
Chapter 11
Contingency Tables

Abstract This chapter introduces permutation methods for the analysis of con-
tingency tables. Included in this chapter are six example analyses illustrating
computation of permutation methods for goodness-of-fit tests, analysis of contin-
gency tables composed of two nominal-level (categorical) variables, analysis of
contingency tables composed of two ordinal-level (ranked) variables, analysis of
contingency tables composed of one nominal-level variable and one ordinal-level
variable, analysis of contingency tables composed of one nominal-level variable
and one interval-level variable, and analysis of contingency tables composed of
one ordinal-level variable and one interval-level variable. Included in this chapter
are permutation versions of Pearson chi-squared goodness-of-fit test, Pearson’s
chi-squared test of independence, Cramér’s symmetrical measure of nominal asso-
ciation, Goodman and Kruskal’s τa and τb asymmetric measures of association for
two categorical variables, Goodman and Kruskal’s G measure of association for
two ranked variables, Somers’ dyx and dxy asymmetric measures of association
for two ranked variables, Freeman’s θ measure of association for a categorical
independent variable and a ranked dependent variable, Pearson’s point-biserial
correlation coefficient for one dichotomous variable and one interval-level variable,
and Jaspen’s correlation coefficient for one ranked variable and one interval-level
variable.

This chapter introduces exact and Monte Carlo permutation statistical methods
for selected measures of relationship among nominal-, ordinal-, and interval-level
variables, commonly called contingency table analysis. The analysis of contingency
tables with their associated measures of effect size and tests of significance
constitutes a substantial portion of nonparametric statistical methods.

In this last chapter, exact and Monte Carlo permutation statistical methods for
the analysis of contingency tables are illustrated with six types of analyses. The
first section of the chapter considers permutation statistical methods applied to con-
ventional goodness-of-fit tests; for example, Pearson’s chi-squared goodness-of-fit
test. The second section is devoted to permutation statistical methods for analyzing
contingency tables composed of two cross-classified nominal-level (categorical)
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410 11 Contingency Tables

variables; for example, Pearson’s symmetric chi-squared test of independence
for two categorical variables and Goodman and Kruskal’s ta and tb asymmetric
measures of association for two categorical variables. The third section utilizes
permutation statistical methods for analyzing contingency tables composed of
two cross-classified ordinal-level (ranked) variables; for example, Goodman and
Kruskal’s symmetricGmeasure of association for two ranked variables and Somers’
dyx and dxy asymmetric measures of association for two ranked variables. The
fourth section is the first of three sections utilizing permutation statistical methods
for analyzing contingency tables composed of two cross-classified mixed-level
variables. In this fourth section permutation statistical methods are utilized for
analyzing contingency tables composed of one nominal-level (categorical) variable
cross-classified with one ordinal-level (ranked) variable; for example, Freeman’s
θ measure for one categorical independent variable and one ranked dependent
variable. The fifth section utilizes permutation statistical methods for analyzing
contingency tables composed of one nominal-level variable cross-classified with
one interval-level variable; for example, Pearson’s point-biserial correlation coeffi-
cient for one dichotomous variable and one interval-level variable. The sixth section
utilizes permutation statistical methods for analyzing contingency tables composed
of one ordinal-level variable cross-classified with one interval-level variable; for
example, Jaspen’s correlation coefficient for one ranked variable and one interval-
level variable.1

There exist a vast array of measures of association and correlation. The few
measures described here illustrate the application of permutation statistical methods
to the analysis of two-way contingency tables at various levels of measurement
and were selected for their popularity in the research literature and inclusion in
various introductory textbooks. For a more comprehensive treatment of permutation
statistical methods applied to measures of association and correlation see a 2018
book on The Measurement of Association by the authors [2].

11.1 Goodness-of-Fit Tests

Goodness-of-fit tests are essential for determining how well observed data conform
to hypothetical models. When at all reasonable, exact goodness-of-fit tests are
preferred over asymptotic tests. More specifically, goodness-of-fit tests are designed
to compare the observed values in k discrete, unordered categories with values that
are expected to occur under chance conditions. For example, for a fair coin the
expectation for 100 independent trials is 50 heads and 50 tails overmany,many trials
of 100 tosses. The observed values, say 60 heads and 40 tails, are then compared
with expected values under the null hypothesis, H0: p(H) = p(T ) = 0.50.

1There is never any reason to relate a higher-level independent variable with a lower-level
dependent variable due to the loss of information from the independent variable.
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The most popular goodness-of-fit test for k discrete, unordered categories is
Pearson’s chi-squared test, although Wald’s likelihood-ratio test is occasionally
encountered in the contemporary literature. Utilizing the conventional notation
presented in many introductory textbooks, Pearson’s chi-squared goodness-of-fit
test for k discrete, unordered categories is given by

χ2 =
k∑

i=1

O2
i

Ei

− N ,

where Oi and Ei denote the observed and expected frequency values, respectively,
for i = 1, . . . , k. Under the Neyman–Pearson null hypothesis, H0: Oi = Ei for
i = 1, . . . , k, χ2 is asymptotically distributed as Pearson’s χ2 with k − 1 degrees
of freedom, under the assumption of normality.2

Consider the random assignment of N objects to k discrete, unordered categories
where the probability that any one of the N objects occurs in the ith category is
pi > 0 for i = 1, . . . , k. Then the probability that Oi objects occur in the ith
category for i = 1, . . . , k is the multinomial probability given by

P(O1,O2, . . . , Ok|p1, p2, . . . , pk,N) = N !
k∏

i=1

Oi !

k∏

i=1

p
Oi

i ,

where

k∑

i=1

Oi = N and
k∑

i=1

pi = 1 .

11.1.1 Example 1

Two example analyses will serve to illustrate the permutation approach to goodness-
of-fit-tests. For the first analysis under the Neyman–Pearson population model of
statistical inference, consider a small example set of data with k = 3 unordered
categories, N = 6 total objects, O1 = 5 objects in the first category, O2 = 1 object
in the second category, and O3 = 0 objects in the third category. The observed and
expected frequencies along with the associated theoretical proportions are listed in
Table 11.1. For the example data listed in Table 11.1 with N = 6 observations,

2Pearson’s χ2 test statistic is one of several test statistics that utilizes a lower-case Greek letter for
both the sample test statistic and the population parameter.
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Table 11.1 Example data for
Pearson’s chi-squared
goodness-of-fit test statistic
with k = 3 discrete,
unordered categories and
N = 6 observations

Category Observed Expected Theoretical
number frequency frequency proportion

1 5 2 0.3333

2 1 2 0.3333

3 0 2 0.3333

Sum 6 6 1.0000

Pearson’s chi-squared goodness-of-fit test statistic is

χ2 =
k∑

i=1

O2
i

Ei

− N = 52

2
+ 12

2
+ 02

2
− 6 = 7.00 .

Under the Neyman–Pearson null hypothesis, H0: Oi = Ei for i = 1, . . . , k, χ2

is asymptotically distributed as Pearson’s χ2 with k − 1 degrees of freedom. With
k−1 = 3−1 = 2 degrees of freedom, the asymptotic probability value of χ2 = 7.00
is P = 0.0302, under the assumption of normality.

11.1.2 An Exact Permutation Analysis

For the example data listed in Table 11.1 under the Fisher–Pitman permutation
model of statistical inference there are exactly

M =
(

N + k − 1

k − 1

)
=
(
6 + 3 − 1

3 − 1

)
=
(
8

2

)
= 28

possible, equally-likely arrangements in the reference set of all permutations of the
example data listed in Table 11.1. Table 11.2 lists the M = 28 arrangements of
the observed data, the associated χ2 values, and the multinomial point probability
values to six decimal places, ordered by the χ2 values from lowest (χ2

1 = 0.00)
to highest (χ2

28 = 12.00). The exact probability value of χ2 = 7.00 is the sum
of the multinomial point probability values associated with values of χ2 that are
equal to or greater than the observed χ2 value. There are only nine arrangements of
the observed data with χ2 test statistic values that are equal to or greater than the
observed value of χ2 = 7.00: six values of χ2 = 7.00 and three values of χ2 =
12.00, all in rows indicated with asterisks in Table 11.2. Thus if all M arrangements
of the N = 6 observations listed in Table 11.1 occur with equal chance under the
Fisher–Pitman null hypothesis, the exact probability value of χ2 = 7.00 computed
on the M = 28 possible arrangements of the observed data with k = 4 categories
preserved for each arrangement is

P = 6(0.008230) + 3(0.001372) = 0.053496 .
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Table 11.2 Example discrete
probability distribution for
the data given in Table 11.1
with χ2 test statistic values
and associated multinomial
probability values

Order Frequencies χ2 value Probability

1 2 2 2 0.00 0.123457

2 3 2 1 1.00 0.082305

3 3 1 2 1.00 0.082305

4 2 3 1 1.00 0.082305

5 2 1 3 1.00 0.082305

6 1 3 2 1.00 0.082305

7 1 2 3 3.00 0.082305

8 3 3 0 3.00 0.027435

9 3 0 3 3.00 0.027435

10 0 3 3 3.00 0.027435

11 4 1 1 3.00 0.041152

12 1 4 1 3.00 0.041152

13 1 1 4 3.00 0.041152

14 4 2 0 4.00 0.020576

15 4 0 2 4.00 0.020576

16 2 4 0 4.00 0.020576

17 2 0 4 4.00 0.020576

18 0 4 2 4.00 0.020576

19 0 2 4 4.00 0.020576

20∗ 5 1 0 7.00 0.008230

21∗ 5 0 1 7.00 0.008230

22∗ 1 5 0 7.00 0.008230

23∗ 1 0 5 7.00 0.008230

24∗ 0 5 1 7.00 0.008230

25∗ 0 1 5 7.00 0.008230

26∗ 6 0 0 12.00 0.001372

27∗ 0 6 0 12.00 0.001372

28∗ 0 0 6 12.00 0.001372

Sum 1.000000

There is a substantial difference between the exact probability value of P =
0.0535 and the asymptotic probability value of P = 0.0302; that is,

�P = 0.0535− 0.0302 = 0.0233 .

With the sparse data given in Table 11.1 there are only M = 28 possible
arrangements of cell frequencies given the marginal frequency totals and it would
be unreasonable to expect a continuous mathematical function such as Pearson’s χ2

to fit such a small discrete distribution consisting of only six different values with
any precision.
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Fig. 11.1 Punnett square
depicting RYRY, RYRy,
RYrY, RYry, RyRY, RyrY,
rYRY, rYRy, and ryRY
hybrids with nine black
circles, RyRy, Ryry, and ryRy
hybrids with three dark gray
circles, rYrY, rYry, and ryrY
hybrids with three light gray
circles, and the sole ryry
hybrid with a single white
circle
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Type of Egg

RY Ry rY ry

RYRY RYRy RYrY RYry

RyRY RyRy RyrY Ryry

rYRY rYRy rYrY rYry

ryRY ryRy ryrY ryry

11.1.3 Example 2

Gregor Mendel (1822–1884) is notable for his studies of hybridization utilizing
the common garden pea while he resided in the Augustinian monastery of St.
Thomas at Brünn in Austrian Silesia.3,4 In one of his many studies of garden
peas, Mendel crossed hybrid plants producing round yellow peas with hybrid plants
producing wrinkled green peas. To produce his hybrids, Mendel carefully brushed
the pollen of one pea plant onto the pistils of another plant. The first generation, as
expected, produced all round yellow peas—both dominant characteristics. However,
the second generation yielded four varieties of peas: round yellow, wrinkled yellow,
round green, and wrinkled green.5

Figure 11.1 displays the different varieties of peas in a Punnett square where
RY denotes round yellow peas, Ry denotes round green peas, rY denotes wrinkled
yellow peas, and ry denotes wrinkled green peas.6 In the Punnett diagram in
Fig. 11.1, the round-yellowhybrids, RYRY, RYRy, RYrY, RYry, RyRY, RyrY, rYRY,
rYRy, and ryRY, are indicated by nine black circles ( ), the round-green hybrids,
RyRy, Ryry, and ryRy, are indicated by three dark gray circles ( ), the wrinkled-

3Presently the region of Silesia is located largely in Poland with smaller parts in the Czech Republic
and in Germany.
4Mendel’s birth name was Johann, but he adopted the name Gregor when he entered the monastery
in 1843 at the age of 21.
5Mendel was elected abbot of the monastery in 1868 at the age of 46, the administrative duties of
which precluded any further research. Mendel passed away in 1884 at the age of 62.
6More technically, RY denotes round and yellow, Ry denotes round and not yellow, rY denotes
not-round and yellow, and ry denotes not-round and not-yellow.
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Table 11.3 Mendel’s
second-generation
hybridization frequency data
for N = 556 common garden
peas

Frequency

Category Ratio Observed Expected

RY 9 315 312.75

Ry 3 101 104.25

rY 3 108 104.25

ry 1 32 34.75

Sum 556 556.00

yellow hybrids, rYrY, rYry, and ryrY, are indicated by three light gray circles ( ),
and the single wrinkled-green ryry hybrid is indicated by a white circle ( ).

