
Chapter 1
Introduction

Abstract This chapter provides an introduction to permutation statistical methods
and an overview of the next 10 chapters. The contents of each chapter are described
and summarized in considerable detail.

The primary purpose of this book is to introduce the reader to a wide variety
of elementary permutation statistical methods. Most readers will be familiar with
conventional statistical methods under the Neyman–Pearson population model of
statistical inference, such as tests of hypotheses, confidence intervals, simple linear
correlation and regression, one-way completely-randomized analysis of variance,
one-way randomized-blocks analysis of variance, and chi-squared tests of goodness-
of-fit and independence. However, corresponding permutation statistical tests and
measures will almost certainly be less familiar to most readers. While permutation
methods date back almost 100 years to the early works by R.A. Fisher and
E.J.G. Pitman in the 1920s and 1930s, permutation methods are computationally-
intensive methods and it took the advent of high-speed computing to make most
permutation methods feasible. Thus, permutation statistical methods have emerged
as a practical alternative to conventional statistical methods only in the last 30
or so years. Consequently, permutation statistical methods are seldom taught in
introductory courses and there exist no introductory-level textbooks on permutation
methods at this writing.1

Three main themes characterize the 11 chapters of this book. First, test statistic
δ is introduced, defined, and detailed. Test statistic δ is the fundamental test
statistic for permutation statistical methods and serves both as a replacement
for many conventional statistics such as the one-sample t test, the two-sample t

test, the matched-pairs t test, the complete range of completely-randomized and
randomized-blocks analysis of variance F tests, and a large number of parametric

1Some introductory textbooks in statistics now include a chapter on permutation methods. For
example, an introductory book by Howell titled Statistical Methods for Psychology contains a
chapter on “Resampling and Nonparametric Approaches to Data” that includes examples of exact
and Monte Carlo permutation methods as well as bootstrapping [8].

© Springer Nature Switzerland AG 2019
K. J. Berry et al., A Primer of Permutation Statistical Methods,
https://doi.org/10.1007/978-3-030-20933-9_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20933-9_1&domain=pdf
https://doi.org/10.1007/978-3-030-20933-9_1


2 1 Introduction

and nonparametric tests of differences and measures of association and correlation.
Moreover, test statistic δ lends itself to the development of new statistical tests and
measures. As such, test statistic δ is central to the permutation analyses presented
in Chaps. 5–11 and constitutes a unifying test statistic for many permutation-based
statistical methods.

Second, measures of effect size have become increasingly important in the
reporting of contemporary research with many journals now requiring both tests of
significance and associated measures of effect size. Measures of effect size indicate
the strength of a statistical difference or relationship. In brief, measures of effect
size provide information pertaining to the practical or clinical significance of a
result as contrasted with the statistical significance of a result. The two are more
often than not reported in concert. Conventional measures of effect size typically
belong to one of the two families: the d family or the r family. Measures of effect
size in the d family typically report the effect size in standard deviation units with
values between 0 and ∞, which is perfectly acceptable when comparing two or
more studies but may be difficult to interpret for a single, stand-alone study. Cohen’s
d̂ is probably the best-known measure of effect size in the eponymous d family.
Measures of effect size in the r family report the effect size as some variety of
squared correlation coefficient with values between 0 and 1. Unfortunately, under
many circumstances members of the r family cannot achieve the maximum value of
1. When the maximum value is unknown, it is impossible to interpret intermediate
values. Pearson’s r2 coefficient of determination is an example of a measure of effect
size in the r family and is the measure from which the family gets its name.

A relatively new measure of effect size based on test statistic δ is introduced
and described. Effect size measure � is a permutation-based, chance-corrected
measure of effect size. Chance-corrected measures have much to commend them
as they provide interpretations that are easily understood by the average reader.
Positive values indicate an effect size greater than expected by chance, negative
values indicate an effect size less than expected by chance, and a value of zero
indicates an effect size corresponding to chance. The � family of measures of effect
sizes serves as a replacement for both the d and r families, including Cohen’s d̂ ,
Pearson’s r2, Kelley’s ε2, and Hays’ ω̂2. As such, effect size measure � is central
to the permutation analyses presented in Chaps. 5–11 and constitutes a generalized,
unifying measure of effect size for many permutation-based statistical methods.

