
Chapter 3
Permutation Statistical Methods

Abstract This chapter presents two models of statistical inference: the conven-
tional Neyman–Pearson population model that is taught in every introductory
course and the Fisher–Pitman permutation model with which the reader is assumed
to unfamiliar. The Fisher–Pitman model consists of three different permutation
methods: exact permutation methods, Monte Carlo permutation methods, and
moment-approximation permutation methods. The three methods are described and
illustrated with example analyses.

This chapter presents two competing models of statistical inference: the population
(normal) model and the permutation model. The Neyman–Pearson population
model is the standard model taught in all introductory classes and is familiar to most
readers.1 The Neyman–Pearson population model was specifically designed to make
inferences about population parameters, provide approximate probability values,
and is characterized by the assumptions of random sampling, a normally-distributed
population, and homogeneity of variance when appropriate. The Fisher–Pitman
permutation model of statistical inference is less well known and includes three
different permutation methodologies, each of which is described and illustrated
in this chapter: exact permutation methods, Monte Carlo permutation methods,
and moment-approximation permutation methods.2 In contrast to conventional
statistical tests based on the Neyman–Pearson population model, tests based on
the Fisher–Pitman permutation model are distribution-free, entirely data-dependent,
appropriate for nonrandom samples, provide exact probability values, and are ideal
for small sets of data.

1The Neyman–Pearson population model of statistical inference is named for Jerzy Neyman
(1894–1981) and Egon Pearson (1895–1980).
2The Fisher–Pitman permutation model of statistical inference is named for R.A. Fisher (1890–
1962) and E.J.G. Pitman (1897–1993).
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On the other hand, permutation tests can be computationally intensive, often
requiring many millions of calculations. Five computational efficiencies for per-
mutation statistical tests are described in this chapter. First, the development
of high-speed computing has made permutation methods feasible. Second, the
examination of all combinations of the observed data instead of all permutations
of the data greatly reduces the amount of calculation required. Third, the use of
mathematical recursion simplifies calculations of both test statistics and probability
values. Fourth, calculation of only the variable portion of the selected test statistic
minimizes the calculations required. Fifth, holding one array of the observed
data constant reduces the number of arrangements required for exact permutation
analyses.

As documented in Chap. 2, the permutation model of statistical inference had its
beginnings in the 1920s and 1930s with the works of Fisher [12], Geary [14], Eden
and Yates [9], Hotelling and Pabst [18], and Pitman [36–38]. Constrained by the
difficulty of computing tens of thousands of statistical values on tens of thousands
of arrangements of the observed data, permutation methods languished for many
years until the advent of high-speed computing. Presently, statistical methods under
the Fisher–Pitman permutation model is a rapidly developing field of statistical
methodology and finds increasing utility in a large number of academic fields and
disciplines.

3.1 The Neyman–Pearson Population Model

In contemporary research two competing models of statistical inference coexist: the
population model and the permutation model.3 The population model of statistical
inference, formally proposed by Jerzy Neyman and Egon Pearson in a seminal two-
part article on statistical inference published in 1928, is the model taught almost
exclusively in introductory courses, although in most textbooks the presentation of
the population model espoused by Neyman and Pearson is often conflated with an
approach espoused by Fisher [19].

The Neyman–Pearson population model of statistical inference assumes random
sampling with replacement from one or more specified populations [34, 35]. Under
the Neyman–Pearson population model the level of statistical significance that
results from applying a statistical test to the results of an experiment or survey
corresponds to the frequency with which the null hypothesis would be rejected in
repeated random samplings from the same specified population(s). Because repeated
sampling of the specified population(s) is usually prohibitive, it is assumed that an
approximating theoretical distribution such as a z, t , F , or χ2 distribution conforms

3There are, of course, other models of statistical inference. A third model, the Bayesian inference
model, is also very popular, especially in the decision-making sciences.
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to the discrete sampling distribution of the test statistics generated under repeated
random sampling.

Under the Neyman–Pearson population model two hypotheses concerning a
population parameter or parameters are advanced: the null hypothesis symbolized
by H0 and a mutually-exclusive, exhaustive alternative hypothesis symbolized by
H1.4 The probability of rejecting a true H0 is determined by the researcher and
specified as type I or α error, a region of rejection in the tail or tails of the theoretical
distribution is delimited corresponding to α; for example, α = 0.05 or α = 0.01, and
H0 is rejected if the observed test statistic value falls into the region(s) of rejection
with probability of type I error equal to or less than α.

Technically, under the Neyman–Pearson population model of statistical inference
the null hypothesis is rejected if the computed test statistic value falls into the region
of rejection defined by α. For example, if α = 0.05 with a two-tail test and the
critical values defining the region of rejection are ±1.96, then a test statistic value
more extreme than ±1.96 in either direction implies rejection of the null hypothesis
with a probability of type I error usually expressed as p < 0.05. In this research
monograph asymptotic probability values under the Neyman–Pearson population
model are given to four decimal places for comparison with exact probability values
under the Fisher–Pitman permutation model of statistical inference.

3.2 The Fisher–Pitman Permutation Model

While the Neyman–Pearson population model of statistical inference is familiar
to most researchers, the Fisher–Pitman permutation model of inference may be
less familiar. Permutation statistical methods were introduced by R.A. Fisher in
1925 [12], further developed by Geary in 1927 [14], Eden and Yates in 1933 [9],
Hotelling and Pabst in 1936 [18], and made explicit by Pitman in 1937 and
1938 [36–38]. For the interested reader, a number of excellent presentations of
the two models are available. See especially, discussions by Curran-Everett [8],
Feinstein [11], Hubbard [19], Kempthorne [23], Kennedy [24], Lachin [25], Lud-
brook [26, 27], and May and Hunter [30].

For a permutation statistical test in its most basic form, a test statistic is
computed on the observed data—often the same test statistic as in the Neyman–
Pearson population model. The observations are then permuted over all possible
arrangements of the observed data and the specified statistic is computed for
each possible, equally-likely arrangement of the observed data. The proportion
of arrangements in the reference set of all possible arrangements possessing test
statistic values that are equal to or more extreme than the observed test statistic
value constitutes the probability of the observed test statistic value.

