Chapter 6 )
Two-Sample Tests s

Abstract This chapter introduces permutation methods for two-sample tests.
Included in this chapter are six example analyses illustrating computation of exact
permutation probability values for two-sample tests, calculation of measures of
effect size for two-sample tests, the effect of extreme values on conventional and
permutation two-sample tests, exact and Monte Carlo permutation procedures for
two-sample tests, application of permutation methods to two-sample rank-score
data, and analysis of two-sample multivariate data. Included in this chapter are
permutation versions of Student’s two-sample ¢ test, the Wilcoxon-Mann—Whitney
two-sample rank-sum test, Hotelling’s multivariate 72 test for two independent
samples, and a permutation-based alternative for the four conventional measures of
effect size for two-sample tests: Cohen’s d, Pearson’s r2, Kelley’s €2, and Hays’ &?.

This chapter presents exact and Monte Carlo permutation statistical methods for
two-sample tests. Two-sample tests for experimental differences are of primary
importance in basic research, whether that be in the behavioral, medical, biological,
agricultural, or physical sciences. Statistical tests for differences between two
samples are of two varieties. The first of the two varieties examines two sets of
data obtained from two completely separate (independent) samples of subjects. For
example, a study might seek to compare grades in an elementary statistics course
for majors and non-majors, for female and male students, for transfer and non-
transfer students, or for juniors and seniors. In a true experimental design with two
independent samples a large pool of subjects is randomly assigned (randomized) to
the treatments using a fair coin or a pseudo-random number generator.! More often
than not, however, it is not possible to randomize subjects to treatments, especially in
survey research. For example, it is not possible to randomly assign subjects to such

I'For two treatments a fair coin works quite well with heads and tails. For three treatments, a fair
die is often used with faces with one or two pips assigned to the first treatment, faces with 3 or 4
pips assigned to the second treatment, and faces with 5 or 6 pips assigned to the third treatment.
For four treatments, a shuffled deck of cards works well with clubs (&), diamonds (<$>), hearts (),
and spades (#) assigned to Treatments 1, 2, 3, and 4, respectively.
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154 6 Two-Sample Tests

categories as gender, age, 1Q, or educational level. The lack of random assignment
to treatments can greatly compromise the results of two-sample tests.

The second variety of two-sample tests examines two sets of data obtained
on the same or matched subjects. For example, a study might compare the same
subjects at two different time periods, such as before and after an intervention,
or matched subjects on two different diets: low- and high-carbohydrate. When
compared with tests for two independent samples, matched-pairs tests generally
have less variability between the two samples, provide more power with the same
number of subjects, and because the sample sizes are the same for both treatments,
matched-pairs tests produce larger test statistic values and smaller probability values
than comparable tests for two independent samples, other factors being equal. Two-
sample tests for independent samples are presented in this chapter. Matched-pairs
tests for two related samples are presented in Chap. 7.2

6.1 Introduction

In this chapter permutation statistical methods for two-sample tests are illustrated
with six example analyses. The first example utilizes a small set of data to illustrate
the computation of exact permutation methods for two independent samples,
wherein the permutation test statistic, §, is developed and compared with Student’s
conventional ¢ test for two independent samples. The second example develops a
permutation-based measure of effect size as a chance-corrected alternative to the
four conventional measures of effect size for two-sample tests: Cohen’s d, Pearson’s
r2, Kelley’s €2, and Hays’ ®°. The third example compares permutation methods
based on ordinary and squared Euclidean scaling functions, emphasizing methods of
analysis for data sets containing extreme values. The fourth example compares and
contrasts exact and Monte Carlo permutation methods, demonstrating the accuracy
and efficiency of Monte Carlo statistical methods. The fifth example illustrates
the application of permutation statistical methods to univariate rank-score data,
comparing permutation statistical methods with the conventional Wilcoxon—Mann—
Whitney two-sample rank-sum test. The sixth example illustrates the application
of permutation statistical methods to multivariate data, comparing permutation
statistical methods with the conventional Hotelling’s multivariate T2 test for two
independent samples.

One of the most familiar and popular two-sample tests looks at the mean
difference between two independent treatment groups. This is the classic test for
a difference between a control group and an experimental group. For example, a
researcher might want to compare the number of trials on a specified task for two
groups of rats—one raised under normal conditions and the other raised in semi-

2In some disciplines tests on two independent samples are known as between-subjects tests and
tests for two dependent or related samples are known as within-subjects tests.
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darkness. Or it might be of interest to examine the differences in performance
between two groups of students—one in a section of a course taught in a face-to-
face lecture format and the other in a section of the same course taught in an on-line
distance-learning format by the same instructor.

The most popular univariate test for two independent samples under the
Neyman—Pearson population model of inference is Student’s two-sample ¢ test
wherein the null hypothesis (Hp) posits no mean difference between the two
populations from which the samples are presumed to have been drawn; for example,
Hyp: 1 = po. Alternatively, Ho: @1 — n2 = 0. The test does not determine
whether the null hypothesis is true, but only provides the probability that, if the null
hypothesis is true, the samples have been drawn from the specified population(s).
Student’s ¢ test is the standard test for a mean difference between two independent
samples and is taught in every introductory course.

6.1.1 The Student Two-Sample t Test

Consider two independent samples of sizes n1 and ny. Under the Neyman—Pearson
null hypothesis, Hy: (11 = w2, Student’s ¢ test for two independent samples is given
by

X1 —Xx

(1 N 1\’
S
P\ny  np

where the unbiased pooled estimate of the population variance is given by
2 (= Dsi+(n2 = D)s3
s, = ,
p N -2

the sample estimate of the population variance for the ith treatment group is given
by
[
~\2 ;
D MRS

ni—1+4
j=1

n; denotes the number of objects in the ith of the two treatment groups,

2
N = Zni
i=1
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denotes the total number of objects in the two treatment groups, Xx; denotes the
arithmetic mean of the measurement scores for the ith of the two treatment groups,
given by

1 &
Xi = inj, i=12,
n; “
j=1

and x;; is a measurement score for the jth object in the ith treatment group.
Assuming independence, normality, and homogeneity of variance, test statistic ¢ is
asymptotically distributed as Student’s ¢ under the Neyman—Pearson null hypothesis
with N — 2 degrees of freedom. The permissible probability of a type I error is
denoted by « and if the observed value of 7 is more extreme than the critical values
of +¢ that define «, the null hypothesis is rejected with a probability of type I error
equal to or less than «, under the assumptions of normality and homogeneity.

The assumptions underlying Student’s ¢ test for two independent samples are
(1) the observations are independent, (2) the data are random samples from a well-
defined population, (3) homogeneity of variance, that is 012 = 022, and (4) the target
variable is normally distributed in the population. It should be noted that a number
of textbooks have argued that what is important is that the sampling distribution
of sample mean differences be normally distributed and not the target variable
in the population. However, Student drew his random samples from populations
of two sets of measurements on criminal anthropometry that had been published
by William Robert Macdonell in Biometrika in 1902 [8]. Student’s data consisted
of two measurements obtained by Macdonell that were approximately normally
distributed: (1) the height and (2) the length of the left middle finger of 3000
criminals over 20 years of age and serving sentences in the chief prisons of England
and Wales. Moreover, Student proved in Sect. 2 of his 1908 paper that the mean and
variance are independent and the normal distribution is the only distribution where
this is always true, as noted by George Barnard [1, p. 169].3

6.2 A Permutation Approach

Now consider a test for two independent samples under the Fisher—Pitman per-
mutation model of statistical inference. For the permutation model there is no
null hypothesis specifying population parameters. Instead the null hypothesis is
simply that all possible arrangements of the observed differences occur with equal
chance [4]. Also, there is no alternative hypothesis under the permutation model
and no specified o level. Moreover, there is no requirement of random sampling,
no assumption of normality, and no assumption of homogeneity of variance. This is

3 Also see a discussion by S.M. Stigler in The Seven Pillars of Statistical Wisdom [14, pp. 91-92].
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not to say that the permutation model is unaffected by homogeneity of variance, but
it is not a requirement as it is for Student’s ¢ test. Under the Neyman—Pearson null
hypothesis, if the assumption of homogeneity is not met, ¢ is no longer distributed
as Student’s r with N — 2 degrees of freedom.

A permutation alternative to the conventional test for two independent samples is
easily defined. The permutation test statistic for two independent samples is given
by

2
§=Y Ci& , 6.1)
i=1
where C; > 0 is a positive treatment-group weight fori = 1, 2,
& = (”")1 NZ_l i A W (0)) Wi (@) 6.2)
2 ’ S '

j=1 k=j+1

is the average distance-function value for all distinct pairs of objects in treatment
group S; fori = 1,2,

AG k) = |y — "
is a symmetric distance-function value for paired objects j and k,
N=Yom
i=1
and W (-) is an indicator function given by
1 ifw;jes,

Vi(wj) =
0 otherwise .

Under the Fisher—Pitman permutation model, the null hypothesis simply states
that equal probabilities are assigned to each of the

_ (n1+n)!
ni! np!

M 6.3)

possible, equally-likely allocations of the N objects to the two treatment groups,
S1 and S>. As noted in Chap. 5, it is imperative that the M possible arrangements
of the observed data be generated systematically as expressed in Eq. (6.3), while
preserving n and ny for each arrangement. Only a systematic procedure guarantees
M equally-likely arrangements. Simply shuffling values among the two treatment
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groups does not ensure the M possible, equally-likely arrangements mandated by
the Fisher—Pitman permutation null hypothesis: all possible arrangements of the
observed data occur with equal chance [4].

Under the Fisher—Pitman permutation model, the probability value associated
with an observed value of §, say d, is the probability under the null hypothesis of
observing a value of § as extreme or more extreme than §,. Thus an exact probability
value for §, may be expressed as

number of § values < §
P(5 < 8olHo) = e =% (6.4)
M
When M is large, an approximate probability value for § may be obtained from
a Monte Carlo procedure, where

number of § values < §,

P(8 < 80|Hp) = .

and L denotes the number of randomly-sampled test statistic values. Typically, L is
set to a large number to ensure accuracy; for example, L = 1,000,000 [6]. While
L = 1,000,000 random arrangements does not guarantee that no two arrangements
will be identical, the cycle lengths of modern pseudo-random number generators
(PRNG) are sufficiently long that identical arrangements are either avoided or occur
so rarely as to be inconsequential. For example, some pseudo-random generators
utilize the expanded value of w where the cycle length is so long that it has yet to be
determined. Older pseudo-random number generators had a cycle length of only

232 1 =4,294,967,295 .

The Mersenne twister is the current choice for a pseudo-random number gener-
ator and is by far the most widely-used general-purpose pseudo-random number
generator, having been incorporated into a large number of computer statistical
packages, including Microsoft Excel, GAUSS, GLib, Maple, MATLAB, Python,
Stata, and the popular R statistical computing language. The cycle length for the
Mersenne Twister is 2'9%37 — 1, which is a very large number.

6.2.1 The Relationship Between Statistics t and §

When the null hypothesis states Ho: @1 = p2, v = 2, and the treatment-group
weights are given by

ny—1 ny —1

C1: and C2= ,
N =2 N -2
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the functional relationships between test statistic § and Student’s ¢ test statistic are
given by

8

2SS 2SS 172
Total d = |: Total _N +2i| ’ (6.5)

TR2EN-2 5

where

N N 2
SSTotal = lez - (in) /N
i=1 i=1

and x; denotes a measurement score for the ith of N objects.
Because of the relationship between test statistic § and Student’s ¢ test statistic,
the exact probability values given by

number of § values < §,
P(8 <8) = y

and

number of |¢] values > ||
P(It] = Ito]) = Iy

are equivalent under the Fisher—Pitman null hypothesis, where 6, and #, denote
the observed test statistic values of § and 7, respectively, and M is the number of
possible, equally-likely arrangements of the observed data.

