
Chapter 10
Correlation and Regression

Abstract This chapter introduces permutation methods for measures of correlation
and regression, the best-known of which is Pearson’s product-moment correlation
coefficient. Included in this chapter are six example analyses illustrating com-
putation of exact permutation probability values for correlation and regression,
calculation of measures of effect size for measures of correlation and regression,
the effects of extreme values on conventional (ordinary least squares) and permu-
tation (least absolute deviation) correlation and regression, exact and Monte Carlo
permutation procedures for measures of correlation and regression, application of
permutation methods to correlation and regression with rank-score data, and analy-
sis of multiple correlation and regression. Included in this chapter are permutation
versions of ordinary least squares correlation and regression, least absolute deviation
correlation and regression, Spearman’s rank-order correlation coefficient, Kendall’s
rank-order correlation coefficient, Spearman’s footrule measure of correlation, and
a permutation-based alternative for the conventional measures of effect size for
correlation and regression: Pearson’s r2.

This chapter presents exact and Monte Carlo permutation statistical methods for
measures of linear correlation and regression. Also presented in this chapter is a
permutation-based measure of effect size for a variety of measures of linear corre-
lation and regression. Simple linear correlation coefficients between two variables
constitute the foundation for a large family of advanced analytic techniques and are
taught in every introductory course.

In this chapter, permutation statistical methods for measures of linear correlation
and regression are illustrated with six example analyses. The first example utilizes a
small set of observations to illustrate the computation of exact permutation methods
for measures of linear correlation, wherein the permutation test statistic, δ, is
developed and compared with Pearson’s conventional product-moment correlation
coefficient. The second example develops a permutation-based measure of effect
size as a chance-corrected alternative to Pearson’s squared product-moment cor-
relation coefficient. The third example compares permutation statistical methods
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362 10 Correlation and Regression

based on ordinary and squared Euclidean scaling functions, with an emphasis on
the analysis of data sets containing extreme values. Ordinary least squares (OLS)
regression, based on squared Euclidean scaling, and least absolute deviation (LAD)
regression, based on ordinary Euclidean scaling, are compared and contrasted.
The fourth example utilizes a larger data set for providing comparisons of exact
permutation methods and Monte Carlo permutation methods, demonstrating the
efficiency of Monte Carlo statistical methods for correlation analyses. The fifth
example illustrates the application of permutation statistical methods to univari-
ate rank-score data, comparing permutation statistical methods with Spearman’s
rank-order correlation coefficient, Kendall’s rank-order correlation coefficient, and
Spearman’s footrule measure of rank-order correlation. The sixth example illustrates
the application of permutation statistical methods to multivariate correlation and
regression. Both OLS and LAD multivariate linear regression are described and
compared for multivariate observations.

10.1 Introduction

The most popular measure of linear correlation between two interval-level variables,
say, x and y, is Pearson’s rxy product-moment correlation coefficient wherein the
Neyman–Pearson null hypothesis (H0) posits a value for a population parameter,
such as a population correlation coefficient; that is, H0: ρxy = θ , where θ is
a specified value between −1 and +1. For example, the null hypothesis might
stipulate that the correlation in the population from which a bivariate sample has
been drawn is H0: ρxy = 0. In this chapter the null hypothesis, H0: ρxy = 0, is used
exclusively for two reasons. First, most introductory courses in statistical methods
restrict their discussions to H0: ρxy = 0. Null hypotheses such as H0: ρxy �=
0 are usually treated in more advanced courses. Second, Fisher’s normalizing
transformation for rxy when ρxy �= 0 has been found to be unsatisfactory unless
either the population correlation coefficient ρxy = 0 or the population is known to
be bivariate normal [4].

The problem is easy to illustrate. Consider a population in which the product-
moment correlation is equal to zero; that is, ρxy = 0, such as depicted in Fig. 10.1.
Random sampling from a population in which ρxy = 0 produces a symmetric,
discrete sampling distribution of rxy values that can be approximated by Student’s t

distribution with N − 2 degrees of freedom, such as depicted in Fig. 10.2.
Now consider a population in which the product-moment correlation is not equal

to zero; that is, ρxy = +0.60, such as depicted in Fig. 10.3. Random sampling
from a population in which ρxy = +0.60 produces an negatively-skewed, discrete
sampling distribution of rxy values that cannot be approximated by Student’s t

distribution with N − 2 degrees of freedom, such as depicted in Fig. 10.4.
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Fig. 10.1 Simulated
scatterplot of a population
with ρxy = 0.00
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Fig. 10.4 Simulated discrete
permutation distribution of
rxy from a population with
ρxy = +0.60

1 0 1

For simple linear correlation with two interval-level variables and N paired
observations, Pearson’s product-moment correlation coefficient is given by

rxy =

N∑

i=1

(
xi − x̄

)(
yi − ȳ

)

√√√√
[

N∑

i=1

(
xi − x̄

)2

][
N∑

i=1

(
yi − ȳ

)2

] ,

where x̄ and ȳ denote the arithmetic means of variables x and y given by

x̄ = 1

N

N∑

i=1

xi and ȳ = 1

N

N∑

i=1

yi ,

respectively, xi and yi denote the ith observed sample values for i = 1, . . . , N , and
N is the number of bivariate observations.

Under the Neyman–Pearson population model the null hypothesis is H0: ρxy = θ

and the two-tail alternative hypothesis is H1: ρxy �= θ , where θ is a hypothesized
value for the population correlation coefficient. The conventional test of signifi-
cance for Pearson’s product-moment correlation coefficient with null hypothesis,
H0: ρxy = 0, is Student’s t test statistic given by

t = rxy

√
N − 2

1 − r2
xy

,

which is assumed to follow Student’s t distribution with N − 2 degrees of freedom,
under the assumptions of normality and homogeneity. The permissible probability
of a type I error is denoted by α and if the observed value of t is more extreme
than the critical values of ±t that define α, the null hypothesis is rejected with a
probability of type I error equal to or less than α. The test of significance does
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not determine whether or not the null hypothesis is true, but only provides the
probability that, if the null hypothesis is true, the sample has been drawn from a
population with the value specified under the null hypothesis.

The assumptions underlying Pearson’s product-moment correlation coefficient
are (1) the observations are independent, (2) the data are a random sample from a
well-defined population with ρxy = 0, (3) the relationship between the predictor
variable and the criterion variable is linear, (4) homogeneity of variance, and (5) the
target variables x and y are distributed bivariate normal in the population.

10.1.1 A Permutation Approach

Consider a simple linear correlation analysis between two variables under the
Fisher–Pitman permutation model of statistical inference. As discussed in previous
chapters, the permutation model differs from the Neyman–Pearson population
model in several ways. Under the Fisher–Pitman permutation model there is no
null hypothesis specifying a population parameter. Instead, the Fisher–Pitman null
hypothesis simply states that all possible arrangements of the observed data occur
with equal chance [5]. Also, there is no alternative hypothesis under the permutation
model and no specified α level. Moreover, there is no requirement of random
sampling, no degrees of freedom, and no assumption of normality or homogeneity.
Finally, the Fisher–Pitman permutation statistical model provides exact probability
values.

A permutation alternative to a conventional correlation analysis for two variables
is easily defined. Let xi and yi denote the paired sample values for i = 1, . . . , N .
The permutation test statistic is given by

δ = S2
x + S2

y − 2|rxy |SxSy + (x̄ − ȳ)2 ,

where the sample means for variables x and y are given by

x̄ = 1

N

N∑

i=1

xi and ȳ = 1

N

N∑

i=1

yi ,

respectively, and the sample variances for variables x and y are given by

S2
x = 1

N

N∑

i=1

(
xi − x̄

)2 and S2
y = 1

N

N∑

i=1

(
yi − ȳ

)2
,

respectively.1

1Note that whereas a permutation approach eschews estimated population parameters and degrees
of freedom, the summations are divided by N , not N − 1. Thus S2

x and S2
y denote the sample

variances, not the estimated population variances.
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Under the Fisher–Pitman null hypothesis, the exact probability value of an
observed δ is the proportion of δ test statistic values calculated on all possible
arrangements of the observed data that are equal to or less than the observed value
of δ; that is,

P(δ ≤ δo|H0) = number of δ values ≤ δo

M
,

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements in the reference set of all permutations of the
observed data.

10.2 Example 1: The Relationship Between rxy and δ

An example will serve to illustrate the relationships between test statistics rxy and δ

for a simple correlation analysis. Consider the small set of data listed in Table 10.1
with N = 4 bivariate observations. For the example bivariate observations listed in
Table 10.1, the sample means for variables x and y are

x̄ = 1

N

N∑

i=1

xi = 24 + 31 + 55 + 43

4
= 38.25

and

ȳ = 1

N

N∑

i=1

yi = 20 + 36 + 49 + 35

4
= 35.00 ,

respectively, the sample product-moment correlation coefficient is

rxy =

N∑

i=1

(
xi − x̄

)(
yi − ȳ

)

√√√√
[

N∑

i=1

(
xi − x̄

)2

][
N∑

i=1

(
yi − ȳ

)2

]

= +441.00√
(558.75)(422.00)

= +0.9082 ,

Table 10.1 Example
correlation data on N = 4
bivariate observations

Variable

Object x y

1 24 20

2 31 36

3 55 49

4 43 35
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and Student’s t test statistic is

t = rxy

√
N − 2

1 − r2
xy

= +0.9082

√
4 − 2

1 − (+0.9082)2
= +3.0684 .

Under the Neyman–Pearson null hypothesis, H0: ρxy = 0, test statistic t is
asymptotically distributed as Student’s t with N − 2 degrees of freedom. With
N − 2 = 4 − 2 = 2 degrees of freedom, the asymptotic two-tail probability value
of t = +3.0684 is P = 0.0918, under the assumptions of linearity, normality, and
homogeneity.

10.2.1 An Exact Permutation Analysis

Now consider the bivariate data listed in Table 10.1 under the Fisher–Pitman
permutation model. For the example bivariate data listed in Table 10.1, the sample
means are x̄ = 38.25 and ȳ = 35.00, the sample variances are S2

x = 139.6875 and
S2

y = 105.50, the sample standard deviations are Sx = 11.8189 and Sy = 10.2713,
the sample product-moment correlation coefficient is rxy = +0.9082, and the
observed permutation test statistic is

δ = S2
x + S2

y − 2|rxy |SxSy + (x̄ − ȳ)2 = 139.6875 + 105.50

− 2(0.9082)(11.8189)(10.2713)+ (38.25 − 35.00)2 = 35.25 . (10.1)

Note that in Eq. (10.1), Sx , S2
x , Sy , S2

y , x̄, ȳ, and the constant 2 are all invariant
under permutation, leaving only |rxy | to be calculated for each arrangement of the
observed data.