Mendel’s 15 double-hybrid plants produced a sample ofN = 556 peas. Mendel’s
data for the N = 556 second-generation hybrids are listed in Table 11.3, along with
the expected values which approximate the ratios 9:3:3:1.

For Mendel’s hybridization data listed in Table 11.3, Pearson’s chi-squared
goodness-of-fit test statistic is

χ2 =
k∑

i=1

O2
i

Ei

− N = 3152

312.75
+ 1012

104.25
+ 1082

104.25
+ 322

34.75
− 556 = 0.4700 .

Under the Neyman–Pearson null hypothesis, H0: Oi = Ei for i = 1, . . . , k, χ2

is asymptotically distributed as Pearson’s χ2 with k − 1 degrees of freedom. With
k − 1 = 4 − 1 = 3 degrees of freedom, the asymptotic probability value of χ2 =
0.4700 is P = 0.9254, under the assumption of normality.

In a 1936 paper published in Annals of Science, R.A. Fisher, Galton Professor
of Eugenics at University College, London, re-examined Mendel’s hybridization
data, questioned Mendel’s recording of his observations, and concluded that the
very close agreement between Mendel’s observed and expected series was unlikely
to have arisen by chance [4]. Fisher submitted his paper at Christmas time in 1936
to Annals of Science with a comment to the editor, Dr. Douglas McKie:

I had not expected to find the strong evidence which has appeared that the data had been
cooked. This makes my paper far more sensational than ever I had intended. . . (quoted in
Box [3, p. 297]).

11.1.4 An Exact Permutation Analysis

Under the Fisher–Pitman permutation model, the exact probability value of an
observed chi-squared value of χ2 = 7.00 is given by the sum of the multinomial
point probability values associated with the values of χ2 that are equal to or greater
than the observed χ2 value. For the Mendel hybridization data listed in Table 11.3
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under the permutation model there are

M =
(

N + k − 1

k − 1

)
=
(
556 + 4 − 1

4 − 1

)
=
(
559

3

)
= 28,956,759

possible, equally-likely arrangements in the reference set of all permutations of
Mendel’s hybridization data listed in Table 11.3, making an exact permutation
analysis feasible. If all M arrangements of the N = 556 observations listed in
Table 11.3 occur with equal chance under the Fisher–Pitman null hypothesis, the
exact probability value of the observed chi-squared value of χ2 = 0.4700 computed
on the M = 28,956,759 possible arrangements of the observed data with k = 4
categories preserved for each arrangement is P = 0.9381; that is, the sum of the
multinomial probability values associated with values of χ2 = 0.4700 or greater.

11.1.5 A Measure of Effect Size

A chi-squared test of goodness-of-fit and its associated probability value provide
no information as to the closeness of the fit between the observed and theoretical
values, only whether they are statistically significant under the Neyman–Pearson
population-model null hypothesis. Measures of effect size are essential in such
cases as they index the magnitude of the fit between the observed and expected
frequencies and indicate the practical significance of the research. A maximum-
corrected measure of effect size is easily specified for a chi-squared goodness-of-fit
test [1].

Define

q = min(E1, E2, . . . , Ek)

for k disjoint, unordered categories. Then with q determined, the maximum value
of χ2 is given by

χ2
max = N(N − q)

q
(11.1)

and a maximum-corrected measure of effect size for Pearson’s chi-squared
goodness-of-fit test is given by

ES(χ2) = χ2
o

χ2
max

,

where χ2
o denotes the observed value of χ2 [8].
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Table 11.4 Maximum
arrangement of cell
frequencies for Mendel’s
second-generation
hybridization frequency data
with N = 556 observations

Frequency

Category Ratio Observed Expected

RY 9 0 312.75

Ry 3 0 104.25

rY 3 0 104.25

ry 1 556 34.75

Sum 556 556.00

For Mendel’s hybridization data listed in Table 11.3, the minimum expected
frequency value is

q = min(E1, E2, E3, E4) = min(312.75, 104.25, 104.25, 34.75) = 34.75 ,

and the maximum possible Pearson’s χ2 test statistic value given k = 4, q = 34.75,
and N = 556 is

χ2
max = N(N − q)

q
= 556(566− 34.75)

34.75
= 8340 .

To illustrate the function of Eq. (11.1) imagine that all N = 556 observations are
concentrated in the one category with the smallest expected value and the remaining
k−1 categories contain zero observations. In this case all N = 556 observations are
concentrated in the last category with the minimum expected value of E4 = 34.75,
such as depicted in Table 11.4. Then the maximum value of Pearson’s chi-squared
goodness-of-fit test statistic is

χ2
max =

k∑

i=1

O2
i

Ei

− N

= 02

312.75
+ 02

104.25
+ 02

104.25
+ 5562

34.75
− 556 = 8340 ,

and the maximum-corrected measure of effect size is

ES(χ2) = χ2

χ2
max

= 0.4700

8340
= 0.5636×10−4 ,

indicating that the observed value of χ2 = 0.4700 is an insignificantly small
proportion of the maximum possible χ2 value, given the expected values E1 =
312.75, E2 = 104.25, E3 = 104.25, and E4 = 34.75.
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11.2 Contingency Measures: Nominal by Nominal

The most popular test for the cross-classification of two nominal-level (categorical)
variables is Pearson’s chi-squared test of independence, which is presented in
every introductory textbook. Utilizing the conventional notation presented in many
introductory textbooks for a contingency table with r rows and c columns, Pearson’s
chi-squared test statistic is given by

χ2 = N

⎛

⎝
r∑

i=1

c∑

j=1

O2
ij

RiCj

− 1

⎞

⎠ , (11.2)

where Oij denotes the observed frequency in the ith row and j th column for i =
1, . . . , r and j = 1, . . . , c, Ri denotes a row marginal frequency total for i =
1, . . . , r , Cj denotes a column marginal frequency total for j = 1, . . . , c, and N

denotes the total number of values in the observed contingency table.

11.2.1 Example 1

Two examples will serve to illustrate Pearson’s chi-squared test of independence for
an r×c contingency table. For an analysis under the Neyman–Pearson population
model, consider the sparse example data given in Table 11.5 with r = 3 rows, c = 3
columns, and N = 9 observations. Under the Neyman–Pearson population model,
the chi-squared test statistic value for the example data given in Table 11.5 is

χ2 = N

⎛

⎝
r∑

i=1

c∑

j=1

O2
ij

RiCj

− 1

⎞

⎠

= 9

[
02

(2)(2)
+ 02

(2)(3)
+ 22

(2)(4)
+ 02

(3)(2)
+ 32

(3)(3)
+ 02

(3)(4)

+ 22

(4)(2)
+ 02

(4)(3)
+ 22

(4)(4)
− 1

]
= 11.2500 .

Table 11.5 Example data for
Pearson’s chi-squared test of
independence with r = 3
rows, c = 3 columns, and
N = 9 cross-classified
observations

Column

Row 1 2 3 Total

1 0 0 2 2

2 0 3 0 3

3 2 0 2 4

Total 2 3 4 9
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Under the Neyman–Pearson null hypothesis, H0: Oij = Eij for i = 1, . . . , r

and j = 1, . . . , c, where the expected cell values are given by

Eij = Oij

RiCj

for i = 1, . . . , r and j = 1, . . . , c, χ2 is asymptotically distributed as Pearson’s
χ2 with (r −1)(c−1) degrees of freedom.With (r −1)(c−1) = (3−1)(3−1) = 4
degrees of freedom, the asymptotic probability value of χ2 = 11.2500 is P =
0.0239, under the assumption of normality.

11.2.2 A Measure of Effect Size

The fact that a chi-squared statistical test produces a low probability value indicates
only that there are differences among the response measurement scores between the
two variables that (possibly) cannot be attributed to error. The obtained probability
value does not indicate whether these differences are of any practical value.
Measures of effect size express the practical or clinical significance of an obtained
chi-squared value, as contrasted with the statistical significance of a chi-squared
value. The most popular measure of effect size for Pearson’s chi-squared test of
independence is Cramér’s V given by

V =
√

χ2

N
[
min(r − 1, c − 1)

] .

For the example data given in Table 11.6 with χ2 = 11.2500, Cramér’s measure of
effect size is

V =
√

11.2500

9
[
min(3 − 1, 3 − 1)

] =
√
11.2500

18.00
= 0.7906 .

For a critical evaluation of Cramér’s V measure of effect size, see a discussion in
The Measurement of Association by the authors [2, pp. 80–82].

Occasionally in the contemporary literature, Cohen’s measure of effect size for a
chi-squared test of independence is encountered. Cohen’s measure is given by

w =
√

χ2

N
.
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Table 11.6 All M = 39 arrangements of the frequency data given in Table 11.5 with associated
chi-squared values and hypergeometric point probability values

Observed frequencies

Table O11 O12 O21 O22 Chi-squared Probability

1∗ 2 0 0 3 18.0000 0.793651×10−3

2∗ 2 0 0 0 14.0625 0.317460×10−2

3∗ 0 2 0 2 13.0000 0.238095×10−2

4∗ 0 0 0 3 11.2500 0.476190×10−2

5 2 0 0 2 10.5625 0.952381×10−2

6 0 2 0 0 9.5625 0.952381×10−2

7 0 0 2 0 9.5625 0.952381×10−2

8 0 2 2 0 9.5625 0.952381×10−2

9 1 0 0 3 9.5625 0.634921×10−2

10 1 1 1 2 9.2500 0.476190×10−2

11 2 0 0 1 9.2500 0.14286

12 1 0 0 0 9.0000 0.634921×10−2

13 0 1 0 0 7.8750 0.952381×10−2

14 0 0 1 0 7.8750 0.952381×10−2

15 0 2 0 1 7.7500 0.014286

16 0 0 2 1 7.7500 0.014286

17 0 0 0 1 7.0000 0.014286

18 0 2 1 1 6.4375 0.019048

19 0 1 2 1 6.4375 0.019048

20 1 1 0 0 6.1875 0.019048

21 1 0 1 0 6.1875 0.019048

22 0 0 0 2 6.0625 0.028571

23 1 1 0 2 5.6875 0.019048

24 1 0 1 2 5.6875 0.019048

25 0 2 1 0 5.6250 0.028571

26 0 1 2 0 5.6250 0.028571

27 0 1 1 2 5.3125 0.019048

28 0 1 0 2 5.1250 0.028571

28 0 0 1 2 5.1250 0.028571

30 1 1 1 0 4.5000 0.028571

31 1 1 1 1 3.8125 0.038952

32 0 1 0 1 3.4375 0.057143

33 0 0 1 1 3.4375 0.057143

34 1 0 0 2 3.2500 0.057143

35 1 0 0 1 3.0625 0.057143

36 1 1 0 1 2.8750 0.057143

37 1 0 1 1 2.8750 0.057143

38 0 1 1 0 2.8125 0.057143

39 0 1 1 1 1.0000 0.114285

Sum 1.000000
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For the example data given in Table 11.5, Cohen’s measure of effect size is

w =
√
11.2500

9
= 1.1180 .

