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Preface

A Primer of Permutation Statistical Methods presents exact and Monte Carlo
permutation statistical methods for generating probability values and measures of
effect size for a variety of tests of differences and measures of correlation and
association. Throughout the monograph the emphasis is on permutation methods,
although the results of permutation analyses are always compared with the results
of conventional statistical analyses, with which the reader is assumed to be familiar.
On this note, no statistical background other than an introductory course in basic
statistics is assumed.

Included in tests of differences are one-sample tests, tests of differences for
two independent samples, tests of differences for two matched samples, tests of
differences for multiple independent samples, and tests of differences for multiple
matched samples. Included in measures of correlation and association are simple
linear correlation and regression, multiple linear correlation and regression, a
number of measures of association based on Pearson’s chi-squared test statistic, and
a variety of measures of association designed for the analysis of contingency tables.
The arrangement of the monograph follows the structure of a typical introductory
textbook in statistics: introduction, central tendency and variability, one-sample
tests, tests for two independent samples, tests for two matched samples, completely-
randomized analysis of variance designs, randomized-blocks analysis of variance
designs, simple linear regression and correlation, and the analysis of contingency
tables.

Chapter 1 establishes the structure of the monograph, introduces the following
ten chapters, and provides a brief overview of each chapter. The purpose of Chap. 1
is to familiarize the reader with the structure and content of the monograph and
provide a brief introduction to the various permutation tests and measures presented
in the following chapters.

Chapter 2 provides a brief history of the early beginnings and subsequent
development of permutation statistical methods. Permutation methods are a paradox
of old and new. While permutation statistical methods predate many conventional
parametric statistical methods, it is only in the last 30 or so years that permutation
statistical methods have become part of the mainstream discussion regarding
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statistical testing. Permutation statistical methods were introduced by R.A. Fisher in
1925; further developed by R.C. Geary in 1927, T. Eden and F. Yates in 1933, and
H. Hotelling and M.R. Pabst in 1936, and made explicit by E.J.G. Pitman in 1937
and 1938. However, permutation statistical methods are computationally intensive,
and it took the development of high-speed computing for permutation statistical
methods to become practical. In the 1960s and 1970s, mainframe computers became
available to academics at major research universities, and by the end of this period,
desktop computers, although not common, were available to many researchers.
Permutation statistical methods arrived at a level of maturity during the period
between 1980 and 2000 primarily as a result of two factors: greatly improved
computer clock speeds and widely available desktop computers and workstations.

Chapter 3 provides an introduction to two models of statistical inference: the
population model and the permutation model. Most introductory textbooks in
statistics and statistical methods present only the Neyman–Pearson population
model of statistical inference. While the Neyman–Pearson population model will be
familiar to most readers and needs no introduction, the Fisher–Pitman permutation
model of statistical inference is less likely to be familiar. For the permutation model,
exact and Monte Carlo permutation methods are described and compared. Under
the Neyman–Pearson population model, squared Euclidean scaling functions are
mandated, while under the Fisher–Pitman permutation model, ordinary Euclidean
scaling functions are shown to provide robust alternatives to conventional squared
Euclidean scaling functions.

In Chap. 3, the assumptions underlying statistical tests and measures in the
Neyman–Pearson population model are explored and contrasted with the Fisher–
Pitman permutation model. The permutation model does not require many of the
assumptions of the population model, including random sampling, normality, and
homogeneity of variance. Moreover, the null hypotheses of the two models are quite
different. Under the Neyman–Pearson population model, the null hypotheses (H0)
posits a value for a population parameter or differences among values for population
parameters. For example, H0: μx = 100 for a one-sample test or H0: μ1 − μ2 = 0
for a two-sample test. By contrast, the null hypothesis under the Fisher–Pitman
permutation model simply states that all possible arrangements of the observed
data are equally likely, with no population parameter value specified. The primary
drawback to permutation statistical methods is the sheer amount of computation
required. Five computational efficiencies for permutation methods are described and
evaluated in Chap. 3.

Chapter 4 provides an introduction to measures of central tendency and variabil-
ity, specifically the mode, median, and mean for central tendency and the standard
deviation and mean absolute deviation for variability. Special attention is paid to the
mean as a minimizing function for the sum of squared deviations and to the median
as a minimizing function for the sum of absolute deviations—an often neglected
topic. Finally, an alternative approach to the mean, standard deviation, median, and
mean absolute deviation based on paired-squared differences and paired-absolute
differences between values is described.
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Chapter 5 provides an introduction to the permutation analysis of one-sample
tests. In general, one-sample tests attempt to invalidate a hypothesized value of
a population parameter, such as a population mean. Under the Neyman–Pearson
population model, Student’s conventional one-sample t test is presented. Under
the Fisher–Pitman permutation model, an alternative one-sample permutation test
is presented. Six examples illustrate permutation statistical methods for one-sample
tests. The first example utilizes a very small set of data to illustrate the calculations
required for a permutation analysis of a single sample. The second example
illustrates measures of effect size for one-sample tests. The measurement of effect
size—the clinical significance in contrast to the statistical significance of a test—
has become increasingly important in recent years, with many journals requiring
measures of effect size in addition to the usual tests of statistical significance.
A permutation-based, chance-corrected measure of effect size for one-sample
tests is presented and compared with the two conventional measures of effect
size under the Neyman–Pearson population model: Cohen’s d̂ and Pearson’s r2.
The third example examines the impact of extreme values on conventional and
permutation one-sample tests. The fourth example compares exact and Monte Carlo
permutation statistical methods for one-sample tests. The fifth example illustrates
the application of permutation statistical methods to one-sample tests of rank-score
data. A one-sample permutation test for rank scores is developed and compared
with Wilcoxon’s signed-ranks test. The sixth example illustrates the application of
permutation statistical methods to one-sample tests of multivariate data. For each
of the six examples, the results obtained from the analyses conducted under the
Fisher–Pitman permutation model are compared with the results obtained from
the conventional analyses conducted under the Neyman–Pearson population model,
when appropriate.

Chapter 6 introduces permutation-based tests of differences for two indepen-
dent samples. Two-sample tests are specifically designed to test for experimental
differences between two groups, such as a control group and a treatment group.
Under the Neyman–Pearson population model, Student’s conventional two-sample
t test is described. Under the Fisher–Pitman permutation model, an alternative two-
sample permutation test is presented. Six examples illustrate permutation statistical
methods for two-sample tests. The first example utilizes a very small set of data to
illustrate the calculations required for a permutation analysis of two independent
samples. The second example illustrates measures of effect size for two-sample
tests. A permutation-based, chance-corrected measure of effect size for two-sample
tests is presented and compared with the four conventional measures of effect size
under the Neyman–Pearson population model: Cohen’s d̂ , Pearson’s r2, Kelley’s
ε2, and Hays’ ω̂2. The third example examines the impact of extreme values
on conventional and permutation two-sample tests. The fourth example compares
exact and Monte Carlo permutation statistical methods for two-sample tests. The
fifth example illustrates the application of permutation statistical methods to two-
sample tests of rank-score data. A two-sample permutation test for rank-score data
is developed and compared with the Wilcoxon–Mann–Whitney two-sample rank-
sum test. The sixth example illustrates the application of permutation statistical
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methods to two-sample tests of multivariate data. A two-sample permutation test
for multivariate data is developed and compared with Hotelling’s two-sample T 2

test for multivariate data. For each of the six examples, the results obtained from the
analyses conducted under the Fisher–Pitman permutation model are compared with
the results obtained with the conventional analyses conducted under the Neyman–
Pearson population model, when appropriate.

Chapter 7 introduces permutation tests of differences for two matched samples,
often called matched-pairs tests. Matched-pairs tests are designed to test for
experimental differences between two matched samples such as twin studies or
the same sample at two time periods, that is, before-and-after research designs.
Under the Neyman–Pearson population model, Student’s conventional matched-
pairs t test is described. Under the Fisher–Pitman permutation model, an alternative
matched-pairs permutation test is presented. Six examples illustrate permutation
statistical methods for matched-pairs tests. The first example utilizes a very small
set of data to illustrate the calculations required for a permutation analysis of
two matched samples. The second example illustrates measures of effect size for
matched-pairs tests. A permutation-based, chance-corrected measure of effect size
for matched-pairs is presented and compared with the two conventional measures of
effect size under the Neyman–Pearson population model: Cohen’s d̂ and Pearson’s
r2. The third example examines the impact of extreme values on conventional
and permutation matched-pairs tests. The fourth example compares exact and
Monte Carlo permutation statistical methods for matched-pairs tests. The fifth
example illustrates the application of permutation statistical methods to matched-
pairs tests of rank-score data. A matched-pairs permutation test for rank-score data
is developed and compared with Wilcoxon’s signed-ranks test and the sign test.
The sixth example illustrates the application of permutation statistical methods
to matched-pairs tests of multivariate data. A matched-pairs permutation test for
multivariate data is developed and compared with Hotelling’s matched-pairs T 2 test
for multivariate data. For each of the six examples, the results obtained from the
analyses conducted under the Fisher–Pitman permutation model are compared with
the results obtained with the conventional analyses conducted under the Neyman–
Pearson population model, when appropriate.

Chapter 8 introduces permutation-based tests of differences for multiple inde-
pendent samples, often called fully or completely randomized analysis of variance
designs. Completely randomized designs test for experimental differences among
several treatment groups, such as color preferences or taste tests in experimental
designs or political parties or religious denominations in survey designs. Under the
Neyman–Pearson population model, Fisher’s conventional completely randomized
F test is described. Under the Fisher–Pitman permutation model, an alternative
completely randomized permutation test is presented. Six examples illustrate
permutation statistical methods for multiple independent samples. The first example
utilizes a very small set of data to illustrate the calculations required for a permu-
tation analysis of multiple independent samples. The second example illustrates
measures of effect size for multi-sample tests. A permutation-based, chance-
corrected measure of effect size for multiple independent samples is presented and
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compared with the four conventional measures of effect size under the Neyman–
Pearson population model: Cohen’s d̂ , Pearson’s η2, Kelley’s η̂2, and Hays’ ω̂2.
The third example examines the impact of extreme values on conventional and per-
mutation completely randomized designs. The fourth example compares exact and
Monte Carlo permutation statistical methods for completely randomized designs.
The fifth example illustrates the application of permutation statistical methods to
completely randomized tests of rank-score data. A multi-sample permutation test
for rank-score data is developed and compared with the Kruskal–Wallis one-way
analysis of variance for ranks test. The sixth example illustrates the application
of permutation statistical methods to completely randomized tests of multivariate
data. A multi-sample permutation test for multivariate data is developed and
compared with the Bartlett–Nanda–Pillai trace test for multivariate data. For each
of the six examples, the results obtained from the analyses conducted under the
Fisher–Pitman permutation model are compared with the results obtained from
the conventional analyses conducted under the Neyman–Pearson population model,
when appropriate.

Chapter 9 introduces permutation-based tests of differences for multiple matched
samples, often called randomized-blocks analysis of variance designs. Randomized-
blocks designs test for experimental differences among the same or matched
subjects over multiple treatments. Under the Neyman–Pearson population model,
Fisher’s conventional randomized-blocks F test is described. Under the Fisher–
Pitman permutation model, an alternative permutation randomized-blocks test is
presented. Six examples illustrate permutation statistical methods for multiple
matched samples. The first example utilizes a very small set of data to illustrate the
calculations required for a permutation analysis of multiple matched samples. The
second example illustrates measures of effect size for multiple matched samples.
A permutation-based, chance-corrected measure of effect size for multiple matched
pairs is presented and compared with the four conventional measures of effect size
under the Neyman–Pearson population model: Hays’ ω̂2, Pearson’s η2, Cohen’s
partial η2, and Cohen’s f 2. The third example examines the impact of extreme
values on conventional and permutation randomized-blocks designs. The fourth
example compares exact and Monte Carlo permutation statistical methods for
randomized-blocks designs. The fifth example illustrates the application of permu-
tation permutation statistical methods to randomized-blocks tests of rank-score data.
A multi-sample permutation test for rank-score data is developed and compared with
Friedman’s two-way analysis of variance for ranks. The sixth example illustrates
the application of permutation statistical methods to randomized-blocks tests of
multivariate data. For each of the six examples, the results obtained from the
analyses conducted under the Fisher–Pitman permutation model are compared with
the results obtained from the conventional analyses conducted under the Neyman–
Pearson population model, when appropriate.

Chapter 10 introduces permutation-based tests for simple linear regression and
correlation. Under the Neyman–Pearson population model, Pearson’s conventional
product-moment correlation coefficient is described. Under the Fisher–Pitman
permutation model, an alternative permutation measure of correlation is presented.
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Six examples illustrate permutation statistical methods for simple correlation data.
The first example utilizes a very small set of data to illustrate the calculations
required for a permutation analysis of correlation data. The second example
illustrates measures of effect size for correlation data. The conventional measure
of effect size for correlation data is Pearson’s r2

xy coefficient of determination
for variables x and y. A permutation-based, chance-corrected measure of effect
size is presented and compared with Pearson’s conventional r2

xy measure of effect
size. The third example examines the impact of extreme values on conventional
and permutation correlation measures. The fourth example compares exact and
Monte Carlo permutation statistical methods for simple linear correlation. The
fifth example illustrates the application of permutation statistical methods to linear
correlation and regression tests of rank-score data. A permutation test for rank-
score correlation is developed and compared with Spearman’s rank-order correlation
coefficient, Kendall’s rank-order correlation coefficient, and Spearman’s footrule
correlation coefficient. The sixth example illustrates the application of permutation
statistical methods to linear correlation and regression tests of multivariate data. For
each of the six examples, the results obtained from the analyses conducted under
the Fisher–Pitman permutation model are compared with the results obtained from
conventional analyses conducted under the Neyman–Pearson population model,
when appropriate.

Chapter 11 introduces permutation statistical methods for the analysis of contin-
gency tables. Contingency tables are commonly encountered in the research litera-
ture, and there exist a multitude of measures of association for various combinations
of cross-classified variables. Six sections illustrate permutation statistical methods
for analyzing contingency tables. The first section describes Pearson’s familiar
chi-squared goodness-of-fit test, provides a permutation alternative that generates
exact probability values, and develops a new maximum-corrected measure of effect
size. The second section examines contingency tables in which two nominal-level
(categorical) variables have been cross-classified. Pearson’s chi-squared test of
independence is described, and exact alternative permutation statistical methods
are presented. Cramér’s V measure is described as a conventional measure of
effect size, and an alternative permutation-based, chance-corrected measure of
effect size is introduced. The third section examines contingency tables in which
two ordinal-level (ranked) variables have been cross-classified. A permutation
measure of ordinal association is developed and compared with Goodman and
Kruskal’s G symmetric measure of ordinal association and Somers’ dyx and
dxy asymmetric measures of ordinal association. The fourth section introduces
permutation statistical methods for contingency tables in which a nominal-level
variable has been cross-classified with an ordinal-level variable. A permutation
measure of nominal–ordinal association is developed and compared with Freeman’s
θ measure of nominal–ordinal association. A permutation-based, chance-corrected
measure of effect size is developed for nominal–ordinal association. The fifth
section examines permutation statistical methods for contingency tables in which
a nominal-level variable has been cross-classified with an interval-level variable.
Pearson’s point-biserial correlation coefficient is described, and an alternative
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permutation coefficient for nominal–ordinal association is introduced. The sixth
section introduces permutation statistical methods for contingency tables in which
an ordinal-level variable has been cross-classified with an interval-level variable.
Jaspen’s conventional measure for ordinal–interval correlation is described, and an
alternative Monte Carlo permutation statistical measure is presented.
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Chapter 1
Introduction

Abstract This chapter provides an introduction to permutation statistical methods
and an overview of the next 10 chapters. The contents of each chapter are described
and summarized in considerable detail.

The primary purpose of this book is to introduce the reader to a wide variety
of elementary permutation statistical methods. Most readers will be familiar with
conventional statistical methods under the Neyman–Pearson population model of
statistical inference, such as tests of hypotheses, confidence intervals, simple linear
correlation and regression, one-way completely-randomized analysis of variance,
one-way randomized-blocks analysis of variance, and chi-squared tests of goodness-
of-fit and independence. However, corresponding permutation statistical tests and
measures will almost certainly be less familiar to most readers. While permutation
methods date back almost 100 years to the early works by R.A. Fisher and
E.J.G. Pitman in the 1920s and 1930s, permutation methods are computationally-
intensive methods and it took the advent of high-speed computing to make most
permutation methods feasible. Thus, permutation statistical methods have emerged
as a practical alternative to conventional statistical methods only in the last 30
or so years. Consequently, permutation statistical methods are seldom taught in
introductory courses and there exist no introductory-level textbooks on permutation
methods at this writing.1

Three main themes characterize the 11 chapters of this book. First, test statistic
δ is introduced, defined, and detailed. Test statistic δ is the fundamental test
statistic for permutation statistical methods and serves both as a replacement
for many conventional statistics such as the one-sample t test, the two-sample t

test, the matched-pairs t test, the complete range of completely-randomized and
randomized-blocks analysis of variance F tests, and a large number of parametric

1Some introductory textbooks in statistics now include a chapter on permutation methods. For
example, an introductory book by Howell titled Statistical Methods for Psychology contains a
chapter on “Resampling and Nonparametric Approaches to Data” that includes examples of exact
and Monte Carlo permutation methods as well as bootstrapping [8].
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2 1 Introduction

and nonparametric tests of differences and measures of association and correlation.
Moreover, test statistic δ lends itself to the development of new statistical tests and
measures. As such, test statistic δ is central to the permutation analyses presented
in Chaps. 5–11 and constitutes a unifying test statistic for many permutation-based
statistical methods.

Second, measures of effect size have become increasingly important in the
reporting of contemporary research with many journals now requiring both tests of
significance and associated measures of effect size. Measures of effect size indicate
the strength of a statistical difference or relationship. In brief, measures of effect
size provide information pertaining to the practical or clinical significance of a
result as contrasted with the statistical significance of a result. The two are more
often than not reported in concert. Conventional measures of effect size typically
belong to one of the two families: the d family or the r family. Measures of effect
size in the d family typically report the effect size in standard deviation units with
values between 0 and ∞, which is perfectly acceptable when comparing two or
more studies but may be difficult to interpret for a single, stand-alone study. Cohen’s
d̂ is probably the best-known measure of effect size in the eponymous d family.
Measures of effect size in the r family report the effect size as some variety of
squared correlation coefficient with values between 0 and 1. Unfortunately, under
many circumstances members of the r family cannot achieve the maximum value of
1. When the maximum value is unknown, it is impossible to interpret intermediate
values. Pearson’s r2 coefficient of determination is an example of a measure of effect
size in the r family and is the measure from which the family gets its name.

A relatively new measure of effect size based on test statistic δ is introduced
and described. Effect size measure � is a permutation-based, chance-corrected
measure of effect size. Chance-corrected measures have much to commend them
as they provide interpretations that are easily understood by the average reader.
Positive values indicate an effect size greater than expected by chance, negative
values indicate an effect size less than expected by chance, and a value of zero
indicates an effect size corresponding to chance. The � family of measures of effect
sizes serves as a replacement for both the d and r families, including Cohen’s d̂ ,
Pearson’s r2, Kelley’s ε2, and Hays’ ω̂2. As such, effect size measure � is central
to the permutation analyses presented in Chaps. 5–11 and constitutes a generalized,
unifying measure of effect size for many permutation-based statistical methods.

Third, conventional statistics, under the Neyman–Pearson population model of
statistical inference, necessarily assume normality. The normal distribution is a
two-parameter distribution in which the two parameters are the population mean
denoted by μx and the population variance denoted by σ 2

x . For most parametric
tests the population mean is estimated by the sample mean denoted by x̄ and the
population variance by the sample variance denoted by s2

x . The sample mean is
the point about which the sum of squared deviations is minimized and the sample
variance is the average of the squared deviations about the sample mean. Thus,
because of the assumption of normality, squared deviations among sample values are
an integral and necessary component of most parametric tests under the Neyman–
Pearson population model of statistical inference.
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On the other hand, statistical tests and measures under the Fisher–Pitman
permutation model are distribution-free, do not assume normality, and because
they do not depend on squared deviations among sample values, are not limited
to squared deviations about the mean. While any scaling factor can be used with
permutation statistical methods, ordinary Euclidean scaling has proven to be the
most justifiable. Ordinary Euclidean scaling allows permutation statistical methods
to minimize, or completely eliminate, the influence of extreme values or statistical
outliers, without having to trim, Winsorize, transform, or convert raw scores to
ranks. Moreover, ordinary Euclidean scaling allows geometric consistency between
the observation space and the analysis space. Finally, ordinary Euclidean scaling has
an intuitive appeal that is absent in squared Euclidean scaling. Analyses in Chaps. 5–
11 utilize both squared Euclidean scaling, on which conventional statistics rely, and
ordinary Euclidean scaling, when appropriate. The squared and ordinary Euclidean
scaling results are then compared and contrasted.

These three constructs, test statistic δ, effect size measure �, and ordinary
Euclidean scaling, constitute the main underpinning structures of the book. Each of
the substantive chapters is organized around the three constructs and each construct
is compared with conventional test statistics, other measures of effect size, and
squared Euclidean scaling, when appropriate.

1.1 Overviews of Chapters 2–11

This chapter provides an overview of the book and brief summaries of the following
10 chapters. The format of the book follows the conventional structure of most
introductory textbooks in statistical methods with chapters on central tendency and
variability, one- and two-sample tests, multi-sample tests, linear correlation and
regression, and the analysis of contingency tables. No statistical background of the
reader is assumed other than an introductory course in basic statistics, such as is
taught in departments of statistics, mathematics, business, biology, economics, or
psychology. No mathematical expertise of the reader is assumed beyond elementary
algebra.

Most of the substantive chapters in this book follow the same format wherein
six example analyses based on permutation statistical methods are provided. The
first example in each chapter introduces the main permutation test statistic for
the chapter and provides both a highly detailed exact permutation analysis and
a conventional analysis; for example, a one-sample permutation test of the null
hypothesis under the Fisher–Pitman model and Student’s conventional one-sample
t test of the null hypothesis under the Neyman–Pearson model. The second example
introduces appropriate conventional measures of effect size, for example, Cohen’s
d̂ or Pearson’s r2, and provides a permutation-based, chance-corrected alternative
measure of effect size. Because conventional statistical methods under the Neyman–
Pearson population model assume random sampling from a normally distributed
population, squared deviations about the mean are necessary. Statistical methods
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under the Fisher–Pitman permutation model do not assume normality; thus, the third
example compares permutation analyses based on ordinary and squared Euclidean
scaling functions. The inclusion of one or more extreme values demonstrates the
advantages of ordinary Euclidean scaling.

The fourth example introduces Monte Carlo permutation statistical methods
wherein a large random sample of all possible permutations is generated and ana-
lyzed, in contrast to exact permutation methods wherein all possible permutations
are generated and analyzed. Both exact and Monte Carlo permutation analyses are
compared with each other and with a conventional statistical analysis. The fifth
example applies permutation statistical methods to rank-score data, comparing a
permutation statistical analysis to a conventional statistical analysis; for example,
a permutation test for two sets of rank scores and the Wilcoxon–Mann–Whitney
rank-sum test. The sixth example applies permutation statistical methods to mul-
tivariate data, comparing a permutation statistical analysis with a conventional
statistical analysis; for example, a permutation test of multivariate matched pairs
and Hotelling’s multivariate T 2 test for two matched samples.

1.2 Chapter 2

The second chapter provides a brief history of the origins and subsequent devel-
opment of permutation statistical methods. Permutation statistical methods are a
paradox of old and new. While permutation methods predate many conventional
parametric statistical methods, only recently have permutation methods become part
of the mainstream discussion regarding statistical testing. Permutation statistical
methods were introduced by R.A. Fisher in 1925 by calculating an exact probability
value using the binomial probability distribution [4]. In 1927 R.C. Geary used an
exact permutation analysis to demonstrate the utility of asymptotic approaches for
data analysis in an investigation of the properties of linear correlation and regression
in finite populations [6].

In 1933 T. Eden and F. Yates examined height measurements of wheat shoots
grown in eight blocks. Simulated and theoretical probabilities based on the normal-
ity assumption were compared and found to be in close agreement, supporting the
assumption of normality [3]. In 1936 H. Hotelling and M.R. Pabst used permutation
statistical methods to calculate exact probability values for small samples of ranked
data in an examination of correlation methods [7]. In 1937 and 1938 E.J.G. Pitman
contributed three seminal papers on permutation statistical methods. The first
paper utilized permutation statistical methods in an analysis of two independent
samples, the second paper utilized permutation statistical methods in an analysis of
linear correlation, and the third paper utilized permutation statistical methods in an
analysis of randomized-blocks analysis of variance designs [14–16].

The 1940s and 1950s witnessed a proliferation of nonparametric rank tests. For
example, Wilcoxon’s two-sample rank-sum test in 1945 [17], Mann and Whitney’s
two-sample rank-sum test in 1947 [11], Kendall’s book on Rank Correlation
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Methods in 1948 [9], Freeman and Halton’s exact methods for analyzing two-way
and three-way contingency tables in 1951 [5], Kruskal and Wallis’ C-sample rank-
sum test in 1952 [10], Box and Andersen’s promotion of permutation methods in
the derivation of robust criteria in 1955 [1], and Dwass’s rigorous investigation into
the precision of Monte Carlo permutation methods in 1957 [2]. In many of these
papers, permutation methods were employed to generate tables of exact probability
values for small samples.

In the 1960s and 1970s mainframe computers became available to researchers at
major universities and by the end of the period desktop computers and workstations,
although not common, were available to many investigators. In addition, the speed
of computing increased greatly between 1970 and 1980. Permutation statistical
methods arrived at a level of maturity during the period 1980–2000 primarily
as a result of two factors: greatly improved computer clock speeds and widely-
available desktop computers and workstations. By the early 2000s, computing
power had advanced enough that permutation statistical methods were providing
exact probability values in an efficient manner for a wide variety of statistical tests
and measures [12, 13].

1.3 Chapter 3

The third chapter opens with a description of two models of statistical inference:
the well-known and widely-taught Neyman–Pearson population model and the
lesser-known and seldom-taught Fisher–Pitman permutation model. Under the
permutation model, three types of permutation methods are described: exact
permutation methods yielding precise probability values, Monte Carlo permutation
methods yielding approximate but highly accurate probability values, and per-
mutation methods based on moment approximations yielding exact moments and
approximate probability values. In this chapter the Neyman–Pearson population
model and Fisher–Pitman permutation model are compared and contrasted and the
advantages of permutation statistical methods are described.

Because permutation methods are computationally intensive methods, often
requiring millions of calculations, five computational efficiencies are described in
Chap. 3. First, high-speed computing and, in the case of Monte Carlo permutation
methods, efficient pseudo-random number generators. Second, the examination of
all combinations instead of all permutations of the observed data. Third, the use
of mathematical recursion. Fourth, calculation of only the variable portion of the
selected test statistic. Fifth, in the case of multiple arrays of data, holding one array
of the observed data constant. Where appropriate, each efficiency is described and
illustrated with a small set of data and an example permutation analysis.
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1.4 Chapter 4

The fourth chapter provides a general introduction to measures of central tendency
and variability, two concepts that are central to conventional statistical analysis and
inference. The sample mode, mean, and median are described and illustrated with
small example data sets. The sample mode is simply the score or category with the
largest frequency. Two example analyses illustrate the mode, one employing scores
and the other employing categories.

Next, the sample mean is considered. The sample mean is the point about which
the sum of deviations is zero and, more importantly, the point about which the
sum of squared deviations is minimized. These properties are illustrated with two
example analyses. Moreover, the sample mean is central to the sample standard
deviation, denoted by sx , and the sample variance, denoted by s2

x— a point that is
illustrated with a small set of example data.

The sample median is usually defined as the point below which half the ordered
values fall or the 50th percentile. More importantly, the median is the point about
which the sum of absolute deviations is minimized. A detailed example analysis
illustrates this property. The sample median is central to the mean absolute deviation
(MAD), which is illustrated with a small set of example data.

Finally, the mean, median, and mode are compared with each other and an
alternative approach to the mean and median based on paired differences is
presented and illustrated. The paired-differences approach to the mean and median
is central to the Fisher–Pitman permutation model of statistical inference.

1.5 Chapter 5

The fifth chapter provides a general introduction to permutation analyses of one-
sample tests of hypotheses. One-sample tests are the simplest of a large family of
tests. For this reason, Chap. 5 is the first chapter dealing with the more technical
aspects of permutation statistical methods, serves as an introduction to the basic
concepts and varieties of permutation statistical methods, and lays a conceptual
foundation for subsequent chapters.

First, Chap. 5 defines permutation test statistic δ for one-sample tests, establishes
the relationship between test statistic δ and Student’s conventional one-sample t test
statistic, and describes the permutation procedures for determining exact probability
values under the Fisher–Pitman null hypothesis. An example analysis with a small
set of data details the required calculations for an exact test of the null hypothesis
under the Fisher–Pitman permutation model of statistical inference.

Second, Chap. 5 introduces the concept of effect sizes: indices to the magnitudes
of treatment effects and the practical—in contrast to the statistical—significance
of the research. The development and publication of measures of effect size has
become increasingly important in recent years and a number of journals now require
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measures of effect size prior to publication. Three types of measures of effect size
are described in Chap. 5. The first type of measure of effect size, designated the
d family, is based on measurements of the differences among treatment groups
or levels of an independent variable. As noted previously, Cohen’s d̂ is the most
prominent member of the d family, which typically measures effect size by the
number of standard deviations separating the means of treatment groups. Thus
Cohen’s d̂ can potentially vary from 0 to ∞.

The second type of measure of effect size, designated the r family, represents
some sort of relationship among variables. Measures of effect size in the r family are
typically measures of correlation or association, the most familiar being Pearson’s
squared product-moment correlation coefficient, denoted by r2. The principle
advantage of r measures of effect size is that they are usually bounded by the
probability limits 0 and 1, making them easily interpretable.

The third type of measure of effect size, designated the � family, represents
chance-corrected measures of effect size. Chance-corrected measures are easily
understood by the average reader, where positive values indicate an effect size
greater than expected by chance, negative values indicate an effect size less than
expected by chance, and a value of zero indicates an effect size corresponding
to chance. The interrelationships among Student’s one-sample t test, Cohen’s d̂

measure of effect size, Pearson’s r2 measure of effect size, and Mielke and Berry’s
� chance-corrected measure of effect size are explored and illustrated with a small
example set of data.

Third, six illustrative examples are provided in Chap. 5, demonstrating permuta-
tion statistical methods for one-sample tests of hypotheses. The first example utilizes
a small set of data to describe the calculations required for test statistic δ and an exact
permutation analysis of a one-sample test under the Fisher–Pitman null hypothesis.
Permutation test statistic δ is developed for the analysis of a single sample and
compared with Student’s conventional one-sample t test.

The second example details measures of effect size for one-sample tests.
Specifically, Cohen’s d̂ and Pearson’s r2 measures of effect size are detailed and
�, an alternative permutation-based, chance-corrected measure of effect size is
described for one-sample tests. The differences among the three measures of effect
size and their interrelationships are explored and illustrated with a small set of data.

The third example is designed to illustrate the differences between permuta-
tion analyses based on ordinary and squared Euclidean scaling functions. Unlike
conventional statistical tests that assume normality and are therefore limited to
squared Euclidean scaling functions, permutation statistical tests do not assume
normality, are extremely flexible, and can accommodate a variety of scaling
functions. Inclusion of extreme values illustrates the impact of extreme values on
the two scaling functions, on Student’s t test statistic, on test statistic δ, on the �
measure of effect size, and on exact and asymptotic probability values.

The fourth example compares and contrasts exact and Monte Carlo permutation
statistical methods. When sample sizes are large, exact permutation tests become
impractical and Monte Carlo permutation tests become necessary. While exact
permutation tests examine all possible arrangements of the observed data, Monte
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Carlo permutation tests examine only a random sample of all possible arrangements
of the observed data. Monte Carlo sample sizes can be increased to yield probability
values to any desired accuracy, at the expense of computation time.

The fifth example illustrates permutation statistical methods applied to univariate
rank-score data. The conventional one-sample tests for rank-score data under the
Neyman–Pearson population model are Wilcoxon’s signed-rank test and the simple
sign test. Wilcoxon’s signed-rank test and the sign test are described and compared
with permutation-based alternatives. The permutation analyses incorporate both
ordinary and squared Euclidean scaling functions. Test statistic δ is defined for rank-
score data, the exact probability of δ is generated, and the � measure of effect size
is described for univariate rank-score data.

The sixth example illustrates permutation statistical methods applied to mul-
tivariate data. Multivariate tests have become very popular in recent years as
they preserve the relationship among variables, instead of combining the variables
into an index and then employing a univariate one-sample test. Like the previous
examples, the multivariate permutation analysis incorporates both ordinary and
squared Euclidean scaling functions. Test statistic δ is defined for multivariate data,
the exact probability of δ is generated, and the � measure of effect size is described
for multivariate one-sample tests.

1.6 Chapter 6

The sixth chapter provides a general introduction to two-sample tests of hypotheses.
Tests of experimental differences for two independent samples are ubiquitous in the
research literature and are the tests of choice for comparing control and treatment
groups in experimental designs and for comparing two unrelated groups of subjects
in survey research.

First, Chap. 6 defines permutation test statistic δ for two independent samples,
establishes the relationship between test statistic δ and Student’s conventional t test
statistic for two independent samples, and describes the permutation procedures for
determining exact probability values under the Fisher–Pitman null hypothesis. A
small example analysis details the calculations required for an exact test of the null
hypothesis under the Fisher–Pitman permutation model of statistical inference.

Second, Chap. 6 describes five measures of effect size for two independent
samples. Specifically, Cohen’s d̂ , Pearson’s r2, Kelley’s ε2, Hays’ ω̂2, and Mielke
and Berry’s � measures of effect size are described and the interrelationships among
t , d̂ , r2, ε2, ω̂2, and � are explored and illustrated with a small set of data.

Third, six illustrative examples are provided in Chap. 6, demonstrating permu-
tation statistical methods for tests of two independent samples. The first example
utilizes a small data set to detail the calculations required for test statistic δ and
an exact permutation test for two independent samples under the Fisher–Pitman
null hypothesis. Permutation test statistic δ is developed for the analysis of two
independent samples and compared with Student’s conventional two-sample t test.
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The second example illustrates measures of effect size for two-sample tests. Four
conventional measures of effect size are described: Cohen’s d̂ , Pearson’s r2, Kelley’s
ε2, and Hays’ ω̂2. The four measures are compared and contrasted with Mielke and
Berry’s � chance-corrected measure of effect size.

The third example illustrates the differences between permutation analyses based
on ordinary and squared Euclidean scaling functions. The inclusion of extreme
values illustrates the impact of extreme values on the two scaling functions, on
Student’s t test statistic for two independent samples, on test statistic δ, on the �
measure of effect size, and on exact and asymptotic probability values.

The fourth example compares and contrasts exact and Monte Carlo permutation
statistical methods for tests of two independent samples. Both ordinary and
squared Euclidean scaling functions are included and evaluated. Finally, the chance-
corrected effect size measure � is compared with Cohen’s d̂ , Pearson’s r2, Kelley’s
ε2, and Hays’ ω̂2 measures of effect size.

The fifth example illustrates permutation statistical methods applied to univariate
rank-score data. The conventional two-sample test for rank scores under the
Neyman–Pearson population model is the Wilcoxon–Mann–Whitney (WMW) two-
sample rank-sum test. The WMW test is described and compared with alternative
tests under the Fisher–Pitman permutation model. The permutation analyses incor-
porate both ordinary and squared Euclidean scaling functions. Test statistic δ is
defined for rank-score data, the exact and Monte Carlo probability values for δ are
developed, and the � measure of effect size is described for univariate rank-score
data.

The sixth example illustrates permutation statistical methods applied to multi-
variate data. The results of a permutation statistical analysis are compared with the
results from Hotelling’s multivariate T 2 test for two independent samples. Mielke
and Berry’s � chance-corrected measure of effect size is described and illustrated
for multivariate data.

1.7 Chapter 7

The seventh chapter provides a general introduction to matched-pairs tests of
hypotheses. Tests of experimental differences between two matched samples are
the simplest of a very large family of tests. In general, matched-pairs tests generally
possess more power than tests for two independent samples with the same number
of subjects or the same power with fewer subjects. In addition, matched-pairs tests
are always balanced with the same number of subjects in each treatment group, a
decided advantage over conventional tests for two independent samples, where the
two samples may be markedly different in size.

First, Chap. 7 introduces permutation test statistic δ for matched-pairs tests,
establishes the relationship between test statistic δ and Student’s matched-pairs t

test statistic, and describes the permutation procedures required for determining
exact probability values under the Fisher–Pitman null hypothesis. Permutation test
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statistic, δ, is developed for the analysis of two matched samples and compared with
Student’s conventional matched-pairs t test.

Second, Chap. 7 describes measures of effect size for matched-pairs tests.
Specifically, Student’s t test for matched pairs, Cohen’s d̂, Pearson’s r2, and Mielke
and Berry’s � measure of effect size are presented and the interrelationships among
t , d̂ , r2, and � are explored and illustrated with a small example set of data.

Third, six illustrative examples are provided in Chap. 7, demonstrating permuta-
tion statistical methods for matched-pairs tests. The first example utilizes a small set
of data to detail the calculations required for test statistic δ and an exact permutation
test for matched pairs under the Fisher–Pitman null hypothesis. Permutation test
statistic δ is developed for the analysis of matched pairs and compared with
Student’s conventional matched-pairs t test statistic.

The second example describes measures of effect size for matched-pairs tests.
Cohen’s d̂ and Pearson’s r2 measures of effect size are described and Mielke and
Berry’s chance-corrected measure of effect size, �, is developed for matched-pairs
analyses and compared with Cohen’s d̂ and Pearson’s r2 conventional measures of
effect size.

The third example illustrates the differences between analyses based on ordinary
and squared Euclidean scaling functions. Inclusion of extreme values underscores
the impact of extreme values on the two scaling functions, on Student’s t test statistic
for two matched samples, on test statistic δ, on the � measure of effect size, and on
the accuracy of exact and asymptotic probability values.

The fourth example compares and contrasts exact and Monte Carlo permutation
analyses for matched-pairs tests. A matched-pairs test with a large data set is utilized
to generate exact and Monte Carlo permutation tests for both ordinary and squared
Euclidean scaling functions. The example confirms that Monte Carlo permutation
tests are a suitable and efficient substitute for exact permutation tests, provided
the Monte Carlo random sample arrangement of the observed data is sufficiently
large. Finally, the � measure of effect size is described for matched-pairs tests and
compared with Cohen’s d̂ and Pearson’s r2 conventional measures of effect size.

