
Chapter 8
Completely-Randomized Designs

Abstract This chapter introduces permutation methods for multiple independent
variables; that is, completely-randomized designs. Included in this chapter are six
example analyses illustrating computation of exact permutation probability values
for multi-sample tests, calculation of measures of effect size for multi-sample tests,
the effect of extreme values on conventional and permutation multi-sample tests,
exact and Monte Carlo permutation procedures for multi-sample tests, application of
permutation methods to multi-sample rank-score data, and analysis of multi-sample
multivariate data. Included in this chapter are permutation versions of Fisher’s F

test for one-way, completely-randomized analysis of variance, the Kruskal–Wallis
one-way analysis of variance for ranks, the Bartlett–Nanda–Pillai trace test for
multivariate analysis of variance, and a permutation-based alternative for the four
conventional measures of effect size for multi-sample tests: Cohen’s d̂ , Pearson’s
η2, Kelley’s η̂2, and Hays’ ω̂2.

This chapter presents exact and Monte Carlo permutation statistical methods for
multi-sample tests. Multi-sample tests are of two types: tests for experimental
differences among three or more independent samples (completely-randomized
designs) and tests for experimental differences among three or more dependent
samples (randomized-blocks designs).1 Permutation statistical methods for multiple
dependent samples are presented in Chap. 9. Permutation statistical methods for
multiple independent samples are presented in this chapter. In addition there are
mixed models with one or more independent samples and one or more dependent
samples, but these models are beyond the scope of this introductory book on
permutation statistical methods. Interested readers can consult a 2016 book on
Permutation Statistical Methods: An Integrated Approach by the authors [2].

Multi-sample tests for independent samples constitute a large family of tests in
conventional statistical methods. Included in this family are one-way analysis of
variance with univariate responses (ANOVA), one-way analysis of variance with

1In some disciplines tests on multiple independent samples are known as between-subjects tests
and tests for multiple dependent or related samples are known as within-subjects tests.
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multivariate responses (MANOVA), one-way analysis of variance with one or more
covariates and univariate responses (ANCOVA), one-way analysis of variance with
one or more covariates and multivariate responses (MANCOVA), and a variety
of factorial designs that may be two-way, three-way, four-way, nested, balanced,
unbalanced, fixed, random, or mixed.

In this chapter, permutation statistical methods for multiple independent samples
are illustrated with six example analyses. The first example utilizes a small set
of data to illustrate the computation of exact permutation methods for multiple
independent samples, wherein the permutation test statistic, δ, is developed and
compared with Fisher’s conventional F -ratio test statistic. The second example
develops a permutation-based measure of effect size as a chance-corrected alterna-
tive to the five conventional measures of effect size for multi-sample tests: Cohen’s
d̂ , Pearson’s η2, Kelley’s η̂2, Hays’ ω̂2

F for fixed models, and Hays’ ω̂2
R for random

models. The third example compares permutation statistical methods based on
ordinary and squared Euclidean scaling functions, with an emphasis on the analysis
of data sets containing extreme values. The fourth example utilizes a larger data set
to provide a comparison of exact permutation methods and Monte Carlo permutation
methods, demonstrating the efficiency and accuracy of Monte Carlo statistical
methods for multi-sample tests. The fifth example illustrates the application of per-
mutation statistical methods to univariate rank-score data, comparing permutation
statistical methods to the conventional Kruskal–Wallis one-way analysis of variance
for ranks test. The sixth example illustrates the application of permutation statistical
methods to multivariate data, comparing permutation statistical methods with the
conventional Bartlett–Nanda–Pillai trace test for multivariate data.

8.1 Introduction

The most popular univariate test for g ≥ 3 independent samples under the Neyman–
Pearson population model of statistical inference is Fisher’s one-way analysis of
variance wherein the null hypothesis (H0) posits no mean differences among the g

populations from which the samples are presumed to have been randomly drawn;
that is, H0: μ1 = μ2 = · · · = μg. It should be noted that Fisher, writing in
the first edition of Statistical Methods for Research Workers in 1925, named the
aforementioned statistic the variance-ratio test, symbolized it as z, and defined it as

z = 1

2
loge

(
ν1

ν0

)
,

where ν1 = MSBetween and ν0 = MSWithin in modern notation. In 1934, in an effort
to eliminate the calculation of the natural logarithm required for calculating Fisher’s
z test, George Snedecor at Iowa State University published tabled values in a small
monograph for Fisher’s variance-ratio z statistic and renamed the test statistic F ,
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presumably in honor of Fisher [22]. It has often been reported that Fisher was
displeased when the variance-ratio z test statistic was renamed F by Snedecor [4, 8].

Fisher’s F -ratio test for a completely-randomized design does not determine
whether or not the null hypothesis is true, but only provides the probability that,
if the null hypothesis is true, the samples have been drawn from populations with
identical mean values, assuming normality and homogeneity of variance.

Consider a conventional multi-sample F test with samples of independent and
identically distributed univariate random variables of sizes n1, . . . , ng , viz.,

{x11, . . . , xn11}, . . . , {x1g, . . . , xngg} ,

drawn from g specified populations with cumulative distribution functions
F1(x), . . . , Fg(x), respectively. For simplicity, suppose that population i is normal
with mean μi and variance σ 2 for i = 1, . . . , g. This is the standard one-
way classification model with g treatment groups. Under the Neyman–Pearson
population model of statistical inference, the null hypothesis of no differences
among the population means tests

H0: μ1 = μ2 = · · · = μg versus H1: μi �= μj for some i �= j

for g treatment groups. The permissible probability of a type I error is denoted by
α and if the observed value of Fisher’s F -ratio test statistic is equal to or greater
than the critical value of F that defines α, the null hypothesis is rejected with a
probability of type I error equal to or less than α, under the assumptions of normality
and homogeneity.

For multi-sample tests with g treatment groups and N observations, Fisher’s F -
ratio test statistic is given by

F = MSBetween

MSWithin
,

where the mean-square between treatments is given by2

MSBetween = SSBetween

g − 1
,

the sum-of-squares between treatments is given by

SSBetween =
g∑

i=1

ni

(
x̄i − ¯̄x)2

,

2The terms MSBetween and MSWithin are only one set of descriptive labels for the numerator and
denominator of the F -ratio test statistic. MSBetween is often replaced by either MSTreatment or
MSFactor and MSWithin is often replaced by MSError.
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the mean-square within treatments is given by

MSWithin = SSWithin

N − g
,

the sum-of-squares within treatments is given by

SSWithin =
g∑

i=1

ni∑
j=1

(
xij − x̄i

)2
,

the sum-of-squares total is given by

SSTotal = SSBetween + SSWithin =
g∑

i=1

ni∑
j=1

(
xij − ¯̄x)2

,

the mean value for the ith of g treatment groups is given by

x̄i = 1

ni

ni∑
j=1

xij ,

the grand mean for all g treatment groups combined is given by

¯̄x = 1

N

g∑
i=1

ni∑
j=1

xij ,

and the total number of observations is

N =
g∑

i=1

ni .

Under the Neyman–Pearson null hypothesis, H0: μ1 = μ2 = · · · = μg, test
statistic F is asymptotically distributed as Snedecor’s F distribution with ν1 = g−1
degrees of freedom in the numerator and ν2 = N − g degrees of freedom in the
denominator. However, if any of the g populations is not normally distributed, then
the distribution of test statistic F no longer follows Snedecor’s F distribution with
ν1 = g − 1 and ν2 = N − g degrees of freedom.

The assumptions underlying Fisher’s F -ratio test for multiple independent sam-
ples are (1) the observations are independent, (2) the data are random samples from
well-defined, normally-distributed populations, and (3) homogeneity of variance;
that is, σ 2

1 = σ 2
2 = · · · = σ 2

g .
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8.2 A Permutation Approach

Now consider a test for multiple independent samples under the Fisher–Pitman
permutation model of statistical inference. Under the Fisher–Pitman permutation
model there is no null hypothesis specifying population parameters. Instead the
null hypothesis simply states that all possible arrangements of the observations
occur with equal chance [10]. Also, there is no alternative hypothesis under the
permutation model and no specified α level. Moreover, there is no requirement
of random sampling, no degrees of freedom, no assumption of normality, and no
assumption of homogeneity of variance.

A permutation alternative to the conventional F test for multiple independent
samples is easily defined. The permutation test statistic for g ≥ 3 independent
samples is given by

δ =
g∑

i=1

Ciξi , (8.1)

where Ci > 0 is a positive treatment-group weight for i = 1, . . . , g,

ξi =
(

ni

2

)−1 N−1∑
j=1

N∑
k=j+1

	(j, k)
i(ωj )
i(ωk) (8.2)

is the average distance-function value for all distinct pairs of objects in sample Si

for i = 1, . . . , g,

	(j, k) = ∣∣xj − xk

∣∣v
denotes a symmetric distance-function value for a single pair of objects,

N =
g∑

i=1

ni ,

and 
(·) is an indicator function given by


i(ωj ) =
⎧⎨
⎩

1 if ωj ∈ Si ,

0 otherwise .

Under the Fisher–Pitman permutation model, the null hypothesis simply states
that equal probabilities are assigned to each of the

M = N !
g∏

i=1

ni !
(8.3)
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possible, equally-likely allocations of the N objects to the g samples [10]. The
probability value associated with an observed value of δ, say δo, is the probability
under the null hypothesis of observing a value of δ as extreme or more extreme than
δo. Thus, an exact probability value for δo may be expressed as

P
(
δ ≤ δo|H0

) = number of δ values ≤ δo

M
. (8.4)

When M is large, an approximate probability value for δ may be obtained from
a Monte Carlo permutation procedure, where

P
(
δ ≤ δo|H0

) = number of δ values ≤ δo

L

and L denotes the number of randomly-sampled test statistic values. Typically, L is
set to a large number to ensure accuracy; for example, L = 1,000,000 [11].

8.3 The Relationship Between Statistics F and δ

When the null hypothesis under the Neyman–Pearson population model states
H0: μ1 = μ2 = · · · = μg, v = 2, and the treatment-group weights are given
by

Ci = ni − 1

N − g
, i = 1, . . . , g ,

the functional relationships between test statistic δ and Fisher’s F -ratio test statistic
are given by

δ = 2SSTotal

N − g + (g − 1)F
and F = 2SSTotal

(g − 1)δ
− N − g

g − 1
, (8.5)

where

SSTotal =
N∑

i=1

x2
i −

(
N∑

i=1

xi

)2/
N ,

and xi is a univariate measurement score for the ith of N objects. The permutation
analogue of the F test is generally known as the Fisher–Pitman permutation test [3].

Because of the relationship between test statistics δ and F , the exact probability
values given by

P
(
δ ≤ δo|H0

) = number of δ values ≤ δo

M
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and

P
(
F ≥ Fo|H0

) = number of F values ≥ Fo

M

are equivalent under the Fisher–Pitman null hypothesis, where δo and Fo denote the
observed values of δ and F , respectively, and M is the number of possible, equally-
likely arrangements of the observed data.

A chance-corrected measure of agreement among the N measurement scores is
given by

� = 1 − δ

μδ

, (8.6)

where μδ is the arithmetic average of the M δ test statistic values calculated on all
possible arrangements of the observed measurements; that is,

μδ = 1

M

M∑
i=1

δi . (8.7)

Alternatively, in terms of a one-way analysis of variance model, the exact expected
value of test statistic δ is a simple function of the total sum-of-squares; that is,

μδ = 2SSTotal

N − 1
.

8.4 Example 1: Test Statistics F and δ

A small example will serve to illustrate the relationship between test statistics F

and δ. Consider the example data listed in Table 8.1 with g = 3 treatment groups,
sample sizes of n1 = n2 = 3, n3 = 4, and N = n1 + n2 + n3 = 3 + 3 + 4 =
10 total observations. Under the Neyman–Pearson population model with sample
sizes n1 = n2 = 3, and n3 = 4, treatment-group means x̄1 = 3, x̄2 = 4, and
x̄3 = 8, grand mean ¯̄x = 5.30, estimated population variances s2

1 = s2
2 = 1.00 and

Table 8.1 Example data for
a test of g = 3 independent
samples with N = 10
observations

Treatment group

1 2 3

2 3 7

3 4 8

4 5 8

9
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s2
3 = 0.6667, the sum-of-squares between treatments is

SSBetween =
g∑

i=1

ni

(
x̄i − ¯̄x)2 = 50.10 ,

the sum-of-squares within treatments is

SSWithin =
g∑

i=1

ni∑
j=1

(
xij − x̄i

)2 = 6.00 ,

the sum-of-squares total is

SSTotal = SSBetween + SSWithin = 50.10 + 6.00 = 56.10 ,

the mean-square between treatments is

MSBetween = SSBetween

g − 1
= 50.10

3 − 1
= 25.05 ,

the mean-square within treatments is

MSWithin = SSWithin

N − g
= 6.00

10 − 3
= 0.8571 ,

and the observed value of Fisher’s F -ratio test statistic is

F = MSBetween

MSWithin
= 25.05

0.8571
= 29.2250 .