11.2.3 An Exact Permutation Analysis

Given the observed marginal frequency totals for the example data, there are
only M = 39 possible, equally-likely arrangements of cell frequencies in the
reference set of all permutations of the N = 9 observations given in Table 11.5,
making an exact permutation analysis possible. Table 11.6 lists the M = 39
arrangements of cell frequencies, the associated chi-squared test statistic values,
and the hypergeometric point probability values given by

p(O11, . . . ,Orc|R1, . . . , Rr , C1, . . . , Cc,N) =

(
r∏

i=1

Ri !
)⎛

⎝
c∏

j=1

Cj !
⎞

⎠

N !
r∏

i=1

c∏

j=1

Oij !
.

Because the observed marginal frequency totals are fixed, Table 11.6 lists only cell
frequencies O11, O12, O21, and O22, as the remaining five cell frequencies can be
determined from the observed marginal frequency totals.

Under the Fisher–Pitman permutation model, the exact probability value of χ2 =
11.2500 is the sum of the hypergeometric point probability values associated with
the chi-squared values that are equal to or greater than the observed chi-squared
value. For the results listed in Table 11.6, there are four chi-squared test statistic
values that are equal to or greater than the observed value of χ2 = 11.2500: χ2

1 =
18.0000, χ2

2 = 14.0625, χ2
3 = 13.0000, and χ2

4 = 11.2500, in rows 1, 2, 3, and 4,
respectively, and indicated by asterisks. Thus the exact probability value of χ2 =
11.2500 is

0.7937×10−3 + 0.3175×10−2 + 0.2381×10−2 + 0.4762×10−2 = 0.0111 .

There is a substantial difference between the exact probability value of P =
0.0111 and the asymptotic probability value of P = 0.0239; that is,

�P = 0.0239− 0.0111 = 0.0128 .

With such sparse data as given in Table 11.5 there are only M = 39 possible
arrangements of cell frequencies given the marginal frequency totals with only 25
different chi-squared values and it would be unreasonable to expect a continuous
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Table 11.7 Example data for
Pearson’s chi-squared test of
independence with r = 3
rows, c = 5 columns, and
N = 63 cross-classified
observations

Column

Row 1 2 3 4 5 Total

1 6 2 5 7 1 21

2 0 8 5 8 4 25

3 1 1 6 6 3 17

Total 7 11 16 21 8 63

mathematical function such as Pearson’s χ2 to fit such a small discrete distribution
with any precision.

11.2.4 Example 2

For a second example of a chi-squared analysis of a nominal-nominal contingency
table, consider the 3×5 contingency table with cell frequencies given in Table 11.7.
Following Eq. (11.2), Pearson’s chi-squared test statistic for the frequency data
given in Table 11.7 is

χ2 = N

⎛

⎝
r∑

i=1

c∑

j=1

O2
ij

RiCj

− 1

⎞

⎠

= 63

[
62

(21)(7)
+ 22

(21)(11)
+ · · · + 62

(17)(21)
+ 32

(17)(8)
− 1

]
= 16.6279 .

Under the Neyman–Pearson null hypothesis the chi-squared test statistic is asymp-
totically distributed as Pearson’s χ2 with (r − 1)(c − 1) degrees of freedom. With
(r − 1)(c− 1) = (3− 1)(5− 1) = 8 degrees of freedom, the asymptotic probability
value of χ2 = 16.6279 is P = 0.0342, under the assumption of normality.

11.2.5 A Measure of Effect Size

For the frequency data given in Table 11.7, Cramér’s measure of effect size is

V =
√

χ2

N
[
min(r − 1, c − 1)

]

=
√

16.6279

63
[
min(3 − 1, 5 − 1)

] =
√
16.6279

126.00
= 0.3633
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and Cohen’s measure of effect size is

w =
√

χ2

N
=
√
16.6279

63
= 0.2639 .

11.2.6 An Exact Permutation Analysis

Given the observed marginal frequency totals for the example data, there are
M = 11,356,797 possible, equally-likely arrangements of the cell frequencies
in the reference set of all permutations of the N = 63 observations given in
Table 11.7, making an exact permutation analysis possible. Under the Fisher–
Pitman permutation model, the exact probability of χ2 = 16.6279 is the sum
of the hypergeometric point probability values associated with the chi-squared
values calculated on all M possible arrangements of the cell frequencies, given the
observedmarginal frequency totals. For the frequency data given in Table 11.7, there
are M = 11,356,797 possible, equally-likely arrangements of the cell frequencies
given the observed marginal frequency totals, of which 10,559,996 chi-squared test
statistic values are equal to or greater than the observed chi-squared value of χ2 =
16.6279, yielding an exact hypergeometric probability value of P = 0.0306. Note
that with M = 11,356,797 possible arrangements of the data given in Table 11.7,
the asymptotic χ2 probability value of P = 0.0342 closely approximates the exact
hypergeometric probability value of P = 0.0306.

11.2.7 Goodman–Kruskal’s ta and tb Measures

While all measures of association based on Pearson’s chi-squared are symmetric
measures, Goodman and Kruskal’s two asymmetric proportional-reduction-in-error
measures (ta and tb) allow researchers to specify an independent and a dependent
variable. Consider two cross-classified, unordered polytomies, A and B, with vari-
able A the dependent variable and variable B the independent variable. Table 11.8

Table 11.8 Notation for the
cross-classification of two
categorical variables, Aj for
j = 1, . . . , c and Bi for
i = 1, . . . , r

A

B a1 a2 · · · ac Total

b1 n11 n12 · · · n1c n1.

b2 n21 n22 · · · n2c n2.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.

br nr1 nr2 · · · nrc nr.

Total n.1 n.2 · · · n.c N
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provides notation for the cross-classification, where aj for j = 1, . . . , c denotes the
c categories for dependent variable A, bi for i = 1, . . . , r denotes the r categories
for independent variable B, N denotes the total of cell frequencies in the table, ni.

denotes a marginal frequency total for the ith row, i = 1, . . . , r , summed over all
columns, n.j denotes a marginal frequency total for the j th column, j = 1, . . . , c,
summed over all rows, and nij denotes a cell frequency for i = 1, . . . , r and
j = 1, . . . , c.

Goodman and Kruskal’s ta test statistic is a measure of the relative reduction in
prediction error where two types of errors are defined. The first type is the error in
prediction based solely on knowledge of the distribution of the dependent variable,
termed “errors of the first kind” (E1) and consisting of the expected number of
errors when predicting the c dependent variable categories (a1, . . . , ac) from the
observed distribution of the marginals of the dependent variable (n.1, . . . , n.c). The
second type is the error in prediction based on knowledge of the distributions of both
the independent and dependent variables, termed “errors of the second kind” (E2)
and consisting of the expected number or errors when predicting the c dependent
variable categories (a1, . . . , ac) from knowledge of the r independent variable
categories (b1, . . . , br ).

To illustrate the two error types, consider predicting category a1 only from
knowledge of its marginal distribution, n.1, . . . , n.c. Clearly, n.1 out of the N total
cases are in category a1, but exactly which n.1 of the N cases is unknown. The
probability of incorrectly identifying one of the N cases in category a1 by chance
alone is given by

N − n.1

N
.

Since there are n.1 such classifications required, the number of expected incorrect
classifications is

n.1(N − n.1)

N

and, for all c categories of variableA, the number of expected errors of the first kind
is given by

E1 =
c∑

j=1

n.j (N − n.j )

N
.

Likewise, to predict n11, . . . , n1c from the independent category b1, the proba-
bility of incorrectly classifying one of the n1. cases in cell n11 by chance alone is

n1. − n11

n1.
.
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Since there are n11 such classifications required, the number of incorrect classifica-
tions is

n11(n1. − n11)

n1.

and, for all cr cells, the number of expected errors of the second kind is given by

E2 =
c∑

j=1

r∑

i=1

nij (ni. − nij )

ni.
.

Goodman and Kruskal’s ta statistic can then be defined as

ta = E1 − E2

E1
.

An efficient computation form for Goodman and Kruskal’s ta test statistic is
given by

ta =
N

r∑

i=1

c∑

j=1

n2ij

ni.

−
c∑

j=1

n2.j

N2 −
c∑

j=1

n2.j

. (11.3)

A computed value of ta indicates the proportional reduction in prediction error
given knowledge of the distribution of independent variable B over and above
knowledge of only the distribution of dependent variable A. As defined, ta is a point
estimator of Goodman and Kruskal’s population parameter τa for the population
from which the sample of N cases was obtained. If variable B is considered the
dependent variable and variable A the independent variable, then Goodman and
Kruskal’s test statistic tb and associated population parameter τb are analogously
defined.

11.2.8 An Example Analysis for ta

To illustrate Goodman and Kruskal’s ta measure of nominal-nominal association,
consider the contingency table given in Table 11.9 with r = 3 rows, c = 4
columns, and N = 110 cross-classified ordered observations. Following Eq. (11.3),
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Table 11.9 Example data for
Goodman and Kruskal’s ta
and tb measures of
nominal-nominal association
with r = 3 rows, c = 4
columns, and N = 110
cross-classified observations

Column (A)

Row (B) 1 2 3 4 Total

1 24 2 5 6 37

2 0 22 5 8 35

3 1 1 17 19 38

Total 25 25 27 33 110

the observed value of Goodman and Kruskal’s ta test statistic is

ta =
N

r∑

i=1

c∑

j=1

n2ij

ni.

−
c∑

j=1

n2.j

N2 −
c∑

j=1

n2.j

=
110

(
242

37
+ 22

37
+ · · · + 172

38
+ 192

38

)
− (252 + 252 + 272 + 332)

1102 − (252 + 252 + 272 + 332)

= 0.2797 .

Under the Neyman–Pearson null hypothesis, H0: τa = 0, ta(N − 1)(r − 1) is
asymptotically distributed as Pearson’s χ2 with (r − 1)(c − 1) degrees of freedom.
With (r − 1)(c − 1) = (3 − 1)(4 − 1) = 6 degrees of freedom, the asymptotic
probability value of ta = 0.2797 is P = 0.2852×10−10, under the assumption of
normality.

11.2.9 An Exact Permutation Analysis for ta

Under the Fisher–Pitman permutation model, the exact probability value of an
observed value of Goodman and Kruskal’s ta is given by the sum of the hyper-
geometric point probability values associated with ta test statistic values that are
equal to or greater than the observed value of ta = 0.2797. For the frequency
data given in Table 11.9, there are M = 26,371,127 possible, equally-likely
arrangements in the reference set of all permutations of cell frequencies given
the observed row and column marginal frequency distributions, {37, 35, 38} and
{25, 25, 27, 33}, respectively, making an exact permutation analysis possible. There
are exactly 1,523,131 ta test statistic values that are equal to or greater than the
observed value of ta = 0.2797. The exact probability value of the observed ta value
under the Fisher–Pitman null hypothesis is P = 0.0578; that is, the sum of the
hypergeometric point probability values associated with values of ta = 0.2797 or
greater.
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11.2.10 An Example Analysis for tb

Now consider variable B as the dependent variable. A convenient computing
formula for tb is

tb =
N

c∑

j=1

r∑

i=1

n2ij

n.j

−
r∑

i=1

n2i.

N2 −
r∑

i=1

n2i.

.

Thus, for the frequency data given in Table 11.9 the observed value of tb is

tb =
110

(
242

25
+ 22

25
+ · · · + 172

27
+ 192

33

)
− (372 + 352 + 382)

1102 − (372 + 352 + 382)
= 0.4428 .

Under the Neyman–Pearson null hypothesis, H0: τb = 0, tb(N − 1)(c − 1) is
asymptotically distributed as Pearson’s χ2 with (r − 1)(c − 1) degrees of freedom.
With (r − 1)(c − 1) = (3 − 1)(4 − 1) = 6 degrees of freedom, the asymptotic
probability value of tb = 0.4428 is P = 0.9738×10−28, under the assumption of
normality.