The fifth example illustrates permutation statistical methods applied to uni-
variate rank-score data, comparing permutation statistical methods to Wilcoxon’s
conventional signed-ranks test and the sign test. A large matched-pairs data set is
utilized to generate both exact and Monte Carlo permutation tests for both ordinary
and squared Euclidean scaling functions. Finally, the � measure of effect size is
described and illustrated for univariate rank-score data.

The sixth example illustrates permutation statistical methods applied to multi-
variate matched-pairs data. Test statistic δ is shown to be related to Hotelling’s
conventional T 2 test for matched pairs with a squared Euclidean scaling function.
The results for test statistics δ and T 2 are compared. Finally, Mielke and Berry’s �
measure of effect size is described and illustrated for multivariate data.
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1.8 Chapter 8

The eighth chapter presents permutation statistical methods for analyzing exper-
imental differences among three or more independent samples, commonly called
completely-randomized designs under the Neyman–Pearson population model.
Multi-sample tests are of two types: tests for differences among three or more
independent samples (completely-randomized designs) and tests for differences
among three or more related samples (randomized-blocks designs). Permutation
statistical tests for multiple independent samples are described in Chap. 8 and
permutation statistical tests for multiple related samples are described in Chap. 9.

Six example analyses illustrate permutation statistical methods for multi-sample
tests. The first example utilizes a small set of data to illustrate the calculations
required for test statistic δ and an exact permutation test for multiple independent
samples under the Fisher–Pitman null hypothesis. Permutation test statistic, δ, is
developed for the analysis of multiple independent samples and compared with
Fisher’s conventional F -ratio test statistic for completely-randomized designs.

The second example develops the � measure of effect size as a chance-corrected
alternative to the four conventional measures of effect size for multi-sample tests:
Cohen’s d̂, Pearson’s η2, Kelley’s η̂2, and Hays’ ω̂2.

The third example compares permutation statistical methods based on ordinary
Euclidean scaling functions with permutation methods based on squared Euclidean
scaling functions. Inclusion of one or more extreme scores underscores the impact
of extreme values on the two scaling functions, on Fisher’s F -ratio test statistic
for completely-randomized designs, on the permutation test statistic δ, on the �
measure of effect size, and on the accuracy of exact and asymptotic probability
values.

The fourth example compares and contrasts exact and Monte Carlo permutation
methods for multiple independent samples. Both ordinary and squared Euclidean
scaling functions are evaluated. Finally, the � measure of effect size is compared
with the four conventional effect size measures for multi-sample tests: Cohen’s d̂ ,
Pearson’s η2, Kelley’s η̂2, and Hays’ ω̂2.

The fifth example illustrates the application of permutation statistical methods
to univariate rank-score data, comparing a permutation analysis of example data to
the conventional Kruskal–Wallis one-way analysis of variance for ranks test. Both
exact and Monte Carlo permutation analyses are utilized and compared. Mielke and
Berry’s chance-corrected � measure of effect size is described and illustrated for
univariate rank-score data.

The sixth example illustrates the application of permutation statistical methods
to multivariate data, comparing a permutation analysis of example data to the
conventional Bartlett–Nanda–Pillai trace test for multivariate data. Mielke and
Berry’s chance-corrected � measure of effect size is described for multivariate data
and compared with η2, the conventional measure of effect size for multivariate data.
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1.9 Chapter 9

The ninth chapter presents permutation statistical methods for analyzing
experimental differences among three or more matched samples, commonly
called randomized-blocks designs under the Neyman–Pearson population model.
Randomized-blocks constitute important research designs in many fields. In recent
years randomized-blocks designs have become increasingly important in fields such
as horticulture, animal science, and agronomy as it has become easier to produce
matched subjects through embryo transplants, cloning, genetic engineering, and
selective breeding.

Six example analyses illustrate the application of permutation statistical methods
to randomized-blocks designs. The first example utilizes a small set of data to
detail the calculations required for test statistic δ and an exact permutation test for
multiple matched samples under the Fisher–Pitman null hypothesis. Permutation
test statistic, δ, is developed for the analysis of multiple matched samples and
compared with Fisher’s conventional F -ratio test for randomized-blocks designs.

The second example develops the � measure of effect size as a chance-corrected
alternative to the four conventional measures of effect size for randomized-blocks
designs: Hays’ ω̂2, Pearson’s η2, Cohen’s partial η2,and Cohen’s f 2.

The third example compares permutation statistical methods based on ordinary
and squared Euclidean scaling functions. Inclusion of one or more extreme scores
underscores the impact of extreme values on the two scaling functions, on Fisher’s
F -ratio test statistic for randomized-blocks designs, on the permutation test statistic
δ, on the � measure of effect size, and on the accuracy of exact and asymptotic
probability values. It is demonstrated that extreme blocks of data yield the same
results with both scaling functions, but extreme values within a block can yield
considerable differences.

The fourth example utilizes a larger data set to compare and contrast exact
and Monte Carlo permutation statistical methods for randomized-blocks designs.
Both ordinary and squared Euclidean scaling functions are evaluated. The chance-
corrected measure of effect size � is developed for randomized-blocks designs
and compared with Hays’ ω̂2, Pearson’s η2, Cohen’s partial η2, and Cohen’s f 2

conventional measures of effect size.
The fifth example illustrates the application of permutation statistical methods to

univariate rank-score data, comparing permutation statistical methods to Friedman’s
conventional two-way analysis of variance for ranks. The permutation test statistic,
δ, and Mielke and Berry’s � measure of effect size are described and illustrated for
univariate rank-score data.

The sixth example illustrates the application of permutation statistical methods
to multivariate randomized-blocks designs. Both the permutation test statistic δ and
Mielke and Berry’s chance-corrected � measure of effect size are described and
illustrated for multivariate randomized-blocks designs.
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1.10 Chapter 10

The tenth chapter presents permutation statistical methods for measures of linear
correlation and regression. Measures of linear correlation and regression are
ubiquitous in the research literature and constitute the backbone of many more
advanced statistical methods, such as factor analysis, principal components analysis,
path analysis, network analysis, neural network analysis, multi-level (hierarchical)
modeling, and structural equation modeling.

Six example analyses illustrate the application of permutation statistical methods
to linear correlation and regression. The first example utilizes a small set of bivariate
observations to illustrate the calculations required for test statistic δ and an exact
permutation test for measures of linear correlation under the Fisher–Pitman null
hypothesis. Permutation test statistic, δ, is developed for the analysis of correlation
and compared with Pearson’s conventional squared product-moment correlation
coefficient.

The second example develops the � measure of effect size as a chance-corrected
alternative to Pearson’s squared product-moment correlation coefficient. The two
measures of effect size are illustrated and compared using a small set of data.

The third example compares permutation statistical methods based on ordinary
and squared Euclidean scaling functions, with an emphasis on the analysis of data
containing one or more extreme values. Ordinary least squares (OLS) regression
based on squared Euclidean scaling and least absolute deviation (LAD) regression
based on ordinary Euclidean scaling are described and compared.

The fourth example compares exact and Monte Carlo permutation statistical
methods for linear correlation and regression. Both ordinary Euclidean scaling and
squared Euclidean scaling functions are evaluated. The chance-corrected effect-
size measure � is developed for correlation methods and compared with Pearson’s
squared product-moment correlation coefficient.

The fifth example illustrates the application of permutation statistical methods
to univariate rank-score data, comparing permutation statistical methods with
Spearman’s rank-order correlation coefficient, Kendall’s rank-order correlation
coefficient, and Spearman’s footrule correlation coefficient. The permutation test
statistic δ and Mielke and Berry’s � measure of effect size are described and
illustrated for univariate rank-score data.

The sixth example illustrates the application of permutation statistical methods
to multivariate linear correlation and regression. Both OLS and LAD multivariate
linear regression are described and compared for multivariate observations. Permu-
tation test statistic δ and the � measure of effect size are described and illustrated
for multivariate linear regression data.
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1.11 Chapter 11

The last chapter provides a general introduction to permutation measures of
association for contingency tables. Measures of association for contingency tables
constitute a variety of types. One type measures the association in a cross-
classification of two nominal-level (categorical) variables and the measure can
be either symmetric or asymmetric. A second type measures the association in
a cross-classification of two ordinal-level (ranked) variables and the measure can
be either symmetric or asymmetric. A third type measures the association in a
cross-classification of a nominal-level variable and an ordinal-level variable. A
fourth type measures the association in a cross-classification of a nominal-level
variable and an interval-level variable. And a fifth type measures the association in a
cross-classification of an ordinal-level variable and an interval-level variable. These
mixed-level measures are typically asymmetric with the lower-level variable serving
as the independent variable and the higher-level variable serving as the dependent
variable.

Six sections of Chap. 11 illustrate permutation statistical methods for the analysis
of contingency tables. The first section considers permutation statistical methods
applied to conventional goodness-of-fit tests; for example, Pearson’s chi-squared
goodness-of-fit test. Two examples illustrate permutation goodness-of-fit tests and
a new maximum-corrected measure of effect size is developed for chi-squared
goodness-of-fit tests.

The second section considers permutation statistical methods for analyzing
contingency tables in which two nominal-level variables have been cross-classified.
Cramér’s V test statistic illustrates a conventional symmetrical measure of nominal
association and Goodman and Kruskal’s ta and tb illustrate conventional asymmet-
rical measures of nominal association.

The third section utilizes permutation statistical methods for analyzing con-
tingency tables in which two ordinal-level variables have been cross-classified.
Goodman and Kruskal’s G test statistic illustrates a conventional symmetrical
measure of ordinal association and Somers’ dyx and dxy test statistics illustrate
conventional asymmetrical measures of ordinal association.

The fourth section utilizes permutation statistical methods for analyzing contin-
gency tables in which one nominal-level variable and one ordinal-level variable have
been cross-classified. Freeman’s θ test statistic illustrates a conventional measure of
nominal-ordinal association.

The fifth section utilizes permutation statistical methods for analyzing contin-
gency tables in which one nominal-level variable and one interval-level variable
have been cross-classified. Pearson’s point-biserial correlation coefficient illustrates
a conventional measure of nominal-interval association.

The sixth section utilizes permutation statistical methods for analyzing contin-
gency tables in which one ordinal-level variable and one interval-level variable have
been cross-classified. Jaspen’s rY Z̄ correlation coefficient illustrates a conventional
measure of ordinal-interval association.
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1.12 Summary

This chapter provided an introduction to permutation statistical methods and an
overview and brief summaries of the next 10 chapters. Most of the substantive
chapters utilize six examples or sections to illustrate the application of permutation
statistical methods to one-sample tests, tests for two independent samples, matched-
pairs tests, completely-randomized designs, randomized-blocks designs, linear
correlation and regression, and a variety of types of contingency tables.

Chapter 2 provides a brief history and subsequent development of permutation
statistical methods. Permutation statistical methods were introduced by R.A. Fisher
in 1925, further developed by R.C. Geary in 1927, T. Eden and F. Yates in 1933,
and H. Hotelling and M.R. Pabst in 1936, but it was E.J.G. Pitman who made
permutation statistical methods explicit with three seminal articles published in
1937 and 1938. However, it took another 50 years before high-speed computing
was developed and permutation statistical methods became practical.
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Chapter 2
A Brief History of Permutation Methods

Abstract This chapter provides a brief history and overview of the early beginnings
and subsequent development of permutation statistical methods, organized by
decades from the 1920s to the present.

A variety of books and articles have been written on the history of statistics
and statistical methods. Five of the better-known books are by Stephen Stigler
titled American Contributions to Mathematical Statistics in the Nineteenth Century,
Vol. I [92], American Contributions to Mathematical Statistics in the Nineteenth
Century, Vol. II [93], The History of Statistics: The Measurement of Uncertainty
Before 1900 [94], Statistics on the Table: The History of Statistical Concepts and
Methods [95], and The Seven Pillars of Statistical Wisdom [96].1

Other notable books are Studies in the History of Probability and Statistics: I.
Dicing and Gaming and Games, Gods, and Gambling: The Origin and History
of Probability and Statistical Ideas from the Earliest Times to the Newtonian Era
by F.N. David [23, 24], The Making of Statisticians by J. Gani [40], History of
Probability and Statistics and Their Applications Before 1750 and A History of
Mathematical Statistics from 1750 to 1930 by A. Hald [47, 48], Studies in the
History of Statistics and Probability, Vol. II by M.G. Kendall and R.L. Plackett [58],
Statistics in Britain, 1865–1930: The Social Construction of Scientific Knowledge
by D. MacKenzie [64], Studies in the History of Statistics and Probability, Vol. I by
E.S. Pearson and M.G. Kendall [79], The Rise of Statistical Thinking, 1820–1900 by
T.M. Porter [84], and The Lady Tasting Tea: How Statistics Revolutionized Science
in the Twentieth Century by D.S. Salsburg [87].2

This chapter provides a brief history and overview of the early beginnings and
subsequent development of permutation statistical methods organized by decades.
Because of the audience for whom this book is intended as well as space limitations,

1Authors’ note: Statistics on the Table and The Seven Pillars of Statistical Wisdom by Stephen
Stigler are comprehensible and lucid texts written for readers with limited statistical training.
2Authors’ note: The Rise of Statistical Thinking by Theodore Porter and The Lady Tasting Tea by
David Salsburg are well-written and appropriate for readers with limited statistical training.
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only a small sample of contributions and contributors to the permutation literature is
presented for each 10-year period. For more comprehensive histories of the develop-
ment of permutation statistical methods, see two articles in WIREs Computational
Statistics on “Permutation methods,” [9] and “Permutation methods. Part II” [13],
and a book on A Chronicle of Permutation Statistical Methods by the authors [10].
Much of the material in this chapter has been adapted from these three sources.

2.1 The Period from 1920 to 1929

The 1920s marked the very beginnings of permutation statistical methods. Only
two articles and one chapter pertaining to permutation statistical methods were
published between 1920 and 1929. First was an article by J. Spława-Neyman,
“On the application of probability theory to agricultural experiments,” published
in Annals of Agricultural Sciences in 1923; second was a chapter by R.A. Fisher,
published in Fisher’s first book titled Statistical Methods for Research Workers in
1925; and third was an article by R.C. Geary on “Some properties of correlation
and regression in a limited universe,” published in Metron in 1927. However, the
importance of these early contributions cannot be overstated.

2.1.1 J.S. Neyman

In 1923 Jerzy Spława-Neyman introduced a completely-randomized permutation
model for the analysis of field experiments conducted for the purpose of comparing
a number of crop varieties [90].3 The article was part of his doctoral thesis submitted
to the University of Warsaw in 1924 and based on research that he had previously
carried out at the Agricultural Institute of Bydgoszcz in Northern Poland. The article
was written in Polish and was essentially lost to permutation researchers for 66
years until it was translated by D.M. Dabrowska and T.P. Speed and re-published in
Statistical Science in 1990 [22].

2.1.2 R.A. Fisher

In 1925 Ronald Aylmer Fisher calculated an exact probability value using the
binomial probability distribution in his first book titled Statistical Methods for

3Jerzy Spława-Neyman later shortened his name to Jerzy Neyman, emigrated to the USA, and
assumed a position at the University of California, Berkeley, in 1938. Neyman founded the
Department of Statistics at UC Berkeley in 1955.
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Research Workers [35]. Although the use of the binomial distribution to obtain a
probability value is not usually considered to be a permutation test per se, Henry
Scheffé, writing in The Annals of Mathematical Statistics, considered it to be
the first application in the literature of a permutation test [88, p. 318]. Also, the
binomial distribution does yield an exact probability value and Fisher found it
useful, calculating the exact expected values for experimental data. Fisher wrote
that the utility of any statistic depends on the original distribution and “appropriate
use of exact methods,” which he noted have been worked out for only a few cases.
Fisher explained that the application is greatly extended as many statistics tend to the
normal distribution as the sample size increases, acknowledging that it is therefore
customary to assume normality and to limit consideration of statistical variability to
calculations of the standard error.

Fisher provided two examples, of which only the first is described here. The
example utilized data from the evolutionary biologist Raphael Weldon who threw
12 dice 26,306 times for a total of 315,672 observations, recording the number of
times a 5 or a 6 occurred, which Weldon considered to be a “success.” Fisher used
the binomial distribution to obtain the exact expected value for each of the possible
outcomes of 0, 1, . . . , 12. For example, the exact binomial probability value for six
of 12 dice showing either a 5 or a 6 is

p(6|12) =
(

12

6

)(
2

6

)6 (4

6

)12−6

= (924)(0.0014)(0.0878) = 0.1113 .

Multiplying p = 0.1113 by N = 23,306 trials yields an expectation of 2927.20.
Fisher concluded the dice example by calculating a chi-squared goodness-of-fit
test and a normal approximation to the discrete binomial distribution. For the chi-
squared goodness-of-fit analysis Fisher reported a chi-squared value of χ2 = 35.49
and a probability value of P = 0.0001, and for the normal approximation analysis
Fisher reported a standard score of z = +5.20 and a two-tail probability value of
P = 0.20×10−6.

From this example it is clear that Fisher demonstrated a preference for exact
solutions, eschewing the normal approximation to the discrete binomial distribution
even though the sample sizes were very large. Fisher was to go on to develop
other permutation methods and this early work provides a glimpse into how Fisher
advanced exact solutions for statistical problems.

2.1.3 R.C. Geary

In 1927 Robert Charles Geary was the first to use an exact permutation analysis to
demonstrate the utility of asymptotic approaches for data analysis in an investigation
of the properties of linear correlation and regression in finite populations [41]. In
his 1927 paper published in Metron, Geary examined the mathematical principles
underlying a method for indicating the correlation between two variates, arguing
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that “the formal theory of correlation . . . makes too great demands upon the slender
mathematical equipment of even the intelligent public” [41, p. 83].

For his data, Geary considered potato consumption and the incidence of cancer
deaths in Ireland. Repeating the experiment 1000 times while holding the marginal
frequency totals constant, Geary found that cell arrangements greater than those
of the actual experiment occurred in just 231 of the 1000 repetitions yielding a
probability value of P = 0.2310. Geary concluded that the relationship between
potato consumption and cancer was not statistically significant.

2.2 The Period from 1930 to 1939

A number of notable threads of inquiry were established in the period from 1930
to 1939 that were destined to become important in the development of permutation
statistical methods. First, there was widespread recognition of the computational
difficulties inherent in constructing permutation tests. Second, there was general
acceptance that permutation tests were data-dependent, relying solely on the infor-
mation contained in the observed sample without any reference to the population
from which the sample had been drawn. Third, it was recognized that permutation
tests were distribution-free and made no assumptions about the population(s) from
which the samples had been drawn, such as normality or homogeneity of variance.
Fourth, it was generally recognized that it was not necessary to calculate an entire
test statistic when undertaking a permutation test. Only that portion of the statistic
that varied under permutation was required and the invariant portion could therefore
be ignored for permutation purposes, leading to increased computational efficiency.
Finally, Monte Carlo permutation methods were recognized to be an efficient
alternative to exact permutation methods, in which only a random sample of all
possible arrangements of the observed data values was analyzed.

The 1930s witnessed a number of important articles on permutation statistical
methods. A selection of nine of the most important articles published between 1930
and 1939 illustrates the development of permutation statistical methods in the 1930s:
articles by O. Tedin in 1931, by T. Eden and F. Yates in 1933, by R.A. Fisher in 1935,
by H. Hotelling and M.R. Pabst in 1936, three articles by E.J.G. Pitman in 1937 and
1938, an article by M.G. Kendall in 1938, and an article by M.G. Kendall and B.
Babington Smith in 1939.

2.2.1 O. Tedin

Olof Tedin was a Swedish geneticist who spent most of his professional career as a
plant breeder with the Swedish Seed Association. In 1931 Tedin published a paper
in the Journal of Agricultural Science in which he demonstrated that, when the
assumptions of the classical analysis of variance test are met in practice, the classical
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test and the corresponding permutation test yielded essentially the same probability
value [97].

2.2.2 T. Eden and F. Yates

Like R.C. Geary in 1927, Thomas Eden and Frank Yates utilized permutation
statistical methods in 1933 to compare a theoretical distribution to an empirical
distribution [26]. Eden and Yates examined height measurements of Yeoman
II wheat shoots grown in eight blocks, each consisting of four sub-blocks of
eight plots. The simulated and theoretical probability values for 1000 random
arrangements of the observed data were compared using a chi-squared goodness-of-
fit procedure and were found to be in close agreement, supporting the assumption
of normality. Eden and Yates concluded that Fisher’s variance-ratio z statistic could
be applied to data of this type with confidence.4 Most important to permutation
statistical methods, Eden and Yates were able to considerably reduce the amount
of computation required by observing that the block sum-of-squares and the total
sum-of-squares would be constant for all 1000 samples; consequently, the value of
z for each sample would be solely determined by the value of the treatment sum-of-
squares.

2.2.3 R.A. Fisher

In 1935 Ronald Aylmer Fisher published a paper in Journal of the Royal Sta-
tistical Society in which he analyzed data on 30 criminal same-sex twins that
had been previously published by Dr. Johannes Lange, Chief Physician at the
Munich–Schwabing Hospital and Director of the German Experimental Station
for Psychiatry [37]. The point of the twin example—that for small samples
exact tests are possible, thereby eliminating the need for estimation—indicates an
early understanding of the superiority of exact probability values computed from
known discrete distributions over approximations based on assumed theoretical
distributions. As Fisher pointed out, “The test of significance is therefore direct, and
exact for small samples. No process of estimation is involved” [36, p. 50]. Today
the test is known as Fisher’s exact probability (FEP) test for 2×2 contingency tables
and is included in most statistical computing packages.5

4The original symbol for the variance-ratio test statistic used by Fisher was z. In 1934 George
Snedecor published tabled values in a small monograph for Fisher’s z statistic and rechristened the
test statistic F [89].
5The exact probability test for 2×2 contingency tables was independently developed by Frank
Yates in 1934 [104] and Joseph Irwin in 1935 [52].
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2.2.4 H. Hotelling and M.R. Pabst

In 1936 Harold Hotelling and Margaret Richards Pabst at Columbia University
used permutation methods to calculate exact probability values for small samples
of rank data in their research on simple bivariate correlation [51]. Noting that tests
of significance are primarily based on the assumption of a normal distribution in a
hypothetical population from which the observations are assumed to be a random
sample, Hotelling and Pabst developed permutation methods of statistical inference
without assuming any particular distribution of the variates in the population from
which the sample had been drawn. Hotelling and Pabst utilized the calculation of a
probability value that incorporated all possible permutations of the data, under the
null hypothesis that all permutations were equally-likely. This 1936 article may well
have been the first example that detailed the method of calculating a permutation test
using all possible arrangements of the observed data.

2.2.5 E.J.G. Pitman

In three papers published in 1937 and 1938, Edwin James George Pitman demon-
strated how researchers, using exact permutation structures, could devise valid tests
of significance that made no assumptions about the distributions of the sampled
populations [81–83]. While much credit must go to R.A. Fisher and R.C. Geary for
their early contributions to permutation statistical methods, it was E.J.G. Pitman at
the University of Tasmania who made permutation methods explicit in these three
papers.

In the first of these three seminal papers published in 1937, Pitman demonstrated
how researchers could devise valid tests of significance between two independent
samples that made no assumptions about the distributions of the sampled popu-
lations [81]. In addition, Pitman showed how precise limits could be determined
for the difference between two independent means, again without making any
assumptions about the populations from which the samples had been obtained. The
second paper, also published in 1937, developed permutation statistical methods for
the Pearson product-moment correlation coefficient “which makes no assumptions
about the population sampled” [81, p. 232].

In the third paper published in 1938, Pitman proposed a permutation test for the
analysis of variance “which involved no assumptions of normality” [83, p. 335].
Pitman noted that in the form of analysis of variance test discussed in the paper
(randomized-blocks) the observed values were not regarded as a sample from a
larger population. This early statement is possibly the first pronouncement that
permutation statistical methods do not require random sampling from a well-defined
infinite population.
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2.2.6 M.G. Kendall

Also in 1938 Maurice George Kendall incorporated exact probability values utiliz-
ing the “entire universe” of permutations in the construction of test statistic τ , a
new measure of rank-order correlation that was based on the difference between the
sums of concordant and discordant pairs of observations that he labeled S [55].
A clever recursion procedure permitted the efficient calculation of all possible
arrangements of the observed data. Utilizing this powerful recursion technique,
Kendall constructed a table of the distribution of test statistic S for values of n from
1 to 10, thereby providing exact probability values.

2.2.7 M.G. Kendall and B. Babington Smith

In 1939 Maurice George Kendall and Bernard Babington Smith considered the
problem of m rankings [57]. They defined a coefficient of concordance as

W = 12S

m2(n3 − n)
,

where m denotes the number of rankings, n denotes the number of rank scores in
each ranking, and S denotes the observed sum-of-squares of the deviations of sums
of ranks from the mean value. Since m2(n3 − n) and the constant 12 are invariant
under permutation of the observed data, Kendall and Babington Smith showed that
to test whether an observed value of test statistic W is statistically significant it is
only necessary to consider the distribution of S over all possible permutations of the
n observed values.6

2.3 The Period from 1940 to 1949

Since permutation methods are by their very nature computationally intensive, per-
mutation statistical methods developed between 1940 and 1949 were characterized
by researchers expressing frustration over difficulties in computing a sufficient
number of permutations of the observed data in a reasonable time. To compensate
for the difficulty, many researchers turned to rank-order statistics, which were
much more amenable to permutation methods. Thus this period from 1940 to 1949
was distinguished by a plethora of rank-order tests. Prominent in this period was
H. Scheffé with an article in 1943, F. Wilcoxon with an article in 1945, L. Festinger
with an article in 1946, H.B. Mann and D.R. Whitney with an article in 1947,

6Also see an article on this topic by E.J. Burr in 1960 [19].
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M.G. Kendall with a short book in 1948, and S.S. Wilks with an article in 1948.
These articles led to the publication of numerous tables of exact probability values
for rank-order tests of differences.

2.3.1 H. Scheffé

In 1943 Henry Scheffé published what soon became a seminal article on non-
parametric inference [88]. In an extensive review and highly mathematical summary
of the non-parametric literature of the time, Scheffé provided an excellent descrip-
tion of permutation statistical methods, attributing the origins of permutation
methods to the work of R.A. Fisher in 1925. Scheffé expressed dissatisfaction
with those cases in which the author of the test provided an approximation to the
discrete permutation distribution by means of some familiar continuous distribution.
This 1943 paper by Scheffé provided an important impetus to the development of
permutation statistical methods in the 1940s.

2.3.2 F. Wilcoxon

In 1945 Frank Wilcoxon, a chemist by training, introduced two test statistics for
rank-order values in Biometrics Bulletin [102]. In this very brief paper of only three
and a half pages, Wilcoxon considered the case of two samples of equal sizes and
provided a table of exact probability values for the lesser of the two sums of ranks
for both paired and unpaired experiments. In the case of unpaired samples, a table
provided exact probability values for 5–10 replicates in each sample, and for paired
samples, a table provided exact probability values for 7–16 paired comparisons.
Ralph Bradley referred to Wilcoxon’s unpaired and paired rank tests as the catalysts
for the flourishing of non-parametric statistics [50] and E. Bruce Brooks described
the 1945 Wilcoxon article as “a bombshell which broke new and permanent ground”
and pronounced the paired and unpaired rank-sum tests as “cornerstones in the
edifice of nonparametric statistics”[18].

2.3.3 L. Festinger

In 1946 psychologist Leon Festinger introduced a statistical test of differences
between two independent samples by first converting raw scores to ranks, then
testing the difference between the means of the ranks [34]. Festinger provided
tables for tests of significance based on exact probability values for 0.05 and 0.01
confidence levels for n = 2(1), . . . , 15, the smaller of the two samples, and m =
2(1), . . . , 38, the larger of the two samples. Festinger’s approach to the two-sample
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rank-sum test was developed independently of Wilcoxon’s. Moreover, Festinger’s
tables considered both equal and unequal sample sizes, whereas Wilcoxon’s method
allowed for only equal sample sizes. While both approaches generated all possible
permutations of outcomes, Festinger’s method was much more general and simpler
to implement.

2.3.4 H.B. Mann and D.R. Whitney

In 1947 mathematicians Henry Berthold Mann and Donald Ransom Whitney,
acknowledging the previous work by Wilcoxon on the two-sample rank-sum test,
proposed an equivalent test statistic, U , based on the relative ranks of two inde-
pendent samples [65]. Using a recurrence relation, Mann and Whitney constructed
tables of exact probability values up to and including n = m = 8, where n and
m denoted the number of rank scores in each of the two samples. Finally, from
the recurrence relation Mann and Whitney derived explicit expressions for the
mean, variance, and various higher moments for U , showing that the limit of the
distribution approached normality as min(n,m) → ∞.

2.3.5 M.G. Kendall

In 1948 Maurice George Kendall published a small volume titled Rank Correla-
tion Methods [56]. The importance of Kendall’s book on rank-order correlation
methods cannot be overstated. The title of Kendall’s book was perhaps a little
misleading as the book contained much more than rank-correlation methods,
including an extensive summary of permutation methods. Of particular relevance to
permutation statistical methods, Kendall included descriptive summaries of articles
that contained permutation statistics per se and tables of exact probability values
obtained from permutation distributions. For example, Kendall summarized articles
by H. Hotelling and M.R. Pabst that used permutation methods for calculating
exact probability values for small samples of rank-score data [51], E.J.G. Pitman on
permutation tests for two independent samples, linear correlation, and randomized-
blocks designs [81–83], F. Wilcoxon on tables of exact probability values for the
two-sample test for rank-order statistics [102], and H.B. Mann and D.R. Whitney
on exact probability values for the two-sample rank-sum test [65].

2.3.6 S.S. Wilks

Kendall’s book on Rank Correlation Methods was quickly followed by a substantial
and sophisticated exposition of rank-order statistics by Samuel Stanley Wilks in
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1948 [103]. In a highly structured organization, Wilks provided a lengthy discourse
on rank-order statistics, summarizing the results on rank-order statistics, and listing
all the references up to that time. Although the title of the article was “Order
statistics,” the article was also a rich source on permutation statistical methods.
The article by Wilks on order statistics comprised some 45 pages in Bulletin of
the American Mathematical Society and included summaries of the contributions
to permutation statistical methods by R.A. Fisher, H. Hotelling and M.R. Pabst,
E.J.G. Pitman, M. Friedman, H. Scheffé, and many others.

2.4 The Period from 1950 to 1959

Like the 1940s, permutation statistical methods in the 1950s were characterized by
extensive analyses of rank-score data. The exact analysis of contingency tables by
G.H. Freeman and J.H. Halton in 1951, exact probability values for the Wilcoxon
two-sample rank-sum test by C. White in 1952, exact probability values for an
analysis of variance for ranks by W.H. Kruskal and W.A. Wallis in 1952, the
promotion of exact permutation methods by G.E.P. Box and S.L. Andersen in
1955, and the rigorous investigation into the precision of Monte Carlo permutation
methods by M. Dwass in 1957 illustrate the development of permutation statistical
methods between 1950 and 1959.

2.4.1 G.H. Freeman and J.H. Halton

In 1951 Gerald Freeman and John H. Halton published a short but influential
article in Biometrika that addressed exact methods for analyzing two-way and three-
way contingency tables, given fixed marginal frequency totals [38]. The approach
adopted by Freeman and Halton for two-way contingency tables utilized the
conventional hypergeometric probability distribution. This was the same approach
put forward by R.A. Fisher in 1935 for 2×2 contingency tables. A three-way
contingency table is more complex than a two-way table, but Freeman and Halton
developed an innovative permutation method. Freeman and Halton concluded that
the exact method they proposed was generally useful in cases where a chi-squared
test would normally be utilized, but should not be used because the observed and
expected cell values were too small. The method, they explained, was also useful
when a chi-squared test was wholly unsuitable, such as when the entire population
contained so few members that a chi-squared test was not appropriate.
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2.4.2 C. White

Although trained as a medical doctor, Colin White nevertheless contributed to the
field of permutation statistics. In 1952 White recursively generated tables of exact
probability values for the Wilcoxon two-sample rank-sum test in which the sample
sizes, n1 and n2, could be either equal or unequal [101]. White provided three tables
that gave critical values of rank sums for n1 = 2(1), . . . , 15 and n2 = 4(1), . . . , 28
for critical values of α = 0.05, n1 = 2(1), . . . , 15 and n2 = 5(1), . . . , 28 for
critical values of α = 0.01, and n1 = 3(1), . . . , 15 and n2 = 7(1), . . . , 27 for
critical values of α = 0.001.

2.4.3 W.H. Kruskal and W.A. Wallis

Also in 1952 William Henry Kruskal and Wilson Allen Wallis proposed an exact C-
sample rank-sum test that they denoted as H [60]. Although H is asymptotically
distributed as chi-squared with C − 1 degrees of freedom, Kruskal and Wallis
provided tables based on exact probability values for C = 3 independent samples,
with each sample equal to or less than n = 5 for α = 0.10, 0.05, and 0.01 levels of
significance. Kruskal and Wallis compared the exact probability values with three
moment approximations: the first based on the chi-squared distribution, the second
based on the incomplete gamma distribution, and the third based on the incomplete
beta distribution. Finally, Kruskal and Wallis observed that when C = 2, H was
equivalent to the Wilcoxon [102], Festinger [34], and Mann–Whitney [65] two-
sample rank-sum tests.

2.4.4 G.E.P. Box and S.L. Andersen

In 1955 George Edward Pelham Box and Sigurd Lökken Andersen published
an important and influential paper on “Permutation theory in the derivation of
robust criteria and the study of departures from assumption” in Journal of the
Royal Statistical Society [15]. This was a lengthy paper of 35 pages and included
discussions by several prominent members of the Royal Statistical Society. Box
and Andersen noted that in practical circumstances little is usually known of the
validity of assumptions, such as the normality of the error distribution. They argued
for statistical procedures that were insensitive to changes in extraneous factors not
under test, but sensitive to those factors under test; that is, procedures both robust
and powerful. In this context, they addressed permutation theory as a robust method
and applied it to comparisons of means and variances. Box and Andersen pointed
out that tests on differences between variances could be so misleading as to be
valueless, unless the resulting distribution was very close to normal. They then
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stated that an assertion of normality would certainly not be justified. The solution,
they proposed, was the use of “a remarkable new class of tests” called permutation
tests [15, p. 3].

2.4.5 P.H. Leslie

Also in 1955 Patrick Holt Leslie published a short paper of only one-and-a-half folio
pages on “a simple method of calculating the exact probability in 2×2 contingency
tables with small marginal totals” [62]. Consider a simple example with n1. = 7,
n.1 = 6, N = 16, and n11 = 5. The essential values are the binomial coefficients
for n1. = 7, constituting n11 = 0, . . . , n.1, and in reverse order, the binomial
coefficients for N − n1. = 9, constituting n11 = n.1, . . . , 0. As Leslie showed, the
required binomial coefficients could easily be obtained from the first n + 1 terms of
the expanded binomial series; for example,

1 + n

1! + n(n − 1)

2! + n(n − 1)(n − 2)

3! + · · · + n!
n! =

n∑
i=0

(
n

i

)
= 2n .

2.4.6 M. Dwass

Meyer Dwass provided the first rigorous investigation into the precision of Monte
Carlo probability approximations. In 1957 Dwass published an article on mod-
ified permutation tests for non-parametric hypotheses [25] that relied heavily
on previously-published theoretical contributions by Erich Lehmann and Charles
Stein [61]. Dwass noted that a practical shortcoming of exact permutation proce-
dures was the great difficulty in enumerating all the possible arrangements of the
observed data. Dwass then proposed “the most obvious procedure” of examining a
random sample drawn without replacement from all possible permutations of the
observed data and making the decision to accept or reject the null hypothesis on the
basis of those permutations only. Dwass observed that while it is true that the size
of the random sample would necessarily have to be very large, the optimum exact
permutation test is usually impossible to calculate.

2.5 The Period from 1960 to 1969

Permutation statistical methods are, by their very nature, computationally intensive
methods and it took the development of high-speed computing for permutation
methods to achieve their potential. In the period prior to 1960, computers were large,
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slow, expensive, and input was usually by way of punch cards. In large part their use
was restricted to military and industrial applications. In the 1960s many permutation
algorithms and associated computer programs were developed for mainframe com-
puters. Most of the programs were written in an early version of FORTRAN, which
had been developed by IBM in 1956 for scientific and engineering applications.
Two articles on computing exact probability values for 2×2 contingency tables
illustrate this early development: one article by W.A. Robertson in 1960 and another
by I.D. Hill and M.C. Pike in 1965.

In contrast, Eugene Edgington at the University of Calgary dominated the
literature on permutation statistical methods in the 1960s. Edgington published
four major articles with an emphasis on permutation tests for differences in
1964, nonrandom samples in 1966, statistical inference in 1967, and Monte Carlo
permutation methods in 1969. Also in 1969, Edgington published a book on
Statistical Inference that contained a substantial chapter on permutation statistical
methods.

2.5.1 W.H. Robertson

A number of articles were published on the computation of exact probability
values for contingency tables and goodness-of-fit tests between 1960 and 1969. In
1960 William H. Robertson published an article on programming Fisher’s exact
probability method of comparing two percentages [85]. In this paper Robertson
described the application of a high-speed computer for determining the exact
probability associated with the problem of comparing two percentages utilizing
the Fisher–Yates exact probability method.7 In programming the Fisher–Yates exact
probability method, Robertson was forced to rely on stored logarithms of factorial
expression, given the limited capabilities of digital computers in 1960.

2.5.2 E.S. Edgington

In terms of permutation statistical methods, the period 1960–1969 could be labeled
the Edgington decade. Beginning in the early 1960s, Eugene Sinclair Edgington
published a number of articles and books on permutation methods, which he called
“randomization” methods, and was an influential voice in promoting the use of
permutation tests and measures. In 1964 Edgington published a descriptive article

7Relatively speaking, there were no “high-speed” computers in 1960. Since Robertson worked
at the Sandia National Laboratory in Albuquerque, New Mexico, he had access to a Royal
McBee LGP-30. The Royal McBee Librascope General Purpose (LGP) computer was considered
a desktop computer, even though it weighed 740 pounds. The LGP-30 contained a 4096-word
magnetic drum, and had a clock rate of only 120 kHz.
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on permutation tests in The Journal of Psychology [27]. In this brief but formative
article, Edgington defined a permutation test as a statistical test that derives a
sampling distribution of a statistic from repeated computations of the statistic for
various ways of pairing, arranging, or dividing the scores. Edgington considered
three types of permutation statistical tests: tests for differences between independent
samples, tests for differences between paired samples, and tests for measures of
correlation. Edgington noted that permutation tests could be particularly useful
whenever the assumptions of parametric tests could not be met, when samples were
very small, and when exact probability tables for the desired test statistic were not
available.