Also, given v = 2 and treatment-group weights

c np—1 e ny —1
= an = ,
"TN-2 T N-2

the two average distance-function values are related to the sample estimates of the
population variance by

£ =257 and & =253,
test statistic § is related to the pooled estimate of the population variance by

5=2s§,,

and the exact expected value of the M § test statistic values is related to SStotal by

. 28, STotal

s N—1
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A chance-corrected measure of agreement among response measurement scores
is given by

8
M=1-— (6.6)
s

where p; is the arithmetic average of the M § test statistic values calculated on all
possible arrangements of the observed response measurement scores given by

po= ) 8. (6.7)

6.3 Example 1: Test Statistics ¢ and §

A small example will serve to illustrate the relationship between test statistics ¢ and
8. Consider a small set of data with n1 = 3 female children in Group 1 and ny = 4
male children in Group 2, as given in Table 6.1, where the values indicate the ages
of the children. Under the Neyman—Pearson population model with null hypothesis
Ho: w1 = a2, ny =3, n0 =4, N=n1+n =3+4=7x1 = 23333, x, =
5.25, s% = 2.3333, s% = 2.9167, the unbiased pooled estimate of the population
variance is

o (= Dst+ 2= D5

P N -2
3 —1)(2.3333 4—1)(2.9167
_ ( )( )+ ( )( ) — 2.6833 .
7-2
and the observed value of Student’s ¢ test statistic is
X1 — X2 2.3333 —-5.25
= 2 | : 12 = | | 1/2_—2.3313.
2.6833
50 r)] Lo (rd))
Table 6.1 Example data for Group 1 Group 2

a test of two independent

samples with N = 7 subjects Females  Age Males  Age

1 1 4 3
2 2
3 4

~N N W
~N N W
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Under the Neyman—Pearson null hypothesis, Ho: @1 = o, test statistic ¢ is
asymptotically distributed as Student’s r with N — 2 degrees of freedom. With N —
2 = 7 — 2 = 5 degrees of freedom, the asymptotic two-tail probability value of
t = —2.33131is P = 0.0671, under the assumptions of normality and homogeneity.

6.3.1 A Permutation Approach

Under the Fisher—Pitman permutation model, employing squared Euclidean scaling
with v = 2 and treatment-group weights

c np—1 e ny —1
= an =
'TN-2 T N-2

for correspondence with Student’s two-sample ¢ test, the three symmetric distance-
function values for Group 1 are

Ap=11-2P=1, A3=[1-47=9, Ay3z=2-4=4,
and the average distance-function value for Group 1 is
ni -1 3!
& = 5 (A1,2+A1,3+A2,3) =1, (1 +9+4) = 4.6667 .

For Group 2 the six symmetric distance-function values are

Ays=[3-57=4, Ase=[3-6>=9, As7=3-77=16,
Ase=15—-6=1, As7=I5-77>=4, Ng7=16-T7"= 1,

and the average distance-function value for Group 2 is
ny -1
& = (2) (Ass5+ Aa6+ Aa7+ Ase+ As7+ Ag7)

!
= <2> (4+9+16+1~|—4+1)=5.8333.

Then the observed permutation test statistic for the age data listed in Table 6.1 is

3-1 4—-1
d=Ci1é§1 + 6 = <7 2) (4.6667) + <7 2) (5.8333) =5.3667 .
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For the example data given in Table 6.1, the sum of the N = 7 observations is

N
in=1+2+4+3+5+6+7=28,
i=1

the sum of the N = 7 squared observations is

N
Yoxi=12422 442432452+ 6>+ 72 = 140,
i=1

and the total sum-of-squares is

2
N N
SStowal = Y _ X7 — (Zx,-) /N = 140 — (28)%/7 = 28.00 .
i=1 i=1

Then based on the expressions given in Eq. (6.5) on p. 159, the observed value for
test statistic § with respect to the observed value of Student’s ¢ statistic is

28S 2(28.00

_ Total _ ( ) — 5.3667
2+N-2 (=23313)2+7-2

and the observed value for Student’s ¢ test statistic with respect to the observed value

of test statistic § is

255 12 12(28.00 12
- Total_N+2 — ( )_7+2 =+£2.3313.
5 5.3667

Under the Fisher—Pitman permutation model there are exactly

! 3+4)!
o )l Gl
ni! np! 314!

possible, equally-likely arrangements in the reference set of all permutations of the
age data listed in Table 6.1 on p. 160. Since M = 35 is a relatively small number, it is
possible to list the M = 35 arrangements in Table 6.2, along with the corresponding
values for &1, &, §, and |t|, ordered by § values from low (§; = 2.8000) to high
(835 = 11.2000) and by [¢| values from high (#; = 3.8730) to low (35 = 0.0000).
Under the Fisher—Pitman permutation model, the exact probability of an
observed § is the proportion of § test statistic values computed on all possible,
equally-likely arrangements of the observed data that are equal to or less than the
observed value of § = 5.3667. The observed permutation test statistic, § = 5.3667,
obtained for the realized arrangement is unusual since 31 of the 35 § test statistic
values exceed the observed value and only four of the § test statistic values are
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Table 6.2 Arrangements of the observed data listed in Table 6.1 with corresponding &, &>, 8, and
|t] values

Number Arrangement & & ) 7]
1% 1,2,3 4,5,6,7 2.0000 3.3333 2.8000 3.8730
2% 5,6,7 1,2,3,4 2.0000 3.3333 2.8000 3.8730
RE 1,2,4 3,5,6,7 4.6667 5.8333 5.3667 2.3313
4x 4,6,7 1,2,3,5 4.6667 5.8333 5.3667 2.3313
5 1,2,5 3,4,6,7 8.6667 6.6667 7.4667 1.5811
6 1,3,4 2,5,6,7 4.6667 9.3333 7.4667 1.5811
7 4,5,7 1,2,3,6 4.6667 9.3333 7.4667 1.5811
8 3,6,7 1,2,4,5 8.6667 6.6666 7.4667 1.5811
9 1,2,6 3,4,5,7 14.0000 5.8333 9.1000 1.0742
10 1,3,5 2,4,6,7 8.0000 9.8333 9.1000 1.0742
11 2,3,4 1,5,6,7 2.0000 13.8333 9.1000 1.0742
12 2,6,7 1,3,4,5 14.0000 5.8333 9.1000 1.0742
13 3,57 1,2,4,6 8.0000 9.8333 9.1000 1.0742
14 4,5,6 1,2,3,7 2.0000 13.8333 9.1000 1.0742
15 1,2,7 3,4,5,6 20.6667 3.3333 10.2667 0.6742
16 1,3,6 2,4,5,7 12.6667 8.6667 10.2667 0.6742
17 1,4,5 2,3,6,7 8.6667 11.3333 10.2667 0.6742
18 1,6,7 2,3,4,5 20.6667 3.3333 10.2667 0.6742
19 2,3,5 1,4,6,7 4.6667 14.0000 10.2667 0.6742
20 2,5,7 1,3,4,6 12.6667 8.6667 10.2667 0.6742
21 3,4,7 1,2,5,6 8.6667 11.3333 10.2667 0.6742
22 3,5,6 1,2,4,7 4.6667 14.0000 10.2667 0.6742
23 3,4,6 1,2,5,7 4.6667 15.1667 10.9667 0.3262
24 1,3,7 2,4,5,6 18.6667 5.8333 10.9667 0.3262
25 1,4,6 2,3,5,7 12.6667 9.8333 10.9667 0.3262
26 1,5,7 2,3,4,6 18.6667 5.8333 10.9667 0.3262
27 2,3,6 1,4,5,7 8.6667 12.5000 10.9667 0.3262
28 2,4,5 1,3,6,7 4.6667 15.1667 10.9667 0.3262
29 2,4,7 1,3,5,6 12.6667 9.8333 10.9667 0.3262
30 2,5,6 1,3,4,7 8.6667 12.5000 10.9667 0.3262
31 1,4,7 2,3,5,6 18.0000 6.6667 11.2000 0.0000
32 1,5,6 2,3,4,7 14.0000 9.3333 11.2000 0.0000
33 2,3,7 1,4,5,6 14.0000 9.3333 11.2000 0.0000
34 2,4,6 1,3,5,7 8.0000 13.3333 11.2000 0.0000
35 3,45 1,2,6,7 2.0000 17.3333 11.2000 0.0000
Sum 326.6667

equal to or less than the observed value. The rows containing the lowest four § test
statistic values are indicated with asterisks in Table 6.2. If all M arrangements of
the observed data occur with equal chance under the Fisher—Pitman null hypothesis,
the exact probability value of § = 5.3667 computed on the M = 35 possible
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arrangements of the observed data with n; = 3 and np = 4 preserved for each
arrangement is

P((S - 80) _ number of § values < §, _ 4 —0.1143
M 35

where 8, denotes the observed value of test statistic § and M is the number of
possible, equally-likely arrangements of the N = 7 observations listed in Table 6.1.

Alternatively, there are only four |¢] test statistic values that are larger than the
observed value of |f| = 2.3313. The rows containing the highest four |¢| values are
indicated with asterisks in Table 6.2. Thus if all M arrangements of the observed
data occur with equal chance, the exact probability value of || = 2.3313 under the
Fisher—Pitman null hypothesis is

ber of || val > |t 4
P(|I|Z|lo|)=num er of |¢| values > |t| _ — 01143,
M 35
where 1, denotes the observed value of test statistic . There is a considerable
difference between the asymptotic probability value of P = 0.0671 and the exact
probability value of P = 0.1143; that is,

Ap =0.1143 — 0.0671 = 0.0472 .

A continuous mathematical function such as Student’s ¢ cannot be expected to
provide a precise fit to only n; = 3 and ny = 4 observed values.

For the example data listed in Table 6.1 on p. 160, the exact expected value of
test statistic § under the Fisher—Pitman null hypothesis is

1 326.6667
wo= ), Y 6= =9.3333.

M
— 35

Alternatively, under an analysis of variance model the exact expected value of test
statistic § is

_ 2SSmow _ 2(28.00)

= =9.3333,
N-1 7—1

s

where the sum of the N = 7 observations listed in Table 6.1 is

N
in=1+2+4+3+5+6+7=28’
i=1
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the sum of the N = 7 squared observations is

N
Yol =1P 422+ 42437+ 52467+ 72 = 140,
i=1

and the total sum-of-squares is

2
N N
SStoal = »_ %7 — (Zx,-) /N = 140 — (28)%/7 = 28.00 .
i=1 i=1

Then the observed chance-corrected measure of effect size is

P 5.3667
R=1-  =1- = +0.4250
s 9.3333

indicating approximately 42% within-group agreement above what is expected by
chance.