11.2.11 An Exact Permutation Analysis for tb

Under the Fisher–Pitman permutation model, the exact probability value of an
observed value of Goodman and Kruskal’s tb is given by the sum of the hypergeo-
metric point probability values associated with tb test statistic values that are equal
to or greater than the observed value of tb = 0.4428. For the frequency data given
in Table 11.9, there are M = 26,371,127 possible, equally-likely arrangements
in the reference set of all permutations of cell frequencies given the observed
row and column marginal frequency distributions, {37, 35, 38} and {25, 25, 27, 33},
respectively, making an exact permutation analysis possible. There are exactly
991,488 tb test statistic values that are equal to or greater than the observed value of
tb = 0.4428. The exact probability value of the observed tb value under the Fisher–
Pitman null hypothesis is P = 0.0376; that is, the sum of the hypergeometric point
probability values associated with values of tb = 0.4428 or greater.
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11.2.12 The Relationships Among ta , tb, and χ2

While no general equivalence exists between Goodman and Kruskal’s ta and tb
measures of nominal-nominal association and Pearson’s χ2 test of independence,
certain relationships hold among ta , tb, and χ2 under some limited conditions. Four
of the relationships can easily be specified.

First, if ni. = N/r for i = 1, . . . , r , then χ2 = N(r − 1)tb and tb = χ2/N(r −
1). To illustrate the relationship between Goodman and Kruskal’s tb asymmetric
measure of nominal-nominal association and Pearson’s χ2 test of independence
when ni. = N/r for i = 1, . . . , r , consider the frequency data given in Table 11.10
with r = 3 rows, c = 3 columns, N = 30 cross-classified observations, and
ni. = N/r = 10 for i = 1, . . . , r . For the frequency data given in Table 11.10
with N = 30 observations,

tb =
N

c∑

j=1

r∑

i=1

n2ij

n.j

−
r∑

i=1

n2i.

N2 −
r∑

i=1

n2i.

=
30

(
22

5
+ 32

10
+ · · · + 32

10
+ 62

15

)
− (102 + 102 + 102)

362 − (102 + 102 + 102)

= 10

600
= 0.0167

and

χ2 = N

⎛

⎝
r∑

i=1

c∑

j=1

n2ij

ni.n.j

− 1

⎞

⎠

= 30

[
22

(10)(5)
+ 32

(10)(10)
+ · · · + 32

(10)(10)
+ 62

(10)(15)

]

= 30 (1.0333− 1) = 1.00 .

Table 11.10 Example data
for χ2 and tb with r = 3
rows, c = 3 columns, and
N = 30 cross-classified
observations

Column (A)

Row (B) 1 2 3 Total

1 2 3 5 10

2 2 4 4 10

3 1 3 6 10

Total 5 10 15 30
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Then the observed value of Pearson’s χ2 test statistic with respect to the observed
value of Goodman and Kruskal’s tb test statistic is

χ2 = N(r − 1)tb = 30(3 − 1)(0.0167) = 1.00

and the observed value of Goodman and Kruskal’s tb test statistic with respect to
the observed value of Pearson’s χ2 test statistic is

tb = χ2

N(r − 1)
= 1.00

30(3− 1)
= 0.0167 .

Second, if n.j = N/c for j = 1, . . . , c, then χ2 = N(c − 1)ta and ta =
χ2/N(c − 1). To illustrate the relationship between Goodman and Kruskal’s ta
measure of nominal-nominal association and Pearson’s χ2 test of independence
when n.j = N/c for j = 1, . . . , c, consider the frequency data given in Table 11.11
with r = 2 rows, c = 4 columns, N = 40 cross-classified observations, and
n.j = N/c = 10 for j = 1, . . . , c. For the frequency data given in Table 11.11
with N = 40 observations,

ta =
N

r∑

i=1

c∑

j=1

n2ij

ni.

−
c∑

j=1

n2.j

N2 −
c∑

j=1

n2.j

=
40

(
72

25
+ 62

25
+ · · · + 22

15
+ 62

15

)
− (102 + 102 + 102 + 102)

402 − (102 + 102 + 102 + 102)

= 37.3333

1200
= 0.0311

Table 11.11 Example data
for χ2 and ta with r = 2
rows, c = 4 columns, and
N = 40 cross-classified
observations

Column (A)

Row (B) 1 2 3 4 Total

1 7 6 8 4 25

2 3 4 2 6 15

Total 10 10 10 10 40
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and

χ2 = N

⎛

⎝
r∑

i=1

c∑

j=1

n2ij

ni.n.j

− 1

⎞

⎠

= 40

[
72

(25)(10)
+ 62

(25)(10)
+ · · · + 22

(15)(10)
+ 62

(10)(15)

]

= 40 (1.0933− 1) = 3.7333 .

Then the observed value of Pearson’s χ2 test statistic with respect to the observed
value of Goodman and Kruskal’s ta test statistic is

χ2 = N(c − 1)ta = 40(4 − 1)(0.0311) = 3.7333

and the observed value of Goodman and Kruskal’s ta test statistic with respect to
the observed value of Pearson’s χ2 test statistic is

ta = χ2

N(c − 1)
= 3.7333

40(4 − 1)
= 0.0311 .

Third, if r = 2, then χ2 = Nta and ta = χ2/N , which is Pearson’s φ2 coefficient
of contingency. Also, if c = 2, then χ2 = Ntb and tb = χ2/N . Thus, if r = c =
2, then χ2 = Nta = Ntb . To illustrate the relationships between Goodman and
Kruskal’s ta and tb measures of nominal-nominal association and Pearson’s χ2 test
of independence with r = c = 2, consider the frequency data given in Table 11.12
with r = 2 rows, c = 2 columns, and N = 90 cross-classified observations. For the
frequency data given in Table 11.12 with N = 90 observations,

ta =
N

r∑

i=1

c∑

j=1

n2ij

ni.

−
c∑

j=1

n2.j

N2 −
c∑

j=1

n2.j

=
90

(
202

30
+ 102

30
+ 202

60
+ 402

60

)
− (402 + 502)

902 − (402 + 502)

= 400

4000
= 0.10 ,
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Table 11.12 Example data
for χ2, ta , and tb with r = 2
rows, c = 2 columns, and
N = 36 cross-classified
observations

Column (A)

Row (B) 1 2 Total

1 20 10 30

2 20 40 60

Total 40 50 90

tb =
N

c∑

j=1

r∑

i=1

n2ij

n.j

−
r∑

i=1

n2i.

N2 −
r∑

i=1

n2i.

=
90

(
202

40
+ 102

50
+ 202

40
+ 402

50

)
− (302 + 602)

902 − (302 + 602)

= 360

3600
= 0.10 ,

and

χ2 = N

⎛

⎝
r∑

i=1

c∑

j=1

n2ij

ni.n.j

− 1

⎞

⎠

= 90

[
202

(30)(40)
+ 102

(30)(50)
+ 202

(60)(40)
+ 402

(60)(50)

]

= 90 (1.1000− 1) = 9.00 .

Then the observed value of Pearson’s χ2 test statistic with respect to the observed
value of Goodman and Kruskal’s ta test statistic is

χ2 = Nta = 90(0.10) = 9.00

and the observed value of Goodman and Kruskal’s ta test statistic with respect to
the observed value of Pearson’s χ2 test statistic is

ta = χ2

N
= 9.00

90
= 0.10 .
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Also, the observed value of Pearson’s χ2 test statistic with respect to Goodman and
Kruskal’s tb test statistic is

χ2 = Ntb = 90(0.10) = 9.00

and the observed value of Goodman and Kruskal’s tb test statistic with respect to
the observed value of Pearson’s χ2 test statistic is

tb = χ2

N
= 9.00

90
= 0.10 .

Fourth, if ni. = N/r and n.j = N/c for i = 1, . . . , r and j = 1, . . . , c, then
χ2 = N(c − 1)ta = N(r − 1)tb. To illustrate the relationships between Goodman
and Kruskal’s ta and tb asymmetric measures of nominal association and Pearson’s
χ2 test of independence with ni. = N/r = 12 for i = 1, . . . , r and n.j = N/c = 9
for j = 1, . . . , c, consider the frequency data given in Table 11.13 with r = 3
rows, c = 4 columns, and N = 36 cross-classified observations. For the frequency
data given in Table 11.13 with N = 36 observations,

ta =
N

r∑

i=1

c∑

j=1

n2ij

ni.

−
c∑

j=1

n2.j

N2 −
c∑

j=1

n2.j

=
36

(
32

12
+ 22

12
+ · · · + 32

12
+ 42

12

)
− (92 + 92 + 92 + 92)

362 − (92 + 92 + 92 + 92)

= 24

972
= 0.0247 ,

Table 11.13 Example data
for χ2, ta , and tb with r = 3
rows, c = 4 columns, and
N = 36 cross-classified
observations

Column (A)

Row (B) 1 2 3 4 Total

1 3 2 4 3 12

2 4 4 2 2 12

3 2 3 3 4 12

Total 9 9 9 9 36
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tb =
N

c∑

j=1

r∑

i=1

n2ij

n.j

−
r∑

i=1

n2i.

N2 −
r∑

i=1

n2i.

=
36

(
32

9
+ 22

9
+ · · · + 32

9
+ 42

9

)
− (122 + 122 + 122)

362 − (122 + 122 + 122)

= 32

864
= 0.0370 ,

and

χ2 = N

⎛

⎝
r∑

i=1

c∑

j=1

n2ij

ni.n.j

− 1

⎞

⎠

= 36

[
32

(12)(9)
+ 22

(12)(9)
+ · · · + 32

(12)(9)
+ 42

(12)(9)

]

= 36

(
116

108
− 1

)
= 2.6667 .

Then the observed value of Pearson’s χ2 test statistic with respect to the observed
value of Goodman and Kruskal’s ta test statistic is

χ2 = N(c − 1)ta = 36(4 − 1)(0.0247) = 2.6667

and the observed value of Goodman and Kruskal’s ta test statistic with respect to
the observed value of Pearson’s χ2 test statistic is

ta = χ2

N(c − 1)
= 2.6667

36(4 − 1)
= 0.0247 .

Also, the observed value of Pearson’s χ2 test statistic with respect to Goodman and
Kruskal’s tb test statistic is

χ2 = N(r − 1)tb = 36(3 − 1)(0.0370) = 2.6667

and the observed value of Goodman and Kruskal’s tb test statistic with respect to
the observed value of Pearson’s χ2 test statistic is

tb = χ2

N(r − 1)
= 2.6667

36(3− 1)
= 0.0370 .
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11.2.13 The Relationships Among tb, δ, and �

Goodman and Kruskal’s tb measure of nominal-nominal association is directly
related to the permutation test statistic δ and, hence, to the permutation-based,
chance-corrected � measure of effect size. To illustrate the relationships among
test statistics tb, δ, and �, consider the frequency data given in Table 11.9 on p. 426,
replicated in Table 11.14 for convenience. The conventional notation for an r×c

contingency table is given in Table 11.8 on p. 423 where the row marginal frequency
totals are denoted by ni. for i = 1, . . . , r , the column marginal frequency totals
are denoted by n.j for j = 1, . . . , c, the cell frequencies are denoted by nij for
i = 1, . . . , r and j = 1, . . . , c, and

N =
r∑

i=1

ni. =
c∑

j=1

n.j =
r∑

i=1

c∑

j=1

nij .

Then for the frequency data given in Table 11.14, Goodman and Kruskal’s tb test
statistic is

tb =
N

c∑

j=1

r∑

i=1

n2ij

n.j

−
r∑

i=1

n2i.

N2 −
r∑

i=1

n2i.

=
110

(
242

25
+ 22

25
+ · · · + 172

27
+ 192

33

)
− (372 + 352 + 382)

1102 − (372 + 352 + 382)
= 0.4428 .