4Some introductory textbooks denote the alternative hypothesis by HA.
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Figure 3.1 presents a flowchart detailing the calculation of an exact permutation
probability value under the Fisher–Pitman model. The first step is to initialize two
counters; in this case, Counter A and Counter B. Counter A provides a count of
all test statistic values that are equal to or greater than the observed test statistic
value. Counter B provides a count of all possible arrangements of the observed data.
Second, the desired test statistic is calculated on the observed set of data. Third,
a new arrangement of the observed data is generated, while preserving the sample
size(s) and Counter B is increased by 1. Fourth, the desired test statistic is calculated
on the new arrangement of the observed data and compared with the original test
statistic value calculated on the observed set of data. If the value of the new test
statistic is equal to or greater than the value of the observed test statistic, Counter
A is increased by 1. If not, a check is made to see if this arrangement is the last in
the reference set of all possible arrangements. If it is, then Counter A divided by
Counter B yields the exact probability value; that is, the proportion of all possible
test statistic values that are equal to or greater than the observed test statistic value.
Otherwise, a new arrangement of the observed data is generated and the process is
repeated.

Statistical tests and measures based on the Fisher–Pitman permutation model
possess several advantages over statistical tests and measures based on the Neyman–
Pearson population model. First, tests based on the permutation model are much
less complex than tests based on the population model. Therefore, the results are
much easier to communicate to unsophisticated or statistically naïve audiences.
Second, permutation tests provide exact probability values based on the discrete
permutation distribution of equally-likely test statistic values. Tests based on the
Neyman–Pearson population model only provide vague results such as P <

0.05.5 Third, permutation tests are entirely data-dependent in that all the information
required for analysis is contained within the observed data—also called “the data
at hand method” [16]. There is no reliance on factors external to the observed
data, such as population parameters, assumptions about theoretical approximating
distributions, and alternative hypotheses. Fourth, permutation tests are appropriate
for nonrandom samples, such as are common in many fields of research. Fifth,
permutation tests are distribution-free in that they do not depend on the assumptions
associated with conventional tests under the population model, such as normality
and homogeneity of variance. Sixth, permutation tests are ideal for small data sets,
where conventional tests often are problematic when attempting to fit a continuous
theoretical distribution to only a few discrete values.

Because permutation statistical methods are inherently computationally-
intensive, it took the development of high-speed computing for permutation
methods to achieve their potential. Today, a small laptop computer outperforms even
the largest mainframe computers of previous decades. Three types of permutation
tests are common in the literature: exact, Monte Carlo, and moment-approximation
permutation tests.

5In this book, an upper-case letter P indicates a cumulative probability value and a lower-case
letter p indicates a point probability value.
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Fig. 3.1 Flowchart for the calculation of an exact permutation probability value
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Table 3.1
Cross-classification of
variables A and B

Variable B

Variable A b b̄ Total

a 9 9 18

ā 0 12 12

Total 9 21 30

3.2.1 Exact Permutation Tests

The first step in an exact permutation test is to calculate a test statistic value for the
observed data. Second, a reference set of all possible, equally-likely arrangements
of the observed data is systematically generated. Third, the desired test statistic
is calculated for each arrangement in the reference set. Fourth, the probability
of obtaining the observed value of the test statistic, or one more extreme, is the
proportion of the test statistics in the reference set with values that are equal to or
more extreme than the value of the observed test statistic.

To be perfectly clear, in practice a different order is followed. First, a test statistic
value for the observed data is calculated. Second, the first of a reference set of all
possible, equally-likely arrangements of the observed data is generated. Third, a
test statistic value for the new arrangement of the observed data is calculated and
compared with the original test statistic value. Fourth, if the new value is equal to or
exceeds the original test statistic value, a counter is increased by one. The process
is repeated until all possible arrangements of the observed data have been generated
and evaluated. Finally, the probability of obtaining the observed value of the test
statistic, or one more extreme, is the proportion of the test statistics in the reference
set with values that are equal to or more extreme than the value of the observed test
statistic. In this manner it is not necessary to store the reference set of all possible
arrangements of the observed data, which is often quite large.

An Exact Permutation Example

To illustrate an exact permutation test, consider the small set of data given in
Table 3.1. Fisher’s exact probability test is the iconic permutation test.6 Fisher’s
exact test calculates the hypergeometric point probability value for the reference
set of all possible arrangements of cell frequencies, given the observed marginal
frequency totals. The two-tail probability value of the observed arrangement of
cell frequencies is the sum of the observed probability value and all probability
values that are equal to or less than the observed probability value. Because Fisher’s
exact test simply yields a probability value, there is no test statistic defined in the

6Fisher’s exact test was independently developed by R.A. Fisher, Joseph Irwin, and Frank Yates in
the early 1930s [13, 21, 40].
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Table 3.2 Conventional
notation for a 2×2
contingency table

Variable B

Variable A b b̄ Total

a n11 n12 n1.

ā n21 n22 n2.

Total n.1 n.2 N

usual sense. Thus the first step is to determine the reference set of all possible
arrangements of the four cell frequencies, given the observed marginal frequency
totals. For a 2×2 contingency table, it is relatively easy to determine the total
number of possible tables in the reference set.

Consider the 2×2 contingency table in Table 3.2. Denote by a dot (·) the partial
sum of all rows or all columns, depending on the position of the (·) in the subscript
list. If the (·) is in the first subscript position, the sum is over all rows and if the (·)
is in the second subscript position, the sum is over all columns. Thus ni. denotes the
marginal frequency total of the ith row, i = 1, . . . , r , summed over all columns,
and n.j denotes the marginal frequency total of the j th column, j = 1, . . . , c,
summed over all rows. Thus n1. and n2. denote the marginal frequency totals for
rows 1 and 2, n.1 and n.2 denote the marginal frequency totals for columns 1 and 2,
nij denotes the cell frequencies for i, j = 1, 2, and N = n11 +n12 +n21 +n22. The
total number of possible values for any cell frequency, say n11, is given by

M = min(n1., n.1) − max(0, n11 − n22) + 1 .

