with N = 48 observations in g = 12 treatment groups, b = 2 blocks, and r = 2
measurements.

Chapter 10 continues the presentation of permutation statistical methods, exam-
ining permutation alternatives to simple linear correlation and regression. Research
designs that utilize correlation and regression have a long history, are taught in
every introductory class, and are among the most popular tests in the contemporary
research literature.
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