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Preface

A Primer of Permutation Statistical Methods presents exact and Monte Carlo
permutation statistical methods for generating probability values and measures of
effect size for a variety of tests of differences and measures of correlation and
association. Throughout the monograph the emphasis is on permutation methods,
although the results of permutation analyses are always compared with the results
of conventional statistical analyses, with which the reader is assumed to be familiar.
On this note, no statistical background other than an introductory course in basic
statistics is assumed.

Included in tests of differences are one-sample tests, tests of differences for
two independent samples, tests of differences for two matched samples, tests of
differences for multiple independent samples, and tests of differences for multiple
matched samples. Included in measures of correlation and association are simple
linear correlation and regression, multiple linear correlation and regression, a
number of measures of association based on Pearson’s chi-squared test statistic, and
a variety of measures of association designed for the analysis of contingency tables.
The arrangement of the monograph follows the structure of a typical introductory
textbook in statistics: introduction, central tendency and variability, one-sample
tests, tests for two independent samples, tests for two matched samples, completely-
randomized analysis of variance designs, randomized-blocks analysis of variance
designs, simple linear regression and correlation, and the analysis of contingency
tables.

Chapter 1 establishes the structure of the monograph, introduces the following
ten chapters, and provides a brief overview of each chapter. The purpose of Chap. 1
is to familiarize the reader with the structure and content of the monograph and
provide a brief introduction to the various permutation tests and measures presented
in the following chapters.

Chapter 2 provides a brief history of the early beginnings and subsequent
development of permutation statistical methods. Permutation methods are a paradox
of old and new. While permutation statistical methods predate many conventional
parametric statistical methods, it is only in the last 30 or so years that permutation
statistical methods have become part of the mainstream discussion regarding

vii
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statistical testing. Permutation statistical methods were introduced by R.A. Fisher in
1925; further developed by R.C. Geary in 1927, T. Eden and F. Yates in 1933, and
H. Hotelling and M.R. Pabst in 1936, and made explicit by E.J.G. Pitman in 1937
and 1938. However, permutation statistical methods are computationally intensive,
and it took the development of high-speed computing for permutation statistical
methods to become practical. In the 1960s and 1970s, mainframe computers became
available to academics at major research universities, and by the end of this period,
desktop computers, although not common, were available to many researchers.
Permutation statistical methods arrived at a level of maturity during the period
between 1980 and 2000 primarily as a result of two factors: greatly improved
computer clock speeds and widely available desktop computers and workstations.

Chapter 3 provides an introduction to two models of statistical inference: the
population model and the permutation model. Most introductory textbooks in
statistics and statistical methods present only the Neyman—Pearson population
model of statistical inference. While the Neyman—Pearson population model will be
familiar to most readers and needs no introduction, the Fisher—Pitman permutation
model of statistical inference is less likely to be familiar. For the permutation model,
exact and Monte Carlo permutation methods are described and compared. Under
the Neyman—Pearson population model, squared Euclidean scaling functions are
mandated, while under the Fisher—Pitman permutation model, ordinary Euclidean
scaling functions are shown to provide robust alternatives to conventional squared
Euclidean scaling functions.

In Chap.3, the assumptions underlying statistical tests and measures in the
Neyman—Pearson population model are explored and contrasted with the Fisher—
Pitman permutation model. The permutation model does not require many of the
assumptions of the population model, including random sampling, normality, and
homogeneity of variance. Moreover, the null hypotheses of the two models are quite
different. Under the Neyman—Pearson population model, the null hypotheses (Hp)
posits a value for a population parameter or differences among values for population
parameters. For example, Hy: ¢, = 100 for a one-sample test or Hyp: 1 — up2 =0
for a two-sample test. By contrast, the null hypothesis under the Fisher—Pitman
permutation model simply states that all possible arrangements of the observed
data are equally likely, with no population parameter value specified. The primary
drawback to permutation statistical methods is the sheer amount of computation
required. Five computational efficiencies for permutation methods are described and
evaluated in Chap. 3.

Chapter 4 provides an introduction to measures of central tendency and variabil-
ity, specifically the mode, median, and mean for central tendency and the standard
deviation and mean absolute deviation for variability. Special attention is paid to the
mean as a minimizing function for the sum of squared deviations and to the median
as a minimizing function for the sum of absolute deviations—an often neglected
topic. Finally, an alternative approach to the mean, standard deviation, median, and
mean absolute deviation based on paired-squared differences and paired-absolute
differences between values is described.
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Chapter 5 provides an introduction to the permutation analysis of one-sample
tests. In general, one-sample tests attempt to invalidate a hypothesized value of
a population parameter, such as a population mean. Under the Neyman—Pearson
population model, Student’s conventional one-sample ¢ test is presented. Under
the Fisher—Pitman permutation model, an alternative one-sample permutation test
is presented. Six examples illustrate permutation statistical methods for one-sample
tests. The first example utilizes a very small set of data to illustrate the calculations
required for a permutation analysis of a single sample. The second example
illustrates measures of effect size for one-sample tests. The measurement of effect
size—the clinical significance in contrast to the statistical significance of a test—
has become increasingly important in recent years, with many journals requiring
measures of effect size in addition to the usual tests of statistical significance.
A permutation-based, chance-corrected measure of effect size for one-sample
tests is presented and compared with the two conventional measures of effect
size under the Neyman—Pearson population model: Cohen’s d and Pearson’s r2.
The third example examines the impact of extreme values on conventional and
permutation one-sample tests. The fourth example compares exact and Monte Carlo
permutation statistical methods for one-sample tests. The fifth example illustrates
the application of permutation statistical methods to one-sample tests of rank-score
data. A one-sample permutation test for rank scores is developed and compared
with Wilcoxon’s signed-ranks test. The sixth example illustrates the application of
permutation statistical methods to one-sample tests of multivariate data. For each
of the six examples, the results obtained from the analyses conducted under the
Fisher—Pitman permutation model are compared with the results obtained from
the conventional analyses conducted under the Neyman—Pearson population model,
when appropriate.

Chapter 6 introduces permutation-based tests of differences for two indepen-
dent samples. Two-sample tests are specifically designed to test for experimental
differences between two groups, such as a control group and a treatment group.
Under the Neyman—Pearson population model, Student’s conventional two-sample
t test is described. Under the Fisher—Pitman permutation model, an alternative two-
sample permutation test is presented. Six examples illustrate permutation statistical
methods for two-sample tests. The first example utilizes a very small set of data to
illustrate the calculations required for a permutation analysis of two independent
samples. The second example illustrates measures of effect size for two-sample
tests. A permutation-based, chance-corrected measure of effect size for two-sample
tests is presented and compared with the four conventional measures of effect size
under the Neyman—Pearson population model: Cohen’s d, Pearson’s r2, Kelley’s
€2, and Hays’ &>. The third example examines the impact of extreme values
on conventional and permutation two-sample tests. The fourth example compares
exact and Monte Carlo permutation statistical methods for two-sample tests. The
fifth example illustrates the application of permutation statistical methods to two-
sample tests of rank-score data. A two-sample permutation test for rank-score data
is developed and compared with the Wilcoxon-Mann—Whitney two-sample rank-
sum test. The sixth example illustrates the application of permutation statistical
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methods to two-sample tests of multivariate data. A two-sample permutation test
for multivariate data is developed and compared with Hotelling’s two-sample T2
test for multivariate data. For each of the six examples, the results obtained from the
analyses conducted under the Fisher—Pitman permutation model are compared with
the results obtained with the conventional analyses conducted under the Neyman—
Pearson population model, when appropriate.

Chapter 7 introduces permutation tests of differences for two matched samples,
often called matched-pairs tests. Matched-pairs tests are designed to test for
experimental differences between two matched samples such as twin studies or
the same sample at two time periods, that is, before-and-after research designs.
Under the Neyman—Pearson population model, Student’s conventional matched-
pairs ¢ test is described. Under the Fisher—Pitman permutation model, an alternative
matched-pairs permutation test is presented. Six examples illustrate permutation
statistical methods for matched-pairs tests. The first example utilizes a very small
set of data to illustrate the calculations required for a permutation analysis of
two matched samples. The second example illustrates measures of effect size for
matched-pairs tests. A permutation-based, chance-corrected measure of effect size
for matched-pairs is presented and compared with the two conventional measures of
effect size under the Neyman—Pearson population model: Cohen’s d and Pearson’s
2. The third example examines the impact of extreme values on conventional
and permutation matched-pairs tests. The fourth example compares exact and
Monte Carlo permutation statistical methods for matched-pairs tests. The fifth
example illustrates the application of permutation statistical methods to matched-
pairs tests of rank-score data. A matched-pairs permutation test for rank-score data
is developed and compared with Wilcoxon’s signed-ranks test and the sign test.
The sixth example illustrates the application of permutation statistical methods
to matched-pairs tests of multivariate data. A matched-pairs permutation test for
multivariate data is developed and compared with Hotelling’s matched-pairs T2 test
for multivariate data. For each of the six examples, the results obtained from the
analyses conducted under the Fisher—Pitman permutation model are compared with
the results obtained with the conventional analyses conducted under the Neyman—
Pearson population model, when appropriate.

Chapter 8 introduces permutation-based tests of differences for multiple inde-
pendent samples, often called fully or completely randomized analysis of variance
designs. Completely randomized designs test for experimental differences among
several treatment groups, such as color preferences or taste tests in experimental
designs or political parties or religious denominations in survey designs. Under the
Neyman—Pearson population model, Fisher’s conventional completely randomized
F test is described. Under the Fisher—Pitman permutation model, an alternative
completely randomized permutation test is presented. Six examples illustrate
permutation statistical methods for multiple independent samples. The first example
utilizes a very small set of data to illustrate the calculations required for a permu-
tation analysis of multiple independent samples. The second example illustrates
measures of effect size for multi-sample tests. A permutation-based, chance-
corrected measure of effect size for multiple independent samples is presented and
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compared with the four conventional measures of effect size under the Neyman—
Pearson population model: Cohen’s d, Pearson’s n?, Kelley’s 72, and Hays’ &2.
The third example examines the impact of extreme values on conventional and per-
mutation completely randomized designs. The fourth example compares exact and
Monte Carlo permutation statistical methods for completely randomized designs.
The fifth example illustrates the application of permutation statistical methods to
completely randomized tests of rank-score data. A multi-sample permutation test
for rank-score data is developed and compared with the Kruskal-Wallis one-way
analysis of variance for ranks test. The sixth example illustrates the application
of permutation statistical methods to completely randomized tests of multivariate
data. A multi-sample permutation test for multivariate data is developed and
compared with the Bartlett—Nanda—Pillai trace test for multivariate data. For each
of the six examples, the results obtained from the analyses conducted under the
Fisher—Pitman permutation model are compared with the results obtained from
the conventional analyses conducted under the Neyman—Pearson population model,
when appropriate.

Chapter 9 introduces permutation-based tests of differences for multiple matched
samples, often called randomized-blocks analysis of variance designs. Randomized-
blocks designs test for experimental differences among the same or matched
subjects over multiple treatments. Under the Neyman—Pearson population model,
Fisher’s conventional randomized-blocks F test is described. Under the Fisher—
Pitman permutation model, an alternative permutation randomized-blocks test is
presented. Six examples illustrate permutation statistical methods for multiple
matched samples. The first example utilizes a very small set of data to illustrate the
calculations required for a permutation analysis of multiple matched samples. The
second example illustrates measures of effect size for multiple matched samples.
A permutation-based, chance-corrected measure of effect size for multiple matched
pairs is presented and compared with the four conventional measures of effect size
under the Neyman—Pearson population model: Hays” &2, Pearson’s n%, Cohen’s
partial 52, and Cohen’s f2. The third example examines the impact of extreme
values on conventional and permutation randomized-blocks designs. The fourth
example compares exact and Monte Carlo permutation statistical methods for
randomized-blocks designs. The fifth example illustrates the application of permu-
tation permutation statistical methods to randomized-blocks tests of rank-score data.
A multi-sample permutation test for rank-score data is developed and compared with
Friedman’s two-way analysis of variance for ranks. The sixth example illustrates
the application of permutation statistical methods to randomized-blocks tests of
multivariate data. For each of the six examples, the results obtained from the
analyses conducted under the Fisher—Pitman permutation model are compared with
the results obtained from the conventional analyses conducted under the Neyman—
Pearson population model, when appropriate.

Chapter 10 introduces permutation-based tests for simple linear regression and
correlation. Under the Neyman—Pearson population model, Pearson’s conventional
product-moment correlation coefficient is described. Under the Fisher—Pitman
permutation model, an alternative permutation measure of correlation is presented.



xii Preface

Six examples illustrate permutation statistical methods for simple correlation data.
The first example utilizes a very small set of data to illustrate the calculations
required for a permutation analysis of correlation data. The second example
illustrates measures of effect size for correlation data. The conventional measure
of effect size for correlation data is Pearson’s rxzy coefficient of determination
for variables x and y. A permutation-based, chance-corrected measure of effect
size is presented and compared with Pearson’s conventional rxzy measure of effect
size. The third example examines the impact of extreme values on conventional
and permutation correlation measures. The fourth example compares exact and
Monte Carlo permutation statistical methods for simple linear correlation. The
fifth example illustrates the application of permutation statistical methods to linear
correlation and regression tests of rank-score data. A permutation test for rank-
score correlation is developed and compared with Spearman’s rank-order correlation
coefficient, Kendall’s rank-order correlation coefficient, and Spearman’s footrule
correlation coefficient. The sixth example illustrates the application of permutation
statistical methods to linear correlation and regression tests of multivariate data. For
each of the six examples, the results obtained from the analyses conducted under
the Fisher—Pitman permutation model are compared with the results obtained from
conventional analyses conducted under the Neyman—Pearson population model,
when appropriate.

Chapter 11 introduces permutation statistical methods for the analysis of contin-
gency tables. Contingency tables are commonly encountered in the research litera-
ture, and there exist a multitude of measures of association for various combinations
of cross-classified variables. Six sections illustrate permutation statistical methods
for analyzing contingency tables. The first section describes Pearson’s familiar
chi-squared goodness-of-fit test, provides a permutation alternative that generates
exact probability values, and develops a new maximum-corrected measure of effect
size. The second section examines contingency tables in which two nominal-level
(categorical) variables have been cross-classified. Pearson’s chi-squared test of
independence is described, and exact alternative permutation statistical methods
are presented. Cramér’s V measure is described as a conventional measure of
effect size, and an alternative permutation-based, chance-corrected measure of
effect size is introduced. The third section examines contingency tables in which
two ordinal-level (ranked) variables have been cross-classified. A permutation
measure of ordinal association is developed and compared with Goodman and
Kruskal’s G symmetric measure of ordinal association and Somers’ dy, and
dyy asymmetric measures of ordinal association. The fourth section introduces
permutation statistical methods for contingency tables in which a nominal-level
variable has been cross-classified with an ordinal-level variable. A permutation
measure of nominal-ordinal association is developed and compared with Freeman’s
6 measure of nominal—ordinal association. A permutation-based, chance-corrected
measure of effect size is developed for nominal-ordinal association. The fifth
section examines permutation statistical methods for contingency tables in which
a nominal-level variable has been cross-classified with an interval-level variable.
Pearson’s point-biserial correlation coefficient is described, and an alternative
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permutation coefficient for nominal-ordinal association is introduced. The sixth
section introduces permutation statistical methods for contingency tables in which
an ordinal-level variable has been cross-classified with an interval-level variable.
Jaspen’s conventional measure for ordinal—interval correlation is described, and an
alternative Monte Carlo permutation statistical measure is presented.
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Chapter 1 )
Introduction Check for

Abstract This chapter provides an introduction to permutation statistical methods
and an overview of the next 10 chapters. The contents of each chapter are described
and summarized in considerable detail.

The primary purpose of this book is to introduce the reader to a wide variety
of elementary permutation statistical methods. Most readers will be familiar with
conventional statistical methods under the Neyman—Pearson population model of
statistical inference, such as tests of hypotheses, confidence intervals, simple linear
correlation and regression, one-way completely-randomized analysis of variance,
one-way randomized-blocks analysis of variance, and chi-squared tests of goodness-
of-fit and independence. However, corresponding permutation statistical tests and
measures will almost certainly be less familiar to most readers. While permutation
methods date back almost 100 years to the early works by R.A. Fisher and
E.J.G. Pitman in the 1920s and 1930s, permutation methods are computationally-
intensive methods and it took the advent of high-speed computing to make most
permutation methods feasible. Thus, permutation statistical methods have emerged
as a practical alternative to conventional statistical methods only in the last 30
or so years. Consequently, permutation statistical methods are seldom taught in
introductory courses and there exist no introductory-level textbooks on permutation
methods at this writing.!

Three main themes characterize the 11 chapters of this book. First, test statistic
§ is introduced, defined, and detailed. Test statistic § is the fundamental test
statistic for permutation statistical methods and serves both as a replacement
for many conventional statistics such as the one-sample ¢ test, the two-sample ¢
test, the matched-pairs ¢ test, the complete range of completely-randomized and
randomized-blocks analysis of variance F tests, and a large number of parametric

'Some introductory textbooks in statistics now include a chapter on permutation methods. For
example, an introductory book by Howell titled Statistical Methods for Psychology contains a
chapter on “Resampling and Nonparametric Approaches to Data” that includes examples of exact
and Monte Carlo permutation methods as well as bootstrapping [8].

© Springer Nature Switzerland AG 2019 1
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and nonparametric tests of differences and measures of association and correlation.
Moreover, test statistic § lends itself to the development of new statistical tests and
measures. As such, test statistic § is central to the permutation analyses presented
in Chaps. 5-11 and constitutes a unifying test statistic for many permutation-based
statistical methods.

Second, measures of effect size have become increasingly important in the
reporting of contemporary research with many journals now requiring both tests of
significance and associated measures of effect size. Measures of effect size indicate
the strength of a statistical difference or relationship. In brief, measures of effect
size provide information pertaining to the practical or clinical significance of a
result as contrasted with the statistical significance of a result. The two are more
often than not reported in concert. Conventional measures of effect size typically
belong to one of the two families: the d family or the r family. Measures of effect
size in the d family typically report the effect size in standard deviation units with
values between 0 and oo, which is perfectly acceptable when comparing two or
more studies but may be difficult to interpret for a single, stand-alone study. Cohen’s
d is probably the best-known measure of effect size in the eponymous d family.
Measures of effect size in the r family report the effect size as some variety of
squared correlation coefficient with values between O and 1. Unfortunately, under
many circumstances members of the » family cannot achieve the maximum value of
1. When the maximum value is unknown, it is impossible to interpret intermediate
values. Pearson’s 72 coefficient of determination is an example of a measure of effect
size in the r family and is the measure from which the family gets its name.

A relatively new measure of effect size based on test statistic § is introduced
and described. Effect size measure 9 is a permutation-based, chance-corrected
measure of effect size. Chance-corrected measures have much to commend them
as they provide interpretations that are easily understood by the average reader.
Positive values indicate an effect size greater than expected by chance, negative
values indicate an effect size less than expected by chance, and a value of zero
indicates an effect size corresponding to chance. The )i family of measures of effect
sizes serves as a replacement for both the d and r families, including Cohen’s c?,
Pearson’s 2, Kelley’s €2, and Hays’ ®?%. As such, effect size measure 0 is central
to the permutation analyses presented in Chaps. 5—11 and constitutes a generalized,
unifying measure of effect size for many permutation-based statistical methods.

Third, conventional statistics, under the Neyman—Pearson population model of
statistical inference, necessarily assume normality. The normal distribution is a
two-parameter distribution in which the two parameters are the population mean
denoted by u, and the population variance denoted by ax2. For most parametric
tests the population mean is estimated by the sample mean denoted by x and the
population variance by the sample variance denoted by sf. The sample mean is
the point about which the sum of squared deviations is minimized and the sample
variance is the average of the squared deviations about the sample mean. Thus,
because of the assumption of normality, squared deviations among sample values are
an integral and necessary component of most parametric tests under the Neyman—
Pearson population model of statistical inference.



1.1 Overviews of Chapters 2—11 3

On the other hand, statistical tests and measures under the Fisher—Pitman
permutation model are distribution-free, do not assume normality, and because
they do not depend on squared deviations among sample values, are not limited
to squared deviations about the mean. While any scaling factor can be used with
permutation statistical methods, ordinary Euclidean scaling has proven to be the
most justifiable. Ordinary Euclidean scaling allows permutation statistical methods
to minimize, or completely eliminate, the influence of extreme values or statistical
outliers, without having to trim, Winsorize, transform, or convert raw scores to
ranks. Moreover, ordinary Euclidean scaling allows geometric consistency between
the observation space and the analysis space. Finally, ordinary Euclidean scaling has
an intuitive appeal that is absent in squared Euclidean scaling. Analyses in Chaps. 5—
11 utilize both squared Euclidean scaling, on which conventional statistics rely, and
ordinary Euclidean scaling, when appropriate. The squared and ordinary Euclidean
scaling results are then compared and contrasted.

These three constructs, test statistic §, effect size measure N, and ordinary
Euclidean scaling, constitute the main underpinning structures of the book. Each of
the substantive chapters is organized around the three constructs and each construct
is compared with conventional test statistics, other measures of effect size, and
squared Euclidean scaling, when appropriate.

1.1 Overviews of Chapters 2-11

This chapter provides an overview of the book and brief summaries of the following
10 chapters. The format of the book follows the conventional structure of most
introductory textbooks in statistical methods with chapters on central tendency and
variability, one- and two-sample tests, multi-sample tests, linear correlation and
regression, and the analysis of contingency tables. No statistical background of the
reader is assumed other than an introductory course in basic statistics, such as is
taught in departments of statistics, mathematics, business, biology, economics, or
psychology. No mathematical expertise of the reader is assumed beyond elementary
algebra.

Most of the substantive chapters in this book follow the same format wherein
six example analyses based on permutation statistical methods are provided. The
first example in each chapter introduces the main permutation test statistic for
the chapter and provides both a highly detailed exact permutation analysis and
a conventional analysis; for example, a one-sample permutation test of the null
hypothesis under the Fisher—Pitman model and Student’s conventional one-sample
t test of the null hypothesis under the Neyman—Pearson model. The second example
introduces appropriate conventional measures of effect size, for example, Cohen’s
d or Pearson’s 2, and provides a permutation-based, chance-corrected alternative
measure of effect size. Because conventional statistical methods under the Neyman—
Pearson population model assume random sampling from a normally distributed
population, squared deviations about the mean are necessary. Statistical methods
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under the Fisher—Pitman permutation model do not assume normality; thus, the third
example compares permutation analyses based on ordinary and squared Euclidean
scaling functions. The inclusion of one or more extreme values demonstrates the
advantages of ordinary Euclidean scaling.

The fourth example introduces Monte Carlo permutation statistical methods
wherein a large random sample of all possible permutations is generated and ana-
lyzed, in contrast to exact permutation methods wherein all possible permutations
are generated and analyzed. Both exact and Monte Carlo permutation analyses are
compared with each other and with a conventional statistical analysis. The fifth
example applies permutation statistical methods to rank-score data, comparing a
permutation statistical analysis to a conventional statistical analysis; for example,
a permutation test for two sets of rank scores and the Wilcoxon—-Mann—Whitney
rank-sum test. The sixth example applies permutation statistical methods to mul-
tivariate data, comparing a permutation statistical analysis with a conventional
statistical analysis; for example, a permutation test of multivariate matched pairs
and Hotelling’s multivariate 72 test for two matched samples.

1.2 Chapter 2

The second chapter provides a brief history of the origins and subsequent devel-
opment of permutation statistical methods. Permutation statistical methods are a
paradox of old and new. While permutation methods predate many conventional
parametric statistical methods, only recently have permutation methods become part
of the mainstream discussion regarding statistical testing. Permutation statistical
methods were introduced by R.A. Fisher in 1925 by calculating an exact probability
value using the binomial probability distribution [4]. In 1927 R.C. Geary used an
exact permutation analysis to demonstrate the utility of asymptotic approaches for
data analysis in an investigation of the properties of linear correlation and regression
in finite populations [6].