Thus, for the frequency data given in Table 3.1 there are

M = min(18, 9) − max(0, 8 − 11) + 1 = 9 − 0 + 1 = 10

possible arrangements of cell frequencies in the reference set, given the observed
row and column marginal frequency distributions, {18, 12} and {9, 21}, respectively.

The reference set of the M = 10 arrangements of cell frequencies and the
associated hypergeometric point probability values are listed in Table 3.3. For any
2×2 contingency table, such as depicted in Table 3.2, the hypergeometric point
probability of any specified cell, say cell (1,1), is given by

p(n11|n1., n.1, N) =
(

n.1

n11

)(
n.2

n12

)(
N

n1.

)−1

= n1.! n2.! n.1! n.2!
N ! n11! n12! n21! n22! .

For the frequency data given in Table 3.1, the two-tail probability value is the sum
of the probability value of the observed contingency table and all probability values
that are equal to or less than the probability value of the observed table. Thus
Table 10 in Table 3.3 (the observed table) has a hypergeometric point probability
value of p10 = 0.3398×10−2 and only Tables 3.1 and 3.2 possess point probability
values that are less than p = 0.3398×10−2; that is, p1 = 0.1538×10−4 and
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Table 3.3 Listing of the
M = 10 possible 2×2
contingency tables in the
reference set from the
frequency data given in
Table 3.1 with associated
exact hypergeometric point
probability values

Table 1 Probability Table 2 Probability

0 18 0.1538×10−4 1 17 0.6228×10−3

9 3 8 4

Table 3 Probability Table 4 Probability

2 16 0.8470×10−2 3 15 0.5270×10−1

7 5 6 6

Table 5 Probability Table 6 Probability

4 14 0.1694×10−1 5 13 0.2964

5 7 7 8

Table 7 Probability Table 8 Probability

6 12 0.2855 7 11 0.1468

3 9 5 10

Table 9 Probability Table 10 Probability

8 10 0.3670×10−1 9 9 0.3398×10−2

1 11 0 12

Table 3.4 Listing of the 3×5
cell frequencies with rows
(R1, R2, R3) and columns
(C1, C2, C3, C4, C5) for an
exact probability example

B1 B2 B3 B4 B5 Total

A1 4 7 2 9 0 22

A2 1 5 2 7 6 21

A3 4 5 10 18 0 37

Total 9 17 14 34 6 80

p2 = 0.6228×10−3, respectively. The cumulative probability value of the three
tables is

P = p{9|18, 9, 30} + p{0|18, 9, 30} + p{1|18, 9, 30}

= 18! 12! 9! 21!
30! 9! 9! 0! 12! + 18! 12! 9! 21!

30! 0! 18! 9! 3! + 18! 12! 9! 21!
30! 1! 17! 8! 4!

= 0.3398×10−2 + 0.1538×10−4 + 0.6228×10−3

= 0.4036×10−2 .

A Second Exact Permutation Test Example

For a second example of an exact permutation analysis, consider the 3×5 contin-
gency table with N = 80 cell frequencies given in Table 3.4. Pearson’s chi-squared
test statistic for an r×c contingency table is taught in every introductory course and
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is given by

χ2 = N

⎛
⎝ r∑

i=1

c∑
j=1

n2
ij

ni.n.j

− 1

⎞
⎠ ,

where ni. denotes a row marginal frequency total for i = 1, . . . , r , n.j denotes a
column marginal frequency total for j = 1, . . . , c, nij denotes an observed cell
frequency for i = 1, . . . , r and j = 1, . . . , c, and N is the total of the cell
frequencies; in this case, N = 80. For the frequency data given in Table 3.4 with
row marginal frequency totals {22, 21, 37} and column marginal frequency totals
{9, 17, 14, 34, 6}, the observed value of Pearson’s chi-squared test statistic is

χ2 = N

⎛
⎝ r∑

i=1

c∑
j=1

n2
ij

ni.n.j

− 1

⎞
⎠

= 80

(
42

(22)(9)
+ 72

(22)(17)
+ · · · + 02

(37)(6)
− 1

)
= 25.1809 .

The exact probability value of χ2 = 25.1809 under the Fisher–Pitman permuta-
tion model is the sum of the hypergeometric point probability values associated
with the chi-squared values calculated on the reference set of all M possible
arrangements of the cell frequencies, given the observed marginal frequency totals.
For the frequency data given in Table 3.4, there are M = 21,671,722 possible,
equally-likely arrangements of the cell frequencies given the observed marginal
frequency totals, of which 16,498,422 chi-squared values are equal to or greater than
the observed chi-squared value of χ2 = 25.1809, yielding an exact hypergeometric
probability value of P = 0.1009×10−2.

For comparison, the chi-squared test statistic is asymptotically distributed as
Pearson’s χ2 with (r − 1)(c − 1) degrees of freedom under the Neyman–Pearson
null hypothesis. With (r − 1)(c − 1) = (3 − 1)(5 − 1) = 8 degrees of freedom, the
asymptotic probability value of χ2 = 25.1809 is P = 0.1449×10−2.

Comparison with Fisher’s Exact Probability Test

Although Fisher’s exact probability test is typically limited to 2×2 contingency
tables, it is possible to compute Fisher’s exact test on larger tables, such as the 3×5
contingency table given in Table 3.4 [32]. It is important to note that Fisher’s exact
probability test and an exact chi-squared test of independence are constructed quite
differently, although both tests will occasionally yield identical probability values.

Fisher’s exact test generates a reference set of all M possible arrangements of cell
frequencies given the observed marginal frequency totals, computes the hypergeo-
metric point probability value for each arrangement of the observede data, and sums
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the probability values that are equal to or less than the probability value obtained
from the observed arrangement of cell frequencies. On the other hand, an exact
chi-squared test generates a reference set of all M possible arrangements of cell
frequencies given th observed marginal frequency totals, calculates the chi-squared
value for each arrangement of cell frequencies, computes the hypergeometric point
probability value for each arrangement, and sums the probability values associated
with those chi-squared values that are equal to or greater than the chi-squared value
obtained from the observed arrangement of cell frequencies.