An exact permutation analysis requires exhaustive shuffles of either the N = 4 x

values or the N = 4 y values while holding the other set of values constant. For the
example data listed in Table 10.1 there are only

M = N ! = 4! = 24

possible, equally-likely arrangements in the reference set of all permutations of the
bivariate data listed in Table 10.1, making an exact permutation analysis feasible.
Under the Fisher–Pitman permutation model, the exact probability of an observed
δ is the proportion of δ test statistic values computed on all possible, equally-likely
arrangements of the N = 4 bivariate observations listed in Table 10.1 that are equal
to or less than the observed value of δ = 35.25. Table 10.2 lists the M = 24
arrangements of the example data listed in Table 10.1 with the x values shuffled
and the associated values for rxy and δ, ordered by the |rxy | values from largest
(|r1| = 0.9432) to smallest (|r24| = 0.1524) and by the δ values from smallest
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Table 10.2 All M = 24 possible, equally-likely arrangements of the bivariate data listed in
Table 10.1

Arrangement Variable x Variable y |rxy | δ

1∗ 55, 31, 24, 43 20, 36, 49, 35 0.9432 26.75

2∗ 24, 43, 55, 31 20, 36, 49, 35 0.9329 29.25

3∗ 55, 43, 24, 31 20, 36, 49, 35 0.9185 32.75

4∗ 24, 31, 55, 43 20, 36, 49, 35 0.9082 35.25

5 55, 24, 31, 43 20, 36, 49, 35 0.7558 72.25

6 31, 43, 55, 24 20, 36, 49, 35 0.7167 81.75

7 55, 43, 31, 24 20, 36, 49, 35 0.7167 81.75

8 31, 24, 55, 43 20, 36, 49, 35 0.6775 91.25

9 24, 55, 43, 31 20, 36, 49, 35 0.6116 107.25

10 43, 31, 24, 55 20, 36, 49, 35 0.5725 116.75

11 24, 31, 43, 55 20, 36, 49, 35 0.5622 119.25

12 43, 55, 24, 31 20, 36, 49, 35 0.5231 128.75

13 55, 24, 43, 31 20, 36, 49, 35 0.4098 156.25

14 31, 55, 43, 24 20, 36, 49, 35 0.3954 159.75

15 55, 31, 43, 24 20, 36, 49, 35 0.3954 159.75

16 43, 24, 31, 55 20, 36, 49, 35 0.3851 162.25

17 31, 24, 43, 55 20, 36, 49, 35 0.3316 175.25

18 43, 31, 55, 24 20, 36, 49, 35 0.3213 177.75

19 43, 55, 31, 24 20, 36, 49, 35 0.3213 177.75

20 43, 24, 55, 31 20, 36, 49, 35 0.3068 181.25

21 24, 55, 31, 43 20, 36, 49, 35 0.2657 191.25

22 24, 43, 31, 55 20, 36, 49, 35 0.2409 197.25

23 31, 43, 24, 55 20, 36, 49, 35 0.1771 212.75

24 31, 55, 24, 43 20, 36, 49, 35 0.1524 218.75

(δ1 = 29.25) to largest (δ24 = 218.75). For test statistic δ there are four δ test
statistic values that are equal to or less than the observed value of δ = 35.25 (δ1 =
26.75, δ2 = 29.25, δ3 = 32.75, and δ4 = 35.25). The arrangements yielding the four
smallest δ values are indicated with asterisks in Table 10.2. If all M arrangements
of the N = 4 bivariate observations listed in Table 10.1 occur with equal chance
under the Fisher–Pitman null hypothesis, the exact probability value of δ = 35.25
computed on the M = 24 possible arrangements of the observed data with N = 4
bivariate observations preserved for each arrangement is

P(δ ≤ δo) = number of δ values ≤ δo

M
= 4

24
= 0.1667 ,

where δo denotes the observed value of δ and M is the number of possible, equally-
likely arrangements of the N = 4 bivariate observations listed in Table 10.1.

Alternatively, since test statistics δ and rxy are equivalent under the Fisher–
Pitman null hypothesis, there are four |rxy | values that are equal to or greater than
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the observed value of |rxy | = 0.9082 (|r1| = 0.9432, |r2| = 0.9329, |r3| = 0.9185,
and |r4| = 0.9082) yielding an exact probability value for |rxy | = 0.9082 of

P(|rxy | ≥ |ro|) = number of |rxy | values ≥ |ro|
M

= 4

24
= 0.1667 ,

where |ro| denotes the observed value of |rxy |. There is a considerable difference
between the asymptotic probability value for rxy based on Student’s t distribution
(P = 0.0918) and the exact permutation probability value for δ (P = 0.1667). The
actual difference between the two probability values is

�P = 0.1667 − 0.0918 = 0.0749 .

The difference is most probably due to the very small number of arrangements of
the observed data. A continuous mathematical function such as Student’s t cannot
be expected to provide a precise fit to only 24 data points of which only 21 are
different.

10.3 Example 2: Measures of Effect Size

Measures of effect size express the practical or clinical significance of a sample
correlation coefficient, as contrasted with the statistical significance of the correla-
tion coefficient. For an illustration of the measurement of effect size, consider the
example data listed in Table 10.3 with N = 11 bivariate observations. The standard
measure of effect size is simply the squared Pearson product-moment correlation
between variables x and y. For the example bivariate data listed in Table 10.3, the

Table 10.3 Example
correlation data on N = 11
bivariate observations

Variable

Object x y

1 11 4

2 18 11

3 12 1

4 27 16

5 15 5

6 21 9

7 25 10

8 15 2

9 18 8

10 23 7

11 12 3



370 10 Correlation and Regression

sample means for variables x and y are

x̄ = 1

N

N∑

i=1

xi = 11 + 18 + · · · + 12

11
= 17.9091

and

ȳ = 1

N

N∑

i=1

yi = 4 + 11 + · · · + 3

11
= 6.9091 ,

respectively, the sample product-moment correlation coefficient is

rxy =

N∑

i=1

(
xi − x̄

)(
yi − ȳ

)

√√√√
[

N∑

i=1

(
xi − x̄

)2

][
N∑

i=1

(
yi − ȳ

)2

]

= +209.9091√
(302.9091)(200.9091)

= +0.8509 ,

the squared product-moment measure of effect size is

r2
xy = (+0.8509)2 = 0.7240 ,

and Student’s t test statistic is

t = rxy

√
N − 2

1 − r2
xy

= +0.8509

√
11 − 2

1 − (+0.8509)2
= +4.8592 .

Under the Neyman–Pearson null hypothesis, H0: ρxy = 0, test statistic t is
asymptotically distributed as Student’s t with N − 2 degrees of freedom. With
N − 2 = 11 − 2 = 9 degrees of freedom, the asymptotic two-tail probability
value of t = +4.8592 is P = 0.8969×10−3, under the assumptions of linearity,
normality, and homogeneity.

10.3.1 An Exact Permutation Analysis

Now consider the example data listed in Table 10.3 under the Fisher–Pitman
permutation model. For the example data listed in Table 10.3, the sample means
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are x̄ = 17.9091 and ȳ = 6.9091, the sample variances are S2
x = 27.5372 and

S2
y = 18.2645, the sample standard deviations are Sx = 5.2476 and Sy = 4.2737,

the sample product-moment correlation coefficient is rxy = +0.8509, and the
observed permutation test statistic is

δ = S2
x + S2

y − 2|rxy |SxSy + (x̄ − ȳ)2 = 27.5372 + 18.2645

− 2(0.8509)(5.2476)(4.2737)+ (17.9091 − 6.9091)2 = 128.6364 .

An exact permutation analysis requires shuffling of either the N = 11 x values or
the N = 11 y values while holding the other set of values constant. For the example
data listed in Table 10.3 there are

M = N ! = 11! = 39,916,800

possible, equally-likely arrangements in the reference set of all permutations of the
observed bivariate data, making an exact permutation analysis feasible.

The exact expected value of the M = 39,916,800 δ test statistic values under the
Fisher–Pitman null hypothesis is

μδ = 1

M

M∑

i=1

δi = 6,658,188,218

39,916,800
= 166.8017 .

Alternatively, the exact expected value of test statistic δ is

μδ = S2
x + S2

y + (x̄ − ȳ)2

= 27.5372 + 18.2645 + (17.9091 − 6.9091)2 = 166.8017 .

The observed chance-corrected measure of effect size is

� = 1 − δ

μδ

= 1 − 128.6364

166.8017
= +0.2288 ,

indicating approximately 23% agreement between the x and y values above what is
expected by chance.

Under the Fisher–Pitman permutation model, the exact probability of an
observed δ is the proportion of δ test statistic values computed on all possible,
equally-likely arrangements of the N = 11 bivariate observations that are equal to
or less than the observed value of δ = 128.6364. There are exactly 35,216 δ test
statistic values that are equal to or less than the observed value of δ = 128.6364. If
all M arrangements of the N = 11 bivariate observations listed in Table 10.3 occur
with equal chance under the Fisher–Pitman null hypothesis, the exact probability
value of δ = 128.6364 computed on the M = 39,916,800 possible arrangements
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of the observed data with N = 11 bivariate observations preserved for each
arrangement is

P(δ ≤ δo|H0) = number of δ values ≤ δo

M
= 35,216

39,916,800
= 0.8822×10−3 ,

where δo denotes the observed value of test statistic δ and M is the number
of possible, equally-likely arrangements of the N = 11 bivariate observations
listed in Table 10.3. In this example there are 39,916,800 data points to be fit
by Student’s t distribution and there are no extreme values. Thus the asymptotic
probability value (P = 0.8969×10−3) and the exact permutation probability value
(P = 0.8822×10−3) are similar, with a difference between the probability values
of only

�P = 0.8969×10−3 − 0.8822×10−3 = 0.1459×10−4 .

10.4 Example 3: Analyses with v = 2 and v = 1

Ordinary least squares (OLS) linear regression and correlation have long been
recognized as useful tools in many areas of research. The optimal properties of
OLS linear regression and correlation are well known when the errors are normally
distributed. However, in practice the assumption of normality is rarely justified.
Least absolute deviation (LAD) regression and correlation are often superior to
OLS linear regression and correlation when the errors are not normally distributed.
Estimators of OLS regression parameters can be severely affected by unusual values
in the criterion variable, in one or more of the predictor variables, or both. In
contrast, LAD regression is less sensitive to the effects of unusual variables because
the errors are not squared [3]. The effect of extreme values on OLS and LAD
regression and correlation is analogous to the effect of extreme values on the mean
and median as measures of location.