2.5.3 I.D. Hill and M.C. Pike

In the period from 1960 to 1969 there appeared a multitude of computer algorithms
and sequence generators, all essential to the computation of exact and Monte Carlo
permutation methods. One interesting and representative algorithm was by I.D. Hill
and M.C. Pike. In 1965 Hill and Pike designed an algorithm for computing tail-
area probability values for 2×2 contingency tables that was based on an exact
method for fixed marginal frequency totals [49]. It was an interesting algorithm
because it provided an exact one-tailed probability value by summing the individual
probability values that are equal to or less than the observed probability value,
and then provided two quite different two-tailed exact probability values. One two-
tailed probability value was obtained from the one-tailed probability value and a
probability value calculated in similar fashion from the second tail. The second two-
tailed probability value was obtained by including in the second tail all those terms
that gave an inverse odds-ratio statistic at least as great as the odds-ratio statistic for
the observed table.

2.5.4 E.S. Edgington

Eugene Edgington was especially critical of the use of normal-theory methods
when applied to nonrandom samples. In 1966 Edgington published a controversial
article in Psychological Bulletin that focused on statistical inference and nonrandom
sampling [28]. Writing primarily for psychologists, Edgington pointed out that since
experimental psychologists seldom sample randomly, it was difficult for psycholo-
gists to justify using hypothesis-testing procedures that required the assumption of
random sampling of the population or populations about which inferences were to
be made. Edgington stated his position unequivocally: “statistical inferences cannot
be made concerning populations that have not been randomly sampled” [28, p. 485].

In 1967 Eugene Edgington published an article on making statistical inferences
from a sample of N = 1 [29]. Edgington clarified the problem of making statistical
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inferences with permutation methods. He noted that while it was certainly correct
that a researcher could not statistically generalize to a population from only one
subject, it was also correct that a researcher could not statistically generalize to a
population from which the researcher had not taken a random sample of subjects.
Edgington noted that this observation precluded making inferences to populations
for virtually all experiments, both those with large and small sample sizes. Finally,
Edgington noted that hypothesis testing was still possible without random sampling,
but that significance statements were consequently limited to the effect of the
experimental treatment on the subjects actually used in the experiment.

In 1969 Eugene Edgington elaborated on approximate permutation tests; that is,
Monte Carlo permutation tests [30]. Edgington defined an approximate permutation
test as a test in which the significance of an obtained statistic was determined by
using a distribution consisting of a random sample of test statistics drawn from
the entire sampling distribution. Edgington noted that an approximate permutation
test could thereby greatly reduce the amount of computation required to a practical
level. At the time, in 1969, Edgington and others were recommending approximate
permutation tests based on 1000 random samples. Today, 1,000,000 random sam-
ples is fairly standard and easily accomplished with modern desktop computers,
workstations, and even laptops.

Also in 1969 Eugene Edgington published a book titled Statistical Inference:
The Distribution-free Approach that contained an entire chapter on permutation
tests for experiments [31]. In this lengthy chapter of 76 pages, Edgington exam-
ined inferences concerning hypotheses about experimental treatment effects with
finite populations, with no assumptions about the shapes of the populations, and
for nonrandom samples. He explored in great detail and with many examples,
permutation tests for paired comparisons, contingency tables, correlation, interac-
tions, differences between independent samples, and other lesser permutation tests
such as differences between medians, ranges, and standard deviations. Edgington
concluded the chapter with a discussion of normal-theory tests as approximations to
permutation tests.

2.5.5 O. Kempthorne and T.E. Doerfler

In 1969 Oscar Kempthorne and Thomas E. Doerfler published a paper examining
the behavior of selected tests of significance under experimental randomization [54].
Kempthorne and Doerfler selected three tests for a matched-pairs design and
concluded that the Fisher permutation test was to be preferred over the Wilcoxon
matched-pairs rank-sum test, which, not surprisingly, was to be preferred over the
sign test. All comparisons were based on Monte Carlo permutation test procedures
with 50 sets of randomly-generated data from eight distributions for experiments on
3–6 pairs of observations.

While the purported purpose of the paper was to compare matched-pairs designs,
the paper actually contained a great deal more. First, Kempthorne and Doerfler
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objected to the use of specified cut-off points for the significance level, α, and to
classifying the conclusion as being simply significant or not significant. They argued
that the use of such a dichotomy was inappropriate in the reporting of experimental
data as it resulted in a loss of information. Second, they objected to the common
practice of adding very small values to measurements so as to avoid ties when
converting raw scores to ranks. Third, they suggested that the term “significance
level” of a test be retired from the statistical vocabulary. Finally, they dismissed the
assumption of random samples in comparative populations and praised permutation
tests for their ability to answer the question “What does this experiment, on its own,
tell us?” [54, p. 235].

2.6 The Period from 1970 to 1979

Like the 1960s, the 1970s witnessed the development of computer algorithms
for exact permutation methods. Researchers were focused on defining efficient
methods for computing exact probability values. By 1979 punch cards had largely
disappeared and desktop computers, although not common, were available to many
researchers. In 1973 Alvan Feinstein produced one of the best introductions to
permutation methods ever published and in 1976 Paul Mielke, with his collaborators
at Colorado State University, published the first of what would become several
hundred articles and books on exact and Monte Carlo permutation statistical
methods.

2.6.1 A.W. Ghent

No account of the analysis of contingency tables would be complete without
mention of the work of Arthur W. Ghent, who significantly extended the method
of binomial coefficients first proposed by Patrick Leslie in 1955 [62]. In 1972
Ghent examined the literature on the alignment and multiplication of appropriate
binomial coefficients for computing the Fisher–Yates exact probability test for 2×2
contingency tables with fixed marginal frequency totals [44]. In an exceptionally
clear and cogent presentation, Ghent reviewed the method of binomial coefficients
first proposed by Leslie in 1955 [62] and independently discovered by Sakoda and
Cohen in 1957 [86].

The method of binomial coefficients was a computational procedure involving,
first, the selection of the appropriate series of binomial coefficients; second, their
alignment at starting points in accord with the configuration of frequencies in the
observed contingency table; and finally, the multiplication of adjacent coefficients
that constitute the numerators of the exact hypergeometric probability values of all
2×2 contingency tables that are equal to or more extreme than the probability of the
observed contingency table, given fixed marginal frequency totals.
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2.6.2 A.R. Feinstein

Trained as both a mathematician and a medical doctor, Alvan R. Feinstein published
400 original articles and six books. In 1973 Feinstein published a must-read article
on permutation methods [33].8 The importance of Feinstein’s article was not
that it contained new permutation methods, but that it summarized and promoted
permutation methods to a new audience of clinical researchers in a cogent and
lucid manner. Writing for a statistically unsophisticated readership, Feinstein
distinguished between socio-political research where the purpose was usually to
estimate a population parameter, and medical research where the purpose was
typically to contrast a difference between two groups. Feinstein observed that a
random sample is mandatory for estimating a population parameter, but “has not
been regarded as equally imperative for contrasting a difference” [33, p. 899]. In a
strongly worded conclusion, Feinstein argued that the ultimate value of permutation
methods was that their intellectual directness, precision, and simplicity would free
both the investigator and the statistician from “a deleterious pre-occupation with
sampling distributions, pooled variances, and other mathematical distractions” [33,
p. 914].

2.6.3 P.W. Mielke, K.J. Berry, and E.S. Johnson

In 1976 Paul W. Mielke, Kenneth J. Berry, and Earl S. Johnson published an article
on “Multi-response permutation procedures for a priori classifications,” which they
abbreviated as MRPP for convenience [73]. Mielke, Berry, and Johnson provided
an exact permutation test for analyzing multi-response data at the ordinal or higher
levels. The associated test statistic, which they denoted as δ, was based on the
average difference, or any specified norm, between data points within a priori
disjoint subgroups of a finite population of points in an r-dimensional space, such
as r measured responses from each object in a finite population of objects. In
addition, alternative approximate tests based on the beta and normal distributions
were provided. Two detailed examples utilizing actual social science data illustrated
permutation statistical methods, including comparisons of the approximate tests. A
third example described the behavior of these tests under a variety of conditions,
including the inclusion of extreme values. This 1976 article by Mielke, Berry,
and Johnson introduced test statistic δ, which serves as the first of the three main
constructs of this book. Second, this article introduced ordinary Euclidean scaling
in which absolute differences between data points were utilized instead of the more
conventional squared Euclidean differences.

8Authors’ note: After 40-plus years, this 1973 article by Feinstein remains as perhaps the clearest
non-mathematical introduction to permutation methods ever written and should be consulted by all
researchers new to the field of permutation methods.
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2.6.4 B.F. Green

In 1977 Bert Green published an interactive FORTRAN program for one- and two-
sample permutation tests of location [46]. Noting that Fisher’s permutation tests
of location had been described by Ralph Bradley as “stunningly efficient” but “dis-
mally impractical” [17], Green proposed a practical permutation program containing
two heuristics that permitted most of the permutations to be counted implicitly rather
than explicitly. Both exact and Monte Carlo permutation procedures were provided
in the program.

2.6.5 A. Agresti and D. Wackerly

Also in 1977, Alan Agresti and Dennis Wackerly published an article on exact
conditional tests of independence for r×c contingency tables with fixed marginal
frequency totals [2]. Unlike previous researchers, Agresti and Wackerly were less
concerned with the exact hypergeometric probability and more concerned with the
exact probability of established test statistics, such as Pearson’s chi-squared statistic.
Agresti and Wackerly defined the attained significance level to be the sum of the
probability values of all contingency tables for which the value of the test statistic
was at least as large as the value of the test statistic for the observed contingency
table. This perception by Agresti and Wackerly was destined to become an important
observation.

2.6.6 J.M. Boyett

In 1979 James M. Boyett published an algorithm and associated FORTRAN subrou-
tine to generate random r×c contingency tables with given fixed row and column
marginal frequency totals [16]. First, employing a uniform pseudo-random number
generator and a shuffling routine, Boyett generated a random permutation of the first
N integers, x1, x2, . . . , xN , then partitioned the permuted integers into r groups of
the row variable with each group Si containing ai. values for i = 1, . . . , r . For the
column variable, the first N integers (not permuted) were partitioned into c groups
with each group Tj containing a.j values for j = 1, . . . , c. Thus,

S1 = {xa1.+1, . . . , xa1.+a2.}, . . . , Sr = {xN−ar.+1, . . . , xN } ,

T1 = {1, . . . , a.1} ,

and

T2 = {a.1 + 1, . . . , a.1 + a.2}, . . . , Tc = {N − a.c + 1, . . . , N} .
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2.7 The Period from 1980 to 1989

Permutation statistical methods arrived at a new level of maturity in the 1980s,
primarily as a result of two factors: (1) greatly improved computer clock speeds and
(2) widely available desktop computers and workstations. While interest continued
in the study of linear rank-order statistics, the period witnessed a dramatic shift
in sources of permutation publications. Prior to 1980 nearly all published papers
on permutation methods appeared in computer journals, such as Communications of
the ACM, Journal of Numerical Analysis, The Computer Journal, and The Computer
Bulletin. In the period between 1980 and 1989 there was a shift away from computer
journals and into statistical journals, such as Biometrika, Biometrics, Journal of
Statistical Computation and Simulation, and Applied Statistics.9 An even more
dramatic change occurred in this period as an increasing number of published
papers on permutation statistical methods began appearing in discipline journals,
such as American Journal of Public Health, American Antiquity, Educational and
Psychological Measurement, Journal of Applied Meteorology, and British Journal
of Mathematical and Statistical Psychology.

2.7.1 E.S. Edgington

In 1980 Eugene Edgington published Randomization Tests, the first full book
devoted to permutation (randomization) statistical methods [32]. The book was
intended as a practical guide for experimenters on the use of permutation tests.
Edgington defined permutation tests as those in which the data are repeatedly rear-
ranged, a test statistic is computed on each arrangement, and the proportion of the
arrangements with as large a test statistic value as the value for the obtained results
determines the significance of the results. Edgington argued that random assignment
is the only element necessary for determining the significance of experimental
results by a permutation test procedure. Therefore, assumptions regarding random
sampling and assumptions regarding normality, homogeneity of variance, and other
characteristics of randomly sampled populations are unnecessary. A second edition
was published in 1987, a third edition was published in 1995, and a fourth edition
co-authored with Patrick Onghena was published in 2007.10

9The journal Applied Statistics is also known as Journal of the Royal Statistical Society, Series C.
10Eugene Edgington, a dominating force in the promotion of permutation statistical methods for
50 years, passed away on September 2, 2013, at the age of 89.
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2.7.2 K.J. Berry, K.L. Kvamme, and P.W. Mielke

Also in 1980 Kenneth J. Berry, Kenneth L. Kvamme, and Paul W. Mielke published
an article in American Antiquity titled “A permutation technique for the spatial
analysis of the distribution of artifacts into classes” [8]. This brief article was,
most probably, the first analysis of archaeological data using permutation methods
published in the field of anthropology. The authors argued that the identification
of localized activity areas through an analysis of artifact distribution within an
archaeological site is a complex process warranting more than visual assessment
and impressionistic interpretation and noted that quantitative approaches to date
have utilized conventional statistical tests that require indefensible assumptions to
be made about the data. Utilizing ordinary Euclidean scaling functions on data
gathered from Sde Divshon, an Upper Paleolithic site on the Divshon Palin in Israel,
the authors presented a rigorous test of the patterning of positions of end scrapers,
carinated scrapers, and burins within the archaeological site.

2.7.3 W.M. Patefield

In 1981 William M. Patefield published a subroutine for the generation of random
r×c contingency tables which was designed to be an improvement over the
previously published algorithm of Boyett [78]. As Patefield explained, under the
null hypothesis of no association between row and column categories, the joint
probability distribution of a random table is given by nij , i = 1, . . . , r and
j = 1, . . . , c, conditional on the row and column totals, ni., i = 1, . . . , r , and
n.j , j = 1, . . . , c. Patefield considered the conditional distribution of a table entry
nlm given the table entries in row l; that is, nij , i = 1, . . . , l − 1 and j = 1, . . . , c

and the previous table entries in row l; that is, nlj , j = 1, . . . , m − 1.
Assuming valid conditional table entries, Patefield showed that the range of the

conditional distribution is from a minimum of

max
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The table entries, nrm, m = 1, . . . , c, in the last row of the table and nlc, l =
1, . . . , r , in the last column of the table, were obtained from the previous (r −
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1)×(c − 1) table entries and the fixed row and column marginal frequency totals,
ni., i = 1, . . . , r , and n.j , j = 1, . . . , c.

2.7.4 C.R. Mehta and N.R. Patel

In 1983 Cyrus R. Mehta and Nitin R. Patel created an innovative network algo-
rithm for the Fisher–Yates exact probability test for r×c unordered contingency
tables [67]. Unlike earlier algorithms for unordered contingency tables that were
based on an exhaustive enumeration of all possible tables with fixed marginal fre-
quency totals, the Mehta–Patel network algorithm eliminated the need to completely
enumerate all possible contingency tables in the permutation reference set. Today
the Mehta–Patel algorithms are available in a number of platforms, the most widely
distributed being StatXact.11

2.7.5 P.W. Mielke

In 1984 Paul W. Mielke published a chapter on “Meteorological applications of
permutation techniques based on distance functions” in the Handbook of Statistics,
Vol. 4 [68]. Trained as both a meteorologist and a biostatistician, Mielke utilized
meteorological applications as a vehicle for illustrating permutation statistical
methods, dividing the chapter into two main sections. The first section described
multi-response permutation procedures (MRPP) as a permutation generalization of
completely-randomized analysis of variance designs. The second section described
multivariate randomized-blocks procedures (MRBP) as a permutation generaliza-
tion of randomized-blocks analysis of variance designs. This 1984 chapter contained
the first formal presentation of permutation methods based on ordinary Euclidean
scaling, which serves as the second of the three main constructs of this book, along
with permutation test statistic δ described on p. 33.

2.7.6 K.J. Berry and P.W. Mielke

In 1985 Kenneth J. Berry and Paul W. Mielke developed non-asymptotic permuta-
tion tests for Goodman and Kruskal’s τa and τb measures of nominal association [5].
The algorithm was based on the exact mean, variance, and skewness under the
conditional permutation distribution, which then employed a Pearson type III

11StatXact is a statistical software package for analyzing data using exact statistics. It is marketed
by Cytel Inc. [4].
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probability distribution to obtain approximate probability values. Berry and Mielke
found the non-asymptotic approach to be superior to the conventional asymptotic
method for small samples and for unbalanced marginal frequency distributions.

2.7.7 A.K. Thakur, K.J. Berry, and P.W. Mielke

Also in 1985 Ajit K. Thakur, Kenneth J. Berry, and Paul W. Mielke published an
algorithm for testing linear trend and homogeneity in proportions [98]. Trend was
evaluated by the Cochran–Armitage method as well as by multiple pairwise com-
parisons using the Fisher–Yates exact probability method. A recursion technique
with an arbitrary initial value was employed, yielding exact two-tailed probability
values based on all permutations of cell frequencies with fixed marginal frequency
totals.

2.7.8 K.J. Berry and P.W. Mielke

In 1988 Kenneth J. Berry and Paul W. Mielke published an article in Educational
and Psychological Measurement in which they generalized Cohen’s κ measure of
agreement for categorical polytomies to ordinal and interval data and to multiple
observers [6]. As originally conceived, Cohen’s κ measure of agreement was
appropriate only for two observers and was limited to a set of discrete unordered
categories. Noting that a number of statistical problems require the measurement
of agreement, rather than association or correlation, Berry and Mielke generalized
Cohen’s κ measure of agreement so that it would measure agreement at any level
of measurement among any number of observers. The generalization required a
new symbol, to distinguish it from κ . Thus this 1988 article by Berry and Mielke
introduced the � chance-corrected measure of effect size, which serves as the third
of the three main constructs of this book, along with the permutation test statistic δ

described on p. 33 and ordinary Euclidean scaling described on p. 37.
Also in 1988 Mielke and Berry published an article in Biometrika on “Cumulant

methods for analyzing independence of r-way contingency tables and goodness-
of-fit frequency data” [69]. Mielke and Berry showed that the cumulant methods
presented in this paper for analyzing independence of r-way contingency tables and
goodness-of-fit frequency data were appropriate for many cases involving sparse
data, that is, small expected cell frequencies, whereas any continuous approximation
would be unsatisfactory. The method was based on the exact determination of the
mean, variance, and skewness of the permutation distribution.
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2.7.9 M.E. Biondini, P.W. Mielke, and K.J. Berry

Also in 1988 Mario E. Biondini, Paul W. Mielke, and Kenneth J. Berry published
an article on permutation methods for the analysis of ecological data [14]. Noting
that while classical least squares statistics are optimal and result in maximum
likelihood estimators of the unknown parameters of the model if the population
is normal, or multivariate normal, with equal variances, or a variance–covariance
matrix which exhibits compound symmetry, Biondini, Mielke, and Berry argued
that classical least squares statistics are far from optimal when the population
distribution is asymmetric or when extreme values are present. Biondini, Mielke,
and Berry presented two distribution-free permutation procedures for the analysis
of ecological data with ordinary Euclidean scaling as the basis of both procedures.

2.7.10 J.W. Tukey

Also in 1988 John Wilder Tukey read a paper at the Ciminera Symposium in
Philadelphia, Pennsylvania. The paper was never published, but copies of this
important paper continue to circulate even today [99]. Tukey began the paper
by defining what he called “the three R’s” as Randomization, Robustness, and
Rerandomization. By “randomization” Tukey meant a controlled randomized design
wherein treatments were randomly assigned to subjects in an effort to eliminate bias
and to nearly balance whatever is important. By “robustness” Tukey meant to ensure
high stringency, high efficiency, and high power over a wide range of probability
models. By “rerandomization” Tukey meant “analysis of randomized comparative
experiments by means of permutation methods to confine the probabilities to those
we have ourselves made” [99, p. 17].

Tukey distinguished among three types of rerandomization. First, complete
rerandomization; that is, an exact permutation analysis. Second, sampled rerandom-
ization; that is, a Monte Carlo permutation analysis. Third, subset rerandomization;
that is, a double permutation analysis. Long an advocate of permutation methods, it
is in this paper that Tukey refers to rerandomization as the “platinum standard” of
significance tests. After critically denouncing techniques such as the bootstrap and
the jackknife, Tukey concluded the paper by arguing that when an experiment can be
randomized, it should be. Then the preferred method of analysis should be based on
rerandomization. In an important affirmation of permutation methods, Tukey stated
that “No other class of approach provides significance information of comparable
quality” [99, p. 18].
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2.8 The Period from 1990 to 1999

The period from 1990 to 1999 witnessed an explosion of journal articles on
permutation methods in a wide variety of disciplines and research areas; for
example, animal behavior, archaeology, atmospheric science, biology, biometrics,
biostatistics, chemistry, clinical trials, dental research, earth science, ecology, edu-
cation, engineering, environmental health, forest research, geology, human genetics,
medicine, pharmacology, physiology, psychology, toxicology, wood science, and
zoology.

This period was also characterized by the publication of a number of tutorials that
attempted to introduce or promote permutation methods to a variety of audiences;
for example, psychologists, econometricians, teachers of mathematics, chemists,
researchers in biomedicine and clinical trials, and statisticians. Earlier undertakings
on the development of permutation methods, coupled with the availability of high-
speed computers and efficient computing algorithms, provided a solid foundation
for the development of permutation statistical methods in the 1990s.

2.8.1 R.B. May and M.A. Hunter

In 1993 Richard B. May and Michael A. Hunter published a short article on “Some
advantages of permutation tests” [66]. May and Hunter laid out in an elementary and
very readable fashion the rationale and advantages of permutation tests, illustrating
permutation methods with the two-sample test for means. May and Hunter noted
that with the normal or population model a researcher must first know something
about a theoretical parent distribution and then evaluate the data in light of the
model. On the other hand, the permutation model starts with the data at hand
and generates a set of outcomes to which the obtained outcome is compared. The
reference, or permutation, distribution is generated from all possible arrangements
of the data.

2.8.2 P.W. Mielke and K.J. Berry

In 1994 Paul W. Mielke and Kenneth J. Berry presented permutation tests for
common locations among g samples with unequal variances [70]. As Mielke and
Berry explained, in completely-randomized experimental designs where population
variances are equal under the null hypothesis, it is not uncommon to have mul-
tiplicative treatment effects that produce unequal variances under the alternative
hypothesis. Mielke and Berry presented permutation procedures to test for (1)
median location and scale shifts, (2) scale shifts only, and (3) mean location shifts
only. In addition, corresponding multivariate extensions were provided.
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2.8.3 P.E. Kennedy and B.S. Cade

In 1996 Peter E. Kennedy and Brian S. Cade published an article on permutation
tests for multiple regression [59]. In this article Kennedy and Cade examined four
generic methods for conducting a permutation test in the context of linear multiple
regression. Using the classical linear regression model given by

y = Xβ + Zθ + ε ,

where β and θ are parameter vectors and X and Y are corresponding matrices of
observations on explanatory variables, Kennedy and Cade sought to test θ = 0.

The first method calculated the F statistic for testing θ = 0 and compared the
F test statistic with F statistics produced by shuffling the Z variables as a group.
The second method calculated the F statistic for testing θ = 0 and compared the
F test statistic with F statistics produced by shuffling the y variable. The third
method calculated the F statistic for testing θ = 0 and compared the F test statistic
with F statistics produced by shuffling the Z variables on a residualized y variable.
First, y was residualized for X and, second, the residualized y was treated as the
dependent variable. The fourth method calculated the F statistic for testing θ = 0
and compared the F test statistic with F statistics produced by residualizing both
y and Z. Kennedy and Cade recommended the fourth method as it alone possessed
desirable repeated-sample properties.

2.8.4 P.W. Mielke, K.J. Berry, and C.O. Neidt

Also in 1996 Paul W. Mielke, Kenneth J. Berry, and Charles O. Neidt published a
new permutation procedure for Hotelling’s multivariate matched-pairs T 2 test [74].
They explained that since Hotelling’s T 2 test obtains a vector of measurements on
each subject in each of two time periods, the test is applicable to two different
analyses. Consider n subjects and c raters. It is possible to block on the n subjects
and examine the multivariate difference among the c raters at the two time periods.
Alternatively, it is also possible to block on the c raters and examine the multivariate
difference among the n subjects at the two time periods.

In the first scenario, Hotelling’s T 2 test statistic is distributed under the Neyman–
Pearson null hypothesis as Snedecor’s F distribution with c and n − c degrees of
freedom in the numerator and denominator, respectively. In the second scenario,
Hotelling’s T 2 test statistic is distributed under the Neyman–Pearson null hypothesis
as Snedecor’s F distribution with n and n − c degrees of freedom in the numerator
and denominator, respectively. Consequently, one of the two scenarios will yield
degrees of freedom in the denominator that is equal to or less than zero. Moreover,
when n = c neither scenario is possible. Mielke, Berry, and Neidt developed
a multivariate extension of a univariate permutation test for matched pairs that
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eliminated the problem and was shown to be more discriminating than Hotelling’s
matched-pairs T 2 test.

2.8.5 J. Ludbrook and H.A.F. Dudley

In 1998 John Ludbrook and Hugh Dudley published an influential article in
The American Statistician titled “Why permutation tests are superior to t and
F tests in biomedical research” [63]. In this article Ludbrook and Dudley noted
that statisticians believe that biomedical researchers conduct most experiments
by taking random samples and therefore recommend statistical procedures that
are valid under the Neyman–Pearson population model of inference. Given that
biomedical researchers typically do not employ random sampling, but instead
rely on randomization of a nonrandom sample, Ludbrook and Dudley argued that
the Neyman–Pearson population model did not apply to biomedical research and
strongly recommended statistical procedures based on data-dependent permutations
of the observations.

2.8.6 R.W. Frick

Also in 1998 Robert W. Frick published an article that challenged the standard
textbook treatment of conventional statistical tests based on random sampling from
an infinite population [39]. Frick termed this standard treatment the “population-
based” interpretation of statistical testing and noted three problems with the
population-based treatment. First, researchers rarely make any attempt to randomly
sample from a defined population. Second, even if random sampling actually
occurred, conventional statistical tests do not precisely describe the population.
Third, researchers do not generally use statistical testing to generalize to a popu-
lation. Against the population-based interpretation Frick proposed what he called a
“process-based” interpretation, arguing that random sampling is a process, not the
outcome of a process. To this end, Frick recommended consideration of permutation
statistical methods.

2.8.7 J. Gebhard and N. Schmitz

Also in 1998 Jens Gebhard and Norbert Schmitz published two articles on per-
mutation methods [42, 43]. In the first article Gebhard and Schmitz showed
that permutation methods possess optimum properties for both continuous and
discrete distributions. A variety of examples illustrated permutation tests for the
continuous distributions: normal, gamma, exponential, chi-squared, and Weibull;
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and for the discrete distributions: Poisson, binomial, and negative binomial. In the
second article Gebhard and Schmitz formulated an efficient computer algorithm for
computing the critical regions.

2.9 The Period from 2000 to 2009

If permutation methods might be said to have “arrived” in the period between
1980 and 1999, they might be said to have “erupted” in the period from 2000
to 2009. Significant advances in computing, including increased speed, enlarged
memory and capacity, canned statistical packages that included permutation add-
ons or modules, and the development of a new computer language, R, by Ross Ihaka
and Robert Gentleman enabled a virtual explosion of new permutation methods and
applications.12 After the year 2000, permutation methods continued to be introduced
into, spread to, or expanded in a number of different fields and disciplines, most
notably in medicine, psychology, clinical trials, biology, ecology, environmental
science, earth science, and atmospheric science.

Along with a proliferation of journal articles, a multitude of books on permu-
tation methods appeared during this period. Having all the information collected
and organized in one compact source instead of scattered among many journal
in myriad disciplines made it easier for the user to learn about new and existing
permutation methods. Included among these books were volumes on Data Analysis
by Resampling: Concepts and Applications by C.E. Lunneborg in 2000; Permu-
tation Tests: A Practical Guide to Resampling Methods for Testing Hypotheses
and Permutation, Parametric and Bootstrap Tests of Hypotheses by P.I. Good
in 2000; Permutation Methods: A Distance Function Approach by P.W. Mielke
and K.J. Berry, Resampling Methods: A Practical Guide to Data Analysis by
P.I. Good, and Multivariate Permutation Tests: With Applications in Biostatistics
by F. Pesarin in 2001; Resampling Methods for Dependent Data by S.N. Lahiri
in 2003; Permutation, Parametric and Bootstrap Tests of Hypotheses by P.I. Good
in 2005; a second edition of Resampling Methods: A Practical Guide to Data
Analysis by P.I. Good and Exact Analysis of Discrete Data by K.F. Hirji in 2006;
Randomization Tests by E.S. Edgington and P. Onghena, Randomization and Monte
Carlo Methods in Biology by B.F.J. Manly, and a second edition of Permutation
Methods: A Distance Function Approach by P.W. Mielke and K.J. Berry in 2007.

12Technically, R was first developed in 1995, but only came into wide use in the period 2000–2009.
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2.9.1 K.J. Berry and P.W. Mielke

In 2000 Kenneth J. Berry and Paul W. Mielke utilized Monte Carlo permutation
methods to investigate the Fisher Z transformation of the sample product-moment
correlation coefficient between variables x and y [7]. Utilizing Monte Carlo
permutation methods Berry and Mielke compared combinations of sample sizes and
population parameters for seven bivariate distributions. Both confidence intervals
and hypothesis testing were examined for robustness and non-normality. Each
Monte Carlo simulation was based on 1,000,000 bivariate random samples of sizes
n = 20 and n = 80 for ρxy = 0.00 and ρxy = +0.60, and compared to nominal
upper-tail probability values of α = 0.99, 0.90, 0.75, 0.50, 0.25, 0.10, and 0.01.
Based on the results of the permutation simulations, Berry and Mielke concluded
that considerable caution should be exercised when using the Fisher Z transforma-
tion.

2.9.2 A. Agresti

In 2001 Alan Agresti published a lengthy article in Statistics in Medicine on
recent advances associated with exact inference for categorical data [1]. The article
was, in part, an overview article, but also one that examined and summarized
some of the criticisms of exact methods. For example, the conservative nature
of exact methods due to the inherent discreteness of the permutation distribution.
Agresti devoted two sections of the paper to complications from discreteness,
illustrating the problem with numerous examples involving samples with small
sample sizes. Agresti explained that in the real world it is rarely possible to achieve
an arbitrary critical value such as α = 0.05 under permutation and noted that
some researchers argued that fixing an unachievable α level is artificial and that one
should merely report the probability value. Finally, Agresti offered a compromise:
use adjustments of exact methods based on the mid-P value. The mid-P procedure,
Agresti explained, uses one-half the probability of the observed contingency table,
plus the probability values of those contingency tables that are less than that of the
observed contingency table.

2.9.3 P.W. Mielke and K.J. Berry

Also in 2001 Paul W. Mielke and Kenneth J. Berry published a research monograph
titled Permutation Methods: A Distance Function Approach [71]. The book pro-
vided exact probability values and approximate probability values based on Monte
Carlo and moment techniques for univariate and multivariate data. Metric Euclidean
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distance functions were emphasized, in contrast to the non-metric squared Euclidean
functions common to statistical tests that rely on the assumption of normality.

In 2002 Paul Mielke and Kenneth Berry published an article on a multivariate
multiple regression analysis for experimental designs [72]. Mielke and Berry used
permutation methods to evaluate multivariate residuals obtained from a regression
algorithm. As they noted, applications included various completely randomized and
randomized-blocks experimental designs such as one-way, Latin square, factorial,
nested, and split-plot analysis of variance designs, both with and without covariates.
Unlike parametric procedures, the only requirement was the randomization of sub-
jects to treatments. When compared with classical parametric approaches, Mielke
and Berry found permutation methods to be exceedingly robust to the presence
of extreme values and, because the methods were based on permutations of the
observed data, no assumptions such as normality, homogeneity, and independence
were required.

2.9.4 F. Pesarin and L. Salmaso

Also in 2002 Fortunato Pesarin and Luigi Salmaso published an article in which
they explored exact permutation methods in unreplicated two-level multi-factorial
designs [80]. The approach of Pesarin and Salmaso preserved the exchangeability
of error components by testing up to k effects in 2k designs. Pesarin and Salmaso
further discussed the advantages and limitations of exact permutation procedures
and executed a simulation study utilizing the Iris data of Fisher based on a paired
permutation strategy.

2.9.5 A. Janssen and T. Pauls

In 2003 Arnold Janssen and Thorsten Pauls published a lengthy, highly technical
article in The Annals of Statistics titled “How do bootstrap and permutation
tests work?” [53]. This was an ambitious paper of 40 pages that considered a
comprehensive and unified approach for the conditional and unconditional analysis
of linear Monte Carlo permutation methods. Under fairly mild assumptions, Janssen
and Pauls proved tightness and an asymptotic series representation for weak
accumulation points. The results lead Janssen and Pauls to a discussion of the
asymptotic correctness of Monte Carlo permutation methods as well as applications
in testing hypotheses.
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2.9.6 B.S. Cade and J.D. Richards

In 2006 Brian S. Cade and Jon D. Richards published a permutation test statistic for
quantile regression [20]. Cade and Richards observed that estimating the quantiles
of a response variable conditioned on a set of covariances in a linear model has
many applications in the biological and ecological sciences, as quantile regression
models allow the entire conditional distribution of a response variable y to be related
to some covariates X, providing a richer description of functional changes that is
possible by simply focusing on just the mean or other central statistics.

2.9.7 P.W. Mielke, K.J. Berry, and J.E. Johnston

In 2007 Paul W. Mielke, Kenneth J. Berry, and Janis E. Johnston presented a Monte
Carlo permutation algorithm for the enumeration of a subset of all possible r-
way contingency tables with fixed marginal frequency totals [75]. The algorithm
provided analyses for any r-way contingency table with an integral value of r ≥ 2.
This had long been a perplexing problem. There had been published any number
of algorithms for r×c contingency tables. For example, Boyett in 1979 [16] and
Patefield in 1981 [78] had developed Monte Carlo permutation algorithms for
r×c contingency tables with fixed marginal frequency totals. Both algorithms
enumerated a subset of all possible two-way contingency tables from an observed
contingency table. The algorithm by Mielke, Berry, and Johnston was not an
extension of either the Boyett or Patefield algorithms, but an entirely new, highly
efficient, Monte Carlo permutation approach. The algorithm was later employed in
a number of applications [76].

2.9.8 R.A. Gianchristofaro, F. Pesarin et al.

Also in 2007 Rosa A. Gianchristofaro, Fortunato Pesarin, and Luigi Salmaso
published an article in which they considered permutation statistical methods for
testing ordered variables based on the nonparametric combination of permutation
dependent tests [45]. As Gianchristofaro, Pesarin, and Salmaso noted, several
solution had been proposed to cope with univariate testing problems on ordered
categorical data, most of which were based on the restricted maximum likelihood-
ratio test. These solutions were generally criticized because the degree of accuracy
of their asymptotic null and alternative distributions was difficult to assess and
to characterize. The authors offered a new exact solution based on simultaneous
analysis of a finite set of sampling moments of ranks assigned to ordered classes
and processed by the nonparametric permutation method.
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2.9.9 P.W. Mielke, M.A. Long et al.

In 2009 Paul W. Mielke, Michael A. Long, Kenneth J. Berry, and Janis E. Johnston
extended the two-treatment ridit analysis developed by I.D.J. Bross to g ≥ 2
treatment groups [77]. Ridit is an acronym for Relative to an Identified Distribution,
where the suffix “it” represents a type of data transformation similar to logit and
probit. The most common application of ridit analysis compares two independent
treatment groups in which ridit scores are calculated for the c ordered category
frequencies of the first treatment group and applied to the c ordered categories of
the second treatment group, and vice versa. Mielke, Long, Berry, and Johnston used
a Monte Carlo permutation procedure to generate L sets of N random assignments
selected from the cN assignment configurations of the g treatment groups.

2.10 The Period from 2010 to 2018

Three features of permutation statistical methods were especially prominent in the
period 2010–2018. The first entailed an increasing criticism of rank-order statistical
procedures with their attendant loss of information due to the substitution of rank-
order statistics for numerical values. In lieu of rank-order statistical procedures,
many researchers advocated the use of permutation methods that utilized the original
numerical values and did not depend on the assumption of normality.

The second feature was a criticism of permutation statistical methods based on
squared Euclidean scaling that gave artificial weight to extreme scores and implied
a geometry of the analysis space that differed from the geometry of the ordinary
Euclidean data space. The alternative was to develop permutation tests and measures
based on ordinary Euclidean scaling that proved to be very robust relative to outliers,
extreme values, and highly skewed distributions.

The third feature in this period was a heavy reliance on Monte Carlo permutation
methods instead of time-consuming exact permutation methods. Monte Carlo
permutation methods with a large number of replications yielded results very close
to exact results. Moreover, in many cases Monte Carlo procedures proved to be more
efficient, especially in the analysis of contingency tables.

2.10.1 K.J. Berry, J.E. Johnston, and P.W. Mielke

In 2011 Kenneth J. Berry, Janis E. Johnston, and Paul W. Mielke published an
overview article in WIREs Computational Statistics simply titled “Permutation
methods” [9]. Organized by decades, the article chronicled the development of
permutation statistical methods from 1920 to 2010. Special attention was paid to the
differences between the Neyman–Pearson population model of statistical inference
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and the Fisher–Pitman permutation model, as well as to the differences between
ordinary and squared Euclidean scaling functions.

2.10.2 D. Curran-Everett

In 2012 Douglas Curran-Everett published his eighth installment in a series on
Explorations in Statistics [21]. The eighth article focused on permutation statis-
tical methods. As Curran-Everett described, permutation methods operate on the
observed data from an experiment or survey and answer the question: out of all
the possible ways we can arrange the observed data, in what proportion of those
arrangements is a specified sample statistic at least as extreme as the one observed?
Curran-Everett explained that the proportion is the desired probability value.

2.10.3 J. Stelmach

In 2013 Jacek Stelmach published a paper on permutation tests to compare two
populations [91]. As Stelmach explained, one of the practical problems in estimating
real processes with regression models is the inevitable obsolescence of the models
as a result of changes in these processes. Stelmach observed that parametric tests
are usually carried out but these tests require a set of assumptions related to the
knowledge of a distribution, but permutation tests do not require any knowledge
of the distribution of examined populations. To this end Stelmach proposed a
permutation test to test the null hypothesis of equality of two multi-dimensional
populations.

2.10.4 K.J. Berry, J.E. Johnston, and P.W. Mielke

In 2014 Kenneth J. Berry, Janis E. Johnston, and Paul W. Mielke published a
research monograph titled A Chronicle of Permutation Statistical Methods: 1920–
2000, and Beyond [10]. The book traced the historical development of permutation
statistical methods from the early works of R.A. Fisher, R.C. Geary, and E.J.G. Pit-
man in the 1920s and 1930s to 2010. Because the development of permutation
statistical methods was so closely tied to the development of high-speed computing,
the book traces the development of permutation methods and computing as parallel
structures.
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2.10.5 I.S. Amonenk and J. Robinson

In 2015 Inga S. Amonenk and John Robinson published a paper in which they
introduced a new nonparametric test statistic for the permutation test in complete
block designs [3]. Amonenk and Robinson determined the region in which the
test statistic existed, its properties on the boundary of the region, and proved that
saddlepoint approximations for tail probability values could be obtained inside the
interior of the region. Finally, Amonenk and Robinson provided numerical examples
showing that both the accuracy and the power of the new statistic improved on the
properties of the classical F -ratio test statistic under some non-Gaussian models and
equaled the properties for the Gaussian case.