6.4 Example 2: Measures of Effect Size

Measures of effect size express the practical or clinical significance of a difference
between independent sample means, as contrasted with the statistical significance
of a difference. Five measures of effect size are commonly used for determining the
magnitude of treatment effects in conventional tests for two independent samples:
Cohen’s d measure of effect size given by

|X1 — X2
2 9
)i

measure of effect size given by

d=
Pearson’s 12
2
t
rt = ,
2+ N-2
Kelley’s €> measure of effect size given by
,  1P—1
24 N-2
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Hays’ &> measure of effect size given by
-1
»* = ,
2+N -1
and Mielke and Berry’s )it measure of effect size given by
N=1- ,
s

where the permutation test statistic § is defined in Eq. (6.1) on p. 157 and s is
the exact expected value of test statistic § under the Fisher—Pitman null hypothesis
given by

where for a test of two independent samples, the number of possible arrangements
of the observed data is given by

_ (n1+n2)!
ny! ny!

M

For the age data given in Table 6.1 on p. 160 for N = 7 subjects, Student’s test
statistic is t = —2.3313, Cohen’s d measure of effect size is

%1 — %2l (23333 —5.25|

d= -
\/sz V/2.6833

= 1.7805,

2

indicating a strong effect size (3 > 0.80); Pearson’s »“ measure of effect size is

5 12 (—2.3313)2

224+ N-—2 (=23313)24+7-2

r

also indicating a strong effect size (r> > 0.25); Kelley’s € measure of effect size is

2 2
¢ —2.3313)2 -1
e = _ ) =0.4250 ;
P24+N-=-2 (=23313)24+7-2
Hays’ &> measure of effect size is
2 -1 —2.3313)2 -1
»? _ ¢ ) =0.3878;

w = =
2+N—1 (=233132+7—1
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and Mielke and Berry’s it measure of effect size is

P 5.3667
R=1-  =1- = +0.4250
s 9.3333

where § is defined in Eq. (6.1) on p. 157, us is the exact expected value of § under
the Fisher—Pitman null hypothesis given by

M

1 326.6667

ws= § 1:5,- =" =933,
i=

and the sum of the M = 35 § test statistic values,

M
Z 8i = 326.6667 ,
i=1

is calculated in Table 6.2 on p. 163.
It is readily apparent that for a test of two independent samples, the five measures
of effect size, d, r2, €2, ®*, and N provide similar results when v = 2,

c np—1 4 C np —1
1= N2 M 2T N

and are directly related to each other and to Student’s ¢ test statistic for two

independent samples. It can easily be shown that Kelley’s > and Mielke and Berry’s

N are identical measures of effect size for two independent samples under the

Neyman—Pearson population model; that is,

?—1 (-23313)%—1

ézzm: =
24+ N—-2 (=23313)2+7-2

= +0.4250 .

6.4.1 Efficient Calculation of ns

Although the exact expected value of test statistic é is defined as

w= Y ©38)

there is a more efficient way to calculate the expected value of § than utilizing the
expression given in Eq. (6.8) [11]. Because permutation methods are by their very
nature computationally intensive methods, efficient calculation of the permutation
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test statistic § and the exact expected value of § is imperative. Define

N —2)!
=" YA, 6.9)

i=1 j=1
where the symmetric distance function between paired objects i and j is given by
A, J) = |x; —lev.

Table 6.3 illustrates the calculation of s for the example data listed in Table 6.1
with v = 2. Given the double sum,

Y AGL j) =392

i=1 j=1

Table 6.3 Example data for a test of two independent samples with N = 7 subjects and N2 =
7% = 49 possible values

Index AG, j) Index AG, J)

1 ALLD=|1—12= 0 26 A4,5) =4-52= 1
2 A(1,2)=]1-22= 1 27 A4, 6)=14—6>= 4
3 A,3)=]1-3%= 9 28 A4 =14-T7%= 9
4 AL =]1-3%= 4 29 AS, D =15-12=16
5 A(1,5) =1-5%=16 30 AG2D=15-2>= 9
6 A(1,6)=|1—6]2=25 31 AG3) =5-4P= 1
7 AL, =|1-7%=36 32 AG,H=|5-3% = 4
8 A, D=]2-12= 1 33 AGSH=15=5*= 0
9 AR,2)=2-2%2= 0 34 AG,6)=15—-62= 1
10 AR,3)=2—4*= 4 35 AGD=15-T72*= 4
11 AR M =P2—32= 1 36 A6, 1) =16—1>=25
12 AR5 =12-52%= 9 37 A6,2) =16-2>=16
13 AQ2,6)=12—-6>=16 38 A6,3)=16—42= 4
14 AR, T)=|1-22=25 39 A6, 4 =16-3*= 9
15 AGD=]3-172= 4 40 A6,5)=16-57= 1
16 AGB,2)=3-22= 1 41 A6,6)=16—6>= 0
17 AB3=3—-4P2= 1 42 A6, =16—T72= 1
18 AG4H=13-32%2= 0 43 AT, D) =17T-1P2=36
19 AGB,5) =13-5%*= 4 44 A(7,2)=17-22=25
20 AB.6)=3-62= 9 45 AT3)=T—42= 9
21 AB,NH=13-7>=16 46 AT, 4 =17T-3>=16
22 A4 D =4—-12= 9 47 AT,5=17T-5*= 4
23 A4,2)=14-2>= 4 48 AT,6)=17T—6]>= 1
24 A4,3)=14—42= 0 49 AT, D=1T-7%= 0
25 A H =4-32=1

Sum 392



6.4 Example 2: Measures of Effect Size 169

calculated in Table 6.3,

N N

N —2)! 7-2)! 47,040

_ ¢ ) D> AG.)= ( ) (392) = =9.3333 .
pre 7! 5,040

Thus the actual computation of 15 involves only N2 operations to obtain the exact
expected value of test statistic §. For example, if n; = np = 15 there are

(i +n)! (154 15)!

= = 155,117,520
ni! no! 15! 15!

d test statistic values to be computed using the expression for ps given in Eq. (6.8),
but only (154-15)? = 30> = 900 A(i, j) values to be computed using the expression
for pus given in Eq. (6.9) for i, j = 1, ..., N—a much more efficient solution
resulting in a substantial savings in computation time.

6.4.2 Comparisons of Effect Size Measures

The four measures of effect size and Student’s # test statistic are all interrelated. Any

one of the measures can be derived from any of the other measures. The functional

relationships between Student’s 7 test statistic and Mielke and Berry’s i measure of

effect size for tests of two independent samples are given by

RN —2)+17"2 21
= ( )+ and N = , (6.10)
1-N 2+N-2
the relationships between Pearson’s r> measure of effect size and Mielke and
Berry’s 9t measure of effect size are given by

PR+ (P +N=-2" and R=r>—(P+N-2)", 6.11)

the relationships between Hays’ &> measure of effect size and Mielke and Berry’s
N measure of effect size are given by

2 2

t N -2 t N -1

2o T and s=a?( T , (6.12)
24+ N—-1 24+ N-2

the relationships between Cohen’s d measure of effect size and Mielke and Berry’s
N measure of effect size are given by

A_I:E]iN(N—Z)~|—N:|1/2 nd 9 ninpd? — N

d= ' - ) , (6.13)
nina(l — 9N mnad? + N(N —2)
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the relationships between Cohen’s d measure of effect size and Student’s 7 test
statistic are given by

1/2 N
R 2
d:(N ) and t:(’“”zd ) , (6.14)

niny N

2

the relationships between Pearson’s r“ measure of effect size and Student’s ¢ test

statistic are given by

2
2 t

PPN =277
P } , (6.15)

d t=
an |: 12

2

the relationships between Pearson’s = measure of effect size and Cohen’s d measure

of effect size are given by

r

(6.16)

A 1/2
) ninad? nd d— r2N(N —2) ’
nina(1 —r?)

" mnad? 4+ N(N —2)

2 2

the relationships between Pearson’s r= measure of effect size and Hays” @~ measure

of effect size are given by

A2 2
N-D+1 N-1)-1
2_ @ I+ = - (6.17)
&*+N-—1 N —(1+7r?)
the relationships between Student’s 7 test statistic and Hays’ &> measure of effect
size are given by

~D 1/2 2
N —1 1 - —1
= [a) (1 A;+ } and & = PN (6.18)
- & _

and the relationships between Cohen’s d measure of effect size and Hays® &°

measure of effect size are given by

o = N . (6.19)
ninad? + N(N — 1)

~ 1/2 ~

~ [ N[QP(N-D+1 d>—N

d [a) ( )A+ ] and &7 i
nina(l — &2?)

It is important to note that the relationships between Student’s ¢ and Mielke and
Berry’s i, Pearson’s 7> and Mielke and Berry’s %, Hays’ &> and Mielke and Berry’s
N, Cohen’s d and Mielke and Berry’s )i, Cohen’s d and Student’s t, Pearson’s r2
and Student’s ¢, Pearson’s 2 and Cohen’s c?, Pearson’s 2 and Hays’ &2, Student’s
¢ and Hays’ ®2, and Cohen’s d and Hays’ &2 hold only for Student’s pooled two-
sample ¢ test. The measures of effect size, c?, r2, and &2, all require homogeneity
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of variance and the relationships listed above do not hold for Student’s non-pooled
two-sample ¢ test. On the other hand, i does not require homogeneity of variance
and is appropriate for both pooled and non-pooled two-sample tests [5].

6.4.3 Example Effect Size Comparisons

In this section, comparisons of Student’s 7, Cohen’s d , Mielke and Berry’s i, Hays’
®*, and Pearson’s 2 are illustrated with the example data listed in Table 6.1 on
p. 160 withny = 3, np = 4, and N = 7 observations.

Given the age data listed in Table 6.1 and following the expressions given in
Eq. (6.10) for Student’s ¢ test statistic and Mielke and Berry’s )t measure of effect
size, the observed value for Student’s ¢ test statistic with respect to the observed
value of Mielke and Berry’s )t measure of effect size is

t_ [:R(N —-2)+ 1}1/2 B [0.4250(7 —2)+1

12
= +2.331
1-9% 1 —0.4250 } 3313

and the observed value for Mielke and Berry’s it measure of effect size with respect
to the observed value of Student’s ¢ test statistic is

) ?—1 (-23313)%-1

R = = — +0.4250 .
PAN—2 T (—23313247-2

Following the expressions given in Eq. (6.11) for Pearson’s 7> measure of effect

size and Mielke and Berry’s N measure of effect size, the observed value for
Pearson’s 7> measure of effect size with respect to the observed value of Mielke
and Berry’s % measure of effect size is

PP= 04 (2 4+ N —2) = 04250+ [(—2.3313)2+7 - 2] ' = 0.5208

and the observed value for Mielke and Berry’s )i measure of effect size with respect
to the observed value of Pearson’s r> measure of effect size is

f=r>—(2+N-2)" =05208—[(—2.3313)>+7 —2] ' = +0.4250.

Following the expressions given in Eq. (6.12) for Hays’ &> measure of effect size
and Mielke and Berry’s 9t measure of effect size, the observed value for Hays’ &?
measure of effect size with respect to the observed value of Mielke and Berry’s 91
measure of effect size is

P24+N=2 —23313)24+7-2
= (i) =[G

= 0.3878
24+ N—1 (—2.3313)2+7—1}
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and the observed value for Mielke and Berry’s it measure of effect size with respect
to the observed value of Hays” & measure of effect size is

2 2
, o ft°+N -1 (=2.3313)+7-1
R =a = = +0.4250 .
@ (ﬂ FN - 2) [(—2.3313)2 +7-2|=7

Following the expressions given in Eq. (6.13) for Cohen’s d measure of effect
size and Mielke and Berry’s R measure of effect size, the observed value for Cohen’s
d measure of effect size with respect to the observed value of Mielke and Berry’s i
measure of effect size is

G [SRN(N -2+ NT/Z B [(0.4250)(7)(7 —2)+7

1/2
nina(1 — %) (3)(4)(1 — 0.4250) } = £1.7805

and the observed value for Mielke and Berry’s )i measure of effect size with respect
to the observed value of Cohen’s d measure of effect size is

ninad® — N (3)(4)(1.7805)2

fﬂ = ~ =
ninad? + N(N —=2)  (3)@H(1.7805)% + (7)(7 - 2)

= +0.4250 .