For the frequency data given in Table 3.4, the point probability value for
the observed arrangement of cell frequencies is p = 0.5164×10−8. There are
M = 21,671,722 possible, equally-likely arrangements of the cell frequencies
in Table 3.4, of which 18,683,509 hypergeometric point probability values are
equal to or greater than p = 0.5164×10−8, yielding an exact probability value
of P = 0.5174×10−2.

3.2.2 Monte Carlo Permutation Tests

As sample sizes increase, the size of the reference set of all possible arrangements of
the observed data can become quite large and exact permutation methods are quickly
rendered impractical. For example, permuting two samples of sizes n1 = n2 = 35
generates

M = (n1 + n2)!
n1! n2! = (35 + 35)!

35! 35! = 112,186,277,816,662,845,432

equally-likely arrangements of the observed data; or in words, 112 billion billion
different arrangements of the observed data—too many statistical values to compute
in a reasonable amount of time.

When exact permutation procedures become intractable, a random subset of all
possible arrangements of the observed data can be substituted, providing approx-
imate, but highly accurate, probability values. Monte Carlo permutation methods
generate and examine a random subset of all possible, equally-likely arrangements
of the observed data. For each randomly-selected arrangement of the observed data,
the desired test statistic is calculated. The probability of obtaining the observed
value of the test statistic, or one more extreme, is the proportion of the randomly-
selected test statistics with probability values that are equal to or more extreme
than the probability value of the observed test statistic. With a sufficient number of
randomly-selected samples, a probability value can be computed to any reasonable
accuracy. Provided the probability value is not too small, the current recommended
practice is to use L = 1,000,000 randomly-selected arrangements of the observed
data to ensure a probability value with three decimal places of accuracy. To ensure
four decimal places of accuracy, the number of randomly-selected arrangements
must be increased by two magnitudes of order; that is, L = 100,000,000 [22].
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A Monte Carlo Permutation Example

Consider once again the frequency data given in Table 3.4 on p. 64 with N = 80
observations. In many cases the exact analysis of M = 21,671,722 arrangements
of cell frequencies would be considered impractical. In such cases a random sample
of cell arrangements can yield an approximate probability value with considerable
accuracy. Based on L = 1,000,000 randomly-selected cell arrangements given the
observed marginal frequency totals, the Monte Carlo probability value of χ2 =
25.1809 is P = 0.1055×10−2, which compares favorably with the exact probability
value of P = 0.1009×10−2.

3.2.3 Moment-Approximation Permutation Tests

Monte Carlo permutation methods can be inefficient when desired probability
values are very small; for example, probability values on the order of 10−6,
as the Monte Carlo permutation method requires a large number of randomly-
selected test statistics to approximate such a small probability value. Prior to the
development of high-speed computing that made exact and Monte Carlo permu-
tation methods possible, researchers relied on moment-approximation procedures
to provide approximate probability values. The moment-approximation of a test
statistic requires calculation of the exact moments of the test statistic, assuming
equally-likely arrangements of the observed data. The exact moments are then used
to fit a specified distribution that approximates the underlying discrete permutation
distribution and provide an approximate, but often highly accurate, probability
value.

For many years the beta distribution was used for the approximating distribution.
Presently, the approximating distribution of choice is the Pearson type III probability
distribution, which depends on the exact mean, variance, and skewness of the test
statistic under consideration, say δ, given by

μδ = 1

M

M∑
i=1

δi ,

σ 2
δ = 1

M

M∑
i=1

(
δi − μδ

)2
,

and

γδ = 1

σ 3
δ

[
1

M

M∑
i=1

(
δi − μδ

)3

]
,
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respectively, where M denotes the total number of possible, equally-likely arrange-
ments of the observed data. The standardized statistic given by

T = δo − μδ

σδ

follows the Pearson type III distribution, where δo denotes the observed value of test
statistic δ. It should be noted that while the moments are exact, the resultant Pearson
type III probability value is always approximate.

A Moment-Approximation Permutation Example

For the frequency data given in Table 3.4 on p. 64, the observed value of the
permutation test statistic is δo = 24.8661, the expected value of test statistic δ is
μδ = 8.00, the variance of test statistic δ is σ 2

δ = 14.5148, the standardized test
statistic is

T = δo − μδ

σδ

= 24.8661 − 8.00√
14.5148

= +4.4270 ,

and the moment-approximation probability value based on the Pearson type III
probability distribution is P = 0.9763×10−3.

A Comparison of the Three Approaches

The three approaches to determining permutation probability values (exact, Monte
Carlo, and moment-approximation) often yield similar probability values. The dif-
ference between the moment-approximation probability value (P = 0.9763×10−3)
and the exact probability value based on all M = 21,671,722 arrangements of the
observed data in Table 3.4 (P = 0.1009×10−4) is only

�P = 0.9763×10−3 − 0.1009×10−4 = 0.9662×10−3 ,

the difference between the moment-approximation probability value (P =
0.9763×10−3) and the Monte Carlo probability value based on a sample of
L = 1,000,000 random arrangements of the observed data in Table 3.4
(P = 0.1055×10−2) is only

�P = 0.1055×10−2 − 0.9763×10−3 = 0.7870×10−4 ,

and the difference between the Monte Carlo probability value based on a sample
of L = 1,000,000 random arrangements of the observed data in Table 3.4 (P =
0.1055×10−2) and the exact probability value based on all M = 21,671,722
arrangements of the observed data in Table 3.4 (P = 0.1009×10−2) is only

�P = 0.1055×10−2 − 0.1009×10−2 = 0.4600×10−4 .
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3.3 Permutation and Parametric Statistical Tests

Permutation statistical tests, based on the Fisher–Pitman permutation model, differ
from traditional parametric tests, based on the Neyman–Pearson population model,
in several ways. First, permutation tests are entirely data-dependent in that all the
information required for analysis is contained within the observed data set [4, 33].
Second, permutation tests are appropriate for nonrandom samples, such as are com-
mon in many fields of research [38]. Third, permutation tests are distribution-free in
that they do not depend on the assumptions associated with traditional parametric
tests, such as normality and homogeneity of variance [5]. Fourth, permutation tests
provide exact probability values based on the discrete permutation distribution of
equally-likely test statistic values, rather than approximate probability values based
on a theoretical approximating distribution, such as a z, χ2, t , or F distribution [11].
Fifth, permutation tests are ideal for small data sets, whereas distribution functions
often provide poor fits to the underlying discrete sampling distribution. Of these
five differences, the requirements of random sampling and normality greatly limit
the application of statistical tests and measures based on the Neyman–Pearson
population model.