Third, conventional statistics, under the Neyman–Pearson population model of
statistical inference, necessarily assume normality. The normal distribution is a
two-parameter distribution in which the two parameters are the population mean
denoted by μx and the population variance denoted by σ 2

x . For most parametric
tests the population mean is estimated by the sample mean denoted by x̄ and the
population variance by the sample variance denoted by s2

x . The sample mean is
the point about which the sum of squared deviations is minimized and the sample
variance is the average of the squared deviations about the sample mean. Thus,
because of the assumption of normality, squared deviations among sample values are
an integral and necessary component of most parametric tests under the Neyman–
Pearson population model of statistical inference.
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On the other hand, statistical tests and measures under the Fisher–Pitman
permutation model are distribution-free, do not assume normality, and because
they do not depend on squared deviations among sample values, are not limited
to squared deviations about the mean. While any scaling factor can be used with
permutation statistical methods, ordinary Euclidean scaling has proven to be the
most justifiable. Ordinary Euclidean scaling allows permutation statistical methods
to minimize, or completely eliminate, the influence of extreme values or statistical
outliers, without having to trim, Winsorize, transform, or convert raw scores to
ranks. Moreover, ordinary Euclidean scaling allows geometric consistency between
the observation space and the analysis space. Finally, ordinary Euclidean scaling has
an intuitive appeal that is absent in squared Euclidean scaling. Analyses in Chaps. 5–
11 utilize both squared Euclidean scaling, on which conventional statistics rely, and
ordinary Euclidean scaling, when appropriate. The squared and ordinary Euclidean
scaling results are then compared and contrasted.

These three constructs, test statistic δ, effect size measure �, and ordinary
Euclidean scaling, constitute the main underpinning structures of the book. Each of
the substantive chapters is organized around the three constructs and each construct
is compared with conventional test statistics, other measures of effect size, and
squared Euclidean scaling, when appropriate.

1.1 Overviews of Chapters 2–11

This chapter provides an overview of the book and brief summaries of the following
10 chapters. The format of the book follows the conventional structure of most
introductory textbooks in statistical methods with chapters on central tendency and
variability, one- and two-sample tests, multi-sample tests, linear correlation and
regression, and the analysis of contingency tables. No statistical background of the
reader is assumed other than an introductory course in basic statistics, such as is
taught in departments of statistics, mathematics, business, biology, economics, or
psychology. No mathematical expertise of the reader is assumed beyond elementary
algebra.

Most of the substantive chapters in this book follow the same format wherein
six example analyses based on permutation statistical methods are provided. The
first example in each chapter introduces the main permutation test statistic for
the chapter and provides both a highly detailed exact permutation analysis and
a conventional analysis; for example, a one-sample permutation test of the null
hypothesis under the Fisher–Pitman model and Student’s conventional one-sample
t test of the null hypothesis under the Neyman–Pearson model. The second example
introduces appropriate conventional measures of effect size, for example, Cohen’s
d̂ or Pearson’s r2, and provides a permutation-based, chance-corrected alternative
measure of effect size. Because conventional statistical methods under the Neyman–
Pearson population model assume random sampling from a normally distributed
population, squared deviations about the mean are necessary. Statistical methods
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under the Fisher–Pitman permutation model do not assume normality; thus, the third
example compares permutation analyses based on ordinary and squared Euclidean
scaling functions. The inclusion of one or more extreme values demonstrates the
advantages of ordinary Euclidean scaling.

The fourth example introduces Monte Carlo permutation statistical methods
wherein a large random sample of all possible permutations is generated and ana-
lyzed, in contrast to exact permutation methods wherein all possible permutations
are generated and analyzed. Both exact and Monte Carlo permutation analyses are
compared with each other and with a conventional statistical analysis. The fifth
example applies permutation statistical methods to rank-score data, comparing a
permutation statistical analysis to a conventional statistical analysis; for example,
a permutation test for two sets of rank scores and the Wilcoxon–Mann–Whitney
rank-sum test. The sixth example applies permutation statistical methods to mul-
tivariate data, comparing a permutation statistical analysis with a conventional
statistical analysis; for example, a permutation test of multivariate matched pairs
and Hotelling’s multivariate T 2 test for two matched samples.

1.2 Chapter 2

The second chapter provides a brief history of the origins and subsequent devel-
opment of permutation statistical methods. Permutation statistical methods are a
paradox of old and new. While permutation methods predate many conventional
parametric statistical methods, only recently have permutation methods become part
of the mainstream discussion regarding statistical testing. Permutation statistical
methods were introduced by R.A. Fisher in 1925 by calculating an exact probability
value using the binomial probability distribution [4]. In 1927 R.C. Geary used an
exact permutation analysis to demonstrate the utility of asymptotic approaches for
data analysis in an investigation of the properties of linear correlation and regression
in finite populations [6].