2.10.6 K.J. Berry, J.E. Johnston, and P.W. Mielke

In 2016 Kenneth J. Berry, Janis E. Johnston, and Paul W. Mielke published
a research monograph titled Permutation Statistical Methods: An Integrated
Approach [11]. The book provided a synthesis of a number of statistical tests
and measures which, at first consideration, appear disjoint and unrelated. Numerous
comparisons of permutation and classical statistical methods were presented, and
the two methods were compared via probability values and, where appropriate,
measures of effect size. The Neyman–Pearson population model was introduced
and compared with the Fisher–Pitman permutation model of statistical inference.
Permutation tests and measures were described for a variety of completely-
randomized designs with interval-, ordinal-, and nominal-level data, and for
randomized-blocks designs with interval-, ordinal-, and nominal-level data.

2.10.7 M. Umlauft, F. Konietschke, and M. Pauly

In 2017 Maria Umlauft, Frank Konietschke, and Marcus Pauly published an article
on inference methods for null hypotheses formulated in terms of distribution
functions in general nonparametric factorial designs [100]. Umlauft, Konietschke,
and Pauly proposed a permutation approach which they described as a flexible
generalization of the Kruskal–Wallis g-sample rank-sum test to all types of factorial
designs with independent observations. The authors showed that the permutation
principle is asymptotically correct while keeping its finite exactness property when
the data are exchangeable.
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2.10.8 I.K. Yeo

Also in 2017 In-Kwan Yeo proposed an efficient computer algorithm for computing
the exact distribution of the Wilcoxon signed-rank test [105]. Even at this late
date computer algorithms were still being proposed that were either faster, more
efficient, or more elegant than previous algorithms. Yeo noted that the proposed
algorithm was straightforward and easy to program even if ranks scores were tied.
Yeo performed a simulation study to compare the exact distribution and the normal
approximation and also compared computing times of the proposed algorithm with
those of other algorithms. Finally, Yeo presented the R computer program in which
the algorithm was coded.

2.10.9 K.J. Berry, J.E. Johnston, and P.W. Mielke

In 2018 Kenneth J. Berry, Janis E. Johnston, and Paul W. Mielke published a
research monograph titled The Measurement of Association: A Permutation Statisti-
cal Approach [12]. The book utilized exact and Monte Carlo permutation statistical
methods to generate probability values and measures of effect size for a variety
of measures of association. Association was broadly defined to include measures of
correlation for two interval-level variables, measures of association for two nominal-
level variables or two ordinal-level variables, and measures of agreement for two
nominal-level or two ordinal-level variables. Additionally, measures of association
for mixtures of the three levels of measurement were considered: nominal–ordinal,
nominal–interval, and ordinal–interval measures. Numerous comparisons of permu-
tation and classical statistical methods were presented.

Also in 2018 Kenneth Berry, Janis Johnston, and Paul Mielke published an
overview article in WIREs Computational Statistics titled “Permutation methods.
Part II” [13]. The article was an extension of the authors’ previous article published
in 2011 in the same journal. The earlier article chronicled the development of
permutation statistical methods from its beginnings in the 1920s to 2010. This article
concentrated on computation efficiencies for permutation methods. Four calculation
efficiencies were highlighted. First, the advent and availability of high-speed
computing. Second, the reliance on all combinations of values of the observed data
instead of all permutations. Third, the use of mathematical recursion to eliminate
many of the calculations. Fourth, the use of only the variable components of the
selected test statistic and the elimination of those components that are invariant
under permutation.



References 51

2.11 Summary

This chapter provided a brief history and overview of the early beginnings and
subsequent development of permutation statistical methods, roughly organized by
decades. Because of space limitations, only a small sample of contributions and
contributors to the permutation literature was presented for each 10-year period. The
early contributors to permutation statistical methods did not possess the computing
power to make permutation methods feasible. Throughout the early decades this
was a constant theme: there simply was no practical way to calculate the probability
values needed for an exact permutation analysis. Eventually modern computing
made permutation methods both feasible and practical. Thus the histories of
computing and permutation methods go hand-in-hand. Presently there is sufficient
computing power in any desktop, workstation, or laptop computer to generate the
many thousands of arrangements of the observed data needed for a permutation
statistical analysis.

Chapter 3 presents two models of statistical inference: the Neyman–Pearson
population model and the Fisher–Pitman permutation model. The population model
is the standard model taught in all introductory classes and will be familiar to most
readers. The permutation model will be unfamiliar to many readers and is the main
reason this book is being written. As noted in this chapter, permutation methods can
be computationally intensive. Thus Chap. 3 presents five computational efficiencies
for permutation statistical methods.
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Chapter 3
Permutation Statistical Methods

Abstract This chapter presents two models of statistical inference: the conven-
tional Neyman–Pearson population model that is taught in every introductory
course and the Fisher–Pitman permutation model with which the reader is assumed
to unfamiliar. The Fisher–Pitman model consists of three different permutation
methods: exact permutation methods, Monte Carlo permutation methods, and
moment-approximation permutation methods. The three methods are described and
illustrated with example analyses.

This chapter presents two competing models of statistical inference: the population
(normal) model and the permutation model. The Neyman–Pearson population
model is the standard model taught in all introductory classes and is familiar to most
readers.1 The Neyman–Pearson population model was specifically designed to make
inferences about population parameters, provide approximate probability values,
and is characterized by the assumptions of random sampling, a normally-distributed
population, and homogeneity of variance when appropriate. The Fisher–Pitman
permutation model of statistical inference is less well known and includes three
different permutation methodologies, each of which is described and illustrated
in this chapter: exact permutation methods, Monte Carlo permutation methods,
and moment-approximation permutation methods.2 In contrast to conventional
statistical tests based on the Neyman–Pearson population model, tests based on
the Fisher–Pitman permutation model are distribution-free, entirely data-dependent,
appropriate for nonrandom samples, provide exact probability values, and are ideal
for small sets of data.

1The Neyman–Pearson population model of statistical inference is named for Jerzy Neyman
(1894–1981) and Egon Pearson (1895–1980).
2The Fisher–Pitman permutation model of statistical inference is named for R.A. Fisher (1890–
1962) and E.J.G. Pitman (1897–1993).

© Springer Nature Switzerland AG 2019
K. J. Berry et al., A Primer of Permutation Statistical Methods,
https://doi.org/10.1007/978-3-030-20933-9_3

57

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20933-9_3&domain=pdf
https://doi.org/10.1007/978-3-030-20933-9_3


58 3 Permutation Statistical Methods

On the other hand, permutation tests can be computationally intensive, often
requiring many millions of calculations. Five computational efficiencies for per-
mutation statistical tests are described in this chapter. First, the development
of high-speed computing has made permutation methods feasible. Second, the
examination of all combinations of the observed data instead of all permutations
of the data greatly reduces the amount of calculation required. Third, the use of
mathematical recursion simplifies calculations of both test statistics and probability
values. Fourth, calculation of only the variable portion of the selected test statistic
minimizes the calculations required. Fifth, holding one array of the observed
data constant reduces the number of arrangements required for exact permutation
analyses.

As documented in Chap. 2, the permutation model of statistical inference had its
beginnings in the 1920s and 1930s with the works of Fisher [12], Geary [14], Eden
and Yates [9], Hotelling and Pabst [18], and Pitman [36–38]. Constrained by the
difficulty of computing tens of thousands of statistical values on tens of thousands
of arrangements of the observed data, permutation methods languished for many
years until the advent of high-speed computing. Presently, statistical methods under
the Fisher–Pitman permutation model is a rapidly developing field of statistical
methodology and finds increasing utility in a large number of academic fields and
disciplines.

3.1 The Neyman–Pearson Population Model

In contemporary research two competing models of statistical inference coexist: the
population model and the permutation model.3 The population model of statistical
inference, formally proposed by Jerzy Neyman and Egon Pearson in a seminal two-
part article on statistical inference published in 1928, is the model taught almost
exclusively in introductory courses, although in most textbooks the presentation of
the population model espoused by Neyman and Pearson is often conflated with an
approach espoused by Fisher [19].

The Neyman–Pearson population model of statistical inference assumes random
sampling with replacement from one or more specified populations [34, 35]. Under
the Neyman–Pearson population model the level of statistical significance that
results from applying a statistical test to the results of an experiment or survey
corresponds to the frequency with which the null hypothesis would be rejected in
repeated random samplings from the same specified population(s). Because repeated
sampling of the specified population(s) is usually prohibitive, it is assumed that an
approximating theoretical distribution such as a z, t , F , or χ2 distribution conforms

3There are, of course, other models of statistical inference. A third model, the Bayesian inference
model, is also very popular, especially in the decision-making sciences.
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to the discrete sampling distribution of the test statistics generated under repeated
random sampling.

Under the Neyman–Pearson population model two hypotheses concerning a
population parameter or parameters are advanced: the null hypothesis symbolized
by H0 and a mutually-exclusive, exhaustive alternative hypothesis symbolized by
H1.4 The probability of rejecting a true H0 is determined by the researcher and
specified as type I or α error, a region of rejection in the tail or tails of the theoretical
distribution is delimited corresponding to α; for example, α = 0.05 or α = 0.01, and
H0 is rejected if the observed test statistic value falls into the region(s) of rejection
with probability of type I error equal to or less than α.

Technically, under the Neyman–Pearson population model of statistical inference
the null hypothesis is rejected if the computed test statistic value falls into the region
of rejection defined by α. For example, if α = 0.05 with a two-tail test and the
critical values defining the region of rejection are ±1.96, then a test statistic value
more extreme than ±1.96 in either direction implies rejection of the null hypothesis
with a probability of type I error usually expressed as p < 0.05. In this research
monograph asymptotic probability values under the Neyman–Pearson population
model are given to four decimal places for comparison with exact probability values
under the Fisher–Pitman permutation model of statistical inference.

3.2 The Fisher–Pitman Permutation Model

While the Neyman–Pearson population model of statistical inference is familiar
to most researchers, the Fisher–Pitman permutation model of inference may be
less familiar. Permutation statistical methods were introduced by R.A. Fisher in
1925 [12], further developed by Geary in 1927 [14], Eden and Yates in 1933 [9],
Hotelling and Pabst in 1936 [18], and made explicit by Pitman in 1937 and
1938 [36–38]. For the interested reader, a number of excellent presentations of
the two models are available. See especially, discussions by Curran-Everett [8],
Feinstein [11], Hubbard [19], Kempthorne [23], Kennedy [24], Lachin [25], Lud-
brook [26, 27], and May and Hunter [30].

For a permutation statistical test in its most basic form, a test statistic is
computed on the observed data—often the same test statistic as in the Neyman–
Pearson population model. The observations are then permuted over all possible
arrangements of the observed data and the specified statistic is computed for
each possible, equally-likely arrangement of the observed data. The proportion
of arrangements in the reference set of all possible arrangements possessing test
statistic values that are equal to or more extreme than the observed test statistic
value constitutes the probability of the observed test statistic value.

4Some introductory textbooks denote the alternative hypothesis by HA.
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Figure 3.1 presents a flowchart detailing the calculation of an exact permutation
probability value under the Fisher–Pitman model. The first step is to initialize two
counters; in this case, Counter A and Counter B. Counter A provides a count of
all test statistic values that are equal to or greater than the observed test statistic
value. Counter B provides a count of all possible arrangements of the observed data.
Second, the desired test statistic is calculated on the observed set of data. Third,
a new arrangement of the observed data is generated, while preserving the sample
size(s) and Counter B is increased by 1. Fourth, the desired test statistic is calculated
on the new arrangement of the observed data and compared with the original test
statistic value calculated on the observed set of data. If the value of the new test
statistic is equal to or greater than the value of the observed test statistic, Counter
A is increased by 1. If not, a check is made to see if this arrangement is the last in
the reference set of all possible arrangements. If it is, then Counter A divided by
Counter B yields the exact probability value; that is, the proportion of all possible
test statistic values that are equal to or greater than the observed test statistic value.
Otherwise, a new arrangement of the observed data is generated and the process is
repeated.

Statistical tests and measures based on the Fisher–Pitman permutation model
possess several advantages over statistical tests and measures based on the Neyman–
Pearson population model. First, tests based on the permutation model are much
less complex than tests based on the population model. Therefore, the results are
much easier to communicate to unsophisticated or statistically naïve audiences.
Second, permutation tests provide exact probability values based on the discrete
permutation distribution of equally-likely test statistic values. Tests based on the
Neyman–Pearson population model only provide vague results such as P <

0.05.5 Third, permutation tests are entirely data-dependent in that all the information
required for analysis is contained within the observed data—also called “the data
at hand method” [16]. There is no reliance on factors external to the observed
data, such as population parameters, assumptions about theoretical approximating
distributions, and alternative hypotheses. Fourth, permutation tests are appropriate
for nonrandom samples, such as are common in many fields of research. Fifth,
permutation tests are distribution-free in that they do not depend on the assumptions
associated with conventional tests under the population model, such as normality
and homogeneity of variance. Sixth, permutation tests are ideal for small data sets,
where conventional tests often are problematic when attempting to fit a continuous
theoretical distribution to only a few discrete values.

Because permutation statistical methods are inherently computationally-
intensive, it took the development of high-speed computing for permutation
methods to achieve their potential. Today, a small laptop computer outperforms even
the largest mainframe computers of previous decades. Three types of permutation
tests are common in the literature: exact, Monte Carlo, and moment-approximation
permutation tests.

5In this book, an upper-case letter P indicates a cumulative probability value and a lower-case
letter p indicates a point probability value.
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Fig. 3.1 Flowchart for the calculation of an exact permutation probability value
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Table 3.1
Cross-classification of
variables A and B

Variable B

Variable A b b̄ Total

a 9 9 18

ā 0 12 12

Total 9 21 30

3.2.1 Exact Permutation Tests

The first step in an exact permutation test is to calculate a test statistic value for the
observed data. Second, a reference set of all possible, equally-likely arrangements
of the observed data is systematically generated. Third, the desired test statistic
is calculated for each arrangement in the reference set. Fourth, the probability
of obtaining the observed value of the test statistic, or one more extreme, is the
proportion of the test statistics in the reference set with values that are equal to or
more extreme than the value of the observed test statistic.

To be perfectly clear, in practice a different order is followed. First, a test statistic
value for the observed data is calculated. Second, the first of a reference set of all
possible, equally-likely arrangements of the observed data is generated. Third, a
test statistic value for the new arrangement of the observed data is calculated and
compared with the original test statistic value. Fourth, if the new value is equal to or
exceeds the original test statistic value, a counter is increased by one. The process
is repeated until all possible arrangements of the observed data have been generated
and evaluated. Finally, the probability of obtaining the observed value of the test
statistic, or one more extreme, is the proportion of the test statistics in the reference
set with values that are equal to or more extreme than the value of the observed test
statistic. In this manner it is not necessary to store the reference set of all possible
arrangements of the observed data, which is often quite large.

An Exact Permutation Example

To illustrate an exact permutation test, consider the small set of data given in
Table 3.1. Fisher’s exact probability test is the iconic permutation test.6 Fisher’s
exact test calculates the hypergeometric point probability value for the reference
set of all possible arrangements of cell frequencies, given the observed marginal
frequency totals. The two-tail probability value of the observed arrangement of
cell frequencies is the sum of the observed probability value and all probability
values that are equal to or less than the observed probability value. Because Fisher’s
exact test simply yields a probability value, there is no test statistic defined in the

6Fisher’s exact test was independently developed by R.A. Fisher, Joseph Irwin, and Frank Yates in
the early 1930s [13, 21, 40].
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Table 3.2 Conventional
notation for a 2×2
contingency table

Variable B

Variable A b b̄ Total

a n11 n12 n1.

ā n21 n22 n2.

Total n.1 n.2 N

usual sense. Thus the first step is to determine the reference set of all possible
arrangements of the four cell frequencies, given the observed marginal frequency
totals. For a 2×2 contingency table, it is relatively easy to determine the total
number of possible tables in the reference set.

Consider the 2×2 contingency table in Table 3.2. Denote by a dot (·) the partial
sum of all rows or all columns, depending on the position of the (·) in the subscript
list. If the (·) is in the first subscript position, the sum is over all rows and if the (·)
is in the second subscript position, the sum is over all columns. Thus ni. denotes the
marginal frequency total of the ith row, i = 1, . . . , r , summed over all columns,
and n.j denotes the marginal frequency total of the j th column, j = 1, . . . , c,
summed over all rows. Thus n1. and n2. denote the marginal frequency totals for
rows 1 and 2, n.1 and n.2 denote the marginal frequency totals for columns 1 and 2,
nij denotes the cell frequencies for i, j = 1, 2, and N = n11 +n12 +n21 +n22. The
total number of possible values for any cell frequency, say n11, is given by

M = min(n1., n.1) − max(0, n11 − n22) + 1 .

Thus, for the frequency data given in Table 3.1 there are

M = min(18, 9) − max(0, 8 − 11) + 1 = 9 − 0 + 1 = 10

possible arrangements of cell frequencies in the reference set, given the observed
row and column marginal frequency distributions, {18, 12} and {9, 21}, respectively.

The reference set of the M = 10 arrangements of cell frequencies and the
associated hypergeometric point probability values are listed in Table 3.3. For any
2×2 contingency table, such as depicted in Table 3.2, the hypergeometric point
probability of any specified cell, say cell (1,1), is given by

p(n11|n1., n.1, N) =
(

n.1

n11

)(
n.2

n12

)(
N

n1.

)−1

= n1.! n2.! n.1! n.2!
N ! n11! n12! n21! n22! .

For the frequency data given in Table 3.1, the two-tail probability value is the sum
of the probability value of the observed contingency table and all probability values
that are equal to or less than the probability value of the observed table. Thus
Table 10 in Table 3.3 (the observed table) has a hypergeometric point probability
value of p10 = 0.3398×10−2 and only Tables 3.1 and 3.2 possess point probability
values that are less than p = 0.3398×10−2; that is, p1 = 0.1538×10−4 and
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Table 3.3 Listing of the
M = 10 possible 2×2
contingency tables in the
reference set from the
frequency data given in
Table 3.1 with associated
exact hypergeometric point
probability values

Table 1 Probability Table 2 Probability

0 18 0.1538×10−4 1 17 0.6228×10−3

9 3 8 4

Table 3 Probability Table 4 Probability

2 16 0.8470×10−2 3 15 0.5270×10−1

7 5 6 6

Table 5 Probability Table 6 Probability

4 14 0.1694×10−1 5 13 0.2964

5 7 7 8

Table 7 Probability Table 8 Probability

6 12 0.2855 7 11 0.1468

3 9 5 10

Table 9 Probability Table 10 Probability

8 10 0.3670×10−1 9 9 0.3398×10−2

1 11 0 12

Table 3.4 Listing of the 3×5
cell frequencies with rows
(R1, R2, R3) and columns
(C1, C2, C3, C4, C5) for an
exact probability example

B1 B2 B3 B4 B5 Total

A1 4 7 2 9 0 22

A2 1 5 2 7 6 21

A3 4 5 10 18 0 37

Total 9 17 14 34 6 80

p2 = 0.6228×10−3, respectively. The cumulative probability value of the three
tables is

P = p{9|18, 9, 30} + p{0|18, 9, 30} + p{1|18, 9, 30}

= 18! 12! 9! 21!
30! 9! 9! 0! 12! + 18! 12! 9! 21!

30! 0! 18! 9! 3! + 18! 12! 9! 21!
30! 1! 17! 8! 4!

= 0.3398×10−2 + 0.1538×10−4 + 0.6228×10−3

= 0.4036×10−2 .

A Second Exact Permutation Test Example

For a second example of an exact permutation analysis, consider the 3×5 contin-
gency table with N = 80 cell frequencies given in Table 3.4. Pearson’s chi-squared
test statistic for an r×c contingency table is taught in every introductory course and
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is given by

χ2 = N

⎛
⎝ r∑

i=1

c∑
j=1

n2
ij

ni.n.j

− 1

⎞
⎠ ,

where ni. denotes a row marginal frequency total for i = 1, . . . , r , n.j denotes a
column marginal frequency total for j = 1, . . . , c, nij denotes an observed cell
frequency for i = 1, . . . , r and j = 1, . . . , c, and N is the total of the cell
frequencies; in this case, N = 80. For the frequency data given in Table 3.4 with
row marginal frequency totals {22, 21, 37} and column marginal frequency totals
{9, 17, 14, 34, 6}, the observed value of Pearson’s chi-squared test statistic is

χ2 = N

⎛
⎝ r∑

i=1

c∑
j=1

n2
ij

ni.n.j

− 1

⎞
⎠

= 80

(
42

(22)(9)
+ 72

(22)(17)
+ · · · + 02

(37)(6)
− 1

)
= 25.1809 .

The exact probability value of χ2 = 25.1809 under the Fisher–Pitman permuta-
tion model is the sum of the hypergeometric point probability values associated
with the chi-squared values calculated on the reference set of all M possible
arrangements of the cell frequencies, given the observed marginal frequency totals.
For the frequency data given in Table 3.4, there are M = 21,671,722 possible,
equally-likely arrangements of the cell frequencies given the observed marginal
frequency totals, of which 16,498,422 chi-squared values are equal to or greater than
the observed chi-squared value of χ2 = 25.1809, yielding an exact hypergeometric
probability value of P = 0.1009×10−2.

For comparison, the chi-squared test statistic is asymptotically distributed as
Pearson’s χ2 with (r − 1)(c − 1) degrees of freedom under the Neyman–Pearson
null hypothesis. With (r − 1)(c − 1) = (3 − 1)(5 − 1) = 8 degrees of freedom, the
asymptotic probability value of χ2 = 25.1809 is P = 0.1449×10−2.

Comparison with Fisher’s Exact Probability Test

Although Fisher’s exact probability test is typically limited to 2×2 contingency
tables, it is possible to compute Fisher’s exact test on larger tables, such as the 3×5
contingency table given in Table 3.4 [32]. It is important to note that Fisher’s exact
probability test and an exact chi-squared test of independence are constructed quite
differently, although both tests will occasionally yield identical probability values.

Fisher’s exact test generates a reference set of all M possible arrangements of cell
frequencies given the observed marginal frequency totals, computes the hypergeo-
metric point probability value for each arrangement of the observede data, and sums
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the probability values that are equal to or less than the probability value obtained
from the observed arrangement of cell frequencies. On the other hand, an exact
chi-squared test generates a reference set of all M possible arrangements of cell
frequencies given th observed marginal frequency totals, calculates the chi-squared
value for each arrangement of cell frequencies, computes the hypergeometric point
probability value for each arrangement, and sums the probability values associated
with those chi-squared values that are equal to or greater than the chi-squared value
obtained from the observed arrangement of cell frequencies.

For the frequency data given in Table 3.4, the point probability value for
the observed arrangement of cell frequencies is p = 0.5164×10−8. There are
M = 21,671,722 possible, equally-likely arrangements of the cell frequencies
in Table 3.4, of which 18,683,509 hypergeometric point probability values are
equal to or greater than p = 0.5164×10−8, yielding an exact probability value
of P = 0.5174×10−2.

3.2.2 Monte Carlo Permutation Tests

As sample sizes increase, the size of the reference set of all possible arrangements of
the observed data can become quite large and exact permutation methods are quickly
rendered impractical. For example, permuting two samples of sizes n1 = n2 = 35
generates

M = (n1 + n2)!
n1! n2! = (35 + 35)!

35! 35! = 112,186,277,816,662,845,432

equally-likely arrangements of the observed data; or in words, 112 billion billion
different arrangements of the observed data—too many statistical values to compute
in a reasonable amount of time.

When exact permutation procedures become intractable, a random subset of all
possible arrangements of the observed data can be substituted, providing approx-
imate, but highly accurate, probability values. Monte Carlo permutation methods
generate and examine a random subset of all possible, equally-likely arrangements
of the observed data. For each randomly-selected arrangement of the observed data,
the desired test statistic is calculated. The probability of obtaining the observed
value of the test statistic, or one more extreme, is the proportion of the randomly-
selected test statistics with probability values that are equal to or more extreme
than the probability value of the observed test statistic. With a sufficient number of
randomly-selected samples, a probability value can be computed to any reasonable
accuracy. Provided the probability value is not too small, the current recommended
practice is to use L = 1,000,000 randomly-selected arrangements of the observed
data to ensure a probability value with three decimal places of accuracy. To ensure
four decimal places of accuracy, the number of randomly-selected arrangements
must be increased by two magnitudes of order; that is, L = 100,000,000 [22].
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A Monte Carlo Permutation Example

Consider once again the frequency data given in Table 3.4 on p. 64 with N = 80
observations. In many cases the exact analysis of M = 21,671,722 arrangements
of cell frequencies would be considered impractical. In such cases a random sample
of cell arrangements can yield an approximate probability value with considerable
accuracy. Based on L = 1,000,000 randomly-selected cell arrangements given the
observed marginal frequency totals, the Monte Carlo probability value of χ2 =
25.1809 is P = 0.1055×10−2, which compares favorably with the exact probability
value of P = 0.1009×10−2.

3.2.3 Moment-Approximation Permutation Tests

Monte Carlo permutation methods can be inefficient when desired probability
values are very small; for example, probability values on the order of 10−6,
as the Monte Carlo permutation method requires a large number of randomly-
selected test statistics to approximate such a small probability value. Prior to the
development of high-speed computing that made exact and Monte Carlo permu-
tation methods possible, researchers relied on moment-approximation procedures
to provide approximate probability values. The moment-approximation of a test
statistic requires calculation of the exact moments of the test statistic, assuming
equally-likely arrangements of the observed data. The exact moments are then used
to fit a specified distribution that approximates the underlying discrete permutation
distribution and provide an approximate, but often highly accurate, probability
value.

For many years the beta distribution was used for the approximating distribution.
Presently, the approximating distribution of choice is the Pearson type III probability
distribution, which depends on the exact mean, variance, and skewness of the test
statistic under consideration, say δ, given by

μδ = 1

M

M∑
i=1

δi ,

σ 2
δ = 1

M

M∑
i=1

(
δi − μδ

)2
,

and

γδ = 1

σ 3
δ

[
1

M

M∑
i=1

(
δi − μδ

)3

]
,
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respectively, where M denotes the total number of possible, equally-likely arrange-
ments of the observed data. The standardized statistic given by

T = δo − μδ

σδ

follows the Pearson type III distribution, where δo denotes the observed value of test
statistic δ. It should be noted that while the moments are exact, the resultant Pearson
type III probability value is always approximate.

A Moment-Approximation Permutation Example

For the frequency data given in Table 3.4 on p. 64, the observed value of the
permutation test statistic is δo = 24.8661, the expected value of test statistic δ is
μδ = 8.00, the variance of test statistic δ is σ 2

δ = 14.5148, the standardized test
statistic is

T = δo − μδ

σδ

= 24.8661 − 8.00√
14.5148

= +4.4270 ,

and the moment-approximation probability value based on the Pearson type III
probability distribution is P = 0.9763×10−3.

A Comparison of the Three Approaches

The three approaches to determining permutation probability values (exact, Monte
Carlo, and moment-approximation) often yield similar probability values. The dif-
ference between the moment-approximation probability value (P = 0.9763×10−3)
and the exact probability value based on all M = 21,671,722 arrangements of the
observed data in Table 3.4 (P = 0.1009×10−4) is only

�P = 0.9763×10−3 − 0.1009×10−4 = 0.9662×10−3 ,

the difference between the moment-approximation probability value (P =
0.9763×10−3) and the Monte Carlo probability value based on a sample of
L = 1,000,000 random arrangements of the observed data in Table 3.4
(P = 0.1055×10−2) is only

�P = 0.1055×10−2 − 0.9763×10−3 = 0.7870×10−4 ,

and the difference between the Monte Carlo probability value based on a sample
of L = 1,000,000 random arrangements of the observed data in Table 3.4 (P =
0.1055×10−2) and the exact probability value based on all M = 21,671,722
arrangements of the observed data in Table 3.4 (P = 0.1009×10−2) is only

�P = 0.1055×10−2 − 0.1009×10−2 = 0.4600×10−4 .
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3.3 Permutation and Parametric Statistical Tests

Permutation statistical tests, based on the Fisher–Pitman permutation model, differ
from traditional parametric tests, based on the Neyman–Pearson population model,
in several ways. First, permutation tests are entirely data-dependent in that all the
information required for analysis is contained within the observed data set [4, 33].
Second, permutation tests are appropriate for nonrandom samples, such as are com-
mon in many fields of research [38]. Third, permutation tests are distribution-free in
that they do not depend on the assumptions associated with traditional parametric
tests, such as normality and homogeneity of variance [5]. Fourth, permutation tests
provide exact probability values based on the discrete permutation distribution of
equally-likely test statistic values, rather than approximate probability values based
on a theoretical approximating distribution, such as a z, χ2, t , or F distribution [11].
Fifth, permutation tests are ideal for small data sets, whereas distribution functions
often provide poor fits to the underlying discrete sampling distribution. Of these
five differences, the requirements of random sampling and normality greatly limit
the application of statistical tests and measures based on the Neyman–Pearson
population model.

3.3.1 The Assumption of Random Sampling

It is important to note that the mathematical theorems that justify most statistical
procedures under the Neyman–Pearson population model of statistical inference
apply only to random samples drawn with replacement from a completely-specified
sampling frame. However, if the sample is not a random sample from a well-defined
population, then the validity of the hypothesis test is questionable [38]. There are,
admittedly, some applications in statistical analysis in which random sampling
from a specified population is neither attempted nor considered important. The fact
that medical researchers seldom use random samples often comes as a surprise to
investigators who work in other domains [11].

Research psychologists have been especially concerned with problems of ran-
dom sampling. Writing in Psychological Bulletin in 1966, psychologist Eugene
Edgington stated his position unequivocally: “statistical inferences cannot be made
concerning populations that have not been randomly sampled” [10, p. 485]. Writing
in Canadian Psychology in 1993, psychologists Michael Hunter and Richard May
noted that random sampling is of particular relevance to psychologists, “who rarely
use random sampling or any other sort of probability sampling” [20, p. 385]. In 1988
psychologist William Hays wrote:

The point is that some probability structure must be known or assumed to underlie the
occurrence of samples if statistical inference is to proceed. This point is belabored only
because it is so often overlooked, and statistical inferences are so often made with only the
most casual attention to the process by which the sample was generated. The assumption
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of some probability structure underlying the sampling is a little “price tag” attached to
a statistical inference. It is a sad fact that if one knows nothing about the probability of
occurrence for particular samples of units for observation, very little of the machinery
we are describing here applies. This is why our assumption of random sampling is not
to be taken lightly. . . . Unless this assumption is at least reasonable, the probability results
of inferential methods mean very little, and these methods might as well be omitted [17,
p. 212].7

In summary, conventional sampling distributions require random sampling
whereas permutation distributions do not [20, p. 387].

3.3.2 The Assumption of Normality

The assumption of normality is so basic to classical statistics that it deserves
special attention. Two points should be emphasized. First, permutation tests make
no distributional assumptions and, therefore, do not depend on the assumption of
normality. Second, the assumption of normality by conventional tests is always
unrealistic and never justified in practice [5, 29].

In 1927 R.C. Geary famously proclaimed: “Normality is a myth; there never
has, and never will be, a normal distribution” [15, p. 241] and in 1938 Joseph
Berkson wrote: “we may assume that it is practically certain that any series of
real observations does not actually follow a normal curve with absolute exactitude
in all respects” [2, p. 526] (see footnote 7). Robert Matthews once described the
normal distribution as “beautiful, beguiling and thoroughly dangerous” [29, p. 193]
and in 1954 I.D.J. Bross pointed out that statistical methods “are based on certain
assumptions—assumptions which not only can be wrong, but in many situations
are wrong” [6, p. 815] (see footnote 7). Others have empirically demonstrated the
prevalence of highly-skewed and heavy-tailed distributions in a variety of academic
disciplines, the best-known of which is Theodore Micceri’s widely quoted 1989
article on “The unicorn, the normal curve, and other improbable creatures” [31].

3.4 Advantages of Permutation Methods

Alvan Feinstein was a strong advocate for permutation methods. Trained as
both a mathematician and a medical doctor, Feinstein is widely regarded as the
founder of clinical epidemiology and patient-oriented medicine and the originator
of clinimetrics: the application of mathematics to the field of medicine [3, p. 246].
In 1973 Feinstein published a formative article titled “The role of randomization
in sampling, testing, allocation, and credulous idolatry” [11]. As Feinstein’s focus

7Emphasis in the original.
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was on medical investigations, he detailed the major violations of the assumptions
underlying tests of two groups:

1. The groups studied in modern clinical or epidemiologic research are
seldom selected as random samples.

2. For the many clinical and epidemiology research projects that are per-
formed as surveys, the subjects are not randomly assigned.

3. The distribution of the target variable is usually unknown in the parent
population.

4. It is usually known that the target variable does not have a Gaussian
distribution, and often departs from it dramatically.

5. It is usually known that the variances of the two samples are not remotely
similar.

Feinstein then put forth some advantages of tests under the Fisher–Pitman
permutation model that were insightful for the time and foreshadowed later research:

1. The result of a permutation test is a direct, exact probability value for the
random likelihood of the observed difference.

2. Permutation tests do not require any unwarranted inferential estimations of
means, variances, pooled variances, or other parameters of an unobserved,
hypothetical parent population. The tests are based solely on the evidence
that was actually obtained.

3. The investigator is not forced into making any erroneous assumptions
either that the contrasted groups were chosen as random samples from a
parent population or that treatments under study were randomly allocated
to the two groups.

4. The investigator is not forced into making any erroneous or unconfirmable
assumptions about a Gaussian (or any other) distribution for the parent
population, or about equal variances in the contrasted groups.

5. A permutation test can be applied to groups of any size, no matter how
large or small. There are no degrees of freedom to be considered. In the
case of a contingency table, there is no need to worry about the magnitude
of the expected value, no need to calculate expectations based on fractions
of people, and no need to worry about applying, or not applying, Yates’
correction for continuity.

To summarize, permutation statistical methods yield exact probability values, are
completely data-dependent, do not require random sampling, make no assumptions
about distributions, and can be applied to very small samples. The one drawback
to permutation tests, as noted by Feinstein in 1973, is that permutation tests are
notoriously difficult to calculate. While this statement was certainly true in 1973, in
the age of high-speed computing the statement is most certainly no longer accurate.
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3.5 Calculation Efficiency

Although permutation statistical methods do not require random sampling, nor-
mality, homogeneity, or large sample sizes, a potential drawback is the sheer
amount of computation required, with exact permutation tests being unrealistic for
many statistical analyses. Even Monte Carlo permutation methods often require the
enumeration of millions of random arrangements of the observed data in order to
provide a desired accuracy.

Five innovations mitigate the computation problem. First, high-speed computing
makes possible exact permutation statistical methods in which all possible arrange-
ments of the observed data are generated and examined. Second, the examination
of all combinations of the observed data instead of all permutations of the observed
data provides the same probability value with considerable savings in computing
time. Third, mathematical recursion greatly simplifies difficult calculations. Fourth,
calculation of only the variable components of the selected test statistic reduces
the amount of calculation required for each of the enumerated arrangements. Fifth,
holding one array of the observed data constant in any type of block design can
substantially lessen the number of arrangements required for an exact permutation
analysis.

3.5.1 High-Speed Computing

One has only to observe the hordes of the digitally distracted trying to navigate
a crowded sidewalk with their various smart-phones, pads, pods, ear-buds, and
tablets to realize that computing power, speed, and accessibility have finally arrived.
Permutation methods are, by their very nature, computationally intensive and
required the development of high-speed computing to achieve their potential. Prior
to 1960, computers were large, slow, and expensive. In large part their use was
restricted to military and industrial applications. In the 1960s, mainframe computers
became widely available to academicians at major research universities. By 1980
desktop computers and workstations, although not common, were available to many
researchers. In addition, the speed of computing increased greatly between 1960 and
1980. All this paved the way for the rapid development of permutation statistical
methods.

While not widely available to researchers, by 2010 mainframe computers were
measuring computing speeds in teraflops. To emphasize the progress of computing,
in 1951 the Remington Rand Corporation introduced the UNIVAC computer
running at 1905 flops, which with ten mercury delay line memory tanks could store
20,000 bytes of information; in 2008 the IBM Corporation supercomputer, code-
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named Roadrunner, reached a sustained performance of one petaflops8; in 2010 the
Cray Jaguar was named the world’s fastest computer performing at a sustained speed
of 1.75 petaflops with 360 terabytes of memory; and in November of 2010 China
exceeded the computing speed of the Cray Jaguar by 57% with the introduction of
China’s Tianhe-1A supercomputer performing at 2.67 petaflops [28].

In October of 2011, China broke the petaflops barrier again with the introduction
of the Sunway Bluelight MPP [1]. In late 2011 the IBM Yellowstone super-
computer was installed at the National Center for Atmospheric Research (NCAR)
Wyoming Supercomputer Center in Cheyenne, Wyoming. After months of testing,
the Wyoming Supercomputer Center officially opened on Monday, 15 October 2012.
Yellowstone was a 1.6 petaflops machine with 149.2 terabytes of memory and
74,592 processor cores and replaced an IBM Bluefire supercomputer installed in
2008 that had a peak speed of 76 teraflops. Also in late 2011, IBM unveiled the Blue
Gene\P and \Q supercomputing processing systems that can achieve 20 petaflops.
At the same time, IBM filed a patent for a massive supercomputing system capable
of 107 petaflops. In June of 2018 IBM unveiled the Summit supercomputer at Oak
Ridge National Laboratory in Tennessee that achieved sustained computing speeds
of 200 petaflops.

On the near horizon are so-called quantum computers. The basic element of a
quantum computer is the qubit. Unlike a standard bit (binary digit), which can take
on a value of either 0 or 1, a qubit (quantum bit) can be either 0, 1, or a combination
of the two. Because qubits can represent 0 and 1 simultaneously, they can encode a
wealth of information. As Thomas Siegfried explained it, five bits represent one out
of 25 = 32 possible permutations, but five qubits represent all of 25 = 32 possible
permutations [39]. Teams from academia and industry are working on versions of
quantum computers with 50–100 qubits, enough to perform calculations that the
most powerful supercomputers of today cannot accomplish in a reasonable time [7].
Google, which has already developed a nine qubit computer, has aggressive plans
to scale up to 49 qubits, and IBM, which has developed a 16 qubit prototype,
announced in early 2017 that it would build a 50 qubit quantum computer in the
next few years [7].