3.3.1 The Assumption of Random Sampling

It is important to note that the mathematical theorems that justify most statistical
procedures under the Neyman–Pearson population model of statistical inference
apply only to random samples drawn with replacement from a completely-specified
sampling frame. However, if the sample is not a random sample from a well-defined
population, then the validity of the hypothesis test is questionable [38]. There are,
admittedly, some applications in statistical analysis in which random sampling
from a specified population is neither attempted nor considered important. The fact
that medical researchers seldom use random samples often comes as a surprise to
investigators who work in other domains [11].

Research psychologists have been especially concerned with problems of ran-
dom sampling. Writing in Psychological Bulletin in 1966, psychologist Eugene
Edgington stated his position unequivocally: “statistical inferences cannot be made
concerning populations that have not been randomly sampled” [10, p. 485]. Writing
in Canadian Psychology in 1993, psychologists Michael Hunter and Richard May
noted that random sampling is of particular relevance to psychologists, “who rarely
use random sampling or any other sort of probability sampling” [20, p. 385]. In 1988
psychologist William Hays wrote:

The point is that some probability structure must be known or assumed to underlie the
occurrence of samples if statistical inference is to proceed. This point is belabored only
because it is so often overlooked, and statistical inferences are so often made with only the
most casual attention to the process by which the sample was generated. The assumption
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of some probability structure underlying the sampling is a little “price tag” attached to
a statistical inference. It is a sad fact that if one knows nothing about the probability of
occurrence for particular samples of units for observation, very little of the machinery
we are describing here applies. This is why our assumption of random sampling is not
to be taken lightly. . . . Unless this assumption is at least reasonable, the probability results
of inferential methods mean very little, and these methods might as well be omitted [17,
p. 212].7

In summary, conventional sampling distributions require random sampling
whereas permutation distributions do not [20, p. 387].

3.3.2 The Assumption of Normality

The assumption of normality is so basic to classical statistics that it deserves
special attention. Two points should be emphasized. First, permutation tests make
no distributional assumptions and, therefore, do not depend on the assumption of
normality. Second, the assumption of normality by conventional tests is always
unrealistic and never justified in practice [5, 29].

In 1927 R.C. Geary famously proclaimed: “Normality is a myth; there never
has, and never will be, a normal distribution” [15, p. 241] and in 1938 Joseph
Berkson wrote: “we may assume that it is practically certain that any series of
real observations does not actually follow a normal curve with absolute exactitude
in all respects” [2, p. 526] (see footnote 7). Robert Matthews once described the
normal distribution as “beautiful, beguiling and thoroughly dangerous” [29, p. 193]
and in 1954 I.D.J. Bross pointed out that statistical methods “are based on certain
assumptions—assumptions which not only can be wrong, but in many situations
are wrong” [6, p. 815] (see footnote 7). Others have empirically demonstrated the
prevalence of highly-skewed and heavy-tailed distributions in a variety of academic
disciplines, the best-known of which is Theodore Micceri’s widely quoted 1989
article on “The unicorn, the normal curve, and other improbable creatures” [31].

3.4 Advantages of Permutation Methods

Alvan Feinstein was a strong advocate for permutation methods. Trained as
both a mathematician and a medical doctor, Feinstein is widely regarded as the
founder of clinical epidemiology and patient-oriented medicine and the originator
of clinimetrics: the application of mathematics to the field of medicine [3, p. 246].
In 1973 Feinstein published a formative article titled “The role of randomization
in sampling, testing, allocation, and credulous idolatry” [11]. As Feinstein’s focus

7Emphasis in the original.
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was on medical investigations, he detailed the major violations of the assumptions
underlying tests of two groups:

1. The groups studied in modern clinical or epidemiologic research are
seldom selected as random samples.

2. For the many clinical and epidemiology research projects that are per-
formed as surveys, the subjects are not randomly assigned.

3. The distribution of the target variable is usually unknown in the parent
population.

4. It is usually known that the target variable does not have a Gaussian
distribution, and often departs from it dramatically.

5. It is usually known that the variances of the two samples are not remotely
similar.

Feinstein then put forth some advantages of tests under the Fisher–Pitman
permutation model that were insightful for the time and foreshadowed later research:

1. The result of a permutation test is a direct, exact probability value for the
random likelihood of the observed difference.

2. Permutation tests do not require any unwarranted inferential estimations of
means, variances, pooled variances, or other parameters of an unobserved,
hypothetical parent population. The tests are based solely on the evidence
that was actually obtained.

3. The investigator is not forced into making any erroneous assumptions
either that the contrasted groups were chosen as random samples from a
parent population or that treatments under study were randomly allocated
to the two groups.

4. The investigator is not forced into making any erroneous or unconfirmable
assumptions about a Gaussian (or any other) distribution for the parent
population, or about equal variances in the contrasted groups.

5. A permutation test can be applied to groups of any size, no matter how
large or small. There are no degrees of freedom to be considered. In the
case of a contingency table, there is no need to worry about the magnitude
of the expected value, no need to calculate expectations based on fractions
of people, and no need to worry about applying, or not applying, Yates’
correction for continuity.