Consider N paired xi and yi observed values for i = 1, . . . , N . For the OLS
regression equation given by

ŷi = α̂yx + β̂yxxi ,

where ŷi is the ith of N predicted criterion values and xi is the ith of N predictor
values, α̂yx and β̂ys are the OLS parameter estimators of the population intercept
(αyx) and population slope (βyx), respectively, and are given by

β̂yx =

N∑

i=1

(
xi − x̄

)(
yi − ȳ

)

N∑

i=1

(
xi − x̄

)2
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and

α̂yx = ȳ − β̂yxx̄ ,

where x̄ and ȳ are the sample means of variables x and y, respectively. Estimators
of OLS regression parameters minimize the sum of the squared differences between
the observed (yi) and predicted (ŷi) criterion values for i = 1, . . . , N ; that is,

N∑

i=1

∣∣yi − ŷi

∣∣v ,

where for OLS regression based on a squared Euclidean scaling function, v = 2.
For the LAD regression equation given by

ỹi = α̃yx + β̃yxxi ,

where ỹi is the ith of N predicted criterion values and xi is the ith of N predictor
values, α̃yx and β̃yx are the LAD parameter estimators of the population intercept
(αyx) and population slope (βyx), respectively.2

Unlike OLS regression, no simple expressions can be given for LAD regression
estimators α̃yx and β̃yx . However, values for α̃yx and β̃yx may be found through
an efficient linear programming algorithm, such as provided by Barrodale and
Roberts [1, 2]. In contrast to estimators of OLS regression parameters, estimators of
LAD regression parameters minimize the sum of the absolute differences between
the observed (yi) and predicted (ỹi) criterion values for i = 1, . . . , N ; that is,

N∑

i=1

∣∣yi − ỹi

∣∣v ,

where for LAD regression based on ordinary Euclidean scaling, v = 1.
For LAD regression it is convenient to have a measure of agreement, not

product-moment correlation, between the observed and predicted y values. Let the
permutation test statistic be given by

δ = 1

N

N∑

i=1

∣∣yi − ỹi

∣∣v

2In this section, a caret(∧) over a symbol such as α̂ or β̂ indicates an OLS regression model
predicted value of a corresponding population parameter, while a tilde (∼) over a symbol such as α̃

or β̃ indicates a LAD regression model predicted value of a corresponding population parameter.
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Table 10.4 Example
bivariate correlation data on
N = 10 subjects

Subject x y

1 14 25

2 8 23

3 5 21

4 2 10

5 1 12

6 3 11

7 9 19

8 2 13

9 3 13

10 9 16

and let v = 1 for correspondence with LAD regression. Then the exact expected
value of test statistic δ under the Fisher–Pitman null hypothesis is given by

μδ = 1

N2

N∑

i=1

N∑

j=1

∣∣yi − ỹj

∣∣v ,

and a chance-corrected measure of agreement between the observed yi values and
the LAD predicted ỹi values for i = 1, . . . , N is given by

� = 1 − δ

μδ

.

10.4.1 An Example OLS Regression Analysis

To illustrate the relative differences between OLS and LAD regression, consider
the small example set of bivariate values listed in Table 10.4 for N = 10
subjects. For the bivariate data listed in Table 10.4 the OLS estimate of the
population slope is β̂yx = +1.0673, the OLS estimate of the population intercept is
α̂yx = +10.3229, and the Pearson product-moment correlation coefficient is rxy =
+0.8414. Table 10.5 lists the N = 10 observed values for variables x and y, the
OLS predicted y values (ŷ), the residual errors (ê), and the squared residual errors
(ê2). Under the Neyman–Pearson population model Pearson’s product-moment
correlation coefficient is asymptotically distributed as Student’s t under the null
hypothesis, H0: ρxy = 0, with N −2 degrees of freedom.3 For the N = 10 bivariate

3One degree of freedom is lost due to the sample estimate (α̂yx ) of the population intercept and
one degree of freedom is lost due to the sample estimate (β̂yx ) of the population slope.
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Table 10.5 Observed x and
y values with associated
predicted values (ŷ), residual
errors (ê), and squared
residual errors (ê2) from the
bivariate correlation data
listed in Table 10.4

Subject x y ŷ ê ê2

1 14 25 25.2656 −0.2656 0.0705

2 8 23 18.8616 +4.1384 17.1264

3 5 21 15.6596 +5.3404 28.5199

4 2 10 12.4576 −2.4576 6.0398

5 1 12 11.3903 +0.6097 0.3718

6 3 11 13.5249 −2.5249 6.3753

7 9 19 19.9289 −0.9289 0.8629

8 2 13 12.4576 +0.5424 0.2942

9 3 13 13.5249 −0.5249 0.2756

10 9 16 19.9289 −3.9289 15.4365

Sum 56 163 163.0000 0.0000 75.3728

observations listed in Table 10.4 with N − 2 = 10 − 2 = 8 degrees of freedom
Student’s test statistic,

t = rxy

√
N − 2

1 − r2
xy

= +0.8414

√
10 − 2

1 − (+0.8414)2 = +4.4039 ,

yields an asymptotic two-tail probability value of P = 0.2275×10−2, under the
assumptions of linearity, normality, and homogeneity.

10.4.2 An Example LAD Regression Analysis

For the bivariate data listed in Table 10.4, the LAD estimate of the population
intercept is α̃yx = +9.7273, the LAD estimate of the population slope is β̃yx =
+1.0909, the observed permutation test statistic is

δ = 1

N

N∑

i=1

∣∣yi − ỹi

∣∣ = 20.6364

10
= 2.0636 ,

the exact expected value of test statistic δ under the Fisher–Pitman null hypothesis is

μδ = 1

N2

N∑

i=1

N∑

j=1

∣∣yi − ỹj

∣∣ = 533.8182

102 = 5.3382 ,
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Table 10.6 Observed x and
y values with associated
predicted values (ỹ), residual
errors (ẽ), and absolute
residual errors (|ẽ|) from the
bivariate correlation data
listed in Table 10.4

Subject x y ỹ ẽ |ẽ|
1 14 25 25.0000 0.0000 0.0000

2 8 23 18.4545 +4.5455 4.5455

3 5 21 15.1818 +5.8182 5.8182

4 2 10 11.9090 −1.9091 1.9091

5 1 12 10.8182 +1.1818 1.1818

6 3 11 13.0000 −2.0000 2.0000

7 9 19 19.5455 −0.5455 0.5455

8 2 13 11.9090 +1.0909 1.0909

9 3 13 13.0000 0.0000 0.0000

10 9 16 19.5455 −3.5455 3.5455

Sum 56 163 158.3636 +4.6364 20.6364

and the chance-corrected measure of agreement between the observed y values and
the LAD predicted ỹ values is

� = 1 − δ

μδ

= 1 − 2.0636

5.3382
= +0.6134 ,

indicating approximately 61% agreement between the observed and predicted
values of variable y.

Table 10.6 lists the N = 10 observed values of variables x and y, the predicted
y values (ỹ), the residual errors (ẽ), and the absolute residual errors (|ẽ|).

Since there are only

M = N ! = 10! = 3,628,800

possible, equally-likely arrangements in the reference set of all permutations of
the bivariate data listed in Table 10.4, an exact permutation analysis is possible.
Under the Fisher–Pitman permutation model, the exact probability of an observed
δ is the proportion of δ test statistic values computed on all possible, equally-
likely arrangements of the N = 10 bivariate observations listed in Table 10.4
that are equal to or less than the observed value of δ = 2.0636. Alternatively, the
exact probability value of an observed � agreement coefficient is the proportion of
� values computed on all possible, equally-likely arrangements of the N = 10
bivariate observations listed in Table 10.4 that are equal to or greater than the
observed value of � = +0.6134. There are exactly 15,533 � test statistic values
that are equal to or greater than the observed value of � = +0.6134.

If all M arrangements of the N = 10 bivariate observations listed in Table 10.4
occur with equal chance under the Fisher–Pitman null hypothesis, the exact
probability value of � = +0.6134 computed on the M = 3,628,800 possible
arrangements of the observed data with N = 10 bivariate observations preserved
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for each arrangement is

P(� ≥ �o|H0) = number of � values ≥ �o

M
= 15,533

3,628,800
= 0.4280×10−2 ,

where �o denotes the observed value of test statistic �.
Alternatively, since μδ = 5.3382 is a constant,

P(δ ≤ δo|H0) = number of δ values ≤ δo

M
= 15,533

3,628,800
= 0.4280×10−2 ,

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the N = 10 bivariate observations listed
in Table 10.4.

10.4.3 The Effects of Extreme Values

For the example bivariate data listed in Table 10.4 on p. 374, the exact probability
value based on LAD regression and ordinary Euclidean scaling with v = 1 is
P = 0.4280×10−2 and the asymptotic probability value based on OLS regression
and squared Euclidean scaling with v = 2 is P = 0.2275×10−2. In this case the
difference between the asymptotic and exact probability values is only

�P = 0.4280×10−2 − 0.2275×10−2 = 0.2006×10−2 .

The small difference in probability values is due to the fact that there are no extreme
values in the data listed in Table 10.4 on p. 374. OLS analyses based on squared
Euclidean scaling with v = 2 are mean-based and LAD analyses based on ordinary
Euclidean scaling with v = 1 are median-based. Consequently, LAD regression
analyses are highly resistant to extreme values.

Extreme values are common in applied research. To demonstrate the difference
between OLS analyses based on squared Euclidean scaling with v = 2 and LAD
analyses based on ordinary Euclidean scaling with v = 1 when the data contain
an extreme value, consider the bivariate data listed in Table 10.7. The data listed
in Table 10.7 are the same data listed in Table 10.4 on p. 374 with one alteration:
the value of y2 = 23 has been increased to y2 = 90, thereby providing an extreme
value.

For the bivariate data listed in Table 10.4 on p. 374 without an extreme value
(y2 = 23), the OLS sample correlation coefficient is rxy = +0.8414, Student’s t test
statistic is t = +4.4039, and the asymptotic probability value to six decimal places
is P = 0.002275. For the bivariate data listed in Table 10.7 with an extreme value
(y2 = 90), the OLS sample correlation coefficient is rxy = +0.3636, Student’s t

test statistic is t = +1.1042, and the asymptotic probability value is P = 0.301606.
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Table 10.7 Example
bivariate LAD correlation
data on N = 10 subjects with
an extreme value included

Subject x y

1 14 25

2 8 90

3 5 21

4 2 10

5 1 12

6 3 11

7 9 19

8 2 13

9 3 13

10 9 16

The difference between the two OLS correlation coefficients is

�rxy = 0.8414 − 0.3636 = 0.4778

and the difference between the two OLS probability values is

�P = 0.301606 − 0.002275 = 0.299331 .