Following the expressions given in Eq. (6.14) for Cohen’s d measure of effect
size and Student’s ¢ test statistic, the observed value for Cohen’s d measure of effect
size with respect to the observed value of Student’s ¢ statistic is

P ( N2 )”2 B [7(—2.3313)2

1/2
= :| = +1.7805
3@

ninz

and the observed value of Student’s ¢ test statistic with respect to the observed value
of Cohen’s d measure of effect size is

1/2
:| = £2.3313.

_ (min2d? T 3)@)(1.7805)?
S\ N _[ 7

2 measure of effect

2 measure of

Following the expressions given in Eq. (6.15) for Pearson’s r
size and Student’s ¢ test statistic, the observed value for Pearson’s »
effect size with respect to the observed value of Student’s ¢ statistic is

5 12 (—2.3313)2

T TR EN—2 T (“23313)247-2



6.4 Example 2: Measures of Effect Size 173

and the observed value for Student’s ¢ test statistic with respect to the observed value
of Pearson’s > measure of effect size is

[ -2 V2 10.5208(7 - 2)
I R | 1-0.5208

1/2
i| = +2.3313.

2 measure of effect

Following the expressions given in Eq. (6.16) for Pearson’s r
5 2

size and Cohen’s d measure of effect size, the observed value for Pearson’s r
measure of effect size with respect to the observed value of Cohen’s d measure
of effect size is

5 ninad? (3)(4)(—1.7805)2

- . = =0.5208
ninad2+ NN —2) ()@ (—1.7805)2 +7(7 — 2)

r

and the observed value for Cohen’s d measure of effect size with respect to the
observed value of Pearson’s > measure of effect size is

N oy 112
sz[r N(N 2)}

(0.5208)(7)(7 — 2)
nina(1 —r?) [

1/2
i| = +1.7805 .
3)4)(1 —0.5208)

2 measure of effect

2

Following the expressions given in Eq. (6.17) for Pearson’s r
size and Hays’ &* measure of effect size, the observed value for Pearson’s r
measure of effect size with respect to the observed value of Hays’ &> measure of
effect size is

A2
, O(N—=-14+1 (03878)(7T—-1)+1
= = = 0.5208
Ry . 0.3878+7— 1
and the observed value for Hays’ &> measure of effect size with respect to the
observed value of Pearson’s > measure of effect size is

s PPN =D =1 (0.5208)(7 1)~ 1

— = —0.3878..
N —(1+72) 7 — (1 + 0.5208)

Following the expressions given in Eq. (6.18) for Student’s ¢ test statistic and
Hays’ &° measure of effect size, the observed value for Student’s 7 statistic with
respect to the observed value of Hays” &> measure of effect size is

[5)2(1\7 “ )+ 1}”2 B [(0.3878)(7 —D+1

12
1— &2 1—0.3878 } = +2.3313
— & —0.
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and the observed value for Hays’ &> measure of effect size with respect to the

observed value of Student’s ¢ test statistic is

2 2
o 21 (—2.3313)2 — 1
T RN (—23313)247—1

And following the expressions given in Eq. (6.19) for Cohen’s d measure of
effect size and Hays’ &% measure of effect size, the observed value for Cohen’s d
measure of effect size with respect to the observed value of Hays’ &> measure of
effect size is

. [N —n 1] (7[0.3878(7— 1) +1])"
Je ) _ — 41.7805
: nna(l — a2 } { (3)(@)(1 — 0.3878) }

and the observed value for Hays’ &> measure of effect size with respect to the

observed value of Cohen’s d measure of effect size is

2 nnad? — N (3)(4)(—1.7805)> — 7
o —

- ! = =0.3878 .
ninad2+ NN —1) (B3 (—1.7805)24+7(7— 1)

6.5 Example 3: Analyses withv=2andv =1

For a third example of tests of differences for two independent samples, consider
the error scores obtained for two groups of experimental animals running a maze
under two different treatment conditions: treatment Group 1 without a reward and
treatment Group 2 with a reward. The example data are given in Table 6.4.

Under the Neyman—Pearson population model with Hy: w1 = pp, n; = 8,
ny =6, N =14, x; = 11.00, x, = 8.00, s% = 57.7143, s% = 63.60, the unbiased

Table 6.4 Example data for
a test of two independent
samples with N = 14

Group 1 Group 2
Subject Error Subject Error

subjects 1 16 9 20
2 9 10 5
3 4 11
4 23 12 16
5 19 13 2
6 10 14 4
7 5
8 2
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pooled estimate of the population variance is

2 _ (m=Dsi+ (2= Ds3

P N-2
8 —1)(57.7143 6—1 .
_ B DETT4)+ 6 - DE360) _ o
14 -2
and the observed value of Student’s ¢ test statistic is
X|] — X 11.00 — 8.
- A 00 —8.00 = 10.7161 .

1 1\71/2 = 1 1\]2
2
60.1667
[Sp <n1 * nz)} [ <8 * 6”

Under the Neyman—Pearson null hypothesis, Ho: @1 = o, test statistic ¢ is
asymptotically distributed as Student’s r with N — 2 degrees of freedom. With N —
2 = 14 — 2 = 12 degrees of freedom, the asymptotic two-tail probability value of
t = +0.7161 is P = 0.4876, under the assumptions of normality and homogeneity.

6.5.1 An Exact Analysis with v = 2

Under the Fisher—Pitman permutation model, employing squared Euclidean scaling
with v = 2 and treatment-group weights

-1 -1
n1 and ngn2

C| =
N-2 N -2

for correspondence with Student’s two-sample ¢ test, the average distance-function
values for treatment Groups 1 and 2 are

£ = 1154286 and & = 127.20,

respectively, and the observed permutation test statistic value is

2

8—1 6—1

5= Cit = ( ) (115.4286) + ( ) (127.20) = 120.3333 .
P 14-2 14-2

Alternatively, in terms of Student’s ¢ test statistic the average distance-function
values are

£ =257 =2(57.7143) = 115.4286 , & = 255 = 2(63.60) = 127.20,
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and the observed permutation test statistic value is
8 =2s; = 2(60.1667) = 120.3333 .

For the example data listed in Table 6.4, the sum of the N = 14 observations is

N
Zx,-=16+9~|-4+23~|—19+10~|—5

i=1

+24+20+54+14+164+2+4=136,

the sum of the N = 14 squared observations is

X =16"+92+42 4232+ 19 +10°

M-

i=1

+52 422420+ 52+ 12+ 162+ 2% + 4% = 2074,

and the total sum-of-squares is

2
N N

SSTotal = lez - (Zx,-) /N = 2074 — (136)%/14 = 752.8571 .
i=1 i=1

Then based on the expressions given in Eq. (6.5), the observed value for test statistic
8 with respect to the observed value of Student’s 7 test statistic is

28S8Total 2(752.8571)

8 = =
24+ N-2 (+0.7161)2+14 -2

= 120.3333

and the observed value for Student’s ¢ test statistic with respect to the observed value
of test statistic § is

288 172 r2(752.8571
( Total_N+2> :|: ( )

1/2
—14+2 = +0.7161 .
120.3333

Under the Fisher—Pitman permutation model there are only

_ (ni+n2)! _ (8+6)!

M =
ni! no! 8! 6!

= 3003

possible, equally-likely arrangements in the reference set of all permutations of
the error data listed in Table 6.4, making an exact permutation analysis possible.
Under the Fisher—Pitman permutation model, the exact probability of an observed
3 is the proportion of § test statistic values computed on all possible, equally-likely
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arrangements of the observed data that are equal to or less than the observed value
of § = 120.3333. There are exactly 1487 § test statistic values that are equal to
or less than the observed value of § = 120.3333. If all M arrangements of the
N = 14 observations listed in Table 6.4 occur with equal chance under the Fisher—
Pitman null hypothesis, the exact probability value of § = 120.3333 computed on
the M = 3003 possible arrangements of the observed data with ny = 8 and np = 6
preserved for each arrangement is

_ number of § values < §, 1487

P(8 <8) = Y = 2003 = 05275

where 8, denotes the observed value of test statistic § and M is the number of
possible, equally-likely arrangements of the N = 14 observations listed in Table 6.4.
Alternatively, the exact two-tail probability value of |¢| = 0.7161 is

__ number of |7| values > [fo| 1487

P(l1] = |tol) = Y = 2003 = 05275

where #, denotes the observed value of test statistic 7.

6.5.2 Measures of Effect Size

For the example data listed in Table 6.4 on p. 174, Cohen’s d measure of effect size
is
n X] — X 11.00 — 8.00
g=m-ol_ | _ 03868,
\/Sz% V60.1667

2

Pearson’s r= measure of effect size is

5 12 (+0.7161)2

T T R EN—2T (40716124 14 -2

Kelley’s € measure of effect size is

2 2
| 0.7161)2 — 1
2= -« ) — —0.0389 | (6.20)
P24+N-=-2  (+0.7161)2+14—2
Hays’ &> measure of effect size is
. 21 0.7161)2 — 1
2 -« ) —0.0361 , (6.21)

w = = =
24+N—-1 (071612 +14—1
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and Mielke and Berry’s it measure of effect size is

8 120.3333
N=1- =1- = —0.0389,
us 115.8242

where, for the example data listed in Table 6.4, the exact expected value of test
statistic § under the Fisher—Pitman null hypothesis is

M
1 347,820
- 5 — = 115.8242 .
o=y ; i= 3003 58

Alternatively, under an analysis of variance model,

_ 2S8STow _ 2(752.8571)

= = 115.8242,
N -1 14 -1

148

where

2
N N
SStota = »_ %7 — (Z x,-) /N = 2074 — (136)%/14 = 752.8571 .
i=1 i=1

6.5.3 Chance-Corrected Measures of Effect Size

As is evident in Eqgs. (6.20) and (6.21), some squared measures of effect size can
be negative; in this case, Kelley’s €2 = —0.0389 and Hays’ ®> = —0.0361. It
is somewhat disconcerting, to say the least, to try to interpret squared coefficients
with negative values. It is also important to recognize that negative values cannot
simply be dismissed on theoretical grounds [10, p. 1000]. A number of authors have
suggested that negative values be treated as zero [9]. It is not widely recognized
that, like Mielke and Berry’s i measure of effect size, Kelley’s €2 and Hays’ & are
chance-corrected measures of effect size. In fact 9% and €2 are equivalent measures
of effect size for tests of two independent samples. This places Kelley’s > and
Hays’ & into the family of chance-corrected measures that includes such well-
known members as Scott’s w coefficient of inter-coder agreement [12], Cohen’s «
coefficient of weighted agreement [2], Kendall and Babington Smith’s # measure
of agreement [7], and Spearman’s footrule measure [13]. Negative values simply
indicate that the magnitude of the differences between the two samples is less than
expected by chance. It can easily be shown that, for the two-sample ¢ test, the
minimum value of i and €2 is given by —1/(N — 2). Thus, for the example data
listed in Table 6.4,

-1 —1
min(R) = min(e?) = = = —0.0833 .
N-2 14-2
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Incidentally, the minimum value for Hays” &> measure of effect size is given by

—1/(N — 1). Thus for the data listed in Table 6.4, the minimum value of Hays’ &?
is —1/(14 — 1) = —0.0769.