In 1933 T. Eden and F. Yates examined height measurements of wheat shoots
grown in eight blocks. Simulated and theoretical probabilities based on the normal-
ity assumption were compared and found to be in close agreement, supporting the
assumption of normality [3]. In 1936 H. Hotelling and M.R. Pabst used permutation
statistical methods to calculate exact probability values for small samples of ranked
data in an examination of correlation methods [7]. In 1937 and 1938 E.J.G. Pitman
contributed three seminal papers on permutation statistical methods. The first
paper utilized permutation statistical methods in an analysis of two independent
samples, the second paper utilized permutation statistical methods in an analysis of
linear correlation, and the third paper utilized permutation statistical methods in an
analysis of randomized-blocks analysis of variance designs [14-16].

The 1940s and 1950s witnessed a proliferation of nonparametric rank tests. For
example, Wilcoxon’s two-sample rank-sum test in 1945 [17], Mann and Whitney’s
two-sample rank-sum test in 1947 [11], Kendall’s book on Rank Correlation
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Methods in 1948 [9], Freeman and Halton’s exact methods for analyzing two-way
and three-way contingency tables in 1951 [5], Kruskal and Wallis’ C-sample rank-
sum test in 1952 [10], Box and Andersen’s promotion of permutation methods in
the derivation of robust criteria in 1955 [1], and Dwass’s rigorous investigation into
the precision of Monte Carlo permutation methods in 1957 [2]. In many of these
papers, permutation methods were employed to generate tables of exact probability
values for small samples.

In the 1960s and 1970s mainframe computers became available to researchers at
major universities and by the end of the period desktop computers and workstations,
although not common, were available to many investigators. In addition, the speed
of computing increased greatly between 1970 and 1980. Permutation statistical
methods arrived at a level of maturity during the period 1980-2000 primarily
as a result of two factors: greatly improved computer clock speeds and widely-
available desktop computers and workstations. By the early 2000s, computing
power had advanced enough that permutation statistical methods were providing
exact probability values in an efficient manner for a wide variety of statistical tests
and measures [12, 13].

1.3 Chapter 3

The third chapter opens with a description of two models of statistical inference:
the well-known and widely-taught Neyman—Pearson population model and the
lesser-known and seldom-taught Fisher—Pitman permutation model. Under the
permutation model, three types of permutation methods are described: exact
permutation methods yielding precise probability values, Monte Carlo permutation
methods yielding approximate but highly accurate probability values, and per-
mutation methods based on moment approximations yielding exact moments and
approximate probability values. In this chapter the Neyman—Pearson population
model and Fisher—Pitman permutation model are compared and contrasted and the
advantages of permutation statistical methods are described.

Because permutation methods are computationally intensive methods, often
requiring millions of calculations, five computational efficiencies are described in
Chap. 3. First, high-speed computing and, in the case of Monte Carlo permutation
methods, efficient pseudo-random number generators. Second, the examination of
all combinations instead of all permutations of the observed data. Third, the use
of mathematical recursion. Fourth, calculation of only the variable portion of the
selected test statistic. Fifth, in the case of multiple arrays of data, holding one array
of the observed data constant. Where appropriate, each efficiency is described and
illustrated with a small set of data and an example permutation analysis.
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1.4 Chapter 4

The fourth chapter provides a general introduction to measures of central tendency
and variability, two concepts that are central to conventional statistical analysis and
inference. The sample mode, mean, and median are described and illustrated with
small example data sets. The sample mode is simply the score or category with the
largest frequency. Two example analyses illustrate the mode, one employing scores
and the other employing categories.

Next, the sample mean is considered. The sample mean is the point about which
the sum of deviations is zero and, more importantly, the point about which the
sum of squared deviations is minimized. These properties are illustrated with two
example analyses. Moreover, the sample mean is central to the sample standard
deviation, denoted by sy, and the sample variance, denoted by sf—a point that is
illustrated with a small set of example data.

The sample median is usually defined as the point below which half the ordered
values fall or the 50th percentile. More importantly, the median is the point about
which the sum of absolute deviations is minimized. A detailed example analysis
illustrates this property. The sample median is central to the mean absolute deviation
(MAD), which is illustrated with a small set of example data.

Finally, the mean, median, and mode are compared with each other and an
alternative approach to the mean and median based on paired differences is
presented and illustrated. The paired-differences approach to the mean and median
is central to the Fisher—Pitman permutation model of statistical inference.

1.5 Chapter 5

The fifth chapter provides a general introduction to permutation analyses of one-
sample tests of hypotheses. One-sample tests are the simplest of a large family of
tests. For this reason, Chap.5 is the first chapter dealing with the more technical
aspects of permutation statistical methods, serves as an introduction to the basic
concepts and varieties of permutation statistical methods, and lays a conceptual
foundation for subsequent chapters.

First, Chap. 5 defines permutation test statistic § for one-sample tests, establishes
the relationship between test statistic § and Student’s conventional one-sample # test
statistic, and describes the permutation procedures for determining exact probability
values under the Fisher—Pitman null hypothesis. An example analysis with a small
set of data details the required calculations for an exact test of the null hypothesis
under the Fisher—Pitman permutation model of statistical inference.

Second, Chap. 5 introduces the concept of effect sizes: indices to the magnitudes
of treatment effects and the practical—in contrast to the statistical—significance
of the research. The development and publication of measures of effect size has
become increasingly important in recent years and a number of journals now require
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measures of effect size prior to publication. Three types of measures of effect size
are described in Chap.5. The first type of measure of effect size, designated the
d family, is based on measurements of the differences among treatment groups
or levels of an independent variable. As noted previously, Cohen’s d is the most
prominent member of the d family, which typically measures effect size by the
number of standard deviations separating the means of treatment groups. Thus
Cohen’s d can potentially vary from 0 to co.

The second type of measure of effect size, designated the r family, represents
some sort of relationship among variables. Measures of effect size in the » family are
typically measures of correlation or association, the most familiar being Pearson’s
squared product-moment correlation coefficient, denoted by r2. The principle
advantage of r measures of effect size is that they are usually bounded by the
probability limits O and 1, making them easily interpretable.

The third type of measure of effect size, designated the i family, represents
chance-corrected measures of effect size. Chance-corrected measures are easily
understood by the average reader, where positive values indicate an effect size
greater than expected by chance, negative values indicate an effect size less than
expected by chance, and a value of zero indicates an effect size corresponding
to chance. The interrelationships among Student’s one-sample ¢ test, Cohen’s d
measure of effect size, Pearson’s 2 measure of effect size, and Mielke and Berry’s
N chance-corrected measure of effect size are explored and illustrated with a small
example set of data.

Third, six illustrative examples are provided in Chap. 5, demonstrating permuta-
tion statistical methods for one-sample tests of hypotheses. The first example utilizes
a small set of data to describe the calculations required for test statistic § and an exact
permutation analysis of a one-sample test under the Fisher—Pitman null hypothesis.
Permutation test statistic  is developed for the analysis of a single sample and
compared with Student’s conventional one-sample ¢ test.

The second example details measures of effect size for one-sample tests.
Specifically, Cohen’s d and Pearson’s r2 measures of effect size are detailed and
N, an alternative permutation-based, chance-corrected measure of effect size is
described for one-sample tests. The differences among the three measures of effect
size and their interrelationships are explored and illustrated with a small set of data.

The third example is designed to illustrate the differences between permuta-
tion analyses based on ordinary and squared Euclidean scaling functions. Unlike
conventional statistical tests that assume normality and are therefore limited to
squared Euclidean scaling functions, permutation statistical tests do not assume
normality, are extremely flexible, and can accommodate a variety of scaling
functions. Inclusion of extreme values illustrates the impact of extreme values on
the two scaling functions, on Student’s ¢ test statistic, on test statistic &, on the 9
measure of effect size, and on exact and asymptotic probability values.

The fourth example compares and contrasts exact and Monte Carlo permutation
statistical methods. When sample sizes are large, exact permutation tests become
impractical and Monte Carlo permutation tests become necessary. While exact
permutation tests examine all possible arrangements of the observed data, Monte
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Carlo permutation tests examine only a random sample of all possible arrangements
of the observed data. Monte Carlo sample sizes can be increased to yield probability
values to any desired accuracy, at the expense of computation time.

The fifth example illustrates permutation statistical methods applied to univariate
rank-score data. The conventional one-sample tests for rank-score data under the
Neyman—Pearson population model are Wilcoxon’s signed-rank test and the simple
sign test. Wilcoxon’s signed-rank test and the sign test are described and compared
with permutation-based alternatives. The permutation analyses incorporate both
ordinary and squared Euclidean scaling functions. Test statistic § is defined for rank-
score data, the exact probability of § is generated, and the it measure of effect size
is described for univariate rank-score data.

The sixth example illustrates permutation statistical methods applied to mul-
tivariate data. Multivariate tests have become very popular in recent years as
they preserve the relationship among variables, instead of combining the variables
into an index and then employing a univariate one-sample test. Like the previous
examples, the multivariate permutation analysis incorporates both ordinary and
squared Euclidean scaling functions. Test statistic § is defined for multivariate data,
the exact probability of § is generated, and the i measure of effect size is described
for multivariate one-sample tests.

1.6 Chapter 6

The sixth chapter provides a general introduction to two-sample tests of hypotheses.
Tests of experimental differences for two independent samples are ubiquitous in the
research literature and are the tests of choice for comparing control and treatment
groups in experimental designs and for comparing two unrelated groups of subjects
in survey research.

First, Chap. 6 defines permutation test statistic § for two independent samples,
establishes the relationship between test statistic § and Student’s conventional ¢ test
statistic for two independent samples, and describes the permutation procedures for
determining exact probability values under the Fisher—Pitman null hypothesis. A
small example analysis details the calculations required for an exact test of the null
hypothesis under the Fisher—Pitman permutation model of statistical inference.

Second, Chap.6 describes five measures of effect size for two independent
samples. Specifically, Cohen’s d, Pearson’s r2, Kelley’s €2, Hays’ &2, and Mielke
and Berry’s i measures of effect size are described and the interrelationships among
t, d R r2, 62, c?)z, and N are explored and illustrated with a small set of data.

Third, six illustrative examples are provided in Chap. 6, demonstrating permu-
tation statistical methods for tests of two independent samples. The first example
utilizes a small data set to detail the calculations required for test statistic § and
an exact permutation test for two independent samples under the Fisher—Pitman
null hypothesis. Permutation test statistic § is developed for the analysis of two
independent samples and compared with Student’s conventional two-sample ¢ test.
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The second example illustrates measures of effect size for two-sample tests. Four
conventional measures of effect size are described: Cohen’s d , Pearson’s r2, Kelley’s
€2, and Hays’ ®?. The four measures are compared and contrasted with Mielke and
Berry’s 91 chance-corrected measure of effect size.

The third example illustrates the differences between permutation analyses based
on ordinary and squared Euclidean scaling functions. The inclusion of extreme
values illustrates the impact of extreme values on the two scaling functions, on
Student’s ¢ test statistic for two independent samples, on test statistic §, on the N
measure of effect size, and on exact and asymptotic probability values.

The fourth example compares and contrasts exact and Monte Carlo permutation
statistical methods for tests of two independent samples. Both ordinary and
squared Euclidean scaling functions are included and evaluated. Finally, the chance-
corrected effect size measure ) is compared with Cohen’s d , Pearson’s r2, Kelley’s
€2, and Hays’ &% measures of effect size.

The fifth example illustrates permutation statistical methods applied to univariate
rank-score data. The conventional two-sample test for rank scores under the
Neyman—Pearson population model is the Wilcoxon—-Mann—Whitney (WMW) two-
sample rank-sum test. The WMW test is described and compared with alternative
tests under the Fisher—Pitman permutation model. The permutation analyses incor-
porate both ordinary and squared Euclidean scaling functions. Test statistic § is
defined for rank-score data, the exact and Monte Carlo probability values for § are
developed, and the 91 measure of effect size is described for univariate rank-score
data.

The sixth example illustrates permutation statistical methods applied to multi-
variate data. The results of a permutation statistical analysis are compared with the
results from Hotelling’s multivariate T test for two independent samples. Mielke
and Berry’s i chance-corrected measure of effect size is described and illustrated
for multivariate data.

1.7 Chapter 7

The seventh chapter provides a general introduction to matched-pairs tests of
hypotheses. Tests of experimental differences between two matched samples are
the simplest of a very large family of tests. In general, matched-pairs tests generally
possess more power than tests for two independent samples with the same number
of subjects or the same power with fewer subjects. In addition, matched-pairs tests
are always balanced with the same number of subjects in each treatment group, a
decided advantage over conventional tests for two independent samples, where the
two samples may be markedly different in size.

First, Chap.7 introduces permutation test statistic § for matched-pairs tests,
establishes the relationship between test statistic § and Student’s matched-pairs ¢
test statistic, and describes the permutation procedures required for determining
exact probability values under the Fisher—Pitman null hypothesis. Permutation test
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statistic, 8, is developed for the analysis of two matched samples and compared with
Student’s conventional matched-pairs ¢ test.

Second, Chap.7 describes measures of effect size for matched-pairs tests.
Specifically, Student’s ¢ test for matched pairs, Cohen’s d , Pearson’s r2, and Mielke
and Berry’s it measure of effect size are presented and the interrelationships among
t, d ,r2, and % are explored and illustrated with a small example set of data.

Third, six illustrative examples are provided in Chap. 7, demonstrating permuta-
tion statistical methods for matched-pairs tests. The first example utilizes a small set
of data to detail the calculations required for test statistic § and an exact permutation
test for matched pairs under the Fisher—Pitman null hypothesis. Permutation test
statistic § is developed for the analysis of matched pairs and compared with
Student’s conventional matched-pairs ¢ test statistic.

The second example describes measures of effect size for matched-pairs tests.
Cohen’s d and Pearson’s r2 measures of effect size are described and Mielke and
Berry’s chance-corrected measure of effect size, 9, is developed for matched-pairs
analyses and compared with Cohen’s d and Pearson’s r2 conventional measures of
effect size.

The third example illustrates the differences between analyses based on ordinary
and squared Euclidean scaling functions. Inclusion of extreme values underscores
the impact of extreme values on the two scaling functions, on Student’s # test statistic
for two matched samples, on test statistic §, on the it measure of effect size, and on
the accuracy of exact and asymptotic probability values.

The fourth example compares and contrasts exact and Monte Carlo permutation
analyses for matched-pairs tests. A matched-pairs test with a large data set is utilized
to generate exact and Monte Carlo permutation tests for both ordinary and squared
Euclidean scaling functions. The example confirms that Monte Carlo permutation
tests are a suitable and efficient substitute for exact permutation tests, provided
the Monte Carlo random sample arrangement of the observed data is sufficiently
large. Finally, the 9t measure of effect size is described for matched-pairs tests and
compared with Cohen’s d and Pearson’s r? conventional measures of effect size.

The fifth example illustrates permutation statistical methods applied to uni-
variate rank-score data, comparing permutation statistical methods to Wilcoxon’s
conventional signed-ranks test and the sign test. A large matched-pairs data set is
utilized to generate both exact and Monte Carlo permutation tests for both ordinary
and squared Euclidean scaling functions. Finally, the : measure of effect size is
described and illustrated for univariate rank-score data.

The sixth example illustrates permutation statistical methods applied to multi-
variate matched-pairs data. Test statistic § is shown to be related to Hotelling’s
conventional T2 test for matched pairs with a squared Euclidean scaling function.
The results for test statistics § and T2 are compared. Finally, Mielke and Berry’s it
measure of effect size is described and illustrated for multivariate data.
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1.8 Chapter 8

The eighth chapter presents permutation statistical methods for analyzing exper-
imental differences among three or more independent samples, commonly called
completely-randomized designs under the Neyman—Pearson population model.
Multi-sample tests are of two types: tests for differences among three or more
independent samples (completely-randomized designs) and tests for differences
among three or more related samples (randomized-blocks designs). Permutation
statistical tests for multiple independent samples are described in Chap.8 and
permutation statistical tests for multiple related samples are described in Chap. 9.

Six example analyses illustrate permutation statistical methods for multi-sample
tests. The first example utilizes a small set of data to illustrate the calculations
required for test statistic § and an exact permutation test for multiple independent
samples under the Fisher—Pitman null hypothesis. Permutation test statistic, &, is
developed for the analysis of multiple independent samples and compared with
Fisher’s conventional F-ratio test statistic for completely-randomized designs.

The second example develops the 9t measure of effect size as a chance-corrected
alternative to the four conventional measures of effect size for multi-sample tests:
Cohen’s d, Pearson’s n>, Kelley’s 72, and Hays’ o

The third example compares permutation statistical methods based on ordinary
Euclidean scaling functions with permutation methods based on squared Euclidean
scaling functions. Inclusion of one or more extreme scores underscores the impact
of extreme values on the two scaling functions, on Fisher’s F-ratio test statistic
for completely-randomized designs, on the permutation test statistic §, on the 9
measure of effect size, and on the accuracy of exact and asymptotic probability
values.

The fourth example compares and contrasts exact and Monte Carlo permutation
methods for multiple independent samples. Both ordinary and squared Euclidean
scaling functions are evaluated. Finally, the 91 measure of effect size is compared
with the four conventional effect size measures for multi-sample tests: Cohen’s c?,
Pearson’s 12, Kelley’s 72, and Hays’ o

The fifth example illustrates the application of permutation statistical methods
to univariate rank-score data, comparing a permutation analysis of example data to
the conventional Kruskal-Wallis one-way analysis of variance for ranks test. Both
exact and Monte Carlo permutation analyses are utilized and compared. Mielke and
Berry’s chance-corrected i measure of effect size is described and illustrated for
univariate rank-score data.

The sixth example illustrates the application of permutation statistical methods
to multivariate data, comparing a permutation analysis of example data to the
conventional Bartlett—-Nanda—Pillai trace test for multivariate data. Mielke and
Berry’s chance-corrected it measure of effect size is described for multivariate data
and compared with nz, the conventional measure of effect size for multivariate data.
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1.9 Chapter 9

The ninth chapter presents permutation statistical methods for analyzing
experimental differences among three or more matched samples, commonly
called randomized-blocks designs under the Neyman—Pearson population model.
Randomized-blocks constitute important research designs in many fields. In recent
years randomized-blocks designs have become increasingly important in fields such
as horticulture, animal science, and agronomy as it has become easier to produce
matched subjects through embryo transplants, cloning, genetic engineering, and
selective breeding.

Six example analyses illustrate the application of permutation statistical methods
to randomized-blocks designs. The first example utilizes a small set of data to
detail the calculations required for test statistic § and an exact permutation test for
multiple matched samples under the Fisher—Pitman null hypothesis. Permutation
test statistic, §, is developed for the analysis of multiple matched samples and
compared with Fisher’s conventional F-ratio test for randomized-blocks designs.

The second example develops the )i measure of effect size as a chance-corrected
alternative to the four conventional measures of effect size for randomized-blocks
designs: Hays’ ®?%, Pearson’s nz, Cohen’s partial nz,and Cohen’s fz.

The third example compares permutation statistical methods based on ordinary
and squared Euclidean scaling functions. Inclusion of one or more extreme scores
underscores the impact of extreme values on the two scaling functions, on Fisher’s
F-ratio test statistic for randomized-blocks designs, on the permutation test statistic
3, on the M measure of effect size, and on the accuracy of exact and asymptotic
probability values. It is demonstrated that extreme blocks of data yield the same
results with both scaling functions, but extreme values within a block can yield
considerable differences.

The fourth example utilizes a larger data set to compare and contrast exact
and Monte Carlo permutation statistical methods for randomized-blocks designs.
Both ordinary and squared Euclidean scaling functions are evaluated. The chance-
corrected measure of effect size 9 is developed for randomized-blocks designs
and compared with Hays’ &%, Pearson’s nz, Cohen’s partial nz, and Cohen’s f 2
conventional measures of effect size.

The fifth example illustrates the application of permutation statistical methods to
univariate rank-score data, comparing permutation statistical methods to Friedman’s
conventional two-way analysis of variance for ranks. The permutation test statistic,
8, and Mielke and Berry’s it measure of effect size are described and illustrated for
univariate rank-score data.

The sixth example illustrates the application of permutation statistical methods
to multivariate randomized-blocks designs. Both the permutation test statistic § and
Mielke and Berry’s chance-corrected it measure of effect size are described and
illustrated for multivariate randomized-blocks designs.
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1.10 Chapter 10

The tenth chapter presents permutation statistical methods for measures of linear
correlation and regression. Measures of linear correlation and regression are
ubiquitous in the research literature and constitute the backbone of many more
advanced statistical methods, such as factor analysis, principal components analysis,
path analysis, network analysis, neural network analysis, multi-level (hierarchical)
modeling, and structural equation modeling.

Six example analyses illustrate the application of permutation statistical methods
to linear correlation and regression. The first example utilizes a small set of bivariate
observations to illustrate the calculations required for test statistic § and an exact
permutation test for measures of linear correlation under the Fisher—Pitman null
hypothesis. Permutation test statistic, §, is developed for the analysis of correlation
and compared with Pearson’s conventional squared product-moment correlation
coefficient.

The second example develops the 9t measure of effect size as a chance-corrected
alternative to Pearson’s squared product-moment correlation coefficient. The two
measures of effect size are illustrated and compared using a small set of data.

The third example compares permutation statistical methods based on ordinary
and squared Euclidean scaling functions, with an emphasis on the analysis of data
containing one or more extreme values. Ordinary least squares (OLS) regression
based on squared Euclidean scaling and least absolute deviation (LAD) regression
based on ordinary Euclidean scaling are described and compared.

The fourth example compares exact and Monte Carlo permutation statistical
methods for linear correlation and regression. Both ordinary Euclidean scaling and
squared Euclidean scaling functions are evaluated. The chance-corrected effect-
size measure 9 is developed for correlation methods and compared with Pearson’s
squared product-moment correlation coefficient.

The fifth example illustrates the application of permutation statistical methods
to univariate rank-score data, comparing permutation statistical methods with
Spearman’s rank-order correlation coefficient, Kendall’s rank-order correlation
coefficient, and Spearman’s footrule correlation coefficient. The permutation test
statistic § and Mielke and Berry’s 3% measure of effect size are described and
illustrated for univariate rank-score data.

The sixth example illustrates the application of permutation statistical methods
to multivariate linear correlation and regression. Both OLS and LAD multivariate
linear regression are described and compared for multivariate observations. Permu-
tation test statistic § and the )t measure of effect size are described and illustrated
for multivariate linear regression data.
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1.11 Chapter 11

The last chapter provides a general introduction to permutation measures of
association for contingency tables. Measures of association for contingency tables
constitute a variety of types. One type measures the association in a cross-
classification of two nominal-level (categorical) variables and the measure can
be either symmetric or asymmetric. A second type measures the association in
a cross-classification of two ordinal-level (ranked) variables and the measure can
be either symmetric or asymmetric. A third type measures the association in a
cross-classification of a nominal-level variable and an ordinal-level variable. A
fourth type measures the association in a cross-classification of a nominal-level
variable and an interval-level variable. And a fifth type measures the association in a
cross-classification of an ordinal-level variable and an interval-level variable. These
mixed-level measures are typically asymmetric with the lower-level variable serving
as the independent variable and the higher-level variable serving as the dependent
variable.

Six sections of Chap. 11 illustrate permutation statistical methods for the analysis
of contingency tables. The first section considers permutation statistical methods
applied to conventional goodness-of-fit tests; for example, Pearson’s chi-squared
goodness-of-fit test. Two examples illustrate permutation goodness-of-fit tests and
a new maximum-corrected measure of effect size is developed for chi-squared
goodness-of-fit tests.

The second section considers permutation statistical methods for analyzing
contingency tables in which two nominal-level variables have been cross-classified.
Cramér’s V test statistic illustrates a conventional symmetrical measure of nominal
association and Goodman and Kruskal’s #, and 7, illustrate conventional asymmet-
rical measures of nominal association.

The third section utilizes permutation statistical methods for analyzing con-
tingency tables in which two ordinal-level variables have been cross-classified.
Goodman and Kruskal’s G test statistic illustrates a conventional symmetrical
measure of ordinal association and Somers’ dy, and d, test statistics illustrate
conventional asymmetrical measures of ordinal association.

The fourth section utilizes permutation statistical methods for analyzing contin-
gency tables in which one nominal-level variable and one ordinal-level variable have
been cross-classified. Freeman’s 6 test statistic illustrates a conventional measure of
nominal-ordinal association.

The fifth section utilizes permutation statistical methods for analyzing contin-
gency tables in which one nominal-level variable and one interval-level variable
have been cross-classified. Pearson’s point-biserial correlation coefficient illustrates
a conventional measure of nominal-interval association.