In 1971 Richard Light and Barry Margolin developed test statistic R2, based
on an analysis of variance technique for categorical response variables [6]. Light
and Margolin were unaware that R2 was identical to Goodman and Kruskal’s tb
test statistic and that they had asymptotically solved the long-standing problem of
testing the null hypothesis that the population parameter corresponding to Goodman
and Kruskal’s tb was zero; that is, H0: τb = 0. The identity between R2 and tb
was first recognized by Särndal in 1974 [9] and later discussed by Margolin and

Table 11.14 Example data
for illustrating the
relationships among tb, δ, and
� with r = 3 rows, c = 4
columns, and N = 110
cross-classified observations

Column (A)

Row (B) 1 2 3 4 Total

1 24 2 5 6 37

2 0 22 5 8 35

3 1 1 17 19 38

Total 25 25 27 33 110
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Light [7], where they showed that tb(N − 1)(c − 1) was distributed as Pearson’s
chi-squared with (r − 1)(c − 1) degrees of freedom.

Following Light and Margolin in the context of a completely-randomized
analysis of variance for the frequency data given in Table 11.14, the sum-of-squares
total is

SSTotal = N

2
− 1

2N

r∑

i=1

n2i.

= 110

2
− 1

(2)(110)

(
372 + 352 + 382

) = 36.6455 ,

the sum-of-squares between treatments is

SSBetween = 1

2

⎛

⎝
r∑

i=1

c∑

j=1

n2ij

n.j

⎞

⎠− 1

2N

r∑

i=1

n2i.

= 1

2

(
242

25
+ 22

25
+ · · · + 192

33

)
− 1

(2)(110)

(
372 + 352 + 382

) = 16.2281 ,

the sum-of-squares within treatments is

SSWithin =
c∑

j=1

(
n.j

2
− 1

2n.j

r∑

i=1

nij2

)

= 25

2
− 1

(2)(25)

(
242 + 02 + 12

)+ · · · + 33

2
− 1

(2)(33)

(
62 + 82 + 192

)

= 20.4174 ,

and Light and Margolin’s test statistic is

R2 = SSBetween
SSTotal

= 16.9857

36.6455
= 0.4428 ,

which is identical to Goodman and Kruskal’s tb = 0.4428.
The essential factors, sums of squares (SS), degrees of freedom (df ), mean

squares (MS), and variance-ratio test statistic (F ) are summarized in Table 11.15

Table 11.15 Source table for
the data listed in Table 11.14

Factor SS df MS F

Between 16.2281 3 5.4094 28.0835

Within 20.4174 106 0.1926

Total 36.6455 109
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where dfBetween = c − 1 = 4 − 1 = 3, dfWithin = N − c = 110 − 4 = 106, and
dfTotal = N − 1 = 110 − 1 = 109. Under the Neyman–Pearson null hypothesis,
H0: nij = ni./c for i = 1, . . . , r and j = 1, . . . , c, where each of the c treatment
groups possesses the same multinomial probability structure, test statistic F is
asymptotically distributed as Snedecor’s F with ν1 = r −1 and ν2 = N − r degrees
of freedom.With ν1 = r−1 = 4−1 = 3 and ν2 = N−r = 110−4 = 106 degrees of
freedom, the asymptotic probability value of F = 28.0835 is P = 0.1917×10−12,
under the assumptions of normality and homogeneity.

For the frequency data given in Table 11.14, the permutation test statistic is

δ = 2SSWithin

N − c
= 2(20.4174)

110 − 4
= 0.3852 ,

the exact expected value of test statistic δ under the Fisher–Pitman null hypothesis is

μδ = 2SSTotal
N − 1

= 2(36.6455)

110 − 1
= 0.6724 ,

and Mielke and Berry’s chance-corrected measure of effect size is

� = 1 − δ

μδ

= 1 − 0.3852

0.6724
= +0.4271 ,

indicating approximately 43% agreement between variables A and B above what is
expected by chance.

Alternatively, in terms of a completely-randomized analysis of variance model
the chance-corrected measure of effect size is

� = 1 − (N − 1)(SSWithin)

(N − c)(SSTotal)
= 1 − (110 − 1)(20.4174)

(110 − 4)(36.6455)
= +0.4271 .

Then the observed value of test statistic δ with respect to the observed value of
Goodman and Kruskal’s tb test statistic is

δ = 2SSBetween(1 − tb)

tb(N − c)
= 2(16.2281)(1− 0.4428)

(0.4428)(110− 4)
= 0.3852

and the observed value of Goodman and Kruskal’s tb test statistic with respect to
the observed value of test statistic δ is

tb = 2SSBetween
δ(N − c) + 2SSBetween

= 2(16.2281)

(0.3852)(110− 4) + 2(16.2281)
= 0.4428 .
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The observed value of test statistic δ with respect to the observed value of Fisher’s
F -ratio test statistic is

δ = 2SSBetween
F(c − 1)

= 2(16.2281)

(28.0835)(4− 1)
= 0.3852

and the observed value of Fisher’s F -ratio test statistic with respect to the observed
value of test statistic δ is

F = 2SSBetween
δ(c − 1)

= 2(16.2281)

(0.3852)(4− 1)
= 28.0835 .

The observed value of Goodman and Kruskal’s tb test statistic with respect to the
observed value of Mielke and Berry’s � measure of effect size is

tb = �(N − c) + c − 1

N − 1
= (0.4271)(110− 4) + 4 − 1

110 − 1
= 0.4428

and the observed value of Mielke and Berry’s � measure of effect size with respect
to Goodman and Kruskal’s tb test statistic is

� = 1 − (N − 1)(1 − tb)

N − c
= 1 − (110 − 1)(1 − 0.4428)

110 − 4
= +0.4271 .

The observed value of Mielke and Berry’s � measure of effect size with respect to
the observed value of Fisher’s F -ratio test statistic is

� = 1 − (N − 1)SSBetween
F(c − 1)SSTotal

= 1 − (110 − 1)(16.2281)

(28.0835)(4− 1)(36.6455)
= +0.4271

and the observed value of Fisher’s F -ratio test statistic with respect to the observed
value of Mielke and Berry’s � measure of effect size is

F = SSBetween(N − 1)

SSTotal(c − 1)(1 − �)
= (16.2281)(110− 1)

(36.6455)(4− 1)(1 − 0.4271)
= 28.0835 .

11.3 Contingency Measures: Ordinal by Ordinal

There exist numerous measures of association for the cross-classification of two
ordinal (ranked) variables. Three popular measures of ordinal-ordinal association
are Goodman and Kruskal’s symmetric measure of ordinal association denoted by
G and two asymmetric measures of ordinal association by Somers denoted by
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Table 11.16 Example data
for Goodman and Kruskal’s
G measure of ordinal-ordinal
association with r = 3 rows,
c = 5 columns, and N = 63
cross-classified observations

Column (y)

Row (x) 1 2 3 4 5 Total

1 6 2 5 7 1 21

2 0 8 5 8 4 25

3 1 1 6 6 3 17

Total 7 11 16 21 8 63

Table 11.17 Two sets of
N = 8 rank scores with no
tied scores

Variable

Object x y

1 1 3

2 3 4

3 2 1

4 4 2

5 5 5

6 7 8

7 8 6

8 6 7

dyx and dxy .7 These three measures and several others are based on the numbers
of concordant and discordant pairs present in the observed contingency table. To
illustrate the calculation of concordant and discordant pairs, consider the 3×5
contingency table given in Table 11.16 with N = 63 observations.

For any ordered contingency table there are five types of pairs to be considered:
concordant pairs (C), discordant pairs (D), pairs that are tied on variable x but not
tied on variable y (Tx), pairs tied on variable y but not tied on variable x (Ty), and
pairs tied on both variable x and variable y (Txy). Together they sum to the number
of possible pairs in the table; that is,

C + D + Tx + Ty + Txy = N(N − 1)

2
.

To demonstrate the calculation of concordant (C) and discordant (D) pairs,
consider the two sets of rank scores listed in Table 11.17, where there are no tied
ranks. Consider the first pair of objects: Objects 1 and 2. For Object 1, x1 = 1
and y1 = 3, and for Object 2, x2 = 3 and y2 = 4. Since x1 < x2 and y1 < y2
(1 < 3 and 3 < 4), the pair is considered to be concordant. Now consider a second
pair of objects: Objects 1 and 3. For Object 1, x1 = 1 and y1 = 3, and for Object
3, x3 = 2 and y3 = 1. Since x1 < x3 and y1 > y3 (1 < 2 and 3 > 1), the

7Goodman and Kruskal’s G measure of ordinal association is oftentimes denoted by the lower-case
Greek letter γ . In this section γ denotes the population parameter and G denotes the sample test
statistic.
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Table 11.18 Paired differences: concordant (C) and discordant (D) values for the rank scores
listed in Table 11.17

Pair xi and xj yi and yj Type Pair xi and xj yi and yj Type

1 1 < 3 3 < 4 C 15 2 < 5 1 < 5 C

2 1 < 2 3 > 1 D 16 2 < 7 1 < 8 C

3 1 < 4 3 > 2 D 17 2 < 8 1 < 6 C

4 1 < 5 3 < 5 C 18 2 < 6 1 < 7 C

5 1 < 7 3 < 8 C 19 4 < 5 2 < 5 C

6 1 < 8 3 < 6 C 20 4 < 7 2 < 8 C

7 1 < 6 3 < 7 C 21 4 < 8 2 < 6 C

8 3 > 2 4 > 1 C 22 4 < 6 2 < 7 C

9 3 < 4 4 > 2 D 23 5 < 7 5 < 8 C

10 3 < 5 4 < 5 C 24 5 < 8 5 < 6 C

11 3 < 7 4 < 8 C 25 5 < 6 5 < 7 C

12 3 < 8 4 < 6 C 26 7 < 8 8 > 6 D

13 3 < 6 4 < 7 C 27 7 > 6 8 > 7 C

14 2 < 4 1 < 2 C 28 8 > 6 6 < 7 D

Table 11.19 Two sets of
rank scores with tied scores

Variable

Object x y

1 1.5 2

2 1.5 2

3 3.5 4.5

4 5.5 2

5 3.5 4.5

6 5.5 6

pair is considered to be discordant. For the untied rank data listed in Table 11.17,
the number of concordant pairs is C = 23 and the number of concordant pairs is
D = 5. The

N(N − 1)

2
= 8(8 − 1)

2
= 28

concordant (C) and discordant (D) pairs for the rank-score data listed in Table 11.17
are listed in Table 11.18.

To illustrate the calculation of the Tx , Ty , and Txy tied pairs, consider the two
sets of rank scores listed in Table 11.19, where there are multiple tied rank scores on
both variable x and variable y. For the rank scores listed in Table 11.19,N = 6, the
number of concordant pairs is C = 8, the number of discordant pairs is D = 2, the
number of pairs tied on variable x is Tx = 1, the number of pairs tied on variable y

is Ty = 2, and the number of pairs tied on both variable x and variable y is Txy = 2.
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Table 11.20 Paired
differences: C, D, Tx , Ty , and
Txy values for the rank scores
listed in Table 11.19

Pair xi and xj yi and yj Type

1 1.5 = 1.5 2.0 = 2.0 Txy

2 1.5 < 3.5 2.0 < 4.5 C

3 1.5 < 5.5 2.0 = 2.0 Ty

4 1.5 < 3.5 2.0 < 4.5 C

5 1.5 < 5.5 2.0 < 6.0 C

6 1.5 < 3.5 2.0 < 4.4 C

7 1.5 < 5.5 2.0 = 2.0 Ty

8 1.5 < 3.5 2.0 < 4.5 C

9 1.5 < 5.5 2.0 < 6.0 C

10 3.5 < 5.5 4.5 > 2.0 D

11 3.5 = 3.5 4.5 = 4.5 Txy

12 3.5 < 5.5 4.5 < 6.0 C

13 5.5 > 3.5 2.0 < 4.5 D

14 5.5 = 5.5 2.0 < 6.0 Tx

15 3.5 < 5.5 4.5 < 6.0 C

Table 11.20 lists the

N(N − 1)

2
= 6(6 − 1)

2
= 15

paired differences: concordant pairs (C), discordant pairs (D), pairs tied on variable
x (Tx), pairs tied on variable y (Ty), and pairs tied on both variable x and variable y

(Txy).