For the bivariate data listed in Table 10.4 on p. 374 without an extreme value
(y2 = 23), the LAD agreement measure is � = +0.6134 and the exact probability
value to six decimal places is P = 0.004280. For the bivariate data listed in
Table 10.7 with an extreme value (y2 = 90), the LAD agreement measure is
� = +0.2696 and the exact probability value is P = 0.006317. The difference
between the two LAD agreement measures is

�� = 0.6134 − 0.2696 = 0.3438

and the difference between the two LAD probability values is

�P = 0.006317 − 0.004280 = 0.002037 .

The difference between the two LAD agreement measures (�� = 0.3438)
is considerably smaller than the difference between the two OLS correlation
coefficients (�rxy = 0.4778) and the difference between the two LAD probability
values (�P = 0.002037) is almost two orders of magnitude smaller than the
difference between the two OLS probability values (�P = 0.299331). While the
LAD regression analysis of the data listed in Table 10.7 is clearly affected by the
presence of an extreme value, LAD regression based on ordinary Euclidean scaling
with v = 1 is a robust procedure relative to OLS regression based on squared
Euclidean scaling with v = 2 when extreme values are present.
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10.5 Example 4: Exact and Monte Carlo Analyses

As sample sizes become large, the number of possible arrangements of the observed
data makes exact permutation methods impractical. For example, for a sample size
of N = 20 there are

M = N ! = 20! = 2,432,902,008,176,640,000

possible, equally-likely arrangements in the reference set of all permutations of
the observed data to be analyzed. Far too many arrangements to be practical.
Monte Carlo permutation methods examine a random sample of all M possible
arrangements of the observed data, providing efficient and accurate results. Provided
that the probability value is not too small, L = 1,000,000 random arrangements are
usually sufficient to ensure three decimal places of accuracy [6].

For a fourth, larger example of bivariate correlation, consider the data on N = 12
objects listed in Table 10.8 under the Neyman–Pearson population model. For the
example data listed in Table 10.8 with N = 12 bivariate observations, the means of
variables x and y are

x̄ = 1

N

N∑

i=1

xi = 9 + 10 + · · · + 8

12
= 17.3333

and

ȳ = 1

N

N∑

i=1

yi = 21 + 25 + · · · + 18

12
= 6.9167 ,

Table 10.8 Example
correlation data on N = 12
bivariate observations

Variable

Object x y

1 9 21

2 10 25

3 2 15

4 4 11

5 5 15

6 16 27

7 1 12

8 11 18

9 7 11

10 3 12

11 7 23

12 8 18
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respectively, and Pearson’s product-moment correlation coefficient between vari-
ables x and y is

rxy =

N∑

i=1

(xi − x̄)(yi − ȳ)

√√√√
[

N∑

i=1

(xi − x̄)2

][
N∑

i=1

(yi − ȳ)2

]

= +209.3333√[
(346.6667)(200.9167)

] = +0.7932 .

The conventional test of significance for Pearson’s product-moment correlation
coefficient is given by

t = rxy

√
N − 2

1 − r2
xy

.

Under the Neyman–Pearson null hypothesis, H0: ρxy = 0, test statistic t is
asymptotically distributed as Student’s t with N − 2 degrees of freedom.

For the example data listed in Table 10.8,

t = rxy

√
N − 2

1 − r2
xy

= +0.7932

√
12 − 2

1 − (+0.7932)2 = +4.1188

and with N − 2 = 12 − 2 = 10 degrees of freedom the asymptotic two-
tail probability value is P = 0.2081×10−2, under the assumptions of linearity,
normality, and homogeneity.

10.5.1 A Monte Carlo Permutation Analysis

Now consider the data listed in Table 10.8 under the Fisher–Pitman permutation
model. For the example data listed in Table 10.8 with N = 12 bivariate observations,
the sample means are x̄ = 6.9167 and ȳ = 17.3333, the sample variances are S2

x =
16.7431 and S2

y = 28.8889, the sample standard deviations are Sx = 4.0918 and
Sy = 5.3748, the sample product-moment correlation coefficient is rxy = +0.7932,
and the observed permutation test statistic is

δ = S2
x + S2

y − 2|rxy |SxSy + (x̄ − ȳ)2 = 16.7431 + 28.8889

− 2(0.7932)(4.0918)(5.3748)+ (6.9167 − 17.3333)2 = 119.25 .
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A permutation analysis of correlation requires shuffling either the N = 12 x

values or the N = 12 y values, while holding the other variable constant. Even with
the small sample of N = 12 bivariate observations, there are

M = N ! = 12! = 479,001,600

possible, equally-likely arrangements in the reference set of all permutations of the
example data listed in Table 10.8, making an exact permutation analysis impractical.
Under the Fisher–Pitman permutation model, the Monte Carlo probability of an
observed δ is the proportion of δ test statistic values computed on the randomly-
selected, equally-likely arrangements of the N = 12 bivariate observations listed in
Table 10.8 that are equal to or less than the observed value of δ = 119.25. Based on
L = 1,000,000 random arrangements of the N = 12 bivariate observations listed
in Table 10.8, there are exactly 1868 δ test statistic values that are equal to or less
than the observed value of δ = 119.25.

If all M arrangements of the N = 12 bivariate observations listed in Table 10.8
occur with equal chance under the Fisher–Pitman null hypothesis, the Monte Carlo
probability value of δ = 119.25 computed on L = 1,000,000 random arrangements
of the observed data with N = 12 bivariate observations preserved for each
arrangement is

P(δ ≤ δo|H0) = number of δ values ≤ δo

L
= 1868

1,000,000
= 0.1868×10−2 ,

where δo denotes the observed value of test statistic δ and L is the number of
randomly-selected, equally-likely arrangements of the N = 12 bivariate observa-
tions listed in Table 10.8.

10.5.2 An Exact Permutation Analysis

While M = 479,001,600 possible arrangements may make an exact permutation
analysis impractical, it is not impossible. There are exactly 896,384 δ test statistic
values that are equal to or less than the observed value of δ = 119.25. If all M

arrangements of the N = 12 bivariate observations listed in Table 10.8 occur with
equal chance under the Fisher–Pitman null hypothesis, the exact probability value
of δ = 119.25 computed on the M = 479,001,600 possible arrangements of the
observed data with N = 12 bivariate observations preserved for each arrangement is

P(δ ≤ δo) = number of δ values ≤ δo

M
= 896,384

479,001,600
= 0.1871×10−2 ,

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the N = 12 bivariate observations listed
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in Table 10.8. Alternatively,

P(|rxy | ≥ |ro|) = number of |rxy | values ≥ |ro|
M

= 896,384

479,001,600
= 0.1871×10−2 ,

where |ro| denotes the observed value of |rxy |.
The difference between the exact probability value based on all M =

479,001,600 possible arrangements of the example data listed in Table 10.8 and the
Monte Carlo probability value based on L = 1,000,000 random arrangements of
the example data is only

�P = 0.001871 − 0.001868 = 0.000003 .

To illustrate the accuracy of Monte Carlo permutation methods, Table 10.9 lists
10 independent Monte Carlo analyses of the bivariate data listed in Table 10.8
each initialized with a different seed and each analysis based on L = 1,000,000
random arrangements of the observed data, comparing the Monte Carlo probability
values with the exact probability value based on all M = 479,001,600 possible
arrangements of the observed data. The exact probability value is P = 0.001871,
the average of the 10 Monte Carlo probability values listed in Table 10.9 is P =
0.001868, and the difference between the average of the 10 Monte Carlo probability
values and the exact probability value is

�P = 0.001868 − 0.001871 = 0.000003 ,

Table 10.9 Ten independent Monte Carlo runs on the data listed in Table 10.8 based on L =
1,000,000 random arrangements for each run

Run Seed Monte Carlo probability Exact probability Difference

1 11 0.001912 0.001871 +0.000041

2 13 0.001809 0.001871 −0.000062

3 17 0.001900 0.001871 +0.000029

4 19 0.001896 0.001871 +0.000025

5 23 0.001916 0.001871 +0.000045

6 29 0.001861 0.001871 −0.000010

7 31 0.001809 0.001871 −0.000062

8 37 0.001847 0.001871 −0.000024

9 41 0.001851 0.001871 −0.000020

10 43 0.001883 0.001871 +0.000012
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demonstrating the accuracy and efficiency of Monte Carlo permutation statistical
methods. Finally, it should be noted that not only are all the differences listed in
Table 10.9 very small, but half of the differences are positive and half are negative.

10.6 Example 5: Rank-Score Permutation Analyses

It is not uncommon for researchers to analyze data consisting of rank scores. The
correlation coefficients for untied rank-score data most often found in the literature
are Spearman’s rank-order correlation coefficient given by

rs = 1 −
6

N∑

i=1

d2
i

N(N2 − 1)
, (10.2)

where for variables x and y, di = xi − yi for i = 1, . . . , N bivariate observations,
and Kendall’s rank-order correlation coefficient given by

τ = 2S

N(N − 1)
,

where S denotes the number of concordant pairs of rank scores (C) minus the
number of discordant pairs (D).4

10.6.1 Spearman’s Rank-Order Correlation Coefficient

Consider Spearman’s rank-order correlation coefficient for N bivariate rank scores
under the Neyman–Pearson population model. An example set of data is given in
Table 10.10 with N = 11 bivariate rank scores.

Following Eq. (10.2) for the data listed in Table 10.10, Spearman’s rank-order
correlation coefficient is

rs = 1 −
6

N∑

i=1

d2
i

N(N2 − 1)
= 1 − 6(138)

11(112 − 1)
= +0.3727 .

Under the Neyman–Pearson null hypothesis, H0: ρxy = 0, Spearman’s rs test
statistic is asymptotically distributed as Student’s t with N − 2 degrees of freedom.