6.5.4 An Exact Analysis with v =1

Consider an analysis of the error data listed in Table 6.4 on p. 174 under the Fisher—
Pitman permutation model with v = 1 and treatment-group weights given by

c ny—1 4 C ny—1
= an = .
) T N-2

For v = 1, the average distance-function values for the two treatment groups are

£ =9.1429 and & =9.20,

respectively, and the observed permutation test statistic is

2

8—1 6—1

§= Z Ci& = < ) (9.1429) + < ) (9.20) = 9.1667 .
P 14-2 14-2

There are only

_ (ni+n2)! _ (8+6)!

M =
ni! no! 8! 6!

= 3003

possible, equally-likely arrangements in the reference set of all permutations of
the error data listed in Table 6.4, making an exact permutation analysis possible.
Under the Fisher—Pitman permutation model, the exact probability of an observed
4 is the proportion of § test statistic values computed on all possible, equally-likely
arrangements of the observed data that are equal to or less than the observed value of
8 = 9.1667. There are exactly 2114 § test statistic values that are equal to or less than
the observed value of 6 = 9.1667.If all M arrangements of the N = 14 observations
listed in Table 6.4 occur with equal chance under the Fisher—Pitman null hypothesis,
the exact probability value of § = 9.1667 computed on the M = 3003 possible
arrangements of the observed data with n; = 8 and np = 6 preserved for each
arrangement is

number of § values < §, 2114
P(8 < 80) = Y, = 3003 =0.7040 ,

where 8, denotes the observed value of test statistic § and M is the number of
possible, equally-likely arrangements of the N = 14 observations listed in Table 6.4.
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No comparison is made with Student’s ¢ test statistic for two independent samples
as Student’s ¢ is undefined for ordinary Euclidean scaling.

For the example data listed in Table 6.4, the exact expected value of test statistic
8 under the Fisher—Pitman null hypothesis is

M

1 26.400
- 5 = — 87912
M=y ; "= 3003

and the observed chance-corrected measure of effect size is

8 9.1667
R=1-— " =1-— = —0.0427 ,
1L 8.7912

indicating less than chance within-group agreement. No comparisons are made with
Cohen’s d , Pearson’s r2, Kelley’s €2, or Hays’ &?* conventional measures of effect
size for two independent samples as d, r%, €2, and @ are undefined for ordinary
Euclidean scaling.

6.5.5 The Effects of Extreme Values

For the example data listed in Table 6.4 on p. 174, the exact probability value
employing squared Euclidean scaling with v = 2 is P = 0.5275 and the exact
probability value employing ordinary Euclidean scaling with v = 1 is P = 0.7040.
The difference between the two probability values of

Ap =0.7040 — 0.5275 = 0.1765

is entirely due to the squared and non-squared differences obtained with v = 2
and v = 1, respectively, under the Fisher—Pitman permutation model. Permutation
test statistics employing squared Euclidean scaling with v = 2 are based on the
sample mean (x) and permutation test statistics employing ordinary Euclidean
scaling with v = 1 are based on the sample median (X). Median-based statistics
are highly resistant to extreme values and both treatment Group 1 and treatment
Group 2 contain extreme values: x14 = 23 for Group 1 and x2; = 20 for Group 2.
While these two values are not highly extreme, they are sufficiently removed from
their respective mean values of x; = 11.00 and x, = 8.00 to strongly affect the
probability value with v = 2. Incidentally, the median value for Group 1 is X = 9.50
and the median value for Group 2 is X = 4.50.

Extreme values are prevalent in applied research. Most variables are not even
close to normally distributed and many are highly skewed, often positively. Some
examples of positively-skewed variables are family income, net worth, prices of
houses sold in a given month, age at first marriage, length of first marriage, and
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Table 6.5 Raw-score

Sample 1 Sample 2
observed v‘alues for two Object Value Object Value
samples with n| = np = 13
objects randomly assigned to 1 264.3 1 263.4
each sample 2 2646 2 263.7

3 2646 3 263.7
4 2646 4 263.7
5 2649 5 264.0
6 2649 6 264.0
7 2649 7 264.0
8 2649 8 264.3
9 2652 9 264.3

10 265.2 10 264.3

11 265.2 11 264.3

12 265.5 12 264.6

13 2655 13 w

student debt. Consider the case of student debt: in 2017 upon graduation the
average student debt was reported to be approximately $34,000, while the median
student debt was only approximately $12,000. The mean is pulled higher than the
median due to a small proportion of students with substantial debt. Graduate and
professional students in veterinary medicine, dental school, law school, and medical
school often graduate with hundreds of thousands of dollars in student debt.*

To demonstrate the difference between analyses based on squared Euclidean
scaling with v = 2 and ordinary Euclidean scaling with v = 1, consider the two-
sample data listed in Table 6.5. While the n; = 13 values in Sample 1 are fixed,
one value in Sample 2, indicated by w, is allowed to vary in order to determine
its effect on the exact probability values. Table 6.6 lists 21 values for w ranging
from a low value of w = 40 up to a high value of w = 988, the exact permutation
probability values with v = 1 and v = 2, and the two-tail probability values for
Student’s two-sample ¢ test, under the usual assumptions of normality, homogeneity,
and independence. Each of the exact probability values in Table 6.6 is based on

(i +n)! (134 13)!

M =
ni! ny! 13113!

= 10,400,600

possible, equally-likely arrangements of the N = 26 data values listed in Table 6.5,
with the assigned value for w included. The two-tail probability values for the
classical two-sample ¢ test listed in Table 6.6 are based on Student’s ¢ distribution
withny +ny —2 =13 4+ 13 — 2 = 24 degrees of freedom.

4In 2017 the average student debt for law-school graduates was reported to be $141,000 and the
average student debt for medical-school graduates was reported to be $192,000.
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Table 6.6 Probability value

) Exact permutation test
comparisons for exact

. . w v=1 v=2 Student’s 7 test
permutation tests with v = 1
and v = 2 and the classical 40 0.4038x107>  0.4038x107> 0.3026
Student two-sample 7 test for 80 0.4038x1075 0.4038x107> 0.2975
the data listed in Table 6.5 120 0.4038x107>  0.4038x10~5  0.2895

160 0.4038x10~° 0.4038x10~>  0.2759
200 0.4038x107>  0.4038x107> 0.2470
240 0.4038x1075  0.4038x107> 0.1481
258 0.4038x107°  0.4038x107> 0.8538x 1072
261 0.4038x107° 0.4038x107° 0.2646x1073
264 0.4038x107° 0.4038x10~> 0.5837x10~¢

267 0.9115x10~% 0.0157 0.0159
270 0.9115x10~% 0.4728 0.3455
273 0.9115x10~* 0.9772 0.7459
276 0.9115x10~*  1.0000 1.0000
288 0.9115x10~* 1.0000 0.6222
388 0.9115x10~*  1.0000 0.3753
488 0.9115x10™*  1.0000 0.3533
588 0.9115x10~* 1.0000 0.3451
688 0.9115x10~* 1.0000 0.3409
788 0.9115x10~*  1.0000 0.3382
888 0.9115x10~* 1.0000 0.3365
988 0.9115x10~* 1.0000 0.3352

As illustrated in Table 6.6, the exact probability values for the two-sample
permutation test with v = 1 are stable, consistent, and relatively unaffected by the
extreme values of w in either direction. The small change in the exact probability
values from P = 0.4038x107 to P = 0.9115x10™*; that s,

Ap =09115x10"% — 0.4038x107 = 0.8711x10™*,

with v = 1 occurs when w changes from w = 264 to w = 267 and passes the
median value of X = 264.9. In contrast, the exact probability values for the two-
sample permutation test with v = 2 range from P = 0.4038 x 10~ for small values
of wup to P = 1.0000 for large values of w, relative to the fixed values. Finally, the
asymptotic two-tail probability values for the classical two-sample ¢ test approach a
common value as w becomes very small or very large, relative to the fixed values,
and the classical ¢ test is unable to detect the obvious differences in location between
Samples 1 and 2.
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6.5.6 Treatment-Group Weights

The treatment-group weighting functions with N — 2 degrees of freedom given by

-1 -1
. and ngn2

C| =
N-2 N -2

are essential for Student’s ¢ test for two independent samples, but are not required
for a permutation test, as degrees of freedom are irrelevant for nonparametric,
distribution-free permutation methods.> For a reanalysis of the example data listed
in Table 6.4 on p. 174, the treatment-group weighting functions are set to
C1=nl and C2=n2,
N N

simply weighting each treatment group proportional to the number of observations
in the group and setting v = 1, employing ordinary Euclidean difference between
the pairs of values. For the example data listed in Table 6.4 on p. 174 the permutation
test statistic is § = 9.1673.

Under the Fisher—Pitman permutation model, the exact probability of an
observed § is the proportion of & test statistic values computed on all possible,
equally-likely arrangements of the observed data that are equal to or less than the
observed value of § = 9.1673. There are exactly 2127 § test statistic values that are
equal to or less than the observed value of § = 9.1673. If all M arrangements of
the N = 14 observed values listed in Table 6.4 on p. 174 occur with equal chance
under the Fisher—Pitman null hypothesis, the exact probability value of § = 9.1673
computed on the M = 3003 possible arrangements of the observed data withn; = 8
and ny = 6 preserved for each arrangement is

number of § values < §, 2127

Y, =3OO3=0.7083,

P(8 <8) =
where 8, denotes the observed value of test statistic § and M is the number of
possible, equally-likely arrangements of the N = 14 observations listed in Table 6.4.

For comparison, the exact probability values based on squared Euclidean scaling
with v = 2 and ordinary Euclidean scaling with v = 1 and

c np—1 e np —1
= an = ,
"TN-2 T N-2

SDegrees of freedom are not relevant for any nonparametric, distribution-free statistic. However, it
is noteworthy that degrees of freedom may be required for a test statistic that is nonparametric but
is not distribution-free, such as Pearson’s x 2 test statistics for goodness of fit and independence.
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are P = 0.5275 and P = 0.7040, respectively. No comparison is made with
Student’s two-sample ¢ test for two independent samples as Student’s ¢ is undefined
for C,’ = I’l,’/N, i = 1,2.

The exact expected value of the M = 3003 § test statistic values with v = 1 is

M

1 26.400
- 5 = — 87912
M=y ; "= 3003

and the observed chance-corrected measure of effect size is

8 9.1673
R=1-— " =1-— = —0.0428 ,
1L 8.7912

indicating less than chance within-group agreement. No comparisons are made with
Cohen’s d, Pearson’s r2, Kelley’s €2, or Hays’ &?* conventional measures of effect
size for two independent samples as d, r2, €2, and @? are undefined for C; = n; /N,
i=1,2.