The essential factors, sums of squares (SS), degrees of freedom (df ), mean squares
(MS), and variance-ratio test statistic (F ) are summarized in Table 8.2.

Under the Neyman–Pearson null hypothesis, H0: μ1 = μ2 = μ3, Fisher’s F -
ratio test statistic is asymptotically distributed as Snedecor’s F with ν1 = g − 1 and
ν2 = N − g degrees of freedom. With ν1 = g − 1 = 3 − 1 = 2 and ν2 = N − g =
10 − 3 = 7 degrees of freedom, the asymptotic probability value of F = 29.2250 is
P = 0.4001×10−3, under the assumptions of normality and homogeneity.

Table 8.2 Source table for
the example data listed in
Table 8.1

Factor SS df MS F

Between 50.10 2 25.0500 29.2250

Within 6.00 7 0.8571

Total 56.10
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8.4.1 An Exact Analysis with v = 2

For the first permutation analysis of the example data listed in Table 8.1 let v = 2,
employing squared Euclidean scaling, and let the treatment-group weights be given
by

Ci = ni − 1

N − g
, i = 1, . . . , g ,

for correspondence with Fisher’s F -ratio test statistic.
Because there are only

M = N !
g∏

i=1

ni !
= 10!

3! 3! 4! = 4200

possible, equally-likely arrangements in the reference set of all permutations of
the N = 10 observations listed in Table 8.1, an exact permutation analysis is
feasible. While M = 4200 arrangements are too many to list, Table 8.3 illustrates
the calculation of the ξ , δ, and F values for a small sample of the M possible
arrangements of the N = 10 observations listed in Table 8.1.

Following Eq. (8.1) on p. 261, the N = 10 observations yield g = 3 average
distance-function values of

ξi = ξ2 = 2.00 and ξ3 = 1.3333 .

Alternatively, in terms of a one-way analysis of variance model the average distance-
function values are ξ1 = 2s2

1 = 2(1.00) = 2.00, ξ2 = 2s2
2 = 2(1.00) = 2.00, and

ξ3 = 2s2
3 = 2(0.6667) = 1.3333.

Following Eq. (8.1) on p. 260, the observed value of the permutation test statistic
based on v = 2 and treatment-group weights

Ci = ni − 1

N − g
, i = 1, 2, 3 ,

is

δ =
g∑

i=1

Ciξi = 1

10 − 3

[
(3 − 1)(2.00) + (3 − 1)(2.00)

+ (4 − 1)(1.3333)
] = 1.7143 .
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Table 8.3 Sample arrangements of the example data listed in Table 8.1 with associated ξ1, ξ2, δ,
and F values

Number Arrangement ξ1 ξ2 ξ3 δ F

1 234 345 7889 2.0000 2.0000 1.3333 1.7143 29.2250

2 234 347 5889 2.0000 8.6667 6.0000 5.6190 6.4839

3 234 347 4889 2.0000 8.6667 9.8333 7.2619 4.4318

4 234 457 3889 2.0000 4.6667 14.6667 8.1905 3.3494

5 234 348 5789 2.0000 14.0000 5.8333 7.0714 4.4333

6 234 358 4789 2.0000 12.6667 9.3333 8.1905 3.3494

7 234 458 3789 2.0000 8.6667 13.8333 8.9762 2.7499

8 234 378 4589 2.0000 14.0000 11.3333 9.4286 2.4500

9 234 478 3589 2.0000 8.6667 15.1667 9.5476 2.3758

10 234 578 3489 2.0000 4.6667 17.3333 9.3333 2.5107

11 234 348 5789 2.0000 14.0000 5.8333 7.0714 4.4333

12 234 358 4789 2.0000 12.6667 9.3333 8.1905 3.3494

13 234 458 3789 2.0000 8.6667 13.8333 8.9762 2.7499

14 234 378 4589 2.0000 14.0000 11.3333 9.4286 2.4500

15 234 478 3589 2.0000 8.6667 15.1667 9.5476 2.3758

16 234 578 3489 2.0000 4.6667 17.3333 9.3333 2.5107

17 234 488 4579 2.0000 10.6667 9.8333 7.8333 3.1894

18 234 488 3579 2.0000 10.6667 13.3333 9.3333 2.5107

19 234 588 3479 2.0000 6.0000 15.1667 8.7857 2.8854

20 234 788 3459 2.0000 0.6667 13.8333 6.6905 4.8851
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

4199 889 357 2344 0.6667 8.0000 1.8333 3.2619 13.6985

4200 889 457 2343 0.6667 4.6667 1.3333 2.0952 23.2750

Alternatively, in terms of a one-way analysis of variance model the permutation test
statistic is

δ = 2MSWithin = 2(0.8571) = 1.7143 .

For the example data listed in Table 8.1, the sum of the N = 10 observations is

N∑
i=1

xi = 2 + 3 + 4 + 3 + 4 + 5 + 7 + 8 + 8 + 9 = 53 ,

the sum of the N = 10 squared observations is

N∑
i=1

x2
i = 22 + 32 + 42 + 32 + 42 + 52 + 72 + 82 + 82 + 92 = 337 ,
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and the total sum-of-squares is

SSTotal =
N∑

i=1

(
xi − ¯̄x)2 =

N∑
i=1

x2
i −

(
N∑

i=1

xi

)2/
N

= 337 − (53)2/10 = 56.10 ,

where ¯̄x denotes the grand mean of all N = 10 observations. Then following the
expressions given in Eq. (8.5) on p. 262 for test statistics δ and F , the observed
value of test statistic δ with respect to test statistic F is

δ = 2SSTotal

N − g + (g − 1)F
= 2(56.10)

10 − 3 + (3 − 1)(29.2250)
= 1.7143

and the observed value of test statistic F with respect to test statistic δ is

F = 2SSTotal

(g − 1)δ
− N − g

g − 1
= 2(56.10)

(3 − 1)(1.7143)
− 10 − 3

3 − 1
= 29.2250 .

Under the Fisher–Pitman permutation model, the exact probability of an
observed δ is the proportion of δ test statistic values computed on all possible,
equally-likely arrangements of the N = 10 observations listed in Table 8.1 that
are equal to or less than the observed value of δ = 1.7143. There are exactly 10 δ

test statistic values that are equal to or less than the observed value of δ = 1.7143.
If all M arrangements of the N = 10 observations listed in Table 8.1 occur with
equal chance under the Fisher–Pitman null hypothesis, the exact probability value
of δ = 1.7143 computed on all M = 4200 arrangements of the observed data with
n1 = n2 = 3 and n3 = 4 preserved for each arrangement is

P
(
δ ≤ δo|H0

) = number of δ values ≤ δo

M
= 10

4200
= 0.2381×10−2 ,

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the N = 10 observations listed in Table 8.1.

Alternatively, there are only 10 F values that are larger than the observed value
of F = 29.2250. Thus, if all arrangements of the observed data occur with equal
chance, the exact probability value of F = 29.2250 under the Fisher–Pitman null
hypothesis is

P
(
F ≥ Fo|H0

) = number of F values ≥ Fo

M
= 10

4200
= 0.2381×10−2 ,

where Fo denotes the observed value of test statistic F .
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Following Eq. (8.7) on p. 263, the exact expected value of the M = 4200 δ test
statistic values under the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 52,360

4200
= 12.4667 .

Alternatively, in terms of a one-way analysis of variance model the exact expected
value of test statistic δ is

μδ = 2SSTotal

N − 1
= 2(56.10)

10 − 1
= 12.4667 .

Following Eq. (8.6) on p. 263, the observed chance-corrected measure of effect size
is

� = 1 − δ

μδ

= 1 − 1.7143

12.4667
= +0.8625 ,

indicating approximately 86% within-group agreement above what is expected by
chance. Alternatively, in terms of a one-way analysis of variance model the chance-
corrected measure of effect size is

� = 1 − δ

μδ

= 1 − 2MSWithin

2SSTotal

N − 1

= 1 − (N − 1)(MSWithin)

SSTotal

= 1 − (10 − 1)(0.8571)

56.10
= +0.8625 .

8.5 Example 2: Measures of Effect Size

Measures of effect size express the practical or clinical significance of differences
among multiple independent sample means, as contrasted with the statistical
significance of differences. Five measures of effect size are commonly used for
determining the magnitude of treatment effects for multiple independent samples:
Cohen’s d̂, Pearson’s η2, Kelley’s η̂2, Hays’ ω̂2

F for fixed models, and Hays’ ω̂2
R , for

random models. Cohen’s d̂ measure of effect size is given by

d̂ =
[

1

g − 1

(
SSBetween

nMSWithin

)]1/2

=
[
F

n

]1/2

,
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where n denotes the common size of each treatment group. Pearson’s η2 measure of
effect size is given by

η2 = SSBetween

SSTotal
= 1 − N − g

F(g − 1) + N − g
,

which is equivalent to Pearson’s r2 for a one-way analysis of variance design.
Kelley’s “unbiased” correlation ratio is given by3

η̂2 = SSTotal − (N − 1)MSWithin

SSTotal
= 1 − N − 1

F(g − 1) + N − g
,

which is equivalent to an adjusted or “shrunken” squared multiple correlation
coefficient reported by most computer statistical packages and given by

η̂2 = R2
adj = 1 − (1 − R2)(N − 1)

N − p − 1
,

where R2 is the squared product-moment multiple correlation coefficient and p is
the number of predictors. Hays’ ω̂2

F measure of effect size for a fixed-effects analysis
of variance model is given by

ω̂2
F = SSBetween − (g − 1)MSWithin

SSTotal + MSWithin
= 1 − N

(F − 1)(g − 1) + N
.

Hays’ ω̂2
R measure of effect size for a random-effects analysis of variance model is

given by

ω̂2
R = MSBetween − MSWithin

MSBetween + (n − 1)MSWithin
= 1 − n

F + n − 1
,

where n denotes the common size of each treatment group. Mielke and Berry’s �
chance-corrected measure of effect size is given by

� = 1 − δ

μδ

,

where δ is defined in Eq. (8.1) on p. 261 and μδ is the exact expected value of δ

under the Fisher–Pitman null hypothesis given by

μδ = 1

M

M∑
i=1

δi ,

3It is well known that Kelley’s correlation ratio is not unbiased, but since the title of Truman
Kelley’s 1935 article was “An unbiased correlation ratio measure,” the label has persisted.
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where, for a test of g ≥ 3 independent samples, the number of possible, equally-
likely arrangements of the observed data is given by

M = N !
g∏

i=1

ni !
.

For the example data listed in Table 8.1 on p. 263 for N = 10 observations,
Cohen’s d̂ measure of effect size is4

d̂ =
[

1

g − 1

(
SSBetween

n̄MSWithin

)]1/2

=
[
F

n̄

]1/2

=
[

29.2250

3.3333

]1/2

= ±2.9610 .

Pearson’s r2 measure of effect size is usually labeled as η2 when reported with an
analysis of variance. For the example data listed in Table 8.1, η2 is

η2 = SSBetween

SSTotal
= 1 − N − g

F(g − 1) + N − g

= 1 − 10 − 3

(29.2250)(3 − 1) + 10 − 3
= 0.8930 ,

Kelley’s η̂2 measure of effect size is

η̂2 = SSTotal − (N − 1)MSWithin

SSTotal
= 1 − N − 1

F(g − 1) + N − g

= 1 − 10 − 1

(29.2250)(3 − 1) + 10 − 3
= 0.8625 ,

Hays’ ω̂2
F measure of effect size for a fixed-effects analysis of variance model is

ω̂2
F = SSBetween − (g − 1)MSWithin

SSTotal + MSWithin
= 1 − N

(F − 1)(g − 1) + N

= 1 − 10

(29.2250 − 1)(3 − 1) + 10
= 0.8495 ,

4Since the sizes of the treatment groups are not equal, the average value of n̄ = 3.3333 is used for
both Cohen’s d̂ measure of effect size and Hays’ ω̂2

R measure of effect size for a random-effects
model. In cases where the treatment-group sizes differ greatly, a weighted average recommended
by Haggard is often adopted [6].
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Hays’ ω̂2
R measure of effect size for a random-effects analysis of variance model is5

ω̂2
R = MSBetween − MSWithin

MSBetween + (n̄ − 1)MSWithin
= 1 − n̄

F + n̄ − 1

= 1 − 3.3333

29.2250 + 3.3333 − 1
= 0.8944 ,

and Mielke and Berry’s � chance-corrected measure of effect size is

� = 1 − δ

μδ
= 1 − 1.7143

12.4667
= +0.8625 ,

where the exact expected value of test statistic δ under the Fisher–Pitman null
hypothesis is

μδ = 1

M

M∑
i=1

δi = 52,360

4200
= 12.4667 .

It can easily be shown that Mielke and Berry’s � chance-corrected measure of effect
size is identical to Kelley’s η̂2 measure of effect size for a one-way, completely-
randomized analysis of variance design, under the Neyman–Pearson population
model.