4For simplification and clarity the formulæ and examples are limited to untied rank-score data.
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Table 10.10 Average weekly spending in dollars on alcohol (x) and tobacco (y) in N = 11
Confederate states in 1863

State Alcohol (x) Tobacco (y) Rank x Rank y d d2

Florida 6.57 2.73 1 11 −10 100

Georgia 6.20 4.48 2 2 0 0

Alabama 6.15 4.51 3 1 +2 4

Mississippi 6.08 3.87 4 4 0 0

Louisiana 5.91 3.54 5 6 −1 1

Arkansas 5.61 3.72 6 5 +1 1

Missouri 5.34 4.21 7 3 +4 16

South Carolina 5.11 2.88 8 10 −2 4

North Carolina 4.87 3.41 9 7 +2 4

Texas 4.49 3.29 10 8 +2 4

Virginia 4.41 3.11 11 9 +2 4

Sum 0 138

For the N = 11 bivariate rank scores listed in Table 10.10 with N −2 = 11−2 = 9
degrees of freedom,

t = rs

√
N − 2

1 − r2
s

= +0.3727

√
11 − 2

1 − (+0.3727)2 = +1.2050

yielding an asymptotic two-tail probability value of P = 0.2589, under the
assumption of normality.

10.6.2 An Exact Permutation Analysis

For an analysis of the bivariate correlation data listed in Table 10.10 under the
Fisher–Pitman permutation model let the differences between the rank scores be
squared for correspondence with Spearman’s rank-order correlation coefficient. Let
di = xi − yi for i = 1, . . . , N , then the permutation test statistic is given by

δ = 1

N

N∑

i=1

d2
i . (10.3)

Following Eq. (10.3), for the rank-score data listed in Table 10.10 with N = 11
bivariate observations the observed value of the permutation test statistic is

δ = 1

N

N∑

i=1

d2
i = 138

11
= 12.5455 .
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Because there are only

M = N ! = 11! = 39,916,800

possible, equally-likely arrangements in the reference set of all permutations of the
alcohol and tobacco data listed in Table 10.10, an exact permutation analysis is
feasible. Under the Fisher–Pitman permutation model, the exact probability of an
observed δ is the proportion of δ test statistic values computed on all possible,
equally-likely arrangements of the N = 11 rank scores listed in Table 10.10 that
are equal to or less than the observed value of δ = 12.5455.5 There are exactly
10,400,726 δ test statistic values that are equal to less than the observed value of
δ = 12.5455. If all M arrangements of the N = 11 bivariate rank scores listed in
Table 10.10 occur with equal chance under the Fisher–Pitman null hypothesis, the
exact probability value of δ = 12.5455 computed on the M = 39,916,800 possible
arrangements of the observed data with N = 11 bivariate observations preserved
for each arrangement is

P(δ ≤ δo|H0) = number of δ values ≤ δo

M
= 10,400,726

39,916,800
= 0.2606 ,

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the N = 11 bivariate rank scores listed
in Table 10.10.

10.6.3 The Relationship Between rs and δ

The functional relationships between test statistics δ and rs are given by

δ = (N2 − 1)(1 − rs )

6
and rs = 1 − 6δ

N2 − 1
. (10.4)

Following the first expression given in Eq. (10.4), the observed value of test statistic
δ with respect to the observed value of Spearman’s rs is

δ = (N2 − 1)(1 − rs )

6
= (112 − 1)(1 − 0.3727)

6
= 12.5455

5Note that in Eq. (10.3) N is a constant, so only the sum-of-squared differences need be calculated
for each arrangement of the observed data.
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and, following the second expression in Eq. (10.4), the observed value of Spear-
man’s rs with respect to the observed value of test statistic δ is

rs = 1 − 6δ

N2 − 1
= 1 − 6(12.5455)

112 − 1
= +0.3727 .

Because test statistics δ and rs are equivalent under the Fisher–Pitman null
hypothesis, the exact probability value of Spearman’s rs = +0.3727 is identical
to the exact probability value of δ = 12.5455; that is,

P(δ ≤ δo) = number of δ values ≤ δo

M
= 10,400,726

39,916,800
= 0.2606

and

P(|rs | ≥ |ro|) = number of |rs | values ≥ |ro|
M

= 10,400,726

39,916,800
= 0.2606 ,

where δo and ro denote the observed values of δ and rs , respectively, and M is the
number of possible, equally-likely arrangements of the N = 11 bivariate rank scores
listed in Table 10.10.

The exact expected value of the M = 39,916,800 δ test statistic values under the
Fisher–Pitman null hypothesis is

μδ = 1

M

M∑

i=1

δi = 798,336,000

39,916,800
= 20.00 .

Alternatively, the exact expected value of test statistic δ is

μδ = N2 − 1

6
= 112 − 1

6
= 20.00 .

Then the observed chance-corrected measure of effect size is

� = 1 − δ

μδ

= 1 − 12.5455

20.00
= +0.3727 ,

indicating approximately 37% agreement between the x and y rank-score values
above what is expected by chance.

When the N rank-score values in variable y are a simple permutation of the rank-
score values in variable x it can easily be shown that Mielke and Berry’s � measure
of effect size and Spearman’s rs rank-order correlation coefficient are equivalent
under the Neyman–Pearson population model with squared Euclidean scaling; that
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is, � = +0.3727 and rs = +0.3727. Specifically, given

δ = (N2 − 1)(1 − rs)

6
and μδ = N2 − 1

6
,

then

� = 1 − δ

μδ

= 1 − (N2 − 1)(1 − rs)

6
× 6

N2 − 1
= 1 − (1 − rs) = rs .

10.6.4 Kendall’s Rank-Order Correlation Coefficient

A popular alternative to Spearman’s rs rank-order correlation coefficient is Kendall’s
τ rank-order correlation coefficient given by

τ = S(
N

2

) = 2S

N(N − 1)
,

where S = C − D, C denotes the number of concordant pairs of the observed data,
and D denotes the number of discordant pairs of the observed data. To illustrate the
difference between concordant and discordant pairs, consider the example data with
N = 4 bivariate rank scores listed in Table 10.11. There are

M =
(

N

2

)
=

(
4

2

)
= 4(4 − 1)

2
= 6

possible, equally-likely arrangements in the reference set of all permutations of the
example data listed in Table 10.11 to be considered. The first (x,y) pair is x1 = 1
and x2 = 2, and y1 = 2 and y2 = 3. Since x1 = 1 is less than x2 = 2 and y1 = 2 is
less than y2 = 3, the first (x,y) pair is considered to be concordant as the values of
variables x and y are in the same order for the pair.

The next (x,y) pair is x1 = 1 and x3 = 3, and y1 = 2 and y3 = 1. Since
x1 = 1 is less than x3 = 3 but y1 = 2 is greater than y3 = 1, the second (x,y)

Table 10.11 Example
rank-score data on N = 4
bivariate observations

Variable

Object x y

1 1 2

2 2 3

3 3 1

4 4 4
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Table 10.12 Calculation of
concordant (C) and
discordant (D) pairs for the
example rank-score data
listed in Table 10.11

Variable

Pair x y C D

1 1 < 2 2 < 3 1

2 1 < 3 2 > 1 1

3 1 < 4 2 < 4 1

4 2 < 3 3 > 1 1

5 2 < 4 3 < 4 1

6 3 < 4 1 < 4 1

Sum 4 2

pair is considered to be discordant as the values of variables x and y are not in the
same order for the pair. Table 10.12 illustrates the calculation of the six concordant
(C) and discordant (D) pairs for the rank-score data listed in Table 10.11. For the
six (x,y) pairs listed in Table 10.12, the number of concordant pairs is C = 4, the
number of discordant pairs is D = 2, and Kendall’s S = C−D = 4−2 = +2. When
M becomes large the calculations can become cumbersome. Table 10.13 illustrates
the calculation of Kendall’s S for the rank-score data listed in Table 10.12 on p. 388
with N = 11 bivariate pairs.

The process illustrated in Table 10.13 is straightforward. Determine the value for
Kendall’s S by arranging the values of variable x in their natural order and arranging
the values of variable y corresponding to the values of variable x, as in Table 10.13.
Starting with the first value of variable y on the left (11), count the number of rank
scores to the right of 11 that are smaller than 11 and score each as (−1); these (−1)
values represent the disagreements in order. For the calculations listed in Table 10.13
there are 10 values that are smaller than 11. Next count the number of rank scores
to the right of 11 that are larger than 11 and score each as (+1); these (+1) values

Table 10.13 Example calculations for determining the value of Kendall’s S test statistic

x 1 2 3 4 5 6 7 8 9 10 11

y 11 2 1 4 6 5 3 10 7 8 9 Sum

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −10

−1 +1 +1 +1 +1 +1 +1 +1 +1 +7

+1 +1 +1 +1 +1 +1 +1 +1 +8

+1 +1 −1 +1 +1 +1 +1 +5

−1 −1 +1 +1 +1 +1 +2

−1 +1 +1 +1 +1 +3

+1 +1 +1 +1 +4

−1 −1 −1 −3

+1 +1 +2

+1 +1

0

Sum +19
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represent the agreements in order. In this case there are no values larger than 11.
Sum the 10 (−1) and zero (+1) values and place the sum at the end of the first row.

The next y value is 2. Count the number of rank scores to the right of 2 that are
smaller than 2 and score each as (−1); there is only one value (1) that is smaller
than 2. Next count the number of rank scores to the right of 2 that are larger than
2 and score each as (+1); there are eight values that are larger than 2. Sum the one
(−1) and eight (+1) values and place the sum at the end of the second row. Continue
the procedure for all ranks in variable y, summing the results. The final sum is the
value for Kendall’s S. Alternatively, there are 37 (+1) values in Table 10.13; these
are the concordant pairs (C). There are 18 (−1) values in Table 10.13; these are the
discordant pairs (D). Then, S = C − D = 37 − 18 = +19.

For the rank-score data listed in Table 10.10 on p. 384 with N = 11 untied rank
scores, Kendall’s rank-order correlation coefficient is

τ = 2S

N(N − 1)
= 2(+19)

11(11 − 1)
= +0.3455 .

In testing the significance of the association between paired ranks it is more
convenient to apply a test directly to S rather than τ as the number of pairs,
N(N − 1)/2, is a constant. Kendall’s S is asymptotically distributed N(0, 1) with
mean of zero and variance given by

σ 2
S = N(N − 1)(2N + 5)

18

as N → ∞. Since the normal distribution is an approximation to the discrete
sampling distribution of S, a correction for continuity should be applied. For the
rank-score data listed in Table 10.10 on p. 384, the normal deviate with continuity
correction applied is

z = |S| − 1
[
N(N − 1)(2N + 5)/18

]1/2

= 19 − 1
{
11(11 − 1)[(2)(11) + 5]/18

}1/2 = +1.4013 ,

yielding an asymptotic two-tail probability value of P = 0.1611, under the
assumption of normality.