Finally, high-speed computers have dramatically changed the field of compu-
tational statistics. The future of high-speed computing appears very promising
for exact and Monte Carlo permutation statistical methods. Combined with other
efficiencies, it can safely be said that permutation methods have the potential to
provide exact or Monte Carlo probability values in an efficient manner for a wide
variety of statistical applications.

8One petaflops indicates a quadrillion operations per second, or a 1 with 15 zeroes following it.
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3.5.2 Analysis with Combinations

Although permutation statistical methods are known by the attribution “permuta-
tion,” they are generally not based on all possible permutations of the observed
data. Instead, exact permutation methods are based on all possible combinations of
arrangements of the observed data. Since, in general, there are fewer combinations
than permutations, analysis of combinations of the observed data greatly reduces
the amount of calculation required.

To illustrate the efficiency achieved by analyzing all combinations of the
observed data instead of all permutations, consider N = 10 observations that are
to be randomized into two groups, A and B, where nA = nB = 5 observations.
Suppose that the purpose is to compare differences between the two groups, such
as a mean difference. Let the nA = 5 observations be designated as a through
e and the nB = 5 observations be designated as f through j . For Group A, the
first observation can be chosen in 10 different ways, the second observation in nine
ways, the third observation in eight ways, the fourth observation in seven ways, and
the fifth observation in six ways. Once the five observations of Group A have been
chosen, the remaining five observations are assigned to Group B.

Of the 10×9×8×7×6 = 30,240 ways in which the five observations can be
arranged for Group A, each individual quintet of observations will appear in a series
of permutations. Thus, the quintet {a, b, c, d, e} can be permuted as {a, b, c, e, d},
{a, b, d, e, c}, {a, b, d, c, e}, and so on. Each permutation of the five observations
will yield the same mean value. The number of different permutations for a group of
five observations is 5! = 120. Thus, each distinctive quintet will appear in 120 ways
among the 30,240 possible arrangements. Therefore, 30,240 divided by 120 yields
252 distinctive quintets of observations that can be formed by dividing N = 10
observations into two groups of five observations each. The number of quintets can
conveniently be expressed as

(nA + nB)!
nA! nB ! = (5 + 5)!

5! 5! = 252 .

However, half of these arrangements are similar, but opposite. Thus, a quintet
such as {a, b, c, d, e} might be assigned to Group A and the quintet {f, g, h, i, j }
might be assigned to Group B, or vice versa, yielding the same absolute mean
difference. Consequently, there are only 252/2 = 126 distinctly different pairs of
quintets to be considered. A substantial amount of calculation can be eliminated by
considering all possible combinations of arrangements of the observed data in place
of all possible permutations with no loss of accuracy. Even in this small example,
a reduction from 30,240 equally-likely arrangements of the observed data to 126
arrangements constitutes a substantial increase in efficiency.
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3.5.3 Mathematical Recursion

Mathematical recursion is a process by which an initial probability value of a
test statistic is calculated, then successive probability values are generated from
the initial value by a recursive process. The initial value need not be an actual
probability value, but can be a completely arbitrary positive value by which the
resultant relative probability values are adjusted for the initializing value at the
conclusion of the recursion process.

A Recursion Example

Consider a 2×2 contingency table using the notation in Table 3.5. Denote by a dot (·)
the partial sum of all rows or all columns, depending on the position of the (·) in the
subscript list. If the (·) is in the first subscript position, the sum is over all rows and
if the (·) is in the second subscript position, the sum is over all columns. Thus, ni.

denotes the marginal frequency total of the ith row, i = 1, . . . , r , summed over all
columns, n.j denotes the marginal frequency total of the j th column, j = 1, . . . , c,
summed over all rows, and N = n11 + n12 + n21 + n22 denotes the table frequency
total. The probability value corresponding to any set of cell frequencies in a 2×2
contingency table, n11, n12, n21, n22, is the hypergeometric point probability value
given by

p =
(

n.1

n11

)(
n.2

n12

)(
N

n1.

)−1

= n1.! n2.! n.1! n.2!
N ! n11! n12! n21! n22! .

Since the exact probability value of a 2×2 contingency table with fixed marginal
frequency totals and one degree of freedom is equivalent to the probability value
of any one cell, determining the probability value of the cell containing n11
observations is sufficient.

If

p{n11 + 1|n1., n.1, N} = p{n11|n1., n.1, N}×f (n11) ,

Table 3.5 Conventional
notation for a 2×2
contingency table

Category

Category 1 2 Total

1 n11 n12 n1.

2 n21 n22 n2.

Total n.1 n.2 N
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then solving for f (n11) produces

f (n11) = p{n11 + 1|n1., n.1, N}
p{n11|n1., n.1, N}

= n11! n12! n21! n22!
(n11 + 1)! (n12 − 1)! (n21 − 1)! (n22 + 1)!

and, after cancelling, yields

f (n11) = n12 n21

(n11 + 1)(n22 + 1)
. (3.1)

To illustrate mathematical recursion with an arbitrary initial value, consider the
2×2 contingency table given in Table 3.6 with N = 24 observations. For the cell
containing n11 = 6 observations there are

M = min(n1., n.1) − max(0, n11 − n22) + 1

= min(10, 8) − max(0, 6 − 12) + 1 = 8 − 0 + 1 = 9

possible arrangements of cell frequencies, given the observed marginal frequency
totals. Table 3.7 lists the reference set of the M = 9 cell arrangements along with
the associated hypergeometric point probability values to six decimal places.

To illustrate the use of an arbitrary origin in a recursion procedure, consider
Table 3.1 in Table 3.7 and set relative probability value H {n11 = 0|10, 8, 24} to
a small arbitrarily-chosen positive value, say 1.00. Thus, H {n11 = 0|10, 8, 24} =
1.00. Then, following Eq. (3.1), a recursion procedure produces

H {n11 = 1|10, 8, 24} = 1.000000 × (10)(8)

(0 + 1)(6 + 1)
= 11.428571 ,

H {n11 = 2|10, 8, 24} = 11.428571 × (9)(7)

(1 + 1)(7 + 1)
= 45.000000 ,

H {n11 = 3|10, 8, 24} = 45.000000 × (8)(6)

(2 + 1)(8 + 1)
= 80.000000 ,

H {n11 = 4|10, 8, 24} = 80.000000 × (7)(5)

(3 + 1)(9 + 1)
= 70.000000 ,

Table 3.6 Example data for
a recursion process with an
arbitrary initial value

Variable B

Variable A b b̄ Total

a 6 4 10

ā 2 12 14

Total 8 16 24
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Table 3.7 Listing of the
M = 9 possible 2×2
contingency tables from
Table 3.6 in the reference set
with associated exact
hypergeometric probability
values to six decimal places

Table 1 Probability Table 2 Probability

0 10 0.004083 1 9 0.046664

8 6 7 7

Table 3 Probability Table 4 Probability

2 8 0.183739 3 7 0.326648

6 8 5 9

Table 5 Probability Table 6 Probability

4 6 0.285817 5 5 0.124720

4 10 3 11

Table 7 Probability Table 8 Probability

6 4 0.025983 7 3 0.002284

2 12 1 13

Table 9 Probability

8 2 0.000061

0 14

H {n11 = 5|10, 8, 24} = 70.000000 × (6)(4)

(4 + 1)(10 + 1)
= 30.545455 ,

H {n11 = 6|10, 8, 24} = 30.545455 × (5)(3)

(5 + 1)(11 + 1)
= 6.363636 ,

H {n11 = 7|10, 8, 24} = 6.363636 × (4)(2)

(6 + 1)(12 + 1)
= 0.559441 ,

and

H {n11 = 8|10, 8, 24} = 0.559441 × (3)(1)

(7 + 1)(13 + 1)
= 0.014985 ,

for a total of

T =
8∑

i=0

H {n11 = i|10, 8, 24}

= 1.000000 + 11.428571 + · · · + 0.014985 = 244.912088 .

The desired exact point probability values are then obtained by dividing each
relative probability value, H {n11|n1., n.1, N}, by the recursively-obtained total, T .
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For example,

p{n11 = 0|10, 8, 24} = H1

T
= 1.000000

244.912088
= 0.004083 ,

p{n11 = 1|10, 8, 24} = H2

T
= 11.428571

244.912088
= 0.046664 ,

p{n11 = 2|10, 8, 24} = H3

T
= 45.000000

244.912088
= 0.183739 ,

p{n11 = 3|10, 8, 24} = H4

T
= 80.000000

244.912088
= 0.326648 ,

p{n11 = 4|10, 8, 24} = H5

T
= 70.000000

244.912088
= 0.285817 ,

p{n11 = 5|10, 8, 24} = H6

T
= 30.545455

244.912088
= 0.124720 ,

p{n11 = 6|10, 8, 24} = H7

T
= 6.363636

244.912088
= 0.025983 ,

p{n11 = 7|10, 8, 24} = H8

T
= 0.559441

244.912088
= 0.002284 ,

and

p{n11 = 8|10, 8, 24} = H9

T
= 0.014985

244.912088
= 0.000061 .

In this manner, the entire analysis is conducted utilizing an arbitrary initial value
and a recursion procedure, thereby eliminating all factorial expressions. When the
number of potential contingency tables given by max(n11) − min(n11) + 1 is large,
the computational savings can be substantial.

3.5.4 Variable Components of a Test Statistic

Under permutation, only the variable components of the specified test statistic need
to be calculated for each arrangement of the observed data. As this component is
often a very small piece of the desired test statistic, calculations can often be reduced
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by several factors. To illustrate, consider the raw-score expression for a conventional
Pearson product-moment correlation coefficient between variables x and y given by

rxy =

N∑
i=1

xiyi −
(

N∑
i=1

xi

N∑
i=1

yi

)/
N

√√√√√
⎡
⎣ N∑

i=1

x2
i −

(
N∑

i=1

xi

)2/
N

⎤
⎦

⎡
⎣ N∑

i=1

y2
i −

(
N∑

i=1

yi

)2/
N

⎤
⎦

, (3.2)

where N is the number of bivariate measurements. For Pearson’s correlation
coefficient given in Eq. (3.2)

N ,

N∑
i=1

xi ,

N∑
i=1

x2
i ,

N∑
i=1

yi , and
N∑

i=1

y2
i

are invariant under permutation. Thus, it is sufficient to calculate only
∑N

i=1 xiyi

for each permutation of the observed data, eliminating a great deal of calculation. In
addition, it is only necessary to permute either variable x or variable y, leaving the
other variable fixed.

3.5.5 Holding an Array Constant

In the special case of block designs, such as matched-pairs and randomized-blocks
analysis of variance, it is possible to reduce the number of arrangements to be
examined by holding one of the arrays (treatment values) constant, while permuting
the other arrays. For example, given g = 3 treatments and b = 10 subjects (blocks)
in each treatment, there are

M = (
g!)b = (

3!)10 = 60,466,176

arrangements of the observed data to be considered. Holding one of the b sets of
blocks constant, relative to the other b − 1 sets of blocks, there are

M = (
g!)b−1 = (

3!)10−1 = 10,077,696

arrangements of the observed data to be considered, a reduction of 50,388,480
arrangements, or 83%.

These five features, high-speed computing, mathematical recursion with an
arbitrary initial value, computation of only the variable components of the test
statistic under permutation, holding an array of the observed data constant, and
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utilizing combinations instead of permutations, produce a highly efficient permu-
tation statistical approach that makes permutation statistical methods both feasible
and practical for many research applications.

3.6 Summary

This chapter opened with a description of two models of statistical inference: the
population model first put forward by Jerzy Neyman and Egon Pearson in 1928 and
the permutation model developed by R.A. Fisher, R.C. Geary, T. Eden, F. Yates, H.
Hotelling, M.R. Pabst, and E.J.G. Pitman in the 1920s and 1930s. Three types of
permutation statistical methods were described and illustrated: exact, Monte Carlo,
and moment-approximation permutation methods.

Permutation statistical methods were shown to differ from traditional parametric
methods in five ways. First, unlike conventional parametric methods, permutation
statistical methods are data-dependent methods in that all the information required
for analysis is contained within the observed data. Second, permutation methods
neither assume nor require random sampling from a defined population, which is
essential for parametric methods. Third, permutation methods are distribution-free
and do not depend on the usual assumptions associated with conventional parametric
methods, such as normality and homogeneity of variance. Fourth, permutation meth-
ods provide exact probability values based on the discrete permutation probability
distribution, in contrast to parametric methods that provide approximate probability
values based on a theoretical approximating distribution. Finally, permutation
methods are suitable for small samples, whereas parametric distribution functions
often provide very poor fits to the underlying discrete distribution when sample sizes
are small.

On the other hand, permutation methods are computationally intensive, often-
times requiring millions of calculations. A number of calculation efficiencies
mitigate the calculation problem, including the recent development of high-speed
computing, analyses based on all combinations of the observed data in place of all
permutations of the data, the use of mathematical recursion, calculations based on
only the variable components of a specified test statistic, and holding constant one
treatment array in block designs.

Chapter 4 describes measures of central tendency and variability with which
the reader is assumed to be familiar. Emphasized in Chap. 4 is the property of
the arithmetic mean as the point about which the sum-of-squared deviations is
minimized and the property of the median as the point about which the sum of
absolute deviations is minimized. An alternative approach to the mean and median
based on paired-squared and paired-absolute differences is introduced.
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Chapter 4
Central Tendency and Variability

Abstract This chapter provides an overview of the concepts of central tendency
and variability. For measures of central tendency, the sample mode, median,
and mean are described and illustrated. For measures of variability, the sample
standard deviation, sample variance, and mean absolute deviation are described and
illustrated. An alternative to the mean and median based on paired squared and
absolute differences between values is introduced.

The two most central concepts in statistical analysis involve the measurement
of central tendency and variability. This chapter presents three test statistics that
represent the “center” of a distribution of values. In general, these statistics are
referred to as measures of central tendency or measures of location. Later in this
chapter, two test statistics are presented that deal with how values are dispersed
around a measure of central tendency. In general, these statistics are referred to as
measures of variability or measures of scale. The three major measures of central
tendency are the mode, the median, and the arithmetic mean.1 For permutation
statistical methods, only the arithmetic mean and the median are important. The
two major measures of variability are the sample standard deviation for dispersion
around the mean and the mean absolute deviation for dispersion around the median.
No measure of variability exists for dispersion around the mode.

1Two other measures of central tendency that are often found in the research literature are the
geometric mean and the harmonic mean.
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4.1 The Sample Mode

The sample mode is defined simply as the most common score in a distribution of
N scores. More precisely, the mode is the sample score or category with the largest
frequency. For example, for the following N = 13 scores,

12, 12, 11, 9, 9,

mode︷ ︸︸ ︷
8, 8, 8, 8, 7, 5, 5, 3 ,

the mode is 8, as there are four 8s, more than any other score. For the frequency
distribution given in Table 4.1, the sample mode is 72 as it has the largest frequency
(f = 23). And for the frequency distribution in Table 4.2, the modal luxury
automobile in a country club parking lot is BMW as it has the largest frequency
(f = 17). There is no formula in the usual sense for the sample mode and no
generally agreed-upon symbol.

Table 4.1 Example
frequency data for the sample
mode with scores

Score f

90 2

88 4

85 7

80 11

76 15

72 (mode) 23

69 19

65 14

64 10

60 8

55 4

53 1

Table 4.2 Example
frequency data for the sample
mode with categories

Automobile f

Acura 5

Alpha Romeo 1

Audi 8

BMW (mode) 17

Cadillac 10

Genesis 1

Infiniti 4

Jaguar 2

Lexus 7

Lincoln 8

Mercedes-Benz 11

Volvo 14
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Oftentimes the sample mode is reported in newspapers and magazines without
being labeled as such. For any ordered list of popularity items, the first item listed
is usually the mode. For example, the Social Security Administration might report
that the most popular female baby name last year was “Emma,” a magazine article
might state that the most popular name for a pet cat or dog in the USA is “Max,” or
it may be revealed that the most popular computer password is “password.”2 In such
cases, Emma, Max, and password have the largest frequency of usage. Despite its
widespread use, the mode finds little to no use in permutation statistical methods.
The sample mode is very unstable in that a change in one value can oftentimes
greatly alter the mode; many distributions have no mode, such as the uniform
distribution; and some distributions have two modes (bimodal) or even many modes
(multimodal). Thus the mode is not a very useful measure of central tendency in
permutation statistical analyses where the emphasis is on exactness.

4.2 The Sample Mean

The arithmetic mean is the second most basic process in all of statistics. The first is
the simple act of counting. For a sample of N values, the arithmetic mean is given
by

x̄ = 1

N

N∑
i=1

xi ,

where N is the total sample size and xi for i = 1, . . . , N denote the sample
values.3 To illustrate, consider a set of N = 6 values where x1 = 3, x2 = 7,
x3 = 11, x4 = 15, x5 = 20, and x6 = 28. Then the sample mean is

x̄ = 1

N

N∑
i=1

xi = 3 + 7 + 11 + 15 + 20 + 28

6
= 84

6
= 14 .

There are two important properties of the sample mean. First, the sum of
deviations about the mean can be shown to be zero. Let x1, x2, . . . , xN denote
an unordered set of N sample values and define the sum of deviations about any
point, say θ , as

Dθ =
N∑

i=1

(
xi − θ

)
.

2Actually, the most common password used to be “password,” but it has been replaced by
“123456.”
3For a brief history of the arithmetic mean, see a 2018 article by Simon Raper in Significance [6].
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Theorem For any finite set of N values of x in R, the sum of deviations about a
point θ is zero when θ = x̄.

Proof

N∑
i=1

(
xi − θ

)

=
N∑

i=1

xi −
N∑

i=1

θ

=
N∑

i=1

xi − Nθ .

Then,

θ = 1

N

N∑
i=1

xi = x̄ .

However, the most important statistical property of the sample mean is that the
sum-of-squared deviations about the mean can be shown to be a minimum. Let
x1, x2, . . . , xN denote an unordered set of N sample values and define the sum of
the squared deviations about any point, say θ , as

Dθ =
N∑

i=1

(
xi − θ

)2
.

Theorem For any finite set of N values of x in R, the sum-of-squared deviations
about a point θ is minimized when θ = x̄.

Proof

N∑
i=1

(
xi − θ

)2

=
N∑

i=1

(
x2
i − 2xiθ + θ2)

=
N∑

i=1

x2
i − 2θ

N∑
i=1

xi + Nθ2 .
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Table 4.3 Sums of
deviations and squared
deviations about the
arithmetic mean (x̄ = 14)

Object x x − x̄ (x − x̄)2

1 28 +14 196

2 20 +6 36

3 15 +1 1

4 11 −3 9

5 7 −7 49

6 3 −11 121

Sum 0 412

Table 4.4 Sums of
deviations and squared
deviations about a value less
than the arithmetic mean
(θ = 12)

Object x x − 12 (x − 12)2

1 28 +16 256

2 20 +8 64

3 15 +3 9

4 11 −1 1

5 7 −5 25

6 3 −9 81

Sum +12 436

Taking the derivative with respect to θ yields

d
(∑N

i=1 x2
i − 2θ

∑N
i=1 xi + Nθ2

)
dθ

= −2
N∑

i=1

xi + 2Nθ ,

and solving for θ yields

θ = 1

N

N∑
i=1

xi = x̄ .

To illustrate both proofs, consider the small set of example data listed in Table 4.3
where x̄ = 14. For the example data listed in Table 4.3,

N∑
i=1

(
xi − x̄

) = 0

and

N∑
i=1

(xi − x̄)2 = 412 ,

which is a minimum. Now consider a constant somewhat smaller than x̄ = 14, say
θ = 12, as shown in Table 4.4. For the example data listed in Table 4.4,

N∑
i=1

(
xi − 12

) = +12 ,



88 4 Central Tendency and Variability

Table 4.5 Sums of
deviations and squared
deviations about a value
greater than the arithmetic
mean (θ = 15)

Object x x − 15 (x − 15)2

1 28 +13 169

2 20 +5 25

3 15 0 0

4 11 −4 16

5 7 −8 64

6 3 −12 144

Sum −6 418

which is greater than zero, and

N∑
i=1

(xi − 12)2 = 436 ,

which is greater than 412 and is, therefore, not a minimum. Finally, consider a
constant greater than x̄ = 14, say θ = 15, as shown in Table 4.5. For the example
data listed in Table 4.5,

N∑
i=1

(
xi − 15

) = −6 ,

which is less than zero, and

N∑
i=1

(xi − 15)2 = 418 ,

which is greater than 412 and is, therefore, not a minimum.

4.2.1 The Sample Standard Deviation

The conventional measure of variability about the sample mean is the sample
standard deviation given by4

sx =
[

1

N − 1

N∑
i=1

(
xi − x̄

)2

]1/2

,

4Technically, the estimated population standard deviation.
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where N − 1 is the degrees of freedom (df ). Thus for the xi values, i = 1, . . . , N ,
listed in Table 4.3 for which the sample mean is x̄ = 14,

sx =
{

1

6 − 1

[
(28 − 14)2 + (20 − 14)2 + · · · + (3 − 14)2

]}1/2

=
(

412

5

)1/2

= 9.0774 .

Both the sample mean and the sample standard deviation are expressed in the units
of measurement of the original data.

Also in wide use is the sample variance given by5

s2
x = 1

N − 1

N∑
i=1

(
xi − x̄

)2
.

For the xi values, i = 1, . . . , N , listed in Table 4.3 the sample variance is

s2
x = 1

6 − 1

[
(28 − 14)2 + (20 − 14)2 + · · · + (3 − 14)2

]
= 82.3992 .

Because degrees of freedom are not relevant to permutation methods under the
Fisher–Pitman model, the sample standard deviation and sample variance under
permutation are often defined as

Sx =
[

1

N

N∑
i=1

(
xi − x̄

)2

]1/2

and

S2
x = 1

N

N∑
i=1

(
xi − x̄

)2
,

respectively, and denoted by the upper-case letter S to distinguish the sample
standard (Sx ) and variance (S2

x ) from the estimated population standard deviation
(sx) and variance (s2

x ).

5Technically, the estimated population variance.
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For the example data listed in Table 4.3, the sample standard deviation is

Sx =
{

1

6

[
(28 − 14)2 + (20 − 14)2 + · · · + (3 − 14)2

]}1/2

=
(

412

6

)1/2

= 8.2865

and the sample variance is

S2
x = 1

6

[
(28 − 14)2 + (20 − 14)2 + · · · + (3 − 14)2

]
= 412

6
= 68.6667 .

The reader may have noticed that only sample statistics have thus far been
defined; for example, the sample mean, standard deviation, and variance. Permu-
tation statistical methods are data-dependent methods and do not utilize population
parameters. All the information for a permutation statistical analysis is contained in
the sample. Therefore, the population mean (μx ), the population standard deviation
(σx), and the population variance (σ 2

x ) are not defined in this chapter, as they would
be in a conventional introductory book in statistics.

4.3 The Sample Median

The sample median is typically defined as the point below which half the values
fall or the 50th percentile, where the scores are assumed to be ordered. Despite its
long history in statistical methods, no agreed-upon symbol for the median has been
defined—here, x̃ designates the sample median.6

Calculation of the sample median depends on whether N is odd or even. If N is
odd, the sample median is given by x̃ = x(N+1)/2. To illustrate, consider N = 5
ordered values with x1 = 3, x2 = 7, x3 = 11, x4 = 15, and x5 = 20. Then,

x̃ = x(N+1)/2 = x(5+1)/2 = x3 = 11 .

If N is even, the sample median is given by

x̃ = xN/2 + xN/2+1

2
.

6Francis Galton first used the term “median” in 1882 [2, p. 245], although it had a long history in
other languages prior to 1882 [1, p. 125].
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To illustrate, consider N = 6 ordered values with x1 = 3, x2 = 7, x3 = 11,
x4 = 15, x5 = 20, and x6 = 28. Then,

x̃ = xN/2 + xN/2+1

2
= x6/2 + x6/2+1

2
= x3 + x4

2
= 11 + 15

2
= 26

2
= 13 .

When N is even, the median value is not unique. While x̃ = 13 would be the most
commonly reported value for the median, any value between and including x3 = 11
and x4 = 15 is technically the median of the N = 6 values: 3, 7, 11, 15, 20, and 28.

The most important property of the sample median is that the sum of the absolute
deviations about the median can be shown to be a minimum. The usual proof is by
induction, but the proof by induction can be difficult to follow. The following non-
mathematical proof based on set theory is adapted from Schwertman et al. [8].

Let x1 ≤ x2 ≤ · · · ≤ xN denote an ordered set of N values and define the sum
of the absolute deviations about any point, say θ , as

Dθ =
N∑

i=1

∣∣xi − θ
∣∣ .

Theorem For any finite set of N values of x in R, the sum of absolute deviations
about a point θ is minimized when θ = x̃.

Proof Recall that the median of x1, . . . , xN is x(N+1)/2 if N is odd and if N is even
the median is not unique and any number m for xN/2 ≤ m ≤ xN/2+1 is a median.
When N = 1, then N is odd and x(N+1)/2 = x and the result is trivial; that is,
x̃ = x1.

Now consider any N = 2 x values, x2 > x1. For any point θ such that θ is
included in the set {x1, xx}; that is, θ ∈ {x1, x2}, the sum of the absolute deviations
about θ is

θ − x1 + x2 − θ = x2 − x1 .

Thus, for example, if x1 = 3 and x2 = 7, the sum of the absolute deviations is
x2 − x1 = 7 − 3 = 4. To illustrate, if x1 = 3, x2 = 7, and θ = 3,

θ − x1 + x2 − θ = 3 − 3 + 7 − 3 = 0 + 4 = 4 ;

if x1 = 3, x2 = 7, and θ = 4,

θ − x1 + x2 − θ = 4 − 3 + 7 − 4 = 1 + 3 = 4 ;

if x1 = 3, x2 = 7, and θ = 5.6,

θ − x1 + x2 − θ = 5.6 − 3 + 7 − 5.6 = 2.6 + 1.4 = 4 ;
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and if x1 = 3, x2 = 7, and θ = 7,

θ − x1 + x2 − θ = 7 − 3 + 7 − 7 = 4 + 0 = 4 .

However, for θ /∈ {x1, x2} and θ < x1, the sum of the absolute deviations is

x1 − θ + x2 − θ = x1 + x2 − 2θ ,

which is greater than x2 − x1. Thus if x1 = 3 and x2 = 7, x2 = x1 = 7 − 3 = 4. To
illustrate, consider x1 = 3, x2 = 7, and θ = 2, then

x1 + x2 − 2θ = 3 + 7 − (2)(2) = 1 − 4 = 6 .

For θ /∈ {x1, x2} and θ > x2, the sum of absolute deviations is

θ − x1 + θ − x2 = 2θ − x1 − x2 ,

which is greater than x2 − x1. Thus if x1 = 3 and x2 = 7, x2 − x1 = 7 − 3 = 4. To
illustrate, consider x1 = 3, x2 = 7, and θ = 8, then

2θ − x1 − x2 = (2)(8) − 3 − 7 = 16 − 10 = 6 .

Therefore, for any two x values, the sum of the absolute deviations about point θ

is minimized when θ ∈ {x1, x2} and, as shown, the sum of absolute deviations is
equal to x2 − x1.

Now consider the successively nested intervals,

{x1, xN }, {x2, xN−1}, {x3, xN−2}, . . . , {xi, xN+1−i} ,

where x1 ≤ x2 ≤ · · · ≤ xN , i = 1, 2, . . . , c, c = N/2 if N is even, and c = (N +
1)/2 if N is odd. Note that when N is even, the innermost interval is {xN/2, xN/2+1}
and when N is odd, the innermost interval is {x(N+1)/2, x(N+1)/2} .

Example of the Median with N Even
For example, consider N even where x1 = 3, x2 = 7, x3 = 11, x4 = 15, x5 = 20,
and x6 = 28 and the median is

x̃ = xN/2 + xN/2+1

2
= x6/2 + x6/2+1

2
= x3 + x4

2
= 11 + 15

2
= 13 .

The outermost interval is {x1, xN } = {x1, x6} = {3, 28} and the median of
{3, 7, 11, 15, 20, 28} is x̃ = 13.

The first nested interval is {x2, xN−1} = {x2, x6−1} = {x2, x5} = {7, 20}
and the median of {7, 11, 15, 20} is x̃ = 13. The innermost nested interval is
{x3, xN−2} = {x3, x6−2} = {x3, x4} = {11, 15} and the median of {11, 15} is
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x̃ = 13, which corresponds to

{xN/2, xN/2+1} = {x6/2, x6/2+1} = {x3, x4} .

Thus when N is even, θ is contained in each interval, the sum within each set of
nested intervals is minimized and, therefore, the total sum of absolute deviations,
Dθ , is also minimized.

Example of the Median with N Odd
Next consider N odd where, for example, x1 = 3, x2 = 7, x3 = 11, x4 = 15, and
x5 = 20 and the median is

x̃ = x(N+1)/2 = x(5+1)/2 = x3 = 11 .

The outermost interval is {x1, xN } = {x1, x5} = {3, 20} and the median of
{3, 7, 11, 15, 20} is x̃ = 11.

The first nested interval is {x2, xN−1} = {x2, x5−1} = {x2, x4} = {7, 15} and
the median of {7, 11, 15} is x̃ = 11. The innermost nested interval is {x3, xN−2} =
{x3, x5−2} = x3, x3 = {11, 11} = 11 and the median of {11, 11} is x̃ = 11, which
corresponds to

{x(N+1)/2, x(N+1)/2} = {x(5+1)/2, x(5+1)/2} = {x3, x3} .

Thus when N is odd the innermost interval is equal to the median. Since θ is
contained in each interval, the sum within each set of nested intervals is minimized
and, therefore, the total sum of absolute deviations, Dθ , is also minimized.

4.3.1 The Sample Mean Absolute Deviation

The conventional measure of variability about the sample median is the mean
absolute deviation given by

MAD = 1

N

N∑
i=1

∣∣xi − x̃
∣∣ .

Thus for the sample data given in Table 4.6 the sample median is

x̃ = xN/2 + xN/2+1

2
= x6/2 + x6/2+1

2
= x3 + x4

2
= 11 + 15

2
= 26

2
= 13

and the mean absolute deviation is

MAD = |28 − 13| + |20 − 13| + · · · + |3 − 13|
6

= 42

6
= 7.00 .
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Table 4.6 Example
calculations for the mean
absolute deviation

Object x x − x̃ |x − x̃|
1 28 +15 15

2 20 +7 7

3 15 +2 2

4 11 −2 2

5 7 −6 6

6 3 −10 10

Sum 42

Table 4.7 Example
frequency data for an
open-ended distribution

Income f

More than 99,999 12

80,000–99,999 31

60,000–79,999 54

40,000–59,999 45

20,000–39,999 26

0–19,999 17

4.4 Comparisons Among the Three Measures

For symmetrical, unimodal distributions, the arithmetic mean, the median, and the
mode yield approximately the same value. For asymmetrical, skewed, unimodal dis-
tributions, the mean, the median, and the mode usually diverge yielding somewhat
different values, depending on the degree and direction of skewness. For negatively
skewed distributions, the mean is usually the lowest of the three values, the median
is usually the middle of the three values, and mode is usually the highest of the three
values. As a handy mnemonic, the three values appear as they do in a dictionary,
starting from the left tail: mean, median, and mode. For positively skewed unimodal
distributions, the order is mean, median, and mode, starting from the right tail.

The sample mode is the only measure of central tendency appropriate for
categorical data and that is its primary role in contemporary statistics. The sample
median is usually the measure of choice for skewed distributions, as it is largely
unaffected by a few extreme values, and open-ended distributions where the upper
limit of the top category is undetermined, as illustrated in Table 4.7. As one humorist
put it long ago, the arithmetic mean is the mode in statistical analysis, meaning it is
the most frequently used measure of central tendency. The sample mean possesses
mathematical properties that become very important under the Neyman–Pearson
population model of inference. A principal disadvantage of the arithmetic mean is
that it can be greatly affected by even a few extreme values.
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4.4.1 The Effects of Extreme Values

Extreme values, or outliers, are the bugbear of applied research and occur com-
monly. Sometimes extreme values are due to coding errors, but more often than
not extreme values occur because the variable of interest is skewed. In the social
sciences, the skew is most often positive, leading to extreme values in the right-
hand tail. Examples of positively skewed distributions are family income, prices
of houses, age at first marriage, length of engagement or marriage, birth weight
of infants, and body weight of adults. Micceri provided a number of examples of
skewed distributions in psychology, finding that fewer than 7% of large sample
data sets displayed tail weights and symmetry similar to a normal distribution [4].
Newman, in discussing power-law distributions, provides other examples of posi-
tively skewed distributions: sales of book titles, populations of cities, frequencies
of words in human languages, the number of “hits” on web pages, the number of
citations of academic papers, the financial net worth of individuals, the magnitudes
of earthquakes and solar flares, and the sizes of craters on the moon [5].

In 2017 David Salsburg recounted an experience he once had at Pfizer Pharma-
ceutical Corporation (PPC) when analyzing the weights of rats in a toxicological
experiment [7, pp. 85–86]. The strain of rats used in the study usually weighed
between 200 and 300 g, with females weighing slightly less than males. He was
surprised to discover in the data a single female rat weighing 2000 g and even more
surprised to discover that it was not a coding error and was a bona fide rat from the
same species. Salsburg noted:

Just because a value is an outlier, it doesn’t mean it should not be used. Throwing out data
that appear to be wild shots can lead to erroneous conclusions [7, p. 91].

Salsburg concluded:

[I]f I had used the median in my analysis of weights of rats, then the 2000 g female rat
would not have pulled my estimate of the mean in its direction [7, p. 91].

4.5 An Alternative Approach

More succinctly, consider an alternate, more general, approach to the mean and
median based on paired differences given by

N−1∑
i=1

N∑
j=i+1

∣∣xi − xj

∣∣v

where x1, . . . , xN are univariate response measurements. Let x1,N ≤ · · · ≤ xN,N

denote the order statistics associated with x1, . . . , xN . If v = 1, then the inequality
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given by

N−1∑
i=1

N∑
j=i+1

∣∣xi − xj

∣∣ ≤
N∑

i=1

∣∣N − 2i + 1
∣∣∣∣xi,N − θ

∣∣ (4.1)

holds for all θ and equality holds if θ is the median (x̃) of x1, . . . , xN . If v = 2,
then the inequality given by

N−1∑
i=1

N∑
j=i+1

(
xi − xj

)2 ≤ N

N∑
i=1

(
xi − θ

)2 (4.2)

holds for all θ and equality holds if θ is the mean (x̄) of x1, . . . , xN .
To illustrate Eq. (4.2), consider the small set of data with the values for N = 6

objects listed in Table 4.8 where the arithmetic mean is

x̄ = 1

N

N∑
i=1

xi = 9 + 8 + 8 + 8 + 8 + 7

6
= 48

6
= 8

and

N

N∑
i=1

(
xi − x̄

)2 = 6(2) = 12 .

Table 4.9 lists the pairwise differences and squared pairwise differences for the
data listed in Table 4.8. Tables 4.8 and 4.9 illustrate that when θ is equal to the mean,

N−1∑
i=1

N∑
j=i+1

(
xi − xj

)2 = N

N∑
i=1

(
xi − x̄

)2 ;

Table 4.8 Illustration of the
sum-of-squared deviations
about the mean

Object x x − x̄ (x − x̄)2

1 9 1 1

2 8 0 0

3 8 0 0

4 8 0 0

5 8 0 0

6 7 1 1

Sum 48 2
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Table 4.9 Illustration of the
sum-of-squared pairwise
differences

Objects Pairs xi − xj (xi − xj )
2

1–2 9–8 1 1

1–3 9–8 1 1

1–4 9–8 1 1

1–5 9–8 1 1

1–6 9–7 2 4

2–3 8–8 0 0

2–4 8–8 0 0

2–5 8–8 0 0

2–6 8–7 1 1

3–4 8–8 0 0

3–5 8–8 0 0

3–6 8–7 1 1

4–5 8–8 0 0

4–6 8–7 1 1

5–6 8–7 1 1

Sum 12

that is, 12 = 12. It follows that the sample standard deviation can be defined in
terms of all possible pairs; that is,

sx =
[

1

N − 1

N∑
i=1

(
xi − x̄

)2

]1/2

=
⎡
⎣ 1

N(N − 1)

N−1∑
i=1

N∑
j=i+1

(
xi − xj

)2

⎤
⎦

1/2

. (4.3)

The Italian statistician Corrado Gini was most probably the first to note that the
sum-of-squares of deviations from the mean for N quantitative measurements can
be expressed solely as a function of the squares of the pairwise differences for all(
N
2

)
pairs [3].

To illustrate the equivalence of the two equations for the sample standard
deviation, consider the small set of data listed in Table 4.8 with N = 6 objects.
For the conventional expression on the left side of Eq. (4.3),

sx =
[
(9 − 8)2 + (8 − 8)2 + · · · + (7 − 8)2

6 − 1

]1/2

=
(

2

5

)1/2

= 0.6325
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and for the pairwise expression on the right side of Eq. (4.3),

sx =
[
(9 − 8)2 + (9 − 8)2 + (9 − 8)2 + · · · + (8 − 7)2 + (8 − 7)2

6(6 − 1)

]1/2

=
(

12

30

)1/2

= 0.6325 .

To illustrate Eq. (4.1) on p. 96, consider once again the example data listed in
Table 4.8 where the median is

x̃ = xN/2 + xN/2+1

2
= x6/2 + x6/2+1

2
= x3 + x4

2
= 8 + 8

2
= 16

2
= 8.00 .

Table 4.10 lists the pairwise absolute differences about the median for the data listed
in Table 4.8. Table 4.11 illustrates the relationship between the sum of the adjusted
absolute differences and the median. Tables 4.10 and 4.11 illustrate that when θ is
equal to the median,

N−1∑
i=1

N∑
j=i+1

∣∣xi − xj

∣∣ =
N∑

i=1

∣∣N − 2i + 1
∣∣∣∣xi,N − x̃

∣∣ ;

that is, 10 = 10.

Table 4.10 Illustration of the
sum of absolute pairwise
differences

Objects Pairs xi − xj |xi − xj |
1–2 9–8 1 1

1–3 9–8 1 1

1–4 9–8 1 1

1–5 9–8 1 1

1–6 9–7 2 2

2–3 8–8 0 0

2–4 8–8 0 0

2–5 8–8 0 0

2–6 8–7 1 1

3–4 8–8 0 0

3–5 8–8 0 0

3–6 8–7 1 1

4–5 8–8 0 0

4–6 8–7 1 1

5–6 8–7 1 1

Sum 10
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Table 4.11 Illustration of the sum of adjusted absolute differences about the median

i xi,N |N − 2i + 1| |xi,N − x̃| |N − 2i + 1||xi,N − x̃|
1 9 |6 − 2(1) + 1| = 5 |9 − 8| = 1 5

2 8 |6 − 2(2) + 1| = 3 |8 − 8| = 0 0

3 8 |6 − 2(3) + 1| = 1 |8 − 8| = 0 0

4 8 |6 − 2(4) + 1| = 1 |8 − 8| = 0 0

5 8 |6 − 2(5) + 1| = 3 |8 − 8| = 0 0

6 7 |6 − 2(6) + 1| = 5 |7 − 8| = 1 5

Sum 10

4.6 Summary

This chapter provided an overview of the conventional measures of central tendency
and variability—the two most basic and essential concepts underlying statistical
methodology. For measures of central tendency, the sample mode, sample median,
and sample mean were defined and illustrated. Special attention was paid to the
sample mean as a minimizing function for the sum-of-squared deviations and
the sample median as a minimizing function for the sum of absolute deviations.
For measures of variability, the sample standard deviation and the mean absolute
deviation were described and illustrated. Finally, an alternative approach to the mean
and median based on paired squared and paired absolute differences between values
was introduced. A recurring theme in the following chapters is the comparison
between mean-based and median-based test statistics and the treatment of extreme
values.