8.5.1 Comparisons of Effect Size Measures

In this section the various measures of effect size are compared and contrasted.
Because Pearson’s r2 and η2 are equivalent and Kelley’s η̂2 and Mielke and Berry’s
� are equivalent for multi-sample designs, only η2 and � are utilized for the
comparisons. The functional relationships between Cohen’s d̂ measure of effect
size and Pearson’s η2 (r2) measure of effect size for g ≥ 3 independent samples
are given by

d̂ =
[

η2(N − g)

n(g − 1)(1 − η2)

]1/2

and η2 = 1 − N − g

nd̂2(g − 1) + N − g
, (8.8)

where n denotes the common treatment-group size. The relationships between
Cohen’s d̂ measure of effect size and Mielke and Berry’s � (η̂2) chance-corrected

5For a one-way completely-randomized analysis of variance, a fixed-effects model and a random-
effects model yield the same F -ratio, but measures of effect size can differ under the two models.
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measure of effect size are given by

d̂ =
[�(N − g) + g − 1

n(g − 1)(1 − �)

]1/2

and � = 1 − N − 1

nd̂2(g − 1) + N − g
. (8.9)

The relationships between Cohen’s d̂ measure of effect size and Hays’ ω̂2
F measure

of effect size for a fixed-effects model are given by

d̂ =
[

(N − g + 1)ω̂2
F + g − 1

n(g − 1)(1 − ω̂2
F)

]1/2

(8.10)

and

ω̂2
F = 1 − N

(nd̂2 − 1)(g − 1) + N
. (8.11)

The relationships between Cohen’s d̂ measure of effect size and Hays’ ω̂2
R measure

of effect size for a random-effects model are given by

d̂ =
[

ω̂2
R(n − 1) + 1

n(1 − ω̂2
R)

]1/2

and ω̂2
R = 1 − n

n(d̂2 + 1) − 1
. (8.12)

The relationships between Pearson’s η2 (r2) measure of effect size and Mielke and
Berry’s � (η̂2) measure of effect size are given by

η2 = 1 − (N − g)(1 − �)

N − 1
and � = 1 − (N − 1)(1 − η2)

N − g
. (8.13)

The relationships between Pearson’s η2 (r2) measure of effect size and Hays’ ω̂2
F

measure of effect size for a fixed-effects model are given by

η2 = (N − g + 1)ω̂2
F + g − 1

N + ω̂2
F − 1

(8.14)

and

ω̂2
F = η2(N − 1) − g + 1

N − η2 − g + 1
. (8.15)
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The relationships between Pearson’s η2 (r2) measure of effect size and Hays’ ω̂2
R

measure of effect size for a random-effects model are given by

η2 = 1 − (N − g)(1 − ω̂2
R)

(g − 1)[ω̂2
R(n − 1) + 1] + (N − g)(1 − ω̂2

R)
(8.16)

and

ω̂2
R = η2(N − 1) − g + 1

(N − g)η2 + (g − 1)(1 − η2)(n − 1)
. (8.17)

The relationships between Mielke and Berry’s � (η̂2) measure of effect size and
Hays’ ω̂2

F measure of effect size for a fixed-effects model are given by

� = Nω̂2
F

N + ω̂2
F − 1

and ω̂2
F = �(N − 1)

N − � . (8.18)

The relationships between Mielke and Berry’s � (η̂2) measure of effect size and
Hays’ ω̂2

R measure of effect size for a random-effects model are given by

� = 1 − (N − 1)(1 − ω̂2
R)

nω̂2
R(g − 1) + (N − 1))(1 − ω̂2

R)
(8.19)

and

ω̂2
R = η̂2(N − 1)

N� − 1 + (1 − �)[n(g − 1) + 1] . (8.20)

And the relationships between Hays’ ω̂2
F measure of effect size for a fixed-effects

model and Hays’ ω̂2
R measure of effect size for a random-effects model are given by

ω̂2
F = nω̂2

R(g − 1)

nω̂2
R + N(1 − ω̂2

R)
and ω̂2

R = Nω̂2
F

Nω̂2
F − n(g − 1)(1 − ω̂2

F)
. (8.21)

8.5.2 Example Comparisons of Effect Size Measures

In this section comparisons of Cohen’s d̂ , Pearson’s η2, Mielke and Berry’s �, Hays’
ω̂2

F, and Hays’ ω̂2
R measures of effect size are illustrated with the example data listed

in Table 8.1 on p. 263 with n1 = n2 = 3, n3 = 4, and N = n1 + n2 + n3 =
3 + 3 + 4 = 10 observations. Because the treatment-group sizes are unequal, the
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ns in the equations for Cohen’s d̂ and Hays’ ω̂2
R are replaced with a simple average;

that is, n̄ = (3 + 3 + 4)/3 = 3.3333.
Given the example data listed in Table 8.1 and following the expressions given

in Eq. (8.8) for Cohen’s d̂ measure of effect size and Pearson’s η2 (r2) measure of
effect size, the observed value for Cohen’s d̂ measure of effect size with respect to
the observed value of Pearson’s η2 (r2) measure of effect size is

d̂ =
[

η2(N − g)

n̄(g − 1)(1 − η2)

]1/2

=
[

(0.8930)(10 − 3)

(3.3333)(3 − 1)(1 − 0.8930)

]1/2

= ±2.9610

and the observed value for Pearson’s η2 (r2) measure of effect size with respect to
the observed value of Cohen’s d̂ measure of effect size is

η2 = 1 − N − g

n̄d̂ 2(g − 1) + N − g

= 1 − 10 − 3

(3.3333)(2.9610)2(3 − 1) + 10 − 3
= 0.8930 .

Following the expressions given in Eq. (8.9) for Cohen’s d̂ measure of effect
size and Mielke and Berry’s � (η̂2) measure of effect size, the observed value for
Cohen’s d̂ measure of effect size with respect to the observed value of Mielke and
Berry’s � (η̂2) measure of effect size is

d̂ =
[�(N − g) + g − 1

n̄(g − 1)(1 − �)

]1/2

=
[

0.8625(10 − 3) + 3 − 1

(3.3333)(3 − 1)(1 − 0.8625)

]1/2

= ±2.9610

and the observed value for Mielke and Berry’s � (η̂2) measure of effect size with
respect to the observed value of Cohen’s d̂ measure of effect size is

� = 1 − N − 1

n̄d̂ 2(g − 1) + N − g

= 1 − 10 − 1

(3.3333)(2.9610)2(3 − 1) + 10 − 3
= +0.8625 .

Following the expressions given in Eqs. (8.10) and (8.11) for Cohen’s d̂ measure
of effect size and Hays’ ω̂2

F measure of effect size for a fixed-effects model, the
observed value for Cohen’s d̂ measure of effect size with respect to the observed
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value of Hays’ ω̂2
F measure of effect size is

d̂ =
[

(N − g + 1)ω̂2
F + g − 1

n̄(g − 1)(1 − ω̂2
F)

]1/2

=
[

(10 − 3 + 1)(0.8495) + 3 − 1

(3.3333)(3 − 1)(1 − 0.8495)

]1/2

= ±2.9610

and the observed value for Hays’ ω̂2
F measure of effect size with respect to the

observed value of Cohen’s d̂ measure of effect size is

ω̂2
F = 1 − N

(n̄d̂ 2 − 1)(g − 1) + N

= 1 − 10

[(3.3333)(2.9610)2 − 1](3 − 1) + 10
= 0.8495 .

Following the expressions given in Eq. (8.12) for Cohen’s d̂ measure of effect
size and Hays’ ω̂2

R measure of effect size for a random-effects model, the observed
value for Cohen’s d̂ measure of effect size with respect to the observed value of
Hays’ ω̂2

R measure of effect size is

d̂ =
[

ω̂2
R(n̄ − 1) + 1

n̄(1 − ω̂2
R)

]1/2

=
[

(0.8944)(3.3333 − 1) + 1

(3.3333)(1 − 0.8944)

]1/2

= ±2.9610

and the observed value of Hays’ ω̂2
R measure of effect size with respect to the

observed value of Cohen’s d̂ measure of effect size is

ω̂2
R = 1 − n̄

n̄(d̂ 2 + 1) − 1
= 1 − 3.3333

(3.3333)[(2.9610)2 + 1] − 1
= 0.8944 .

Following the expressions given in Eq. (8.13) for Pearson’s η2 (r2) measure of
effect size and Mielke and Berry’s � (η̂2) measure of effect size, the observed value
for Pearson’s η2 (r2) measure of effect size with respect to the observed value of
Mielke and Berry’s � (η̂2) measure of effect size is

η2 = 1 − (N − g)(1 − �)

N − 1
= 1 − (10 − 3)(1 − 0.8625)

10 − 1
= 0.8930

and the observed value for Mielke and Berry’s � (η̂2) measure of effect size with
respect to the observed value of Pearson’s η2 (r2) measure of effect size is

� = 1 − (N − 1)(1 − η2)

N − g
= 1 − (10 − 1)(1 − 0.8930)

10 − 3
= +0.8625 .



276 8 Completely-Randomized Designs

Following the expressions given in Eqs. (8.14) and (8.15) for Pearson’s η2 (r2)
measure of effect size and Hays’ ω̂2

F measure of effect size for a fixed-effects model,
the observed value for Pearson’s η2 (r2) measure of effect size with respect to the
observed value of Hays’ ω̂2

F measure of effect size is

η2 = (N − g + 1)ω̂2
F + g − 1

N + ω̂2
F − 1

= (10 − 3 + 1)(0.8495) + 3 − 1

10 + 0.8495 − 1
= 0.8930

and the observed value for Hays’ ω̂2
F measure of effect size with respect to the

observed value of Pearson’s η2 (r2) measure of effect size is

ω̂2
F = η2(N − 1) − g + 1

N − η2 − g + 1
= (0.8930)(10 − 1) − 3 + 1

10 − 0.8930 − 3 + 1
= 0.8495 .

Following the expressions given in Eqs. (8.16) and (8.17) for Pearson’s η2 (r2)
measure of effect size and Hays’ ω̂2

R measure of effect size for a random-effects
model, the observed value for Pearson’s η2 (r2) measure of effect size with respect
to the observed value of Hays’ ω̂2

R measure of effect size is

η2 = 1 − (N − g)(1 − ω̂2
R)

(g − 1)[ω̂2
R(n̄ − 1) + 1] + (N − g)(1 − ω̂2

R)

= 1 − (10 − 3)(1 − 0.8944)

(3 − 1)[(0.8944)(3.3333 − 1) + 1] + (10 − 3)(1 − 0.8944)

= 0.8930

and the observed value for Hays’ ω̂2
R measure of effect size with respect to the

observed value of Pearson’s η2 (r2) measure of effect size is

ω̂2
R = η2(N − 1) − g + 1

(N − g)η2 + (g − 1)(1 − η2)(n̄ − 1)

= 0.8930(10 − 1) − 3 + 1

(10 − 3)(0.8930) + (3 − 1)(1 − 0.8930)(3.3333 − 1)
= 0.8944 .

Following the expressions given in Eq. (8.18) for Mielke and Berry’s � (η̂2)
measure of effect size and Hays’ ω̂2

F measure of effect size for a fixed-effects model,
the observed value for Mielke and Berry’s � (η̂2) measure of effect size with respect
to the observed value of Hays’ ω̂2

F measure of effect size is

� = Nω̂2
F

N + ω̂2
F − 1

= (10)(0.8495)

10 + 0.8495 − 1
= +0.8625
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and the observed value for Hays’ ω̂2
F measure of effect size with respect to the

observed value of Mielke and Berry’s � (η̂2) measure of effect size is

ω̂2
F = �(N − 1)

N − � = (0.8625)(10 − 1)

10 − 0.8625
= 0.8495 .

Following the expressions given in Eqs. (8.19) and (8.20) for Mielke and Berry’s
� (η̂2) measure of effect size and Hays’ ω̂2

R measure of effect size for a random-
effects model, the observed value for Mielke and Berry’s � (η̂2) measure of effect
size with respect to the observed value of Hays’ ω̂2

R measure of effect size is

� = 1 − (N − 1)(1 − ω̂2
R)

n̄ω̂2
R(g − 1) + (N − 1)(1 − ω̂2

R)

= 1 − (10 − 1)(1 − 0.8944)

(3.3333)(0.8944)(3 − 1) + (10 − 1)(1 − 0.8944)
= +0.8625

and the observed value for Hays’ ω̂2
R measure of effect size with respect to the

observed value for Mielke and Berry’s � (η̂2) measure of effect size is

ω̂2
R = η̂2(N − 1)

N� − 1 + (1 − �)[n̄(g − 1) + 1]
= (0.8625)(10 − 1)

(10)(0.8625) − 1 + (1 − 0.8625)[(3.3333)(3 − 1) + 1] = 0.8944 .