10.6.5 An Exact Permutation Analysis

Consider an analysis of the correlation data listed in Table 10.10 on p. 384 with
N = 11 bivariate observations under the Fisher–Pitman permutation model. There
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are

M = N ! = 11! = 39,916,800

possible, equally-likely arrangements in the reference set of all permutations of the
example data listed in Table 10.10, making an exact permutation analysis feasible.
Under the Fisher–Pitman permutation model, the exact probability of an observed
value of Kendall’s S is the proportion of S test statistic values computed on all
possible, equally-likely arrangements of the N = 11 bivariate rank scores listed
in Table 10.10 that are equal to or greater than the observed value of S = +19.
There are exactly 6,436,200 S test statistic values that are equal to or greater than
the observed value of S = +19. If all M arrangements of the N = 11 bivariate rank
scores listed in Table 10.10 occur with equal chance under the Fisher–Pitman null
hypothesis, the exact probability value of S = 19 computed on the M = 39,916,800
possible arrangements of the observed data with N = 11 bivariate observations
preserved for each arrangement is

P(|S| ≥ |So|) = number of |S| values ≥ |So|
M

= 6,436,200

39,916,800
= 0.1612 ,

where So denotes the observed value of Kendall’s S and M is the number of
possible, equally-likely arrangements of the N = 11 bivariate observations listed
in Table 10.10.

10.6.6 Spearman’s Footrule Correlation Coefficient

While Charles Spearman is most often remembered for his contributions to factor
analysis and his development of the rank-order correlation coefficient given by

rs = 1 −
6

2∑

i=1

d2
i

N(N2 − 1)
,

which was discussed in Sect. 10.6.1, Spearman also developed a lesser-known
correlation coefficient that he called the “footrule” given by

R = 1 −
3

N∑

i=1

∣∣xi − yi

∣∣

N2 − 1
,

where xi and yi denote the ith observed rank-score values for i = 1, . . . , N and N

is the number of bivariate rank scores.
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Table 10.14 Example
bivariate rank-score
correlation data with N = 8
pairs of data

Pair x y x − y |x − y|
1 8 7 +1 1

2 6 6 0 0

3 2 4 −2 2

4 4 2 +2 2

5 7 8 −1 1

6 5 5 0 0

7 1 3 −2 2

8 3 1 +2 2

Sum 10

To illustrate Spearman’s footrule measure of correlation, consider the example
data listed in Table 10.14 with N = 8 bivariate untied rank-score observations.
For the N = 8 bivariate rank-score observations listed in Table 10.14, Spearman’s
footrule is

R = 1 −
3

N∑

i=1

∣∣xi − yi

∣∣

N2 − 1
= 1 − 3(10)

82 − 1
= +0.5238 .

For comparison, Spearman’s rank-order correlation coefficient calculated on the
rank-score data listed in Table 10.14 is rs = +0.7857 and Kendall’s rank-order
correlation coefficient is τ = +0.6429.

Since there are only

M = N ! = 8! = 40,320

possible, equally-likely arrangements in the reference set of all permutations of the
observed x and y rank scores listed in Table 10.14, an exact permutation analysis
is feasible. Under the Fisher–Pitman permutation model, the exact probability of an
observed R is the proportion of R test statistic values computed on all possible,
equally-likely arrangements of the N = 8 bivariate rank scores listed in Table 10.14
that are equal to or greater than the observed value of R = +0.5238. There are
exactly 1248 R test statistic values that are equal to or greater than the observed
value of R = +0.5238. If all M arrangements of the N = 8 rank scores listed in
Table 10.14 occur with equal chance under the Fisher–Pitman null hypothesis, the
exact probability value of R = +0.5238 computed on the M = 40,320 possible
arrangements of the observed data with N = 8 bivariate rank scores preserved for
each arrangement is

P(R ≥ Ro|H0) = number of R values ≥ Ro

M
= 1248

40,320
= 0.0310 ,
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where Ro denotes the observed value of Spearman’s R and M is the number of
possible, equally-likely arrangements of the N = 8 bivariate rank scores listed in
Table 10.14.

10.6.7 The Relationship Between Statistics R and �

It can easily be demonstrated that Spearman’s R footrule measure and Mielke and
Berry’s � measure of effect size are equivalent measures under the Fisher–Pitman
permutation model with ordinary Euclidean scaling. Let

δ = 1

N

N∑

i=1

∣∣xi − yi

∣∣ (10.5)

denote an average distance function based on all possible paired absolute differences
among values of the two rankings and let

μδ = 1

N2

N∑

i=1

N∑

j=1

∣∣xi − yj

∣∣ (10.6)

denote the expected value of test statistic δ. Then Spearman’s footrule measure is
given by

R = 1 − δ

μδ

, (10.7)

which is also the equation for Mielke and Berry’s � measure of effect size.
The calculation of test statistics δ, μδ , and � can be illustrated and compared

with Spearman’s R footrule measure using an example set of data. Consider the
small set of rank-score data listed in Table 10.15 with N = 5 bivariate observations.
Table 10.16 illustrates the calculation of Spearman’s footrule measure for the rank-
score data listed in Table 10.15. Given the calculations listed in Table 10.16, the

Table 10.15 Bivariate rank
scores assigned to N = 5
objects

Object x y

1 5 4

2 2 1

3 1 2

4 3 3

5 4 5
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Table 10.16 Detailed
calculations for Spearman’s
footrule measure with N = 5
bivariate observations

Pair i xi yi xi − yi |xi − yi |
1 1 5 4 −1 1

2 2 2 1 +1 1

3 3 1 2 −1 1

4 4 3 3 0 0

5 5 4 5 −1 1

Table 10.17 Calculation of
|xi − yi | for i = 1, . . . , N

for δ

Pair i xi yi |xi − yi |
1 1 5 4 |5 − 4| = 1

2 2 2 1 |2 − 1| = 1

3 3 1 2 |1 − 2| = 1

4 4 3 3 |3 − 3| = 0

5 5 4 5 |4 − 5| = 1

observed value of Spearman’s footrule measure is

R =
3

N∑

i=1

∣∣xi − yi

∣∣

N2 − 1
= 3(1 + 1 + 1 + 0 + 1)

52 − 1
= +0.50 .

Table 10.17 illustrates the calculation of δ for the rank-score data listed in
Table 10.15. Given the calculations listed in Table 10.17, the observed value of test
statistic δ is

δ = 1

N

N∑

i=1

∣∣xi − yi

∣∣ = 1 + 1 + 1 + 0 + 1

5
= 0.80 .

Table 10.18 illustrates the calculation of μδ for the rank-score data listed in
Table 10.15. Given the calculations listed in Table 10.18, the exact expected value
of the N2 δ test statistic values under the Fisher–Pitman null hypothesis is

μδ = 1

N2

N∑

i=1

N∑

j=1

∣∣xi − yj

∣∣ = 1 + 0 + 2 + · · · + 2 + 0 + 1

52 = 1.60 .

Then the chance-corrected measure of agreement is

� = 1 − δ

μδ

= 1 − 0.80

1.60
= +0.50 ,
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Table 10.18 Calculation of
|xi − yj | for i, j = 1, . . . , N

for μδ

Pair i j |xi − yj | Pair i j |xi − yj |
1 1 2 |1 − 2| = 1 14 3 5 |3 − 5| = 2

2 1 1 |1 − 1| = 0 15 3 4 |3 − 4| = 1

3 1 3 |1 − 3| = 2 16 4 2 |4 − 2| = 2

4 1 5 |1 − 5| = 4 17 4 1 |4 − 1| = 3

5 1 4 |1 − 4| = 3 18 4 3 |4 − 3| = 1

6 2 2 |2 − 2| = 0 19 4 5 |4 − 5| = 1

7 2 1 |2 − 1| = 1 20 4 4 |4 − 4| = 0

8 2 3 |2 − 3| = 1 21 5 2 |5 − 2| = 3

9 2 5 |2 − 5| = 3 22 5 1 |5 − 1| = 4

10 2 4 |2 − 4| = 2 23 5 3 |5 − 3| = 2

11 3 2 |3 − 2| = 1 24 5 5 |5 − 5| = 0

12 3 1 |3 − 1| = 2 25 5 4 |5 − 4| = 1

13 3 3 |2 − 5| = 0

indicating 50% agreement above that expected by chance. Thus, the equivalence
between

R = 1 −
3

N∑

i=1

|xi − yi |

N2 − 1
and � = 1 − δ

μδ

is demonstrated.

10.6.8 A More Rigorous Proof

In this section a proof is offered that mathematically establishes the equivalence of
Spearman’s footrule measure and Mielke and Berry’s chance-corrected measure of
effect size. Consider the expected value of test statistic δ as defined in Eq. (10.6) and
given by

μδ = 1

N2

N∑

i=1

N∑

j=1

∣∣xi − yj

∣∣ .

Then,

μδ = 2

N2

N−1∑

i=1

N∑

j=i+1

(j − i)

= 1

N2

N−1∑

i=1

[
N(N + 1) + i2 − i(2N + 1)

]
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= N(N − 1)

6N2

[
6(N + 1) + (2N − 1) − 3(2N + 1)

]

= N − 1

6N

[
2(N + 1)

]

= N2 − 1

3N

The chance-corrected measure of effect size defined in Eq. (10.7) on p. 392 is

� = 1 − δ

μδ

.

Therefore,

δ = μδ(1 − �) .

Given the permutation test statistic defined in Eq. (10.5) on p. 392; that is,

δ = 1

N

N∑

i=1

∣∣xi − yi

∣∣ ,

and substituting δ into Spearman’s footrule measure

R = 1 −
3

N∑

i=1

∣∣xi − yi

∣∣

N2 − 1

yields

R = 1 − 3Nδ

N2 − 1

and substituting μδ(1 − �) for δ yields

R = 1 − 3Nμδ(1 − �)

N2 − 1
.

Finally, substituting (N2 − 1)/3N for μδ yields

R = 1 −
3N

(
N2 − 1

3N

)
(1 − �)

N2 − 1
= 1 − (1 − �) = � .
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10.7 Example 6: Multivariate Permutation Analyses

Many introductory textbooks in statistics include a brief introduction to multiple
correlation, usually limiting the discussion to two predictors for simplicity. The OLS
multiple regression equation is given by

ŷ = β̂0 + β̂1x1 + β̂2x2 + · · · + β̂pxp ,

where ŷ denotes the predicted value of the criterion variable, x1, x2, . . . , xp denote
p predictor variables, β̂1, β̂2, . . . , β̂p denote the OLS regression weights for each
of the p predictor variables, and β̂0 is the estimate of the population intercept.
The assumptions underlying OLS multiple regression are (1) the observations are
independent, (2) a linear relationship exists between the criterion variable and the
predictor variables, (3) multivariate normality, (4) no multicollinearity among the
variables, and (5) the variances of the error terms are similar across the values of the
p predictor variables; that is, homogeneity.