The sixth section utilizes permutation statistical methods for analyzing contin-
gency tables in which one ordinal-level variable and one interval-level variable have
been cross-classified. Jaspen’s ry 5 correlation coefficient illustrates a conventional
measure of ordinal-interval association.
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1.12 Summary

This chapter provided an introduction to permutation statistical methods and an
overview and brief summaries of the next 10 chapters. Most of the substantive
chapters utilize six examples or sections to illustrate the application of permutation
statistical methods to one-sample tests, tests for two independent samples, matched-
pairs tests, completely-randomized designs, randomized-blocks designs, linear
correlation and regression, and a variety of types of contingency tables.

Chapter 2 provides a brief history and subsequent development of permutation
statistical methods. Permutation statistical methods were introduced by R.A. Fisher
in 1925, further developed by R.C. Geary in 1927, T. Eden and F. Yates in 1933,
and H. Hotelling and M.R. Pabst in 1936, but it was E.J.G. Pitman who made
permutation statistical methods explicit with three seminal articles published in
1937 and 1938. However, it took another 50 years before high-speed computing
was developed and permutation statistical methods became practical.
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Chapter 2 )
A Brief History of Permutation Methods Shethie

Abstract This chapter provides a brief history and overview of the early beginnings
and subsequent development of permutation statistical methods, organized by
decades from the 1920s to the present.

A variety of books and articles have been written on the history of statistics
and statistical methods. Five of the better-known books are by Stephen Stigler
titled American Contributions to Mathematical Statistics in the Nineteenth Century,
Vol. I [92], American Contributions to Mathematical Statistics in the Nineteenth
Century, Vol. II [93], The History of Statistics: The Measurement of Uncertainty
Before 1900 [94], Statistics on the Table: The History of Statistical Concepts and
Methods [95], and The Seven Pillars of Statistical Wisdom [96].!

Other notable books are Studies in the History of Probability and Statistics: I.
Dicing and Gaming and Games, Gods, and Gambling: The Origin and History
of Probability and Statistical Ideas from the Earliest Times to the Newtonian Era
by EN. David [23, 24], The Making of Statisticians by J. Gani [40], History of
Probability and Statistics and Their Applications Before 1750 and A History of
Mathematical Statistics from 1750 to 1930 by A. Hald [47, 48], Studies in the
History of Statistics and Probability, Vol. Il by M.G. Kendall and R.L. Plackett [58],
Statistics in Britain, 1865—1930: The Social Construction of Scientific Knowledge
by D. MacKenzie [64], Studies in the History of Statistics and Probability, Vol. I by
E.S. Pearson and M.G. Kendall [79], The Rise of Statistical Thinking, 1820—-1900 by
T.M. Porter [84], and The Lady Tasting Tea: How Statistics Revolutionized Science
in the Twentieth Century by D.S. Salsburg [87].2

This chapter provides a brief history and overview of the early beginnings and
subsequent development of permutation statistical methods organized by decades.
Because of the audience for whom this book is intended as well as space limitations,

1 Authors’ note: Statistics on the Table and The Seven Pillars of Statistical Wisdom by Stephen
Stigler are comprehensible and lucid texts written for readers with limited statistical training.

2 Authors’ note: The Rise of Statistical Thinking by Theodore Porter and The Lady Tasting Tea by
David Salsburg are well-written and appropriate for readers with limited statistical training.
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only a small sample of contributions and contributors to the permutation literature is
presented for each 10-year period. For more comprehensive histories of the develop-
ment of permutation statistical methods, see two articles in WIREs Computational
Statistics on “Permutation methods,” [9] and “Permutation methods. Part II” [13],
and a book on A Chronicle of Permutation Statistical Methods by the authors [10].
Much of the material in this chapter has been adapted from these three sources.

2.1 The Period from 1920 to 1929

The 1920s marked the very beginnings of permutation statistical methods. Only
two articles and one chapter pertaining to permutation statistical methods were
published between 1920 and 1929. First was an article by J. Sptawa-Neyman,
“On the application of probability theory to agricultural experiments,” published
in Annals of Agricultural Sciences in 1923; second was a chapter by R.A. Fisher,
published in Fisher’s first book titled Statistical Methods for Research Workers in
1925; and third was an article by R.C. Geary on “Some properties of correlation
and regression in a limited universe,” published in Metron in 1927. However, the
importance of these early contributions cannot be overstated.

2.1.1 J.S. Neyman

In 1923 Jerzy Sptawa-Neyman introduced a completely-randomized permutation
model for the analysis of field experiments conducted for the purpose of comparing
anumber of crop varieties [90]. The article was part of his doctoral thesis submitted
to the University of Warsaw in 1924 and based on research that he had previously
carried out at the Agricultural Institute of Bydgoszcz in Northern Poland. The article
was written in Polish and was essentially lost to permutation researchers for 66
years until it was translated by D.M. Dabrowska and T.P. Speed and re-published in
Statistical Science in 1990 [22].

2.1.2 R.A. Fisher

In 1925 Ronald Aylmer Fisher calculated an exact probability value using the
binomial probability distribution in his first book titled Statistical Methods for

3Jerzy Sptawa-Neyman later shortened his name to Jerzy Neyman, emigrated to the USA, and
assumed a position at the University of California, Berkeley, in 1938. Neyman founded the
Department of Statistics at UC Berkeley in 1955.
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Research Workers [35]. Although the use of the binomial distribution to obtain a
probability value is not usually considered to be a permutation test per se, Henry
Scheffé, writing in The Annals of Mathematical Statistics, considered it to be
the first application in the literature of a permutation test [88, p. 318]. Also, the
binomial distribution does yield an exact probability value and Fisher found it
useful, calculating the exact expected values for experimental data. Fisher wrote
that the utility of any statistic depends on the original distribution and “appropriate
use of exact methods,” which he noted have been worked out for only a few cases.
Fisher explained that the application is greatly extended as many statistics tend to the
normal distribution as the sample size increases, acknowledging that it is therefore
customary to assume normality and to limit consideration of statistical variability to
calculations of the standard error.

Fisher provided two examples, of which only the first is described here. The
example utilized data from the evolutionary biologist Raphael Weldon who threw
12 dice 26,306 times for a total of 315,672 observations, recording the number of
times a 5 or a 6 occurred, which Weldon considered to be a “success.” Fisher used
the binomial distribution to obtain the exact expected value for each of the possible
outcomes of 0, 1, ..., 12. For example, the exact binomial probability value for six
of 12 dice showing either a 5 or a 6 is

12\ /2\® 74\ 1>~
p(6]12) = <6) (6> <6) — (924)(0.0014)(0.0878) = 0.1113 .

Multiplying p = 0.1113 by N = 23,306 trials yields an expectation of 2927.20.
Fisher concluded the dice example by calculating a chi-squared goodness-of-fit
test and a normal approximation to the discrete binomial distribution. For the chi-
squared goodness-of-fit analysis Fisher reported a chi-squared value of x> = 35.49
and a probability value of P = 0.0001, and for the normal approximation analysis
Fisher reported a standard score of z = 45.20 and a two-tail probability value of
P =0.20x107°.

From this example it is clear that Fisher demonstrated a preference for exact
solutions, eschewing the normal approximation to the discrete binomial distribution
even though the sample sizes were very large. Fisher was to go on to develop
other permutation methods and this early work provides a glimpse into how Fisher
advanced exact solutions for statistical problems.

2.1.3 R.C. Geary

In 1927 Robert Charles Geary was the first to use an exact permutation analysis to
demonstrate the utility of asymptotic approaches for data analysis in an investigation
of the properties of linear correlation and regression in finite populations [41]. In
his 1927 paper published in Metron, Geary examined the mathematical principles
underlying a method for indicating the correlation between two variates, arguing
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that “the formal theory of correlation. .. makes too great demands upon the slender
mathematical equipment of even the intelligent public” [41, p. 83].

For his data, Geary considered potato consumption and the incidence of cancer
deaths in Ireland. Repeating the experiment 1000 times while holding the marginal
frequency totals constant, Geary found that cell arrangements greater than those
of the actual experiment occurred in just 231 of the 1000 repetitions yielding a
probability value of P = 0.2310. Geary concluded that the relationship between
potato consumption and cancer was not statistically significant.

2.2 The Period from 1930 to 1939

A number of notable threads of inquiry were established in the period from 1930
to 1939 that were destined to become important in the development of permutation
statistical methods. First, there was widespread recognition of the computational
difficulties inherent in constructing permutation tests. Second, there was general
acceptance that permutation tests were data-dependent, relying solely on the infor-
mation contained in the observed sample without any reference to the population
from which the sample had been drawn. Third, it was recognized that permutation
tests were distribution-free and made no assumptions about the population(s) from
which the samples had been drawn, such as normality or homogeneity of variance.
Fourth, it was generally recognized that it was not necessary to calculate an entire
test statistic when undertaking a permutation test. Only that portion of the statistic
that varied under permutation was required and the invariant portion could therefore
be ignored for permutation purposes, leading to increased computational efficiency.
Finally, Monte Carlo permutation methods were recognized to be an efficient
alternative to exact permutation methods, in which only a random sample of all
possible arrangements of the observed data values was analyzed.

The 1930s witnessed a number of important articles on permutation statistical
methods. A selection of nine of the most important articles published between 1930
and 1939 illustrates the development of permutation statistical methods in the 1930s:
articles by O. Tedinin 1931, by T. Eden and F. Yates in 1933, by R.A. Fisher in 1935,
by H. Hotelling and M.R. Pabst in 1936, three articles by E.J.G. Pitman in 1937 and
1938, an article by M.G. Kendall in 1938, and an article by M.G. Kendall and B.
Babington Smith in 1939.

2.2.1 O. Tedin

Olof Tedin was a Swedish geneticist who spent most of his professional career as a
plant breeder with the Swedish Seed Association. In 1931 Tedin published a paper
in the Journal of Agricultural Science in which he demonstrated that, when the
assumptions of the classical analysis of variance test are met in practice, the classical



2.2 The Period from 1930 to 1939 21

test and the corresponding permutation test yielded essentially the same probability
value [97].

2.2.2 T. Eden and F. Yates

Like R.C. Geary in 1927, Thomas Eden and Frank Yates utilized permutation
statistical methods in 1933 to compare a theoretical distribution to an empirical
distribution [26]. Eden and Yates examined height measurements of Yeoman
II wheat shoots grown in eight blocks, each consisting of four sub-blocks of
eight plots. The simulated and theoretical probability values for 1000 random
arrangements of the observed data were compared using a chi-squared goodness-of-
fit procedure and were found to be in close agreement, supporting the assumption
of normality. Eden and Yates concluded that Fisher’s variance-ratio z statistic could
be applied to data of this type with confidence.* Most important to permutation
statistical methods, Eden and Yates were able to considerably reduce the amount
of computation required by observing that the block sum-of-squares and the total
sum-of-squares would be constant for all 1000 samples; consequently, the value of
z for each sample would be solely determined by the value of the treatment sum-of-
squares.

2.2.3 R.A. Fisher

In 1935 Ronald Aylmer Fisher published a paper in Journal of the Royal Sta-
tistical Society in which he analyzed data on 30 criminal same-sex twins that
had been previously published by Dr. Johannes Lange, Chief Physician at the
Munich-Schwabing Hospital and Director of the German Experimental Station
for Psychiatry [37]. The point of the twin example—that for small samples
exact tests are possible, thereby eliminating the need for estimation—indicates an
early understanding of the superiority of exact probability values computed from
known discrete distributions over approximations based on assumed theoretical
distributions. As Fisher pointed out, “The test of significance is therefore direct, and
exact for small samples. No process of estimation is involved” [36, p. 50]. Today
the test is known as Fisher’s exact probability (FEP) test for 2 x2 contingency tables
and is included in most statistical computing packages.’

4The original symbol for the variance-ratio test statistic used by Fisher was z. In 1934 George
Snedecor published tabled values in a small monograph for Fisher’s z statistic and rechristened the
test statistic F [89].

5The exact probability test for 2x2 contingency tables was independently developed by Frank
Yates in 1934 [104] and Joseph Irwin in 1935 [52].
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2.2.4 H. Hotelling and M.R. Pabst

In 1936 Harold Hotelling and Margaret Richards Pabst at Columbia University
used permutation methods to calculate exact probability values for small samples
of rank data in their research on simple bivariate correlation [51]. Noting that tests
of significance are primarily based on the assumption of a normal distribution in a
hypothetical population from which the observations are assumed to be a random
sample, Hotelling and Pabst developed permutation methods of statistical inference
without assuming any particular distribution of the variates in the population from
which the sample had been drawn. Hotelling and Pabst utilized the calculation of a
probability value that incorporated all possible permutations of the data, under the
null hypothesis that all permutations were equally-likely. This 1936 article may well
have been the first example that detailed the method of calculating a permutation test
using all possible arrangements of the observed data.

2.2.5 E.J.G. Pitman

In three papers published in 1937 and 1938, Edwin James George Pitman demon-
strated how researchers, using exact permutation structures, could devise valid tests
of significance that made no assumptions about the distributions of the sampled
populations [81-83]. While much credit must go to R.A. Fisher and R.C. Geary for
their early contributions to permutation statistical methods, it was E.J.G. Pitman at
the University of Tasmania who made permutation methods explicit in these three
papers.

In the first of these three seminal papers published in 1937, Pitman demonstrated
how researchers could devise valid tests of significance between two independent
samples that made no assumptions about the distributions of the sampled popu-
lations [81]. In addition, Pitman showed how precise limits could be determined
for the difference between two independent means, again without making any
assumptions about the populations from which the samples had been obtained. The
second paper, also published in 1937, developed permutation statistical methods for
the Pearson product-moment correlation coefficient “which makes no assumptions
about the population sampled” [81, p. 232].

In the third paper published in 1938, Pitman proposed a permutation test for the
analysis of variance “which involved no assumptions of normality” [83, p. 335].
Pitman noted that in the form of analysis of variance test discussed in the paper
(randomized-blocks) the observed values were not regarded as a sample from a
larger population. This early statement is possibly the first pronouncement that
permutation statistical methods do not require random sampling from a well-defined
infinite population.
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2.2.6 M.G. Kendall

Also in 1938 Maurice George Kendall incorporated exact probability values utiliz-
ing the “entire universe” of permutations in the construction of test statistic , a
new measure of rank-order correlation that was based on the difference between the
sums of concordant and discordant pairs of observations that he labeled S [55].
A clever recursion procedure permitted the efficient calculation of all possible
arrangements of the observed data. Utilizing this powerful recursion technique,
Kendall constructed a table of the distribution of test statistic S for values of n from
1 to 10, thereby providing exact probability values.

2.2.7 M.G. Kendall and B. Babington Smith

In 1939 Maurice George Kendall and Bernard Babington Smith considered the
problem of m rankings [57]. They defined a coefficient of concordance as

128

T m2m3 —=n)’

where m denotes the number of rankings, n denotes the number of rank scores in
each ranking, and S denotes the observed sum-of-squares of the deviations of sums
of ranks from the mean value. Since m2(n3 — n) and the constant 12 are invariant
under permutation of the observed data, Kendall and Babington Smith showed that
to test whether an observed value of test statistic W is statistically significant it is
only necessary to consider the distribution of S over all possible permutations of the
n observed values.®

2.3 The Period from 1940 to 1949

Since permutation methods are by their very nature computationally intensive, per-
mutation statistical methods developed between 1940 and 1949 were characterized
by researchers expressing frustration over difficulties in computing a sufficient
number of permutations of the observed data in a reasonable time. To compensate
for the difficulty, many researchers turned to rank-order statistics, which were
much more amenable to permutation methods. Thus this period from 1940 to 1949
was distinguished by a plethora of rank-order tests. Prominent in this period was
H. Scheffé with an article in 1943, F. Wilcoxon with an article in 1945, L. Festinger
with an article in 1946, H.B. Mann and D.R. Whitney with an article in 1947,

6 Also see an article on this topic by E.J. Burr in 1960 [19].
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M.G. Kendall with a short book in 1948, and S.S. Wilks with an article in 1948.
These articles led to the publication of numerous tables of exact probability values
for rank-order tests of differences.

2.3.1 H. Scheffé

In 1943 Henry Scheffé published what soon became a seminal article on non-
parametric inference [88]. In an extensive review and highly mathematical summary
of the non-parametric literature of the time, Scheffé provided an excellent descrip-
tion of permutation statistical methods, attributing the origins of permutation
methods to the work of R.A. Fisher in 1925. Scheffé expressed dissatisfaction
with those cases in which the author of the test provided an approximation to the
discrete permutation distribution by means of some familiar continuous distribution.
This 1943 paper by Scheffé provided an important impetus to the development of
permutation statistical methods in the 1940s.

2.3.2 F. Wilcoxon

In 1945 Frank Wilcoxon, a chemist by training, introduced two test statistics for
rank-order values in Biometrics Bulletin [102]. In this very brief paper of only three
and a half pages, Wilcoxon considered the case of two samples of equal sizes and
provided a table of exact probability values for the lesser of the two sums of ranks
for both paired and unpaired experiments. In the case of unpaired samples, a table
provided exact probability values for 5-10 replicates in each sample, and for paired
samples, a table provided exact probability values for 7-16 paired comparisons.
Ralph Bradley referred to Wilcoxon’s unpaired and paired rank tests as the catalysts
for the flourishing of non-parametric statistics [50] and E. Bruce Brooks described
the 1945 Wilcoxon article as “a bombshell which broke new and permanent ground”
and pronounced the paired and unpaired rank-sum tests as “cornerstones in the
edifice of nonparametric statistics[18].

2.3.3 L. Festinger

In 1946 psychologist Leon Festinger introduced a statistical test of differences
between two independent samples by first converting raw scores to ranks, then
testing the difference between the means of the ranks [34]. Festinger provided
tables for tests of significance based on exact probability values for 0.05 and 0.01
confidence levels for n = 2(1), ..., 15, the smaller of the two samples, and m =
2(1), ..., 38, the larger of the two samples. Festinger’s approach to the two-sample
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rank-sum test was developed independently of Wilcoxon’s. Moreover, Festinger’s
tables considered both equal and unequal sample sizes, whereas Wilcoxon’s method
allowed for only equal sample sizes. While both approaches generated all possible
permutations of outcomes, Festinger’s method was much more general and simpler
to implement.

2.3.4 H.B. Mann and D.R. Whitney

In 1947 mathematicians Henry Berthold Mann and Donald Ransom Whitney,
acknowledging the previous work by Wilcoxon on the two-sample rank-sum test,
proposed an equivalent test statistic, U, based on the relative ranks of two inde-
pendent samples [65]. Using a recurrence relation, Mann and Whitney constructed
tables of exact probability values up to and including n = m = 8, where n and
m denoted the number of rank scores in each of the two samples. Finally, from
the recurrence relation Mann and Whitney derived explicit expressions for the
mean, variance, and various higher moments for U, showing that the limit of the
distribution approached normality as min(n, m) — oo.

2.3.5 M.G. Kendall

In 1948 Maurice George Kendall published a small volume titled Rank Correla-
tion Methods [56]. The importance of Kendall’s book on rank-order correlation
methods cannot be overstated. The title of Kendall’s book was perhaps a little
misleading as the book contained much more than rank-correlation methods,
including an extensive summary of permutation methods. Of particular relevance to
permutation statistical methods, Kendall included descriptive summaries of articles
that contained permutation statistics per se and tables of exact probability values
obtained from permutation distributions. For example, Kendall summarized articles
by H. Hotelling and M.R. Pabst that used permutation methods for calculating
exact probability values for small samples of rank-score data [51], E.J.G. Pitman on
permutation tests for two independent samples, linear correlation, and randomized-
blocks designs [81-83], F. Wilcoxon on tables of exact probability values for the
two-sample test for rank-order statistics [102], and H.B. Mann and D.R. Whitney
on exact probability values for the two-sample rank-sum test [65].

2.3.6 S.S. Wilks

Kendall’s book on Rank Correlation Methods was quickly followed by a substantial
and sophisticated exposition of rank-order statistics by Samuel Stanley Wilks in
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1948 [103]. In a highly structured organization, Wilks provided a lengthy discourse
on rank-order statistics, summarizing the results on rank-order statistics, and listing
all the references up to that time. Although the title of the article was “Order
statistics,” the article was also a rich source on permutation statistical methods.
The article by Wilks on order statistics comprised some 45 pages in Bulletin of
the American Mathematical Society and included summaries of the contributions
to permutation statistical methods by R.A. Fisher, H. Hotelling and M.R. Pabst,
E.J.G. Pitman, M. Friedman, H. Scheffé, and many others.

2.4 The Period from 1950 to 1959

Like the 1940s, permutation statistical methods in the 1950s were characterized by
extensive analyses of rank-score data. The exact analysis of contingency tables by
G.H. Freeman and J.H. Halton in 1951, exact probability values for the Wilcoxon
two-sample rank-sum test by C. White in 1952, exact probability values for an
analysis of variance for ranks by W.H. Kruskal and W.A. Wallis in 1952, the
promotion of exact permutation methods by G.E.P. Box and S.L. Andersen in
1955, and the rigorous investigation into the precision of Monte Carlo permutation
methods by M. Dwass in 1957 illustrate the development of permutation statistical
methods between 1950 and 1959.

2.4.1 G.H. Freeman and J.H. Halton

In 1951 Gerald Freeman and John H. Halton published a short but influential
article in Biometrika that addressed exact methods for analyzing two-way and three-
way contingency tables, given fixed marginal frequency totals [38]. The approach
adopted by Freeman and Halton for two-way contingency tables utilized the
conventional hypergeometric probability distribution. This was the same approach
put forward by R.A. Fisher in 1935 for 2x2 contingency tables. A three-way
contingency table is more complex than a two-way table, but Freeman and Halton
developed an innovative permutation method. Freeman and Halton concluded that
the exact method they proposed was generally useful in cases where a chi-squared
test would normally be utilized, but should not be used because the observed and
expected cell values were too small. The method, they explained, was also useful
when a chi-squared test was wholly unsuitable, such as when the entire population
contained so few members that a chi-squared test was not appropriate.
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2.4.2 C. White

Although trained as a medical doctor, Colin White nevertheless contributed to the
field of permutation statistics. In 1952 White recursively generated tables of exact
probability values for the Wilcoxon two-sample rank-sum test in which the sample
sizes, n1 and ny, could be either equal or unequal [101]. White provided three tables

that gave critical values of rank sums forn; = 2(1), ..., 15andn; = 4(1), ..., 28
for critical values of « = 0.05, n1 = 2(1), ..., 15 and np, = 5(1), ..., 28 for
critical values of « = 0.01, and n; = 3(1), ..., 15 and np, = 7(1), ..., 27 for

critical values of « = 0.001.

2.4.3 W.H. Kruskal and W.A. Wallis

Also in 1952 William Henry Kruskal and Wilson Allen Wallis proposed an exact C-
sample rank-sum test that they denoted as H [60]. Although H is asymptotically
distributed as chi-squared with C — 1 degrees of freedom, Kruskal and Wallis
provided tables based on exact probability values for C = 3 independent samples,
with each sample equal to or less than n = 5 for @ = 0.10, 0.05, and 0.01 levels of
significance. Kruskal and Wallis compared the exact probability values with three
moment approximations: the first based on the chi-squared distribution, the second
based on the incomplete gamma distribution, and the third based on the incomplete
beta distribution. Finally, Kruskal and Wallis observed that when C = 2, H was
equivalent to the Wilcoxon [102], Festinger [34], and Mann—Whitney [65] two-
sample rank-sum tests.

2.4.4 G.E.P. Box and S.L. Andersen

In 1955 George Edward Pelham Box and Sigurd Lokken Andersen published
an important and influential paper on “Permutation theory in the derivation of
robust criteria and the study of departures from assumption” in Journal of the
Royal Statistical Society [15]. This was a lengthy paper of 35 pages and included
discussions by several prominent members of the Royal Statistical Society. Box
and Andersen noted that in practical circumstances little is usually known of the
validity of assumptions, such as the normality of the error distribution. They argued
for statistical procedures that were insensitive to changes in extraneous factors not
under test, but sensitive to those factors under test; that is, procedures both robust
and powerful. In this context, they addressed permutation theory as a robust method
and applied it to comparisons of means and variances. Box and Andersen pointed
out that tests on differences between variances could be so misleading as to be
valueless, unless the resulting distribution was very close to normal. They then
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stated that an assertion of normality would certainly not be justified. The solution,
they proposed, was the use of “a remarkable new class of tests” called permutation
tests [15, p. 3].