Following the expressions given in Eq. (8.21) for Hays’ ω̂2
F measure of effect size

for a fixed-effects model and Hays’ ω̂2
R measure of effect size for a random-effects

model, the observed value for Hays’ ω̂2
F measure of effect size with respect to the

observed value of Hays’ ω̂2
R measure of effect size is

ω̂2
F = n̄ω̂2

R(g − 1)

n̄ω̂2
R(g − 1) + N(1 − ω̂2

R)

= (3.3333)(0.8944)(3 − 1)

(3.3333)(0.8944)(3 − 1) + (10)(1 − 0.8944)
= 0.8495

and the observed value for Hays’ ω̂2
R measure of effect size with respect to the

observed value of Hays’ ω̂2
F measure of effect size is

ω̂2
R = Nω̂2

F

Nω̂2
F + n̄(g − 1)(1 − ω̂2

F)

= (10)(0.8495)

(10)(0.8495) + (3.3333)(3 − 1)(1 − 0.8495)
= 0.8944 .
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8.6 Example 3: Analyses with v = 2 and v = 1

For a third example of tests of differences among g ≥ 3 independent samples,
consider the example data set given in Table 8.4 with g = 4 treatment groups,
sample sizes of n1 = n2 = n3 = n4 = 7, and N = 28 total observations. Under
the Neyman–Pearson population model with sample sizes n1 = n2 = n3 = n4 = 7,
treatment-group means x̄1 = 20.4286, x̄2 = 20.8571, x̄3 = 9.1429, and x̄4 =
14.1429, grand mean ¯̄x = 16.1429, estimated population variances s2

1 = 27.9524,
s2

2 = 35.4762, and s2
3 = s2

4 = 8.8095, the sum-of-squares between treatments is

SSBetween =
g∑

i=1

ni

(
x̄i − ¯̄x)2 = 655.1429 ,

the sum-of-squares within treatments is

SSWithin =
g∑

i=1

ni∑
j=1

(
xij − x̄i

)2 = 486.2857 ,

the sum-of-squares total is

SSTotal = SSBetween + SSWithin = 655.1429 + 486.2857 = 1141.4286 ,

the mean-square between treatments is

MSBetween = SSBetween

g − 1
= 655.1429

4 − 1
= 218.3810 ,

the mean-square within treatments is

MSWithin = SSWithin

N − g
= 486.28571

28 − 4
= 20.2619 ,

Table 8.4 Example data for
a test of g = 4 independent
samples with N = 28
observations

Treatment group

1 2 3 4

15 24 10 15

23 14 5 13

18 15 8 10

16 19 13 17

25 30 6 18

29 26 10 11

17 18 12 15
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Table 8.5 Source table for
the data listed in Table 8.4

Factor SS df MS F

Between 655.1429 3 218.3810 10.7779

Within 486.1429 24 20.2619

Total 1141.4286

and the observed value of Fisher’s F -ratio test statistic is

F = MSBetween

MSWithin
= 218.3810

20.2619
= 10.7779 .

The essential factors, sums of squares (SS), degrees of freedom (df ), mean squares
(MS), and variance-ratio test statistic (F ) are summarized in Table 8.5.

Under the Neyman–Pearson null hypothesis, H0: μ1 = μ2 = μ3 = μ4, Fisher’s
F -ratio test statistic is asymptotically distributed as Snedecor’s F with ν1 = g − 1
and ν2 = N−g degrees of freedom. With ν1 = g−1 = 4−1 = 3 and ν2 = N−g =
28 − 4 = 24 degrees of freedom, the asymptotic probability value of F = 10.7778
is P = 0.1122×10−3, under the assumptions of normality and homogeneity.

8.6.1 A Monte Carlo Analysis with v = 2

For the first analysis of the example data listed in Table 8.4 on p. 278 under the
Fisher–Pitman permutation model let v = 2, employing squared Euclidean scaling,
and let the treatment-group weights be given by

Ci = ni − 1

N − g
, i = 1, . . . , g ,

for correspondence with Fisher’s F -ratio test statistic.
Because there are

M = N !
g∏

i=1

ni !
= 28!

7! 7! 7! 7! = 472,518,347,558,400

possible, equally-likely arrangements in the reference set of all permutations of
the N = 28 observations listed in Table 8.4, an exact permutation analysis is not
possible and a Monte Carlo analysis is required.

Following Eq. (8.2) on p. 261, the N = 28 observations yield g = 4 average
distance-function values of

ξi = 55.9048 , ξ2 = 70.9524 , and ξ3 = ξ4 = 17.6190 .
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Alternatively, in terms of a one-way analysis of variance model the average distance-
function values are ξ1 = 2s2

1 = 2(27.9524) = 55.9048, ξ2 = 2s2
2 = 2(34.4762) =

70.9524, ξ3 = 2s2
3 = 2(8.8095) = 2(8.8095) = 17.6190, and ξ4 = 2s2

4 =
2(8.8095) = 17.6190.

Following Eq. (8.1) on p. 261, the observed value of the permutation test statistic
based on v = 2 and treatment-group weights

Ci = ni − 1

N − g
, i = 1, . . . , 4 ,

is

δ =
g∑

i=1

Ciξi = 7 − 1

28 − 4

(
55.9048 + 70.9524

+ 17.6190 + 17.6190
) = 40.5238 .

Alternatively, in terms of a one-way analysis of variance model the permutation test
statistic is

δ = 2MSWithin = 2(20.2619) = 40.5238 .

For the example data listed in Table 8.4, the sum of the N = 28 observations is

N∑
i=1

xi = 15 + 23 + 18 + · · · + 11 + 15 = 452 ,

the sum of the N = 28 squared observations is

N∑
i=1

x2
i = 152 + 232 + 182 + · · · + 112 + 152 = 8438 ,

and the total sum-of-squares is

SSTotal =
N∑

i=1

(
xi − ¯̄x)2 =

N∑
i=1

x2
i −

(
N∑

i=1

xi

)2/
N

= 8438 − (452)2/28 = 1141.4286 ,

where ¯̄x denotes the grand mean of all N = 28 observations.
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Then following the expressions given in Eq. (8.5) on p. 262 for test statistics δ

and F , the observed value for test statistic δ with respect to the observed value of
test statistic F is

δ = 2SSTotal

N − g + (g − 1)F
= 2(1141.4286)

28 − 4 + (4 − 1)(10.7779)
= 40.5238

and the observed value of test statistic F with respect to the observed value of test
statistic δ is

F = 2SSTotal

(g − 1)δ
− N − g

g − 1
= 2(1141.4286)

(4 − 1)(40.5238)
− 28 − 4

4 − 1
= 10.7779 .

Under the Fisher–Pitman permutation model, the Monte Carlo probability of an
observed δ is the proportion of δ test statistic values computed on the randomly-
selected, equally-likely arrangements of the N = 28 observations listed in Table 8.4
that are equal to or less than the observed value of δ = 40.5238. There are
exactly 138 δ test statistic values that are equal to or less than the observed value
of δ = 40.5238. If all M arrangements of the N = 28 observations listed in
Table 8.4 occur with equal chance under the Fisher–Pitman null hypothesis, the
Monte Carlo probability value of δ = 40.5238 computed on L = 1,000,000 random
arrangements of the observed data with n1 = n2 = n3 = n4 = 7 preserved for each
arrangement is

P
(
δ ≤ δo

) = number of δ values ≤ δo

L
= 138

1,000,000
= 0.1380×10−3 ,

where δo denotes the observed value of test statistic δ and L is the number of
randomly-selected, equally-likely arrangements of the N = 28 observations listed
in Table 8.4.

In terms of a one-way analysis of variance model, there are only 138 F values that
are larger than the observed value of F = 10.7779. Thus, if all arrangements of the
observed data occur with equal chance, the exact probability value of F = 10.7779
under the Fisher–Pitman null hypothesis is

P
(
F ≥ Fo

) = number of F values ≥ Fo

L
= 138

1,000,000
= 0.1380×10−3 ,

where Fo denotes the observed value of test statistic F and L is the number of
random, equally-likely arrangements of the example data listed in Table 8.4.

Following Eq. (8.7) on p. 263, the exact expected value of the M = 4200 δ test
statistic values under the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 39,951,568,041,566,987

472,518,347,558,400
= 84.5503 .



282 8 Completely-Randomized Designs

Alternatively, in terms of a one-way analysis of variance model the exact expected
value of test statistic δ under the Fisher–Pitman null hypothesis is

μδ = 2SSTotal

N − 1
= 2(1141.4286)

28 − 1
= 84.5503 .

Following Eq. (8.6) on p. 263, the observed chance-corrected measure of effect size
is

� = 1 − δ

μδ

= 1 − 40.5238

84.5503
= +0.5207 ,

indicating approximately 52% within-group agreement above what is expected
by chance. Alternatively, in terms of a one-way analysis of variance model, the
observed chance-corrected measure of effect size is

� = 1 − (N − 1)(MSWithin)

SSTotal
= 1 − (28 − 1)(20.2619)

1141.4286
= +0.5207 .

Alternatively, in terms of Fisher’s F -ratio test statistic the chance-corrected measure
of effect size is

� = 1 − N − 1

F(g − 1) + N − g
= 1 − 28 − 1

10.7779(4 − 1) + 28 − 4
= +0.5207 .

8.6.2 Measures of Effect Size

For the example data listed in Table 8.4, Cohen’s d̂ measure of effect size is

d̂ =
[

1

g − 1

(
SSBetween

nMSWithin

)]1/2

=
[

1

4 − 1

(
655.1429

(7)(20.2619)

)]1/2

= ±1.2408 ,

Pearson’s η2 (r2) measure of effect size is

η2 = SSBetween

SSTotal
= 655.1429

1141.4286
= 0.5740 ,

Kelley’s η̂2 measure of effect size is

η̂2 = SSTotal − (N − 1)MSWithin

SSTotal

= 1141.4286 − (28 − 1)(20.2619)

1141.4286
= 0.5207 ,
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Hays’ ω̂2
F measure of effect size for a fixed-effects model is

ω̂2
F = SSBetween − (g − 1)MSWithin

SSTotal + MSWithin

= 655.1429 − (4 − 1)(20.2619)

1141.4286 + 20.2619
= 0.5116 ,

Hays’ ω̂2
R measure of effect size for a random-effects model is

ω̂2
R = MSBetween − MSWithin

MSBetween + (n − 1)MSWithin

= 655.1429 − 20.2619

655.1429 + (7 − 1)(20.2619)
= 0.8174 ,

and the observed chance-corrected measure of effect size is

� = 1 − δ

μδ

= 1 − 40.5238

84.5503
= +0.5207 ,

indicating approximately 52% within-group agreement above what is expected by
chance.

8.6.3 A Monte Carlo Analysis with v = 1

Consider a second analysis of the example data listed in Table 8.4 on p. 278 under
the Fisher–Pitman permutation model with v = 1 and treatment-group weights

Ci = ni − 1

N − g
, i = 1, . . . , g .

For v = 1, the average distance-function values for the g = 4 treatment groups are

ξ1 = 6.2857 , ξ2 = 7.2381 , and ξ3 = ξ4 = 3.6190 ,

respectively, and the observed permutation test statistic is

δ =
g∑

i=1

Ciξi

=
(

7 − 1

28 − 4

)
(6.2857 + 7.2381 + 3.6190 + 3.6190) = 5.1905 .
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Because there are

M = N !
g∏

i=1

ni !
= 28!

7! 7! 7! 7! = 472,518,347,558,400

possible, equally-likely arrangements in the reference set of all permutations of
the N = 28 observations listed in Table 8.4, an exact permutation analysis is
impossible and a Monte Carlo permutation analysis is required. Under the Fisher–
Pitman permutation model, the Monte Carlo probability of an observed δ is the
proportion of δ test statistic values computed on the randomly-selected, equally-
likely arrangements of the N = 28 observations listed in Table 8.4 that are equal
to or less than the observed value of δ = 5.1905. There are exactly 204 δ test
statistic values that are equal to or less than the observed value of δ = 5.1905. If
all M arrangements of the N = 28 observations listed in Table 8.4 occur with equal
chance under the Fisher–Pitman null hypothesis, the Monte Carlo probability value
of δ = 5.1905 computed on L = 1,000,000 random arrangements of the observed
data with n1 = n2 = n3 = n4 = 7 preserved for each arrangement is

P
(
δ ≤ δo|H0

) = number of δ values ≤ δo

L
= 204

1,000,000
= 0.2040×10−3 ,

where δo denotes the observed value of test statistic δ and L is the number of
randomly-selected, equally-likely arrangements of the N = 28 observations listed
in Table 8.4. No comparison is made with Fisher’s F -ratio test statistic as F is
undefined for ordinary Euclidean scaling.