6.6 Example 4: Exact and Monte Carlo Analyses

For a fourth, larger example of a test for two independent samples, consider the
data on N = 28 subjects under the Neyman—Pearson population model, randomly
divided into two groups of n; = ny = 14 subjects each and listed in Table 6.7.
For the example data listed in Table 6.7, the null hypothesis is Hyp: (1 = up; that

Table 6.7 Example data for
a test of two independent
samples with N = 28

Group 1 Group 2
Case Value Case Value

subjects 1 72.87 15 72.92
2 7278 16 72.86
3 72.61 17 72.85
4 72.55 18 72.80
5 72.53 19 72.74
6 72.50 20 72.73
7 7247 21 72.69
8 7247 22 72.66
9 7244 23 72.66

10 7242 24 72.62
11 72.38 25 72.57
12 7231 26 72.51
13 7217 27 72.36

—_
~

72.14 28 72.25
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is, no mean difference is expected between the two populations from which the
samples are presumed to have been drawn. The two groups are of equal size with
ny = ny = 14, the mean of treatment Group 1 is X1 = 72.4743, the mean of
treatment Group 2 is xo = 72.6586, the estimated population variance for Group 1
is 312 = 0.0402, the estimated population variance for Group 2 is s% = 0.0358, the
unbiased pooled estimate of the population variance is

2 _ (m=Dsi+ (2= Ds;

P N-2
14 — 1)(0.0402 14 — 1)(O.
_ ( )(0.0402) + ( )(0.0358) — 0.0380 .
28 —2
and the observed value of Student’s ¢ test statistic is
X] — X 72.4743 — 72.
= e STIROBO L sout.

1 1\11/2 = 1 1\71/2 =
2 0.0380
(3Gt )] Lo (r )]

Under the Neyman—Pearson null hypothesis, test statistic ¢ is asymptotically
distributed as Student’s ¢t with N —2 degrees of freedom. With N —2 =28 -2 = 26
degrees of freedom, the asymptotic two-tail probability value of t = —2.5011 is
P = 0.0190, under the assumptions of normality and homogeneity.

6.6.1 A Monte Carlo Analysis with v = 2

Under the Fisher—Pitman permutation model, employing squared Euclidean scaling
with v = 2 and treatment-group weights

-1 -1
n1 and ngn2

C| =
N-2 N -2

for correspondence with Student’s two-sample ¢ test, the average distance-function
values for Groups 1 and 2 are

£ =0.0804 and & =0.0717,

respectively, and the observed permutation test statistic is

2
14—1 14—1
§ = Zcig,- = (28 2) (0.0804) + (28 2) (0.0717) = 0.0760 .
i=1 - -
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Alternatively, in terms of Student’s ¢ test statistic,
£ = 257 = 2(0.0402) = 0.0804 , & = 255 = 2(0.0358) = 0.0717 ,
and
8 = 2s; = 2(0.0380) = 0.0760 .

For the example data listed in Table 6.7, the sum of the N = 28 observations is

N
Zx,- =T7287T+72.78+---4+72.36 4 72.25 = 2031.8600,

i=1

the sum of the N = 28 squared observations is

N
D xf =7287F 472787 + - + 72367 + 72.25% = 147,446.0494 ,
i=1

and the total sum-of-squares is

N N 2
SSTotal = lez - (Zm) /N
i=1 i=1
= 147,446.0494 — (2031.8600)2/28 = 1.2258.

Based on the expressions given in Eq. (6.5) on p. 159, the observed value for test
statistic § with respect to the observed value of Student’s ¢ statistic is

25STotal 2(1.2258)

2+N-2 (=25011)2+28—2

and the observed value for Student’s 7 statistic with respect to the observed value of
test statistic § is

28STotal /2 12(1.2258) 172
¢ = ~N+2) = —28+42| =425011.
( 5 * ) 0.0760 +

Under the Fisher—Pitman permutation model there are

(i +n)! (144 14)

M =
ny! ny! 14! 14!

= 40,116,600
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possible, equally-likely arrangements in the reference set of all permutations of the
observed data listed in Table 6.7, making an exact permutation analysis impractical.
Under the Fisher—Pitman permutation model, the Monte Carlo probability of an
observed § is the proportion of § test statistic values computed on the randomly-
selected, equally-likely arrangements of the observed data that are equal to or
less than the observed value of § = 0.0760. Based on L = 1,000,000 random
arrangements of the observed data, there are exactly 20,439 § test statistic values that
are equal to or less than the observed value of § = 0.0760. If all M arrangements
of the N = 28 observations listed in Table 6.7 occur with equal chance under the
Fisher—Pitman null hypothesis, the Monte Carlo probability value of § = 0.0760
computed on L = 1,000,000 random arrangements of the observed data with
n1 = ny = 14 preserved for each arrangement is

P(5 < 80) _ number of § values < §, _ 20,439 — 0.0204,
L 1,000,000
where &, denotes the observed value of test statistic § and L is the number of
randomly-selected, equally-likely arrangements of the N = 28 observations listed
in Table 6.7. Alternatively, the Monte Carlo probability value of |¢| = 2.5011 under
the Fisher—Pitman null hypothesis is

number of |7| values > [f,| 20,439

P(lt] = lto]) = L ~ 1,000,000

=0.0204,

where t, denotes the observed value of test statistic 7.
For the example data listed in Table 6.7 the exact expected value of test statistic
8 under the Fisher—Pitman null hypothesis is

1 i 3,642,715
i

= =0.0908 .
40,116,600

Alternatively, in terms of an analysis of variance model the exact expected value of
test statistic § is

_ 2SSTow _ 2(1.2258)

_ _ = 0.0908 ,
He="nN_1 28— 1

where

N N 2
S =342 (z ) /v
i=1 i=1

= 147,446.0494 — (2031.8600)/28 = 1.2258 .
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Finally, the observed chance-corrected measure of effect size is

P 0.0760
R=1-  =1- = +0.1629
s 0.0908

indicating approximately 16% within-group agreement above what is expected by
chance.

6.6.2 An Exact Analysis with v = 2

While an exact analysis may be impractical with M = 40,116,600 possible
arrangements of the observed data, it is not impossible. For an exact test under
the Fisher—Pitman permutation model with v = 2, the observed value of § is still
8 = 0.0760, the exact expected value of § under the Fisher—Pitman null hypothesis
is us = 0.0908, there are exactly 815,878 § test statistic values that are equal to or
less than the observed value of § = 0.0760, and the exact probability value based
on all M = 40,116,600 arrangements of the observed data under the Fisher—Pitman
null hypothesis is

number of § values < §, 815,878
P (8 < 80|Ho) = Iy = 40.116,600 = 0.0203 ,

where 8, denotes the observed value of test statistic § and M is the number of
possible, equally-likely arrangements of the N = 28 observations listed in Table 6.7.

Alternatively, the exact two-tail probability value of |f| = 2.5011 under the null
hypothesis is

ber of |¢| val > |t 815,878
P(|f| > |lo|) _ number o | l‘;a ues > |to] _ o — 0.0203,

where #, denotes the observed value of test statistic . The observed chance-
corrected measure of effect size is unchanged at

8 .07
N=1- =1 0.0760

- = 10.1629 ,
s 0.0908 — "

indicating approximately 16% within-group agreement above what is expected by
chance.
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6.6.3 Measures of Effect Size

For comparison, for the example data with N = 28 observations listed in Table 6.7
Cohen’s d measure of effect size is

A x| — X 72.4743 — 72.6586
g=Foxl_ = 0.9454 ,
\/512) V/0.0380
Pearson’s > measure of effect size is
2 2
t —2.5011
r? = = ( ) =0.1939,
24+N-2 (=25011)2428-2
Kelley’s €2 measure of effect size is
2 -1 (—2.5011)2 — 1
2
= = =0.1629,
T REN-27 (-2.5011)2+28-2
and Hays’ &> measure of effect size is
2 2
- —1 —2.5011)=—1
? - ¢ ) =0.1580.

w = =
2+N—-1 (=2.5011)2+28—-2

There is a considerable difference between the value for Cohen’s measure of
effect size (3 = 0.9454) and the other three measures (Pearson’s r2 = 0.1939,
Kelley’s €2 = 0.1629, and Hays’ ®> = 0.1580). In general, members of the
r family, such as Pearson’s r2, Kelley’s €2, and Hays’ o2, produce measures of
effect size that vary between the limits of 0 and 1, while members of the d family,
such as Cohen’s d , produce measures of effect size in standard deviation units and,
theoretically, can vary between 0 and co.

For comparison purposes, Cohen’s d measure of effect size can be converted
to the r family of measures of effect size. Cohen’s d can then be compared with

Pearson’s r2, Kelley’s €2, and Hays’ &?*. Thus,

) ninad? (14)(14)(0.9454)2

2o = ; =0.1939,
ninad® + N(N —2)  (14)(14)(0.9454)2 + 28(28 — 2)

which is similar to Kelley’s €2 = 0.1629 and Hays’ &> = 0.1580.
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6.6.4 A Monte Carlo Analysis with v = 1

Consider an analysis of the error data listed in Table 6.7 under the Fisher—Pitman
permutation model employing ordinary Euclidean scaling with v = 1, N = 28, and
treatment-group weights

np—1 ny —1

Ci = and C, = .
N -2 N-2

For v = 1, the average distance-function values for treatment Groups 1 and 2 are
£ =0.2288 and & =0.2167,

respectively, and the observed permutation test statistic is

2

14—1 14—1

§ = ZC,E,- = (28 2) (0.2288) + (28 2) (0.2167) = 0.2227 .
i=1 - -

There are exactly

(i +n)! (144 14)

M =
ny! ny! 14! 14!

= 40,116,600

possible, equally-likely arrangements in the reference set of all permutations of the
example data listed in Table 6.7. Under the Fisher-Pitman permutation model the
Monte Carlo probability of an observed § is the proportion of § test statistic values
computed on the randomly-selected, equally-likely arrangements of the observed
data that are equal to or less than the observed value of § = 0.2227. Based on
L = 1,000,000 random arrangements of the observed data, there are exactly 14,493
4 test statistic values that are equal to or less than the observed value of § = 0.2227.
If all M arrangements of the N = 28 observations listed in Table 6.7 occur with
equal chance under the Fisher—Pitman null hypothesis, the Monte Carlo probability
value of § = 0.2227 computed on L = 1,000,000 random arrangements of the
observed data with n = np = 14 preserved for each arrangement is

number of dvalues < 4§, 14,493
P(8 < 8|Ho) = . = 1,000,000 = 0.0145,

where &, denotes the observed value of test statistic § and L is the number
of randomly-selected, equally-likely arrangements of the N = 28 observations
listed in Table 6.7. No comparison is made with Student’s ¢ test statistic for two
independent samples as Student’s ¢ is undefined for ordinary Euclidean scaling.
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For the data listed in Table 6.7, the exact expected value of test statistic § under
the Fisher—Pitman null hypothesis is

M
1 10,997,042
- 5 = — 02741 .
Ha M; "= 40,116,600

and the observed chance-corrected measure of effect size is

8 0.2227
R=1-— " =1-— = +0.1875 ,
1L 0.2741

indicating approximately 19% within-group agreement above what is expected by
chance. No comparisons are made with Cohen’s dA, Pearson’s r2, Kelley’s €2, or
Hays’ &> measures of effect size for two independent samples as d, r?, €2, and &?
are undefined for ordinary Euclidean scaling.

6.6.5 An Exact Analysis with v =1

For comparison, with v = 1 and treatment-group weights

np—1 ny —1
C1 = and C2 = ,
N-2 N-2
the exact probability value of § = 0.2227 computed on the M = 40,116,600
possible arrangements of the observed data with n; = ny = 14 preserved for each
arrangement is

P((S <5 ) _ number of § values < §, _ 583,424 00145
- M "~ 40,116,600 ’

where 8, denotes the observed value of test statistic § and M is the number of
possible, equally-likely arrangements of the N = 28 observations listed in Table 6.7
on p. 184.