Chapter 5 considers one-sample tests of differences. The conventional one-
sample t test is presented and compared to a permutation alternative based on all
paired differences between values. Six examples illustrate permutation statistical
methods applied to one-sample tests. The first example is deliberately kept small
to illustrate the computations required for a one-sample permutation test. The
second example develops a chance-corrected alternative to conventional measures of
effect size for one-sample tests. The third example compares permutation statistical
methods based on ordinary and squared Euclidean scaling functions. The fourth
example compares exact and Monte Carlo permutation methods for one-sample
tests. The fifth example illustrates the application of permutation statistical methods
to univariate rank-score data. And the sixth example illustrates the application of
permutation statistical methods to multivariate data.
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Chapter 5
One-Sample Tests

Abstract This chapter introduces permutation methods for one-sample tests.
Included in this chapter are six example analyses illustrating computation of exact
permutation probability values for one-sample tests, calculation of measures of
effect size for one-sample tests, the effect of extreme values on conventional and
permutation one-sample tests, exact and Monte Carlo permutation procedures for
one-sample tests, application of permutation methods to one-sample rank-score
data, and analysis of one-sample multivariate data. Included in this chapter are
permutation versions of Student’s one-sample t test, Wilcoxon’s signed-ranks test,
the sign test, and a permutation-based alternative for the two conventional measures
of effect size for one-sample tests: Cohen’s d̂ and Pearson’s r2.

This chapter presents exact and Monte Carlo permutation statistical methods for
one-sample tests. Also presented is a permutation-based measure of effect size for
one-sample tests. One-sample tests are the simplest of a large family of statistical
tests and provide an introduction to the two-sample and multi-sample tests presented
in later chapters.

In this chapter, permutation statistical methods for analyzing one-sample tests
are illustrated with six example analyses. The first example utilizes a small set
of data to illustrate the computation of exact permutation methods for a single
sample, wherein the permutation test statistic, δ, is developed and compared with
Student’s conventional one-sample t test statistic. The second example develops
a permutation-based measure of effect size as a chance-corrected alternative to
the two conventional measures of effect size for one-sample tests: Cohen’s d̂ and
Pearson’s r2. The third example compares permutation statistical methods based on
ordinary and squared Euclidean scaling functions, with an emphasis on the analysis
of data sets containing extreme values. The fourth example utilizes a larger data
set for providing comparisons of exact and Monte Carlo permutation methods,
demonstrating the efficiency and accuracy of Monte Carlo statistical methods
for one-sample tests. The fifth example illustrates the application of permutation
statistical methods to univariate rank-score data, comparing permutation statistical
methods with Wilcoxon’s conventional signed-ranks test and the sign test. The sixth
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example illustrates the application of permutation statistical methods to multivariate
one-sample tests.

5.1 Introduction

The most popular univariate one-sample test is Student’s t test wherein the null
hypothesis (H0) under the Neyman–Pearson population model posits a value for a
population parameter, such as a population mean, from which a random sample
is presumed to have been drawn; that is, H0: μx = θ , where θ is a specified
value. For example, the null hypothesis might stipulate that the average IQ score
in the population from which a sample has been drawn is H0: μx = 100. The test
does not determine whether or not the null hypothesis is true, but only provides the
probability that, if the null hypothesis is true, the sample has been drawn from a
population with the specified value.

Consider Student’s conventional one-sample t test. Under the Neyman–Pearson
population model of statistical inference the null hypothesis is given by H0: μx =
θ and the two-tail alternative hypothesis is given by H1: μx 	= θ , where θ is a
hypothesized value for the population mean. The permissible probability of a type I
error is denoted by α and if the observed value of t is more extreme than the critical
values of ±t that define α, the null hypothesis is rejected with a probability of type
I error equal to or less than α.

For a one-sample t test with N cases, Student’s one-sample t test statistic is given
by

t = x̄ − θ

sx̄
,

where x̄ denotes the arithmetic mean of the observed sample values given by

x̄ = 1

N

N∑
i=1

xi ,

xi denotes the ith observed sample value for i = 1, . . . , N , sx̄ denotes the sample-
estimated standard error of x̄ given by

sx̄ = sx√
N

,

and sx denotes the sample-estimated population standard deviation of variable x

given by

sx =
[

1

N − 1

N∑
i=1

(
xi − x̄

)2

]1/2

.
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Technically, x̄ is the unbiased estimator of the population mean, μx ; s2
x is the

unbiased estimator of the population variance, σ 2
x ; sx is the estimated population

standard deviation, σx ; and sx̄ is the estimated population standard error, σx̄ .
For simplification, in this book x̄ is designated the sample mean; s2

x , the sample
variance; sx , the sample standard deviation; and sx̄ , the standard error of x̄. The null
hypothesis is rejected when the observed t test statistic exceeds the critical ±t values
defined by α for Student’s t distribution with N − 1 degrees of freedom, under the
assumption of normality.1

The assumptions underlying Student’s one-sample t test are (1) the observations
are independent, (2) the data are a random sample from a well-defined population,
and (3) target variable x is normally distributed in the population.

5.1.1 A Permutation Approach

Consider a one-sample test under the Fisher–Pitman permutation model of statistical
inference. As discussed in Chap. 3, the Fisher–Pitman permutation model differs
greatly from the Neyman–Pearson population model. Under the Fisher–Pitman
permutation model there is no null hypothesis specifying a population parameter.
Instead, the null hypothesis simply states that all possible arrangements of the
observed data occur with equal chance [17]. Also, there is no alternative hypothesis
under the Fisher–Pitman permutation model, no degrees of freedom, and no
specified α level. Moreover, there is no requirement of random sampling and no
assumption of normality. Finally, the Fisher–Pitman permutation statistical model
provides exact probability values.

A permutation alternative to a conventional one-sample t test based on paired
differences between sample values is easily defined [2]. Let xi denote the observed
sample values for i = 1, . . . , N . The permutation test statistic is given by

δ =
(

N

2

)−1 N−1∑
i=1

N∑
j=i+1

∣∣xi − xj

∣∣v , (5.1)

where for correspondence with Student’s one-sample t test, v = 2.
Under the Fisher–Pitman null hypothesis the exact probability of an observed δ

is the proportion of δ test statistic values calculated on all possible arrangements of
the observed data that are equal to or less than the observed value of δ; that is,

P(δ ≤ δo|H0) = number of δ values ≤ δo

M
,

1The symbol α indicates the probability of type I error: rejection of a true null hypothesis. For
much of the history of statistics α = 0.05 has been almost sacred [32]. However, more stringent
values of α have recently been advanced, some as small as α = 0.005 [1, 10].
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where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the observed data.

5.1.2 The Relationship Between Statistics t and δ

Whenever a one-sample t test posits a value for the population mean other than
zero, comparing Student’s t statistic to other test statistics requires an adjustment to
compensate for the hypothesized mean value. Consider Student’s one-sample t test
given by

t = x̄ − θ

sx̄
,

where θ represents a hypothesized value for the population mean. Then

t2 = (x̄ − θ)2

s2
x̄

= x̄2 − 2x̄θ + θ2

s2
x̄

= x̄2

s2
x̄

− θ(2x̄ − θ)

s2
x̄

.

Let C represent the adjustment factor given by

C = θ(2x̄ − θ)

s2
x̄

.

Then under the Neyman–Pearson null hypothesis, H0: μx = θ , with θ 	= 0 and
v = 2, the relationships between δ and Student’s one-sample t statistic are given by

δ =
2

N∑
i=1

x2
i

t2 + N − 1 + C
(5.2)

and

t =
(

2

δ

N∑
i=1

x2
i − N + 1 − C

)1/2

. (5.3)
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5.2 Example 1: Test Statistics t and δ

An example will serve to illustrate the relationship between test statistics t and δ for
a one-sample test. For simplicity, consider a small set of data with N = 4, x1 = 9,
x2 = 7, x3 = 5, x4 = 2, and let the null hypothesis be H0: μx = 3. For these
example data under the Neyman–Pearson population model of statistical inference
the sample mean is x̄ = 5.75, the sample standard deviation is sx = 2.9861, the
standard error of x̄ is

sx̄ = sx√
N

= 2.9861√
4

= 1.4930 ,

Student’s t test statistic is

t = x̄ − μx

sx̄
= 5.75 − 3

1.4930
= +1.8419 ,

and the adjustment factor is

C = μx(2x̄ − μx)

s2
x̄

= 3[2(5.75) − 3]
(1.4930)2 = 11.4393 .

Under the Neyman–Pearson null hypothesis, H0: μx = 3, test statistic t is
asymptotically distributed as Student’s t with N − 1 degrees of freedom. With
N − 1 = 4 − 1 = 3 degrees of freedom, the asymptotic two-tail probability value
of t = +1.8419 is P = 0.1627, under the assumption of normality.

For the same data under the Fisher–Pitman permutation model with v = 2, the
sum of the squared differences between all pairs of observations is

N−1∑
i=1

N∑
j=i+1

∣∣xi − xj

∣∣2

= ∣∣9 − 7
∣∣2 + ∣∣9 − 5

∣∣2 + ∣∣9 − 2
∣∣2 + ∣∣7 − 5

∣∣2 + ∣∣7 − 2
∣∣2 + ∣∣5 − 2

∣∣2 = 107

and following Eq. (5.1) with v = 2, the observed value of test statistic δ is

δ =
(

N

2

)−1 N−1∑
i=1

N∑
j=i+1

∣∣xi − xj

∣∣2 =
(

4

2

)−1

(107) = 2(107)

4(4 − 1)
= 17.8333 .

Following the expressions given in Eqs. (5.2) and (5.3) for the relationships
between test statistics δ and t , the observed value of test statistic δ with respect
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to the observed value of test statistic t is

δ =
2

N∑
i=1

x2
i

t2 + N − 1 + C
= 2(92 + 72 + 52 + 22)

(1.8419)2 + 4 − 1 + 11.4393)
= 17.8333

and the observed value of test statistic t with respect to the observed value of test
statistic δ is

t =
(

2

δ

N∑
i=1

x2
i − N + 1 − C

)1/2

=
[

2(92 + 72 + 52 + 22)

17.8333
− 4 + 1 − 11.4393

]1/2

= ±1.8419 .

Because of the relationship between test statistics δ and t , the probability values
given by

P(δ ≤ δo) = number of δ values ≤ δo

M

and

P(|t| ≥ |to|) = number of |t| values ≥ |to|
M

are equivalent under the Fisher–Pitman null hypothesis, where δo and to denote
the observed values of test statistics δ and t , respectively, and M is the number
of possible, equally-likely arrangements of the observed data.

To establish the exact probability of δ = 17.8333 (or t = ±1.8419) under
the Fisher–Pitman permutation model, it is necessary to enumerate completely all
possible arrangements of the observed data, of which there are only

M = 2N = 24 = 16

possible, equally-likely arrangements in the reference set of all permutations of
the observed data. It is imperative that the M possible arrangements be generated
systematically while preserving N values for each arrangement. Only a systematic
procedure guarantees M equally-likely arrangements. Simply shuffling values
does not ensure the M possible, equally-likely arrangements mandated by the
permutation null hypothesis: all possible arrangements of the observed data occur
with equal chance [17].

Let yi = xizi denote the transformed xi values for i = 1, . . . , N , where zi is
either plus or minus one. Table 5.1 lists the M = 16 z, y, δ, and |t| values. For
test statistic δ there are only two δ test statistic values that are equal to or less than
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Table 5.1 Calculation of δ and |t | values for x1 = 9, x2 = 7, x3 = 5, and x4 = 2

Number z y δ |t |
1∗ +1 + 1 + 1 + 1 +9 + 7 + 5 + 2 17.8333 1.8419

2 +1 + 1 + 1 − 1 +9 + 7 + 5 − 2 45.8333 0.7311

3 +1 + 1 − 1 + 1 +9 + 7 − 5 + 2 77.8333 0.0801

4 +1 − 1 + 1 + 1 +9 − 7 + 5 + 2 92.5000 0.2206

5 −1 + 1 + 1 + 1 −9 + 7 + 5 + 2 101.8333 0.4905

6 −1 − 1 + 1 + 1 −9 − 7 + 5 + 2 92.5000 0.2206

7 +1 + 1 − 1 − 1 +9 + 7 − 5 − 2 92.5000 0.2206

8 +1 − 1 + 1 − 1 +9 − 7 + 5 − 2 101.8333 0.4905

9 −1 + 1 − 1 + 1 −9 + 7 − 5 + 2 101.8333 0.4905

10 +1 − 1 − 1 + 1 +9 − 7 − 5 + 2 105.8333 0.7561

11 −1 + 1 + 1 − 1 −9 + 7 + 5 − 2 105.8333 0.7561

12 −1 − 1 − 1 + 1 −9 − 7 − 5 + 2 45.8333 0.7311

13 −1 − 1 + 1 − 1 −9 − 7 + 5 − 2 77.8333 0.0801

14 −1 + 1 − 1 − 1 −9 + 7 − 5 − 2 92.5000 0.2206

15 +1 − 1 − 1 − 1 +9 − 7 − 5 − 2 101.8333 0.4905

16∗ −1 − 1 − 1 − 1 −9 − 7 − 5 − 2 17.8333 1.8419

Sum 1272.0000

the observed value of δ = 17.8333 (numbers 1 and 16 indicated with asterisks)
in Table 5.1. Then if all M arrangements of the N = 4 observations occur with
equal chance under the Fisher–Pitman null hypothesis, the exact probability value
of δ = 17.8333 is

P(δ ≤ δo) = number of δ values ≤ δo

M
= 2

16
= 0.1250 ,

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the observed data.

Alternatively, for test statistic t there are only two |t| values that are equal to
or greater than the observed value of |t| = 1.8419 (numbers 1 and 16 indicated
with asterisks) in Table 5.1. Then if all M arrangements of the N = 4 observations
occur with equal chance, the exact probability value under the Fisher–Pitman null
hypothesis is

P(|t| ≥ |to|) = number of |t| values ≥ |to|
M

= 2

16
= 0.1250 ,

where to denotes the observed value of test statistic t .
It is readily apparent from Table 5.1 that the δ and |t| values possess duplicate

values, for example, δ1 = δ16 = 17.8333, δ2 = δ12 = 45.8333, δ3 = δ13 =
77.8333, and so on. Therefore, it is only necessary to generate

M = 2N−1 = 24−1 = 8 instead of M = 2N = 24 = 16
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Table 5.2 Calculation of δ and |t | values for x1 = 9, x2 = 7, x3 = 5, and x4 = 2

Number z y δ |t |
1 +1 + 1 + 1 + 1 +9 + 7 + 5 + 2 17.8333 1.8419

2 +1 + 1 + 1 − 1 +9 + 7 + 5 − 2 45.8333 0.7311

3 +1 + 1 − 1 + 1 +9 + 7 − 5 + 2 77.8333 0.0801

4 +1 − 1 + 1 + 1 +9 − 7 + 5 + 2 92.5000 0.2206

5 −1 − 1 + 1 + 1 −9 − 7 + 5 + 2 92.5000 0.2206

6 −1 + 1 + 1 + 1 −9 + 7 + 5 + 2 101.8333 0.4905

7 +1 − 1 + 1 − 1 +9 − 7 + 5 − 2 101.8333 0.4905

8 +1 − 1 − 1 + 1 +9 − 7 − 5 + 2 105.8333 0.7561

equally-likely arrangements of the observed data, holding one of the four values
constant. Table 5.2 lists the M = 8 non-duplicated values ordered by the δ values
from low (δ1 = 17.8333) to high (δ8 = 105.8333).

5.2.1 The Choice Between Test Statistics t and δ

An obvious question arises at this juncture: Why introduce test statistic δ when
the same exact probability value can be obtained with the more familiar t test
statistic? There are two answers to this question. First, test statistic δ is a powerful
substitute for Student’s t test statistic as it is easily generalizable to more complex
research designs. In the general form given in Eq. (5.1) on p. 103 and with
small modifications, δ can replace the conventional test statistics in one-sample
tests, matched-pairs tests, tests for two independent samples, the full range of
completely-randomized and randomized-blocks analysis of variance designs, and
a large number of parametric and nonparametric tests of differences and measures
of association and correlation [3, 4].

Second, while conventional tests such as Student’s t test are limited to squared
Euclidean differences between values, test statistic δ has no such limitation. Test
statistic δ can utilize a wide range of scaling functions, but ordinary Euclidean
scaling appears to be the most useful. It is essentially true that permutation tests
can be designed for any conventional test statistic.2 Then it is simply a matter
of completely enumerating all possible values of the specified test statistic and
determining the exact probability of the observed value. On the other hand, test
statistic δ is a general test statistic with a universe of applications, which can not

2There exists a small class of statistical tests for which a permutation approach is inappropriate.
Tests such as Wald’s likelihood-ratio tests for goodness-of-fit and independence rely on natural
logarithms and it is inevitable that under permutation some cell arrangements will contain one or
more zero values. Since ln(0) = −∞, a permutation test will fail under these conditions, unless
further adjustments are made to the permuted arrangements.
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only replace many conventional statistics, but also define and create new statistical
tests of differences and measures of association [3, 4].

5.3 The Measurement of Effect Size

The fact that a statistical test produces low probability values indicates only that
there are differences among the variables that (possibly) cannot be attributed
to error. The obtained probability value does not indicate whether or not these
differences are of any practical value. Measures of effect size express the practical or
clinical significance of a difference between the sample mean and the hypothesized
population mean, as contrasted with the statistical significance of the difference. As
Roger Kirk noted many years ago, a test statistic and its associated probability value
therefore provide no information as to the size of treatment effects, only whether
or not the effects are statistically significant [20, p. 135]. Measures of effect size
have become increasingly important in recent years as they index the magnitude of
a treatment effect and indicate the practical significance of the research.

It was American psychologists who spearheaded the reporting of effect sizes
in academic journals. For many years, statisticians and psychometricians who
were Fellows of the American Psychological Association (APA), Division 5, urged
the editors of APA journals to mandate the reporting of effect sizes. The fourth
edition of the Publication Manual of the American Psychological Association
strongly encouraged reporting measures of effect size in conjunction with tests
of significance. In 1999 the APA Task Force on Statistical Inference under the
leadership of Leland Wilkinson noted that “reporting and interpreting effect sizes
in the context of previously reported effects is essential to good research” [34,
p. 599]. Consequently, a number of editors of academic journals, both APA and
others, began requiring measures of effect size as a condition of publication. In
recent years, there has been increased emphasis on reporting measures of effect size
in addition to tests of significance in a number of academic disciplines, recognizing
that determination of a significant treatment effect does not necessarily translate
into a clinical effect. As a result, numerous journals now require the reporting of
measures of effect size as part of their editorial policies [8, 9].

Statisticians and quantitative methodologists have raised a number of issues
and concerns with null hypothesis statistical testing (NHST). A brief overview is
provided by Cowles:

The main criticisms [of NHST], endlessly repeated, are easily listed. NHST does not
offer any way of testing the alternative or research hypothesis; the null hypothesis is
usually false and when differences or relationships are trivial, large samples will lead to
its rejection; the method discourages replication and encourages one-shot research; the
inferential model depends on assumptions about hypothetical populations and data that
cannot be verified . . . [14, p. 83].

In addition, there are literally hundreds of articles, chapters, editorials, and blogs
dealing with the problems of NHST, far too many to be summarized here. However,
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a brief overview of the limitations of null hypothesis statistical testing will suffice
for these purposes.

First, the null hypothesis is almost never literally true, so rejection of the null
hypothesis is relatively uninformative [14]. Second, tests of significance are highly
dependent on sample sizes. When sample sizes are small, important effects can be
non-significant, and when sample sizes are large, even trivial effects can produce
very small probability values. Third, the requirement of obtaining a random sample
from a well-defined population is seldom met in practice. Fourth, the assumption of
normality is never satisfied in real-data situations.

As Roger Kirk explained in 1996 [21, p. 747], the one individual most responsi-
ble for bringing the shortcomings of hypothesis testing to the attention of researchers
was the psychologist Jacob Cohen with two articles in the American Psychologist
titled “Things I have learned (so far)” in 1990 [12] and “The earth is round
(p < .05)” in 1994 [13]. As a result of the identified challenges with null hypothesis
statistical testing and the reporting of probability values, various measures of
effect size have been designed to reflect the substantive importance and practical
significance of differences among variables. Simply put, for a one-sample test effect
size refers to the magnitude of the impact of an independent variable on a dependent
variable [22, p. 97].

Three types of measures of effect size have been advanced to represent the
magnitude of treatment effects [28]. One type, designated the d family, is based
on one or more measures of the differences among the treatment groups or among
levels of an independent variable. Representative of the d family is Cohen’s d̂ , which
measures the effect size by the number of standard deviations separating the sample
mean from the hypothesized population mean for a one-sample test, or the sample
means of the treatment groups for a two-sample test.

The second type of measure of effect size, designated the r family, represents
some sort of relationship among variables. Measures of effect size in the r family are
typically measures of correlation or association, the most prominent being Pearson’s
squared product-moment correlation coefficient; that is, Pearson’s r2 coefficient of
determination.

The third type of measure of effect size, designated the � family, represents
chance-corrected measures of effect size, sometimes termed “improvement-over-
chance” measures of effect size [16]. Chance-corrected measures have much to
commend them as they provide interpretations that are easily understood by the
average reader. Positive values indicate an effect size greater than expected by
chance with a value of +1 indicating a perfect relationship among variables, negative
values indicate an effect size less than expected by chance, and a value of zero
indicates a chance effect size.

The usual expressions for measures of effect size for a one-sample test are
Cohen’s d̂ given by

d̂ = |x̄ − μx |
sx

,
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Pearson’s r2 given by

r2 = t2

t2 + N − 1
, (5.4)

and Mielke and Berry’s � given by

� = 1 − δ

μδ

, (5.5)

where δ is defined in Eq. (5.1) on p. 103 and μδ is the exact expected value of test
statistic δ under the Fisher–Pitman null hypothesis given by

μδ = 1

M

M∑
i=1

δi , (5.6)

where, for a one-sample test, M = 2N . For calculation purposes, the exact expected
value of test statistic δ under the Fisher–Pitman null hypothesis is given by

μδ = 1

N(N − 1)

N−1∑
i=1

N∑
j=i+1

(
|xi − xj |2 + |xi + xj |2

)
. (5.7)

5.4 Detailed Calculations for Statistics δ and μδ

In this section a detailed example illustrates the calculation of test statistics δ and
μδ , both necessary for determining the permutation-based measure of effect size,

� = 1 − δ

μδ

.

Consider the one-sample data listed in Table 5.3 with observations on N = 9
subjects.

Table 5.3 Example data for a one-sample permutation test with N = 9 subjects

Subject 1 2 3 4 5 6 7 8 9

Score (x) +2 +1 +4 −1 +2 +5 +1 −2 +4
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Table 5.4 Example calculations for δ with N = 9 subjects

Difference |xi − xj |2 Difference |xi − xj |2
1 | + 2 − (+1)|2 = 1 19 | + 4 − (+1)|2 = 9

2 | + 2 − (+4)|2 = 4 20 | + 4 − (−2)|2 = 36

3 | + 2 − (−1)|2 = 9 21 | + 4 − (+4)|2 = 0

4 | + 2 − (+2)|2 = 0 22 | − 1 − (+2)|2 = 9

5 | + 2 − (+5)|2 = 9 23 | − 1 − (+5)|2 = 36

6 | + 2 − (+1)|2 = 1 24 | − 1 − (−1)|2 = 4

7 | + 2 − (−2)|2 = 16 25 | − 1 − (−2)|2 = 1

8 | + 2 − (+4)|2 = 4 26 | − 1 − (+4)|2 = 25

9 | + 1 − (+4)|2 = 9 27 | + 2 − (+5)|2 = 9

10 | + 1 − (−1)|2 = 4 28 | + 2 − (+1)|2 = 1

11 | + 1 − (+2)|2 = 1 29 | + 2 − (−2)|2 = 16

12 | + 1 − (+5)|2 = 16 30 | + 2 − (+4)|2 = 4

13 | + 1 − (+1)|2 = 0 31 | + 5 − (+1)|2 = 16

14 | + 1 − (−2)|2 = 9 32 | + 5 − (−2)|2 = 49

15 | + 1 − (+4)|2 = 9 33 | + 5 − (+4)|2 = 1

16 | + 4 − (−1)|2 = 25 34 | + 1 − (−2)|2 = 9

17 | + 4 − (+2)|2 = 4 35 | + 1 − (+4)|2 = 9

18 | + 4 − (+5)|2 = 1 36 | − 2 − (+4)|2 = 36

Sum 392

First, determine all (
N

2

)
=

(
9

2

)
= 9(9 − 1)

2
= 36

possible squared pairwise differences between the score (x) values and calculate the
sum of the squared differences as illustrated in Table 5.4. Then the observed value
of test statistic δ is

δ =
(

N

2

)−1 N−1∑
i=1

N∑
j=i+1

∣∣xi − xj

∣∣2 =
(

9

2

)−1

(392) = 2(392)

9(9 − 1)
= 10.8889 .

Alternatively, in terms of an analysis of variance model the permutation test statistic
is

δ = 2SSTotal

N − 1
= 2(43.5556)

9 − 1
= 10.8889 ,

where the sum of the N = 9 values is

N∑
i=1

xi = 2 + 1 + 4 − 1 + 2 + 5 + 1 − 2 + 4 = 16.00 ,
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the sum of the N = 9 squared values is

N∑
i=1

x2
i = (+2)2 + (+1)2 + (+4)2 + (−1)2 + (+2)2 + (+5)2

+ (+1)2 + (−2)2 + (+4)2 = 72.00 ,

and the total sum-of-squares is

SSTotal =
N∑

i=1

x2
i −

(
N∑

i=1

xi

)2/
N = 72.00 − (16.00)2/9 = 43.5556 .

To find a value for μδ, the exact expected value of test statistic δ, two sets of
paired values are required, |xi − xj |2 and |xi + xj |2, and their sums, as given in
Table 5.5. Then the exact expected value of test statistic δ under the Fisher–Pitman
null hypothesis is

μδ = 1

N(N − 1)

N−1∑
i=1

N∑
j=i+1

(∣∣xi − xj

∣∣2 + ∣∣xi + xj

∣∣2)

= 1

9(9 − 1)

9−1∑
i=1

9∑
j=i+1

(∣∣xi − xj

∣∣2 + ∣∣xi + xj

∣∣2) = 1152

72
= 16.00 .

Finally, the observed chance-corrected measure of effect size is

� = 1 − δ

μδ

= 1 − 10.8889

16.00
= +0.3194 ,

indicating approximately 32% agreement among the N = 9 scores above what is
expected by chance.

5.5 Example 2: Measures of Effect Size

For the example data listed on p. 105 with N = 4, x1 = 9, x2 = 7, x3 = 5, x4 = 2,
and null hypothesis H0: μx = 3, Cohen’s d̂ measure of effect size is

d̂ = |x̄ − μx |
sx

= |5.75 − 3|
2.9861

= 0.9209 ,
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Table 5.5 Example calculations for μδ with N = 9 subjects

Difference |xi − xj |2 |xi + xj |2 Sum

1 | + 2 − (+1)|2 = 1 | + 2 + (+1)|2 = 9 1 + 9 = 10

2 | + 2 − (+4)|2 = 4 | + 2 + (+4)|2 = 36 4 + 36 = 40

3 | + 2 − (−1)|2 = 9 | + 2 + (−1)|2 = 1 9 + 1 = 10

4 | + 2 − (+2)|2 = 0 | + 2 + (+2)|2 = 16 16 + 0 = 16

5 | + 2 − (+5)|2 = 9 | + 2 + (+5)|2 = 49 49 + 9 = 58

6 | + 2 − (+1)|2 = 1 | + 2 + (+1)|2 = 9 9 + 1 = 10

7 | + 2 − (−2)|2 = 16 | + 2 + (−2)|2 = 0 0 + 16 = 16

8 | + 2 − (+4)|2 = 4 | + 2 + (+4)|2 = 36 36 + 4 = 40

9 | + 1 − (+4)|2 = 9 | + 1 + (+4)|2 = 25 25 + 9 = 34

10 | + 1 − (−1)|2 = 4 | + 1 + (−1)|2 = 0 0 + 4 = 4

11 | + 1 − (+2)|2 = 1 | + 1 + (+2)|2 = 9 9 + 1 = 10

12 | + 1 − (+5)|2 = 16 | + 1 + (+5)|2 = 36 36 + 16 = 52

13 | + 1 − (+1)|2 = 0 | + 1 + (+1)|2 = 4 4 + 0 = 4

14 | + 1 − (−2)|2 = 9 | + 1 + (−2)|2 = 1 1 + 9 = 10

15 | + 1 − (+4)|2 = 9 | + 1 + (+4)|2 = 25 25 + 9 = 34

16 | + 4 − (−1)|2 = 25 | + 4 + (−1)|2 = 9 9 + 25 = 34

17 | + 4 − (+2)|2 = 4 | + 4 + (+2)|2 = 36 36 + 4 = 40

18 | + 4 − (+5)|2 = 1 | + 4 + (+5)|2 = 81 81 + 1 = 82

19 | + 4 − (+1)|2 = 9 | + 4 + (+1)|2 = 25 25 + 9 = 34

20 | + 4 − (−2)|2 = 36 | + 4 + (−2)|2 = 4 4 + 36 = 40

21 | + 4 − (+4)|2 = 0 | + 4 + (+4)|2 = 64 64 + 0 = 64

22 | − 1 − (+2)|2 = 9 | − 1 + (+2)|2 = 1 1 + 9 = 10

23 | − 1 − (+5)|2 = 36 | − 1 + (+5)|2 = 16 16 + 36 = 52

24 | − 1 − (−1)|2 = 4 | − 1 + (−1)|2 = 0 0 + 4 = 4

25 | − 1 − (−2)|2 = 1 | − 1 + (−2)|2 = 9 9 + 1 = 10

26 | − 1 − (+4)|2 = 25 | − 1 + (+4)|2 = 9 9 + 25 = 34

27 | + 2 − (+5)|2 = 9 | + 2 + (+5)|2 = 49 49 + 9 = 58

28 | + 2 − (+1)|2 = 1 | + 2 + (+1)|2 = 9 9 + 1 = 10

29 | + 2 − (−2)|2 = 16 | + 2 + (−2)|2 = 0 0 + 16 = 16

30 | + 2 − (+4)|2 = 4 | + 2 + (+4)|2 = 36 36 + 4 = 40

31 | + 5 − (+1)|2 = 16 | + 5 + (+1)|2 = 36 36 + 16 = 52

32 | + 5 − (−2)|2 = 49 | + 5 + (−2)|2 = 9 9 + 49 = 58

33 | + 5 − (+4)|2 = 1 | + 5 + (+4)|2 = 81 81 + 1 = 82

34 | + 1 − (−2)|2 = 9 | + 1 + (−2)|2 = 1 1 + 9 = 10

35 | + 1 − (+4)|2 = 9 | + 1 + (+4)|2 = 25 25 + 9 = 34

36 | − 2 − (+4)|2 = 36 | − 2 + (+4)|2 = 4 4 + 36 = 40

Sum 1152
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indicating a large effect size (d̂ ≥ 0.80)3 and Pearson’s r2 measure of effect size is

r2 = t2

t2 + N − 1
= (+1.8419)2

(+1.8419)2 + 4 − 1
= 0.5307 ,

also indicating a large effect size (r2 ≥ 0.25).4

For Mielke and Berry’s � measure of effect size, the observed value of the
permutation test statistic is δ = 17.8333 and following Eq. (5.6) on p. 111, the
exact expected value of test statistic δ under the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 1272

16
= 79.50 ,

where the sum,

M∑
i=1

δi = 1272 ,

is calculated in Table 5.1 on p. 107. Alternatively, following Eq. (5.7) on p. 111 the
exact expected value of test statistic δ is

μδ = 1

N(N − 1)

N−1∑
i=1

N∑
j=i+1

(
|xi − xj |2 + |xi + xj |2

)
= 954

4(4 − 1)
= 79.50 ,

where the six paired values for the example data are listed in Table 5.6 and yield the
sum

N−1∑
i=1

N∑
j=i+1

(∣∣xi − xj

∣∣2 + ∣∣xi + xj

∣∣2 ) = 954 .

Then the observed chance-corrected measure of effect size is

� = 1 − δ

μδ

= 1 − 17.8333

79.50
= +0.7757 ,

3In general, d̂ values equal to or less than d̂ = 0.20 are considered to be “small” effect sizes, d̂

values greater than d̂ = 0.20 and less than d̂ = 0.80 are considered to be “medium” or “moderate”
effect sizes, and d̂ values equal to or greater than d̂ = 0.80 are considered to be “large” effect sizes.
4In general, r2 values equal to or less than r2 = 0.09 are considered to be “small” effect sizes,
r2 values greater than r2 = 0.09 and less than r2 = 0.25 are considered to be “medium” or
“moderate” effect sizes, and r2 values equal to or greater than r2 = 0.25 are considered to be
“large” effect sizes.
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Table 5.6 Example calculations for
∑N−1

i=1

∑N
j=i+1(|xi − xj |2 + |xi + xj |2), for example data

9, 7, 5, 2

Number |xi − xj |2 |xi + xj |2 |xi − xj |2 + |xi + xj |2
1 |9 − 7|2 = 4 |9 + 7|2 = 256 260

2 |9 − 5|2 = 16 |9 + 5|2 = 196 212

3 |9 − 2|2 = 49 |9 + 2|2 = 121 170

4 |7 − 5|2 = 4 |7 + 5|2 = 144 148

5 |7 − 2|2 = 25 |7 + 2|2 = 81 106

6 |5 − 2|2 = 9 |5 + 2|2 = 49 58

Sum 954

indicating approximately 78% agreement among the N = 4 scores above what
is expected by chance. In terms of Student’s t test statistic, the observed chance-
corrected measure of effect size is

� = t2 + C − 1

t2 + C + N − 1
= (+1.8419)2 + 11.4393 − 1

(+1.8419)2 + 11.4393 + 4 − 1
= +0.7757 ,

where C is an adjustment factor given by

C = μx(2x̄ − μx)

s2
x̄

= 3[2(5.75) − 3]
(1.4930)2 = 11.4393 .

5.5.1 Maximum and Minimum Values of �

Chance-corrected measures of effect size such as � have much to commend them as
they provide interpretations that are easily understood by the average reader. Positive
values indicate an effect size greater than expected by chance, with a value of +1
indicating a perfect relationship among variables, negative values indicate an effect
size less than expected by chance, and a value of zero indicates a chance effect size.
The maximum and minimum values of the � measure of effect size are integral
to evaluating intermediate values. In the next section the � measure of effect size
is demonstrated to have a maximum value of +1. In the following section the �
measure of effect size is demonstrated to have a minimum value of −1/(N − 1) for
one-sample tests.

Maximum Value of �

In this section the � measure of effect size is demonstrated to have a maximum
value of � = +1.00 when there is perfect agreement among the N values; that is,
all N values are identical. To illustrate, consider N = 4 values with x1 = x2 =
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x3 = x4 = 4. For these data the sum of the N = 4 values is

N∑
i=1

xi = 4 + 4 + 4 + 4 = 16.00 ,

the sum of the N = 4 squared values is

N∑
i=1

x2
i = 42 + 42 + 42 + 42 = 64.00 ,

the total sum-of-squares is

SSTotal =
N∑

i=1

x2
i −

(
N∑

i=1

xi

)2/
N = 64.00 − (16.00)2/4 = 0.00 ,

and the permutation test statistic is

δ = 2SSTotal

N − 1
= 2(0.00)

4 − 1
= 0.00 .

Table 5.7 details the required calculations for the expected value of test statistic
δ. Given the preliminary calculations in Table 5.7, the exact expected value of test
statistic δ under the Fisher–Pitman null hypothesis is

μδ = 1

N(N − 1)

N−1∑
i=1

N∑
j=i+1

(
|xi − xj |2 + |xi + xj |2

)
= 384

4(4 − 1)
= 32.00

and the chance-corrected measure of effect size is

� = 1 − δ

μδ

= 1 − 0.00

32.00
= +1.00 ,

indicating perfect agreement among the N = 4 values.

Table 5.7 Example calculations for
∑N−1

i=1

∑N
j=i+1(|xi − xj |2 + |xi + xj |2), for example data 4,

4, 4, 4

Number |xi − xj |2 |xi + xj |2 |xi − xj |2 + |xi + xj |2
1 |4 − 4|2 = 0 |4 + 4|2 = 64 64

2 |4 − 4|2 = 0 |4 + 4|2 = 64 64

3 |4 − 4|2 = 0 |4 + 4|2 = 64 64

4 |4 − 4|2 = 0 |4 + 4|2 = 64 64

5 |4 − 4|2 = 0 |4 + 4|2 = 64 64

6 |4 − 4|2 = 0 |4 + 4|2 = 64 64

Sum 384
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Minimum Value of �

In this section the � measure of effect size is demonstrated to have a minimum value
given by −1/(N −1) for one-sample tests. To illustrate, consider N = 4 values with
x1 = +4, x2 = +4, x3 = −4, and x4 = −4. For these data the sum of the N = 4
values is

N∑
i=1

xi = 4 + 4 − 4 − 4 = 0.00 ,

the sum of the N = 4 squared values is

N∑
i=1

x2
i = +42 + 42 + (−4)2 + (−4)2 = 64.00 ,

the total sum-of-squares is

SSTotal =
N∑

i=1

x2
i −

(
N∑

i=1

xi

)2/
N = 64.00 − (0.00)2/4 = 64.00 ,

and the permutation test statistic is

δ = 2SSTotal

N − 1
= 2(64.00)

4 − 1
= 42.6667 .