For the example data listed in Table 8.4, the exact expected value of test statistic
δ under the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 3,497,628,060,462,033

472,518,347,558,400
= 7.4021 (8.22)

and the observed chance-corrected measure of effect size is

� = 1 − δ

μδ

= 1 − 5.1905

7.4021
= +0.2988 ,

indicating approximately 30% within-group agreement above what is expected by
chance. No comparisons are made with Cohen’s d̂ , Pearson’s η2 (r2), Kelley’s η̂2,
Hays’ ω̂2

F, or Hays’ ω̂2
R conventional measures of effect size as d̂ , η2, η̂2, ω̂2

F, and
ω̂2

R are undefined for ordinary Euclidean scaling.
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8.6.4 The Effects of Extreme Values

To illustrate the robustness to the inclusion of extreme values of ordinary Euclidean
scaling with v = 1, consider the example data listed in Table 8.4 on p. 278 with one
alteration. The seventh (last) observation in Group 4 in Table 8.4 has been increased
from x7,4 = 15 to x7,4 = 75, as shown in Table 8.6. Under the Neyman–Pearson
population model with sample sizes n1 = n2 = n3 = n4 = 7, treatment-group
means x̄1 = 20.4286, x̄2 = 20.8571, x̄3 = 9.1429, and x̄4 = 22.7143, grand
mean ¯̄x = 18.2857, estimated population variances s2

1 = 27.9524, s2
2 = 35.4762,

s2
3 = 8.8095, and s2

4 = 540.2381, the sum-of-squares between treatments is

SSBetween =
g∑

i=1

ni

(
x̄i − ¯̄x)2 = 800.8571 ,

the sum-of-squares within treatments is

SSWithin =
g∑

i=1

ni∑
j=1

(
xij − x̄i

)2 = 3674.8571,

the sum-of-squares total is

SSTotal = SSBetween + SSWithin = 800.8571 + 3674.8571 = 4475.7142 ,

the mean-square between treatments is

MSBetween = SSBetween

g − 1
= 655.1429

4 − 1
= 266.9524 ,

the mean-square within treatments is

MSWithin = SSWithin

N − g
= 486.28571

28 − 4
= 153.1190 ,

Table 8.6 Example data for
a test of g = 4 independent
samples with N = 28
observations and one extreme
value, x7,4 = 75

Treatment group

1 2 3 4

15 24 10 15

23 14 5 13

18 15 8 10

16 19 13 17

25 30 6 18

29 26 10 11

17 18 12 75
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Table 8.7 Source table for
the data listed in Table 8.6

Factor SS df MS F

Between 800.8571 3 266.9524 1.7434

Within 3674.8571 24 153.1190

Total 4475.7142

and the observed value of Fisher’s F -ratio test statistic is

F = MSBetween

MSWithin
= 266.9524

153.1190
= 1.7434 .

The essential factors, sums of squares (SS), degrees of freedom (df ), mean squares
(MS), and variance-ratio test statistic (F ) are summarized in Table 8.7.

Under the Neyman–Pearson null hypothesis, H0: μ1 = μ2 = μ3 = μ4, Fisher’s
F -ratio test statistic is asymptotically distributed as Snedecor’s F with ν1 = g − 1
and ν2 = N−g degrees of freedom. With ν1 = g−1 = 4−1 = 3 and ν2 = N−g =
28 − 4 = 24 degrees of freedom, the asymptotic probability value of F = 1.7434
is P = 0.1849, under the assumptions of normality and homogeneity. The original
F -ratio test statistic value with observation x7,4 = 15 was F = 10.7779 with an
asymptotic probability value of P = 0.1122×10−3, yielding a difference between
the two probability values of

	P = 0.1849 − 0.1122×10−3 = 0.1848 .

8.6.5 A Monte Carlo Analysis with v = 2

For the first analysis of the example data listed in Table 8.6 on p. 285 under the
Fisher–Pitman permutation model let v = 2, employing squared Euclidean scaling,
and let the treatment-group weights be given by

Ci = ni − 1

N − g
, i = 1, . . . , g ,

for correspondence with Fisher’s F -ratio test statistic.
Because there are

M = N !
g∏

i=1

ni !
= 28!

7! 7! 7! 7! = 472,518,347,558,400

possible, equally-likely arrangements in the reference set of all permutations of
the N = 28 observations listed in Table 8.6, an exact permutation analysis is not
possible and a Monte Carlo analysis is required.
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Following Eq. (8.2) on p. 261, the N = 28 observations yield g = 4 average
distance-function values of

ξi = 55.9048 , ξ2 = 70.9524 , ξ3 = 17.6190 , and ξ4 = 1080.4762 .

Alternatively, under an analysis of variance model, ξ1 = 2s2
1 = 2(27.9524) =

55.9048, ξ2 = 2s2
2 = 2(35.4762) = 70.9524, ξ3 = 2s2

3 = 2(8.8095) = 17.6190,
and ξ4 = 2s2

4 = 2(540.2381) = 1080.4762.
Following Eq. (8.1) on p. 261, the observed value of the permutation test statistic

based on v = 2 and treatment-group weights

Ci = ni − 1

N − g
, i = 1, . . . , 4 ,

is

δ =
g∑

i=1

Ciξi = 7 − 1

28 − 4

(
55.9048 + 70.9524

+ 17.6190 + 1080.4762
) = 306.2381 .

Under the Fisher–Pitman permutation model, the Monte Carlo probability of an
observed δ is the proportion of δ test statistic values computed on the randomly-
selected, equally-likely arrangements of the N = 28 observations listed in Table 8.6
that are equal to or less than the observed value of δ = 306.2381. There are exactly
128,239 δ test statistic values that are equal to or less than the observed value
of δ = 306.2381. If all M arrangements of the N = 28 observations listed in
Table 8.6 occur with equal chance under the Fisher–Pitman null hypothesis, the
Monte Carlo probability value of δ = 306.2381 computed on L = 1,000,000
random arrangements of the observed data with n1 = n2 = n3 = n4 = 7 preserved
for each arrangement is

P
(
δ ≤ δo|H0

) = number of δ values ≤ δo

L
= 128,239

1,000,000
= 0.1282 ,

where δo denotes the observed value of test statistic δ and L is the number of
randomly-selected, equally-likely arrangements of the N = 28 observations listed
in Table 8.6. For comparison, the original value of test statistic δ based on v = 2
with observation x7,4 = 15 was δ = 40.5238 with a Monte Carlo probability value
of P = 0.1380×10−3, yielding a difference between the two probability values of

	P = 0.1282 − 0.1380×10−3 = 0.1281 .
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8.6.6 A Monte Carlo Analysis with v = 1

For the second analysis of the example data listed in Table 8.6 on p. 285 under the
Fisher–Pitman permutation model let v = 1, employing ordinary Euclidean scaling,
and let the treatment-group weights be given by

Ci = ni − 1

N − g
, i = 1, . . . , g .

Setting v = 1 can be expected to reduce the outsized effect of extreme value x7,4 =
75.

Because there are

M = N !
g∏

i=1

ni !
= 28!

7! 7! 7! 7! = 472,518,347,558,400

possible, equally-likely arrangements in the reference set of all permutations of
the N = 28 observations listed in Table 8.6, an exact permutation analysis is not
possible and a Monte Carlo analysis is required.

Following Eq. (8.2) on p. 261, the N = 28 observations yield g = 4 average
distance-function values of

ξi = 6.2857 , ξ2 = 7.2381 , ξ3 = 3.6190 , and ξ4 = 20.2857 .

Following Eq. (8.1) on p. 261, the observed value of the permutation test statistic
based on v = 1 and treatment-group weights

Ci = ni − 1

N − g
, i = 1, . . . , 4 ,

is

δ =
g∑

i=1

Ciξi = 7 − 1

28 − 4

(
6.2857 + 7.2381 + 3.6190 + 20.2857

) = 9.3571 .

Under the Fisher–Pitman permutation model, the exact probability of an
observed δ is the proportion of δ test statistic values computed on the randomly-
selected, equally-likely arrangements of the N = 28 observations listed in Table 8.6
that are equal to or less than the observed value of δ = 9.3571. There are exactly
1960 δ test statistic values that are equal to or less than the observed value of
δ = 9.3571. If all M arrangements of the N = 28 observations listed in Table 8.6
occur with equal chance, the Monte Carlo probability value of δ = 9.3571
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computed on L = 1,000,000 random arrangements of the observed data with
n1 = n2 = n3 = n4 = 7 preserved for each arrangement is

P
(
δ ≤ δo|H0

) = number of δ values ≤ δo

L
= 1960

1,000,000
= 0.1960×10−2 ,

where δo denotes the observed value of δ and L is the number of randomly-selected,
equally-likely arrangements of the N = 28 observations listed in Table 8.6.

The original value of test statistic δ based on v = 1 with observation x7,4 =
15 was δ = 5.1905 with a Monte Carlo probability value of P = 0.2040×10−3,
yielding a difference between the two probability values of only

	P = 0.1960×10−2 − 0.2040×10−3 = 0.1756×10−2 .

Multi-sample permutation tests based on ordinary Euclidean scaling with v = 1
tend to be relatively robust with respect to extreme values when compared with
permutation tests based on squared Euclidean scaling with v = 2.

8.7 Example 4: Exact and Monte Carlo Analyses

For a fourth, larger example of tests for differences among g ≥ 3 independent
samples, consider the example data given in Table 8.8 with g = 4 treatment groups,
sample sizes of n1 = n2 = 3, n3 = 4, n4 = 5, and N = n1 + n2 + n3 + n4 =
3 + 3 + 4 + 5 = 15 total observations. Under the Neyman–Pearson population
model with sample sizes n1 = n2 = 3, n3 = 4, and n4 = 5, treatment-group means
x̄1 = 11.00, x̄2 = 12.00, x̄3 = 13.50, and x̄4 = 19.00, grand mean ¯̄x = 14.5333,
estimated population variances s2

1 = s2
2 = 1.00, s2

3 = 1.6667, and s2
4 = 62.50, the

sum-of-squares between treatments is

SSBetween =
g∑

i=1

ni

(
x̄i − ¯̄x)2 = 160.7333 ,

Table 8.8 Example data for
a test of g = 4 independent
samples with N = 15
observations

Treatment group

1 2 3 4

10 11 12 14

11 12 13 15

12 13 14 16

15 17

33
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Table 8.9 Source table for
the data listed in Table 8.8

Factor SS df MS F

Between 160.7333 3 53.5778 2.2755

Within 259.0000 11 23.5455

Total 419.7333

the sum-of-squares within treatments is

SSWithin =
g∑

i=1

ni∑
j=1

(
xij − x̄i

)2 = 259.00 ,

the sum-of-squares total is

SSTotal = SSBetween + SSWithin = 160.7333 + 259.00 = 419.7333 ,

the mean-square between treatments is

MSBetween = SSBetween

g − 1
= 160.7333

4 − 1
= 53.5778 ,

the mean-square within treatments is

MSWithin = SSWithin

N − g
= 259.00

15 − 4
= 23.5455 ,

and the observed value of Fisher’s F -ratio test statistic is

F = MSBetween

MSWithin
= 53.5778

23.5455
= 2.2755 .

The essential factors, sums of squares (SS), degrees of freedom (df ), mean squares
(MS), and variance-ratio test statistic (F ) are summarized in Table 8.9.

Under the Neyman–Pearson null hypothesis, H0: μ1 = μ2 = μ3 = μ4, Fisher’s
F -ratio test statistic is asymptotically distributed as Snedecor’s F with ν1 = g − 1
and ν2 = N − g degrees of freedom. With ν1 = g − 1 = 4 − 1 = 3 and ν2 =
N − g = 15 − 4 = 11 degrees of freedom, the asymptotic probability value of
F = 2.2755 is P = 0.1366, under the assumptions of normality and homogeneity.

8.7.1 A Permutation Analysis with v = 2

For the first analysis of the example data listed in Table 8.8 under the Fisher–Pitman
permutation model let v = 2, employing squared Euclidean scaling, and let the
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treatment-group weighting functions be given by

Ci = ni − 1

N − g
, i = 1, . . . , g ,

for correspondence with Fisher’s F -ratio test statistic.
Because there are

M = N !
g∏

i=1

ni !
= 15!

3! 3! 4! 5! = 12,612,600

possible, equally-likely arrangements in the reference set of all permutations of
the N = 15 observations listed in Table 8.8, an exact permutation analysis is not
practical and a Monte Carlo analysis is utilized.

Following Eq. (8.2) on p. 261, the N = 15 observations yield g = 4 average
distance-function values of

ξ1 = ξ2 = 2.00 , ξ3 = 3.3333 , and ξ4 = 125.00 .

Alternatively, in terms of a one-way analysis of variance model the average distance-
function values are ξ1 = 2s2

1 = 2(1.00) = 2.00, ξ2 = 2s2
2 = 2(1.00) = 2.00,

ξ3 = 2s2
3 = 2(1.667) = 3.3333, and ξ4 = 2s2

4 = 2(62.50) = 125.00.
Following Eq. (8.1) on p. 261, the observed value of the permutation test statistic

based on v = 2 and treatment-group weights

Ci = ni − 1

N − g
, i = 1, . . . , 4 ,

is

δ =
g∑

i=1

Ciξi = 1

15 − 4

[
(3 − 1)(2.00) + (3 − 1)(2.00)

+ (4 − 1)(3.3333) + (5 − 1)(125.00)
] = 47.0909 .

Alternatively, in terms of a one-way analysis of variance model the permutation test
statistic is

δ = 2MSWithin = 2(23.5455) = 47.0909 .