10.7.1 A Conventional OLS Multivariate Analysis

To illustrate multiple correlation analyses with OLS and LAD regression, consider
the example data listed in Table 10.19 with p = 2 predictors where variable y is
Hours of Housework done by husbands per week, variable x1 is Number of Children
in the family, and variable x2 is husband’s Years of Education for N = 12 families.
For the multivariate data listed in Table 10.19, the unstandardized OLS regression
coefficients are

β̂0 = +2.5260 , β̂1 = +0.6356 , and β̂2 = −0.0649 ,

Table 10.19 Example
multivariate correlation data
on N = 12 families with
p = 2 predictors

Family x1 x2 y

A 1 12 1

B 1 14 2

C 1 16 3

D 1 16 5

E 2 18 3

F 2 16 1

G 3 12 5

H 3 12 0

I 4 10 6

J 4 12 3

K 5 10 7

L 5 16 4
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Table 10.20 Observed x and
y values with associated
predicted values (ŷ), residual
errors (ê), and squared
residual errors (ê2) for the
multivariate correlation data
listed in Table 10.19

Family x1 x2 y ŷ ê ê2

A 1 12 1 2.3823 −1.3823 1.9108

B 1 14 2 2.2525 −0.2525 0.0638

C 1 16 3 2.1226 +0.8774 0.7698

D 1 16 5 2.1226 +2.8774 8.2795

E 2 18 3 2.6283 +0.3717 0.1382

F 2 16 1 2.7581 −1.7582 3.0911

G 3 12 5 3.6534 +1.3466 1.8132

H 3 12 0 3.6534 −3.6534 13.3477

I 4 10 6 4.4189 +1.5811 2.5000

J 4 12 3 4.2889 −1.2890 1.6615

K 5 10 7 5.0544 +1.9456 3.7853

L 6 16 4 4.6648 −0.6648 0.4420

Sum 32 164 40 40.0000 0.0000 37.8028

and the observed squared OLS multiple correlation coefficient is R2 = 0.2539.
Table 10.20 lists the N = 12 observed values for variables x and y, the predicted y

values (ŷ), the residual errors (ê), and the squared residual errors (ê2).
The summary statistics given in Table 10.20 suggest an alternative method to

determine the value of the multiple correlation coefficient. Define

R2 = r2
yŷ

=

[
N

N∑

i=1

yŷ −
(

N∑

i=1

yi

)(
N∑

i=1

ŷ

)]2

⎡

⎣N

N∑

i=1

y2
i −

(
N∑

i=1

yi

)2 ⎤

⎦

⎡

⎣N

N∑

i=1

ŷ2
i −

(
N∑

i=1

ŷi

)2 ⎤

⎦

. (10.8)

For the multivariate data listed in Table 10.19, N = 12,

N∑

i=1

yi = 40.00 ,

N∑

i=1

y2
i = 184.00

N∑

i=1

ŷi = 40.00 ,

N∑

i=1

ŷ2
i = 146.1984 ,

and

N∑

i=1

yŷ = 146.1984 .

Then following Eq. (10.8),

R2 = r2
yŷ

=
[
12(146.1984) − (40)(40)

]2

[
12(184.00) − (40)2

][
12(146.1984)− (40)2

]] = 0.2539 .
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If, under the Neyman–Pearson population model the null hypothesis posits the
population correlation is zero; that is, H0: Ry·x1,x2 = 0, the conventional OLS test
of significance is given by

F = R2(N − p − 1)

p(1 − R2)
,

which is asymptotically distributed as Snedecor’s F with ν1 = p and ν2 = N−p−1
degrees of freedom. For the multivariate data listed in Table 10.19,

F = R2(N − p − 1)

p(1 − R2)
= 0.2539(12 − 2 − 1)

2(1 − 0.2539)
= 1.5313

and with ν1 = p = 2 and ν2 = N −p−1 = 12−2−1 = 9 degrees of freedom, the
asymptotic probability value of F = 1.5313 is P = 0.2677, under the assumptions
of linearity, normality, and homogeneity.

10.7.2 A Monte Carlo Permutation Analysis

Because there are

M = N ! = 12! = 479,001,600

possible, equally-likely arrangements in the reference set of all permutations of
the family data listed in Table 10.19, a Monte Carlo permutation analysis is
most appropriate. Under the Fisher–Pitman permutation model, the Monte Carlo
probability of an observed R2 is the proportion of R2 test statistic values computed
on the randomly-selected, equally-likely arrangements of the N = 12 multivariate
observations listed in Table 10.19 that are equal to or greater than the observed value
of R2 = 0.2539. Based on L = 1,000,000 randomly-selected arrangements of the
N = 12 multivariate observations listed in Table 10.19, there are exactly 268,026 R2

test statistic values that are equal to greater than the observed value of R2 = 0.2539.
If all M arrangements of the N = 12 multivariate observations listed in

Table 10.19 occur with equal chance under the Fisher–Pitman null hypothesis, the
Monte Carlo probability value of R2 = 0.2539 computed on L = 1,000,000
randomly-selected arrangements of the observed data with N = 12 multivariate
observations preserved for each arrangement is

P
(
R2 ≥ R2

o |H0
) = number of R2 values ≥ R2

o

L
= 268,026

1,000,000
= 0.2680 ,
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where R2
o denotes the observed value of R2 and L is the number of randomly-

selected, equally-likely arrangements of the multivariate observations listed in
Table 10.19.

10.7.3 An Exact Permutation Analysis

While M = 479,001,600 possible arrangements may make an exact permutation
analysis impractical, it is not impossible. There are exactly 128,420,329 R2 test
statistic values that are equal to or greater than the observed value of R2 =
0.2539. If all M arrangements of the N = 12 multivariate observations listed
in Table 10.19 occur with equal chance under the Fisher–Pitman null hypothesis,
the exact probability value of R2 = 0.2539 computed on the M = 479,001,600
possible arrangements of the observed data with N = 12 multivariate observations
preserved for each arrangement is

P
(
R2 ≥ R2

o |H0
) = number of R2 values ≥ R2

o

M
= 128,420,329

479,001,600
= 0.2681 ,

where R2
o denotes the observed value of R2 and M is the number of possible,

equally-likely arrangements of the multivariate observations listed in Table 10.19.

10.7.4 A LAD Multivariate Regression Analysis

Now consider a LAD regression analysis of the multivariate data listed in
Table 10.19 on p. 396. Table 10.21 lists the N = 12 observed values for variables
x1, x2, and y, the predicted y values (ỹ), the residual errors (ẽ), and the absolute
residual errors (|ẽ|).

For the family data listed in Table 10.19, the LAD regression coefficients are

β̃0 = +4.7500 , β̃1 = +0.2500 , and β̃2 = −0.1250 ,

the observed permutation test statistic is

δ = 1

N

N∑

i=1

∣∣yi − ỹi

∣∣ = 1

N

N∑

i=1

|ẽ| = 18

12
= 1.50 ,
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Table 10.21 Observed x and
y values with associated
predicted values (ỹ), residual
errors (ẽ), and absolute errors
(|ẽ|) for the multivariate
correlation data listed in
Table 10.19

Family x1 x2 y ỹ ẽ |ẽ|
A 1 12 1 3.5000 −2.5000 2.5000

B 1 14 2 3.2500 −1.2500 1.2500

C 1 16 3 3.0000 0.0000 0.0000

D 1 16 5 3.0000 +2.0000 2.0000

E 2 18 3 3.0000 0.0000 0.0000

F 2 16 1 3.2500 −2.2500 2.2500

G 3 12 5 4.0000 +1.0000 1.0000

H 3 12 0 4.0000 −4.0000 4.0000

I 4 10 6 4.5000 +1.5000 1.5000

J 4 12 3 4.2500 −1.2500 1.2500

K 5 10 7 4.7500 +2.2500 2.2500

L 6 16 4 4.0000 0.0000 0.0000

Sum 32 164 40 44.5000 −4.5000 18.0000

the exact expected value of test statistic δ under the Fisher–Pitman null hypothesis is

μδ = 1

N2

N∑

i=1

N∑

j=1

∣∣yi − ỹj

∣∣

= |1 − 3.50| + |1 − 3.25| + |1 − 3.00| + · · · + |4 − 4.75| + |4 − 4.00|
122

= 260

144
= 1.8056 ,

and the observed LAD measure of agreement between the y and ỹ values is

� = 1 − δ

μδ

= 1 − 1.5000

1.8056
= +0.1692 ,

indicating approximately 17% agreement between the observed and predicted y

values.
There are

M = N ! = 12! = 479,001,600

possible, equally-likely arrangements in the reference set of all permutations of the
family data listed in Table 10.19, making an exact permutation analysis impractical.
Under the Fisher–Pitman permutation model, the Monte Carlo probability of an
observed � is the proportion of � test statistic values computed on the randomly-
selected, equally-likely arrangements of the N = 12 multivariate observations
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listed in Table 10.19 that are equal to or greater than the observed value of
� = +0.1692. Based on L = 1,000,000 randomly-selected arrangements of the
N = 12 multivariate observations listed in Table 10.19, there are exactly 37,824 �
test statistic values that are equal to greater than the observed value of � = +0.1692.

If all M arrangements of the N = 12 multivariate observations listed in
Table 10.19 occur with equal chance under the Fisher–Pitman null hypothesis, the
Monte Carlo probability value of � = +0.1692 computed on L = 1,000,000
randomly-selected arrangements of the observed data with N = 12 multivariate
observations preserved for each arrangement is

P
(� ≥ �o|H0

) = number of � values ≥ �o

L
= 37,824

1,000,000
= 0.0378 ,

where �o denotes the observed value of � and L is the number of randomly-
selected, equally-likely arrangements of the N = 12 multivariate observations listed
in Table 10.19.

10.7.5 An Exact Permutation Analysis

Now consider an exact permutation analysis of the M = 479,001,600 arrangements
of the family data listed in Table 10.19. If all M arrangements of the N = 12
multivariate observations listed in Table 10.19 occur with equal chance under
the Fisher–Pitman null hypothesis, the exact probability value of � = +0.1692
computed on the M = 479,001,600 possible arrangements of the observed data
with N = 12 multivariate observations preserved for each arrangement is

P
(� ≥ �o|H0

) = number of � values ≥ �o

M
= 18,117,645

479,001,600
= 0.0378 ,

where �o denotes the observed value of � and M is the number of possible, equally-
likely arrangements of the N = 12 multivariate observations listed in Table 10.19.