6.7 Example 5: Rank-Score Permutation Analyses

Oftentimes in conventional research it becomes necessary to analyze rank-score
data, either because the observed data are collected as ranks or because the necessary
parametric assumptions cannot be met and the raw data are subsequently converted
to ranks. There is never any reason to convert raw scores to ranks with permutation
statistical methods [3], so this example merely serves to demonstrate the relationship
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between a quotidian two-sample test of rank-score data and a permutation test of
rank-score data. The conventional approach to rank-score data for two independent
samples under the Neyman—Pearson population model is the Wilcoxon—-Mann—
Whitney (WMW) two-sample rank-sum test.

6.7.1 The Wilcoxon-Mann—Whitney Test

Consider a two-sample rank test for N univariate rank scores with n1 and n, rank
scores in the first and second samples, respectively. Under the Neyman—Pearson
population model, the WMW two-sample rank-sum test is given by

ni
W:ZR,»,

i=1

where R; denotes the rank function of the ith response measurement and 77 is,
typically, the smaller of the two-sample sizes.

For an example analysis of rank-score data, consider the rank scores listed in
Table 6.8, where for two samples, n1 = 8, np = 12, N =n1 +ny =8+ 12 =20
total scores, and there are no tied rank scores. For this application, let n; = 8§ denote
the rank scores in Sample 1 and n, = 12 denote the rank scores in Sample 2.

The conventional Wilcoxon—-Mann—Whitney two-sample rank-sum test on the
N = 20 rank scores listed in Table 6.8 yields an observed test statistic value of

ni

W=> Ri=1+2+3+4+5+6+8+11=40,
i=1

Table 6.8 Example
rank-score data for a
conventional

Sample 1 Sample 2
Subject Score Subject Score

Wilcoxon—-Mann—Whitney 1 1 9 7
two-sample rank-sum test 2 2 10 9
withn; =8 and np = 12 3 3 11 10
subjects 4 4 12 12
5 5 13 13

6 6 14 14

7 8 15 15

8 11 16 16

17 17

18 18

19 19

20 20
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where statistic W is asymptotically distributed N (0, 1) under the Neyman—Pearson
null hypothesis as N — oo. For the rank scores listed in Table 6.8, the mean value
of test statistic W is

_m(N+1D)  8Q20+1)

84,
2 2

nw

the variance of test statistic W is

nina(N +1) _ (8)(12)(20+ 1) _

2
= 168,
w 12 12
the standard score, corrected for continuity, it
W+0.5-— 404+ 0.5 -84
o= VO mpw 40+ — 33561,
\/62 V168
w

and the asymptotic two-tail N (0, 1) probability value is P = 0.3952x 1073,

6.7.2 An Exact Analysis with v = 2

For an analysis of the rank-score data listed in Table 6.8 under the Fisher—Pitman
permutation model let v = 2, employing squared Euclidean differences between the
pairs of rank scores, and let the treatment-group weights be given by

—1 —1
Clznl and C2=n2
N-2 N -2
for correspondence with the Wilcoxon—-Mann—Whitney two-sample rank-sum test.
Following Eq. (6.2) on p. 157, the average distance-function values for Samples 1
and 2 are

£ =21.7143 and & = 33.7576,

respectively, and the observed value of the permutation test statistic § is

8—22:C§ (8_1)(217143)+<12_1>(337576) 29.0741
= iSi = . . = . .
— 20-2 20-2

SWhen fitting a continuous mathematical function, such as the normal probability distribution,
to a discrete permutation distribution, it is oftentimes necessary to correct the fit by adding or
subtracting 0.5 to compensate for the discreteness of the distribution.
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Although no self-respecting researcher would seriously consider calculating an
estimated population variance on rank scores, since the WMW two-sample rank-
sum test is directly derived from Student’s two-sample 7 test, certain relationships
still hold. Thus,

£ =257 =2(10.8571) = 21.7143, & = 255 = 2(16.8788) = 33.7576 ,
and
§ = 255 = 2(14.5370) = 29.0741 ,

where s12 = 10.8571 and s% = 16.8788 are calculated on the rank-score data listed
in Table 6.8.
Because there are only

_ (i +n2)! 8+ 12)!

M =
ni! no! 8! 12!

= 125,970

possible, equally-likely arrangements in the reference set of all permutations of the
N = 20 rank scores listed in Table 6.8, an exact permutation analysis is feasible.
Under the Fisher—Pitman permutation model, the exact probability of an observed
8 is the proportion of § test statistic values computed on all possible, equally-likely
arrangements of the observed data that are equal to or less than the observed value of
8 = 29.0741. There are exactly 24 § test statistic values that are equal to or less than
the observed value of 6 = 29.0741. If all M arrangements of the N = 20 rank scores
listed in Table 6.8 occur with equal chance under the Fisher—Pitman null hypothesis,
the exact probability value of § = 29.0741 computed on the M = 125,970 possible
arrangements of the observed data with n;y = 8 and n, = 12 preserved for each
arrangement is

number of § values < §, _ 24

= =0.1905x1073 |
M 125,970

P (8 < 8o|Ho) =

where 3, denotes the observed value of test statistic § and M is the number of
possible, equally-likely arrangements of the N = 20 observations listed in Table 6.8.
The functional relationships between test statistics § and W are given by

2 NW —niS)?

5= NT — 52— ¢ n15) (6.22)
N(N —-2) ninz
and
12
s N(N —2)8
WS mm s o N ) , (6.23)
N N2 2
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where

N N
S=ZR,~ and T:ZR}.
i=1 i=1

In the absence of any tied rank scores, it is well known that S and 7 may simply
be expressed as

- N(N +1) o NN +DEN+D)
=2i= and T=) 0=
p— : 6

The relationships between test statistics § and W are confirmed as follows. For

the N = 20 rank scores listed in Table 6.8 with no tied values, the observed value
of S'is

N
G Z’ N(N+1) 20(20+1)

=210
2

i=1

and the observed value of T is

T =

Ziz _ NN+DEN+1) 2020+ 1)[2(20) + 1] _ 2870

P 6 6

Then following Eq. (6.22), the observed value of test statistic § with respect to the
observed value of test statistic W for the rank scores listed in Table 6.8 is

= 2 I:NT_S2_(NW—n1S)2i|
NN =2 niny
= {20(2 870) — (210)% — [20(40) — 8(210)]2}
~ 20020 - 2) : $(12)

=29.0741

774,4
(13,300— ’ 00)

~ 360

and following Eq. (6.23), the observed value of test statistic W with respect to the
observed value of test statistic § is

12
W=n1S_ niny NT_SZ_N(N—Z)S
N N2 2

_ ®Clo) _ {(8)(12)

20 02 [(20) (2870) — 210)2 — 2020 =2) (29.0741)“

2

1/2

— 84 — [(0.24)(8,066.6667)]'/> = 40 .
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Because of the relationship between test statistics § and W, the exact probability
of W = 40 is the same as the exact probability of 6 = 29.0741. Thus,

number of § values < §, _ 24

P(8 < 8|Ho) = y = 125970 = 0.1905x1073
and
number of W values > W,
P(W = W,|Ho) = Iy
24 0.1905x1073
= = . X ,
125,970

where 8, and W, denote the observed values of test statistics § and W, respectively,
and M is the number of possible, equally-likely arrangements of the N = 20 rank
scores listed in Table 6.8.

Following Eq. (6.7) on p. 160, the exact expected value of the M = 125,970 §
test statistic values under the Fisher—Pitman null hypothesis is

1 8,817,900
Za,» = = 70.00

5 125,970

i=1

and following Eq. (6.6) on p. 160, the observed chance-corrected measure of effect
size is

8 29.0741

RN=1- =1

= +0.5847,
7% 70.00 +

indicating approximately 58% within-group agreement above what is expected by
chance. No comparisons are made with Cohen’s c?, Pearson’s r2, Kelley’s €2, or
Hays’ &> measures of effect size for two independent samples as d,r?, €2, and &?
are undefined for rank-score data.

6.7.3 An Exact Analysis with v =1

For a reanalysis of the rank-score data listed in Table 6.8 on p. 192 under the
Fisher—Pitman permutation model let v = 1 instead of v = 2, employing ordinary
Euclidean differences between the pairs of rank scores, and let the treatment-group
weights be given by

c ny—1 4 C ny—1
= an = .
) T N-2
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Following Eq. (6.2) on p. 157, the average distance-function values for Samples 1
and 2 are

£ =3.9286 and & =4.9091,

respectively, and the observed value of test statistic § is

a—zzjcg (8_1)(39286)+<12_1>(49091) 45278
= isSi = . . = 4. .
P 20—-2 20—-2

Because there are only

_ (n1+n2)! B+ 12)!

M =
ny! ny! 8! 12!

= 125,970

possible, equally-likely arrangements in the reference set of all permutations of the
N = 20 rank scores listed in Table 6.8, an exact permutation analysis is feasible.
Under the Fisher—Pitman permutation model, the exact probability of an observed
8 is the proportion of § test statistic values computed on all possible, equally-likely
arrangements of the observed data that are equal to or less than the observed value of
8 = 4.5278. There are exactly 24 § test statistic values that are equal to or less than
the observed value of § = 4.5278. If all M arrangements of the N = 20 rank scores
listed in Table 6.8 occur with equal chance under the Fisher—Pitman null hypothesis,
the exact probability value of § = 4.5278 computed on the M = 125,970 possible
arrangements of the observed data with n; = 8 and n, = 12 preserved for each
arrangement is

number of § values < §, _ 24

= =0.1905x1073 |
M 125,970

P (8 < 8o|Ho) =

where 3, denotes the observed value of test statistic § and M is the number of
possible, equally-likely arrangements of the N = 20 observations listed in Table 6.8.
For comparison, the exact probability value based on v = 2, M = 125,970, and
treatment-group weights

c np—1 e ny —1
= an =
'TN-2 T N-2

in the previous analysis was also P = 0.1905x1073. No comparison is made with
the conventional Wilcoxon—-Mann—Whitney two-sample rank-sum test as the WMW
test is undefined for ordinary Euclidean scaling.
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Following Eq. (6.7) on p. 160, the exact expected value of the M = 125,970 §
test statistic values under the Fisher—Pitman null hypothesis is

M
1 881,790
o= py ; "= 125.970

and, following Eq. (6.6) on p. 160, the observed chance-corrected measure of effect
size is
8 4.5278

N=1- =1- = +40.3532,
7% 7.00

indicating approximately 35% within-group agreement above what is expected by
chance. No comparisons are made with Cohen’s dA, Pearson’s r2, Kelley’s €2, or
Hays’ &> measures of effect size for two independent samples as d, r?, €2, and &?
are undefined for rank-score data.

Finally, it should be noted that for the example data listed in Table 6.8 the
observed &; and & values differ for v = 2 (§; = 21.7143 and & = 33.7576)
and v = 1 (§; = 3.9286 and & = 4.9091), the observed § values differ for v = 2
(6 = 29.0741) and v = 1 (6§ = 4.5278), and the exact values for us also differ
forv =2 (us = 70.00) and v = 1 (us = 7.00). However, the probability values
forv = 2 (P = 0.1905x103) and v = 1 (P = 0.1905x1073) do not differ.
This is always true for two-sample tests of rank scores under the Fisher—Pitman
permutation model. Unlike two-sample tests of raw (interval-level) values, there is
never any difference in probability values for v = 2 and v = 1 with rank-score
(ordinal-level) data.