For the example data listed in Table 8.8, the sum of the N = 15 observations is

N∑
i=1

xi = 10 + 11 + 12 + · · · + 17 + 33 = 218 ,
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the sum of the N = 15 squared observations is

N∑
i=1

x2
i = 102 + 112 + 122 + · · · + 172 + 332 = 3588 ,

and the total sum-of-squares is

SSTotal =
N∑

i=1

(
xi − ¯̄x)2 =

N∑
i=1

d2
i −

(
N∑

i=1

di

)2/
N

= 3588 − (218)2/15 = 419.7333 ,

where ¯̄x denotes the grand mean of all N = 15 observations. Then following the
expressions given in Eq. (8.5) on p. 262 for test statistics δ and F , the observed
value for test statistic δ with respect to the observed value of test statistic F is

δ = 2SSTotal

N − g + (g − 1)F
= 2(419.7333)

15 − 4 + (4 − 1)(2.2755)
= 47.0909

and the observed value for test statistic F with respect to the observed value of test
statistic δ is

F = 2SSTotal

(g − 1)δ
− N − g

g − 1
= 2(419.7333)

(4 − 1)(47.0909)
− 15 − 4

4 − 1
= 2.2755 .

Under the Fisher–Pitman permutation model, the Monte Carlo probability of an
observed δ is the proportion of δ test statistic values computed on the randomly-
selected, equally-likely arrangements of the N = 15 observations listed in Table 8.8
that are equal to or less than the observed value of δ = 47.0909. There are exactly
53,200 δ test statistic values that are equal to or less than the observed value of
δ = 47.0909. If all M arrangements of the N = 15 observations listed in Table 8.8
occur with equal chance under the Fisher–Pitman null hypothesis, the Monte Carlo
probability value of δ = 47.0909 computed on L = 1,000,000 randomly-selected
arrangements of the observed data with n1 = n2 = 3 = n3 = 4, and n4 = 5
preserved for each arrangement is

P
(
δ ≤ δo|H0

) = number of δ values ≤ δo

L
= 53,200

1,000,000
= 0.0532 ,

where δo denotes the observed value of test statistic δ and L is the number of
randomly-selected, equally-likely arrangements of the N = 15 observations listed
in Table 8.8.

Alternatively, in terms of a one-way analysis of variance model, there are 53,200
F values that are equal to or greater than the observed value of F = 2.2755. Thus, if
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all arrangements of the observed data occur with equal chance, the exact probability
value of F = 2.2755 under the Fisher–Pitman null hypothesis is

P
(
F ≥ Fo|H0

) = number of F values ≥ Fo

L
= 53,200

1,000,000
= 0.0532 ,

where Fo denotes the observed value of test statistic F .
Following Eq. (8.7) on p. 263, the exact expected value of the M = 12,612,600

δ test statistic values under the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 756,275,456

12,612,600
= 59.9619 .

In terms of a one-way analysis of variance model the exact expected value of test
statistic δ is

μδ = 2SSTotal

N − 1
= 2(419.7333)

15 − 1
= 59.9619 .

Following Eq. (8.6) on p. 263, the observed chance-corrected measure of effect size
is

� = 1 − δ

μδ

= 1 − 47.0909

59.9619
= +0.2147 ,

indicating approximately 21% within-group agreement above what is expected
by chance. Alternatively, in terms of a one-way analysis of variance model, the
observed measure of effect size is

� = 1 − (N − 1)(MSWithin)

SSTotal
= 1 − (15 − 1)(23.5455)

419.7333
= +0.2147 .

8.7.2 Measures of Effect Size

For the example data listed in Table 8.8 on p. 289, the average treatment-group size
is

n̄ = 1

g

g∑
i=1

ni = 3 + 3 + 4 + 5

4
= 3.75 ,
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Cohen’s d̂ measure of effect size is

d̂ =
[

1

g − 1

(
SSBetween

n̄MSWithin

)]1/2

=
[

1

4 − 1

(
160.7333

(3.75)(23.5455)

)]1/2

= ±0.7336 ,

Pearson’s η2 (r2) measure of effect size is

η2 = SSBetween

SSTotal
= 160.7333

419.7333
= 0.3829 ,

Kelley’s η̂2 measure of effect size is

η̂2 = SSTotal − (N − 1)MSWithin

SSTotal

= 419.7333 − (15 − 1)(23.5455)

419.7333
= 0.2147 ,

Hays’ ω̂2
F measure of effect size for a fixed-effects model is

ω̂2
F = SSBetween − (g − 1)MSWithin

SSTotal + MSWithin

= 160.7333 − (4 − 1)(23.5455)

419.7333 + 23.5455
= 0.2033 ,

Hays’ ω̂2
R measure of effect size for a random-effects model is

ω̂2
R = MSBetween − MSWithin

MSBetween + (n̄ − 1)MSWithin

= 53.5777 − 23.5455

53.5777 + (3.75)(23.5455)
= 0.2117 ,

and Mielke and Berry’s � chance-corrected measure of effect size is

� = 1 − δ

μδ

= 1 − 47.0909

56.9619
= +0.2147 ,

indicating approximately 21% within-group agreement above what is expected by
chance.
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8.7.3 An Exact Analysis with v = 2

While an exact permutation analysis with M = 12,612,600 possible arrangements
of the observed data may be impractical, it is not impossible. An exact analysis of
the N = 15 observations listed in Table 8.8 on p. 289 under the Fisher–Pitman
permutation model yields g = 4 average distance-function values of

ξ1 = ξ2 = 2.00 , ξ3 = 3.3333 , and ξ4 = 125.00 .

The observed value of the permutation test statistic based on v = 2 and treatment-
group weights

Ci = ni − 1

N − g
, i = 1, . . . , 4 ,

is

δ =
g∑

i=1

Ciξi = 1

15 − 4

[
(3 − 1)(2.00) + (3 − 1)(2.00)

+ (4 − 1)(3.3333) + (5 − 1)(125.00)
] = 47.0909 .

Under the Fisher–Pitman permutation model, the exact probability of an
observed δ is the proportion of δ test statistic values computed on all possible,
equally-likely arrangements of the N = 15 observations listed in Table 8.8 that are
equal to or less than the observed value of δ = 47.0909. There are exactly 673,490 δ

test statistic values that are equal to or less than the observed value of δ = 47.0909.
If all M arrangements of the N = 15 observations listed in Table 8.8 occur with
equal chance under the Fisher–Pitman null hypothesis, the exact probability value
of δ = 47.0909 computed on the M = 12,612,600 possible arrangements of
the observed data with n1 = n2 = 3 = n3 = 4, and n4 = 5 preserved for each
arrangement is

P
(
δ ≤ δo|H0

) = number of δ values ≤ δo

M
= 673,490

12,612,600
= 0.0534 ,

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the N = 15 observations listed in Table 8.8.

Carrying the Monte Carlo probability value based on L = 1,000,000 random
arrangements and the exact probability value based on M = 12,612,600 possible
arrangements to a few extra decimal places allows for a more direct comparison of
the Monte Carlo and exact permutation approaches. The Monte Carlo approximate
probability value and the corresponding exact probability value to six decimal places
are

P = 0.053242 and P = 0.053398 ,
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respectively. The difference between the two probability values is only

	P = 0.053398 − 0.053242 = 0.000156 ,

demonstrating the efficiency and accuracy of a Monte Carlo approach for permu-
tation methods when L is large and the exact probability value is not too small. In
general, L = 1,000,000 random arrangements of the observed data is sufficient to
ensure three decimal places of accuracy [11].

8.7.4 A Monte Carlo Analysis with v = 1

Consider a second analysis of the example data listed in Table 8.8 on p. 289 under
the Fisher–Pitman permutation model with v = 1 and treatment-group weights

Ci = ni − 1

N − g
, i = 1, . . . , g .

For v = 1, employing ordinary Euclidean scaling between the observations, thereby
reducing the effects of any extreme values, the average distance-function values for
the g = 4 treatment groups are

ξ1 = ξ2 = 1.3333 , ξ3 = 1, 6667 , and ξ4 = 8.00 ,

respectively, and the observed permutation test statistic is

δ =
g∑

i=1

Ciξi =
(

1

15 − 4

)
(3 − 1)(1.3333) + (3 − 1)(1.3333)

+ (4 − 1)(1.6667) + (5 − 1)(8.00) = 3.8485 .

Because there are

M = N !
g∏

i=1

ni !
= 15!

3! 3! 4! 5! = 12,612,600

possible, equally-likely arrangements in the reference set of all permutations of the
N = 28 observations listed in Table 8.8, a Monte Carlo permutation analysis is
recommended.

Under the Fisher–Pitman permutation model, the Monte Carlo probability of an
observed δ is the proportion of δ test statistic values computed on the randomly-
selected, equally-likely arrangements of the N = 15 observations listed in Table 8.8
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that are equal to or less than the observed value of δ = 3.8485. There are exactly
18,000 δ test statistic values that are equal to or less than the observed value of
δ = 3.8485. If all M arrangements of the N = 15 observations listed in Table 8.8
occur with equal chance under the Fisher–Pitman null hypothesis, the Monte Carlo
probability value of δ = 3.8485 computed on L = 1,000,000 random arrangements
of the observed data with n1 = n2 = 3, n3 = 4, and n4 = 5 preserved for each
arrangement is

P
(
δ ≤ δo|H0

) = number of δ values ≤ δo

L
= 18,000

1,000,000
= 0.0180 ,

where δo denotes the observed value of test statistic δ and L is the number of
randomly-selected, equally-likely arrangements of the N = 15 observations listed
in Table 8.8.

For comparison, the approximate Monte Carlo probability value based on v = 2,
L = 1,000,000, and

Ci = ni − 1

N − g
, i = 1, . . . , g ,

is P = 0.0532. The difference between the two probability values, P = 0.0180 and
P = 0.0532, is due to the single extreme value of x5,4 = 33 in the fourth treatment
group. No comparison is made with Fisher’s F -ratio test statistic as F is undefined
for ordinary Euclidean scaling.

For the example data listed in Table 8.8 on p. 289, the exact expected value of
the M = 12,612,600 δ test statistic values under the Fisher–Pitman null hypothesis
is

μδ = 1

M

M∑
i=1

δi = 59,579,400

12,612,600
= 4.7238 (8.23)

and the observed chance-corrected measure of effect size is

� = 1 − δ

μδ

= 1 − 3.8485

4.7238
= +0.1853 ,

indicating approximately 19% within-group agreement above what is expected by
chance. No comparisons are made with Cohen’s d̂ , Pearson’s η2 (r2), Kelley’s η̂2,
Hays’ ω̂2

F, or Hays’ ω̂2
R conventional measures of effect size as d̂ , η2, η̂2, ω̂2

F, and
ω̂2

R are undefined for ordinary Euclidean scaling.
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8.7.5 An Exact Analysis with v = 1

An exact permutation analysis of the observations listed in Table 8.8 with v = 1
yields g = 4 average distance-function values of

ξ1 = ξ2 = 1.3333 , ξ3 = 1, 6667 , and ξ4 = 8.00 .

The observed value of the permutation test statistic based on v = 1 and treatment-
group weights

Ci = ni − 1

N − g
, i = 1, . . . , 4 ,

is

δ =
g∑

i=1

Ciξi = 1

15 − 4

[
(3 − 1)(1.3333) + (3 − 1)(1.3333)

+ (4 − 1)(1.6667) + (5 − 1)(8.00)
] = 3.8485 .

Under the Fisher–Pitman permutation model, the exact probability of an
observed δ is the proportion of δ test statistic values computed on all possible,
equally-likely arrangements of the N = 15 observations listed in Table 8.8 that are
equal to or less than the observed value of δ = 3.8485. There are exactly 225,720 δ

test statistic values that are equal to or less than the observed value of δ = 3.8485.
If all M arrangements of the N = 15 observations listed in Table 8.8 occur with
equal chance under the Fisher–Pitman null hypothesis, the exact probability value
of δ = 3.8485 computed on the M = 12,612,600 possible arrangements of the
observed data with n1 = n2 = 3, n3 = 4, and n4 = 5 preserved for each
arrangement is

P
(
δ ≤ δo|H0

) = number of δ values ≤ δo

M
= 225,720

12,612,600
= 0.0179 ,

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the N = 15 observations listed in Table 8.8.

The exact expected value of the M = 12,612,600 δ test statistic values under the
Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 59,579,400

12,612,600
= 4.7238

and the observed chance-corrected measure of effect size is

� = 1 − δ

μδ

= 1 − 3.8485

4.7238
= +0.1853 ,



8.8 Example 5: Rank-Score Permutation Analyses 299

indicating approximately 19% within-group agreement above what is expected by
chance. No comparisons are made with Cohen’s d̂ , Pearson’s η2 (r2), Kelley’s η̂2,
Hays’ ω̂2

F, or Hays’ ω̂2
R conventional measures of effect size as d̂ , η2, η̂2, ω̂2

F, and
ω̂2

R are undefined for ordinary Euclidean scaling.
Finally, note the effect of a single extreme value (x4,5 = 33) in Treatment 4 in

the analysis based on ordinary Euclidean scaling with v = 1, compared with the
analysis based on squared Euclidean scaling with v = 2. In the analysis based on
v = 2, the value for the fourth average distance-function value was ξ4 = 125.00,
but in the analysis based on v = 1, ξ4 was reduced to only ξ4 = 8.00. Also, in
the analysis based on v = 2 the exact probability value was P = 0.0534, but in
the analysis based on v = 1 the exact probability value was only P = 0.0179, a
reduction of approximately 66%. For comparison, the asymptotic probability value
of F = 2.2755 with ν1 = g − 1 = 4 − 1 = 3 and ν2 = N − g = 15 − 4 = 11
degrees of freedom was P = 0.1366.