2.4.5 PH. Leslie

Also in 1955 Patrick Holt Leslie published a short paper of only one-and-a-half folio
pages on “a simple method of calculating the exact probability in 2x2 contingency
tables with small marginal totals” [62]. Consider a simple example with ny. = 7,
n1 =6, N = 16,and n1; = 5. The essential values are the binomial coefficients
for n;. = 7, constituting n;; = 0, ..., n, and in reverse order, the binomial
coefficients for N — n;. = 9, constituting n1; = n, ..., 0. As Leslie showed, the
required binomial coefficients could easily be obtained from the first n + 1 terms of
the expanded binomial series; for example,
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2.4.6 M. Dwass

Meyer Dwass provided the first rigorous investigation into the precision of Monte
Carlo probability approximations. In 1957 Dwass published an article on mod-
ified permutation tests for non-parametric hypotheses [25] that relied heavily
on previously-published theoretical contributions by Erich Lehmann and Charles
Stein [61]. Dwass noted that a practical shortcoming of exact permutation proce-
dures was the great difficulty in enumerating all the possible arrangements of the
observed data. Dwass then proposed “the most obvious procedure” of examining a
random sample drawn without replacement from all possible permutations of the
observed data and making the decision to accept or reject the null hypothesis on the
basis of those permutations only. Dwass observed that while it is true that the size
of the random sample would necessarily have to be very large, the optimum exact
permutation test is usually impossible to calculate.

2.5 The Period from 1960 to 1969

Permutation statistical methods are, by their very nature, computationally intensive
methods and it took the development of high-speed computing for permutation
methods to achieve their potential. In the period prior to 1960, computers were large,
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slow, expensive, and input was usually by way of punch cards. In large part their use
was restricted to military and industrial applications. In the 1960s many permutation
algorithms and associated computer programs were developed for mainframe com-
puters. Most of the programs were written in an early version of FORTRAN, which
had been developed by IBM in 1956 for scientific and engineering applications.
Two articles on computing exact probability values for 2x2 contingency tables
illustrate this early development: one article by W.A. Robertson in 1960 and another
by I.D. Hill and M.C. Pike in 1965.

In contrast, Eugene Edgington at the University of Calgary dominated the
literature on permutation statistical methods in the 1960s. Edgington published
four major articles with an emphasis on permutation tests for differences in
1964, nonrandom samples in 1966, statistical inference in 1967, and Monte Carlo
permutation methods in 1969. Also in 1969, Edgington published a book on
Statistical Inference that contained a substantial chapter on permutation statistical
methods.

2.5.1 W.H. Robertson

A number of articles were published on the computation of exact probability
values for contingency tables and goodness-of-fit tests between 1960 and 1969. In
1960 William H. Robertson published an article on programming Fisher’s exact
probability method of comparing two percentages [85]. In this paper Robertson
described the application of a high-speed computer for determining the exact
probability associated with the problem of comparing two percentages utilizing
the Fisher—Yates exact probability method.” In programming the Fisher—Yates exact
probability method, Robertson was forced to rely on stored logarithms of factorial
expression, given the limited capabilities of digital computers in 1960.

2.5.2 E.S. Edgington

In terms of permutation statistical methods, the period 1960-1969 could be labeled
the Edgington decade. Beginning in the early 1960s, Eugene Sinclair Edgington
published a number of articles and books on permutation methods, which he called
“randomization” methods, and was an influential voice in promoting the use of
permutation tests and measures. In 1964 Edgington published a descriptive article

"Relatively speaking, there were no “high-speed” computers in 1960. Since Robertson worked
at the Sandia National Laboratory in Albuquerque, New Mexico, he had access to a Royal
McBee LGP-30. The Royal McBee Librascope General Purpose (LGP) computer was considered
a desktop computer, even though it weighed 740 pounds. The LGP-30 contained a 4096-word
magnetic drum, and had a clock rate of only 120 kHz.
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on permutation tests in The Journal of Psychology [27]. In this brief but formative
article, Edgington defined a permutation test as a statistical test that derives a
sampling distribution of a statistic from repeated computations of the statistic for
various ways of pairing, arranging, or dividing the scores. Edgington considered
three types of permutation statistical tests: tests for differences between independent
samples, tests for differences between paired samples, and tests for measures of
correlation. Edgington noted that permutation tests could be particularly useful
whenever the assumptions of parametric tests could not be met, when samples were
very small, and when exact probability tables for the desired test statistic were not
available.

2.5.3 I.D. Hill and M.C. Pike

In the period from 1960 to 1969 there appeared a multitude of computer algorithms
and sequence generators, all essential to the computation of exact and Monte Carlo
permutation methods. One interesting and representative algorithm was by 1.D. Hill
and M.C. Pike. In 1965 Hill and Pike designed an algorithm for computing tail-
area probability values for 2x2 contingency tables that was based on an exact
method for fixed marginal frequency totals [49]. It was an interesting algorithm
because it provided an exact one-tailed probability value by summing the individual
probability values that are equal to or less than the observed probability value,
and then provided two quite different two-tailed exact probability values. One two-
tailed probability value was obtained from the one-tailed probability value and a
probability value calculated in similar fashion from the second tail. The second two-
tailed probability value was obtained by including in the second tail all those terms
that gave an inverse odds-ratio statistic at least as great as the odds-ratio statistic for
the observed table.

2.5.4 E.S. Edgington

Eugene Edgington was especially critical of the use of normal-theory methods
when applied to nonrandom samples. In 1966 Edgington published a controversial
article in Psychological Bulletin that focused on statistical inference and nonrandom
sampling [28]. Writing primarily for psychologists, Edgington pointed out that since
experimental psychologists seldom sample randomly, it was difficult for psycholo-
gists to justify using hypothesis-testing procedures that required the assumption of
random sampling of the population or populations about which inferences were to
be made. Edgington stated his position unequivocally: “statistical inferences cannot
be made concerning populations that have not been randomly sampled” [28, p. 485].

In 1967 Eugene Edgington published an article on making statistical inferences
from a sample of N = 1 [29]. Edgington clarified the problem of making statistical
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inferences with permutation methods. He noted that while it was certainly correct
that a researcher could not statistically generalize to a population from only one
subject, it was also correct that a researcher could not statistically generalize to a
population from which the researcher had not taken a random sample of subjects.
Edgington noted that this observation precluded making inferences to populations
for virtually all experiments, both those with large and small sample sizes. Finally,
Edgington noted that hypothesis testing was still possible without random sampling,
but that significance statements were consequently limited to the effect of the
experimental treatment on the subjects actually used in the experiment.

In 1969 Eugene Edgington elaborated on approximate permutation tests; that is,
Monte Carlo permutation tests [30]. Edgington defined an approximate permutation
test as a test in which the significance of an obtained statistic was determined by
using a distribution consisting of a random sample of test statistics drawn from
the entire sampling distribution. Edgington noted that an approximate permutation
test could thereby greatly reduce the amount of computation required to a practical
level. At the time, in 1969, Edgington and others were recommending approximate
permutation tests based on 1000 random samples. Today, 1,000,000 random sam-
ples is fairly standard and easily accomplished with modern desktop computers,
workstations, and even laptops.

Also in 1969 Eugene Edgington published a book titled Statistical Inference:
The Distribution-free Approach that contained an entire chapter on permutation
tests for experiments [31]. In this lengthy chapter of 76 pages, Edgington exam-
ined inferences concerning hypotheses about experimental treatment effects with
finite populations, with no assumptions about the shapes of the populations, and
for nonrandom samples. He explored in great detail and with many examples,
permutation tests for paired comparisons, contingency tables, correlation, interac-
tions, differences between independent samples, and other lesser permutation tests
such as differences between medians, ranges, and standard deviations. Edgington
concluded the chapter with a discussion of normal-theory tests as approximations to
permutation tests.

2.5.5 0. Kempthorne and T.E. Doerfler

In 1969 Oscar Kempthorne and Thomas E. Doerfler published a paper examining
the behavior of selected tests of significance under experimental randomization [54].
Kempthorne and Doerfler selected three tests for a matched-pairs design and
concluded that the Fisher permutation test was to be preferred over the Wilcoxon
matched-pairs rank-sum test, which, not surprisingly, was to be preferred over the
sign test. All comparisons were based on Monte Carlo permutation test procedures
with 50 sets of randomly-generated data from eight distributions for experiments on
3—6 pairs of observations.

While the purported purpose of the paper was to compare matched-pairs designs,
the paper actually contained a great deal more. First, Kempthorne and Doerfler
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objected to the use of specified cut-off points for the significance level, «, and to
classifying the conclusion as being simply significant or not significant. They argued
that the use of such a dichotomy was inappropriate in the reporting of experimental
data as it resulted in a loss of information. Second, they objected to the common
practice of adding very small values to measurements so as to avoid ties when
converting raw scores to ranks. Third, they suggested that the term “significance
level” of a test be retired from the statistical vocabulary. Finally, they dismissed the
assumption of random samples in comparative populations and praised permutation
tests for their ability to answer the question “What does this experiment, on its own,
tell us?” [54, p. 235].

2.6 The Period from 1970 to 1979

Like the 1960s, the 1970s witnessed the development of computer algorithms
for exact permutation methods. Researchers were focused on defining efficient
methods for computing exact probability values. By 1979 punch cards had largely
disappeared and desktop computers, although not common, were available to many
researchers. In 1973 Alvan Feinstein produced one of the best introductions to
permutation methods ever published and in 1976 Paul Mielke, with his collaborators
at Colorado State University, published the first of what would become several
hundred articles and books on exact and Monte Carlo permutation statistical
methods.

2.6.1 A.W. Ghent

No account of the analysis of contingency tables would be complete without
mention of the work of Arthur W. Ghent, who significantly extended the method
of binomial coefficients first proposed by Patrick Leslie in 1955 [62]. In 1972
Ghent examined the literature on the alignment and multiplication of appropriate
binomial coefficients for computing the Fisher—Yates exact probability test for 2x2
contingency tables with fixed marginal frequency totals [44]. In an exceptionally
clear and cogent presentation, Ghent reviewed the method of binomial coefficients
first proposed by Leslie in 1955 [62] and independently discovered by Sakoda and
Cohen in 1957 [86].

The method of binomial coefficients was a computational procedure involving,
first, the selection of the appropriate series of binomial coefficients; second, their
alignment at starting points in accord with the configuration of frequencies in the
observed contingency table; and finally, the multiplication of adjacent coefficients
that constitute the numerators of the exact hypergeometric probability values of all
2x2 contingency tables that are equal to or more extreme than the probability of the
observed contingency table, given fixed marginal frequency totals.
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2.6.2 A.R. Feinstein

Trained as both a mathematician and a medical doctor, Alvan R. Feinstein published
400 original articles and six books. In 1973 Feinstein published a must-read article
on permutation methods [33].® The importance of Feinstein’s article was not
that it contained new permutation methods, but that it summarized and promoted
permutation methods to a new audience of clinical researchers in a cogent and
lucid manner. Writing for a statistically unsophisticated readership, Feinstein
distinguished between socio-political research where the purpose was usually to
estimate a population parameter, and medical research where the purpose was
typically to contrast a difference between two groups. Feinstein observed that a
random sample is mandatory for estimating a population parameter, but “has not
been regarded as equally imperative for contrasting a difference” [33, p. 899].In a
strongly worded conclusion, Feinstein argued that the ultimate value of permutation
methods was that their intellectual directness, precision, and simplicity would free
both the investigator and the statistician from “a deleterious pre-occupation with
sampling distributions, pooled variances, and other mathematical distractions” [33,
p. 914].

2.6.3 PW. Mielke, K.J]. Berry, and E.S. Johnson

In 1976 Paul W. Mielke, Kenneth J. Berry, and Earl S. Johnson published an article
on “Multi-response permutation procedures for a priori classifications,” which they
abbreviated as MRPP for convenience [73]. Mielke, Berry, and Johnson provided
an exact permutation test for analyzing multi-response data at the ordinal or higher
levels. The associated test statistic, which they denoted as §, was based on the
average difference, or any specified norm, between data points within a priori
disjoint subgroups of a finite population of points in an r-dimensional space, such
as r measured responses from each object in a finite population of objects. In
addition, alternative approximate tests based on the beta and normal distributions
were provided. Two detailed examples utilizing actual social science data illustrated
permutation statistical methods, including comparisons of the approximate tests. A
third example described the behavior of these tests under a variety of conditions,
including the inclusion of extreme values. This 1976 article by Mielke, Berry,
and Johnson introduced test statistic §, which serves as the first of the three main
constructs of this book. Second, this article introduced ordinary Euclidean scaling
in which absolute differences between data points were utilized instead of the more
conventional squared Euclidean differences.

8 Authors’ note: After 40-plus years, this 1973 article by Feinstein remains as perhaps the clearest
non-mathematical introduction to permutation methods ever written and should be consulted by all
researchers new to the field of permutation methods.
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2.6.4 B.F. Green

In 1977 Bert Green published an interactive FORTRAN program for one- and two-
sample permutation tests of location [46]. Noting that Fisher’s permutation tests
of location had been described by Ralph Bradley as “stunningly efficient” but “dis-
mally impractical” [17], Green proposed a practical permutation program containing
two heuristics that permitted most of the permutations to be counted implicitly rather
than explicitly. Both exact and Monte Carlo permutation procedures were provided
in the program.

2.6.5 A. Agresti and D. Wackerly

Also in 1977, Alan Agresti and Dennis Wackerly published an article on exact
conditional tests of independence for r xc contingency tables with fixed marginal
frequency totals [2]. Unlike previous researchers, Agresti and Wackerly were less
concerned with the exact hypergeometric probability and more concerned with the
exact probability of established test statistics, such as Pearson’s chi-squared statistic.
Agresti and Wackerly defined the attained significance level to be the sum of the
probability values of all contingency tables for which the value of the test statistic
was at least as large as the value of the test statistic for the observed contingency
table. This perception by Agresti and Wackerly was destined to become an important
observation.

2.6.6 J.M. Boyett

In 1979 James M. Boyett published an algorithm and associated FORTRAN subrou-
tine to generate random r X ¢ contingency tables with given fixed row and column
marginal frequency totals [16]. First, employing a uniform pseudo-random number
generator and a shuffling routine, Boyett generated a random permutation of the first

N integers, x1, x2, ..., Xy, then partitioned the permuted integers into r groups of
the row variable with each group S; containing a; values fori = 1, ..., r. For the
column variable, the first N integers (not permuted) were partitioned into ¢ groups
with each group T'; containing a_; values for j =1, ..., c¢. Thus,
St ={xa141, --+» Xa14a2.}s - S ={xN_g, 41, ---» XN},
n=A{1,..., a1},
and

h={a1+1,...,a1+az}, ..., T, ={N—a.+1, ..., N}.
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2.7 The Period from 1980 to 1989

Permutation statistical methods arrived at a new level of maturity in the 1980s,
primarily as a result of two factors: (1) greatly improved computer clock speeds and
(2) widely available desktop computers and workstations. While interest continued
in the study of linear rank-order statistics, the period witnessed a dramatic shift
in sources of permutation publications. Prior to 1980 nearly all published papers
on permutation methods appeared in computer journals, such as Communications of
the ACM, Journal of Numerical Analysis, The Computer Journal, and The Computer
Bulletin. In the period between 1980 and 1989 there was a shift away from computer
journals and into statistical journals, such as Biometrika, Biometrics, Journal of
Statistical Computation and Simulation, and Applied Statistics.” An even more
dramatic change occurred in this period as an increasing number of published
papers on permutation statistical methods began appearing in discipline journals,
such as American Journal of Public Health, American Antiquity, Educational and
Psychological Measurement, Journal of Applied Meteorology, and British Journal
of Mathematical and Statistical Psychology.

2.7.1 E.S. Edgington

In 1980 Eugene Edgington published Randomization Tests, the first full book
devoted to permutation (randomization) statistical methods [32]. The book was
intended as a practical guide for experimenters on the use of permutation tests.
Edgington defined permutation tests as those in which the data are repeatedly rear-
ranged, a test statistic is computed on each arrangement, and the proportion of the
arrangements with as large a test statistic value as the value for the obtained results
determines the significance of the results. Edgington argued that random assignment
is the only element necessary for determining the significance of experimental
results by a permutation test procedure. Therefore, assumptions regarding random
sampling and assumptions regarding normality, homogeneity of variance, and other
characteristics of randomly sampled populations are unnecessary. A second edition
was published in 1987, a third edition was published in 1995, and a fourth edition
co-authored with Patrick Onghena was published in 2007.'°

9The journal Applied Statistics is also known as Journal of the Royal Statistical Society, Series C.

10Eugene Edgington, a dominating force in the promotion of permutation statistical methods for
50 years, passed away on September 2, 2013, at the age of 89.
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2.7.2 K.J. Berry, K.L. Kvamme, and P.W. Mielke

Also in 1980 Kenneth J. Berry, Kenneth L. Kvamme, and Paul W. Mielke published
an article in American Antiquity titled “A permutation technique for the spatial
analysis of the distribution of artifacts into classes” [8]. This brief article was,
most probably, the first analysis of archaeological data using permutation methods
published in the field of anthropology. The authors argued that the identification
of localized activity areas through an analysis of artifact distribution within an
archaeological site is a complex process warranting more than visual assessment
and impressionistic interpretation and noted that quantitative approaches to date
have utilized conventional statistical tests that require indefensible assumptions to
be made about the data. Utilizing ordinary Euclidean scaling functions on data
gathered from Sde Divshon, an Upper Paleolithic site on the Divshon Palin in Israel,
the authors presented a rigorous test of the patterning of positions of end scrapers,
carinated scrapers, and burins within the archaeological site.

2.7.3 W.M. Patefield

In 1981 William M. Patefield published a subroutine for the generation of random
rxc contingency tables which was designed to be an improvement over the
previously published algorithm of Boyett [78]. As Patefield explained, under the
null hypothesis of no association between row and column categories, the joint

probability distribution of a random table is given by n;;, i = 1, ..., r and
j =1, ..., c, conditional on the row and column totals, n; , i = 1, ..., r, and
nj,j=1,..., c. Patefield considered the conditional distribution of a table entry
nym given the table entries in row /; thatis, n;;,i =1, ..., I —land j =1, ..., ¢
and the previous table entries in row /; thatis, nj;, j =1, ..., m — 1.

Assuming valid conditional table entries, Patefield showed that the range of the
conditional distribution is from a minimum of

m—1 c -1
max { 0, n; — Z nij — Z n;j— Z”ij
i=1

j=1 Jj=m+1

to a maximum of

-1 m—1
min | |7, — Zni’" N n.— Z nij
i=1 j=1

The table entries, n,,,, m = 1, ..., ¢, in the last row of the table and n;., [ =
1, ..., r, in the last column of the table, were obtained from the previous (r —
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1)x(c — 1) table entries and the fixed row and column marginal frequency totals,
ni,i=1,...,r,andn;, j=1,...,c

2.7.4 C.R. Mehta and N.R. Patel

In 1983 Cyrus R. Mehta and Nitin R. Patel created an innovative network algo-
rithm for the Fisher—Yates exact probability test for r xc unordered contingency
tables [67]. Unlike earlier algorithms for unordered contingency tables that were
based on an exhaustive enumeration of all possible tables with fixed marginal fre-
quency totals, the Mehta—Patel network algorithm eliminated the need to completely
enumerate all possible contingency tables in the permutation reference set. Today
the Mehta—Patel algorithms are available in a number of platforms, the most widely
distributed being StatXact.!!

2.7.5 PW. Mielke

In 1984 Paul W. Mielke published a chapter on “Meteorological applications of
permutation techniques based on distance functions” in the Handbook of Statistics,
Vol. 4 [68]. Trained as both a meteorologist and a biostatistician, Mielke utilized
meteorological applications as a vehicle for illustrating permutation statistical
methods, dividing the chapter into two main sections. The first section described
multi-response permutation procedures (MRPP) as a permutation generalization of
completely-randomized analysis of variance designs. The second section described
multivariate randomized-blocks procedures (MRBP) as a permutation generaliza-
tion of randomized-blocks analysis of variance designs. This 1984 chapter contained
the first formal presentation of permutation methods based on ordinary Euclidean
scaling, which serves as the second of the three main constructs of this book, along
with permutation test statistic § described on p. 33.

2.7.6 K.J. Berry and P.W. Mielke

In 1985 Kenneth J. Berry and Paul W. Mielke developed non-asymptotic permuta-
tion tests for Goodman and Kruskal’s 7, and 7, measures of nominal association [5].
The algorithm was based on the exact mean, variance, and skewness under the
conditional permutation distribution, which then employed a Pearson type III

1StatXact is a statistical software package for analyzing data using exact statistics. It is marketed
by Cytel Inc. [4].
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probability distribution to obtain approximate probability values. Berry and Mielke
found the non-asymptotic approach to be superior to the conventional asymptotic
method for small samples and for unbalanced marginal frequency distributions.

2.7.7 A.K. Thakur, K.J. Berry, and P.W. Mielke

Also in 1985 Ajit K. Thakur, Kenneth J. Berry, and Paul W. Mielke published an
algorithm for testing linear trend and homogeneity in proportions [98]. Trend was
evaluated by the Cochran—Armitage method as well as by multiple pairwise com-
parisons using the Fisher—Yates exact probability method. A recursion technique
with an arbitrary initial value was employed, yielding exact two-tailed probability
values based on all permutations of cell frequencies with fixed marginal frequency
totals.

2.7.8 K.J. Berry and P.W. Mielke

In 1988 Kenneth J. Berry and Paul W. Mielke published an article in Educational
and Psychological Measurement in which they generalized Cohen’s x measure of
agreement for categorical polytomies to ordinal and interval data and to multiple
observers [6]. As originally conceived, Cohen’s « measure of agreement was
appropriate only for two observers and was limited to a set of discrete unordered
categories. Noting that a number of statistical problems require the measurement
of agreement, rather than association or correlation, Berry and Mielke generalized
Cohen’s k¥ measure of agreement so that it would measure agreement at any level
of measurement among any number of observers. The generalization required a
new symbol, to distinguish it from «. Thus this 1988 article by Berry and Mielke
introduced the N chance-corrected measure of effect size, which serves as the third
of the three main constructs of this book, along with the permutation test statistic §
described on p. 33 and ordinary Euclidean scaling described on p. 37.

Also in 1988 Mielke and Berry published an article in Biometrika on “Cumulant
methods for analyzing independence of r-way contingency tables and goodness-
of-fit frequency data” [69]. Mielke and Berry showed that the cumulant methods
presented in this paper for analyzing independence of r-way contingency tables and
goodness-of-fit frequency data were appropriate for many cases involving sparse
data, that is, small expected cell frequencies, whereas any continuous approximation
would be unsatisfactory. The method was based on the exact determination of the
mean, variance, and skewness of the permutation distribution.
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2.7.9 M.E. Biondini, PW. Mielke, and K.J. Berry

Also in 1988 Mario E. Biondini, Paul W. Mielke, and Kenneth J. Berry published
an article on permutation methods for the analysis of ecological data [14]. Noting
that while classical least squares statistics are optimal and result in maximum
likelihood estimators of the unknown parameters of the model if the population
is normal, or multivariate normal, with equal variances, or a variance—covariance
matrix which exhibits compound symmetry, Biondini, Mielke, and Berry argued
that classical least squares statistics are far from optimal when the population
distribution is asymmetric or when extreme values are present. Biondini, Mielke,
and Berry presented two distribution-free permutation procedures for the analysis
of ecological data with ordinary Euclidean scaling as the basis of both procedures.

2.7.10 J.W. Tukey

Also in 1988 John Wilder Tukey read a paper at the Ciminera Symposium in
Philadelphia, Pennsylvania. The paper was never published, but copies of this
important paper continue to circulate even today [99]. Tukey began the paper
by defining what he called “the three R’s” as Randomization, Robustness, and
Rerandomization. By “randomization” Tukey meant a controlled randomized design
wherein treatments were randomly assigned to subjects in an effort to eliminate bias
and to nearly balance whatever is important. By “robustness” Tukey meant to ensure
high stringency, high efficiency, and high power over a wide range of probability
models. By “rerandomization” Tukey meant “analysis of randomized comparative
experiments by means of permutation methods to confine the probabilities to those
we have ourselves made” [99, p. 17].