In 1933 T. Eden and F. Yates examined height measurements of wheat shoots
grown in eight blocks. Simulated and theoretical probabilities based on the normal-
ity assumption were compared and found to be in close agreement, supporting the
assumption of normality [3]. In 1936 H. Hotelling and M.R. Pabst used permutation
statistical methods to calculate exact probability values for small samples of ranked
data in an examination of correlation methods [7]. In 1937 and 1938 E.J.G. Pitman
contributed three seminal papers on permutation statistical methods. The first
paper utilized permutation statistical methods in an analysis of two independent
samples, the second paper utilized permutation statistical methods in an analysis of
linear correlation, and the third paper utilized permutation statistical methods in an
analysis of randomized-blocks analysis of variance designs [14–16].

The 1940s and 1950s witnessed a proliferation of nonparametric rank tests. For
example, Wilcoxon’s two-sample rank-sum test in 1945 [17], Mann and Whitney’s
two-sample rank-sum test in 1947 [11], Kendall’s book on Rank Correlation
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Methods in 1948 [9], Freeman and Halton’s exact methods for analyzing two-way
and three-way contingency tables in 1951 [5], Kruskal and Wallis’ C-sample rank-
sum test in 1952 [10], Box and Andersen’s promotion of permutation methods in
the derivation of robust criteria in 1955 [1], and Dwass’s rigorous investigation into
the precision of Monte Carlo permutation methods in 1957 [2]. In many of these
papers, permutation methods were employed to generate tables of exact probability
values for small samples.

In the 1960s and 1970s mainframe computers became available to researchers at
major universities and by the end of the period desktop computers and workstations,
although not common, were available to many investigators. In addition, the speed
of computing increased greatly between 1970 and 1980. Permutation statistical
methods arrived at a level of maturity during the period 1980–2000 primarily
as a result of two factors: greatly improved computer clock speeds and widely-
available desktop computers and workstations. By the early 2000s, computing
power had advanced enough that permutation statistical methods were providing
exact probability values in an efficient manner for a wide variety of statistical tests
and measures [12, 13].

1.3 Chapter 3

The third chapter opens with a description of two models of statistical inference:
the well-known and widely-taught Neyman–Pearson population model and the
lesser-known and seldom-taught Fisher–Pitman permutation model. Under the
permutation model, three types of permutation methods are described: exact
permutation methods yielding precise probability values, Monte Carlo permutation
methods yielding approximate but highly accurate probability values, and per-
mutation methods based on moment approximations yielding exact moments and
approximate probability values. In this chapter the Neyman–Pearson population
model and Fisher–Pitman permutation model are compared and contrasted and the
advantages of permutation statistical methods are described.

Because permutation methods are computationally intensive methods, often
requiring millions of calculations, five computational efficiencies are described in
Chap. 3. First, high-speed computing and, in the case of Monte Carlo permutation
methods, efficient pseudo-random number generators. Second, the examination of
all combinations instead of all permutations of the observed data. Third, the use
of mathematical recursion. Fourth, calculation of only the variable portion of the
selected test statistic. Fifth, in the case of multiple arrays of data, holding one array
of the observed data constant. Where appropriate, each efficiency is described and
illustrated with a small set of data and an example permutation analysis.
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1.4 Chapter 4

The fourth chapter provides a general introduction to measures of central tendency
and variability, two concepts that are central to conventional statistical analysis and
inference. The sample mode, mean, and median are described and illustrated with
small example data sets. The sample mode is simply the score or category with the
largest frequency. Two example analyses illustrate the mode, one employing scores
and the other employing categories.

Next, the sample mean is considered. The sample mean is the point about which
the sum of deviations is zero and, more importantly, the point about which the
sum of squared deviations is minimized. These properties are illustrated with two
example analyses. Moreover, the sample mean is central to the sample standard
deviation, denoted by sx , and the sample variance, denoted by s2

x— a point that is
illustrated with a small set of example data.

The sample median is usually defined as the point below which half the ordered
values fall or the 50th percentile. More importantly, the median is the point about
which the sum of absolute deviations is minimized. A detailed example analysis
illustrates this property. The sample median is central to the mean absolute deviation
(MAD), which is illustrated with a small set of example data.

Finally, the mean, median, and mode are compared with each other and an
alternative approach to the mean and median based on paired differences is
presented and illustrated. The paired-differences approach to the mean and median
is central to the Fisher–Pitman permutation model of statistical inference.