Table 5.8 details the required calculations for the expected value of test statistic
δ. Given the preliminary calculations in Table 5.8, the exact expected value of test
statistic δ under the Fisher–Pitman null hypothesis is

μδ = 1

N(N − 1)

N−1∑
i=1

N∑
j=i+1

(
|xi − xj |2 + |xi + xj |2

)
= 384

4(4 − 1)
= 32.00

Table 5.8 Example calculations for
∑N−1

i=1
∑N

j=i+1(|xi − xj |2 + |xi + xj |2), for example data
4, 4, −4, −4

Number |xi − xj |2 |xi + xj |2 |xi − xj |2 + |xi + xj |2
1 |(+4) − (+4)|2 = 0 |(+4) + (+4)|2 = 64 64

2 |(+4) − (−4)|2 = 64 |(+4) + (−4)|2 = 0 64

3 |(+4) − (−4)|2 = 64 |(+4) + (−4)|2 = 0 64

4 |(+4) − (−4)|2 = 64 |(+4) + (−4)|2 = 0 64

5 |(+4) − (−4)|2 = 64 |(+4) + (−4)|2 = 0 64

6 |(−4) − (−4)|2 = 0 |(−4) + (−4)|2 = 64 64

Sum 384
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and the chance-corrected measure of effect size is

� = 1 − δ

μδ

= 1 − 42.6667

32.00
= −0.3333 ,

indicating less than chance agreement among the N = 4 values. More simply, the
minimum value of � is given by

min(�) = −1

N − 1
= −1

4 − 1
= −0.3333

for a one-sample test.

5.5.2 Comparisons of Effect Size Measures

For a one-sample test of means under the Neyman–Pearson population model,
Student’s t , Cohen’s d̂, Pearson’s r2, and Mielke and Berry’s � are interrelated.
Any one of the measures can easily be derived from any of the other measures. The
relationships between Student’s t test statistic and Cohen’s d̂ measure of effect size
are given by

t = (
Nd̂ 2 )1/2 and d̂ =

(
t2

N

)1/2

, (5.8)

the relationships between Student’s t test statistic and Pearson’s r2 measure of effect
size are given by

t =
[
r2(N − 1)

1 − r2

]1/2

and r2 = t2

t2 + N − 1
, (5.9)

the relationships between Student’s t test statistic and Mielke and Berry’s � measure
of effect size are given by

t =
[�(N − 1) + C(� − 1) + 1

1 − �
]1/2

and � = t2 + C − 1

t2 + C + N − 1
, (5.10)

the relationships between Cohen’s d̂ measure of effect size and Pearson’s r2 measure
of effect size are given by

d̂ =
[
r2(N − 1)

N(1 − r2)

]1/2

and r2 = Nd̂ 2

N(d̂ 2 + 1) − 1
, (5.11)
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the relationships between Cohen’s d̂ measure of effect size and Mielke and Berry’s
� measure of effect size are given by

d̂ =
[�(N − 1) + C(� − 1) + 1

N(1 − �)

]1/2

(5.12)

and

� = Nd̂ 2 + C − 1

N(d̂ 2 + 1) + C − 1
, (5.13)

and the relationships between Pearson’s r2 measure of effect size and Mielke and
Berry’s � measure of effect size are given by

r2 = �(N + C − 1) − C + 1

N + C(� − 1)
and � = r2(N − C) + C − 1

N + C − 1 + Cr2 . (5.14)

For the example data listed in Table 5.1 on p. 107 with x1 = 9, x2 = 7, x3 =
5, and x4 = 2, and following the expressions given in Eq. (5.8) for Student’s t

and Cohen’s d̂ , the observed value of Student’s t test statistic with respect to the
observed value of Cohen’s d̂ measure of effect size is

t = (
Nd̂ 2 )1/2 =

[
4(0.9209)2

]1/2 = ±1.8419

and the observed value of Cohen’s d̂ measure of effect size with respect to the
observed value of Student’s t test statistic is

d̂ =
(

t2

N

)1/2

=
[
(+1.8419)2

4

]1/2

= ±0.9209 .

Following the expressions given in Eq. (5.9) for Student’s t and Pearson’s r2, the
observed value for Student’s t test statistic with respect to the observed value of
Pearson’s r2 measure of effect size is

t =
[

r2(N − 1)

1 − r2

]1/2

=
[

0.5307(4 − 1

1 − 0.5307

]1/2

= ±1.8419

and the observed value for Pearson’s r2 measure of effect size with respect to the
observed value of Student’s t test statistic is

r2 = t2

t2 + N − 1
= (+1.8419)2

(+1.8419)2 + 4 − 1
= 0.5307 .
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Following the expressions given in Eq. (5.10) for Student’s t and Mielke and
Berry’s �, the observed value for Student’s t test statistic with respect to the
observed value of Mielke and Berry’s � measure of effect size is

t =
[�(N − 1) + C(� − 1) + 1

1 − �
]1/2

=
[+0.7757(4 − 1) + 11.4393(0.7757 − 1) + 1

1 − 0.7757

]1/2

= ±1.8419

and the observed value for Mielke and Berry’s � measure of effect size with respect
to the observed value of Student’s t test statistic is

� = t2 + C − 1

t2 + C + N − 1
= (+1.8419)2 + 11.4393 − 1

(+1.8419)2 + 11.4393 + 4 − 1
= +0.7757 .

Following the expressions given in Eq. (5.11) for Cohen’s d̂ and Pearson’s r2,
the observed value for Cohen’s d̂ measure of effect size with respect to the observed
value of Pearson’s r2 measure of effect size is

d̂ =
[
r2(N − 1)

N(1 − r2)

]1/2

=
[

0.5307(4 − 1)

4(1 − 0.5307)

]1/2

= ±0.9209

and the observed value for Pearson’s r2 measure of effect size with respect to the
observed value of Cohen’s d̂ measure of effect size is

r2 = Nd̂ 2

N(d̂ 2 + 1) − 1
= 4[(0.9209)2]

4[(0.9209)2 + 1] − 1
= 0.5307 .

Following the expressions given in Eqs. (5.12) and (5.13) for Cohen’s d̂ and
Mielke and Berry’s �, respectively, the observed value for Cohen’s d̂ measure of
effect size with respect to the observed value of Mielke and Berry’s � measure of
effect size is

d̂ =
[�(N − 1) + C(� − 1) + 1

N(1 − �)

]1/2

=
[+0.7757(4 − 1) + 11.4393(+0.7757 − 1) + 1

4(1 − 0.7757)

]1/2

= ±0.9209

and the observed value for Mielke and Berry’s � measure of effect size with respect
to the observed value of Cohen’s d̂ measure of effect size is

� = Nd̂ 2 + C − 1

N(d̂ 2 + 1) + C − 1
= 4[(0.9209)2] + 11.4393 − 1

4[(0.9209)2 − 1] + 11.4393 − 1
= +0.7757 .
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And following the expressions given in Eq. (5.14) for Pearson’s r2 and Mielke
and Berry’s �, the observed value for Pearson’s r2 measure of effect size with
respect to the observed value of Mielke and Berry’s � measure of effect size is

r2 = �(N + C − 1) − C + 1

N + C(� − 1)

= 0.7757(4 + 11.4393 − 1) − 11.4393 + 1

4 + 11.4393(0.7757 − 1)
= 0.5307

and the observed value for Mielke and Berry’s � measure of effect size with respect
to the observed value of Pearson’s r2 measure of effect size is

� = r2(N − C) + C − 1

N + C − 1 + Cr2

= 0.5307(4 − 11.4393) + 11.4393 − 1

4 + 11.4393 − 1 − (11.4393)(0.5307)
= +0.7757 .

5.5.3 Interpretations of Effect Size Measures

While neither Cohen’s d̂ nor Pearson’s r2 measures of effect size lend themselves
to meaningful interpretations, � possesses an easy-to-understand chance-corrected
interpretation. Positive values of � indicate agreement among the subjects greater
than expected by chance, negative values of � indicate agreement among the
subjects less than expected by chance, and a value of zero indicates chance
agreement among the subjects.

Cohen’s d̂ measure of effect size norms between 0 and ∞ and provides an
estimate of the magnitude of the effect size in standard deviation units. The
benchmarks provided by Cohen are: if d̂ ≤ 0.20 the effect size is considered
“small,” if 0.20 < d̂ < 0.80 the effect size is considered “medium” or “moderate,”
and if d̂ ≥ 0.80 the effect size is considered “large.” In general, statisticians demand
more precision than simply small, medium, and large. Also, Pearson’s r2 has not
escaped criticism. As Howell noted:

I am not happy with the r-family of measures simply because I don’t think that they have
a meaningful interpretation in most situations. . . . I would suggest that you stay away from
the older r-family measures unless you really have a good reason to use them [18, p. 157].

In like manner to Cohen’s d̂ measure of effect size, if r2 ≤ 0.09 the effect size is
considered “small,” if 0.09 < r2 < 0.25 the effect size is considered “medium” or
“moderate,” and if r2 ≥ 0.25 the effect size is considered “large.”5

5The values for small, medium, and large effect sizes are not accepted by all researchers and have
been in dispute for some time [24].
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The use of Pearson’s r2 as a measure of effect size has been heavily criticized
in the literature. McGrath and Meyer [24] and others have criticized the values
put forward by Cohen [11, p. 22], recommending somewhat higher benchmarks.
D’Andrade and Dart advocated the use of r instead of r2, arguing that the usual
interpretation of r2 as “variance accounted for” is inappropriate since variance is
a squared measure that no longer corresponds to the dimensionality of the original
measurements [15, p. 47]. Kvålseth [23] and Ozer [26] demonstrated that for any
model other than a linear model with an intercept, r2 is inappropriate as a measure
of effect size. Blalock [5] and Rosenthal and Rubin [29, 30] showed that values
of r2 underestimate the magnitudes of experimental effects, even though r2 is
biased upward. Finally, while r2 is touted as varying between 0 and 1 with a clear
interpretation, as is obvious in Eq. (5.4) on p. 111, r2 approaches 1 only as t2

approaches infinity and, thus, the only way that r2 can possibly equal 1 for a one-
sample t test is when there is only a single object for analysis; that is, with degrees
of freedom equal to N − 1 = 0.

5.6 Example 3: Analyses with v = 2 and v = 1

For a third, more realistic example of a one-sample test under the Neyman–Pearson
population model, consider the data on reaction times of N = 12 young children
where the mean reaction time on a particular task has been reported as 1.7 s; that is,
the null hypothesis is H0: μx = 1.7. The reaction-time data are listed in Table 5.9.
For the reaction-time data given in Table 5.9 the sample mean is x̄ = 1.4917, the
sample standard deviation is sx = 0.3502, the standard error of x̄ is

sx̄ = sx√
N

= 0.3502√
12

= 0.1011 ,

and Student’s t test statistic for the observed data listed in Table 5.9 is

t = x̄ − μx

sx̄
= 1.4917 − 1.7

0.1011
= −2.0603 .

Table 5.9 Recorded reaction
times for N = 12 young
children

Child Time Child Time

A 1.4 G 1.5

B 1.8 H 2.0

C 1.1 I 1.4

D 1.3 J 1.9

E 1.6 K 1.8

F 0.8 L 1.3
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Under the Neyman–Pearson null hypothesis, H0: μx = 1.7, test statistic t is
asymptotically distributed as Student’s t with N − 1 degrees of freedom. With
N − 1 = 12 − 1 = 11 degrees of freedom the asymptotic two-tail probability
value of t = −2.0603 is P = 0.0638, under the assumption of normality.

5.6.1 An Exact Analysis with v = 2

Under the Fisher–Pitman permutation model with v = 2 the observed value of test
statistic δ is

δ =
(

N

2

)−1 N−1∑
i=1

N∑
j=i+1

∣∣xi − xj

∣∣2

=
(

12

2

)−1

(16.1898) = 2(16.1898)

12(12 − 1)
= 0.2453 .

Alternatively, in terms of an analysis of variance model the permutation test statistic
is

δ = 2SSTotal

N − 1
= 2(1.3492)

12 − 1
= 0.2453 ,

where the sum of the N = 12 values is

N∑
i=1

xi = 1.4 + 1.8 + 1.1 + 1.3 + 1.6 + 0.8 + 1.5

+ 2.0 + 1.4 + 1.9 + 1.8 + 1.3 = 17.90 ,

the sum of the N = 12 squared values is

N∑
i=1

x2
i = 1.42 + 1.82 + 1.12 + 1.32 + 1.62 + 0.82 + 1.52

+ 2.02 + 1.42 + 1.92 + 1.82 + 1.32 = 28.05 ,

and the total sum-of-squares is

SSTotal =
N∑

i=1

x2
i −

(
N∑

i=1

xi

)2/
N = 28.05 − (17.90)2/12 = 1.3492 .

To establish the exact permutation probability value of δ = 0.2453 (or t =
−2.0603), all possible arrangements of the observed data must be enumerated.
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There are only

M = 2N = 212 = 4096

possible, equally-likely arrangements in the reference set of all permutations of the
reaction-time data listed in Table 5.9. Under the Fisher–Pitman permutation model,
the exact probability of an observed δ is the proportion of δ test statistic values
calculated on all possible arrangements of the observed data that are equal to or
less than the observed value of δ. There are only two δ test statistic values that
are equal to or less than the observed value of δ = 0.2453. If all M arrangements
of the N = 12 observations listed in Table 5.9 occur with equal chance, the exact
probability value computed on the M = 4096 possible arrangements of the observed
data with N = 12 children preserved for each arrangement is

P(δ ≤ δo) = number of δ values ≤ δo

M
= 2

4096
= 0.4883×10−3 ,

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the reaction-time data listed in Table 5.9.

Conversely, for test statistic t there are only two |t| values that are equal to
or greater than the observed value of |t| = 2.0603, yielding an exact two-tail
probability value under the Fisher–Pitman null hypothesis of

P(|t| ≥ |to|) = number of |t| values ≥ |to|
M

= 2

4096
= 0.4883×10−3 ,

where to denotes the observed value of test statistic t . There is a substantial
difference between the asymptotic probability value (P = 0.0638) and the exact
permutation probability value (P = 0.4883×10−3); that is,

�P = 0.0638 − 0.4883×10−3 = 0.0633 .

The difference is most likely due to the very small number of data points. A
continuous mathematical function such as Student’s t cannot be expected to provide
a precise fit to just 12 observed values, of which only nine values are unique.

Conventional statistics, such as Student’s one-sample t test, necessarily assume
normality, where the density function of the standard normal distribution is given
by

f (x) = 1√
2πσ 2

x

exp

[
− (x − μx)

2

2σ 2
x

]
. (5.15)

As is evident in Eq. (5.15), the normal distribution is a two-parameter distribution
where the two parameters are the population mean denoted by μx and the population
variance denoted by σ 2

x . The remaining factors in Eq. (5.15) are constants; that is, 1,
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2, π = 3.1416, and e = 2.7183. For Student’s one-sample t test, the two population
parameters are estimated by the sample mean—more accurately for these purposes,
the unbiased estimated population mean—given by

x̄ = 1

N

N∑
i=1

xi

and the sample variance—more accurately, the unbiased estimated population
variance—given by

s2
x = 1

N − 1

N∑
i=1

(
xi − x̄

)2
.

The sample mean is the point about which the sum of squared deviations is
minimized and the sample variance is the average squared deviation about the
sample mean. Thus because the t test assumes normality, squared differences among
data values are an integral and necessary component of Student’s one-sample t test
statistic. On the other hand, statistical tests under the Fisher–Pitman permutation
model are distribution-free, do not assume normality, and do not depend on squared
differences among data values.

5.6.2 Congruent Data and Analysis Spaces

Permutation methods are distribution-free and, therefore, do not assume normality.
Thus it is not necessary to measure differences among the data points in squared
units—corresponding to v = 2 in Eq. (5.1) on p. 103. Indeed, any positive value for
v could be considered. However, only ordinary Euclidean scaling, corresponding to
v = 1 in Eq. (5.1), appears appropriate as it is congruent with the dimensionality of
most data spaces. In addition, ordinary Euclidean scaling is the only function that is
both a metric and satisfies the triangle inequality.

A scaling function is a metric if it satisfies three properties: (1) �(x, y) ≥ 0, and
�(x, x) = 0, that is, the difference is positive between two different points and the
difference is equal to zero from any point to itself; (2) the difference is symmetric:
�(x, y) = �(y, x), that is, the difference between points x and y is the same in any
direction; and (3) the triangle inequality is satisfied: �(x, y) ≤ �(x, z) + �(y, z),
that is, the difference between any two points is the shortest distance along any path.

The triangle inequality can be illustrated with some simple examples. Consider
the three graphics in Fig. 5.1. The first (top) graphic in Fig. 5.1 depicts three values
(x, y, and z) on the real number line. The second (middle) graphic in Fig. 5.1 assigns
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Fig. 5.1 Graphic illustrations
for the triangle inequality

1 2

3

3

51

the three values 1, 2, and 3 to x, y, and z, respectively. For the second graphic,

�(x, z) = �(1, 3) = 2 ,

�(x, y) = �(1, 2) = 1 ,

�(y, z) = �(2, 3) = 1 ,

and �(x, z) ≤ �(x, y) + �(y, z); that is, 2 ≤ 1 + 1. Thus, the triangle inequality
holds for ordinary Euclidean scaling; that is, with v = 1. However, for squared
Euclidean scaling with v = 2,

�(x, z)2 = �(1, 3)2 = 22 = 4 ,

�(x, y)2 = �(1, 2)2 = 12 = 1 ,

�(y, z)2 = �(2, 3)2 = 12 = 1 ,

and �(x, z)2 	≤ �(x, y)2 + �(y, z)2; that is, 4 	≤ 1 + 1 and the triangle inequality
fails.

Now consider the third (bottom) graphic in Fig. 5.1 where the values 1, 3, and 5
have been assigned to x, y, and z, respectively. For the third graphic,

�(x, z) = �(1, 5) = 4 ,

�(x, y) = �(1, 3) = 2 ,

�(y, z) = �(3, 5) = 2 ,

and �(x, z) ≤ �(x, y) + �(y, z); that is, 4 ≤ 2 + 2. Thus, the triangle inequality
holds for ordinary Euclidean scaling; that is, v = 1. However, for squared Euclidean
scaling with v = 2,

�(x, z)2 = �(1, 5)2 = 42 = 16 ,

�(x, y)2 = �(1, 3)2 = 22 = 4 ,

�(y, z)2 = �(3, 5)2 = 22 = 4 ,

and �(x, z)2 	≤ �(x, y)2 + �(y, z)2; that is, 16 	≤ 4 + 4 and the triangle inequality
fails.
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The importance of a metric space in statistical analysis cannot be overstated.
Technically, for the permutation test statistic,

δ =
(

N

2

)−1 N−1∑
i=1

N∑
j=i+1

∣∣xi − xj

∣∣v ,

any positive value for v ≤ 1 yields a metric analysis space. However, values of
v < 1 are impossible to interpret and are, therefore, meaningless. Any value of
v > 1 yields a non-metric analysis space. Thus, a metric analysis mandates v = 1.
When v = 2, as is customary in conventional statistical analyses, the non-metric
analysis space is not congruent with an ordinary Euclidean data space. The obvious
solution is to set v = 1, ensuring that the analysis and data spaces are both metric
and conform to each other.

5.6.3 An Exact Analysis with v = 1

Consider an analysis of the reaction-time data listed in Table 5.9 on p. 123 under
the Fisher–Pitman permutation model with v = 1. It is a paradox of one-sample
permutation tests that certain configurations of data yield the same exact probability
value with either squared or ordinary Euclidean scaling; that is, v = 2 or v = 1,
respectively. The data listed in Table 5.9 on p. 123 present one such configuration.
For both v = 2 and v = 1, the exact probability value is P = 0.4883×10−3 under
the Fisher–Pitman permutation model.

While the selection of v = 2 or v = 1 yields the same exact probability value
for the reaction-time data in Table 5.9, the δ values differ and, consequently, the
� measures of effect size also differ. For squared Euclidean scaling with v = 2,
the observed value of δ is δ = 0.2453, the exact expected value of test statistic δ

under the Fisher–Pitman null hypothesis is μδ = 4.6750, and the observed chance-
corrected measure of effect size is

� = 1 − δ

μδ

= 1 − 0.2453

4.6750
= +0.9475 ,

indicating approximately 95% agreement among the N = 12 children above what
is expected by chance. For comparison, Cohen’s measure of effect size is

d̂ = |x̄ − μx |
sx

= |1.4917 − 1.7|
0.3502

= 0.5948 ,
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indicating a medium or moderate effect size (0.20 < d̂ < 0.80), and Pearson’s
measure of effect size is

r2 = t2

t2 + N − 1
= (1.4917)2

(1.4917)2 + 12 − 1
= 0.1683 ,

also indicating a moderate effect size (0.09 < r2 < 0.25).
For ordinary Euclidean scaling with v = 1, the observed value of δ is δ = 0.4106,

the exact expected value of test statistic δ under the Fisher–Pitman null hypothesis
is μδ = 1.6970, and the observed chance-corrected measure of effect size is

� = 1 − δ

μδ

= 1 − 0.4106

1.6970
= +0.7580 ,

indicating approximately 76% agreement among the N = 12 children above what
is expected by chance. No comparisons are made with Cohen’s d̂ or Pearson’s r2

measures of effect size for a one-sample test as d̂ and r2 are undefined for ordinary
Euclidean scaling.

5.6.4 Plus and Minus Data Configurations

The effects of various configurations of one-sample data can be illustrated with a
small set of signed values, such as given in Table 5.10 with N = 9 objects arranged
in three sets of paired columns. First, consider Columns A and B in Table 5.10
where the values are all positive (Column A) or all negative (Column B). For these
two columns of data (A and B), the exact probability value with either v = 2 or
v = 1 is P = 0.3906×10−2.

Second, consider Columns C and D in Table 5.10 where the values are all positive
(Column C) or all negative (Column D), but extreme values have been added: for
Object 9 the value +5 in Column A has been replaced by extreme value +50 in

Table 5.10 Example data
illustrating v = 2 and v = 1
with and without extreme
values (+50 and −50)

Object A B C D E F

1 +1 −1 +1 −1 −1 −1

2 +1 −1 +1 −1 +1 +1

3 +1 −1 +1 −1 +1 +1

4 +2 −2 +2 −2 −2 −2

5 +2 −2 +2 −2 +2 +2

6 +2 −2 +2 −2 +2 +2

7 +4 −4 +4 −4 +4 +4

8 +4 −4 +4 −4 +4 +4

9 +5 −5 +50 −50 +5 +50
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Column C and the value −5 in Column B has been replaced by extreme value −50
in Column D. For these two columns of data (C and D), the exact probability value
with either v = 2 or v = 1 is unchanged at P = 0.3906×10−2. The substitution of
an extreme value for Object 9 does not affect the exact probability value for either
v = 2 or v = 1 when all values in a given column are either positive or negative.

Finally, consider Columns E and F in Table 5.10, which have the same values
as Columns C and D but where two of the values are negative (Objects 1 and 4)
and the remaining seven values are positive. Here again, Column E does not contain
an extreme value, but Column F does contain an extreme value for Object 9; that
is, +50 in Column F has replaced +5 in Column E. For Column E, without an
extreme value, the exact probability value with v = 2 is P = 0.0781 and the exact
probability value with v = 1 is P = 0.0898. For Column F, with extreme value
+50, the exact probability value with v = 2 is P = 0.1563—twice as large as P =
0.0781—and the exact probability value with v = 1 is unchanged at P = 0.0898.

Analyses based on ordinary Euclidean scaling functions with v = 1 are highly
resistant to extreme values and are very robust when compared with analyses
based on squared Euclidean scaling functions with v = 2. The term “robust”
was coined by George Box while at the University of North Carolina in 1953 [6].
Box was concerned with how well standard statistical procedures held up when the
assumptions behind the mathematical model were not quite correct [31, p. 88].6

5.7 Example 4: Exact and Monte Carlo Analyses

For a fourth, larger example of a one-sample test, consider the weight gain/loss data
(in pounds) listed in Table 5.11 for N = 28 adult subjects. Because there are

M = 2N = 228 = 268,435,456

possible, equally-likely arrangements in the reference set of all permutations of
the weight gain/loss data listed in Table 5.10, an exact permutation analysis is not
practical. When the number of possible arrangements is very large, Monte Carlo
permutation methods become necessary.

Monte Carlo permutation statistical methods generate a random sample of all
possible arrangements of the observed data. The Monte Carlo probability value of
an observed δ test statistic is the proportion of the δ test statistic values computed on
the randomly-selected arrangements that are equal to or greater than the observed
test statistic value. In general, a random sample of L = 1,000,000 arrangements

6George Edward Pelham Box is best remembered for his service at the University of Wisconsin–
Madison where he founded the Department of Statistics in 1960 and served as Chair of the
department for many years, retiring in 1992. Box passed away in March, 2013, shortly after
publishing his memoirs [7].
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Table 5.11 Example weight
gain/loss data for a
one-sample test with N = 28
subjects

Subject Score Subject Score

1 +8.8 15 +6.5

2 −6.6 16 +8.7

3 +8.7 17 +6.0

4 −5.9 18 −8.6

5 +8.5 19 +5.5

6 −5.6 20 +8.5

7 +8.3 21 +5.2

8 −5.1 22 −8.1

9 +7.7 23 +5.1

10 +5.0 24 +7.7

11 +7.6 25 +5.1

12 +5.0 26 −7.4

13 +6.8 27 +5.0

14 −4.6 28 −6.7

ensures a probability value accurate to three decimal places, provided the probability
value is not too small [19]. However, to ensure four decimal places of accuracy, an
increase of two orders of magnitude is required; that is, L = 100,000,000.

For the weight gain/loss data listed in Table 5.11, assume H0: μx = 0; that is, the
null hypothesis posits no expected gain or loss in weight. Then under the Neyman–
Pearson population model the sample mean is x̄ = 2.5393, the sample standard
deviation is sx = 6.5062, the standard error of x̄ is

sx̄ = sx√
N

= 6.5062√
28

= 1.2296 ,

and Student’s one-sample t test statistic for the observed data listed in Table 5.11 is

t = x̄ − μx

sx̄
= 2.5393 − 0

1.2296
= +2.0652 .

Under the Neyman–Pearson null hypothesis, H0: μx = 0, test statistic t is
asymptotically distributed as Student’s t with N − 1 degrees of freedom. With
N − 1 = 28 − 1 = 27 degrees of freedom the asymptotic two-tail probability
value of t = +2.0652 is P = 0.0486, under the assumption of normality.

5.7.1 A Monte Carlo Analysis with v = 2

Now consider the weight gain/loss data listed in Table 5.11 under the Fisher–Pitman
permutation model. Let v = 2, employing squared Euclidean differences between
the paired scores for correspondence with Student’s one-sample t test statistic. The
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observed value of test statistic δ is δ = 84.6612, the exact expected value of test
statistic δ under the Fisher–Pitman null hypothesis is μδ = 94.5336, and the Monte
Carlo probability value based on a sample of L = 1,000,000 random arrangements
of the observed data is

P(δ ≤ δo|H0) = number of δ values ≤ δo

L
= 50,302

1,000,000
= 0.0503 ,

where δo denotes the observed value of test statistic δ and L is the number of
randomly-selected, equally-likely arrangements of the N = 28 observations listed
in Table 5.11.

Following Eq. (5.6) on p. 111, the exact expected value of the M = 268,435,456
δ test statistic values under the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 25,376,170,023

268,435,456
= 94.5336

and following Eq. (5.5) on p. 111, the observed chance-corrected measure of effect
size is

� = 1 − δ

μδ

= 1 − 84.6612

94.5336
= +0.1044 ,

indicating approximately 10% agreement among the N = 28 scores above what is
expected by chance. For comparison, Cohen’s measure of effect size is

d̂ = |x̄ − μx |
sx

= |2.5393 − 0|
6.5062

= 0.3903 ,

indicating a medium or moderate effect size (0.20 < d̂ < 0.80), and Pearson’s
measure of effect size is

r2 = t2

t2 + N − 1
= (2.0652)2

(2.0652)2 + 28 − 1
= 0.1364 ,

also indicating a moderate effect size (0.09 < r2 < 0.25).

5.7.2 An Exact Analysis with v = 2

Although an exact permutation analysis may be impractical for the data listed in
Table 5.11, it is not impossible. For an exact test of the data listed in Table 5.11
under the Fisher–Pitman permutation model with v = 2, the observed value of test
statistic δ is δ = 84.6612, the exact expected value of test statistic δ under the
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Fisher–Pitman null hypothesis is μδ = 94.5336, and the exact probability value
based on all M = 268,435,456 arrangements of the observed data is

P(δ ≤ δo|H0) = number of δ values ≤ δo

M
= 13,500,360

268,435,456
= 0.0503 ,

where δo denotes the observed value of test statistic δ and M is the number
of possible, equally-likely arrangements of the N = 28 observations listed in
Table 5.11. In this example, the Monte Carlo probability value based on L =
1,000,000 random arrangements of the observed data (P = 0.0503) and the exact
probability value (P = 0.0503) are identical to four decimal places, illustrating the
accuracy of Monte Carlo permutation methods when the exact probability value is
not too small. The difference between the Monte Carlo and exact probability values,
when carried to six decimal places, is only

�P = 0.050302 − 0.050293 = 0.000009 .

Following Eq. (5.6) on p. 111, the exact expected value of the M = 268,435,456
δ test statistic values under the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 25,376,170,023

268,435,456
= 94.5336

and following Eq. (5.5) on p. 111, the observed chance-corrected measure of effect
size is

� = 1 − δ

μδ

= 1 − 84.6612

94.5336
= +0.1044 ,

indicating approximately 10% agreement among the N = 28 scores above what is
expected by chance.

5.7.3 A Monte Carlo Analysis with v = 1

Now consider the weight gain/loss data listed in Table 5.11 under the Fisher–Pitman
permutation model with v = 1. The observed value of test statistic δ is δ = 6.9860,
the exact expected value of test statistic δ under the Fisher–Pitman null hypothesis
is μδ = 7.5685, and the Monte Carlo probability value based on a sample of L =
1,000,000 random arrangements of the observed data is

P(δ ≤ δo|H0) = number of δ values ≤ δo

L
= 53,971

1,000,000
= 0.0540 ,
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where δo denotes the observed value of test statistic δ and L is the number of
randomly-selected, equally-likely arrangements of the N = 28 observations listed
in Table 5.11. Following Eq. (5.6) on p. 111, the exact expected value of the
M = 268,435,456 δ test statistic values under the Fisher–Pitman null hypothesis
is

μδ = 1

M

M∑
i=1

δi = 2,031,653,749

268,435,456
= 7.5685

and following Eq. (5.5) on p. 111, the observed chance-corrected measure of effect
size is

� = 1 − δ

μδ

= 1 − 6.9860

7.5685
= +0.0770 ,

indicating approximately 8% agreement among the N = 28 scores above what
is expected by chance. No comparisons are made with Cohen’s d̂ or Pearson’s r2

measures of effect size for one-sample tests as d̂ and r2 are undefined for ordinary
Euclidean scaling.

5.7.4 An Exact Analysis with v = 1

For an exact test of the weight gain/loss data listed in Table 5.11 under the Fisher–
Pitman permutation model with v = 1, the observed value of test statistic δ is
δ = 6.9860, the exact expected value of test statistic δ under the Fisher–Pitman
null hypothesis is μδ = 7.5685, and the exact probability value based on all M =
268,435,456 arrangements of the observed data is

P(δ ≤ δo|H0) = number of δ values ≤ δo

M
= 14,487,686

268,435,456
= 0.0540 ,

where δo denotes the observed value of test statistic δ and M is the number
of possible, equally-likely arrangements of the N = 28 observations listed in
Table 5.11. Following Eq. (5.6) on p. 111, the exact expected value of the M =
268,435,456 δ test statistic values under the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 2,031,653,749

268,435,456
= 7.5685
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and following Eq. (5.5) on p. 111, the observed chance-corrected measure of effect
size is

� = 1 − δ

μδ

= 1 − 6.9860

7.5685
= +0.0770 ,

indicating approximately 8% agreement among the N = 28 scores above what is
expected by chance.

5.8 Example 5: Rank-Score Permutation Analyses

In conventional research it is sometimes necessary to analyze rank-score data. Two
scenarios manifest themselves. First, the observed data are collected as ranks where,
for example, experienced travelers are asked to rank preferences among airlines,
airports, or cruise lines. Second, the raw data are converted to ranks because one or
more of the assumptions for a one-sample t test cannot be satisfied. There is no need
for the second scenario with permutation methods as the conventional assumptions
underlying Student’s t test are moot. The conventional approach to one-sample rank-
score data under the population model is Wilcoxon’s signed-ranks test [33].

5.8.1 The Wilcoxon Signed-Ranks Test

Consider a one-sample rank test for N univariate rank scores under the Neyman–
Pearson population model. Wilcoxon’s signed-ranks test statistic is the smaller of
the sums of the like-signed ranks. An example set of N = 18 rank-score data is listed
in Table 5.12, where a given task is predetermined to take 8 h and the difference
columns listed in Table 5.11 represent the differences between the time actually
taken and the hypothesized value of 8 h.

Table 5.12 Example
rank-score data for the
Wilcoxon signed-ranks test

Signed Signed
Difference rank Difference rank

−0 h 05 min −1 +2 h 15 min +10

−0 h 15 min −2 −2 h 20 min −11

+0 h 20 min +3 +2 h 35 min +12

−0 h 30 min −4 −3 h 40 min −13

+1 h 10 min +5 +3 h 45 min +14

+1 h 15 min +6 +3 h 55 min +15

+1 h 25 min +7 +6 h 00 min +16

+2 h 05 min +8 +8 h 05 min +17

+2 h 10 min +9 +8 h 30 min +18
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The sums of the (+) and (−) signed ranks in Table 5.12 are
∑

(+) = 3 + 5 + 6 + 7 + 8 + 9 + 10 + 12

+ 14 + 15 + 16 + 17 + 18 = 140

and

∑
(−) = 1 + 2 + 4 + 11 + 13 = 31 ,

respectively. Then Wilcoxon’s test statistic is T = ∑
(−) = 31, the smaller of the

two sums.
Test statistic T is asymptotically distributed N(0, 1) under the Neyman–Pearson

null hypothesis as N → ∞. For the N = 18 rank scores listed in Table 5.12, the
mean value of Wilcoxon’s T is

μT = N(N + 1)

4
= 18(18 + 1)

4
= 85.50 ,

the standard deviation of T is

σT =
[

N(N + 1)(2N + 1)

24

]1/2

=
{

18(18 + 1)[2(18) + 1]
24

}1/2

= 22.9619 ,

and the standard score of T = 31 is

z = T − μT

σT

= 31 − 85.50

22.9619
= −2.3735 ,

yielding an asymptotic N(0, 1) two-tail probability value of P = 0.0176, under the
assumption of normality. If a correction for continuity is applied,

z = T + 0.50 − μT

σT

= 31 + 0.50 − 85.50

22.9619
= −2.3517

and the two-tail probability value is increased slightly to P = 0.0187.

5.8.2 An Exact Analysis with v = 2

For an analysis of the one-sample rank-score data listed in Table 5.12 under
the Fisher–Pitman permutation model let v = 2, employing squared Euclidean
differences between the paired rank scores for correspondence with Wilcoxon’s
signed-ranks test. Let xi denote the observed rank-score values for i = 1, . . . , N ,
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then the permutation test statistic is given by

δ =
(

N

2

)−1 N−1∑
i=1

N∑
j=i+1

∣∣xi − xj

∣∣v . (5.16)

Following Eq. (5.16), for the rank-score data listed in Table 5.12 with N = 18 and
v = 2, the observed value of the permutation test statistic is

δ = 2

(18)(18 − 1)

[∣∣(−1) − (−2)
∣∣2 + ∣∣(−1) − (+3)

∣∣2
+ · · · + ∣∣(+17) − (+18)

∣∣2] = 170.4641 .

Because there are only

M = 2N = 218 = 262,144

possible, equally-likely arrangements in the reference set of all permutations of the
rank-score data listed in Table 5.12, an exact permutation analysis is feasible. Under
the Fisher–Pitman permutation model, the exact probability of an observed δ is the
proportion of δ test statistic values calculated on all possible arrangements of the
observed data that are equal to or less than the observed value of δ = 170.4641.
There are exactly 4176 δ test statistic values that are equal to or less than the
observed value of δ = 170.4641. If all M arrangements of the N = 18 rank
scores listed in Table 5.12 occur with equal chance under the Fisher–Pitman null
hypothesis, the exact probability value of δ = 170.4641 computed on the M =
262,144 possible arrangements of the observed data with N = 18 observations
preserved for each arrangement is

P(δ ≤ δo|H0) = number of δ values ≤ δo

M
= 4176

262,144
= 0.0159 ,

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the rank-score data listed in Table 5.12.

5.8.3 The Relationship Between Statistics T and δ

The functional relationships between test statistics T and δ are given by

δ = N(N + 1)(2N + 1)

3(N − 1)
−

[
4T − N(N + 1)

]2

2N(N − 1)
(5.17)
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and

T = N(N + 1)

4
−

{
N
[
N(N + 1)(2N + 1) − 3(N − 1)δ

]
24

}1/2

. (5.18)

Following Eq. (5.17), the observed value of test statistic δ with respect to the
observed value of test statistic T for the rank-score data listed in Table 5.12 is

δ = 18(18 + 1)[2(18) + 1]
3(18 − 1)

−
[
4(31) − 18(18 + 1)

]2

2(18)(18 − 1)

= 248.1176 − 77.6536 = 170.4641

and following Eq. (5.18), the observed value of Wilcoxon’s test statistic T with
respect to the observed value of test statistic δ is

T = 18(18 + 1)

4

−
(

18
{
18(18 + 1)

[
2(18) + 1

] − 3(18 − 1)(170.4641)
}

24

)1/2

= 85.5 − 54.5 = 31 .

Because test statistics δ and T are equivalent under the Fisher–Pitman null
hypothesis, the exact probability value of Wilcoxon’s T = 31 is identical to the
exact probability value of δ = 170.4641; that is,

P(δ ≤ δo|H0) = number of δ values ≤ δo

M
= 4176

262,144
= 0.0159

and

P(T ≥ To|H0) = number of T values ≥ To

M
= 4176

262,144
= 0.0159 ,

where δo and To denote the observed values of test statistics δ and T , respectively,
and M is the number of possible, equally-likely arrangements of the N = 18 rank
scores listed in Table 5.12.

Following Eq. (5.6) on p. 111, the exact expected value of the M = 262,144 δ

test statistic values under the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 61,429,077

262,144
= 234.3333
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and following Eq. (5.5) on p. 111, the observed chance-corrected measure of effect
size is

� = 1 − δ

μδ

= 1 − 170.4641

234.3333
= +0.2726 ,

indicating approximately 27% within-group agreement above what is expected by
chance. No comparisons are made with Cohen’s d̂ or Pearson’s r2 measures of effect
size for one-sample tests as d̂ and r2 are undefined for rank-score data.

5.8.4 An Exact Analysis with v = 1

Now consider an analysis of the rank-score data listed in Table 5.12 under the
Fisher–Pitman permutation model with v = 1, employing ordinary Euclidean
differences between the rank scores. The observed value of the permutation test
statistic is

δ =
(

N

2

)−1 N−1∑
i=1

N∑
j=i+1

∣∣xi − xj

∣∣v

= 2

(18)(18 − 1)

[∣∣(−1) − (−2)
∣∣1 + ∣∣(−1) − (+3)

∣∣1
+ · · · + ∣∣(+17) − (+18)

∣∣1] = 10.6340 .