10.7.6 Analyses with an Extreme Value

Suppose that the husband in Family “L” in Table 10.19 on p. 396 was a stay-at-
home house-husband and instead of contributing just 4 h of housework per week, he
actually contributed 40 h, as in Table 10.22.
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Table 10.22 Example
multivariate correlation data
on N = 12 families with
p = 2 predictors, where the
husband in family L
contributed 40 h of
housework per week

Family x1 x2 y

A 1 12 1

B 1 14 2

C 1 16 3

D 1 16 5

E 2 18 3

F 2 16 1

G 3 12 5

H 3 12 0

I 4 10 6

J 4 12 3

K 5 10 7

L 5 16 40

10.7.7 An Ordinary Least Squares (OLS) Analysis

For the multivariate data listed in Table 10.22, the unstandardized OLS regression
coefficients are

β̂0 = −41.6558 , β̂1 = +5.7492 , and β̂2 = +2.3896 ,

and the observed squared OLS multiple correlation coefficient is R2 = 0.5786.
There are

M = N ! = 12! = 479,001,600

possible, equally-likely arrangements in the reference set of all permutations of the
family data listed in Table 10.22, making an exact permutation analysis impractical.
Under the Fisher–Pitman permutation model, the Monte Carlo probability of an
observed R2 is the proportion of R2 test statistic values computed on the randomly-
selected, equally-likely arrangements of the observed data that are equal to or greater
than the observed value of R2 = 0.5786. Based on L = 1,000,000 randomly-
selected arrangements of the N = 12 multivariate observations listed in Table 10.22,
there are exactly 15,215 R2 test statistic values that are equal to greater than the
observed value of R2 = 0.5786.

If all M arrangements of the N = 12 multivariate observations listed in
Table 10.22 occur with equal chance under the Fisher–Pitman null hypothesis, the
Monte Carlo probability value of R2 = 0.5786 computed on L = 1,000,000
random arrangements of the observed data with N = 12 multivariate observations
preserved for each arrangement is

P
(
R2 ≥ R2

o |H0
) = number of R2 values ≥ R2

o

L
= 15,215

1,000,000
= 0.0152 ,



10.7 Example 6: Multivariate Permutation Analyses 403

where R2
o denotes the observed value of R2 and L is the number of randomly-

selected, equally-likely arrangements of the N = 12 multivariate observations listed
in Table 10.22.

Although an exact permutation analysis of M = 479,001,600 arrangements of
the family data listed in Table 10.22 may be impractical, it is not impossible. If all M

arrangements of the N = 12 multivariate observations listed in Table 10.22 occur
with equal chance under the Fisher–Pitman null hypothesis, the exact probability
value of R2 = 0.5786 computed on the M = 479,001,600 possible arrangements
of the observed data with N = 12 multivariate observations preserved for each
arrangement is

P
(
R2 ≥ R2

o |H0
) = number of R2 values ≥ R2

o

M
= 7,328,725

479,001,600
= 0.0153 ,

where R2
o denotes the observed value of R2 and M is the number of possible,

equally-likely arrangements of the N = 12 multivariate observations listed in
Table 10.22.

For comparison,

F = R2(N − p − 1)

p(1 − R2)
= 0.5786(12 − 2 − 1)

2(1 − 0.5786)
= 6.1785 ,

where F is asymptotically distributed as Snedecor’s F with ν1 = p and ν2 =
N−p−1 degrees of freedom. With ν1 = p = 2 and ν2 = N−p−1 = 12−2−1 = 9
degrees of freedom, the asymptotic probability value of F = 6.1785 is P = 0.0205,
under the assumptions of linearity, normality, and homogeneity.

10.7.8 A Least Absolute Deviation (LAD) Analysis

For the multivariate family data listed in Table 10.22 on p. 402, the LAD regression
coefficients are

β̃0 = −6.75 , β̃1 = +1.75 , β̃2 = +0.50 ,

the observed permutation test statistic is δ = 3.9583, the exact expected value of
δ under the Fisher–Pitman null hypothesis is μδ = 5.4687, and the LAD chance-
corrected measure of agreement between the observed y values and the predicted ỹ

values is

� = 1 − δ

μδ

= 1 − 3.9583

5.4687
= +0.2762 ,

indicating approximately 28% agreement between the observed and predicted y

values.
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There are

M = N ! = 12! = 479,001,600

possible, equally-likely arrangements in the reference set of all permutations of the
family data listed in Table 10.22, making an exact permutation analysis impractical.
Under the Fisher–Pitman permutation model, the Monte Carlo probability of an
observed � is the proportion of � test statistic values computed on the randomly-
selected, equally-likely arrangements of the observed data that are equal to or greater
than the observed value of � = +0.2762. Based on L = 1,000,000 randomly-
selected arrangements of the N = 12 multivariate observations listed in Table 10.22,
there are exactly 3409 � test statistic values that are equal to greater than the
observed value of � = +0.2762.

If all M arrangements of the N = 12 multivariate observations listed in
Table 10.22 occur with equal chance under the Fisher–Pitman null hypothesis, the
Monte Carlo probability value of � = +0.2762 computed on L = 1,000,000
randomly-selected arrangements of the observed data with N = 12 multivariate
observations preserved for each arrangement is

P
(� ≥ �o|H0

) = number of � values ≥ �o

L

= 3409

1,000,000
= 0.3409×10−2 ,

where �o denotes the observed value of � and L is the number of randomly-
selected, equally-likely arrangements of the N = 12 multivariate observations listed
in Table 10.22.

For comparison, consider an exact permutation analysis of the M = 479,001,600
arrangements of the observed data. If all M arrangements of the N = 12
multivariate observations listed in Table 10.22 occur with equal chance under
the Fisher–Pitman null hypothesis, the exact probability value of � = +0.2762
computed on the M = 479,001,600 possible arrangements of the observed data
with N = 12 multivariate observations preserved for each arrangement is

P
(� ≥ �o|H0

) = number of � values ≥ �o

M

= 163,234,242

479,001,600
= 0.3408×10−2 ,

where �o denotes the observed value of � and M is the number of possible, equally-
likely arrangements of the N = 12 multivariate observations listed in Table 10.22.

The results of the comparison of the OLS and LAD regression analyses with
y12 = 4 and y12 = 40 h of housework by the husband in family “L” are summarized
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Table 10.23 Comparison of OLS and LAD analyses for the data given in Table 10.19 with 4 h of
housework for the husband in family L and the data given in Table 10.22 with 40 h of housework
for the husband in family L

OLS analysis LAD analysis

Hours R2 Probability � Probability

4 0.2539 0.2681 0.1692 0.0378

40 0.5786 0.0153 0.2762 0.0034

|�| 0.3247 0.2528 0.1070 0.0344

in Table 10.23. The value of 40 h of housework by the husband in family “L” is,
by any definition, an extreme value. It is readily apparent that the extreme value of
40 h had a profound impact on the results of the OLS analysis. The OLS multiple
correlation coefficient more than doubled from R2 = 0.2539 to R2 = 0.5786,
yielding a difference between the two OLS multiple correlation coefficients of

�R2 = 0.5786 − 0.2539 = 0.3247 ,

and the corresponding exact probability value decreased from P = 0.2681 to P =
0.0153, yielding a difference between the two OLS probability values of

�P = 0.2681 − 0.0153 = 0.2528 .

The impact of 40 h of housework on the LAD analysis is more modest with the LAD
chance-corrected measure of agreement increasing only slightly from � = 0.1692
to � = 0.2762, yielding a difference between the two LAD multiple correlation
coefficients of

�� = 0.2762 − 0.1692 = 0.1070 ,

and the exact probability value decreasing from P = 0.0378 to P = 0.0034,
yielding a difference between the two LAD probability values of only

�P = 0.0378 − 0.0034 = 0.0344 .

10.8 Summary

Under the Neyman–Pearson population model of statistical inference, this chapter
examined product-moment linear correlation and regression, including both simple
and multiple linear correlation and regression. The conventional measure of effect
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size for simple OLS correlation and regression is Pearson’s r2
xy . Under the Fisher–

Pitman permutation model of statistical inference, test statistics δ and associated
measure of effect size � were developed and illustrated for simple correlation and
regression.

As in previous chapters, six examples illustrated statistics δ and � for measures
of linear correlation and regression. In the first example, a small sample of
N = 4 bivariate observations was utilized to describe and simplify the calculation
of statistics δ and � for linear correlation and regression. The second example
developed the permutation-based, chance-corrected measure of effect size, �, and
related the permutation measure to Pearson’s r2

xy measure of effect size. The third
example with N = 10 bivariate observations illustrated the effects of extreme
values on both ordinary least squares (OLS) regression based on squared Euclidean
scaling with v = 2 and least absolute deviation (LAD) regression based on ordinary
Euclidean scaling with v = 1. The fourth example with N = 12 bivariate
observations compared exact and Monte Carlo probability procedures. A Monte
Carlo permutation procedure was shown to be an accurate and efficient alternative
to the calculation of an exact probability value, provided the probability value is not
too small. The fifth example with N = 11 bivariate rank scores applied permutation
statistical methods to rank-score correlation data, comparing permutation statistical
methods to Spearman’s rank-order correlation coefficient, Kendall’s rank-order
correlation coefficient, and Spearman’s footrule correlation coefficient. The sixth
example extended statistics δ and � to multivariate correlation data. An example
with N = 12 multivariate observations was analyzed with both OLS and LAD
regression. A final example containing an extreme value provided a comparison of
the two regression models when extreme values occur.

Chapter 11 concludes the presentation of permutation statistical methods with
analyses of contingency tables. Six examples illustrate various permutation proce-
dures applied to the analysis of contingency tables. The first example is devoted
to goodness-of-fit tests. The second example considers contingency tables in
which two nominal-level (categorical) variables have been cross-classified. The
third example considers contingency tables in which two ordinal-level (ranked)
variables have been cross-classified. The fourth example considers contingency
tables in which one nominal-level variable and one ordinal-level variable have
been cross-classified. The fifth example considers contingency tables in which one
nominal-level variable and one interval-level variable have been cross-classified.
The sixth example considers contingency tables in which one ordinal-level variable
and one interval-level variable have been cross-classified.
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