1.5 Chapter 5

The fifth chapter provides a general introduction to permutation analyses of one-
sample tests of hypotheses. One-sample tests are the simplest of a large family of
tests. For this reason, Chap. 5 is the first chapter dealing with the more technical
aspects of permutation statistical methods, serves as an introduction to the basic
concepts and varieties of permutation statistical methods, and lays a conceptual
foundation for subsequent chapters.

First, Chap. 5 defines permutation test statistic δ for one-sample tests, establishes
the relationship between test statistic δ and Student’s conventional one-sample t test
statistic, and describes the permutation procedures for determining exact probability
values under the Fisher–Pitman null hypothesis. An example analysis with a small
set of data details the required calculations for an exact test of the null hypothesis
under the Fisher–Pitman permutation model of statistical inference.

Second, Chap. 5 introduces the concept of effect sizes: indices to the magnitudes
of treatment effects and the practical—in contrast to the statistical—significance
of the research. The development and publication of measures of effect size has
become increasingly important in recent years and a number of journals now require
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measures of effect size prior to publication. Three types of measures of effect size
are described in Chap. 5. The first type of measure of effect size, designated the
d family, is based on measurements of the differences among treatment groups
or levels of an independent variable. As noted previously, Cohen’s d̂ is the most
prominent member of the d family, which typically measures effect size by the
number of standard deviations separating the means of treatment groups. Thus
Cohen’s d̂ can potentially vary from 0 to ∞.

The second type of measure of effect size, designated the r family, represents
some sort of relationship among variables. Measures of effect size in the r family are
typically measures of correlation or association, the most familiar being Pearson’s
squared product-moment correlation coefficient, denoted by r2. The principle
advantage of r measures of effect size is that they are usually bounded by the
probability limits 0 and 1, making them easily interpretable.

The third type of measure of effect size, designated the � family, represents
chance-corrected measures of effect size. Chance-corrected measures are easily
understood by the average reader, where positive values indicate an effect size
greater than expected by chance, negative values indicate an effect size less than
expected by chance, and a value of zero indicates an effect size corresponding
to chance. The interrelationships among Student’s one-sample t test, Cohen’s d̂

measure of effect size, Pearson’s r2 measure of effect size, and Mielke and Berry’s
� chance-corrected measure of effect size are explored and illustrated with a small
example set of data.

Third, six illustrative examples are provided in Chap. 5, demonstrating permuta-
tion statistical methods for one-sample tests of hypotheses. The first example utilizes
a small set of data to describe the calculations required for test statistic δ and an exact
permutation analysis of a one-sample test under the Fisher–Pitman null hypothesis.
Permutation test statistic δ is developed for the analysis of a single sample and
compared with Student’s conventional one-sample t test.

The second example details measures of effect size for one-sample tests.
Specifically, Cohen’s d̂ and Pearson’s r2 measures of effect size are detailed and
�, an alternative permutation-based, chance-corrected measure of effect size is
described for one-sample tests. The differences among the three measures of effect
size and their interrelationships are explored and illustrated with a small set of data.

The third example is designed to illustrate the differences between permuta-
tion analyses based on ordinary and squared Euclidean scaling functions. Unlike
conventional statistical tests that assume normality and are therefore limited to
squared Euclidean scaling functions, permutation statistical tests do not assume
normality, are extremely flexible, and can accommodate a variety of scaling
functions. Inclusion of extreme values illustrates the impact of extreme values on
the two scaling functions, on Student’s t test statistic, on test statistic δ, on the �
measure of effect size, and on exact and asymptotic probability values.

The fourth example compares and contrasts exact and Monte Carlo permutation
statistical methods. When sample sizes are large, exact permutation tests become
impractical and Monte Carlo permutation tests become necessary. While exact
permutation tests examine all possible arrangements of the observed data, Monte
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Carlo permutation tests examine only a random sample of all possible arrangements
of the observed data. Monte Carlo sample sizes can be increased to yield probability
values to any desired accuracy, at the expense of computation time.

The fifth example illustrates permutation statistical methods applied to univariate
rank-score data. The conventional one-sample tests for rank-score data under the
Neyman–Pearson population model are Wilcoxon’s signed-rank test and the simple
sign test. Wilcoxon’s signed-rank test and the sign test are described and compared
with permutation-based alternatives. The permutation analyses incorporate both
ordinary and squared Euclidean scaling functions. Test statistic δ is defined for rank-
score data, the exact probability of δ is generated, and the � measure of effect size
is described for univariate rank-score data.