11.3.1 An Example Analysis for G

For the example rank data given in Table 11.16 on p. 438 with N = 63 observations,
the number of concordant pairs is

C =
r−1∑

i=1

c−1∑

j=1

nij

⎛

⎝
r∑

k=i+1

c∑

l=j+1

nkl

⎞

⎠

= (6)(8 + 5 + 8 + 4 + 1 + 6 + 6 + 3) + (2)(5 + 8 + 4 + 6 + 6 + 3)

+ · · · + (5)(6 + 3) + (8)(3)) = 653 ,



11.3 Contingency Measures: Ordinal by Ordinal 441

the number of discordant pairs is

D =
r−1∑

i=1

c−1∑

j=1

ni,c−j+1

⎛

⎝
r∑

k=i+1

c−j∑

l=1

nkl

⎞

⎠

= (1)(0 + 8 + 5 + 8 + 1 + 1 + 6 + 6) + (7)(0 + 8 + 5 + 1 + 1 + 6)

+ · · · + (5)(1 + 1) + (8)(1) = 372 ,

and Goodman and Kruskal’s measure of ordinal-ordinal association is

G = C − D

C + D
= 653 − 372

653 + 372
= +0.2741 .

Under the Neyman–Pearson null hypothesis, H0: γ = 0, Goodman and Kruskal’s
G measure of ordinal-ordinal association is asymptotically distributed N(0, 1) as
N → ∞ with a standard error given by

sG =
√

N(1 − G2)

C + D
.

For the frequency data given in Table 11.16,

z = G√
N(1 − G2)

C + D

= +0.2741√
63[1 − (0.2741)2]

653 + 372

= +1.1496 ,

yielding an asymptotic upper-tail N(0, 1) probability value of P = 0.1252, under
the assumption of normality.

11.3.2 An Exact Permutation Analysis for G

Under the Fisher–Pitman permutation model, the exact probability value of an
observed value of Goodman and Kruskal’sGmeasure of ordinal-ordinal association
is given by the sum of the hypergeometric point probability values associated
with values of test statistic G that are equal to or greater than the observed value
of G = +0.2741. For the frequency data given in Table 11.16 with N = 63
observations, there are M = 11,356,797 possible, equally-likely arrangements in
the reference set of all permutations of cell frequencies given the observed row
and column marginal frequency distributions {21, 25, 17} and {7, 11, 16, 21, 8},
respectively, making an exact permutation analysis feasible. The exact probability
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value of the observed value of test statistic G is P = 0.0336; that is, the sum of the
hypergeometric point probability values associated with values of G = +0.2741 or
greater.

11.3.3 The Relationship Between Statistics G and δ

The functional relationships between test statistic δ and Goodman and Kruskal’s G

measure of ordinal-ordinal association are given by

δ = N(N − 1) − 2G(C + D)

2N
and G =

N

(
N − 1

2
− δ

)

C + D
.

For the frequency data given in Table 11.16, the observed value of test statistic δ

with respect to the observed value of Goodman and Kruskal’sG measure of ordinal-
ordinal association is

δ = 63(63 − 1) − 1(+0.2741)(653+ 372)

(2)(63)
= 26.5404

and the observed value of Goodman and Kruskal’s G measure of ordinal-ordinal
association with respect to the observed value of test statistic δ is

G =
63

(
63 − 1

2
− 26.5404

)

653 + 372
= +0.2741 .

11.3.4 Somers’ dyx and dxy Measures

While Goodman and Kruskal’s G measure of ordinal-ordinal association is a sym-
metric measure, Somers’ two asymmetric proportional-reduction-in-error (PRE)
measures (dyx and dxy) allow researchers to specify an independent and a dependent
variable. For Somers’ dyx , the dependent variable is typically the column variable
labeled y and for Somers’ dxy , the dependent variable is typically the row variable
labeled x. The two asymmetric measures are given by

dyx = C − D

C + D + Ty
and dxy = C − D

C + D − Tx

, (11.4)

where C is the number of concordant pairs, D is the number of discordant pairs,
Tx is the number of pairs tied on the row variable, and Ty is the number of pairs



11.3 Contingency Measures: Ordinal by Ordinal 443

tied on the column variable. As is evident in Eq. (11.4), Somers included in the
denominators of dyx and dxy the number of tied pairs on the dependent variable: Ty

for dyx and Tx for dxy . The rationale for including the tied pairs is simply that when
variable y is the dependent variable (dyx), then if two values of the independent
variable x differ, but the corresponding two values of the dependent variable y do not
differ (are tied), there is evidence of a lack of association and the ties on dependent
variable y (Ty) should be included in the denominator where they act to decrease the
value of dyx . The same rationale holds for Somers’ dxy where the ties on dependent
variable x (Tx) are included in the denominator.

11.3.5 An Example Analysis for dyx

For the frequency data given in Table 11.16 on p. 438, replicated in Table 11.21 for
convenience, the number of concordant pairs is

C =
r−1∑

i=1

c−1∑

j=1

nij

⎛

⎝
r∑

k=i+1

c∑

l=j+1

nkl

⎞

⎠

= (6)(8 + 5 + 8 + 4 + 1 + 6 + 6 + 3) + (2)(5 + 8 + 4 + 6 + 6 + 3)

+ · · · + (5)(6 + 3) + (8)(3)) = 653 ,

the number of discordant pairs is

D =
r−1∑

i=1

c−1∑

j=1

ni,c−j+1

⎛

⎝
r∑

k=i+1

c−j∑

l=1

nkl

⎞

⎠

= (1)(0 + 8 + 5 + 8 + 1 + 1 + 6 + 6) + (7)(0 + 8 + 5 + 1 + 1 + 6)

+ · · · + (5)(1 + 1) + (8)(1) = 372 ,

Table 11.21 Example data
for Somers’ dyx and dxy

measures of ordinal-ordinal
association with r = 3 rows,
c = 5 columns, and N = 63
cross-classified observations

Column (y)

Row (x) 1 2 3 4 5 Total

1 6 2 5 7 1 21

2 0 8 5 8 4 25

3 1 1 6 6 3 17

Total 7 11 16 21 8 63
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the number of pairs tied on variable x is

Tx =
r∑

i=1

c−1∑

j=1

nij

⎛

⎝
c∑

k=j+1

nik

⎞

⎠

= (6)(2 + 5 + 7 + 1) + (2)(5 + 7 + 1) + (5)(7 + 1) + (7)(1)

+ · · · + (1)(6 + 6 + 3) + (6)(6 + 3) + (6)(3) = 494 ,

the number of pairs tied on dependent variable y is

Ty =
c∑

j=1

r−1∑

i=1

nij

(
r∑

k=i+1

nkj

)

= (6)(0 + 1) + (0)(1) + (2)(8 + 1) + (8)(1)

+ · · · + (1)(4 + 3) + (4)(3) = 282 ,

and Somers’ dyx asymmetric measure of ordinal-ordinal association is

dyx = C − D

C + D + Ty

= 653 − 372

653 + 372 + 282
= +0.2150 .

For an r×c contingency table, dyx is asymptotically distributed N(0, 1) under
the Neyman–Pearson null hypothesis as N → ∞ with a standard error given by

sdyx = 2

3r

√
(r2 − 1)(c + 1)

N(c − 1)
.

For the frequency data given in Table 11.21,

z = dyx

2

3r

√
(r2 − 1)(c + 1)

N(c − 1)

= +0.2150

2

(3)(3)

√
(32 − 1)(5 + 1)

(63)(5 − 1)

= +2.2168 ,

yielding an asymptotic upper-tail N(0, 1) probability value of P = 0.0133, under
the assumption of normality.

11.3.6 An Exact Permutation Analysis for dyx

Under the Fisher–Pitman permutation model, the exact probability value of an
observed value of Somers’ dyx is given by the sum of the hypergeometric point
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probability values associated with values of test statistic dyx that are equal to or
greater than the observed value of dyx = +0.2150. For the frequency data given
in Table 11.21, there are M = 11,356,797 possible, equally-likely arrangements
in the reference set of all permutation of cell frequencies given the observed row
and column marginal frequency distributions {21, 25, 17} and {7, 11, 16, 21, 8},
respectively, making an exact permutation analysis feasible. The exact probability
value of dyx = +0.2150 is P = 0.0331; that is, the sum of the hypergeometric
point probability values associated with values of dyx = +0.2150 or greater.

11.3.7 The Relationship Between Statistics dyx and δ

The functional relationships between test statistic δ and Somers’ dyx asymmetric
measure of ordinal-ordinal association are given by

δ = N − 1

2
− dyx(C + D + Ty)

N
and dyx =

N

(
N − 1

2
− δ

)

C + D + Ty

.

For the frequency data given in Table 11.21, the observed value of test statistic
δ with respect to the observed value of Somers’ dyx measure of ordinal-ordinal
association is

δ = 63 − 1

2
− +0.2150(653+ 372 + 282)

63
= 26.5396

and the observed value of Somers’ dyx measure of ordinal-ordinal association with
respect to the observed value of test statistic δ is

dyx =
63

(
63 − 1

2
− 26.5396

)

653 + 372 + 282
= +0.2150 .

11.3.8 An Example Analysis for dxy

For the frequency data given in Table 11.21, the number of concordant pairs is
C = 653, the number of discordant pairs is D = 372, the number of pairs tied
on dependent variable x is Tx = 494, and Somers’ dxy asymmetric measure of
ordinal-ordinal association is

dxy = C − D

C + D + Tx

= 653 − 372

653 + 372 + 494
= +0.1850 .
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For an r×c contingency table, dyx is asymptotically distributed N(0, 1) under
the Neyman–Pearson null hypothesis as N → ∞ with a standard error given by

sdyx = 2

3c

√
(c2 − 1)(r + 1)

N(r − 1)
.

For the frequency data given in Table 11.21,

z = dyx

2

3c

√
(c2 − 1)(r + 1)

N(r − 1)

= +0.1850

2

(3)(5)

√
(52 − 1)(3 + 1)

(63)(5 − 1)

= +2.2480 ,

yielding an asymptotic upper-tail N(0, 1) probability value of P = 0.0123, under
the assumption of normality.

11.3.9 An Exact Permutation Analysis for dxy

Under the Fisher–Pitman permutation model, the exact probability value of an
observed value of Somers’ dxy is given by the sum of the hypergeometric point
probability values associated with values of test statistic dxy that are equal to or
greater than the observed value of dxy = +0.1850. For the frequency data given
in Table 11.21, there are M = 11,356,797 possible, equally-likely arrangements
in the reference set of all permutation of cell frequencies given the observed row
and column marginal frequency distributions {21, 25, 17} and {7, 11, 16, 21, 8},
respectively, making an exact permutation analysis feasible. The exact probability
value of dxy = +0.1850 is P = 0.0331; that is, the sum of the hypergeometric point
probability values associated with values of dxy = +0.1850 or greater.

11.3.10 The Relationship Between dxy and δ

The functional relationships between test statistic δ and Somers’ dxy asymmetric
measure of ordinal-ordinal association are given by

δ = N − 1

2
− dyx(C + D + Tx)

N
and dxy =

N

(
N − 1

2
− δ

)

C + D + Tx

.
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For the frequency data given in Table 11.21, the observed value of test statistic
δ with respect to the observed value of Somers’ dxy measure of ordinal-ordinal
association is

δ = 63 − 1

2
− +0.1850(653+ 372 + 494)

63
= 26.5394

and the observed value of Somers’ dxy measure of ordinal association with respect
to the observed value of test statistic δ is

dxy =
63

(
63 − 1

2
− 26.5394

)

653 + 372 + 494
= +0.1850 .