To summarize, permutation statistical methods yield exact probability values, are
completely data-dependent, do not require random sampling, make no assumptions
about distributions, and can be applied to very small samples. The one drawback
to permutation tests, as noted by Feinstein in 1973, is that permutation tests are
notoriously difficult to calculate. While this statement was certainly true in 1973, in
the age of high-speed computing the statement is most certainly no longer accurate.
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3.5 Calculation Efficiency

Although permutation statistical methods do not require random sampling, nor-
mality, homogeneity, or large sample sizes, a potential drawback is the sheer
amount of computation required, with exact permutation tests being unrealistic for
many statistical analyses. Even Monte Carlo permutation methods often require the
enumeration of millions of random arrangements of the observed data in order to
provide a desired accuracy.

Five innovations mitigate the computation problem. First, high-speed computing
makes possible exact permutation statistical methods in which all possible arrange-
ments of the observed data are generated and examined. Second, the examination
of all combinations of the observed data instead of all permutations of the observed
data provides the same probability value with considerable savings in computing
time. Third, mathematical recursion greatly simplifies difficult calculations. Fourth,
calculation of only the variable components of the selected test statistic reduces
the amount of calculation required for each of the enumerated arrangements. Fifth,
holding one array of the observed data constant in any type of block design can
substantially lessen the number of arrangements required for an exact permutation
analysis.

3.5.1 High-Speed Computing

One has only to observe the hordes of the digitally distracted trying to navigate
a crowded sidewalk with their various smart-phones, pads, pods, ear-buds, and
tablets to realize that computing power, speed, and accessibility have finally arrived.
Permutation methods are, by their very nature, computationally intensive and
required the development of high-speed computing to achieve their potential. Prior
to 1960, computers were large, slow, and expensive. In large part their use was
restricted to military and industrial applications. In the 1960s, mainframe computers
became widely available to academicians at major research universities. By 1980
desktop computers and workstations, although not common, were available to many
researchers. In addition, the speed of computing increased greatly between 1960 and
1980. All this paved the way for the rapid development of permutation statistical
methods.

While not widely available to researchers, by 2010 mainframe computers were
measuring computing speeds in teraflops. To emphasize the progress of computing,
in 1951 the Remington Rand Corporation introduced the UNIVAC computer
running at 1905 flops, which with ten mercury delay line memory tanks could store
20,000 bytes of information; in 2008 the IBM Corporation supercomputer, code-
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named Roadrunner, reached a sustained performance of one petaflops8; in 2010 the
Cray Jaguar was named the world’s fastest computer performing at a sustained speed
of 1.75 petaflops with 360 terabytes of memory; and in November of 2010 China
exceeded the computing speed of the Cray Jaguar by 57% with the introduction of
China’s Tianhe-1A supercomputer performing at 2.67 petaflops [28].

In October of 2011, China broke the petaflops barrier again with the introduction
of the Sunway Bluelight MPP [1]. In late 2011 the IBM Yellowstone super-
computer was installed at the National Center for Atmospheric Research (NCAR)
Wyoming Supercomputer Center in Cheyenne, Wyoming. After months of testing,
the Wyoming Supercomputer Center officially opened on Monday, 15 October 2012.
Yellowstone was a 1.6 petaflops machine with 149.2 terabytes of memory and
74,592 processor cores and replaced an IBM Bluefire supercomputer installed in
2008 that had a peak speed of 76 teraflops. Also in late 2011, IBM unveiled the Blue
Gene\P and \Q supercomputing processing systems that can achieve 20 petaflops.
At the same time, IBM filed a patent for a massive supercomputing system capable
of 107 petaflops. In June of 2018 IBM unveiled the Summit supercomputer at Oak
Ridge National Laboratory in Tennessee that achieved sustained computing speeds
of 200 petaflops.

On the near horizon are so-called quantum computers. The basic element of a
quantum computer is the qubit. Unlike a standard bit (binary digit), which can take
on a value of either 0 or 1, a qubit (quantum bit) can be either 0, 1, or a combination
of the two. Because qubits can represent 0 and 1 simultaneously, they can encode a
wealth of information. As Thomas Siegfried explained it, five bits represent one out
of 25 = 32 possible permutations, but five qubits represent all of 25 = 32 possible
permutations [39]. Teams from academia and industry are working on versions of
quantum computers with 50–100 qubits, enough to perform calculations that the
most powerful supercomputers of today cannot accomplish in a reasonable time [7].
Google, which has already developed a nine qubit computer, has aggressive plans
to scale up to 49 qubits, and IBM, which has developed a 16 qubit prototype,
announced in early 2017 that it would build a 50 qubit quantum computer in the
next few years [7].

Finally, high-speed computers have dramatically changed the field of compu-
tational statistics. The future of high-speed computing appears very promising
for exact and Monte Carlo permutation statistical methods. Combined with other
efficiencies, it can safely be said that permutation methods have the potential to
provide exact or Monte Carlo probability values in an efficient manner for a wide
variety of statistical applications.

8One petaflops indicates a quadrillion operations per second, or a 1 with 15 zeroes following it.
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3.5.2 Analysis with Combinations

Although permutation statistical methods are known by the attribution “permuta-
tion,” they are generally not based on all possible permutations of the observed
data. Instead, exact permutation methods are based on all possible combinations of
arrangements of the observed data. Since, in general, there are fewer combinations
than permutations, analysis of combinations of the observed data greatly reduces
the amount of calculation required.

To illustrate the efficiency achieved by analyzing all combinations of the
observed data instead of all permutations, consider N = 10 observations that are
to be randomized into two groups, A and B, where nA = nB = 5 observations.
Suppose that the purpose is to compare differences between the two groups, such
as a mean difference. Let the nA = 5 observations be designated as a through
e and the nB = 5 observations be designated as f through j . For Group A, the
first observation can be chosen in 10 different ways, the second observation in nine
ways, the third observation in eight ways, the fourth observation in seven ways, and
the fifth observation in six ways. Once the five observations of Group A have been
chosen, the remaining five observations are assigned to Group B.