Tukey distinguished among three types of rerandomization. First, complete
rerandomization; that is, an exact permutation analysis. Second, sampled rerandom-
ization; that is, a Monte Carlo permutation analysis. Third, subset rerandomization;
that is, a double permutation analysis. Long an advocate of permutation methods, it
is in this paper that Tukey refers to rerandomization as the “platinum standard” of
significance tests. After critically denouncing techniques such as the bootstrap and
the jackknife, Tukey concluded the paper by arguing that when an experiment can be
randomized, it should be. Then the preferred method of analysis should be based on
rerandomization. In an important affirmation of permutation methods, Tukey stated
that “No other class of approach provides significance information of comparable
quality” [99, p. 18].
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2.8 The Period from 1990 to 1999

The period from 1990 to 1999 witnessed an explosion of journal articles on
permutation methods in a wide variety of disciplines and research areas; for
example, animal behavior, archaeology, atmospheric science, biology, biometrics,
biostatistics, chemistry, clinical trials, dental research, earth science, ecology, edu-
cation, engineering, environmental health, forest research, geology, human genetics,
medicine, pharmacology, physiology, psychology, toxicology, wood science, and
zoology.

This period was also characterized by the publication of a number of tutorials that
attempted to introduce or promote permutation methods to a variety of audiences;
for example, psychologists, econometricians, teachers of mathematics, chemists,
researchers in biomedicine and clinical trials, and statisticians. Earlier undertakings
on the development of permutation methods, coupled with the availability of high-
speed computers and efficient computing algorithms, provided a solid foundation
for the development of permutation statistical methods in the 1990s.

2.8.1 R.B. May and M.A. Hunter

In 1993 Richard B. May and Michael A. Hunter published a short article on “Some
advantages of permutation tests” [66]. May and Hunter laid out in an elementary and
very readable fashion the rationale and advantages of permutation tests, illustrating
permutation methods with the two-sample test for means. May and Hunter noted
that with the normal or population model a researcher must first know something
about a theoretical parent distribution and then evaluate the data in light of the
model. On the other hand, the permutation model starts with the data at hand
and generates a set of outcomes to which the obtained outcome is compared. The
reference, or permutation, distribution is generated from all possible arrangements
of the data.

2.8.2 PW. Mielke and K.]. Berry

In 1994 Paul W. Mielke and Kenneth J. Berry presented permutation tests for
common locations among g samples with unequal variances [70]. As Mielke and
Berry explained, in completely-randomized experimental designs where population
variances are equal under the null hypothesis, it is not uncommon to have mul-
tiplicative treatment effects that produce unequal variances under the alternative
hypothesis. Mielke and Berry presented permutation procedures to test for (1)
median location and scale shifts, (2) scale shifts only, and (3) mean location shifts
only. In addition, corresponding multivariate extensions were provided.
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2.8.3 PE. Kennedy and B.S. Cade

In 1996 Peter E. Kennedy and Brian S. Cade published an article on permutation
tests for multiple regression [59]. In this article Kennedy and Cade examined four
generic methods for conducting a permutation test in the context of linear multiple
regression. Using the classical linear regression model given by

y=XB+Z0+e¢,

where B and 0 are parameter vectors and X and Y are corresponding matrices of
observations on explanatory variables, Kennedy and Cade sought to test 8 = 0.

The first method calculated the F statistic for testing 6 = 0 and compared the
F test statistic with F statistics produced by shuffling the Z variables as a group.
The second method calculated the F statistic for testing & = 0 and compared the
F test statistic with F statistics produced by shuffling the y variable. The third
method calculated the F statistic for testing & = 0 and compared the F test statistic
with F statistics produced by shuffling the Z variables on a residualized y variable.
First, y was residualized for X and, second, the residualized y was treated as the
dependent variable. The fourth method calculated the F statistic for testing 6 = 0
and compared the F test statistic with F statistics produced by residualizing both
y and Z. Kennedy and Cade recommended the fourth method as it alone possessed
desirable repeated-sample properties.

2.84 PW. Mielke, K.J. Berry, and C.O. Neidt

Also in 1996 Paul W. Mielke, Kenneth J. Berry, and Charles O. Neidt published a
new permutation procedure for Hotelling’s multivariate matched-pairs 72 test [74].
They explained that since Hotelling’s 72 test obtains a vector of measurements on
each subject in each of two time periods, the test is applicable to two different
analyses. Consider n subjects and c raters. It is possible to block on the n subjects
and examine the multivariate difference among the c raters at the two time periods.
Alternatively, it is also possible to block on the ¢ raters and examine the multivariate
difference among the n subjects at the two time periods.

In the first scenario, Hotelling’s T2 test statistic is distributed under the Neyman—
Pearson null hypothesis as Snedecor’s F distribution with ¢ and n — ¢ degrees of
freedom in the numerator and denominator, respectively. In the second scenario,
Hotelling’s T2 test statistic is distributed under the Neyman—Pearson null hypothesis
as Snedecor’s F distribution with n and n — ¢ degrees of freedom in the numerator
and denominator, respectively. Consequently, one of the two scenarios will yield
degrees of freedom in the denominator that is equal to or less than zero. Moreover,
when n = c neither scenario is possible. Mielke, Berry, and Neidt developed
a multivariate extension of a univariate permutation test for matched pairs that
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eliminated the problem and was shown to be more discriminating than Hotelling’s
matched-pairs T2 test.

2.8.5 J. Ludbrook and H.A.F. Dudley

In 1998 John Ludbrook and Hugh Dudley published an influential article in
The American Statistician titled “Why permutation tests are superior to ¢ and
F tests in biomedical research” [63]. In this article Ludbrook and Dudley noted
that statisticians believe that biomedical researchers conduct most experiments
by taking random samples and therefore recommend statistical procedures that
are valid under the Neyman—Pearson population model of inference. Given that
biomedical researchers typically do not employ random sampling, but instead
rely on randomization of a nonrandom sample, Ludbrook and Dudley argued that
the Neyman—Pearson population model did not apply to biomedical research and
strongly recommended statistical procedures based on data-dependent permutations
of the observations.

2.8.6 R.W. Frick

Also in 1998 Robert W. Frick published an article that challenged the standard
textbook treatment of conventional statistical tests based on random sampling from
an infinite population [39]. Frick termed this standard treatment the “population-
based” interpretation of statistical testing and noted three problems with the
population-based treatment. First, researchers rarely make any attempt to randomly
sample from a defined population. Second, even if random sampling actually
occurred, conventional statistical tests do not precisely describe the population.
Third, researchers do not generally use statistical testing to generalize to a popu-
lation. Against the population-based interpretation Frick proposed what he called a
“process-based” interpretation, arguing that random sampling is a process, not the
outcome of a process. To this end, Frick recommended consideration of permutation
statistical methods.

2.8.7 J. Gebhard and N. Schmitz

Also in 1998 Jens Gebhard and Norbert Schmitz published two articles on per-
mutation methods [42, 43]. In the first article Gebhard and Schmitz showed
that permutation methods possess optimum properties for both continuous and
discrete distributions. A variety of examples illustrated permutation tests for the
continuous distributions: normal, gamma, exponential, chi-squared, and Weibull;
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and for the discrete distributions: Poisson, binomial, and negative binomial. In the
second article Gebhard and Schmitz formulated an efficient computer algorithm for
computing the critical regions.

2.9 The Period from 2000 to 2009

If permutation methods might be said to have “arrived” in the period between
1980 and 1999, they might be said to have “erupted” in the period from 2000
to 2009. Significant advances in computing, including increased speed, enlarged
memory and capacity, canned statistical packages that included permutation add-
ons or modules, and the development of a new computer language, R, by Ross Thaka
and Robert Gentleman enabled a virtual explosion of new permutation methods and
applications.'? After the year 2000, permutation methods continued to be introduced
into, spread to, or expanded in a number of different fields and disciplines, most
notably in medicine, psychology, clinical trials, biology, ecology, environmental
science, earth science, and atmospheric science.

Along with a proliferation of journal articles, a multitude of books on permu-
tation methods appeared during this period. Having all the information collected
and organized in one compact source instead of scattered among many journal
in myriad disciplines made it easier for the user to learn about new and existing
permutation methods. Included among these books were volumes on Data Analysis
by Resampling: Concepts and Applications by C.E. Lunneborg in 2000; Permu-
tation Tests: A Practical Guide to Resampling Methods for Testing Hypotheses
and Permutation, Parametric and Bootstrap Tests of Hypotheses by PI1. Good
in 2000; Permutation Methods: A Distance Function Approach by P.W. Mielke
and K.J. Berry, Resampling Methods: A Practical Guide to Data Analysis by
PI. Good, and Multivariate Permutation Tests: With Applications in Biostatistics
by F. Pesarin in 2001; Resampling Methods for Dependent Data by S.N. Lahiri
in 2003; Permutation, Parametric and Bootstrap Tests of Hypotheses by P.I. Good
in 2005; a second edition of Resampling Methods: A Practical Guide to Data
Analysis by PI. Good and Exact Analysis of Discrete Data by K.F. Hirji in 2006;
Randomization Tests by E.S. Edgington and P. Onghena, Randomization and Monte
Carlo Methods in Biology by B.F.J. Manly, and a second edition of Permutation
Methods: A Distance Function Approach by P.W. Mielke and K.J. Berry in 2007.

12Technically, R was first developed in 1995, but only came into wide use in the period 2000-2009.
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2.9.1 K.J. Berry and PW. Mielke

In 2000 Kenneth J. Berry and Paul W. Mielke utilized Monte Carlo permutation
methods to investigate the Fisher Z transformation of the sample product-moment
correlation coefficient between variables x and y [7]. Utilizing Monte Carlo
permutation methods Berry and Mielke compared combinations of sample sizes and
population parameters for seven bivariate distributions. Both confidence intervals
and hypothesis testing were examined for robustness and non-normality. Each
Monte Carlo simulation was based on 1,000,000 bivariate random samples of sizes
n = 20 and n = 80 for pyy = 0.00 and o,y = +0.60, and compared to nominal
upper-tail probability values of @ = 0.99, 0.90, 0.75, 0.50, 0.25, 0.10, and 0.01.
Based on the results of the permutation simulations, Berry and Mielke concluded
that considerable caution should be exercised when using the Fisher Z transforma-
tion.

2.9.2 A.Agresti

In 2001 Alan Agresti published a lengthy article in Statistics in Medicine on
recent advances associated with exact inference for categorical data [1]. The article
was, in part, an overview article, but also one that examined and summarized
some of the criticisms of exact methods. For example, the conservative nature
of exact methods due to the inherent discreteness of the permutation distribution.
Agresti devoted two sections of the paper to complications from discreteness,
illustrating the problem with numerous examples involving samples with small
sample sizes. Agresti explained that in the real world it is rarely possible to achieve
an arbitrary critical value such as « = 0.05 under permutation and noted that
some researchers argued that fixing an unachievable « level is artificial and that one
should merely report the probability value. Finally, Agresti offered a compromise:
use adjustments of exact methods based on the mid- P value. The mid- P procedure,
Agresti explained, uses one-half the probability of the observed contingency table,
plus the probability values of those contingency tables that are less than that of the
observed contingency table.

2.9.3 PW. Mielke and K.]. Berry

Also in 2001 Paul W. Mielke and Kenneth J. Berry published a research monograph
titled Permutation Methods: A Distance Function Approach [71]. The book pro-
vided exact probability values and approximate probability values based on Monte
Carlo and moment techniques for univariate and multivariate data. Metric Euclidean



2.9 The Period from 2000 to 2009 45

distance functions were emphasized, in contrast to the non-metric squared Euclidean
functions common to statistical tests that rely on the assumption of normality.

In 2002 Paul Mielke and Kenneth Berry published an article on a multivariate
multiple regression analysis for experimental designs [72]. Mielke and Berry used
permutation methods to evaluate multivariate residuals obtained from a regression
algorithm. As they noted, applications included various completely randomized and
randomized-blocks experimental designs such as one-way, Latin square, factorial,
nested, and split-plot analysis of variance designs, both with and without covariates.
Unlike parametric procedures, the only requirement was the randomization of sub-
jects to treatments. When compared with classical parametric approaches, Mielke
and Berry found permutation methods to be exceedingly robust to the presence
of extreme values and, because the methods were based on permutations of the
observed data, no assumptions such as normality, homogeneity, and independence
were required.

2.9.4 F. Pesarin and L. Salmaso

Also in 2002 Fortunato Pesarin and Luigi Salmaso published an article in which
they explored exact permutation methods in unreplicated two-level multi-factorial
designs [80]. The approach of Pesarin and Salmaso preserved the exchangeability
of error components by testing up to k effects in 2€ designs. Pesarin and Salmaso
further discussed the advantages and limitations of exact permutation procedures
and executed a simulation study utilizing the Iris data of Fisher based on a paired
permutation strategy.

2.9.5 A. Janssen and T. Pauls

In 2003 Arnold Janssen and Thorsten Pauls published a lengthy, highly technical
article in The Annals of Statistics titled “How do bootstrap and permutation
tests work?” [53]. This was an ambitious paper of 40 pages that considered a
comprehensive and unified approach for the conditional and unconditional analysis
of linear Monte Carlo permutation methods. Under fairly mild assumptions, Janssen
and Pauls proved tightness and an asymptotic series representation for weak
accumulation points. The results lead Janssen and Pauls to a discussion of the
asymptotic correctness of Monte Carlo permutation methods as well as applications
in testing hypotheses.
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2.9.6 B.S. Cade and ]J.D. Richards

In 2006 Brian S. Cade and Jon D. Richards published a permutation test statistic for
quantile regression [20]. Cade and Richards observed that estimating the quantiles
of a response variable conditioned on a set of covariances in a linear model has
many applications in the biological and ecological sciences, as quantile regression
models allow the entire conditional distribution of a response variable y to be related
to some covariates X, providing a richer description of functional changes that is
possible by simply focusing on just the mean or other central statistics.

2.9.7 PW. Mielke, K.J. Berry, and J.E. Johnston

In 2007 Paul W. Mielke, Kenneth J. Berry, and Janis E. Johnston presented a Monte
Carlo permutation algorithm for the enumeration of a subset of all possible r-
way contingency tables with fixed marginal frequency totals [75]. The algorithm
provided analyses for any r-way contingency table with an integral value of » > 2.
This had long been a perplexing problem. There had been published any number
of algorithms for r xc¢ contingency tables. For example, Boyett in 1979 [16] and
Patefield in 1981 [78] had developed Monte Carlo permutation algorithms for
rxc contingency tables with fixed marginal frequency totals. Both algorithms
enumerated a subset of all possible two-way contingency tables from an observed
contingency table. The algorithm by Mielke, Berry, and Johnston was not an
extension of either the Boyett or Patefield algorithms, but an entirely new, highly
efficient, Monte Carlo permutation approach. The algorithm was later employed in
a number of applications [76].

2.9.8 R.A. Gianchristofaro, F. Pesarin et al.

Also in 2007 Rosa A. Gianchristofaro, Fortunato Pesarin, and Luigi Salmaso
published an article in which they considered permutation statistical methods for
testing ordered variables based on the nonparametric combination of permutation
dependent tests [45]. As Gianchristofaro, Pesarin, and Salmaso noted, several
solution had been proposed to cope with univariate testing problems on ordered
categorical data, most of which were based on the restricted maximum likelihood-
ratio test. These solutions were generally criticized because the degree of accuracy
of their asymptotic null and alternative distributions was difficult to assess and
to characterize. The authors offered a new exact solution based on simultaneous
analysis of a finite set of sampling moments of ranks assigned to ordered classes
and processed by the nonparametric permutation method.
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2.9.9 PW. Mielke, M.A. Long et al.

In 2009 Paul W. Mielke, Michael A. Long, Kenneth J. Berry, and Janis E. Johnston
extended the two-treatment ridit analysis developed by I.D.J. Bross to g > 2
treatment groups [77]. Ridit is an acronym for Relative to an I dentified Distribution,
where the suffix “it” represents a type of data transformation similar to logit and
probit. The most common application of ridit analysis compares two independent
treatment groups in which ridit scores are calculated for the ¢ ordered category
frequencies of the first treatment group and applied to the ¢ ordered categories of
the second treatment group, and vice versa. Mielke, Long, Berry, and Johnston used
a Monte Carlo permutation procedure to generate L sets of N random assignments
selected from the ¢V assignment configurations of the g treatment groups.

2.10 The Period from 2010 to 2018

Three features of permutation statistical methods were especially prominent in the
period 2010-2018. The first entailed an increasing criticism of rank-order statistical
procedures with their attendant loss of information due to the substitution of rank-
order statistics for numerical values. In lieu of rank-order statistical procedures,
many researchers advocated the use of permutation methods that utilized the original
numerical values and did not depend on the assumption of normality.

The second feature was a criticism of permutation statistical methods based on
squared Euclidean scaling that gave artificial weight to extreme scores and implied
a geometry of the analysis space that differed from the geometry of the ordinary
Euclidean data space. The alternative was to develop permutation tests and measures
based on ordinary Euclidean scaling that proved to be very robust relative to outliers,
extreme values, and highly skewed distributions.

The third feature in this period was a heavy reliance on Monte Carlo permutation
methods instead of time-consuming exact permutation methods. Monte Carlo
permutation methods with a large number of replications yielded results very close
to exact results. Moreover, in many cases Monte Carlo procedures proved to be more
efficient, especially in the analysis of contingency tables.

2.10.1 K.J. Berry, J.E. Johnston, and P.W. Mielke

In 2011 Kenneth J. Berry, Janis E. Johnston, and Paul W. Mielke published an
overview article in WIREs Computational Statistics simply titled ‘“Permutation
methods” [9]. Organized by decades, the article chronicled the development of
permutation statistical methods from 1920 to 2010. Special attention was paid to the
differences between the Neyman—Pearson population model of statistical inference
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and the Fisher—Pitman permutation model, as well as to the differences between
ordinary and squared Euclidean scaling functions.

2.10.2 D. Curran-Everett

In 2012 Douglas Curran-Everett published his eighth installment in a series on
Explorations in Statistics [21]. The eighth article focused on permutation statis-
tical methods. As Curran-Everett described, permutation methods operate on the
observed data from an experiment or survey and answer the question: out of all
the possible ways we can arrange the observed data, in what proportion of those
arrangements is a specified sample statistic at least as extreme as the one observed?
Curran-Everett explained that the proportion is the desired probability value.

2.10.3 J. Stelmach

In 2013 Jacek Stelmach published a paper on permutation tests to compare two
populations [91]. As Stelmach explained, one of the practical problems in estimating
real processes with regression models is the inevitable obsolescence of the models
as a result of changes in these processes. Stelmach observed that parametric tests
are usually carried out but these tests require a set of assumptions related to the
knowledge of a distribution, but permutation tests do not require any knowledge
of the distribution of examined populations. To this end Stelmach proposed a
permutation test to test the null hypothesis of equality of two multi-dimensional
populations.

2.10.4 K.J. Berry, J.E. Johnston, and P.W. Mielke

In 2014 Kenneth J. Berry, Janis E. Johnston, and Paul W. Mielke published a
research monograph titled A Chronicle of Permutation Statistical Methods: 1920-
2000, and Beyond [10]. The book traced the historical development of permutation
statistical methods from the early works of R.A. Fisher, R.C. Geary, and E.J.G. Pit-
man in the 1920s and 1930s to 2010. Because the development of permutation
statistical methods was so closely tied to the development of high-speed computing,
the book traces the development of permutation methods and computing as parallel
structures.
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2.10.5 LS. Amonenk and J. Robinson

In 2015 Inga S. Amonenk and John Robinson published a paper in which they
introduced a new nonparametric test statistic for the permutation test in complete
block designs [3]. Amonenk and Robinson determined the region in which the
test statistic existed, its properties on the boundary of the region, and proved that
saddlepoint approximations for tail probability values could be obtained inside the
interior of the region. Finally, Amonenk and Robinson provided numerical examples
showing that both the accuracy and the power of the new statistic improved on the
properties of the classical F-ratio test statistic under some non-Gaussian models and
equaled the properties for the Gaussian case.

2.10.6 K.]. Berry, J.E. Johnston, and P.W. Mielke

In 2016 Kenneth J. Berry, Janis E. Johnston, and Paul W. Mielke published
a research monograph titled Permutation Statistical Methods: An Integrated
Approach [11]. The book provided a synthesis of a number of statistical tests
and measures which, at first consideration, appear disjoint and unrelated. Numerous
comparisons of permutation and classical statistical methods were presented, and
the two methods were compared via probability values and, where appropriate,
measures of effect size. The Neyman—Pearson population model was introduced
and compared with the Fisher—Pitman permutation model of statistical inference.
Permutation tests and measures were described for a variety of completely-
randomized designs with interval-, ordinal-, and nominal-level data, and for
randomized-blocks designs with interval-, ordinal-, and nominal-level data.

2.10.7 M. Umlauft, F. Konietschke, and M. Pauly

In 2017 Maria Umlauft, Frank Konietschke, and Marcus Pauly published an article
on inference methods for null hypotheses formulated in terms of distribution
functions in general nonparametric factorial designs [100]. Umlauft, Konietschke,
and Pauly proposed a permutation approach which they described as a flexible
generalization of the Kruskal-Wallis g-sample rank-sum test to all types of factorial
designs with independent observations. The authors showed that the permutation
principle is asymptotically correct while keeping its finite exactness property when
the data are exchangeable.
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2.10.8 LK. Yeo

Also in 2017 In-Kwan Yeo proposed an efficient computer algorithm for computing
the exact distribution of the Wilcoxon signed-rank test [105]. Even at this late
date computer algorithms were still being proposed that were either faster, more
efficient, or more elegant than previous algorithms. Yeo noted that the proposed
algorithm was straightforward and easy to program even if ranks scores were tied.
Yeo performed a simulation study to compare the exact distribution and the normal
approximation and also compared computing times of the proposed algorithm with
those of other algorithms. Finally, Yeo presented the R computer program in which
the algorithm was coded.

2.10.9 K.]. Berry, J.E. Johnston, and P.W. Mielke

In 2018 Kenneth J. Berry, Janis E. Johnston, and Paul W. Mielke published a
research monograph titled The Measurement of Association: A Permutation Statisti-
cal Approach [12]. The book utilized exact and Monte Carlo permutation statistical
methods to generate probability values and measures of effect size for a variety
of measures of association. Association was broadly defined to include measures of
correlation for two interval-level variables, measures of association for two nominal-
level variables or two ordinal-level variables, and measures of agreement for two
nominal-level or two ordinal-level variables. Additionally, measures of association
for mixtures of the three levels of measurement were considered: nominal—ordinal,
nominal—interval, and ordinal-interval measures. Numerous comparisons of permu-
tation and classical statistical methods were presented.

Also in 2018 Kenneth Berry, Janis Johnston, and Paul Mielke published an
overview article in WIREs Computational Statistics titled “Permutation methods.
Part IT” [13]. The article was an extension of the authors’ previous article published
in 2011 in the same journal. The earlier article chronicled the development of
permutation statistical methods from its beginnings in the 1920s to 2010. This article
concentrated on computation efficiencies for permutation methods. Four calculation
efficiencies were highlighted. First, the advent and availability of high-speed
computing. Second, the reliance on all combinations of values of the observed data
instead of all permutations. Third, the use of mathematical recursion to eliminate
many of the calculations. Fourth, the use of only the variable components of the
selected test statistic and the elimination of those components that are invariant
under permutation.
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2.11 Summary

This chapter provided a brief history and overview of the early beginnings and
subsequent development of permutation statistical methods, roughly organized by
decades. Because of space limitations, only a small sample of contributions and
contributors to the permutation literature was presented for each 10-year period. The
early contributors to permutation statistical methods did not possess the computing
power to make permutation methods feasible. Throughout the early decades this
was a constant theme: there simply was no practical way to calculate the probability
values needed for an exact permutation analysis. Eventually modern computing
made permutation methods both feasible and practical. Thus the histories of
computing and permutation methods go hand-in-hand. Presently there is sufficient
computing power in any desktop, workstation, or laptop computer to generate the
many thousands of arrangements of the observed data needed for a permutation
statistical analysis.