The sixth example illustrates permutation statistical methods applied to mul-
tivariate data. Multivariate tests have become very popular in recent years as
they preserve the relationship among variables, instead of combining the variables
into an index and then employing a univariate one-sample test. Like the previous
examples, the multivariate permutation analysis incorporates both ordinary and
squared Euclidean scaling functions. Test statistic δ is defined for multivariate data,
the exact probability of δ is generated, and the � measure of effect size is described
for multivariate one-sample tests.

1.6 Chapter 6

The sixth chapter provides a general introduction to two-sample tests of hypotheses.
Tests of experimental differences for two independent samples are ubiquitous in the
research literature and are the tests of choice for comparing control and treatment
groups in experimental designs and for comparing two unrelated groups of subjects
in survey research.

First, Chap. 6 defines permutation test statistic δ for two independent samples,
establishes the relationship between test statistic δ and Student’s conventional t test
statistic for two independent samples, and describes the permutation procedures for
determining exact probability values under the Fisher–Pitman null hypothesis. A
small example analysis details the calculations required for an exact test of the null
hypothesis under the Fisher–Pitman permutation model of statistical inference.

Second, Chap. 6 describes five measures of effect size for two independent
samples. Specifically, Cohen’s d̂ , Pearson’s r2, Kelley’s ε2, Hays’ ω̂2, and Mielke
and Berry’s � measures of effect size are described and the interrelationships among
t , d̂ , r2, ε2, ω̂2, and � are explored and illustrated with a small set of data.

Third, six illustrative examples are provided in Chap. 6, demonstrating permu-
tation statistical methods for tests of two independent samples. The first example
utilizes a small data set to detail the calculations required for test statistic δ and
an exact permutation test for two independent samples under the Fisher–Pitman
null hypothesis. Permutation test statistic δ is developed for the analysis of two
independent samples and compared with Student’s conventional two-sample t test.
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The second example illustrates measures of effect size for two-sample tests. Four
conventional measures of effect size are described: Cohen’s d̂ , Pearson’s r2, Kelley’s
ε2, and Hays’ ω̂2. The four measures are compared and contrasted with Mielke and
Berry’s � chance-corrected measure of effect size.

The third example illustrates the differences between permutation analyses based
on ordinary and squared Euclidean scaling functions. The inclusion of extreme
values illustrates the impact of extreme values on the two scaling functions, on
Student’s t test statistic for two independent samples, on test statistic δ, on the �
measure of effect size, and on exact and asymptotic probability values.

The fourth example compares and contrasts exact and Monte Carlo permutation
statistical methods for tests of two independent samples. Both ordinary and
squared Euclidean scaling functions are included and evaluated. Finally, the chance-
corrected effect size measure � is compared with Cohen’s d̂ , Pearson’s r2, Kelley’s
ε2, and Hays’ ω̂2 measures of effect size.

The fifth example illustrates permutation statistical methods applied to univariate
rank-score data. The conventional two-sample test for rank scores under the
Neyman–Pearson population model is the Wilcoxon–Mann–Whitney (WMW) two-
sample rank-sum test. The WMW test is described and compared with alternative
tests under the Fisher–Pitman permutation model. The permutation analyses incor-
porate both ordinary and squared Euclidean scaling functions. Test statistic δ is
defined for rank-score data, the exact and Monte Carlo probability values for δ are
developed, and the � measure of effect size is described for univariate rank-score
data.

The sixth example illustrates permutation statistical methods applied to multi-
variate data. The results of a permutation statistical analysis are compared with the
results from Hotelling’s multivariate T 2 test for two independent samples. Mielke
and Berry’s � chance-corrected measure of effect size is described and illustrated
for multivariate data.

1.7 Chapter 7

The seventh chapter provides a general introduction to matched-pairs tests of
hypotheses. Tests of experimental differences between two matched samples are
the simplest of a very large family of tests. In general, matched-pairs tests generally
possess more power than tests for two independent samples with the same number
of subjects or the same power with fewer subjects. In addition, matched-pairs tests
are always balanced with the same number of subjects in each treatment group, a
decided advantage over conventional tests for two independent samples, where the
two samples may be markedly different in size.

First, Chap. 7 introduces permutation test statistic δ for matched-pairs tests,
establishes the relationship between test statistic δ and Student’s matched-pairs t

test statistic, and describes the permutation procedures required for determining
exact probability values under the Fisher–Pitman null hypothesis. Permutation test
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statistic, δ, is developed for the analysis of two matched samples and compared with
Student’s conventional matched-pairs t test.