Of the 10×9×8×7×6 = 30,240 ways in which the five observations can be
arranged for Group A, each individual quintet of observations will appear in a series
of permutations. Thus, the quintet {a, b, c, d, e} can be permuted as {a, b, c, e, d},
{a, b, d, e, c}, {a, b, d, c, e}, and so on. Each permutation of the five observations
will yield the same mean value. The number of different permutations for a group of
five observations is 5! = 120. Thus, each distinctive quintet will appear in 120 ways
among the 30,240 possible arrangements. Therefore, 30,240 divided by 120 yields
252 distinctive quintets of observations that can be formed by dividing N = 10
observations into two groups of five observations each. The number of quintets can
conveniently be expressed as

(nA + nB)!
nA! nB ! = (5 + 5)!

5! 5! = 252 .

However, half of these arrangements are similar, but opposite. Thus, a quintet
such as {a, b, c, d, e} might be assigned to Group A and the quintet {f, g, h, i, j }
might be assigned to Group B, or vice versa, yielding the same absolute mean
difference. Consequently, there are only 252/2 = 126 distinctly different pairs of
quintets to be considered. A substantial amount of calculation can be eliminated by
considering all possible combinations of arrangements of the observed data in place
of all possible permutations with no loss of accuracy. Even in this small example,
a reduction from 30,240 equally-likely arrangements of the observed data to 126
arrangements constitutes a substantial increase in efficiency.
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3.5.3 Mathematical Recursion

Mathematical recursion is a process by which an initial probability value of a
test statistic is calculated, then successive probability values are generated from
the initial value by a recursive process. The initial value need not be an actual
probability value, but can be a completely arbitrary positive value by which the
resultant relative probability values are adjusted for the initializing value at the
conclusion of the recursion process.

A Recursion Example

Consider a 2×2 contingency table using the notation in Table 3.5. Denote by a dot (·)
the partial sum of all rows or all columns, depending on the position of the (·) in the
subscript list. If the (·) is in the first subscript position, the sum is over all rows and
if the (·) is in the second subscript position, the sum is over all columns. Thus, ni.

denotes the marginal frequency total of the ith row, i = 1, . . . , r , summed over all
columns, n.j denotes the marginal frequency total of the j th column, j = 1, . . . , c,
summed over all rows, and N = n11 + n12 + n21 + n22 denotes the table frequency
total. The probability value corresponding to any set of cell frequencies in a 2×2
contingency table, n11, n12, n21, n22, is the hypergeometric point probability value
given by

p =
(

n.1

n11

)(
n.2

n12

)(
N

n1.

)−1

= n1.! n2.! n.1! n.2!
N ! n11! n12! n21! n22! .

Since the exact probability value of a 2×2 contingency table with fixed marginal
frequency totals and one degree of freedom is equivalent to the probability value
of any one cell, determining the probability value of the cell containing n11
observations is sufficient.

If

p{n11 + 1|n1., n.1, N} = p{n11|n1., n.1, N}×f (n11) ,

Table 3.5 Conventional
notation for a 2×2
contingency table

Category

Category 1 2 Total

1 n11 n12 n1.

2 n21 n22 n2.

Total n.1 n.2 N
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then solving for f (n11) produces

f (n11) = p{n11 + 1|n1., n.1, N}
p{n11|n1., n.1, N}

= n11! n12! n21! n22!
(n11 + 1)! (n12 − 1)! (n21 − 1)! (n22 + 1)!

and, after cancelling, yields

f (n11) = n12 n21

(n11 + 1)(n22 + 1)
. (3.1)

To illustrate mathematical recursion with an arbitrary initial value, consider the
2×2 contingency table given in Table 3.6 with N = 24 observations. For the cell
containing n11 = 6 observations there are

M = min(n1., n.1) − max(0, n11 − n22) + 1

= min(10, 8) − max(0, 6 − 12) + 1 = 8 − 0 + 1 = 9

possible arrangements of cell frequencies, given the observed marginal frequency
totals. Table 3.7 lists the reference set of the M = 9 cell arrangements along with
the associated hypergeometric point probability values to six decimal places.

To illustrate the use of an arbitrary origin in a recursion procedure, consider
Table 3.1 in Table 3.7 and set relative probability value H {n11 = 0|10, 8, 24} to
a small arbitrarily-chosen positive value, say 1.00. Thus, H {n11 = 0|10, 8, 24} =
1.00. Then, following Eq. (3.1), a recursion procedure produces

H {n11 = 1|10, 8, 24} = 1.000000 × (10)(8)

(0 + 1)(6 + 1)
= 11.428571 ,

H {n11 = 2|10, 8, 24} = 11.428571 × (9)(7)

(1 + 1)(7 + 1)
= 45.000000 ,

H {n11 = 3|10, 8, 24} = 45.000000 × (8)(6)

(2 + 1)(8 + 1)
= 80.000000 ,

H {n11 = 4|10, 8, 24} = 80.000000 × (7)(5)

(3 + 1)(9 + 1)
= 70.000000 ,

Table 3.6 Example data for
a recursion process with an
arbitrary initial value

Variable B

Variable A b b̄ Total

a 6 4 10

ā 2 12 14

Total 8 16 24
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Table 3.7 Listing of the
M = 9 possible 2×2
contingency tables from
Table 3.6 in the reference set
with associated exact
hypergeometric probability
values to six decimal places

Table 1 Probability Table 2 Probability

0 10 0.004083 1 9 0.046664

8 6 7 7

Table 3 Probability Table 4 Probability

2 8 0.183739 3 7 0.326648

6 8 5 9

Table 5 Probability Table 6 Probability

4 6 0.285817 5 5 0.124720

4 10 3 11

Table 7 Probability Table 8 Probability

6 4 0.025983 7 3 0.002284

2 12 1 13

Table 9 Probability

8 2 0.000061

0 14

H {n11 = 5|10, 8, 24} = 70.000000 × (6)(4)

(4 + 1)(10 + 1)
= 30.545455 ,

H {n11 = 6|10, 8, 24} = 30.545455 × (5)(3)

(5 + 1)(11 + 1)
= 6.363636 ,

H {n11 = 7|10, 8, 24} = 6.363636 × (4)(2)

(6 + 1)(12 + 1)
= 0.559441 ,

and

H {n11 = 8|10, 8, 24} = 0.559441 × (3)(1)

(7 + 1)(13 + 1)
= 0.014985 ,

for a total of

T =
8∑

i=0

H {n11 = i|10, 8, 24}

= 1.000000 + 11.428571 + · · · + 0.014985 = 244.912088 .