Chapter 3 presents two models of statistical inference: the Neyman—Pearson
population model and the Fisher—Pitman permutation model. The population model
is the standard model taught in all introductory classes and will be familiar to most
readers. The permutation model will be unfamiliar to many readers and is the main
reason this book is being written. As noted in this chapter, permutation methods can
be computationally intensive. Thus Chap. 3 presents five computational efficiencies
for permutation statistical methods.
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Chapter 3 )
Permutation Statistical Methods Chack for

Abstract This chapter presents two models of statistical inference: the conven-
tional Neyman—Pearson population model that is taught in every introductory
course and the Fisher—Pitman permutation model with which the reader is assumed
to unfamiliar. The Fisher—Pitman model consists of three different permutation
methods: exact permutation methods, Monte Carlo permutation methods, and
moment-approximation permutation methods. The three methods are described and
illustrated with example analyses.

This chapter presents two competing models of statistical inference: the population
(normal) model and the permutation model. The Neyman—Pearson population
model is the standard model taught in all introductory classes and is familiar to most
readers.! The Neyman—Pearson population model was specifically designed to make
inferences about population parameters, provide approximate probability values,
and is characterized by the assumptions of random sampling, a normally-distributed
population, and homogeneity of variance when appropriate. The Fisher—Pitman
permutation model of statistical inference is less well known and includes three
different permutation methodologies, each of which is described and illustrated
in this chapter: exact permutation methods, Monte Carlo permutation methods,
and moment-approximation permutation methods.> In contrast to conventional
statistical tests based on the Neyman—Pearson population model, tests based on
the Fisher—Pitman permutation model are distribution-free, entirely data-dependent,
appropriate for nonrandom samples, provide exact probability values, and are ideal
for small sets of data.

IThe Neyman—Pearson population model of statistical inference is named for Jerzy Neyman
(1894-1981) and Egon Pearson (1895-1980).

2The Fisher—Pitman permutation model of statistical inference is named for R.A. Fisher (1890
1962) and E.J.G. Pitman (1897-1993).
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On the other hand, permutation tests can be computationally intensive, often
requiring many millions of calculations. Five computational efficiencies for per-
mutation statistical tests are described in this chapter. First, the development
of high-speed computing has made permutation methods feasible. Second, the
examination of all combinations of the observed data instead of all permutations
of the data greatly reduces the amount of calculation required. Third, the use of
mathematical recursion simplifies calculations of both test statistics and probability
values. Fourth, calculation of only the variable portion of the selected test statistic
minimizes the calculations required. Fifth, holding one array of the observed
data constant reduces the number of arrangements required for exact permutation
analyses.

As documented in Chap. 2, the permutation model of statistical inference had its
beginnings in the 1920s and 1930s with the works of Fisher [12], Geary [14], Eden
and Yates [9], Hotelling and Pabst [18], and Pitman [36-38]. Constrained by the
difficulty of computing tens of thousands of statistical values on tens of thousands
of arrangements of the observed data, permutation methods languished for many
years until the advent of high-speed computing. Presently, statistical methods under
the Fisher—Pitman permutation model is a rapidly developing field of statistical
methodology and finds increasing utility in a large number of academic fields and
disciplines.

3.1 The Neyman—Pearson Population Model

In contemporary research two competing models of statistical inference coexist: the
population model and the permutation model.?> The population model of statistical
inference, formally proposed by Jerzy Neyman and Egon Pearson in a seminal two-
part article on statistical inference published in 1928, is the model taught almost
exclusively in introductory courses, although in most textbooks the presentation of
the population model espoused by Neyman and Pearson is often conflated with an
approach espoused by Fisher [19].

The Neyman—Pearson population model of statistical inference assumes random
sampling with replacement from one or more specified populations [34, 35]. Under
the Neyman—Pearson population model the level of statistical significance that
results from applying a statistical test to the results of an experiment or survey
corresponds to the frequency with which the null hypothesis would be rejected in
repeated random samplings from the same specified population(s). Because repeated
sampling of the specified population(s) is usually prohibitive, it is assumed that an
approximating theoretical distribution such as a z, ¢, F, or x 2 distribution conforms

3There are, of course, other models of statistical inference. A third model, the Bayesian inference
model, is also very popular, especially in the decision-making sciences.
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to the discrete sampling distribution of the test statistics generated under repeated
random sampling.

Under the Neyman—Pearson population model two hypotheses concerning a
population parameter or parameters are advanced: the null hypothesis symbolized
by Hp and a mutually-exclusive, exhaustive alternative hypothesis symbolized by
H;.* The probability of rejecting a true Ho is determined by the researcher and
specified as type I or « error, a region of rejection in the tail or tails of the theoretical
distribution is delimited corresponding to «; for example,« = 0.05 or ¢ = 0.01, and
Hy is rejected if the observed test statistic value falls into the region(s) of rejection
with probability of type I error equal to or less than «.

Technically, under the Neyman—Pearson population model of statistical inference
the null hypothesis is rejected if the computed test statistic value falls into the region
of rejection defined by «. For example, if « = 0.05 with a two-tail test and the
critical values defining the region of rejection are £1.96, then a test statistic value
more extreme than £1.96 in either direction implies rejection of the null hypothesis
with a probability of type I error usually expressed as p < 0.05. In this research
monograph asymptotic probability values under the Neyman—Pearson population
model are given to four decimal places for comparison with exact probability values
under the Fisher—Pitman permutation model of statistical inference.

3.2 The Fisher-Pitman Permutation Model

While the Neyman—Pearson population model of statistical inference is familiar
to most researchers, the Fisher—Pitman permutation model of inference may be
less familiar. Permutation statistical methods were introduced by R.A. Fisher in
1925 [12], further developed by Geary in 1927 [14], Eden and Yates in 1933 [9],
Hotelling and Pabst in 1936 [18], and made explicit by Pitman in 1937 and
1938 [36-38]. For the interested reader, a number of excellent presentations of
the two models are available. See especially, discussions by Curran-Everett [8],
Feinstein [11], Hubbard [19], Kempthorne [23], Kennedy [24], Lachin [25], Lud-
brook [26, 27], and May and Hunter [30].

For a permutation statistical test in its most basic form, a test statistic is
computed on the observed data—often the same test statistic as in the Neyman—
Pearson population model. The observations are then permuted over all possible
arrangements of the observed data and the specified statistic is computed for
each possible, equally-likely arrangement of the observed data. The proportion
of arrangements in the reference set of all possible arrangements possessing test
statistic values that are equal to or more extreme than the observed test statistic
value constitutes the probability of the observed test statistic value.

4Some introductory textbooks denote the alternative hypothesis by Hy.
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Figure 3.1 presents a flowchart detailing the calculation of an exact permutation
probability value under the Fisher—Pitman model. The first step is to initialize two
counters; in this case, Counter A and Counter B. Counter A provides a count of
all test statistic values that are equal to or greater than the observed test statistic
value. Counter B provides a count of all possible arrangements of the observed data.
Second, the desired test statistic is calculated on the observed set of data. Third,
a new arrangement of the observed data is generated, while preserving the sample
size(s) and Counter B is increased by 1. Fourth, the desired test statistic is calculated
on the new arrangement of the observed data and compared with the original test
statistic value calculated on the observed set of data. If the value of the new test
statistic is equal to or greater than the value of the observed test statistic, Counter
A is increased by 1. If not, a check is made to see if this arrangement is the last in
the reference set of all possible arrangements. If it is, then Counter A divided by
Counter B yields the exact probability value; that is, the proportion of all possible
test statistic values that are equal to or greater than the observed test statistic value.
Otherwise, a new arrangement of the observed data is generated and the process is
repeated.

Statistical tests and measures based on the Fisher—Pitman permutation model
possess several advantages over statistical tests and measures based on the Neyman—
Pearson population model. First, tests based on the permutation model are much
less complex than tests based on the population model. Therefore, the results are
much easier to communicate to unsophisticated or statistically naive audiences.
Second, permutation tests provide exact probability values based on the discrete
permutation distribution of equally-likely test statistic values. Tests based on the
Neyman—Pearson population model only provide vague results such as P <
0.05.> Third, permutation tests are entirely data-dependent in that all the information
required for analysis is contained within the observed data—also called “the data
at hand method” [16]. There is no reliance on factors external to the observed
data, such as population parameters, assumptions about theoretical approximating
distributions, and alternative hypotheses. Fourth, permutation tests are appropriate
for nonrandom samples, such as are common in many fields of research. Fifth,
permutation tests are distribution-free in that they do not depend on the assumptions
associated with conventional tests under the population model, such as normality
and homogeneity of variance. Sixth, permutation tests are ideal for small data sets,
where conventional tests often are problematic when attempting to fit a continuous
theoretical distribution to only a few discrete values.

Because permutation statistical methods are inherently computationally-
intensive, it took the development of high-speed computing for permutation
methods to achieve their potential. Today, a small laptop computer outperforms even
the largest mainframe computers of previous decades. Three types of permutation
tests are common in the literature: exact, Monte Carlo, and moment-approximation
permutation tests.

5In this book, an upper-case letter P indicates a cumulative probability value and a lower-case
letter p indicates a point probability value.
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Initialize counter
A and counter B

Calculate the desired test
statistic on the set of ob-
served data

Permute a new arrange-
ment of the set of ob-
served data

Calculate a new
test statistic and
increase counter B

no Test if new statistic is
equal to or greater than
the observed statistic

yes

no
Increase counter A

Test if this is the last
arrangement of the ob-
served set of data

yes

Divide the results of
counter A by the results
of counter B

Fig. 3.1 Flowchart for the calculation of an exact permutation probability value
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g?:::—jlgssiﬁcation of . Varlablia B
variables A and B Variable A b b Total
a 9 9 18
a 0 12 12
Total 9 21 30

3.2.1 Exact Permutation Tests

The first step in an exact permutation test is to calculate a test statistic value for the
observed data. Second, a reference set of all possible, equally-likely arrangements
of the observed data is systematically generated. Third, the desired test statistic
is calculated for each arrangement in the reference set. Fourth, the probability
of obtaining the observed value of the test statistic, or one more extreme, is the
proportion of the test statistics in the reference set with values that are equal to or
more extreme than the value of the observed test statistic.

To be perfectly clear, in practice a different order is followed. First, a test statistic
value for the observed data is calculated. Second, the first of a reference set of all
possible, equally-likely arrangements of the observed data is generated. Third, a
test statistic value for the new arrangement of the observed data is calculated and
compared with the original test statistic value. Fourth, if the new value is equal to or
exceeds the original test statistic value, a counter is increased by one. The process
is repeated until all possible arrangements of the observed data have been generated
and evaluated. Finally, the probability of obtaining the observed value of the test
statistic, or one more extreme, is the proportion of the test statistics in the reference
set with values that are equal to or more extreme than the value of the observed test
statistic. In this manner it is not necessary to store the reference set of all possible
arrangements of the observed data, which is often quite large.

An Exact Permutation Example

To illustrate an exact permutation test, consider the small set of data given in
Table 3.1. Fisher’s exact probability test is the iconic permutation test.® Fisher’s
exact test calculates the hypergeometric point probability value for the reference
set of all possible arrangements of cell frequencies, given the observed marginal
frequency totals. The two-tail probability value of the observed arrangement of
cell frequencies is the sum of the observed probability value and all probability
values that are equal to or less than the observed probability value. Because Fisher’s
exact test simply yields a probability value, there is no test statistic defined in the

SFisher’s exact test was independently developed by R.A. Fisher, Joseph Irwin, and Frank Yates in
the early 1930s [13, 21, 40].
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Tabl('a 3.% Co;lvezntional Variable B
notagon orasx Variable A b b Total
contingency table
a nyp ni2 N
a ny| Ny N,
Total nyp np N

usual sense. Thus the first step is to determine the reference set of all possible
arrangements of the four cell frequencies, given the observed marginal frequency
totals. For a 2x2 contingency table, it is relatively easy to determine the total
number of possible tables in the reference set.

Consider the 2x2 contingency table in Table 3.2. Denote by a dot (-) the partial
sum of all rows or all columns, depending on the position of the (-) in the subscript
list. If the () is in the first subscript position, the sum is over all rows and if the (-)
is in the second subscript position, the sum is over all columns. Thus n;, denotes the
marginal frequency total of the ith row,i = 1, ..., r, summed over all columns,
and n ; denotes the marginal frequency total of the jth column, j =1, ..., c,
summed over all rows. Thus n. and n, denote the marginal frequency totals for
rows 1 and 2, n 1 and n 5 denote the marginal frequency totals for columns 1 and 2,
ni;j denotes the cell frequencies fori, j = 1,2,and N = n11 +n12 +n21 +n22. The
total number of possible values for any cell frequency, say n11, is given by

M =min(ny,n1) —max(0,n;; —nxp)+1.
Thus, for the frequency data given in Table 3.1 there are
M = min(18,9) — max(0,8—-11)+1=9-04+1=10

possible arrangements of cell frequencies in the reference set, given the observed
row and column marginal frequency distributions, {18, 12} and {9, 21}, respectively.

The reference set of the M = 10 arrangements of cell frequencies and the
associated hypergeometric point probability values are listed in Table 3.3. For any
2x2 contingency table, such as depicted in Table 3.2, the hypergeometric point
probability of any specified cell, say cell (1,1), is given by

ni noy N\! n!ny!ni!'no!
p(iilny,ny, N) = = .
ni1) \np /) \ni. N!'nii!' nia! nop! npo!

For the frequency data given in Table 3.1, the two-tail probability value is the sum
of the probability value of the observed contingency table and all probability values
that are equal to or less than the probability value of the observed table. Thus
Table 10 in Table 3.3 (the observed table) has a hypergeometric point probability
value of pjp = 0.3398x 1072 and only Tables 3.1 and 3.2 possess point probability
values that are less than p = 0.3398x1072; that is, p1 = 0.1538x10~* and
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Table 3.3 Listing of the Table 1  Probability Table 2 Probability

M = 10 possible 2x2 0 18 0.1538x1074 1 17  0.6228x103
contingency tables in the : x : x

reference set from the 9 3 8 4

frequency data given in Table 3  Probability Table 4  Probability
Table 3.1 with associated 2 16 0.8470x1072 3 15 0.5270x107!
exact hypergeometric point 7 5 6 6

bability val
probabiiity vatues Table 5 Probability =~ Table6  Probability

4 14 0.1694x107' 5 13 0.2964

5 7 7 8

Table 7 Probability Table 8  Probability
6 12 0.2855 7 11 0.1468

3 9 5 10

Table 9  Probability Table 10  Probability
8 10 0.3670x107! 9 9  0.3398x1072

1 11 0 12
Table 3.4 L'isting' of the 3x5 B, B, By By Bs Total
cell frequencies with rows
(R1, R2, R3) and columns Ay 4 72 90 22
(Cy, C2, C3, Cy, Cs) for an Az L5 2 76 21
exact probability example Az 4 5 10 18 0 37
Total 9 17 14 34 6 80

pa = 0.6228x1073, respectively. The cumulative probability value of the three
tables is

P = p{9/18,9, 30} + p{0]18,9, 30} + p{1]18, 9, 30}

_ I8LI2001211 1812101211 1811219121

301919100 12! ' 30!10! 1819131 ' 30! 1! 17! 8! 4!
=0.3398x107% 4+ 0.1538x10™* + 0.6228 x 1073

= 0.4036x1072 .

A Second Exact Permutation Test Example

For a second example of an exact permutation analysis, consider the 3x5 contin-
gency table with N = 80 cell frequencies given in Table 3.4. Pearson’s chi-squared
test statistic for an r x ¢ contingency table is taught in every introductory course and
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is given by
r c n2
2 )
=N -11,
OV 2
i=1 j=1 :
where n; denotes a row marginal frequency total fori = 1, ..., r, n_; denotes a
column marginal frequency total for j = 1, ..., ¢, n;; denotes an observed cell
frequency fori = 1,...,rand j = 1, ..., ¢, and N is the total of the cell

frequencies; in this case, N = 80. For the frequency data given in Table 3.4 with
row marginal frequency totals {22, 21, 37} and column marginal frequency totals
{9, 17, 14, 34, 6}, the observed value of Pearson’s chi-squared test statistic is

) r c n12]
=N

i=1 j=1

42 72 02
= 80 — 1) =25.1809 .
ananmn+ T 316 )

The exact probability value of x> = 25.1809 under the Fisher—Pitman permuta-
tion model is the sum of the hypergeometric point probability values associated
with the chi-squared values calculated on the reference set of all M possible
arrangements of the cell frequencies, given the observed marginal frequency totals.
For the frequency data given in Table 3.4, there are M = 21,671,722 possible,
equally-likely arrangements of the cell frequencies given the observed marginal
frequency totals, of which 16,498,422 chi-squared values are equal to or greater than
the observed chi-squared value of 2 = 25.1809, yielding an exact hypergeometric
probability value of P = 0.1009x1072.

For comparison, the chi-squared test statistic is asymptotically distributed as
Pearson’s x2 with (r — 1)(c — 1) degrees of freedom under the Neyman—Pearson
null hypothesis. With (r — 1)(c — 1) = (3 — 1)(5§ — 1) = 8 degrees of freedom, the
asymptotic probability value of x? = 25.1809is P = 0.1449x1072.

Comparison with Fisher’s Exact Probability Test

Although Fisher’s exact probability test is typically limited to 2x2 contingency
tables, it is possible to compute Fisher’s exact test on larger tables, such as the 3 x5
contingency table given in Table 3.4 [32]. It is important to note that Fisher’s exact
probability test and an exact chi-squared test of independence are constructed quite
differently, although both tests will occasionally yield identical probability values.
Fisher’s exact test generates a reference set of all M possible arrangements of cell
frequencies given the observed marginal frequency totals, computes the hypergeo-
metric point probability value for each arrangement of the observede data, and sums
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the probability values that are equal to or less than the probability value obtained
from the observed arrangement of cell frequencies. On the other hand, an exact
chi-squared test generates a reference set of all M possible arrangements of cell
frequencies given th observed marginal frequency totals, calculates the chi-squared
value for each arrangement of cell frequencies, computes the hypergeometric point
probability value for each arrangement, and sums the probability values associated
with those chi-squared values that are equal to or greater than the chi-squared value
obtained from the observed arrangement of cell frequencies.

For the frequency data given in Table 3.4, the point probability value for
the observed arrangement of cell frequencies is p = 0.5164x1078. There are
M = 21,671,722 possible, equally-likely arrangements of the cell frequencies
in Table 3.4, of which 18,683,509 hypergeometric point probability values are
equal to or greater than p = 0.5164x1078, yielding an exact probability value
of P =0.5174x1072.

3.2.2 Monte Carlo Permutation Tests

As sample sizes increase, the size of the reference set of all possible arrangements of
the observed data can become quite large and exact permutation methods are quickly
rendered impractical. For example, permuting two samples of sizes n; = ny = 35
generates

M= (n1 +ny)! _ (35 4+ 35)!

= =112,186,277,816,662,845,432
ni! ny! 35! 35!

equally-likely arrangements of the observed data; or in words, 112 billion billion
different arrangements of the observed data—too many statistical values to compute
in a reasonable amount of time.

When exact permutation procedures become intractable, a random subset of all
possible arrangements of the observed data can be substituted, providing approx-
imate, but highly accurate, probability values. Monte Carlo permutation methods
generate and examine a random subset of all possible, equally-likely arrangements
of the observed data. For each randomly-selected arrangement of the observed data,
the desired test statistic is calculated. The probability of obtaining the observed
value of the test statistic, or one more extreme, is the proportion of the randomly-
selected test statistics with probability values that are equal to or more extreme
than the probability value of the observed test statistic. With a sufficient number of
randomly-selected samples, a probability value can be computed to any reasonable
accuracy. Provided the probability value is not too small, the current recommended
practice is to use L = 1,000,000 randomly-selected arrangements of the observed
data to ensure a probability value with three decimal places of accuracy. To ensure
four decimal places of accuracy, the number of randomly-selected arrangements
must be increased by two magnitudes of order; that is, L = 100,000,000 [22].
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A Monte Carlo Permutation Example

Consider once again the frequency data given in Table 3.4 on p. 64 with N = 80
observations. In many cases the exact analysis of M = 21,671,722 arrangements
of cell frequencies would be considered impractical. In such cases a random sample
of cell arrangements can yield an approximate probability value with considerable
accuracy. Based on L = 1,000,000 randomly-selected cell arrangements given the
observed marginal frequency totals, the Monte Carlo probability value of x> =
25.1809is P = 0.1055x 1072, which compares favorably with the exact probability
value of P = 0.1009x1072.

3.2.3 Moment-Approximation Permutation Tests

Monte Carlo permutation methods can be inefficient when desired probability
values are very small; for example, probability values on the order of 107°
as the Monte Carlo permutation method requires a large number of randomly-
selected test statistics to approximate such a small probability value. Prior to the
development of high-speed computing that made exact and Monte Carlo permu-
tation methods possible, researchers relied on moment-approximation procedures
to provide approximate probability values. The moment-approximation of a test
statistic requires calculation of the exact moments of the test statistic, assuming
equally-likely arrangements of the observed data. The exact moments are then used
to fit a specified distribution that approximates the underlying discrete permutation
distribution and provide an approximate, but often highly accurate, probability
value.

For many years the beta distribution was used for the approximating distribution.
Presently, the approximating distribution of choice is the Pearson type III probability
distribution, which depends on the exact mean, variance, and skewness of the test
statistic under consideration, say §, given by
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respectively, where M denotes the total number of possible, equally-likely arrange-
ments of the observed data. The standardized statistic given by
S0 —
7= [22)
03
follows the Pearson type III distribution, where §, denotes the observed value of test
statistic §. It should be noted that while the moments are exact, the resultant Pearson
type III probability value is always approximate.

A Moment-Approximation Permutation Example

For the frequency data given in Table 3.4 on p. 64, the observed value of the
permutation test statistic is §, = 24.8661, the expected value of test statistic § is
s = 8.00, the variance of test statistic § is 652 = 14.5148, the standardized test
statistic is

8o — s _ 24.8661 — 8.00

T = =
os J/14.5148

= +4.4270,

and the moment-approximation probability value based on the Pearson type III
probability distribution is P = 0.9763x1073.

A Comparison of the Three Approaches

The three approaches to determining permutation probability values (exact, Monte
Carlo, and moment-approximation) often yield similar probability values. The dif-
ference between the moment-approximation probability value (P = 0.9763x107%)
and the exact probability value based on all M = 21,671,722 arrangements of the
observed data in Table 3.4 (P = 0.1009x10~%) is only

Ap = 0.9763x107> — 0.1009x10™* = 0.9662x1073 |

the difference between the moment-approximation probability value (P =
0.9763x1073) and the Monte Carlo probability value based on a sample of
L = 1,000,000 random arrangements of the observed data in Table 3.4
(P = 0.1055%1072) is only

Ap =0.1055x1072 — 0.9763x 107> = 0.7870x10™* ,

and the difference between the Monte Carlo probability value based on a sample
of L = 1,000,000 random arrangements of the observed data in Table 3.4 (P =
0.1055x10’2) and the exact probability value based on all M = 21,671,722
arrangements of the observed data in Table 3.4 (P = 0.1009x1072) is only

Ap =0.1055x1072 — 0.1009x 1072 = 0.4600x 10 .
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3.3 Permutation and Parametric Statistical Tests

Permutation statistical tests, based on the Fisher—Pitman permutation model, differ
from traditional parametric tests, based on the Neyman—Pearson population model,
in several ways. First, permutation tests are entirely data-dependent in that all the
information required for analysis is contained within the observed data set [4, 33].
Second, permutation tests are appropriate for nonrandom samples, such as are com-
mon in many fields of research [38]. Third, permutation tests are distribution-free in
that they do not depend on the assumptions associated with traditional parametric
tests, such as normality and homogeneity of variance [5]. Fourth, permutation tests
provide exact probability values based on the discrete permutation distribution of
equally-likely test statistic values, rather than approximate probability values based
on a theoretical approximating distribution, such as a z, x2, t, or F distribution [11].
Fifth, permutation tests are ideal for small data sets, whereas distribution functions
often provide poor fits to the underlying discrete sampling distribution. Of these
five differences, the requirements of random sampling and normality greatly limit
the application of statistical tests and measures based on the Neyman—Pearson
population model.

3.3.1 The Assumption of Random Sampling

It is important to note that the mathematical theorems that justify most statistical
procedures under the Neyman—Pearson population model of statistical inference
apply only to random samples drawn with replacement from a completely-specified
sampling frame. However, if the sample is not a random sample from a well-defined
population, then the validity of the hypothesis test is questionable [38]. There are,
admittedly, some applications in statistical analysis in which random sampling
from a specified population is neither attempted nor considered important. The fact
that medical researchers seldom use random samples often comes as a surprise to
investigators who work in other domains [11].