11.3.11 Probability Values for dyx and dxy

It may appear inconsistent that while Somers’ two measures of effect size differ
(dyx = +0.2150 and dxy = 0.1850), they both yield the same probability value of
P = 0.0331. It follows from the fact that the denominators of dyx and dxy (C+D+
Ty and C+D+Tx , respectively) can be computed from just the marginal frequency
distributions, which are fixed for all possible arrangements of cell frequencies and
are, therefore, invariant under permutation.

It is easily shown that C +D +Ty can be obtained from N and the row marginal
frequency distribution. Recall that for the frequency data listed in Table 11.21 on
p. 443, the number of concordant pairs is C = 653, the number of discordant pairs
is D = 372, the number of pairs tied on variable y is Ty = 282, and C + D + Ty =
653 + 372 + 282 = 1307. Then with N = 63,

C + D + Ty = 1

2

(
N2 −

r∑

i=1

n2i.

)
= 1

2

[
632 − (212 + 252 + 172

)] = 1307 .

In such manner C + D + Tx can be obtained from N and the column marginal
frequency distribution. For the frequency data listed in Table 11.21, the number of
concordant pairs isC = 653, the number of discordant pairs isD = 372, the number
of pairs tied on variable x is Tx = 494, and C +D+Tx = 653+372+494 = 1519.
Then with N = 63,

C + D + Tx = 1

2

⎛

⎝N2 −
c∑

j=1

n2.j

⎞

⎠

= 1

2

[
632 − (72 + 112 + 162 + 212 + 82

)] = 1519 .
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11.4 Contingency Measures: Nominal by Ordinal

There exist any number of measures of association for which the standard error
is unknown. Permutation statistical methods do not rely on knowledge of standard
errors and therefore provide much-needed probability values for a number of other-
wise very useful measures of association. One measure without a known standard
error is Freeman’s θ measure of nominal-ordinal association [5, pp. 108–119].

Consider an r×c contingency table where the r rows are a nominal-level
(categorical) independent variable (x) and the c columns are an ordinal-level
(ranked) dependent variable (y). For Freeman’s θ it is necessary to calculate the
absolute sum of the number of concordant pairs and number of discordant pairs for
all combinations of the nominal-level independent variable (rows) considered two
at a time. Assuming that the column ordered variable (y) is underlying continuous
and that ties in ranking result simply from a crude classification of the continuous
variable, Freeman’s nominal-ordinal measure of association is given by

θ =

r−1∑

i=1

r∑

j=i+1

∣∣Cij − Dij

∣∣

C + D + Ty

.

11.4.1 An Example Analysis for θ

To illustrate the calculation of Freeman’s θ measure of nominal-ordinal association,
consider the 4×5 contingency table given in Table 11.22 with N = 40 observations.
For the frequency data given in Table 11.22 with N = 40 observations, the number
of concordant pairs is

C =
r−1∑

i=1

c−1∑

j=1

nij

⎛

⎝
r∑

k=i+1

c∑

l=j+1

nkl

⎞

⎠

= (1)(5 + 5 + 0 + 0 + 0 + 2 + 2 + 1 + 0 + 0 + 2 + 3)

Table 11.22 Example data
for Freeman’s θ measure of
nominal-ordinal association
with r = 4 rows, c = 5
columns, and N = 40
cross-classified observations

Column (y)

Row (x) 1 2 3 4 5 Total

1 1 2 5 2 0 10

2 10 5 5 0 0 20

3 0 0 2 2 1 5

4 0 0 0 2 3 5

Total 11 7 12 6 4 40
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+ (2)(5 + 0 + 0 + 2 + 2 + 1 + 0 + 2 + 3)

+ · · · + (2)(2 + 3) + (2)(3)) = 304 ,

the number of discordant pairs is

D =
r−1∑

i=1

c−1∑

j=1

ni,c−j+1

⎛

⎝
r∑

k=i+1

c−j∑

l=1

nkl

⎞

⎠

= (0)(10+ 5 + 5 + 0 + 0 + 0 + 2 + 2 + 0 + 0 + 0 + 2)

+ (2)(10 + 5 + 6 + 0 + 0 + 2 + 0 + 0 + 0)

+ · · · + (2)(0 + 0) + (0)(0) = 141 ,

the number of pairs tied on variable y is

Ty =
c∑

j=1

r−1∑

i=1

nij

(
r∑

k=i+1

nkj

)

= (1)(10 + 0 + 0) + (10)(0 + 0) + (0)(0)

+ · · · + (0)(0 + 1 + 3) + (1)(1 + 3) + (1)(3) = 80 ,

the concordant and discordant pairs for the r = 4 rows considered two at a time are

C12 = (1)(5 + 5 + 0 + 0) + (2)(5 + 0 + 0) + (5)(0 + 0) + (2)(0) = 20 ,

D12 = (0)(10 + 5 + 5 + 0) + (2)(10 + 5 + 5) + (5)(10 + 5) + (2)(10) = 135 ,

C13 = (1)(0 + 2 + 2 + 1) + (2)(2 + 2 + 1) + (5)(2 + 1) + (2)(1) = 32 ,

D13 = (0)(0 + 0 + 2 + 2) + (2)(0 + 0 + 2) + (5)(0 + 0) + (2)(0) = 4 ,

C14 = (1)(0 + 0 + 2 + 3) + (2)(0 + 2 + 3) + (5)(2 + 3) + (2)(3) = 46 ,

D14 = (0)(0 + 0 + 0 + 2) + (2)(0 + 0 + 0) + (5)(0 + 0) + (2)(0) = 0 ,

C23 = (10)(0 + 2 + 2 + 1) + (5)(2 + 2 + 1) + (5)(2 + 1) + (0)(1) = 90 ,

D23 = (0)(0 + 0 + 2 + 2) + (0)(0 + 0 + 2) + (5)(0 + 0) + (5)(0) = 0 ,

C24 = (10)(0 + 0 + 2 + 3) + (5)(0 + 2 + 3) + (5)(2 + 3) + (0)(3) = 100 .

D24 = (0)(0 + 0 + 0 + 2) + (0)(0 + 0 + 0) + (5)(0 + 0) + (5)(0) = 0 ,

C34 = (0)(0 + 0 + 2 + 3) + (0)(0 + 2 + 3) + (2)(2 + 3) + (2)(3) = 16 ,

D34 = (1)(0 + 0 + 0 + 2) + (2)(0 + 0 + 0) + (2)(0 + 0) + (0)(0) = 2 ,
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and Freeman’s θ is

θ =

r−1∑

i=1

r∑

j=i+1

∣∣Cij − Dij

∣∣

C + D + Ty

= |20 − 135| + |32 − 4| + |46 − 0| + |90 − 0| + |100 − 0| + |16 − 2|
304 + 141 + 80

= 0.7486 .

11.4.2 An Exact Permutation Analysis for θ

Under the Fisher–Pitman permutation model, the exact probability value of an
observed value of θ = 0.7486 is given by the sum of the hypergeometric point
probability values associated with the values of test statistic θ calculated on all
M possible arrangements of the cell frequencies that are equal to or greater than
the observed value of θ = 0.7486. For the frequency data given in Table 11.22,
there are only M = 6,340,588 possible arrangements in the reference set of all
permutations of cell frequencies consistent with the observed row and column
marginal frequency distributions, {10, 20, 5, 5} and {11, 7, 12, 6, 4}, respectively,
making an exact permutation analysis feasible.

If all M possible arrangements of the observed data occur with equal chance, the
exact probability value of Freeman’s θ under the Fisher–Pitman null hypothesis
is the sum of the hypergeometric point probability values associated with the
arrangements of cell frequencies with values of θ that are equal to or greater than the
observed value of θ = 0.7486. Based on the underlying hypergeometric probability
distribution, the exact probability value of θ = 0.7486 is P = 0.2105×10−10.

11.5 Contingency Measures: Nominal by Interval

Pearson’s point-biserial correlation coefficient, denoted by rpb, measures the asso-
ciation between a nominal-level (categorical) variable with two categories and
an interval-level variable. Pearson’s point-biserial correlation coefficient is an
important measure in fields such as education and educational psychology where it
is typically used to measure the correlation between test questions scored as correct
(1) or incorrect (0) and the overall score on the test for N test takers. A low or
negative point-biserial correlation coefficient indicates that the test takers with the
highest scores on the test answered the question incorrectly and the test takers with
the lowest scores on the test answered the question correctly, alerting the instructor
to the possibility that the question failed to discriminate properly and may be faulty.
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Table 11.23 Example (0, 1)
coded data for Pearson’s
point-biserial correlation
coefficient

Variable Variable

Object x y Object x y

1 0 99 11 1 86

2 0 99 12 1 90

3 1 98 13 0 97

4 1 98 14 0 95

5 1 97 15 1 92

6 0 89 16 0 98

7 0 95 17 1 86

8 0 94 18 1 85

9 1 92 19 0 94

10 1 60 20 0 96

11.5.1 An Example Analysis for rpb

To illustrate the calculation of Pearson’s point-biserial correlation coefficient,
consider the dichotomous data listed in Table 11.23 for N = 20 observations where
variable x is the dichotomous variable and variable y is an unspecified interval-level
variable. The point-biserial correlation coefficient is often expressed as

rpb = ȳ0 − ȳ1

sy

√
n0n1

N(N − 1)
,

where n0 and n1 denote the number of y values coded 0 and 1, respectively, N =
n0 +n1, ȳ0 and ȳ1 denote the means of the y values coded 0 and 1, respectively, and
sy is the sample standard deviation of the y values given by

sy =
√√√√ 1

N − 1

N∑

i=1

(
yi − ȳ

)2
.

For the data listed in Table 11.23, n0 = n1 = 10,

ȳ0 = 1

n0

n0∑

i=1

yi = 99 + 99 + · · · + 89

10
= 88.40 ,

ȳ1 = 1

n1

n1∑

i=1

yi = 98 + 98 + · · · + 60

10
= 95.60 ,

sy =
√√√√ 1

N − 1

N∑

i=1

(
yi − ȳ

)2 =
√

1456

20 − 1
= 8.7539 ,
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and Pearson’s point-biserial correlation coefficient is

rpb = ȳ0 − ȳ1

sy

√
n0n1

N(N − 1)
= 88.40 − 95.60

8.7539

√
(10)(10)

20(20− 1)
= −0.4219 .

Alternatively, with

N∑

i=1

xi = 10 ,

N∑

i=1

x2
i = 10 ,

N∑

i=1

yi = 1840 ,

N∑

i=1

y2
i = 170,736 ,

and
N∑

i=1

xiyi = 884 ,

Pearson’s point-biserial correlation coefficient is simply the product-moment corre-
lation between dichotomous variable x and interval-level variable y. Thus,

rpb =
N

N∑

i=1

xiyi −
N∑

i=1

xi

N∑

i=1

yi

√√√√√

⎡

⎣N

N∑

i=1

x2
i −

(
N∑

i=1

xi

)2 ⎤

⎦

⎡

⎣N

N∑

i=1

y2
i −

(
N∑

i=1

yi

)2 ⎤

⎦

= (20)(884) − (10)(1840)√[
(20)(10) − 102

][
(20)(170,736) − 18402

] = −0.4219 .

The conventional test of significance for Pearson’s point-biserial correlation
coefficient is

t = rpb

√
N − 2

1 − r2pb

= −0.4219

√
20 − 2

1 − (−0.4219)2
= −1.9743 .

Under the Neyman–Pearson null hypothesis, H0: ρpb = 0, test statistic t is
asymptotically distributed as Student’s t with N − 2 degrees of freedom. With
N − 2 = 20 − 2 = 18 degrees of freedom, the asymptotic two-tail probability
value of t = −1.9743 is P = 0.0639, under the assumption of normality. For a
critical evaluation of the point-biserial correlation coefficient, see a discussion in
The Measurement of Association by the authors [2, pp. 417–424].
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11.5.2 An Exact Permutation Analysis for rpb

For the bivariate observations listed in Table 11.23, there are only

M = (n0 + n1)!
n0! n1! = (10 + 10)!