Second, Chap. 7 describes measures of effect size for matched-pairs tests.
Specifically, Student’s t test for matched pairs, Cohen’s d̂, Pearson’s r2, and Mielke
and Berry’s � measure of effect size are presented and the interrelationships among
t , d̂ , r2, and � are explored and illustrated with a small example set of data.

Third, six illustrative examples are provided in Chap. 7, demonstrating permuta-
tion statistical methods for matched-pairs tests. The first example utilizes a small set
of data to detail the calculations required for test statistic δ and an exact permutation
test for matched pairs under the Fisher–Pitman null hypothesis. Permutation test
statistic δ is developed for the analysis of matched pairs and compared with
Student’s conventional matched-pairs t test statistic.

The second example describes measures of effect size for matched-pairs tests.
Cohen’s d̂ and Pearson’s r2 measures of effect size are described and Mielke and
Berry’s chance-corrected measure of effect size, �, is developed for matched-pairs
analyses and compared with Cohen’s d̂ and Pearson’s r2 conventional measures of
effect size.

The third example illustrates the differences between analyses based on ordinary
and squared Euclidean scaling functions. Inclusion of extreme values underscores
the impact of extreme values on the two scaling functions, on Student’s t test statistic
for two matched samples, on test statistic δ, on the � measure of effect size, and on
the accuracy of exact and asymptotic probability values.

The fourth example compares and contrasts exact and Monte Carlo permutation
analyses for matched-pairs tests. A matched-pairs test with a large data set is utilized
to generate exact and Monte Carlo permutation tests for both ordinary and squared
Euclidean scaling functions. The example confirms that Monte Carlo permutation
tests are a suitable and efficient substitute for exact permutation tests, provided
the Monte Carlo random sample arrangement of the observed data is sufficiently
large. Finally, the � measure of effect size is described for matched-pairs tests and
compared with Cohen’s d̂ and Pearson’s r2 conventional measures of effect size.

The fifth example illustrates permutation statistical methods applied to uni-
variate rank-score data, comparing permutation statistical methods to Wilcoxon’s
conventional signed-ranks test and the sign test. A large matched-pairs data set is
utilized to generate both exact and Monte Carlo permutation tests for both ordinary
and squared Euclidean scaling functions. Finally, the � measure of effect size is
described and illustrated for univariate rank-score data.

The sixth example illustrates permutation statistical methods applied to multi-
variate matched-pairs data. Test statistic δ is shown to be related to Hotelling’s
conventional T 2 test for matched pairs with a squared Euclidean scaling function.
The results for test statistics δ and T 2 are compared. Finally, Mielke and Berry’s �
measure of effect size is described and illustrated for multivariate data.
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1.8 Chapter 8

The eighth chapter presents permutation statistical methods for analyzing exper-
imental differences among three or more independent samples, commonly called
completely-randomized designs under the Neyman–Pearson population model.
Multi-sample tests are of two types: tests for differences among three or more
independent samples (completely-randomized designs) and tests for differences
among three or more related samples (randomized-blocks designs). Permutation
statistical tests for multiple independent samples are described in Chap. 8 and
permutation statistical tests for multiple related samples are described in Chap. 9.

Six example analyses illustrate permutation statistical methods for multi-sample
tests. The first example utilizes a small set of data to illustrate the calculations
required for test statistic δ and an exact permutation test for multiple independent
samples under the Fisher–Pitman null hypothesis. Permutation test statistic, δ, is
developed for the analysis of multiple independent samples and compared with
Fisher’s conventional F -ratio test statistic for completely-randomized designs.

The second example develops the � measure of effect size as a chance-corrected
alternative to the four conventional measures of effect size for multi-sample tests:
Cohen’s d̂, Pearson’s η2, Kelley’s η̂2, and Hays’ ω̂2.

The third example compares permutation statistical methods based on ordinary
Euclidean scaling functions with permutation methods based on squared Euclidean
scaling functions. Inclusion of one or more extreme scores underscores the impact
of extreme values on the two scaling functions, on Fisher’s F -ratio test statistic
for completely-randomized designs, on the permutation test statistic δ, on the �
measure of effect size, and on the accuracy of exact and asymptotic probability
values.

The fourth example compares and contrasts exact and Monte Carlo permutation
methods for multiple independent samples. Both ordinary and squared Euclidean
scaling functions are evaluated. Finally, the � measure of effect size is compared
with the four conventional effect size measures for multi-sample tests: Cohen’s d̂ ,
Pearson’s η2, Kelley’s η̂2, and Hays’ ω̂2.