Research psychologists have been especially concerned with problems of ran-
dom sampling. Writing in Psychological Bulletin in 1966, psychologist Eugene
Edgington stated his position unequivocally: “statistical inferences cannot be made
concerning populations that have not been randomly sampled” [10, p. 485]. Writing
in Canadian Psychology in 1993, psychologists Michael Hunter and Richard May
noted that random sampling is of particular relevance to psychologists, “who rarely
use random sampling or any other sort of probability sampling” [20, p. 385]. In 1988
psychologist William Hays wrote:

The point is that some probability structure must be known or assumed to underlie the
occurrence of samples if statistical inference is to proceed. This point is belabored only
because it is so often overlooked, and statistical inferences are so often made with only the
most casual attention to the process by which the sample was generated. The assumption
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of some probability structure underlying the sampling is a little “price tag” attached to
a statistical inference. It is a sad fact that if one knows nothing about the probability of
occurrence for particular samples of units for observation, very little of the machinery
we are describing here applies. This is why our assumption of random sampling is not
to be taken lightly... . Unless this assumption is at least reasonable, the probability results
of inferential methods mean very little, and these methods might as well be omitted [17,
p. 21217

In summary, conventional sampling distributions require random sampling
whereas permutation distributions do not [20, p. 387].

3.3.2 The Assumption of Normality

The assumption of normality is so basic to classical statistics that it deserves
special attention. Two points should be emphasized. First, permutation tests make
no distributional assumptions and, therefore, do not depend on the assumption of
normality. Second, the assumption of normality by conventional tests is always
unrealistic and never justified in practice [5, 29].

In 1927 R.C. Geary famously proclaimed: “Normality is a myth; there never
has, and never will be, a normal distribution” [15, p. 241] and in 1938 Joseph
Berkson wrote: “we may assume that it is practically certain that any series of
real observations does not actually follow a normal curve with absolute exactitude
in all respects” [2, p. 526] (see footnote 7). Robert Matthews once described the
normal distribution as “beautiful, beguiling and thoroughly dangerous” [29, p. 193]
and in 1954 1.D.J. Bross pointed out that statistical methods “are based on certain
assumptions—assumptions which not only can be wrong, but in many situations
are wrong” [6, p. 815] (see footnote 7). Others have empirically demonstrated the
prevalence of highly-skewed and heavy-tailed distributions in a variety of academic
disciplines, the best-known of which is Theodore Micceri’s widely quoted 1989
article on “The unicorn, the normal curve, and other improbable creatures” [31].

3.4 Advantages of Permutation Methods

Alvan Feinstein was a strong advocate for permutation methods. Trained as
both a mathematician and a medical doctor, Feinstein is widely regarded as the
founder of clinical epidemiology and patient-oriented medicine and the originator
of clinimetrics: the application of mathematics to the field of medicine [3, p. 246].
In 1973 Feinstein published a formative article titled “The role of randomization
in sampling, testing, allocation, and credulous idolatry” [11]. As Feinstein’s focus

7Emphasis in the original.
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was on medical investigations, he detailed the major violations of the assumptions
underlying tests of two groups:

1.

2.

The groups studied in modern clinical or epidemiologic research are
seldom selected as random samples.

For the many clinical and epidemiology research projects that are per-
formed as surveys, the subjects are not randomly assigned.

. The distribution of the target variable is usually unknown in the parent

population.
It is usually known that the target variable does not have a Gaussian
distribution, and often departs from it dramatically.

. It is usually known that the variances of the two samples are not remotely

similar.

Feinstein then put forth some advantages of tests under the Fisher—Pitman
permutation model that were insightful for the time and foreshadowed later research:

1.

2.

The result of a permutation test is a direct, exact probability value for the
random likelihood of the observed difference.

Permutation tests do not require any unwarranted inferential estimations of
means, variances, pooled variances, or other parameters of an unobserved,
hypothetical parent population. The tests are based solely on the evidence
that was actually obtained.

The investigator is not forced into making any erroneous assumptions
either that the contrasted groups were chosen as random samples from a
parent population or that treatments under study were randomly allocated
to the two groups.

The investigator is not forced into making any erroneous or unconfirmable
assumptions about a Gaussian (or any other) distribution for the parent
population, or about equal variances in the contrasted groups.

A permutation test can be applied to groups of any size, no matter how
large or small. There are no degrees of freedom to be considered. In the
case of a contingency table, there is no need to worry about the magnitude
of the expected value, no need to calculate expectations based on fractions
of people, and no need to worry about applying, or not applying, Yates’
correction for continuity.

To summarize, permutation statistical methods yield exact probability values, are
completely data-dependent, do not require random sampling, make no assumptions
about distributions, and can be applied to very small samples. The one drawback
to permutation tests, as noted by Feinstein in 1973, is that permutation tests are
notoriously difficult to calculate. While this statement was certainly true in 1973, in
the age of high-speed computing the statement is most certainly no longer accurate.
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3.5 Calculation Efficiency

Although permutation statistical methods do not require random sampling, nor-
mality, homogeneity, or large sample sizes, a potential drawback is the sheer
amount of computation required, with exact permutation tests being unrealistic for
many statistical analyses. Even Monte Carlo permutation methods often require the
enumeration of millions of random arrangements of the observed data in order to
provide a desired accuracy.

Five innovations mitigate the computation problem. First, high-speed computing
makes possible exact permutation statistical methods in which all possible arrange-
ments of the observed data are generated and examined. Second, the examination
of all combinations of the observed data instead of all permutations of the observed
data provides the same probability value with considerable savings in computing
time. Third, mathematical recursion greatly simplifies difficult calculations. Fourth,
calculation of only the variable components of the selected test statistic reduces
the amount of calculation required for each of the enumerated arrangements. Fifth,
holding one array of the observed data constant in any type of block design can
substantially lessen the number of arrangements required for an exact permutation
analysis.

3.5.1 High-Speed Computing

One has only to observe the hordes of the digitally distracted trying to navigate
a crowded sidewalk with their various smart-phones, pads, pods, ear-buds, and
tablets to realize that computing power, speed, and accessibility have finally arrived.
Permutation methods are, by their very nature, computationally intensive and
required the development of high-speed computing to achieve their potential. Prior
to 1960, computers were large, slow, and expensive. In large part their use was
restricted to military and industrial applications. In the 1960s, mainframe computers
became widely available to academicians at major research universities. By 1980
desktop computers and workstations, although not common, were available to many
researchers. In addition, the speed of computing increased greatly between 1960 and
1980. All this paved the way for the rapid development of permutation statistical
methods.

While not widely available to researchers, by 2010 mainframe computers were
measuring computing speeds in teraflops. To emphasize the progress of computing,
in 1951 the Remington Rand Corporation introduced the UNIVAC computer
running at 1905 flops, which with ten mercury delay line memory tanks could store
20,000 bytes of information; in 2008 the IBM Corporation supercomputer, code-
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named Roadrunner, reached a sustained performance of one petaflops®; in 2010 the
Cray Jaguar was named the world’s fastest computer performing at a sustained speed
of 1.75 petaflops with 360 terabytes of memory; and in November of 2010 China
exceeded the computing speed of the Cray Jaguar by 57% with the introduction of
China’s Tianhe-1A supercomputer performing at 2.67 petaflops [28].

In October of 2011, China broke the petaflops barrier again with the introduction
of the Sunway Bluelight MPP [1]. In late 2011 the IBM Yellowstone super-
computer was installed at the National Center for Atmospheric Research (NCAR)
Wyoming Supercomputer Center in Cheyenne, Wyoming. After months of testing,
the Wyoming Supercomputer Center officially opened on Monday, 15 October 2012.
Yellowstone was a 1.6 petaflops machine with 149.2 terabytes of memory and
74,592 processor cores and replaced an IBM Bluefire supercomputer installed in
2008 that had a peak speed of 76 teraflops. Also in late 2011, IBM unveiled the Blue
Gene\P and \Q supercomputing processing systems that can achieve 20 petaflops.
At the same time, IBM filed a patent for a massive supercomputing system capable
of 107 petaflops. In June of 2018 IBM unveiled the Summit supercomputer at Oak
Ridge National Laboratory in Tennessee that achieved sustained computing speeds
of 200 petaflops.

On the near horizon are so-called quantum computers. The basic element of a
quantum computer is the qubit. Unlike a standard bit (binary digit), which can take
on a value of either 0 or 1, a qubit (quantum bit) can be either 0, 1, or a combination
of the two. Because qubits can represent 0 and 1 simultaneously, they can encode a
wealth of information. As Thomas Siegfried explained it, five bits represent one out
of 25 = 32 possible permutations, but five qubits represent all of 27 = 32 possible
permutations [39]. Teams from academia and industry are working on versions of
quantum computers with 50-100 qubits, enough to perform calculations that the
most powerful supercomputers of today cannot accomplish in a reasonable time [7].
Google, which has already developed a nine qubit computer, has aggressive plans
to scale up to 49 qubits, and IBM, which has developed a 16 qubit prototype,
announced in early 2017 that it would build a 50 qubit quantum computer in the
next few years [7].

Finally, high-speed computers have dramatically changed the field of compu-
tational statistics. The future of high-speed computing appears very promising
for exact and Monte Carlo permutation statistical methods. Combined with other
efficiencies, it can safely be said that permutation methods have the potential to
provide exact or Monte Carlo probability values in an efficient manner for a wide
variety of statistical applications.

80ne petaflops indicates a quadrillion operations per second, or a 1 with 15 zeroes following it.
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3.5.2 Analysis with Combinations

Although permutation statistical methods are known by the attribution “permuta-
tion,” they are generally not based on all possible permutations of the observed
data. Instead, exact permutation methods are based on all possible combinations of
arrangements of the observed data. Since, in general, there are fewer combinations
than permutations, analysis of combinations of the observed data greatly reduces
the amount of calculation required.

To illustrate the efficiency achieved by analyzing all combinations of the
observed data instead of all permutations, consider N = 10 observations that are
to be randomized into two groups, A and B, where n4 = np = 5 observations.
Suppose that the purpose is to compare differences between the two groups, such
as a mean difference. Let the ny = 5 observations be designated as a through
e and the np = 5 observations be designated as f through j. For Group A, the
first observation can be chosen in 10 different ways, the second observation in nine
ways, the third observation in eight ways, the fourth observation in seven ways, and
the fifth observation in six ways. Once the five observations of Group A have been
chosen, the remaining five observations are assigned to Group B.

Of the 10x9%x8x7x6 = 30,240 ways in which the five observations can be
arranged for Group A, each individual quintet of observations will appear in a series
of permutations. Thus, the quintet {a, b, c, d, e} can be permuted as {a, b, c, e, d},
{a,b,d,e,c}, {a,b,d,c,e}, and so on. Each permutation of the five observations
will yield the same mean value. The number of different permutations for a group of
five observations is 5! = 120. Thus, each distinctive quintet will appear in 120 ways
among the 30,240 possible arrangements. Therefore, 30,240 divided by 120 yields
252 distinctive quintets of observations that can be formed by dividing N = 10
observations into two groups of five observations each. The number of quintets can
conveniently be expressed as

| |
(na +np)! _ S +5)! _ 950
nA!nB! 5!5!

However, half of these arrangements are similar, but opposite. Thus, a quintet
such as {a, b, c, d, e} might be assigned to Group A and the quintet {f, g, i, i, j}
might be assigned to Group B, or vice versa, yielding the same absolute mean
difference. Consequently, there are only 252/2 = 126 distinctly different pairs of
quintets to be considered. A substantial amount of calculation can be eliminated by
considering all possible combinations of arrangements of the observed data in place
of all possible permutations with no loss of accuracy. Even in this small example,
a reduction from 30,240 equally-likely arrangements of the observed data to 126
arrangements constitutes a substantial increase in efficiency.
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3.5.3 Mathematical Recursion

Mathematical recursion is a process by which an initial probability value of a
test statistic is calculated, then successive probability values are generated from
the initial value by a recursive process. The initial value need not be an actual
probability value, but can be a completely arbitrary positive value by which the
resultant relative probability values are adjusted for the initializing value at the
conclusion of the recursion process.

A Recursion Example

Consider a 2 x2 contingency table using the notation in Table 3.5. Denote by a dot (+)
the partial sum of all rows or all columns, depending on the position of the (-) in the
subscript list. If the (-) is in the first subscript position, the sum is over all rows and
if the (-) is in the second subscript position, the sum is over all columns. Thus, n;,
denotes the marginal frequency total of the ithrow,i =1, ..., r, summed over all
columns, n_; denotes the marginal frequency total of the jth column, j =1, ..., c,
summed over all rows, and N = n11 4+ n12 + nz1 + na2 denotes the table frequency
total. The probability value corresponding to any set of cell frequencies in a 2x2
contingency table, n11, n12, na1, 122, is the hypergeometric point probability value

given by
ni noy N\! n!ny!ni!'no!
p= ni1/) \np /) \ni. - N!niq! niz! nop! noo!

Since the exact probability value of a 2x2 contingency table with fixed marginal
frequency totals and one degree of freedom is equivalent to the probability value
of any one cell, determining the probability value of the cell containing n1;
observations is sufficient.

If

pini1 + lny,ny, N} = p{niilni,ng, N}x f(ni1) ,

Table 3.5 Conventional

Lo Category
notation for a 2x2 Cat ) ) Total
contingency table ategory 0

1 nyy npp o,
2 ny1  nyp N,

Total ny ny N



76 3 Permutation Statistical Methods

then solving for f(n11) produces

p{ni1 +1iny,n, N}
fn) =
pinilni, na, N}

_ nit! niz! nop! noo!
(n11 + D! (12 — D! (n21 — D! (no2 + D!

and, after cancelling, yields

niz2n2i

) = (ni1+ D +1)

3.1

To illustrate mathematical recursion with an arbitrary initial value, consider the
2x2 contingency table given in Table 3.6 with N = 24 observations. For the cell
containing n1; = 6 observations there are

M =min(n;,n1) —max(0,n1; —n) +1

— min(10, 8) — max(0,6 —12) + 1 =8 —0+1=9

possible arrangements of cell frequencies, given the observed marginal frequency
totals. Table 3.7 lists the reference set of the M = 9 cell arrangements along with
the associated hypergeometric point probability values to six decimal places.

To illustrate the use of an arbitrary origin in a recursion procedure, consider
Table 3.1 in Table 3.7 and set relative probability value H{n1; = 0]10, 8, 24} to
a small arbitrarily-chosen positive value, say 1.00. Thus, H{n1; = 0|10, 8,24} =
1.00. Then, following Eq. (3.1), a recursion procedure produces

10)(8
Hingy = 1]10.8.24) = 1.000000x  CO® 1y 40gs71
O+ D6+ 1)
9T
H{ni1 =210, 8,24} = 11.428571 x ) = 45.000000,
a+Ha+1n
8)(6
H{ny1 = 3|10, 8, 24} = 45.000000 x ®)(©) = 80.000000 ,
2+ D@+ 1)
(S
Hiny = 4110, 8,24} = 80.000000 x 2 70.000000
BG+DO+1D)
Table 3.6 Example data for Variable B

a recursion process with an

arbitrary initial value Variable A b b Total

a 6 4 10
a 2 12 14
Total 8 16 24
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Table 3.7 Listing of the Table | Probability Table2 Probability
M =9 possible 2x2

contingency tables from 0 10 0.004083 I 9 0.046664
Table 3.6 in the reference set 8 6 7 7

with associated exact Table 3  Probability Table 4 Probability
hypergeometric probability 2 8 0.183739 3 7 0.326648
values to six decimal places 6 8 5 9

Table 5 Probability Table 6 Probability
4 6 0.285817 5 5 0.124720
4 10 3 11

Table 7 Probability Table 8 Probability
6 4 0.025983 7 3 0.002284
2 12 1 13

Table 9  Probability

8 2 0.000061

0 14
B B ©@
H{ni; = 5]10, 8, 24} = 70.000000 x = 30.545455
@4+ 1)A0+1)
5)@3
H{n; = 6]10, 8, 24} = 30.545455 x )3 = 6.363636,
G+ DA1+1)
4H(2
H{n;; =7]10,8,24} = 6.363636 x Q) = (0.559441
6+ DHA2+1)
and
B B O
H{ni; = 8|10, 8,24} = 0.559441 x 0.014985 ,

T+ D(A3+1)

for a total of

8
T =) Hinn =il10,8,24)
i=0
= 1.000000 + 11.428571 + - - - + 0.014985 = 244.912088 .

The desired exact point probability values are then obtained by dividing each
relative probability value, H{n11|n1,n.1, N}, by the recursively-obtained total, T'.
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For example,

H 1.000000

pini1 = 0]10, 8,24} = = = 0.004083 ,
T ~ 244.912088

(1= 1110,8,24) = 12 = HLABSTL 0 coea

pune= A0S S = = 544912088 T ’
Hy  45.000000

plnin = 2010,8,24)= = —0.183739,

T =~ 244912088

Hy 80.000000
p{n11 = 3]10,8,24} = T = 244912088 — 0.326648 ,

(n1 = 4110,8, 24y = 15 _ 700000000 50014

pune= AR08 S = = 044912088 T ’
He  30.545455

plnii = 5/10,8,24)= ¢ = —0.124720
T ~ 244.912088

H; 6.363636

plnn 6|10, 8, 24} T 244912088 0.025983 ,
H, 0.559441
plni = 7]10,8,24) = % = — 0.002284 ,
T 244.912088
and
H 0.014985
plni = 8]10,8,24)= " = 0.000061 .

T ~ 244.912088

In this manner, the entire analysis is conducted utilizing an arbitrary initial value
and a recursion procedure, thereby eliminating all factorial expressions. When the
number of potential contingency tables given by max(n1) — min(rn11) + 1 is large,
the computational savings can be substantial.

3.5.4 Variable Components of a Test Statistic

Under permutation, only the variable components of the specified test statistic need
to be calculated for each arrangement of the observed data. As this component is
often a very small piece of the desired test statistic, calculations can often be reduced
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by several factors. To illustrate, consider the raw-score expression for a conventional
Pearson product-moment correlation coefficient between variables x and y given by

N N N
inyi - (ZMZ%)/N
Fey = i=1 i=1 i=1 , (3.2)

i=1 i=1

where N is the number of bivariate measurements. For Pearson’s correlation
coefficient given in Eq. (3.2)

N N N N
N Yxo Y xR, Dy and Y y?
i=1 i=1

i=1 i=1

are invariant under permutation. Thus, it is sufficient to calculate only Z;N: 1 Xi Vi
for each permutation of the observed data, eliminating a great deal of calculation. In
addition, it is only necessary to permute either variable x or variable y, leaving the
other variable fixed.

3.5.5 Holding an Array Constant

In the special case of block designs, such as matched-pairs and randomized-blocks
analysis of variance, it is possible to reduce the number of arrangements to be
examined by holding one of the arrays (treatment values) constant, while permuting
the other arrays. For example, given g = 3 treatments and b = 10 subjects (blocks)
in each treatment, there are

M = (g")" = (3)'"" = 60,466,176

arrangements of the observed data to be considered. Holding one of the b sets of
blocks constant, relative to the other b — 1 sets of blocks, there are

b—1 _

M= (g) ™ ="

= 10,077,696

arrangements of the observed data to be considered, a reduction of 50,388,480
arrangements, or 83%.

These five features, high-speed computing, mathematical recursion with an
arbitrary initial value, computation of only the variable components of the test
statistic under permutation, holding an array of the observed data constant, and
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utilizing combinations instead of permutations, produce a highly efficient permu-
tation statistical approach that makes permutation statistical methods both feasible
and practical for many research applications.

3.6 Summary

This chapter opened with a description of two models of statistical inference: the
population model first put forward by Jerzy Neyman and Egon Pearson in 1928 and
the permutation model developed by R.A. Fisher, R.C. Geary, T. Eden, F. Yates, H.
Hotelling, M.R. Pabst, and E.J.G. Pitman in the 1920s and 1930s. Three types of
permutation statistical methods were described and illustrated: exact, Monte Carlo,
and moment-approximation permutation methods.

Permutation statistical methods were shown to differ from traditional parametric
methods in five ways. First, unlike conventional parametric methods, permutation
statistical methods are data-dependent methods in that all the information required
for analysis is contained within the observed data. Second, permutation methods
neither assume nor require random sampling from a defined population, which is
essential for parametric methods. Third, permutation methods are distribution-free
and do not depend on the usual assumptions associated with conventional parametric
methods, such as normality and homogeneity of variance. Fourth, permutation meth-
ods provide exact probability values based on the discrete permutation probability
distribution, in contrast to parametric methods that provide approximate probability
values based on a theoretical approximating distribution. Finally, permutation
methods are suitable for small samples, whereas parametric distribution functions
often provide very poor fits to the underlying discrete distribution when sample sizes
are small.

On the other hand, permutation methods are computationally intensive, often-
times requiring millions of calculations. A number of calculation efficiencies
mitigate the calculation problem, including the recent development of high-speed
computing, analyses based on all combinations of the observed data in place of all
permutations of the data, the use of mathematical recursion, calculations based on
only the variable components of a specified test statistic, and holding constant one
treatment array in block designs.

Chapter 4 describes measures of central tendency and variability with which
the reader is assumed to be familiar. Emphasized in Chap.4 is the property of
the arithmetic mean as the point about which the sum-of-squared deviations is
minimized and the property of the median as the point about which the sum of
absolute deviations is minimized. An alternative approach to the mean and median
based on paired-squared and paired-absolute differences is introduced.
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Chapter 4 )
Central Tendency and Variability Shethie

Abstract This chapter provides an overview of the concepts of central tendency
and variability. For measures of central tendency, the sample mode, median,
and mean are described and illustrated. For measures of variability, the sample
standard deviation, sample variance, and mean absolute deviation are described and
illustrated. An alternative to the mean and median based on paired squared and
absolute differences between values is introduced.

The two most central concepts in statistical analysis involve the measurement
of central tendency and variability. This chapter presents three test statistics that
represent the “center” of a distribution of values. In general, these statistics are
referred to as measures of central tendency or measures of location. Later in this
chapter, two test statistics are presented that deal with how values are dispersed
around a measure of central tendency. In general, these statistics are referred to as
measures of variability or measures of scale. The three major measures of central
tendency are the mode, the median, and the arithmetic mean.! For permutation
statistical methods, only the arithmetic mean and the median are important. The
two major measures of variability are the sample standard deviation for dispersion
around the mean and the mean absolute deviation for dispersion around the median.
No measure of variability exists for dispersion around the mode.

ITwo other measures of central tendency that are often found in the research literature are the
geometric mean and the harmonic mean.
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84 4 Central Tendency and Variability
4.1 The Sample Mode

The sample mode is defined simply as the most common score in a distribution of
N scores. More precisely, the mode is the sample score or category with the largest
frequency. For example, for the following N = 13 scores,

mode

12,12, 11,9, 9, 8, 8.8, 8. 7,5, 5,3,

the mode is 8, as there are four 8s, more than any other score. For the frequency
distribution given in Table 4.1, the sample mode is 72 as it has the largest frequency
(f = 23). And for the frequency distribution in Table 4.2, the modal luxury
automobile in a country club parking lot is BMW as it has the largest frequency
(f = 17). There is no formula in the usual sense for the sample mode and no
generally agreed-upon symbol.

Table 4.1 Example

Score f
frequcnc.y data for the sample 9 )
mode with scores

88 4

85 7

80 11

76 15

72 (mode) 23

69 19

65 14

64 10

60 8

55 4

53 1
Table 4.2 Example Automobile f
frequency data for the sample
mode with categories Acura 3

Alpha Romeo 1
Audi 8
BMW (mode) 17
Cadillac 10
Genesis 1
Infiniti 4
Jaguar 2
Lexus 7
Lincoln 8
Mercedes-Benz 11

Volvo 14
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Oftentimes the sample mode is reported in newspapers and magazines without
being labeled as such. For any ordered list of popularity items, the first item listed
is usually the mode. For example, the Social Security Administration might report
that the most popular female baby name last year was “Emma,” a magazine article
might state that the most popular name for a pet cat or dog in the USA is “Max,” or
it may be revealed that the most popular computer password is “password.”? In such
cases, Emma, Max, and password have the largest frequency of usage. Despite its
widespread use, the mode finds little to no use in permutation statistical methods.
The sample mode is very unstable in that a change in one value can oftentimes
greatly alter the mode; many distributions have no mode, such as the uniform
distribution; and some distributions have two modes (bimodal) or even many modes
(multimodal). Thus the mode is not a very useful measure of central tendency in
permutation statistical analyses where the emphasis is on exactness.