10! 10! = 184,756

possible, equally-likely arrangements in the reference set of all permutations of the
observed scores, making an exact permutation analysis possible. Under the Fisher–
Pitman permutation model, the exact probability of an observed value of Pearson’s
|rpb| is the proportion of |rpb| values calculated on all possible arrangements of the
observed data that are equal to or greater than the observed value of |rpb| = 0.4219.
There are exactly 11,296 |rpb| values that are equal to or greater than the observed
value of |rpb| = 0.4219. If all arrangements of the N = 20 observed scores occur
with equal chance, the exact probability value of |rpb| = 0.4219 computed on the
M = 184,756 possible arrangements of the observed data with n0 = n1 = 10
preserved for each arrangement is

P(rpb ≥ |ro|) = number of rpb values ≥ |ro|
M

= 11,296

184,756
= 0.0611 ,

where |ro| denotes the observed absolute value of test statistic rpb and M is
the number of possible, equally-likely arrangements of the N = 20 bivariate
observations listed in Table 11.23.

11.6 Contingency Measures: Ordinal by Interval

The best-known and most-widely reported measure of ordinal-by-interval associ-
ation is Jaspen’s multiserial correlation coefficient, which is simply the Pearson
product-moment correlation coefficient between an interval-level variable, Y , and
a transformation of an ordinal-level variable, X. Given N values on the interval
variable and k disjoint, ordered categories on the ordinal variable, the mean standard
score of the underlying scale for a given category is given by

Z̄j = YLj − YUj

pj

for j = 1, . . . , k ,

where YLj and YUj are the lower and upper ordinates of the segment of the
N(0, 1) distribution corresponding to the j th ordered category, and where pj is
the proportion of cases in the j th of k ordered categories. Given the obtained values
of Z̄j , j = 1, . . . , k, and the original N values of the interval-level variable, a
standard Pearson product-moment correlation between the Y and Z̄ values yields
the multiserial correlation coefficient.
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11.6.1 An Example Analysis for rYZ̄

To illustrate the calculation of Jaspen’s multiserial correlation coefficient, consider
the small set of data given in Table 11.24 where N = 32 interval-level variables
are listed in k = 4 disjoint, ordered categories: A, B, C, and D. Table 11.25
illustrates the calculation of Jaspen’s multiserial correlation coefficient. The first
column, headed X in Table 11.25, lists the k = 4 ordered categories of variable
X. The second column, headed n, lists the number of observations in each of
the k ordered categories. The third column, headed p, lists the proportion of
observations in each of the k ordered categories. The fourth column, headed P , lists
the cumulative proportion of observations in each of the k ordered categories. The
fifth column, headed z, lists the standard score that defines the cumulative proportion
from the fourth column under the unit-normal distribution for each of the k ordered
categories. For example, for category A the standard score that defines the lowest
(left-tail) of the normal distribution with proportion P = 0.1250 is z = −1.1503.
The sixth column, headed YL, lists the height of the ordinate at the standard score
listed in the fifth column below the specified segment of the unit-normal distribution.
For example, for category A,

YLA = exp(−z2/2)√
2π

= exp
[− (−1.1503)2/2

]
√
2(3.1416)

= 0.2059 .

Table 11.24 Example
ordinal-by-interval data for
Jaspen’s correlation
coefficient with N = 32
observations

Category

A B C D

83 91 86 75

78 84 81 58

73 81 80 51

63 78 79 50

76 77 50

73 76 48

69 70 48

64 64

58 63

56 59

53

Table 11.25 Calculation of the mean standard scores for the k = 4 ordinal categories

X n p P z YL YU Z̄

A 4 0.1250 0.1250 −1.1503 0.2059 0.0000 +1.6472

B 10 0.3125 0.4375 −0.1573 0.3940 0.2059 +0.6019

C 11 0.3438 0.7813 +0.7766 0.2951 0.3940 −0.2877

D 7 0.2188 1.0000 +1.0000 0.0000 0.2951 −1.3487

Total 32 1.0000
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The seventh column, headed YU , lists the height of the ordinate at the standard score
listed in the fifth column above the specified segment of the unit-normal distribution.
For example, for category C,

YUC = exp(−z2/2)√
2π

= exp
[− (−0.1573)2/2

]
√
2(3.1416)

= 0.3940 .

The last column, headed Z̄, lists the average standard scores for the k ordered
categories. For example, for category B,

Z̄B = YLB − YUB

pB

= 0.3940− 0.2059

0.3125
= +0.6019

Jaspen’s multiserial correlation coefficient is the Pearson product-moment corre-
lation between the Y interval-level values given in Table 11.24 and the transformed
Z̄ values given in Table 11.25. Table 11.26 lists the Y , Z̄, Y 2, Z̄2, and YZ̄ values,
along with the corresponding sums.

For the summations given in Table 11.26, the Pearson product-moment correla-
tion between the Y and Z̄ values is

rYZ̄ =
N

N∑

i=1

YiZ̄i −
N∑

i=1

Yi

N∑

i=1

Z̄i

√√√√√

⎡

⎣N

N∑

i=1

Y 2
i −

(
N∑

i=1

Yi

)2 ⎤

⎦

⎡

⎣N

N∑

i=1

Z̄2
i −

(
N∑

i=1

Z̄i

)2⎤

⎦

= (32)(189.3918) − (2195)(0.0000)√[
(32)(155,471) − 21952

][
(32)(28.1193) − 0.00002

] = +0.5094 .

Jaspen’s multiserial correlation coefficient is known to be biased. The bias is
due to the grouping of the values into k categories. When k is small, the bias
can be pronounced. For the example data listed in Table 11.24, the correction for
grouping is

SZ̄ =
⎛

⎝ 1

N

k∑

j=1

nj Z̄
2
j

⎞

⎠
1/2

=
{
1

32

[
(4)(+1.6472)2 + (10)(+0.6019)2 + (11)(−0.2877)2

+ (7)(−1.3487)2
]}1/2

= 0.9374
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Table 11.26 Calculation of the sums needed for the Pearson product-moment correlation between
variables Y and Z̄

Category Y Z̄ Y 2 Z̄2 YZ̄

A 83 +1.6472 6889 2.7133 +136.7176

78 +1.6472 6084 2.7133 +128.4816

73 +1.6472 5329 2.7133 +120.2456

63 +1.6472 3969 2.7133 +103.7736

B 91 +0.6019 8281 0.3623 +54.7729

84 +0.6019 7056 0.3623 +50.5596

81 +0.6019 6561 0.3623 +48.7539

78 +0.6019 6084 0.3623 +46.9482

76 +0.6019 5776 0.3623 +45.7444

73 +0.6019 5329 0.3623 +43.9387

69 +0.6019 4761 0.3623 +41.5311

64 +0.6019 4096 0.3623 +38.5216

58 +0.6019 3364 0.3623 +34.9102

56 +0.6019 3136 0.3623 +33.7064

C 86 −0.2877 7396 0.0828 −23.8220

81 −0.2877 6561 0.0828 −22.4370

80 −0.2877 6400 0.0828 −22.1600

79 −0.2877 6241 0.0828 −21.8830

77 −0.2877 5929 0.0828 −21.3290

76 −0.2877 5776 0.0828 −21.0520

70 −0.2877 4900 0.0828 −19.3900

64 −0.2877 4096 0.0828 −17.7280

63 −0.2877 3969 0.0828 −17.4510

59 −0.2877 3481 0.0828 −16.3430

53 −0.2877 2809 0.0828 −14.6810

D 75 −1.3487 5625 1.8190 −101.1525

58 −1.3487 3364 1.8190 −78.2246

51 −1.3487 2601 1.8190 −68.7837

50 −1.3487 2500 1.8190 −67.4350

50 −1.3487 2500 1.8190 −67.4350

48 −1.3487 2304 1.8190 −64.7376

48 −1.3487 2304 1.8190 −64.7376

Sum 2195 0.0000 155,471 28.1193 +189.3918

and the corrected multiserial correlation coefficient is

rc = rYZ̄

SZ̄

= +0.5094

0.9374
= +0.5434 .

Jaspen’s rc is asymptotically distributed as Student’s t under the Neyman–
Pearson null hypothesis with N −2 degrees of freedom. If the population parameter,
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ρc, is assumed to be zero, then for the observed data in Table 11.24,

t = rc − ρc√
1 − r2c

N − 2

= +0.5434− 0.00√
1 − (0.5434)2

32 − 2

= +3.5455 ,

and with N − 2 = 32 − 2 = 30 degrees of freedom the asymptotic two-tail
probability value of rc = +0.5434 is P = 0.1308×10−2, under the assumption
of normality.

11.6.2 A Monte Carlo Permutation Analysis for rYZ̄

Because there are

M = N ! = 32! = 263,130,836,933,693,530,167,218,012,160,000,000

possible, equally-likely arrangements in the reference set of all permutations of the
observed values listed in Table 11.24, an exact permutation analysis is not possible
and a Monte Carlo analysis is mandated. Let ro indicate the observed value of rc.
Based on L = 1,000,000 randomly-selected arrangements of the observed data,
there are 3069 |rc| values that are equal to or greater than |ro| = 0.5434, yielding a
Monte Carlo probability value of

P(|rc| ≥ |ro|) = number of |rc| values ≥ |ro|
L

= 3069

1,000,000
= 0.3069×10−2 ,

where ro denotes the observed value of rc and L is the number of randomly-selected,
equally-likely arrangements of the ordinal-interval data listed in Table 11.24.

11.7 Summary

Under the Neyman–Pearson model of statistical inference, this chapter examined
various measures of nominal-nominal, ordinal-ordinal, nominal-ordinal, nominal-
interval, and ordinal-interval association. Asymptotic probability values were pro-
vided under either Pearson’s χ2 probability distribution, Student’s t distribution,
Snedecor’sF distribution, or theN(0, 1) probability distribution. Under the Fisher–
Pitman permutation model of statistical inference, procedures for both exact and
Monte Carlo probability values were developed.

Six sections provided examples and illustrative analyses of permutation statistical
methods for contingency tables. In the first section, goodness-of-fit measures for



458 11 Contingency Tables

k discrete, mutually-exclusive categories were described and permutation methods
were utilized to obtain exact probability values. A measure of effect size for the
chi-squared goodness-of-fit test was presented and illustrated.

The second section illustrated the use of permutation statistical methods for
analyzing contingency tables in which two nominal-level variables have been
cross-classified. Three well-known and widely-used measures of nominal-nominal
association were introduced and analyzed with permutation methods: Cramér’s
symmetric V measure, based on Pearson’s chi-squared test statistic, and Goodman
and Kruskal’s ta and tb asymmetric measures, based on the differences between con-
cordant and discordant pairs of observations. The relationships between Pearson’s
χ2 test statistic and Goodman and Kruskal’s ta and tb measures were described.

The third section illustrated the use of permutation statistical methods for
analyzing contingency tables in which two ordinal-level variables have been cross-
classified. Three popular measures of ordinal-ordinal association were introduced
and analyzed with permutation methods: Goodman and Kruskal’s G symmetric
measure of ordinal-ordinal association and Somers’ dyx and dxy asymmetric
measures of ordinal-ordinal association.

The fourth section illustrated the use of permutation statistical methods for
analyzing contingency tables in which a nominal-level variable was cross-classified
with an ordinal-level variable. Freeman’s θ measure of association for a nominal-
level independent variable and an ordinal-level dependent variable was described
and illustrated with exact permutation statistical methods.

The fifth section illustrated the use of permutation statistical methods for
analyzing contingency tables in which a nominal-level variable was cross-classified
with an interval-level variable. Pearson’s point-biserial correlation coefficient for
a dichotomous nominal-level variable and a continuous interval-level variable was
described and analyzed with exact permutation statistical methods.

The sixth section illustrated the use of permutation statistical methods for analyz-
ing contingency tables in which an ordinal-level variable was cross-classified with
an interval-level variable. Jaspen’s multi-serial correlation coefficient for ordinal-
interval association was described and analyzed with Monte Carlo permutation
methods.
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