The fifth example illustrates the application of permutation statistical methods
to univariate rank-score data, comparing a permutation analysis of example data to
the conventional Kruskal–Wallis one-way analysis of variance for ranks test. Both
exact and Monte Carlo permutation analyses are utilized and compared. Mielke and
Berry’s chance-corrected � measure of effect size is described and illustrated for
univariate rank-score data.

The sixth example illustrates the application of permutation statistical methods
to multivariate data, comparing a permutation analysis of example data to the
conventional Bartlett–Nanda–Pillai trace test for multivariate data. Mielke and
Berry’s chance-corrected � measure of effect size is described for multivariate data
and compared with η2, the conventional measure of effect size for multivariate data.
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1.9 Chapter 9

The ninth chapter presents permutation statistical methods for analyzing
experimental differences among three or more matched samples, commonly
called randomized-blocks designs under the Neyman–Pearson population model.
Randomized-blocks constitute important research designs in many fields. In recent
years randomized-blocks designs have become increasingly important in fields such
as horticulture, animal science, and agronomy as it has become easier to produce
matched subjects through embryo transplants, cloning, genetic engineering, and
selective breeding.

Six example analyses illustrate the application of permutation statistical methods
to randomized-blocks designs. The first example utilizes a small set of data to
detail the calculations required for test statistic δ and an exact permutation test for
multiple matched samples under the Fisher–Pitman null hypothesis. Permutation
test statistic, δ, is developed for the analysis of multiple matched samples and
compared with Fisher’s conventional F -ratio test for randomized-blocks designs.

The second example develops the � measure of effect size as a chance-corrected
alternative to the four conventional measures of effect size for randomized-blocks
designs: Hays’ ω̂2, Pearson’s η2, Cohen’s partial η2,and Cohen’s f 2.

The third example compares permutation statistical methods based on ordinary
and squared Euclidean scaling functions. Inclusion of one or more extreme scores
underscores the impact of extreme values on the two scaling functions, on Fisher’s
F -ratio test statistic for randomized-blocks designs, on the permutation test statistic
δ, on the � measure of effect size, and on the accuracy of exact and asymptotic
probability values. It is demonstrated that extreme blocks of data yield the same
results with both scaling functions, but extreme values within a block can yield
considerable differences.

The fourth example utilizes a larger data set to compare and contrast exact
and Monte Carlo permutation statistical methods for randomized-blocks designs.
Both ordinary and squared Euclidean scaling functions are evaluated. The chance-
corrected measure of effect size � is developed for randomized-blocks designs
and compared with Hays’ ω̂2, Pearson’s η2, Cohen’s partial η2, and Cohen’s f 2

conventional measures of effect size.
The fifth example illustrates the application of permutation statistical methods to

univariate rank-score data, comparing permutation statistical methods to Friedman’s
conventional two-way analysis of variance for ranks. The permutation test statistic,
δ, and Mielke and Berry’s � measure of effect size are described and illustrated for
univariate rank-score data.

The sixth example illustrates the application of permutation statistical methods
to multivariate randomized-blocks designs. Both the permutation test statistic δ and
Mielke and Berry’s chance-corrected � measure of effect size are described and
illustrated for multivariate randomized-blocks designs.
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1.10 Chapter 10

The tenth chapter presents permutation statistical methods for measures of linear
correlation and regression. Measures of linear correlation and regression are
ubiquitous in the research literature and constitute the backbone of many more
advanced statistical methods, such as factor analysis, principal components analysis,
path analysis, network analysis, neural network analysis, multi-level (hierarchical)
modeling, and structural equation modeling.

Six example analyses illustrate the application of permutation statistical methods
to linear correlation and regression. The first example utilizes a small set of bivariate
observations to illustrate the calculations required for test statistic δ and an exact
permutation test for measures of linear correlation under the Fisher–Pitman null
hypothesis. Permutation test statistic, δ, is developed for the analysis of correlation
and compared with Pearson’s conventional squared product-moment correlation
coefficient.

The second example develops the � measure of effect size as a chance-corrected
alternative to Pearson’s squared product-moment correlation coefficient. The two
measures of effect size are illustrated and compared using a small set of data.

The third example compares permutation statistical methods based on ordinary
and squared Euclidean scaling functions, with an emphasis on the analysis of data
containing one or more extreme values. Ordinary least squares (OLS) regression
based on squared Euclidean scaling and least absolute deviation (LAD) regression
based on ordinary Euclidean scaling are described and compared.