4.2 The Sample Mean

The arithmetic mean is the second most basic process in all of statistics. The first is
the simple act of counting. For a sample of N values, the arithmetic mean is given
by

1N
)CZN[Z:;)C,',

where N is the total sample size and x; for i = 1, ..., N denote the sample
values.? To illustrate, consider a set of N = 6 values where x1 =3, x =17,
x3 =11, x4 = 15, x5 = 20, and x¢ = 28. Then the sample mean is

=14.
6 6

I 3474+ 11415420428 84
X = in = =
N “
i=1
There are two important properties of the sample mean. First, the sum of
deviations about the mean can be shown to be zero. Let x;, x2, ..., xy denote
an unordered set of N sample values and define the sum of deviations about any
point, say 6, as

2 Actually, the most common password used to be “password,” but it has been replaced by
“123456.”

3For a brief history of the arithmetic mean, see a 2018 article by Simon Raper in Significance [6].
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Theorem For any finite set of N values of x in R, the sum of deviations about a
point 0 is zero when 0 = X.

Proof
N
Z Xj — 9)
i=1
N N
= Xi — Z@
i=1 i=1
N
=> x—NO
i=1
Then,

N
inzi.

1
N i=1

However, the most important statistical property of the sample mean is that the
sum-of-squared deviations about the mean can be shown to be a minimum. Let
X1, X2, ..., xy denote an unordered set of N sample values and define the sum of
the squared deviations about any point, say 6, as

N

D=3 (x—6).

i=1

Theorem For any finite set of N values of x in R, the sum-of-squared deviations
about a point 0 is minimized when 6 = X.

Proof
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Table 4.3 Sums of

ot Object x x—Xx
deviations and squared
deviations about the 1 28 14
arithmetic mean (x = 14) 2 20 +6
3 15 41
4 11 -3
5 7 -7
6 3 —11
Sum 0
Tab'le.4.4 Sums of Object x x—12
deV}at{ons and squared ] 28 416
deviations about a value less
than the arithmetic mean 2 20 48
© =12) 3 15 +3
4 11 -1
5 7 =5
6 3 -9
Sum +12
Taking the derivative with respect to 6 yields
d( XL xF =20 Y0, xi + NO?) 2
s =-2) x+2N0,

i=1

and solving for 6 yields

1 N
9=N.Elx,~=i.
i=

87

(x — %)
196
36
1
9
49
121
412

(x — 12)2
256
64

25
81
436

To illustrate both proofs, consider the small set of example data listed in Table 4.3

where x = 14. For the example data listed in Table 4.3,

N

Z(xi—)f)ZO

i=1

and

N
Z(x,' — 0t =412,
i=1

which is a minimum. Now consider a constant somewhat smaller than x = 14, say
6 = 12, as shown in Table 4.4. For the example data listed in Table 4.4,

N

Y (- 12)=+12,

i=1
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Tab'le.4.5 Sums of Object X x—15 (x— 15)2
deviations and squared

deviations about a value 1 28 +13 169
greater than the arithmetic 2 20 45 25
mean (0 = 15) 3 15 0 0
4 11 —4 16
5 7 -8 64
6 3 —12 144
Sum -6 418

which is greater than zero, and

N
Z(x,- —12)% = 436,

i=1

which is greater than 412 and is, therefore, not a minimum. Finally, consider a
constant greater than x = 14, say 6§ = 15, as shown in Table 4.5. For the example
data listed in Table 4.5,

which is less than zero, and

N
Z(x,' —15)2 = 418,

i=1

which is greater than 412 and is, therefore, not a minimum.

4.2.1 The Sample Standard Deviation

The conventional measure of variability about the sample mean is the sample
standard deviation given by*

1/2
1

Sy =

* N—1

|

N

1

1

4Technically, the estimated population standard deviation.
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where N — 1 is the degrees of freedom (df). Thus for the x; values,i =1, ..., N,
listed in Table 4.3 for which the sample mean is x = 14,

_ 1 2 2 2 1z
sx_{é_l[(zs—m) 10— 1424+ (3 —14) ]}

412\!/?
=< S ) —=9.0774 .

Both the sample mean and the sample standard deviation are expressed in the units
of measurement of the original data.
Also in wide use is the sample variance given by>

1

S)%ZN 1 (x,-—)?)z.

N
=1

1

For the x; values,i =1, ..., N, listed in Table 4.3 the sample variance is

1
52 = 61 [(28 142+ 20— 14)%*+-- -+ (3 — 14)2] = 82.3992.

Because degrees of freedom are not relevant to permutation methods under the
Fisher—Pitman model, the sample standard deviation and sample variance under
permutation are often defined as

N 12
Sy = [;] NET —2)2}

i=1

and

1 N 2
i=1

respectively, and denoted by the upper-case letter S to distinguish the sample
standard (Sy) and variance (S)%) from the estimated population standard deviation
(sy) and variance (sf).

STechnically, the estimated population variance.
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For the example data listed in Table 4.3, the sample standard deviation is

1 1/2
Sy = {6[(28— 142+ (20— 142 +---+ (3 — 14)2]}
1/2
= (422> = 8.2865

and the sample variance is

412
6 = 68.6667 .

52 = 1[(28—14)2+(20— S 14)2] =

x = 6 -

The reader may have noticed that only sample statistics have thus far been

defined; for example, the sample mean, standard deviation, and variance. Permu-

tation statistical methods are data-dependent methods and do not utilize population

parameters. All the information for a permutation statistical analysis is contained in

the sample. Therefore, the population mean (u, ), the population standard deviation

(o), and the population variance (GXZ) are not defined in this chapter, as they would
be in a conventional introductory book in statistics.

4.3 The Sample Median

The sample median is typically defined as the point below which half the values
fall or the 50th percentile, where the scores are assumed to be ordered. Despite its
long history in statistical methods, no agreed-upon symbol for the median has been
defined—here, ¥ designates the sample median.®

Calculation of the sample median depends on whether N is odd or even. If N is
odd, the sample median is given by X = x(y41)/2. To illustrate, consider N = 5
ordered values with x1 = 3, xp = 7, x3 = 11, x4 = 15, and x5 = 20. Then,

X =Xx(Nyn2 = X541y =x3 =11,
If N is even, the sample median is given by

XN/2 + XN/2+1

X =
2

SFrancis Galton first used the term “median” in 1882 [2, p. 245], although it had a long history in
other languages prior to 1882 [1, p. 125].
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To illustrate, consider N = 6 ordered values with x; = 3, xp = 7, x3 = 11,
x4 = 15, x5 = 20, and x¢ = 28. Then,

P XN/2 +XN2+1 Xe2 + Xej241 X3+ x4 11+ 15 _ 26 _13

2 2 2 2 2

When N is even, the median value is not unique. While X = 13 would be the most
commonly reported value for the median, any value between and including x3 = 11
and x4 = 15 is technically the median of the N = 6 values: 3,7, 11, 15, 20, and 28.

The most important property of the sample median is that the sum of the absolute
deviations about the median can be shown to be a minimum. The usual proof is by
induction, but the proof by induction can be difficult to follow. The following non-
mathematical proof based on set theory is adapted from Schwertman et al. [8].

Let x; < xp < --- < xy denote an ordered set of N values and define the sum
of the absolute deviations about any point, say 6, as

N
Dy =Y |xi—0]|.
i=1

Theorem For any finite set of N values of x in R, the sum of absolute deviations
about a point 0 is minimized when 6 = X.

Proof Recall that the median of x1, ..., xy iS x(vy1)/2 if N is odd and if NV is even
the median is not unique and any number m for xy/2 < m < xy/241 is a median.
When N = 1, then N is odd and x(y41)/2 = x and the result is trivial; that is,
X = xi.

Now consider any N = 2 x values, xp > x1. For any point 6 such that 6 is
included in the set {x1, xy}; thatis, 6 € {x1, x3}, the sum of the absolute deviations
about 0 is

0 —x14+x2—60 =xp—x1.

Thus, for example, if x; = 3 and x, = 7, the sum of the absolute deviations is
xo —x1 =7 —3=4.Toillustrate, if x; =3, x, =7, and 6 = 3,

0—x1+x—-60=3-3+7-3=0+4=4,;
ifx; =3, x2="7,and 6 =4,

0—x1+x—0=4-34+7—-4=14+3=4;
ifx; =3,xp=7,and 0 = 5.6,

0—x1+x—-0=56-34+7-56=26+14=4;
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andif x; =3, x, =7,and 6 =7,
0—x1+x—-0=7-34+7-7T=44+0=4.
However, for 0 ¢ {x1, x2} and & < x1, the sum of the absolute deviations is
X1 —04+x2—0=x1+xp—20,

which is greater than xp — x1. Thusif x; =3 andx, =7, xo =x1 =7—-3=4.To
illustrate, consider x;1 = 3, x = 7, and 6 = 2, then

X1+x—-20=34+7T-2)2)=1-4=6.
For 6 ¢ {x1, x2} and & > x», the sum of absolute deviations is
0 —x1+60—x2=20—x1—x,

which is greater than x; — x1. Thusifxy =3 andx; =7, x0 —x1 =7—-3=4.To
illustrate, consider x;1 = 3, x = 7, and 6 = 8§, then

20 —x1—x2=2)8) —-3-7=16—-10=6.

Therefore, for any two x values, the sum of the absolute deviations about point 6
is minimized when 6 € {x|, x2} and, as shown, the sum of absolute deviations is
equal to xp — x1.

Now consider the successively nested intervals,

{-xlv -xN}v {x27 -fol}v {-x37 XN72}, ey {-xiv -xN+17i} )

where x; <xp <---<xy,i=1,2,...,c,c=N/2if Niseven,and c = (N +
1)/2if N is odd. Note that when N is even, the innermost interval is {xy,2, Xn/2+1}
and when N is odd, the innermost interval is {xvt1y/2, X(v+1)/2} -

Example of the Median with N Even
For example, consider N even where x; = 3, xp = 7, x3 = 11, x4 = 15, x5 = 20,
and x¢ = 28 and the median is

s SN2 FIN2eL X6t et xstxg 11415 13
N 2 N 2 o2 2 T
The outermost interval is {x1, xy} = {x1, x¢} = {3,28} and the median of
{3,7,11,15,20,28}is x = 13.
The first nested interval is {x2, xy—1} = {x2, x6—1} = {x2, x5} = {7, 20}
and the median of {7, 11, 15,20} is X = 13. The innermost nested interval is
{x3, xy—2} = {x3, x6—2} = {x3, x4} = {11, 15} and the median of {11, 15} is
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X = 13, which corresponds to

{xn/2, xN/241} = {x6/2, X6/241} = {x3, x4} .

Thus when N is even, 0 is contained in each interval, the sum within each set of
nested intervals is minimized and, therefore, the total sum of absolute deviations,
Dy, is also minimized.

Example of the Median with N Odd
Next consider N odd where, for example, x; = 3, xo = 7, x3 = 11, x4 = 15, and
x5 = 20 and the median is

X =Xx(Nyn2 = X541y =x3 =11,

The outermost interval is {x;, xy} = {x1, x5} = {3,20} and the median of
{3,7,11,15,20}is x = 11.

The first nested interval is {x;, xy_1} = {x2, x5-1} = {x2, x4} = {7, 15} and
the median of {7, 11, 15} is X = 11. The innermost nested interval is {x3, xy_2} =
{x3, x5-2} = x3, x3 = {11, 11} = 11 and the median of {11, 11} is X = 11, which
corresponds to

{xov+n/2, vt 2} = {072, XG41)2) = {x3, 23}

Thus when N is odd the innermost interval is equal to the median. Since 9 is
contained in each interval, the sum within each set of nested intervals is minimized
and, therefore, the total sum of absolute deviations, Dy, is also minimized.

4.3.1 The Sample Mean Absolute Deviation

The conventional measure of variability about the sample median is the mean
absolute deviation given by

1 N
MAD:N;|xi—i|.

Thus for the sample data given in Table 4.6 the sample median is

XN/2 + XN/24+1 X622+ X641 X3+xa  11+15 26 13

X =

2 2 2 2 2
and the mean absolute deviation is

128 — 13| + 20 — 13| +--- 4+ |3 — 13| _ 42
6 T 6

MAD = =7.00.
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Table 4.6 Example Object x x—% |x—3
calculations for the mean
absolute deviation 1 28 +15 15

2 20 +7 7

3 15 42 2

4 11 -2 2

5 7 -6 6

6 3 —10 10

Sum 42
Table 4.7 Example Income f

frequency data for an

open-ended distribution More than 99,999 12

80,000-99,999 31
60,000-79,999 54
40,000-59,999 45
20,000-39,999 26
0-19,999 17

4.4 Comparisons Among the Three Measures

For symmetrical, unimodal distributions, the arithmetic mean, the median, and the
mode yield approximately the same value. For asymmetrical, skewed, unimodal dis-
tributions, the mean, the median, and the mode usually diverge yielding somewhat
different values, depending on the degree and direction of skewness. For negatively
skewed distributions, the mean is usually the lowest of the three values, the median
is usually the middle of the three values, and mode is usually the highest of the three
values. As a handy mnemonic, the three values appear as they do in a dictionary,
starting from the left tail: mean, median, and mode. For positively skewed unimodal
distributions, the order is mean, median, and mode, starting from the right tail.

The sample mode is the only measure of central tendency appropriate for
categorical data and that is its primary role in contemporary statistics. The sample
median is usually the measure of choice for skewed distributions, as it is largely
unaffected by a few extreme values, and open-ended distributions where the upper
limit of the top category is undetermined, as illustrated in Table 4.7. As one humorist
put it long ago, the arithmetic mean is the mode in statistical analysis, meaning it is
the most frequently used measure of central tendency. The sample mean possesses
mathematical properties that become very important under the Neyman—Pearson
population model of inference. A principal disadvantage of the arithmetic mean is
that it can be greatly affected by even a few extreme values.
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4.4.1 The Effects of Extreme Values

Extreme values, or outliers, are the bugbear of applied research and occur com-
monly. Sometimes extreme values are due to coding errors, but more often than
not extreme values occur because the variable of interest is skewed. In the social
sciences, the skew is most often positive, leading to extreme values in the right-
hand tail. Examples of positively skewed distributions are family income, prices
of houses, age at first marriage, length of engagement or marriage, birth weight
of infants, and body weight of adults. Micceri provided a number of examples of
skewed distributions in psychology, finding that fewer than 7% of large sample
data sets displayed tail weights and symmetry similar to a normal distribution [4].
Newman, in discussing power-law distributions, provides other examples of posi-
tively skewed distributions: sales of book titles, populations of cities, frequencies
of words in human languages, the number of “hits” on web pages, the number of
citations of academic papers, the financial net worth of individuals, the magnitudes
of earthquakes and solar flares, and the sizes of craters on the moon [5].

In 2017 David Salsburg recounted an experience he once had at Pfizer Pharma-
ceutical Corporation (PPC) when analyzing the weights of rats in a toxicological
experiment [7, pp. 85-86]. The strain of rats used in the study usually weighed
between 200 and 300 g, with females weighing slightly less than males. He was
surprised to discover in the data a single female rat weighing 2000 g and even more
surprised to discover that it was not a coding error and was a bona fide rat from the
same species. Salsburg noted:

Just because a value is an outlier, it doesn’t mean it should not be used. Throwing out data
that appear to be wild shots can lead to erroneous conclusions [7, p. 91].

Salsburg concluded:

[I]f T had used the median in my analysis of weights of rats, then the 2000 g female rat
would not have pulled my estimate of the mean in its direction [7, p. 91].

4.5 An Alternative Approach

More succinctly, consider an alternate, more general, approach to the mean and
median based on paired differences given by

N-1 N
v
> 2 hi—x
i=1 j=i+1
where x1, ..., xy are univariate response measurements. Let x; y < --- < xy N

denote the order statistics associated with xp, ..., xy.If v = 1, then the inequality
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given by
N-1 N N
Z Yo li—xj| <) N2+ 1|jxin—0 .1
i=1 j=i+1 i=1

holds for all 6 and equality holds if 6 is the median (x) of x1, ..., xy. If v = 2,

then the inequality given by

N-1 N ) N )
D (i—x)) <N (xi—90) 4.2)
i=1 j=i+1 i=1
holds for all 6 and equality holds if 6 is the mean (x) of x1, ..., xn.

To illustrate Eq. (4.2), consider the small set of data with the values for N = 6
objects listed in Table 4.8 where the arithmetic mean is

1 Y 9+8+8+8+8+7 48
X = inz =
N & 6 6
and
N
NZ 2_602)=12.
i=1

Table 4.9 lists the pairwise differences and squared pairwise differences for the
data listed in Table 4.8. Tables 4.8 and 4.9 illustrate that when 6 is equal to the mean,

N—-1 N N
> ) =N Y (3
i=1 j=i+l i=1
Table 4.8 IllustrationA of the Object x x—% (x—3)?
sum-of-squared deviations
about the mean 1 9 1 1
2 8 0 0
3 8 0 0
4 8§ 0 0
5 8§ 0 0
6 7 1 1
Sum 48 2
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Table 4.9 IllustraFioq of the Objects Pairs x; —x; (x; —x; )2

sum-of-squared pairwise

differences 1-2 -8 1 1
1-3 9-8 1 1
14 9-8 1 1
1-5 9-8 1 1
1-6 9-7 2 4
2-3 88 0 0
2-4 88 0 0
2-5 88 0 0
2-6 87 1 1
34 88 0 0
3-5 88 0 0
3-6 87 1 1
4-5 88 0 0
4-6 87 1 1
5-6 87 1 1
Sum 12

that is, 12 = 12. It follows that the sample standard deviation can be defined in
terms of all possible pairs; that is,

6 = [Nl_ 1 i(x,. _;)2}
12

(xi—x)| . @3
i=1 j=i+l

N-1 N

1
N(N = 1)

The Italian statistician Corrado Gini was most probably the first to note that the
sum-of-squares of deviations from the mean for N quantitative measurements can
be expressed solely as a function of the squares of the pairwise differences for all
N .
(5) pairs [3].

To illustrate the equivalence of the two equations for the sample standard
deviation, consider the small set of data listed in Table 4.8 with N = 6 objects.
For the conventional expression on the left side of Eq. (4.3),

2 2. _gy211/2 1/2
x=|:(9 H°+@ 68)—1+ + 8)} =(§> =0.6325
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and for the pairwise expression on the right side of Eq. (4.3),

) _[(9—8)2+(9—8)2+(9—8)2+---+(8—7)2+(8—7)2T/2

6(6— 1)
1/2
= 12 =0.6325.
30

To illustrate Eq. (4.1) on p. 96, consider once again the example data listed in
Table 4.8 where the median is
8+8 16
= XN/2 + XN/2+1 _ Y62 + X6/2+1 _ 3 + x4 _ + _ — 300,
2 2 2 2 2
Table 4.10 lists the pairwise absolute differences about the median for the data listed
in Table 4.8. Table 4.11 illustrates the relationship between the sum of the adjusted
absolute differences and the median. Tables 4.10 and 4.11 illustrate that when 6 is
equal to the median,

N—-1 N N
Z |x,-—xj|=Z|N—2i+1||x,-,N—)? ;
i=1 j=i+l i=1
that is, 10 = 10.
Table 4.10 Illustrgtign of the Objects Pairs x; —x; |xi — ;]
sum of absolute pairwise
differences 1-2 -8 1 1
1-3 9-8 1 1
14 9-8 1 1
1-5 9-8 1 1
1-6 9-7 2 2
2-3 88 0 0
2-4 88 0 0
2-5 88 0 0
2-6 87 1 1
34 88 0 0
3-5 88 0 0
3-6 87 1 1
4-5 88 0 0
4-6 87 1 1
5-6 87 1 1
Sum 10
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Table 4.11 llustration of the sum of adjusted absolute differences about the median

i XN IN —2i + 1] Ixin — | IN = 2i +1||x;.y — |
1 9 6—2(1)+1]=5 98 =1 5
2 8 6—2(2) +1] =3 18 -8 =0 0
3 8 6—23)+1] =1 18 -8 =0 0
4 8 6 —24)+1] =1 18 —8] =0 0
5 8 6—2(5)+1]=3 18 —8] =0 0
6 7 6—2(6)+1]=5 |7-8] =1 5
Sum 10

4.6 Summary

This chapter provided an overview of the conventional measures of central tendency
and variability—the two most basic and essential concepts underlying statistical
methodology. For measures of central tendency, the sample mode, sample median,
and sample mean were defined and illustrated. Special attention was paid to the
sample mean as a minimizing function for the sum-of-squared deviations and
the sample median as a minimizing function for the sum of absolute deviations.
For measures of variability, the sample standard deviation and the mean absolute
deviation were described and illustrated. Finally, an alternative approach to the mean
and median based on paired squared and paired absolute differences between values
was introduced. A recurring theme in the following chapters is the comparison
between mean-based and median-based test statistics and the treatment of extreme
values.

Chapter 5 considers one-sample tests of differences. The conventional one-
sample ¢ test is presented and compared to a permutation alternative based on all
paired differences between values. Six examples illustrate permutation statistical
methods applied to one-sample tests. The first example is deliberately kept small
to illustrate the computations required for a one-sample permutation test. The
second example develops a chance-corrected alternative to conventional measures of
effect size for one-sample tests. The third example compares permutation statistical
methods based on ordinary and squared Euclidean scaling functions. The fourth
example compares exact and Monte Carlo permutation methods for one-sample
tests. The fifth example illustrates the application of permutation statistical methods
to univariate rank-score data. And the sixth example illustrates the application of
permutation statistical methods to multivariate data.
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Chapter 5 )
One-Sample Tests s

Abstract This chapter introduces permutation methods for one-sample tests.
Included in this chapter are six example analyses illustrating computation of exact
permutation probability values for one-sample tests, calculation of measures of
effect size for one-sample tests, the effect of extreme values on conventional and
permutation one-sample tests, exact and Monte Carlo permutation procedures for
one-sample tests, application of permutation methods to one-sample rank-score
data, and analysis of one-sample multivariate data. Included in this chapter are
permutation versions of Student’s one-sample ¢ test, Wilcoxon’s signed-ranks test,
the sign test, and a permutation-based alternative for the two conventional measures

of effect size for one-sample tests: Cohen’s d and Pearson’s r2.

This chapter presents exact and Monte Carlo permutation statistical methods for
one-sample tests. Also presented is a permutation-based measure of effect size for
one-sample tests. One-sample tests are the simplest of a large family of statistical
tests and provide an introduction to the two-sample and multi-sample tests presented
in later chapters.

In this chapter, permutation statistical methods for analyzing one-sample tests
are illustrated with six example analyses. The first example utilizes a small set
of data to illustrate the computation of exact permutation methods for a single
sample, wherein the permutation test statistic, §, is developed and compared with
Student’s conventional one-sample ¢ test statistic. The second example develops
a permutation-based measure of effect size as a chance-corrected alternative to
the two conventional measures of effect size for one-sample tests: Cohen’s d and
Pearson’s 2. The third example compares permutation statistical methods based on
ordinary and squared Euclidean scaling functions, with an emphasis on the analysis
of data sets containing extreme values. The fourth example utilizes a larger data
set for providing comparisons of exact and Monte Carlo permutation methods,
demonstrating the efficiency and accuracy of Monte Carlo statistical methods
for one-sample tests. The fifth example illustrates the application of permutation
statistical methods to univariate rank-score data, comparing permutation statistical
methods with Wilcoxon’s conventional signed-ranks test and the sign test. The sixth
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example illustrates the application of permutation statistical methods to multivariate
one-sample tests.

5.1 Introduction

The most popular univariate one-sample test is Student’s ¢ test wherein the null
hypothesis (Hp) under the Neyman—Pearson population model posits a value for a
population parameter, such as a population mean, from which a random sample
is presumed to have been drawn; that is, Hyp: w, = 6, where 0 is a specified
value. For example, the null hypothesis might stipulate that the average IQ score
in the population from which a sample has been drawn is Hyp: px = 100. The test
does not determine whether or not the null hypothesis is true, but only provides the
probability that, if the null hypothesis is true, the sample has been drawn from a
population with the specified value.

Consider Student’s conventional one-sample ¢ test. Under the Neyman—Pearson
population model of statistical inference the null hypothesis is given by Hp: uy =
0 and the two-tail alternative hypothesis is given by Hj: pu