6.8 Example 6: Multivariate Permutation Analyses

Oftentimes a research design calls for a test of difference between two independent
treatment groups when » > 2 response measurements have been obtained for each
subject. The conventional approach to such a research design under the Neyman—
Pearson population model is Hotelling’s multivariate T2 test for two independent
samples given by

2 niny ,_ _ —1/= —
=" 2 -9)S (3 -¥2), (6.24)
where y; and y» denote vectors of mean differences between treatment Groups 1
and 2, respectively, n and n are the number of multivariate measurement scores in
treatment Groups 1 and 2, respectively, N = n| +n3, and S is a variance—covariance
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matrix given by

1 & 1 &
v 2o Q=3P Y =50 (e = )
I=1 I=1
- 1 Y |
D D LTRSS DR DR 0N
I=1 I=1 a

The observed value of Hotelling’s T2 is conventionally transformed into an F
test statistic by

N-r—-1_,
F =
r(N —2)

3

which is asymptotically distributed as Snedecor’s F under the Neyman—Pearson null
hypothesis with v = r and v, = N —r — 1 degrees of freedom.

6.8.1 The Hotelling Two-Sample T? Test

To illustrate a conventional multivariate analysis under the Neyman—Pearson pop-
ulation model, consider the multivariate measurement scores listed in Table 6.9,
wherer =2,ny =4,np=6,and N =n| +n, =4 +6 =10.

A conventional two-sample Hotelling T2 test of the N = 10 multivariate
measurement scores listed in Table 6.9 yields

yi1 = 2.7750 ,
2 _
S = 3.1092 5
y12 = 4.5250,
2 _
s, =5.1892,
Tabl.e 6.? Example Treatment
multivariate response ) )
measurement scores with
r=2,n =4,n =6,and (1.2, 3.1) (3.7, 6.1)
N=n;+n, =10 2.9, 6.8) (6.1, 8.3)

(1.8, 2.1) (6.2, 7.9)
(5.2, 6.1) (4.8, 9.7)
(5.1, 9.9)
4.2, 7.8)
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cov(1,2); = +2.9042 ,

y21 = 5.0167

s3; = 1.0057
y22 = 8.2833,
53, = 1.9537,

and
cov(l,2), = +0.5323 .
Then the vector of mean differences for treatment Group 1 is
Y1 =y — y21 = 2.7550 — 5.0167 = —2.2417
and the vector of mean differences for treatment Group 2 is
Y2 = Y12 — y22o = 4.5250 — 8.2833 = —3.7583 .
The variance—covariance matrices for Treatments 1 and 2 are

- 3.1092 +2.9042 - 1.0057 +0.5323
21 = and 22 =
+2.9042  5.1892 +0.5323  1.9537

respectively, and the pooled variance—covariance matrix and its inverse are

1.7945 +1.4218 1 +0.8649 —0.3883
S = and S7' =
+1.4218 3.1670 —0.3883 +40.4901

respectively.
Following Eq. (6.24) on p. 198, the observed value of Hotelling’s 7 is

nny e - -
T? = N G1-¥2)'S 31—y

_@©

10

+0.8649 —0.3883 | [ —2.2417
[—2.2417 —3.7583]

—0.3883 +0.4901 | | —3.7583
— (2.40)(4.7260) = 11.3423
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and the F test statistic for Hotelling’s T2 is

oV orm b 102221 ) 2a) 40603
T r(N=2) ° 2(10-2) o ’

where T2 denotes the observed value of Hotelling’s 7°2.

Assuming independence, normality, homogeneity of variance, and homogeneity
of covariance, Hotelling’s F test statistic is asymptotically distributed as Snedecor’s
Fwithvi =r =2andvy; = N—r—1=10—-2—1 = 7 degrees of freedom. Under
the Neyman—Pearson null hypothesis, the observed value of FF = 4.9623 yields an
asymptotic probability value of P = 0.0455.

6.8.2 An Exact Analysis with v = 2

For an analysis under the Fisher—Pitman permutation model let v = 2, employing
squared Euclidean differences between pairs of measurement scores and let the
treatment-group weights be given by

np—1 4 C ny —1
= an =
N-2 T N-2

Ci
for correspondence with Hotelling’s 7% test for two independent samples. Since
there are only

_ (mt+n)t @G+ 6!

M = =210
ni! np! 4! 6!

possible, equally-likely arrangements in the reference set of all permutations of the
N = 10 multivariate measurement scores listed in Table 6.9, an exact permutation
analysis is feasible. The multivariate measurement scores listed in Table 6.9 yield
average distance-function values for Treatments 1 and 2 of

£ =0.4862 and & =0.2737,

respectively, and the observed permutation test statistic is

5= icg- (271 ) 0ase2)+ (071 ) 02737) = 0.3534
= -2/ 10-2)" o

If all M arrangements of the N = 10 observed multivariate measurement scores
listed in Table 6.9 occur with equal chance under the Fisher—Pitman null hypothesis,
the exact probability value of § = 0.3534 computed on the M = 210 possible
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arrangements of the observed data with ny = 4 and n, = 6 scores preserved for
each arrangement is

P((S < 50|H0) _ number of § values < §, _ 12 — 0.0571 .
M 210
where 8, denotes the observed value of test statistic § and M is the number of
possible, equally-likely arrangements of the N = 10 multivariate observations listed
in Table 6.9.
Following Eq. (6.7) on p. 160, the exact expected value of the M = 210 § test
statistic values under the Fisher—Pitman null hypothesis is

M
1 93.3333
m= ?_1 b=, = 04444

and following Eq. (6.6) on p. 160, the observed chance-corrected measure of effect
size is
8 0.3534

R=1-— =1- = +0.2049 ,
1L 0.4444

indicating approximately 20% within-group agreement above what is expected by
chance. No comparisons are made with Cohen’s c?, Pearson’s r2, Kelley’s €2, or
Hays’ &* measures of effect size for two-sample tests as c?, r2, €2, and &2 are
undefined for multivariate data.

The identity relating Hotelling’s two-sample 72 test and the permutation test
statistic is given by

2[r — V(s)]
§ = N_o (6.25)
where
T2
v =, N2 (6.26)

and s = min(g — 1,r);inthiscase with g — 1 =2 -1 =landr = 2,5 =
min(2 — 1,2) = 1. Thus, following Eqgs. (6.25) and (6.26), the observed value of
v is

T2 11.3423 11.3423
v = = - = 0.5864
T2+ N—2  11.3423+10—2  19.3423
and the observed value of § is
20— VO 2(2—0.5864) 2.8272
P ) _ ) _ — 03534

N-—g 100-2 8
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6.8.3 An Exact Analysis with v =1

Under the Fisher—Pitman permutation model, it is not necessary to set v = 2, thereby
illuminating the squared differences between pairs of measurement scores. For a
reanalysis of the measurement scores listed in Table 6.9 on p. 199, let the treatment-
group weights be given by

_n2—1

as in the previous example, but set v = 1 instead of v = 2, employing ordinary
Euclidean differences between pairs of measurement scores. Following Eq. (6.2) on
p. 157, the average distance-function values for Treatments 1 and 2 are

& =3.7865 and & =2.2200,

respectively, and following Eq. (6.1) on p. 157, the observed value of the permuta-
tion test statistic is

2
4-1 6—1
5= Ci& = ( ) (3.7865) + ( ) (2.2200) = 2.8074 .
g 10-2 10-2

If all M arrangements of the N = 10 observed multivariate measurement scores
listed in Table 6.9 occur with equal chance under the Fisher—Pitman null hypothesis,
the exact probability value of § = 2.8074 computed on the M = 210 possible
arrangements of the observed data with n; = 4 and np = 6 measurement scores
preserved for each arrangement is

P((S < 50|H0) _ number of § values < §, _ 4 — 0.0190 .
M 210
where 8, denotes the observed value of test statistic § and M is the number of
possible, equally-likely arrangements of the N = 10 multivariate observations listed
in Table 6.9. For comparison, the exact probability value based on v = 2, M = 210,
and treatment-group weights

-1 -1
n1 and ngn2

C| =
N -2 N -2

in the previous example is P = 0.0571. No comparison is made with Hotelling’s
multivariate two-sample T2 test as T2 is undefined for ordinary Euclidean scaling.

Following Eq. (6.7) on p. 160, the exact expected value of the M = 210 § test
statistic values under the Fisher—Pitman null hypothesis is

M
1 790.1880
wi= 2 5 = b0 =37628

i=1
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and, following Eq. (6.6) on p. 160, the observed chance-corrected measure of effect
size is
8 2.8074

R=1- =1

- = +0.2539,
s 37628~ T

indicating approximately 25% within-group agreement above what is expected by
chance. No comparisons are made with Cohen’s cf, Pearson’s r2, Kelley’s €2, or
Hays’ ®* measures of effect size for two-sample tests as c?, r2, €2, and &2 are
undefined for multivariate data.

6.9 Summary

This chapter examined tests for two independent samples where the null hypothesis
under the Neyman—Pearson population model typically posits no difference between
the means of two populations; that is, Hy: @1 = p2. The conventional tests for
two independent samples and four measures of effect size under the Neyman—
Pearson population model were described and illustrated: Student’s two-sample ¢
test and Cohen’s c?, Pearson’s r2, Kelley’s €2, and Hays’ &? measures of effect size,
respectively.

Under the Fisher—Pitman permutation model, test statistic § and associated
measure of effect size 9t were introduced and illustrated for tests of two independent
samples. Test statistic § was related to Student’s ¢ test statistic and shown to be
flexible enough to incorporate either ordinary or squared Euclidean scaling with
v = 1 and v = 2, respectively. Effect-size measure it was shown to be applicable
to either v = 1 or v = 2 without modification and to have a clear and meaningful
chance-corrected interpretation.

Six examples illustrated permutation statistics § and 9. In the first example, a
small sample of N = 7 values was utilized to describe and illustrate the calculations
of § and 9 for two independent samples. The second example demonstrated the
permutation-based, chance-corrected measure of effect size, )i, and related 9 to the
four conventional measures of effect size for two independent samples: Cohen’s
cf, Pearson’s r2, Kelley’s €2, and Hays’ &?*. The third example with N = 14
values was designed to illustrate the effects of extreme values on both conventional
and permutation tests for two independent samples. The fourth example utilized
a larger sample with N = 28 observations to compare and contrast exact and
Monte Carlo permutation tests for two independent samples. The fifth example
applied permutation methods to univariate rank-score data and compared the
permutation results with conventional results from the Wilcoxon—-Mann—Whitney
two-sample rank-sum test. Finally, the sixth example illustrated the application of
permutation methods to multivariate data and compared the permutation results with
conventional results from Hotelling’s 72 test for two independent samples.
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Chapter 7 continues the presentation of permutation statistical methods for two

samples, but examines research designs in which the subjects in the two samples
have been matched on specific characteristics; that is to say, not independent.
Research designs that posit no mean difference between two matched treatment
groups in which univariate measurements have been obtained are ubiquitous in the
statistical literature. Matched-pairs tests are the simplest of the tests in an extensive
class of randomized-blocks tests and are taught in every introductory course.
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