The fourth example compares exact and Monte Carlo permutation statistical
methods for linear correlation and regression. Both ordinary Euclidean scaling and
squared Euclidean scaling functions are evaluated. The chance-corrected effect-
size measure � is developed for correlation methods and compared with Pearson’s
squared product-moment correlation coefficient.

The fifth example illustrates the application of permutation statistical methods
to univariate rank-score data, comparing permutation statistical methods with
Spearman’s rank-order correlation coefficient, Kendall’s rank-order correlation
coefficient, and Spearman’s footrule correlation coefficient. The permutation test
statistic δ and Mielke and Berry’s � measure of effect size are described and
illustrated for univariate rank-score data.

The sixth example illustrates the application of permutation statistical methods
to multivariate linear correlation and regression. Both OLS and LAD multivariate
linear regression are described and compared for multivariate observations. Permu-
tation test statistic δ and the � measure of effect size are described and illustrated
for multivariate linear regression data.
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1.11 Chapter 11

The last chapter provides a general introduction to permutation measures of
association for contingency tables. Measures of association for contingency tables
constitute a variety of types. One type measures the association in a cross-
classification of two nominal-level (categorical) variables and the measure can
be either symmetric or asymmetric. A second type measures the association in
a cross-classification of two ordinal-level (ranked) variables and the measure can
be either symmetric or asymmetric. A third type measures the association in a
cross-classification of a nominal-level variable and an ordinal-level variable. A
fourth type measures the association in a cross-classification of a nominal-level
variable and an interval-level variable. And a fifth type measures the association in a
cross-classification of an ordinal-level variable and an interval-level variable. These
mixed-level measures are typically asymmetric with the lower-level variable serving
as the independent variable and the higher-level variable serving as the dependent
variable.

Six sections of Chap. 11 illustrate permutation statistical methods for the analysis
of contingency tables. The first section considers permutation statistical methods
applied to conventional goodness-of-fit tests; for example, Pearson’s chi-squared
goodness-of-fit test. Two examples illustrate permutation goodness-of-fit tests and
a new maximum-corrected measure of effect size is developed for chi-squared
goodness-of-fit tests.

The second section considers permutation statistical methods for analyzing
contingency tables in which two nominal-level variables have been cross-classified.
Cramér’s V test statistic illustrates a conventional symmetrical measure of nominal
association and Goodman and Kruskal’s ta and tb illustrate conventional asymmet-
rical measures of nominal association.

The third section utilizes permutation statistical methods for analyzing con-
tingency tables in which two ordinal-level variables have been cross-classified.
Goodman and Kruskal’s G test statistic illustrates a conventional symmetrical
measure of ordinal association and Somers’ dyx and dxy test statistics illustrate
conventional asymmetrical measures of ordinal association.

The fourth section utilizes permutation statistical methods for analyzing contin-
gency tables in which one nominal-level variable and one ordinal-level variable have
been cross-classified. Freeman’s θ test statistic illustrates a conventional measure of
nominal-ordinal association.

The fifth section utilizes permutation statistical methods for analyzing contin-
gency tables in which one nominal-level variable and one interval-level variable
have been cross-classified. Pearson’s point-biserial correlation coefficient illustrates
a conventional measure of nominal-interval association.

The sixth section utilizes permutation statistical methods for analyzing contin-
gency tables in which one ordinal-level variable and one interval-level variable have
been cross-classified. Jaspen’s rY Z̄ correlation coefficient illustrates a conventional
measure of ordinal-interval association.
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1.12 Summary

This chapter provided an introduction to permutation statistical methods and an
overview and brief summaries of the next 10 chapters. Most of the substantive
chapters utilize six examples or sections to illustrate the application of permutation
statistical methods to one-sample tests, tests for two independent samples, matched-
pairs tests, completely-randomized designs, randomized-blocks designs, linear
correlation and regression, and a variety of types of contingency tables.

Chapter 2 provides a brief history and subsequent development of permutation
statistical methods. Permutation statistical methods were introduced by R.A. Fisher
in 1925, further developed by R.C. Geary in 1927, T. Eden and F. Yates in 1933,
and H. Hotelling and M.R. Pabst in 1936, but it was E.J.G. Pitman who made
permutation statistical methods explicit with three seminal articles published in
1937 and 1938. However, it took another 50 years before high-speed computing
was developed and permutation statistical methods became practical.
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