8.8 Example 5: Rank-Score Permutation Analyses

In many research applications it becomes necessary to analyze rank-score data,
typically because the required parametric assumptions of normality and homo-
geneity cannot be met. Consequently, the raw scores are often converted to rank
scores and analyzed under a less-restrictive model. While it is never necessary
to convert raw scores to rank scores under the Fisher–Pitman permutation model,
sometimes the observed data are simply collected as rank scores. Thus, this fifth
example serves merely to demonstrate the relationship between a g-sample test of
rank-score observations under the population model and the same test under the
permutation model. The conventional approach to univariate rank-score data for
multiple independent samples under the Neyman–Pearson population model is the
Kruskal–Wallis g-sample rank-sum test. As Kruskal and Wallis explained, the rank-
sum test stemmed from two statistical methods: rank transformations of the original
raw scores and permutations of the rank-order statistics [12].

8.8.1 The Kruskal–Wallis Rank-Sum Test

Consider g random samples of possibly different sizes and denote the size of the ith
sample by ni for i = 1, . . . , g. Let

N =
g∑

i=1

ni
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denote the total number of observations, assign rank 1 to the smallest of the N

observations, rank 2 to the next smallest observation, continuing to the largest
observation that is assigned rank N , and let Ri denote the sum of the rank scores in
the ith sample, i = 1, . . . , g. If there are no tied rank scores, the Kruskal–Wallis
g-sample rank-sum test statistic is given by

H = 12

N(N + 1)

g∑
i=1

Ri

ni

− 3(N + 1) . (8.24)

When g = 2, H is equivalent to the Wilcoxon [25], Festinger [5], Mann–
Whitney [15], Haldane–Smith [7], and van der Reyden [24] two-sample rank-sum
tests.

For an example analysis of g-sample rank-score data, consider the rank scores
listed in Table 8.10 with g = 3 samples, n1 = n2 = n3 = 6, N = 18, and no tied
rank scores.

The conventional Kruskal–Wallis g-sample rank-sum test on the N = 18 rank
scores listed in Table 8.10 yields an observed test statistic of

H = 12

N(N + 1)

g∑
i=1

Ri

ni

− 3(N + 1)

= 12

18(18 + 1)

[
(63)2

6
+ (30)2

6
+ (78)2

6

]
− 3(18 + 1) = 7.0526 ,

where test statistic H is asymptotically distributed as Pearson’s chi-squared under
the Neyman–Pearson null hypothesis with g − 1 degrees of freedom as N → ∞.
Under the Neyman–Pearson null hypothesis with g − 1 = 3 − 1 = 2 degrees of
freedom, the observed value of H = 7.0526 yields an asymptotic probability value
of P = 0.0294, under the assumption of normality.

Table 8.10 Ranking of
g = 3 with
n1 = n2 = n3 = 6 and
N = 18

Treatment group

1 2 3

4 2 17

7 3 14

10 11 12

15 1 13

9 8 16

18 5 6

Ri 63 30 78
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8.8.2 A Monte Carlo Analysis with v = 2

For the first analysis of the rank-score data listed in Table 8.10 under the Fisher–
Pitman permutation model let v = 2, employing squared Euclidean scaling between
the pairs of rank scores, and let the treatment-groups weights be given by

Ci = ni − 1

N − g
, i = 1, . . . , g ,

for correspondence with the Kruskal–Wallis g-sample rank-sum test. The average
distance-function values for the g = 3 samples are

ξ1 = 53.40 , ξ2 = 29.60 , and ξ3 = 30.40 ,

and the observed value of the permutation test statistic based on v = 2 is

δ =
g∑

i=1

Ciξi = 6 − 1

18 − 3

(
53.40 + 29.60 + 30.40

) = 37.80 .

Because there are

M = N !
g∏

i=1

ni !
= 18!

6! 6! 6! = 17,153,136

possible, equally-likely arrangements in the reference set of all permutations of
the N = 18 rank scores listed in Table 8.10, an exact permutation analysis is not
practical and a Monte Carlo permutation analysis is utilized.

Under the Fisher–Pitman permutation model, the Monte Carlo probability of an
observed δ is the proportion of δ test statistic values computed on the randomly-
selected, equally-likely arrangements of the N = 18 rank scores listed in Table 8.10
that are equal to or less than the observed value of δ = 37.80. There are exactly
21,810 δ test statistic values that are equal to or less than the observed value of
δ = 37.80. If all M arrangements of the N = 18 observations listed in Table 8.10
occur with equal chance under the Fisher–Pitman null hypothesis, the Monte Carlo
probability value of δ = 37.80 computed on L = 1,000,000 random arrangements
of the observed data with n1 = n2 = n3 = 6 preserved for each arrangement is

P
(
δ ≤ δo|H0

) = number of δ values ≤ δo

L
= 21,810

1,000,000
= 0.0218 ,

where δo denotes the observed value of test statistic δ and L is the number of
randomly-selected, equally-likely arrangements of the N = 18 rank scores listed in
Table 8.10. It should be noted that whereas the Kruskal–Wallis test statistic, H , as
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defined in Eq. (8.24) does not allow for tied rank scores, test statistic δ automatically
accommodates tied rank scores.

The functional relationships between test statistics δ and H are given by

δ =
2

(
T −

{
S

6

[
H + 3(N + 1)

]})

N − g
(8.25)

and

H = 6

S

[
T − δ

2
(N − g)

]
− 3(N + 1) , (8.26)

where, if no rank scores are tied, S and T may simply be expressed as

S =
N∑

i=1

i = N(N + 1)

2
and T =

N∑
i=1

i2 = N(N + 1)(2N + 1)

6
.

Note that in Eqs. (8.25) and (8.26), S, T , N , and g are invariant under permutation,
along with the constants 2, 3, and 6.

The relationships between test statistics δ and H can be confirmed with the rank-
score data listed in Table 8.10. For the rank scores listed in Table 8.10 with no tied
values, the observed value of S is

S =
N∑

i=1

i = N(N + 1)

2
= 18(18 + 1)

2
= 171 ,

and the observed value of T is

T =
N∑

i=1

i2 = N(N + 1)(2N + 1)

6
= 18(18 + 2)[(2)(18) + 1]

6
= 2109 .

Then following Eq. (8.25), the observed value of the permutation test statistic for
the N = 18 rank scores listed in Table 8.10 is

δ =
2

(
T −

{
S

6

[
H + 3(N + 1)

]})

N − g
= N(N + 1)(N − 1 − H)

6(N − g)

= 18(18 + 1)(18 − 1 − 7.0526)

6(18 − 3)
= 37.80
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and, following Eq. (8.26), the observed value of the Kruskal–Wallis test statistic is

H = 6

S

[
T − δ

2
(N − g)

]
− 3(N + 1) = N − 1 − 6δ(N − g)

N(N + 1)

= 18 − 1 − 6(37.80)(18 − 3)

18(18 + 1)
= 7.0526 .

Because of the relationship between test statistics δ and H , the Monte Carlo
probability value of the realized value of H = 7.0526 is identical to the Monte Carlo
probability value of δ = 37.80 under the Fisher–Pitman null hypothesis. Thus,

P
(
H ≥ Ho|H0

) = number of H values ≥ Ho

L
= 21,810

1,000,000
= 0.0218 ,

where Ho denotes the observed value of test statistic H .
The exact expected value of the M = 17,153,136 δ test statistic values under the

Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 977,728,752

17,153,136
= 57.00

and the observed chance-corrected measure of effect size is

� = 1 − δ

μδ

= 1 − 37.80

57.00
= +0.3368 ,

indicating approximately 34% within-group agreement above what is expected by
chance. No comparisons are made with Cohen’s d̂ , Pearson’s η2 (r2), Kelley’s η̂2,
Hays’ ω̂2, or Hays’ ω̂2

R measures of effect size as d̂, η2, η̂2, ω̂2
F, and ω̂2

R are undefined
for rank-score data.

8.8.3 An Exact Analysis with v = 2

Although an exact permutation analysis with M = 17,153,136 possible arrange-
ments of the observed data may be impractical, it is not impossible. An exact
permutation analysis of the N = 18 observations listed in Table 8.10 yields g = 3
average distance-function values of

ξ1 = 53.40 , ξ2 = 29.60 , and ξ3 = 30.40 ,
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and the observed value of the permutation test statistic based on v = 2 and
treatment-group weights

Ci = Ni − 1

N − g
, i = 1, 2, 3 ,

is

δ =
g∑

i=1

Ciξi = 6 − 1

18 − 3

(
53.40 + 29.60 + 30.40

) = 37.80 .

There are

M = N !
g∏

i=1

ni !
= 18!

6! 6! 6! = 17,153,136

possible, equally-likely arrangements in the reference set of all permutations of the
N = 18 rank scores listed in Table 8.10, making an exact permutation analysis
feasible. Under the Fisher–Pitman permutation model, the exact probability of an
observed δ is the proportion of δ test statistic values computed on all possible,
equally-likely arrangements of the N = 18 rank scores listed in Table 8.10 that
are equal to or less than the observed value of δ = 37.80. There are exactly 376,704
δ test statistic values that are equal to or less than the observed value of δ = 37.80.
If all M arrangements of the N = 18 rank scores listed in Table 8.10 occur with
equal chance under the Fisher–Pitman null hypothesis, the exact probability value
of δ = 37.80 computed on the M = 17,153,136 possible arrangements of the
observed data with n1 = n2 = n3 = 6 preserved for each arrangement is

P
(
δ ≤ δo|H0

) = number of δ values ≤ δo

M
= 376,704

17,153,136
= 0.0220 ,

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the N = 18 rank scores listed in Table 8.10.
For comparison, the Monte Carlo probability value based on v = 2, L = 1,000,000
random arrangements of the observed data, and treatment-group weights given by

Ci = ni − 1

N − g
, i = 1, 2, 3 ,

is P = 0.0218 for a difference between the two probability values of only

	P = 0.0220 − 0.0218 = 0.0002 .
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8.8.4 An Exact Analysis with v = 1

For a second analysis of the rank-score data listed in Table 8.10, let the treatment-
group weights be given by

Ci = ni − 1

N − g
, i = 1, . . . , g ,

as in the previous example but set v = 1, employing ordinary Euclidean scaling
between the pairs of rank scores. The N = 18 rank scores listed in Table 8.10 yield
g = 3 average distance-function values of

ξ1 = 6.3333 , ξ2 = 4.6667 , and ξ3 = 4.5333 ,

and the observed value of the permutation test statistic based on v = 1 is

δ =
g∑

i=1

Ciξi = 6 − 1

18 − 3

(
6.3333 + 4.6667 + 4.5333

) = 5.1778 .

Under the Fisher–Pitman permutation model, the exact probability of an
observed δ is the proportion of δ test statistic values computed on all possible,
equally-likely arrangements of the N = 18 rank scores listed in Table 8.10 that are
equal to or less than the observed value of δ = 5.1778. There are exactly 547,662 δ

test statistic values that are equal to or less than the observed value of δ = 5.1778.
If all M arrangements of the N = 18 rank scores listed in Table 8.10 occur with
equal chance under the Fisher–Pitman null hypothesis, the exact probability value
of δ = 5.1778 computed on the M = 17,153,136 possible arrangements of the
observed data with n1 = n2 = n3 = 6 preserved for each arrangement is

P
(
δ ≤ δo|H0

) = number of δ values ≤ δo

M
= 547,662

17,153,136
= 0.0319 ,

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the N = 18 rank scores listed in Table 8.10.
For comparison, the exact probability value based on v = 2, M = 17,153,136, and

Ci = ni − 1

N − g
, i = 1, 2, 3 ,

is P = 0.0220. No comparison is made with the conventional Kruskal–Wallis g-
sample rank-sum test as H is undefined for ordinary Euclidean scaling.
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The exact expected value of the M = 17,153,136 δ test statistic values under the
Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 108, 636, 5232

17,153,136
= 6.3333 ,

and the observed chance-corrected measure of effect size is

� = 1 − δ

μδ

= 1 − 5.1778

6.3333
= +0.1825 ,

indicating approximately 18% within-group agreement above what is expected by
chance. No comparisons are made with Cohen’s d̂ , Pearson’s r2 (η2), Kelley’s η̂2,
Hays’ ω̂2

F, or Hays’ ω̂2
R measures of effect size as d̂ , r2, η̂2, ω̂2

F, and ω̂2
R are undefined

for rank-score data.