The desired exact point probability values are then obtained by dividing each
relative probability value, H {n11|n1., n.1, N}, by the recursively-obtained total, T .
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For example,

p{n11 = 0|10, 8, 24} = H1

T
= 1.000000

244.912088
= 0.004083 ,

p{n11 = 1|10, 8, 24} = H2

T
= 11.428571

244.912088
= 0.046664 ,

p{n11 = 2|10, 8, 24} = H3

T
= 45.000000

244.912088
= 0.183739 ,

p{n11 = 3|10, 8, 24} = H4

T
= 80.000000

244.912088
= 0.326648 ,

p{n11 = 4|10, 8, 24} = H5

T
= 70.000000

244.912088
= 0.285817 ,

p{n11 = 5|10, 8, 24} = H6

T
= 30.545455

244.912088
= 0.124720 ,

p{n11 = 6|10, 8, 24} = H7

T
= 6.363636

244.912088
= 0.025983 ,

p{n11 = 7|10, 8, 24} = H8

T
= 0.559441

244.912088
= 0.002284 ,

and

p{n11 = 8|10, 8, 24} = H9

T
= 0.014985

244.912088
= 0.000061 .

In this manner, the entire analysis is conducted utilizing an arbitrary initial value
and a recursion procedure, thereby eliminating all factorial expressions. When the
number of potential contingency tables given by max(n11) − min(n11) + 1 is large,
the computational savings can be substantial.

3.5.4 Variable Components of a Test Statistic

Under permutation, only the variable components of the specified test statistic need
to be calculated for each arrangement of the observed data. As this component is
often a very small piece of the desired test statistic, calculations can often be reduced
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by several factors. To illustrate, consider the raw-score expression for a conventional
Pearson product-moment correlation coefficient between variables x and y given by

rxy =

N∑
i=1

xiyi −
(

N∑
i=1

xi

N∑
i=1

yi

)/
N

√√√√√
⎡
⎣ N∑

i=1

x2
i −

(
N∑

i=1

xi

)2/
N

⎤
⎦

⎡
⎣ N∑

i=1

y2
i −

(
N∑

i=1

yi

)2/
N

⎤
⎦

, (3.2)

where N is the number of bivariate measurements. For Pearson’s correlation
coefficient given in Eq. (3.2)

N ,

N∑
i=1

xi ,

N∑
i=1

x2
i ,

N∑
i=1

yi , and
N∑

i=1

y2
i

are invariant under permutation. Thus, it is sufficient to calculate only
∑N

i=1 xiyi

for each permutation of the observed data, eliminating a great deal of calculation. In
addition, it is only necessary to permute either variable x or variable y, leaving the
other variable fixed.

3.5.5 Holding an Array Constant

In the special case of block designs, such as matched-pairs and randomized-blocks
analysis of variance, it is possible to reduce the number of arrangements to be
examined by holding one of the arrays (treatment values) constant, while permuting
the other arrays. For example, given g = 3 treatments and b = 10 subjects (blocks)
in each treatment, there are

M = (
g!)b = (

3!)10 = 60,466,176

arrangements of the observed data to be considered. Holding one of the b sets of
blocks constant, relative to the other b − 1 sets of blocks, there are

M = (
g!)b−1 = (

3!)10−1 = 10,077,696

arrangements of the observed data to be considered, a reduction of 50,388,480
arrangements, or 83%.

These five features, high-speed computing, mathematical recursion with an
arbitrary initial value, computation of only the variable components of the test
statistic under permutation, holding an array of the observed data constant, and
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utilizing combinations instead of permutations, produce a highly efficient permu-
tation statistical approach that makes permutation statistical methods both feasible
and practical for many research applications.

3.6 Summary

This chapter opened with a description of two models of statistical inference: the
population model first put forward by Jerzy Neyman and Egon Pearson in 1928 and
the permutation model developed by R.A. Fisher, R.C. Geary, T. Eden, F. Yates, H.
Hotelling, M.R. Pabst, and E.J.G. Pitman in the 1920s and 1930s. Three types of
permutation statistical methods were described and illustrated: exact, Monte Carlo,
and moment-approximation permutation methods.

Permutation statistical methods were shown to differ from traditional parametric
methods in five ways. First, unlike conventional parametric methods, permutation
statistical methods are data-dependent methods in that all the information required
for analysis is contained within the observed data. Second, permutation methods
neither assume nor require random sampling from a defined population, which is
essential for parametric methods. Third, permutation methods are distribution-free
and do not depend on the usual assumptions associated with conventional parametric
methods, such as normality and homogeneity of variance. Fourth, permutation meth-
ods provide exact probability values based on the discrete permutation probability
distribution, in contrast to parametric methods that provide approximate probability
values based on a theoretical approximating distribution. Finally, permutation
methods are suitable for small samples, whereas parametric distribution functions
often provide very poor fits to the underlying discrete distribution when sample sizes
are small.

On the other hand, permutation methods are computationally intensive, often-
times requiring millions of calculations. A number of calculation efficiencies
mitigate the calculation problem, including the recent development of high-speed
computing, analyses based on all combinations of the observed data in place of all
permutations of the data, the use of mathematical recursion, calculations based on
only the variable components of a specified test statistic, and holding constant one
treatment array in block designs.

Chapter 4 describes measures of central tendency and variability with which
the reader is assumed to be familiar. Emphasized in Chap. 4 is the property of
the arithmetic mean as the point about which the sum-of-squared deviations is
minimized and the property of the median as the point about which the sum of
absolute deviations is minimized. An alternative approach to the mean and median
based on paired-squared and paired-absolute differences is introduced.
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