8.9 Example 6: Multivariate Permutation Analyses

It is sometimes desirable to test for differences among g ≥ 3 independent treatment
groups where r ≥ 2 measurement scores have been obtained from each object. The
conventional approach is a one-way multivariate analysis of variance (MANOVA)
for which a number of statistical tests have been proposed, including the Bartlett–
Nanda–Pillai (BNP) trace test [1, 16, 19], Wilks’ likelihood-ratio test [26], Roy’s
maximum-root test [20, 21], and the Lawley–Hotelling trace test [9, 13, 14]. The
Bartlett–Nanda–Pillai trace test is considered to be the most powerful and robust of
the four tests [17, 18, 23, p. 269].

8.9.1 The Bartlett–Nanda–Pillai Trace Test

To illustrate a conventional multivariate analysis of variance, consider the BNP trace
test given by

V (s) = trace
[
B(W + B)−1],

where W denotes the Within matrix summarizing within-object variability, B
denotes the hypothesized Between matrix summarizing between-object variability,
and s = min(r, g − 1). For a conventional test of significance, the BNP trace
statistic, V (s), can be transformed into a conventional F test statistic by

F = 2u + s + 1

2t + s + 1

(
V (s)

s − V (s)

)
, (8.27)
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Table 8.11 Example
multivariate response
measurement scores with
r = 2 measurement scores,
g = 3 treatment groups,
n1 = 5, n2 = 4, n3 = 3, and
N = 12 observations

Treatment group

1 2 3

(5.8, 6.0) (4.1, 2.9) (4.2, 7.8)

(6.2, 3.9) (3.9, 4.1) (5.1, 5.9)

(3.9, 4.1) (4.9, 3.9) (4.8, 7.2)

(5.1, 5.2) (2.1, 5.1)

(3.0, 2.8)

where s = min(r, g − 1), u = 0.50(N − g − r − 1), t = 0.50(|r − q| − 1), and
q = g − 1. Assuming independence, normality, and homogeneity of variance and
covariance, test statistic F is asymptotically distributed as Snedecor’s F under the
Neyman–Pearson null hypothesis with ν1 = s(2t + s + 1) and ν2 = s(2u + s + 1)

degrees of freedom.
To illustrate the BNP trace test, consider the multivariate observations listed in

Table 8.11, where r = 2 measurements, g = 3 treatment groups, n1 = 5, n2 = 4,
and n3 = 3 sample sizes, and N = 12 multivariate observations.

A conventional BNP analysis of the multivariate observations listed in Table 8.11
yields

W =
[

11.71000 1.17000

1.17000 10.42667

]
, B =

[
2.75250 3.19755

3.19755 17.30242

]
,

W + B =
[

14.46250 4.36755

4.36755 27.72909

]
,

(W + B)−1 =
[

0.07260 −0.01143

−0.01143 0.03786

]
,

B(W + B)−1 =
[

0.16328 0.08960

0.03476 0.61852

]
,

and

V (2) = trace
[
B(W + B)−1] = 0.16328 + 0.61852 = 0.7818 .

Then, q = g − 1 = 3 − 1 = 2, s = min(r, q) = min(2, 3 − 1) = 2,
u = 0.50(N − g − r − 1) = 0.50(12 − 3 − 2 − 1) = 3, t = 0.50(|r − q| − 1) =
0.50(|2 − 2| − 1) = −0.50, and following Eq. (8.27) on p. 306, the observed value
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of Fisher’s F -ratio test statistic is

F = 2(3) + 2 + 1

2(−0.50) + 2 + 1

(
0.7818

2 − 0.7818

)
= 9

2
(0.6414) = 2.8879 .

Assuming independence, normality, homogeneity of variance, and homogeneity
of covariance, test statistic F is asymptotically distributed as Snedecor’s F with
ν1 = s(2t+s+1) = 2[(2)(−0.50)+2+1] = 4 and ν2 = s(2u+s+1) = 2[(2)(3)+
2 + 1] = 18 degrees of freedom. Under the Neyman–Pearson null hypothesis, the
observed value of F = 2.8879 with ν1 = 4 and ν2 = 18 degrees of freedom yields
an asymptotic probability value of P = 0.0521.

8.9.2 An Exact Analysis with v = 2

For the first analysis of the observed data listed in Table 8.11 under the Fisher–
Pitman permutation model let v = 2, employing squared Euclidean scaling between
the pairs of multivariate observations, and let the treatment-group weights be given
by

Ci = ni − 1

N − g
, i = 1, . . . , g ,

for correspondence with the BNP trace test. An exact permutation analysis is
feasible for the multivariate observations listed in Table 8.11 as there are only

M = N !
g∏

i=1

ni !
= 12!

5! 4! 3! = 27,720

possible, equally-likely arrangements in the reference set of all permutations of the
N = 12 multivariate scores listed in Table 8.11.

Following Eq. (8.2) on p. 261, the multivariate observations listed in Table 8.11
yield g = 3 average distance-function values of

ξ1 = 0.3242 , ξ2 = 0.2994 , and ξ3 = 0.1207 .

Following Eq. (8.1) on p. 261, the observed value of the permutation test statistic
based on v = 2 and treatment-group weights

Ci = ni − 1

N − g
, i = 1, 2, 3 ,
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is

δ =
g∑

i=1

Ciξi = 1

12 − 3

[
(5 − 1)(0.3242) + (4 − 1)(0.2994)

+ (3 − 1)(0.1207)
] = 0.2707 .

Under the Fisher–Pitman permutation model, the exact probability of an
observed δ is the proportion of δ test statistic values computed on all possible,
equally-likely arrangements of the N = 12 multivariate observations listed in
Table 8.11 that are equal to or less than the observed value of δ = 0.2707. There are
exactly 967 δ test statistic values that are equal to or less than the observed value
of δ = 0.2702. If all M arrangements of the N = 12 multivariate scores listed
in Table 8.11 occur with equal chance under the Fisher–Pitman null hypothesis,
the exact probability value of δ = 0.2707 computed on the M = 27,720 possible
arrangements of the observed data with n1 = 5, n2 = 4, and n3 = 3 multivariate
observations preserved for each arrangement is

P
(
δ ≤ δo|H0

) = number of δ values ≤ δo

M
= 967

27,720
= 0.0349 ,

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the N = 12 multivariate observations listed
in Table 8.11.

Following Eq. (8.7) on p. 263, the exact expected value of the M = 27,720 δ test
statistic values under the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 10,080

27,720
= 0.3636

and, following Eq. (8.6) on p. 263, the observed chance-corrected measure of effect
size is

� = 1 − δ

μδ

= 1 − 0.2707

0.3636
= +0.2556 ,

indicating approximately 26% within-group agreement above what is expected by
chance.

A convenient, although positively biased, measure of effect size for the BNP
trace test is given by

η2 = V (2)

s
= 0.7818

2
= 0.3909 ,
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which can be compared with the unbiased chance-corrected measure of effect size,
� = +0.2556. No comparisons are made with Cohen’s d̂ , Kelley’s η̂2, Hays’ ω̂2

F, or
Hays’ ω̂2

R measures of effect size as d̂ , η̂2, ω̂2
F, and ω̂2

R are undefined for multivariate
data.

The functional relationships between statistic δ and the V (2) BNP trace statistic
are given by

δ = 2
(
r − V (2)

)
N − g

and V (2) = r − δ(N − g)

2
. (8.28)

Following the expressions given in Eq. (8.28) for test statistics δ and V 2, the
observed value for test statistic δ with respect to the observed value of test statistic
V 2 is

δ = 2
(
r − V (2)

)
N − g

= 2(2 − 0.7818)

12 − 3
= 0.2707

and the observed value for test statistic V 2 with respect to the observed value of test
statistic δ is

V (2) = r − δ(N − g)

2
= 2 − (0.2707)(12 − 3)

2
= 0.7818 .

8.9.3 An Exact Analysis with v = 1

For a second analysis of the multivariate measurement scores listed in Table 8.11 on
p. 307 under the Fisher–Pitman permutation model, let the treatment-group weights
again be given by

Ci = ni − 1

N − g
, i = 1, . . . , g ,

but set v = 1 instead of v = 2, employing ordinary Euclidean scaling between the
N = 12 multivariate scores. Following Eq. (8.2) on p. 261, the multivariate scores
listed in Table 8.11 yield g = 3 average distance-function values of

ξ1 = 2.3933 , ξ2 = 1.9326 , and ξ3 = 1.4284 .

Following Eq. (8.1) on p. 261, the observed value of the permutation test statistic
based on v = 1 and treatment-group weights

Ci = ni − 1

N − g
, i = 1, 2, 3 ,
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is

δ =
g∑

i=1

Ciξi = 1

12 − 3

[
(5 − 1)(2.3933) + (4 − 1)(1.9326)

+ (3 − 1)(1.4284)
] = 2.0253 .

There are only

M = N !
g∏

i=1

ni !
= 12!

5! 4! 3! = 27,720

possible, equally-likely arrangements in the reference set of all permutations of the
N = 12 multivariate observations listed in Table 8.11, making an exact permutation
analysis feasible.

Under the Fisher–Pitman permutation model, the exact probability of an
observed δ is the proportion of δ test statistic values computed on all possible,
equally-likely arrangements of the N = 12 multivariate observations listed in
Table 8.11 that are equal to or less than the observed value of δ = 2.0253. There are
exactly 618 δ test statistic values that are equal to or less than the observed value of
δ = 2.0253. If all M arrangements of the N = 12 multivariate observations listed
in Table 8.11 occur with equal chance under the Fisher–Pitman null hypothesis,
the exact probability value of δ = 2.0253 computed on the M = 27,720 possible
arrangements of the observed data with n1 = 5, n2 = 4, and n3 = 3 multivariate
observations preserved for each arrangement is

P
(
δ ≤ δo|H0

) = number of δ values ≤ δo

M
= 618

27,720
= 0.0223 ,

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the N = 12 multivariate observations listed
in Table 8.11. No comparison is made with the Bartlett–Nanda–Pillai trace test as
the BNP test is undefined for ordinary Euclidean scaling.

Following Eq. (8.7) on p. 263, the exact expected value of the M = 27,720 δ test
statistic values under the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 69, 854

27,720
= 2.5200

and, following Eq. (8.6) on p. 263, the observed chance-corrected measure of effect
size is

� = 1 − δ

μδ

= 1 − 2.0253

2.5200
= +0.1963 ,
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indicating approximately 20% within-group agreement above that expected by
chance. No comparison is made with the conventional measure of effect size as
η2 is undefined for ordinary Euclidean scaling.

8.10 Summary

This chapter examined statistical methods for multiple independent samples where
the null hypothesis posits no differences among the g ≥ 3 populations that the g

random samples are presumed to represent. Under the Neyman–Pearson population
model of statistical inference, a conventional one-way analysis of variance and five
measures of effect size were described and illustrated: Fisher’s F -ratio test statistic,
and Cohen’s d̂ , Pearson’s η2, Kelley’s η̂2, Hays’ ω̂2

F, and Hays’ ω̂2
R measures of

effect size, respectively.
Under the Fisher–Pitman permutation model of statistical inference, test statistic

δ and associated measure of effect size, �, were described and illustrated for
multi-sample tests. For tests of g ≥ 3 independent samples, test statistic δ was
demonstrated to be flexible enough to incorporate both ordinary and squared
Euclidean scaling functions with v = 1 and v = 2, respectively. Effect size measure
� was shown to be applicable to either v = 1 or v = 2 without modification and to
have a clear and meaningful chance-corrected interpretation.

Six examples illustrated permutation-based statistics δ and �. In the first
example, a small sample of N = 10 observations in g = 3 treatment groups
was utilized to describe and illustrate the calculation of test statistics δ and � for
multiple independent samples. The second example with N = 10 observations
in g = 3 treatment groups demonstrated the chance-corrected measure of effect
size, �, and related � to the five conventional measures of effect size for g ≥ 3
independent samples: Cohen’s d̂, Pearson’s η2, Kelley’s η̂2, Hays’ ω̂2

F, and Hays’
ω̂2

R. The third example with N = 28 observations in g = 4 treatment groups
illustrated the effects of extreme values on analyses using v = 1 for ordinary
Euclidean scaling and v = 2 for squared Euclidean scaling. The fourth example with
N = 15 observations in g = 4 treatment groups compared exact and Monte Carlo
permutation statistical methods, illustrating the accuracy and efficiency of Monte
Carlo analyses. The fifth example with N = 18 rank scores in g = 3 treatment
groups illustrated an application of permutation statistical methods to univariate
rank-score data, comparing a permutation analysis of the rank-score data with the
conventional Kruskal–Wallis g-sample one-way analysis of variance for ranks. In
the sixth example, both test statistic δ and effect size measure � were extended to
multivariate data with N = 12 multivariate observations in g = 3 treatment groups
and compared the permutation analysis of the multivariate data to the conventional
Bartlett–Nanda–Pillai trace test for multivariate independent samples.

Chapter 9 continues the presentation of permutation statistical methods for g ≥ 3
samples, but examines research designs in which the subjects in the g ≥ 3 samples
are matched on specific characteristics; that is, not independent. Research designs
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that posit no differences among matched treatment groups have a long history and
are ubiquitous in the contemporary statistical literature and are generally known as
randomized-blocks designs, of which there exist a large variety.
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