Because there are only

M = 2N = 218 = 262,144

possible, equally-likely arrangements in the reference set of all permutations of the
rank-score data listed in Table 5.12, an exact permutation analysis is feasible. Under
the Fisher–Pitman permutation model, the exact probability of an observed δ is the
proportion of δ test statistic values calculated on all possible arrangements of the
observed data that are equal to or less than the observed value of δ = 10.6340. There
are exactly 4318 δ test statistic values that are equal to or less than the observed
value of δ = 10.6340. If all M arrangements of the N = 18 rank scores listed in
Table 5.12 occur with equal chance under the Fisher–Pitman null hypothesis, the
exact probability value of δ = 10.6340 computed on the M = 262,144 possible
arrangements of the observed data with N = 18 observations preserved for each
arrangement is

P(δ ≤ δo|H0) = number of δ values ≤ δo

M
= 4318

262,144
= 0.0165 ,
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where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the N = 18 rank scores listed in Table 5.12.

Following Eq. (5.6) on p. 111, the exact expected value of the M = 262,144 δ

test statistic values under the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 3,320,490

262,144
= 12.6667

and following Eq. (5.5) on p. 111, the observed chance-corrected measure of effect
size is

� = 1 − δ

μδ

= 1 − 10.6340

12.6667
= +0.1605 ,

indicating approximately 16% within-group agreement above what is expected by
chance. No comparisons are made with Cohen’s d̂ or Pearson’s r2 measures of effect
size for one-sample tests as d̂ and r2 are undefined for rank-score data.

5.8.5 The Sign Test

The sign test is the most elementary of all tests of differences and is so named
because the test statistic is computed from data that have been reduced to simple
plus (+) and minus (−) signs, representing positive and negative differences,
respectively. The test statistic, denoted by the uppercase letter S, is the smaller of the
number of (+) and (−) signs. Although generally not labeled as such, the popular
sign test is in fact a permutation test as it follows the discrete binomial probability
distribution.

To illustrate the sign test under the Neyman–Pearson population model, consider
the sign data listed in Table 5.13 where N = 16 subjects attempted to recall as
many words as possible out of a list of 25 words. The median value expected from
previous trials was 15 words. For the sign data listed in Table 5.12, the column
headed Words indicates the number of words recalled by each subject, the column
headed Difference lists the differences between the number of words recalled and
the predetermined value of 15 words, and the column headed Sign lists the signs
of the differences. For the sign data listed in Table 5.13, there are 13 (+) signs and
three (−) signs; thus, S = 3. Under the null hypothesis that the recall of words
above and below the median of 15 words are equally likely, the sign test provides
the exact probability of an arrangement with S = 3 (−) signs and N − S = 13 (+)
signs or an arrangement more extreme.

Let p denote the probability of success on a single trial. The binomial results
are asymptotically distributed N(0, 1) under the Neyman–Pearson null hypothesis,
H0: p = 0.50, as N → ∞. For the sign data listed in Table 5.13, the mean of the
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Table 5.13 Number of
words correctly recalled for
N = 16 subjects

Subject Words Difference Sign

1 14 −1 −
2 16 +1 +
3 18 +3 +
4 17 +2 +
5 18 +3 +
6 16 +1 +
7 17 +2 +
8 16 +1 +
9 19 +4 +

10 17 +2 +
11 19 +4 +
12 21 +6 +
13 14 −1 −
14 13 −2 −
15 17 +2 +
16 17 +2 +

binomial probability distribution with N = 16 and p = 0.50 is

μb = Np = (16)(0.50) = 8.00 ,

the standard deviation of the binomial probability distribution is

σb = √
Np(1 − p) = √

(16)(0.50)(0.50) = 2.00 ,

and the standard score of S = 3 is

z = S − μb

σb

= 3 − 8.00

2.00
= −2.50 ,

yielding an asymptotic N(0, 1) two-tail probability value of P = 0.0124. Because
N = 16 is a relatively small number, a correction for continuity should be applied.
Thus,

z = S + 0.50 − μb

σb

= 3 + 0.50 − 8

2.00
= −2.25 ,

yielding an asymptotic N(0, 1) two-tail probability value of P = 0.0244.
For comparison, the exact cumulative binomial probability value for any S is

given by

P(S|N) =
S∑

i=0

(
N

i

)
pi(1 − p)N−i , (5.19)
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where p is the probability of success on a single trial. Since the null hypothesis for
the sign test is simply that there is no difference expected between the number of
(+) and (−) signs; that is, H0: p = 0.50, Eq. (5.19) reduces to

P(S|N) =
S∑

i=0

(
N

i

)
(0.50)N .

For the sign data listed in Table 5.13 with i = 0, 1, 2, 3,

p(0|16) =
(

16

0

)
(0.50)16 = 16!

0! 16!(0.50)16 = 1

65,536
= 0.1526×10−4 ,

p(1|16) =
(

16

1

)
(0.50)16 = 16!

1! 15!(0.50)16 = 16

65,536
= 0.2441×10−3 ,

p(2|16) =
(

16

2

)
(0.50)16 = 16!

2! 14!(0.50)16 = 120

65,536
= 0.1831×10−2 ,

and

p(3|16) =
(

16

3

)
(0.50)16 = 16!

3! 13!(0.50)16 = 560

65,536
= 0.8545×10−2 .

Because the probability of success is p = 0.50, the binomial probability
distribution is symmetrical and the exact two-tail probability value is

P = 2
(
0.1526×10−4 + 0.2441×10−3 + 0.1831×10−2

+ 0.8545×10−2) = 0.0213 .

5.8.6 An Exact Analysis with v = 2

For an analysis of the sign data listed in Table 5.13 under the Fisher–Pitman
permutation model let v = 2, employing squared Euclidean differences between
the signs, and let xi = ±1 denote the observed signs for i = 1, . . . , N . Then the
permutation test statistic is given by

δ =
(

N

2

)−1 N−1∑
i=1

N∑
j=i+1

∣∣xi − xj

∣∣v . (5.20)
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Following Eq. (5.20) for the sign data listed in Table 5.13 with N = 16 and v = 2,
the observed value of the permutation test statistic is

δ = 2

(16)(16 − 1)

[∣∣(−1) − (+1)
∣∣2 + ∣∣(−1) − (+1)

∣∣2
+ · · · + ∣∣(+1) − (+1)

∣∣2] = 1.30 .

Because there are only

M = 2N = 216 = 65,536

possible, equally-likely arrangements in the reference set of all permutations of the
sign data listed in Table 5.13, an exact permutation analysis is feasible. Under the
Fisher–Pitman permutation model, the exact probability of an observed δ is the
proportion of δ test statistic values calculated on all possible arrangements of the
observed data that are equal to or less than the observed value of δ = 1.30. There are
exactly 1394 δ test statistic values that are equal to or less than the observed value of
δ = 1.30. If all M arrangements of the N = 16 signs listed in Table 5.13 occur with
equal chance under the Fisher–Pitman null hypothesis, the exact probability value
of δ = 1.30 computed on the M = 65,536 possible arrangements of the observed
signs with N = 16 observations preserved for each arrangement is

P(δ ≤ δo|H0) = number of δ values ≤ δo

M
= 1394

65,536
= 0.0213 ,

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the N = 16 signs listed in Table 5.13. Thus
the exact permutation probability of P = 0.0213 is identical to the exact binomial
probability of P = 0.0213.

Under the Neyman–Pearson null hypothesis, the relationships between test
statistics δ and S are given by

δ = 2S(N − S)

N(N − 1)(0.5)2
= 8S(N − S)

N(N − 1)
(5.21)

and

S = N

2
±

√
4N2 − 2δN(N − 1)

4
. (5.22)

Following Eq. (5.21), the observed value of test statistic δ with respect to the
observed value of test statistic S for the sign data listed in Table 5.13 is

δ = (8)(3)(16 − 3)

(16)(16 − 1)
= 312

240
= 1.30
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and following Eq. (5.22), the observed value of test statistic S with respect to the
observed value of test statistic δ is

S = 16

2
±

√
4(16)2 − 2(1.30)(16)(16 − 1)

4
= 16

2
±

√
400

4
= 8 ± 5 ,

where the two roots of the quadratic equation yield 8−5 = 3 and 8+5 = 13, which
are the values for S = 3 (−) signs and N −S = 16−3 = 13 (+) signs, respectively.

Because test statistics δ and S are equivalent under the Fisher–Pitman null
hypothesis, the exact probability value of S = 3 is identical to the probability value
of δ = 1.30; that is,

P(δ ≤ δo) = number of δ values ≤ δo

M
= 1394

65,536
= 0.0213

and

P(S ≥ So) = number of S values ≥ So

M
= 1394

65,536
= 0.0213 ,

where δo and So denote the observed values of δ and S, respectively, and M is
the number of possible, equally-likely arrangements of the N = 16 signs listed in
Table 5.13.

Following Eq. (5.6) on p. 111, the exact expected value of the M = 65,536 δ test
statistic values under the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 131,072

65,536
= 2.00

and following Eq. (5.5) on p. 111, the observed chance-corrected measure of effect
size is

� = 1 − δ

μδ

= 1 − 1.30

2.00
= +0.35 ,

indicating 35% within-group agreement above what is expected by chance. No
comparisons are made with Cohen’s d̂ or Pearson’s r2 measures of effect size for
one-sample tests as d̂ and r2 are undefined for simple sign data.

5.8.7 An Exact Analysis with v = 1

Consider an analysis of the sign data listed in Table 5.13 on p. 141 under the Fisher–
Pitman permutation model with v = 1, employing ordinary Euclidean differences
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between the paired signs. The observed value of the permutation test statistic is

δ =
(

N

2

)−1 N−1∑
i=1

N∑
j=i+1

∣∣xi − xj

∣∣v

= 2

(16)(16 − 1)

[∣∣(−1) − (+1)
∣∣1 + ∣∣(−1) − (+1)

∣∣1
+ · · · + ∣∣(+1) − (+1)

∣∣1] = 0.65 .

Because there are only

M = 2N = 216 = 65,536

possible, equally-likely arrangements in the reference set of all permutations of the
sign data listed in Table 5.13, an exact permutation analysis is possible. Under the
Fisher–Pitman permutation model, the exact probability of an observed δ is the
proportion of δ test statistic values calculated on all possible arrangements of the
observed data that are equal to or less than the observed value of δ = 0.65. There are
exactly 1394 δ test statistic values that are equal to or less than the observed value of
δ = 0.65. If all M arrangements of the N = 16 signs listed in Table 5.13 occur with
equal chance under the Fisher–Pitman null hypothesis, the exact probability value
of δ = 0.65 computed on the M = 65,536 possible arrangements of the observed
data with N = 16 observations preserved for each arrangement is

P(δ ≤ δo) = number of δ values ≤ δo

M
= 1394

65,536
= 0.0213 ,

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the sign data listed in Table 5.13.

Following Eq. (5.6) on p. 111, the exact expected value of the M = 65,536 δ test
statistic values under the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 65,536

65,536
= 1.00

and following Eq. (5.5) on p. 111, the observed chance-corrected measure of effect
size is

� = 1 − δ

μδ

= 1 − 0.65

1.00
= +0.35 ,

indicating 35% within-group agreement above what is expected by chance. No
comparisons are made with Cohen’s d̂ or Pearson’s r2 measures of effect size for
the sign test as d̂ and r2 are undefined for simple sign data.
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Because all the values for the sign test are either +1 or −1, the probability values
for v = 2 and v = 1 are identical; that is, P = 0.0213. Also, the permutation test
statistic value for v = 2 (δ = 1.30) is exactly twice the value for v = 1 (δ = 0.65)
and the exact expected value of test statistic δ for v = 2 (μδ = 2.00) is exactly
twice the value for v = 1 (μδ = 1.00). Consequently, the value for the measure of
effect size based v = 2 (� = +0.35) is identical to the value based on v = 1; that
is, � = +0.35.

5.9 Example 6: Multivariate Permutation Analyses

Permutation statistical methods applied to one-sample tests are not limited to
univariate data and can easily accommodate multivariate data. Tests for multivariate
data have found many applications in the biological and social sciences [27]. To
illustrate the analysis of multivariate data in a one-sample test, consider the example
data listed in Table 5.14 with r = 3 responses for each of N = 9 subjects. The
responses are percentiles on three socioeconomic variables: income, occupation, and
education. The advantage of a multivariate analysis is that the data are not reduced
to a simple index with a concomitant loss of information. The usual approach for
analyzing socioeconomic data is to average the income, occupation, and education
values into a simplifying index of socioeconomic status (SES).7 Thus a subject
who is high on income, in the middle on occupation, and low on education will
average about the same on SES as a subject who is low on income, in the middle
on occupation, and high on education, although the profiles of the two subjects may
differ greatly, as illustrated in Fig. 5.2.

A permutation test of multivariate one-sample data is easily defined [25, pp. 127–
131]. Let xik denote the observed sample values for i = 1, . . . , N subjects and
k = 1, . . . , r variates. The permutation test statistic is then given by

δ =
(

N

2

)−1 N−1∑
i=1

N∑
j=i+1

r∑
k=1

∣∣xik − xjk

∣∣v ,

where, typically, v = 2 or v = 1. For multivariate data, the exact expected value of
test statistic δ under the Fisher–Pitman null hypothesis is given by

μδ = 1

M

M∑
i=1

δi

7Oftentimes a weighted average is used, providing different weights for the three variables: income,
occupation, and education.
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Table 5.14 Example
multivariate data on N = 9
subjects with percentile
scores on socioeconomic
variables: income (I),
occupation (O), education
(E), and socioeconomic
Status (SES)

Subject I O E SES

1 80 92 98 90

2 78 81 98 86

3 76 80 96 84

4 76 78 90 81

5 72 65 90 76

6 70 66 90 75

7 68 62 60 63

8 68 70 52 63

9 66 75 52 64

Fig. 5.2 Graphic comparing
two individuals (A and B)
scoring high, medium, low
and low, medium, high,
respectively, on income (I),
occupation (O), and
education (E)

I O E

A B

Low

Medium

High

and the chance-corrected measure of effect size is given by

� = 1 − δ

μδ

.

5.9.1 An Exact Analysis with v = 2

Consider the socioeconomic data listed in Table 5.14 under the Fisher–Pitman
permutation model with v = 2, employing squared Euclidean scaling. The observed
value of the permutation test statistic is

δ =
(

N

2

)−1 N−1∑
i=1

N∑
j=i+1

r∑
k=1

∣∣xik − xjk

∣∣v

= 2

9(9 − 1)

[∣∣80 − 78
∣∣2 + ∣∣92 − 81

∣∣2 + ∣∣98 − 98
∣∣2

+ · · · + ∣∣68 − 66
∣∣2 + ∣∣70 − 75

∣∣2 + ∣∣52 − 52
∣∣2] = 1024.50 .
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Since there are only

M = 2N = 29 = 256

possible, equally-likely arrangements in the reference set of all permutations of
the multivariate socioeconomic data listed in Table 5.14, an exact analysis is
possible.8 The exact probability of an observed δ is the proportion of δ test statistic
values calculated on all possible arrangements of the observed data that are equal to
or less than the observed value of δ = 1024.50. There is only one δ test statistic
value that is equal to or less than the observed value of δ = 1024.50. If all
arrangements of the N = 9 values listed in Table 5.14 occur with equal chance under
the Fisher–Pitman null hypothesis, the exact probability value of δo = 1024.50
based on all M = 256 arrangements of the observed data is

P(δ ≤ δo|H0) = number of δ values ≤ δo

M
= 1

256
= 0.3906×10−2 ,

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the socioeconomic data listed in Table 5.14.

The exact expected value of test statistic δ under the Fisher–Pitman null
hypothesis is

μδ = 1

M

M∑
i=1

δi = 2,339,914.7520

256
= 9,140.2920

and the observed chance-corrected measure of effect size is

� = 1 − δ

μδ

= 1 − 1024.50

9,140.2920
= +0.8879 ,

indicating approximately 89% agreement among the N = 9 subjects above what
is expected by chance. No comparisons are made with Cohen’s d̂ or Pearson’s r2

measures of effect size as d̂ and r2 are undefined for multivariate data.

5.9.2 An Exact Analysis with v = 1

Permutation multivariate statistical methods are not confined to analyses with
squared Euclidean differences; that is, v = 2. For the socioeconomic data listed
in Table 5.14 with v = 1, employing ordinary Euclidean scaling, the observed value

8Note that the number of variates is not a factor in determining the number of possible
arrangements of the observed data.
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of the permutation test statistic is

δ =
(

N

2

)−1 N−1∑
i=1

N∑
j=i+1

r∑
k=1

∣∣xik − xjk

∣∣v

= 2

9(9 − 1)

[∣∣80 − 78
∣∣1 + ∣∣92 − 81

∣∣1 + ∣∣98 − 98
∣∣1

+ · · · + ∣∣68 − 66
∣∣1 + ∣∣70 − 75

∣∣1 + ∣∣52 − 52
∣∣1] = 39.2222 .

Since there are only

M = 2N = 29 = 256

possible, equally-likely arrangements in the reference set of all permutations of the
multivariate socioeconomic data listed in Table 5.14, an exact analysis is possible.
Under the Fisher–Pitman permutation model, the exact probability of an observed δ

is the proportion of δ test statistic values calculated on all possible arrangements of
the observed data that are equal to or less than the observed value of δ = 39.2222.
There is only one δ test statistic value that is equal to or less than the observed value
of δ = 39.2222. If all arrangements of the N = 9 values listed in Table 5.14 occur
with equal chance under the Fisher–Pitman null hypothesis, the exact probability
value of δ = 39.2222 based on all M = 256 arrangements of the observed data is

P(δ ≤ δo|H0) = number of δ values ≤ δo

M
= 1

256
= 0.3906×10−2 ,

where δo denotes the observed value of δ and M is the number of possible, equally-
likely arrangements of the multivariate socioeconomic data listed in Table 5.14.

The exact expected value of test statistic δ under the Fisher–Pitman null
hypothesis is

μδ = 1

M

M∑
i=1

δi = 18,714.5472

256
= 73.1037 ,

and the observed chance-corrected measure of effect size is

� = 1 − δ

μδ

= 1 − 39.2222

73.1037
= +0.4635 ,

indicating approximately 46% agreement among the N = 9 subjects above what
is expected by chance. No comparisons are made with Cohen’s d̂ or Pearson’s r2

measures of effect size as d̂ and r2 are undefined for multivariate data.
Because the values for income, occupation, and education in Table 5.14 are all

positive, the probability values with v = 2 and v = 1 are identical under the Fisher–
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Pitman null hypothesis. This is always true for one-sample tests: the probability
values with either v = 2 and v = 1 are always the same whenever all the observed
values are either positive or negative. In addition, extreme values do not affect the
probability values under these conditions.

5.10 Summary

Under the Neyman–Pearson population model of statistical inference, this chapter
examined one-sample tests where the null hypothesis typically posits a specified
value other than zero for the population mean. The conventional one-sample test
and two measures of effect size under the population model were described and
illustrated: Student’s one-sample t test and Cohen’s d̂ and Pearson’s r2 measures of
effect size, respectively.

Under the Fisher–Pitman permutation model, test statistic δ and associated
measure of effect size, �, were introduced and illustrated for one-sample tests.
Test statistic δ was shown to have more flexibility than Student’s t test statistic,
incorporating either ordinary or squared Euclidean scaling with v = 1 and v = 2,
respectively. Mielke and Berry’s chance-corrected effect size measure � was shown
to be applicable to either v = 1 or v = 2 without modification and to have a more
meaningful chance-corrected interpretation than either Cohen’s d̂ or Pearson’s r2

measures of effect size.
Six examples illustrated applications of test statistics δ and �. In the first

example, a small sample of N = 4 values was utilized to describe and simplify the
calculation of δ and �. The second example used a small sample of N = 4 values to
develop a permutation-based measure of effect size, �, and related the permutation
measure to various conventional measures of effect size; specifically, Cohen’s d̂

and Pearson’s r2. The third example with N = 12 values illustrated the effects of
extreme values on various combinations of plus-and-minus values with both v = 2
and v = 1. The fourth example with N = 28 values compared exact and Monte
Carlo probability procedures, showcasing the efficiency of Monte Carlo permutation
methods. The fifth example with N = 18 values applied permutation statistical
methods to univariate rank-score data, comparing permutation statistical methods
to Wilcoxon’s conventional signed-ranks test and the sign test. Finally, in the sixth
example both δ and � were extended to multivariate data with N = 9 subjects and
r = 3 variates—something for which Student’s t , Cohen’s d̂ , and Pearson’s r2 are
not suited. The Fisher–Pitman permutation model with test statistic δ and measure
of effect size � are not confined to one-sample tests and play important roles in the
subsequent chapters.

Chapter 6 continues the presentation of permutation statistical methods, but
examines research designs in which two independent samples are compared and
contrasted. Because two-sample tests for differences constitute the classic control-
treatment experimental design, two-sample tests are found in a wide variety of
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research areas. Two-sample tests are the simplest of the tests in a large class of
completely-randomized tests of differences.
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Chapter 6
Two-Sample Tests

Abstract This chapter introduces permutation methods for two-sample tests.
Included in this chapter are six example analyses illustrating computation of exact
permutation probability values for two-sample tests, calculation of measures of
effect size for two-sample tests, the effect of extreme values on conventional and
permutation two-sample tests, exact and Monte Carlo permutation procedures for
two-sample tests, application of permutation methods to two-sample rank-score
data, and analysis of two-sample multivariate data. Included in this chapter are
permutation versions of Student’s two-sample t test, the Wilcoxon–Mann–Whitney
two-sample rank-sum test, Hotelling’s multivariate T 2 test for two independent
samples, and a permutation-based alternative for the four conventional measures of
effect size for two-sample tests: Cohen’s d̂ , Pearson’s r2, Kelley’s ε2, and Hays’ ω̂2.

This chapter presents exact and Monte Carlo permutation statistical methods for
two-sample tests. Two-sample tests for experimental differences are of primary
importance in basic research, whether that be in the behavioral, medical, biological,
agricultural, or physical sciences. Statistical tests for differences between two
samples are of two varieties. The first of the two varieties examines two sets of
data obtained from two completely separate (independent) samples of subjects. For
example, a study might seek to compare grades in an elementary statistics course
for majors and non-majors, for female and male students, for transfer and non-
transfer students, or for juniors and seniors. In a true experimental design with two
independent samples a large pool of subjects is randomly assigned (randomized) to
the treatments using a fair coin or a pseudo-random number generator.1 More often
than not, however, it is not possible to randomize subjects to treatments, especially in
survey research. For example, it is not possible to randomly assign subjects to such

1For two treatments a fair coin works quite well with heads and tails. For three treatments, a fair
die is often used with faces with one or two pips assigned to the first treatment, faces with 3 or 4
pips assigned to the second treatment, and faces with 5 or 6 pips assigned to the third treatment.
For four treatments, a shuffled deck of cards works well with clubs (♣), diamonds (♦), hearts (♥),
and spades (♠) assigned to Treatments 1, 2, 3, and 4, respectively.
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categories as gender, age, IQ, or educational level. The lack of random assignment
to treatments can greatly compromise the results of two-sample tests.

The second variety of two-sample tests examines two sets of data obtained
on the same or matched subjects. For example, a study might compare the same
subjects at two different time periods, such as before and after an intervention,
or matched subjects on two different diets: low- and high-carbohydrate. When
compared with tests for two independent samples, matched-pairs tests generally
have less variability between the two samples, provide more power with the same
number of subjects, and because the sample sizes are the same for both treatments,
matched-pairs tests produce larger test statistic values and smaller probability values
than comparable tests for two independent samples, other factors being equal. Two-
sample tests for independent samples are presented in this chapter. Matched-pairs
tests for two related samples are presented in Chap. 7.2

6.1 Introduction

In this chapter permutation statistical methods for two-sample tests are illustrated
with six example analyses. The first example utilizes a small set of data to illustrate
the computation of exact permutation methods for two independent samples,
wherein the permutation test statistic, δ, is developed and compared with Student’s
conventional t test for two independent samples. The second example develops a
permutation-based measure of effect size as a chance-corrected alternative to the
four conventional measures of effect size for two-sample tests: Cohen’s d̂ , Pearson’s
r2, Kelley’s ε2, and Hays’ ω̂2. The third example compares permutation methods
based on ordinary and squared Euclidean scaling functions, emphasizing methods of
analysis for data sets containing extreme values. The fourth example compares and
contrasts exact and Monte Carlo permutation methods, demonstrating the accuracy
and efficiency of Monte Carlo statistical methods. The fifth example illustrates
the application of permutation statistical methods to univariate rank-score data,
comparing permutation statistical methods with the conventional Wilcoxon–Mann–
Whitney two-sample rank-sum test. The sixth example illustrates the application
of permutation statistical methods to multivariate data, comparing permutation
statistical methods with the conventional Hotelling’s multivariate T 2 test for two
independent samples.

One of the most familiar and popular two-sample tests looks at the mean
difference between two independent treatment groups. This is the classic test for
a difference between a control group and an experimental group. For example, a
researcher might want to compare the number of trials on a specified task for two
groups of rats—one raised under normal conditions and the other raised in semi-

2In some disciplines tests on two independent samples are known as between-subjects tests and
tests for two dependent or related samples are known as within-subjects tests.
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darkness. Or it might be of interest to examine the differences in performance
between two groups of students—one in a section of a course taught in a face-to-
face lecture format and the other in a section of the same course taught in an on-line
distance-learning format by the same instructor.

The most popular univariate test for two independent samples under the
Neyman–Pearson population model of inference is Student’s two-sample t test
wherein the null hypothesis (H0) posits no mean difference between the two
populations from which the samples are presumed to have been drawn; for example,
H0: μ1 = μ2. Alternatively, H0: μ1 − μ2 = 0. The test does not determine
whether the null hypothesis is true, but only provides the probability that, if the null
hypothesis is true, the samples have been drawn from the specified population(s).
Student’s t test is the standard test for a mean difference between two independent
samples and is taught in every introductory course.

6.1.1 The Student Two-Sample t Test

Consider two independent samples of sizes n1 and n2. Under the Neyman–Pearson
null hypothesis, H0: μ1 = μ2, Student’s t test for two independent samples is given
by

t = x̄1 − x̄2[
s2
p

(
1

n1
+ 1

n2

)]1/2 ,

where the unbiased pooled estimate of the population variance is given by

s2
p = (n1 − 1)s2

1 + (n2 − 1)s2
2

N − 2
,

the sample estimate of the population variance for the ith treatment group is given
by

s2
i = 1

ni − 1

ni∑
j=1

(
xij − x̄i

)2
, i = 1, 2 ,

ni denotes the number of objects in the ith of the two treatment groups,

N =
2∑

i=1

ni
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denotes the total number of objects in the two treatment groups, x̄i denotes the
arithmetic mean of the measurement scores for the ith of the two treatment groups,
given by

x̄i = 1

ni

ni∑
j=1

xij , i = 1, 2 ,

and xij is a measurement score for the j th object in the ith treatment group.
Assuming independence, normality, and homogeneity of variance, test statistic t is
asymptotically distributed as Student’s t under the Neyman–Pearson null hypothesis
with N − 2 degrees of freedom. The permissible probability of a type I error is
denoted by α and if the observed value of t is more extreme than the critical values
of ±t that define α, the null hypothesis is rejected with a probability of type I error
equal to or less than α, under the assumptions of normality and homogeneity.

The assumptions underlying Student’s t test for two independent samples are
(1) the observations are independent, (2) the data are random samples from a well-
defined population, (3) homogeneity of variance, that is σ 2

1 = σ 2
2 , and (4) the target

variable is normally distributed in the population. It should be noted that a number
of textbooks have argued that what is important is that the sampling distribution
of sample mean differences be normally distributed and not the target variable
in the population. However, Student drew his random samples from populations
of two sets of measurements on criminal anthropometry that had been published
by William Robert Macdonell in Biometrika in 1902 [8]. Student’s data consisted
of two measurements obtained by Macdonell that were approximately normally
distributed: (1) the height and (2) the length of the left middle finger of 3000
criminals over 20 years of age and serving sentences in the chief prisons of England
and Wales. Moreover, Student proved in Sect. 2 of his 1908 paper that the mean and
variance are independent and the normal distribution is the only distribution where
this is always true, as noted by George Barnard [1, p. 169].3

6.2 A Permutation Approach

Now consider a test for two independent samples under the Fisher–Pitman per-
mutation model of statistical inference. For the permutation model there is no
null hypothesis specifying population parameters. Instead the null hypothesis is
simply that all possible arrangements of the observed differences occur with equal
chance [4]. Also, there is no alternative hypothesis under the permutation model
and no specified α level. Moreover, there is no requirement of random sampling,
no assumption of normality, and no assumption of homogeneity of variance. This is

3Also see a discussion by S.M. Stigler in The Seven Pillars of Statistical Wisdom [14, pp. 91–92].
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not to say that the permutation model is unaffected by homogeneity of variance, but
it is not a requirement as it is for Student’s t test. Under the Neyman–Pearson null
hypothesis, if the assumption of homogeneity is not met, t is no longer distributed
as Student’s t with N − 2 degrees of freedom.

A permutation alternative to the conventional test for two independent samples is
easily defined. The permutation test statistic for two independent samples is given
by

δ =
2∑

i=1

Ciξi , (6.1)

where Ci > 0 is a positive treatment-group weight for i = 1, 2,

ξi =
(

ni

2

)−1 N−1∑
j=1

N∑
k=j+1

�(j, k)�i(ωj )�i(ωk) (6.2)

is the average distance-function value for all distinct pairs of objects in treatment
group Si for i = 1, 2,

�(j, k) = ∣∣xj − xk

∣∣v ,

is a symmetric distance-function value for paired objects j and k,

N =
2∑

i=1

ni ,

and �(·) is an indicator function given by

�i(ωj ) =
⎧⎨
⎩

1 if ωj ∈ Si ,

0 otherwise .

Under the Fisher–Pitman permutation model, the null hypothesis simply states
that equal probabilities are assigned to each of the

M = (n1 + n2)!
n1! n2! (6.3)

possible, equally-likely allocations of the N objects to the two treatment groups,
S1 and S2. As noted in Chap. 5, it is imperative that the M possible arrangements
of the observed data be generated systematically as expressed in Eq. (6.3), while
preserving n1 and n2 for each arrangement. Only a systematic procedure guarantees
M equally-likely arrangements. Simply shuffling values among the two treatment
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groups does not ensure the M possible, equally-likely arrangements mandated by
the Fisher–Pitman permutation null hypothesis: all possible arrangements of the
observed data occur with equal chance [4].

Under the Fisher–Pitman permutation model, the probability value associated
with an observed value of δ, say δo, is the probability under the null hypothesis of
observing a value of δ as extreme or more extreme than δo. Thus an exact probability
value for δo may be expressed as

P
(
δ ≤ δo|H0

) = number of δ values ≤ δo

M
. (6.4)

When M is large, an approximate probability value for δ may be obtained from
a Monte Carlo procedure, where

P
(
δ ≤ δo|H0

) = number of δ values ≤ δo

L

and L denotes the number of randomly-sampled test statistic values. Typically, L is
set to a large number to ensure accuracy; for example, L = 1,000,000 [6]. While
L = 1,000,000 random arrangements does not guarantee that no two arrangements
will be identical, the cycle lengths of modern pseudo-random number generators
(PRNG) are sufficiently long that identical arrangements are either avoided or occur
so rarely as to be inconsequential. For example, some pseudo-random generators
utilize the expanded value of π where the cycle length is so long that it has yet to be
determined. Older pseudo-random number generators had a cycle length of only

232 − 1 = 4,294,967,295 .

The Mersenne twister is the current choice for a pseudo-random number gener-
ator and is by far the most widely-used general-purpose pseudo-random number
generator, having been incorporated into a large number of computer statistical
packages, including Microsoft Excel, GAUSS, GLib, Maple, MATLAB, Python,
Stata, and the popular R statistical computing language. The cycle length for the
Mersenne Twister is 219937 − 1, which is a very large number.

6.2.1 The Relationship Between Statistics t and δ

When the null hypothesis states H0: μ1 = μ2, v = 2, and the treatment-group
weights are given by

C1 = n1 − 1

N − 2
and C2 = n2 − 1

N − 2
,
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the functional relationships between test statistic δ and Student’s t test statistic are
given by

δ = 2SSTotal

t2 + N − 2
and t =

[
2SSTotal

δ
− N + 2

]1/2

, (6.5)

where

SSTotal =
N∑

i=1

x2
i −

(
N∑

i=1

xi

)2/
N

and xi denotes a measurement score for the ith of N objects.
Because of the relationship between test statistic δ and Student’s t test statistic,

the exact probability values given by

P
(
δ ≤ δo

) = number of δ values ≤ δo

M

and

P
(|t| ≥ |to|

) = number of |t| values ≥ |to|
M

are equivalent under the Fisher–Pitman null hypothesis, where δo and to denote
the observed test statistic values of δ and t , respectively, and M is the number of
possible, equally-likely arrangements of the observed data.

Also, given v = 2 and treatment-group weights

C1 = n1 − 1

N − 2
and C2 = n2 − 1

N − 2
,

the two average distance-function values are related to the sample estimates of the
population variance by

ξ1 = 2s2
1 and ξ2 = 2s2

2 ,

test statistic δ is related to the pooled estimate of the population variance by

δ = 2s2
p ,

and the exact expected value of the M δ test statistic values is related to SSTotal by

μδ = 2SSTotal

N − 1
.
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A chance-corrected measure of agreement among response measurement scores
is given by

� = 1 − δ

μδ

, (6.6)

where μδ is the arithmetic average of the M δ test statistic values calculated on all
possible arrangements of the observed response measurement scores given by

μδ = 1

M

M∑
i=1

δi . (6.7)

6.3 Example 1: Test Statistics t and δ

A small example will serve to illustrate the relationship between test statistics t and
δ. Consider a small set of data with n1 = 3 female children in Group 1 and n2 = 4
male children in Group 2, as given in Table 6.1, where the values indicate the ages
of the children. Under the Neyman–Pearson population model with null hypothesis
H0: μ1 = μ2, n1 = 3, n2 = 4, N = n1 + n2 = 3 + 4 = 7, x̄1 = 2.3333, x̄2 =
5.25, s2

1 = 2.3333, s2
2 = 2.9167, the unbiased pooled estimate of the population

variance is

s2
p = (n1 − 1)s2

1 + (n2 − 1)s2
2

N − 2

= (3 − 1)(2.3333) + (4 − 1)(2.9167)

7 − 2
= 2.6833 ,

and the observed value of Student’s t test statistic is

t = x̄1 − x̄2[
s2
p

(
1

n1
+ 1

n2

)]1/2 = 2.3333 − 5.25[
2.6833

(
1

3
+ 1

4

)]1/2 = −2.3313 .

Table 6.1 Example data for
a test of two independent
samples with N = 7 subjects

Group 1 Group 2

Females Age Males Age

1 1 4 3

2 2 5 5

3 4 6 6

7 7
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Under the Neyman–Pearson null hypothesis, H0: μ1 = μ2, test statistic t is
asymptotically distributed as Student’s t with N − 2 degrees of freedom. With N −
2 = 7 − 2 = 5 degrees of freedom, the asymptotic two-tail probability value of
t = −2.3313 is P = 0.0671, under the assumptions of normality and homogeneity.

6.3.1 A Permutation Approach

Under the Fisher–Pitman permutation model, employing squared Euclidean scaling
with v = 2 and treatment-group weights

C1 = n1 − 1

N − 2
and C2 = n2 − 1

N − 2

for correspondence with Student’s two-sample t test, the three symmetric distance-
function values for Group 1 are

�1,2 = |1 − 2|2 = 1 , �1,3 = |1 − 4|2 = 9 , �2,3 = |2 − 4|2 = 4 ,

and the average distance-function value for Group 1 is

ξ1 =
(

n1

2

)−1(
�1,2 + �1,3 + �2,3

) =
(

3

2

)−1(
1 + 9 + 4

) = 4.6667 .

For Group 2 the six symmetric distance-function values are

�4,5 = |3 − 5|2 = 4 , �4,6 = |3 − 6|2 = 9 , �4,7 = |3 − 7|2 = 16 ,

�5,6 = |5 − 6|2 = 1 , �5,7 = |5 − 7|2 = 4 , �6,7 = |6 − 7|2 = 1 ,

and the average distance-function value for Group 2 is

ξ2 =
(

n2

2

)−1(
�4,5 + �4,6 + �4,7 + �5,6 + �5,7 + �6,7

)

=
(

4

2

)−1(
4 + 9 + 16 + 1 + 4 + 1

) = 5.8333 .

Then the observed permutation test statistic for the age data listed in Table 6.1 is

δ = C1ξ1 + C2ξ2 =
(

3 − 1

7 − 2

)
(4.6667) +

(
4 − 1

7 − 2

)
(5.8333) = 5.3667 .
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For the example data given in Table 6.1, the sum of the N = 7 observations is

N∑
i=1

xi = 1 + 2 + 4 + 3 + 5 + 6 + 7 = 28 ,

the sum of the N = 7 squared observations is

N∑
i=1

x2
i = 12 + 22 + 42 + 32 + 52 + 62 + 72 = 140 ,

and the total sum-of-squares is

SSTotal =
N∑

i=1

x2
i −

(
N∑

i=1

xi

)2/
N = 140 − (28)2/7 = 28.00 .

Then based on the expressions given in Eq. (6.5) on p. 159, the observed value for
test statistic δ with respect to the observed value of Student’s t statistic is

δ = 2SSTotal

t2 + N − 2
= 2(28.00)

(−2.3313)2 + 7 − 2
= 5.3667

and the observed value for Student’s t test statistic with respect to the observed value
of test statistic δ is

t =
(

2SSTotal

δ
− N + 2

)1/2

=
[

2(28.00)

5.3667
− 7 + 2

]1/2

= ±2.3313 .

Under the Fisher–Pitman permutation model there are exactly

M = (n1 + n2)!
n1! n2! = (3 + 4)!

3! 4! = 35

possible, equally-likely arrangements in the reference set of all permutations of the
age data listed in Table 6.1 on p. 160. Since M = 35 is a relatively small number, it is
possible to list the M = 35 arrangements in Table 6.2, along with the corresponding
values for ξ1, ξ2, δ, and |t|, ordered by δ values from low (δ1 = 2.8000) to high
(δ35 = 11.2000) and by |t| values from high (t1 = 3.8730) to low (t35 = 0.0000).

Under the Fisher–Pitman permutation model, the exact probability of an
observed δ is the proportion of δ test statistic values computed on all possible,
equally-likely arrangements of the observed data that are equal to or less than the
observed value of δ = 5.3667. The observed permutation test statistic, δ = 5.3667,
obtained for the realized arrangement is unusual since 31 of the 35 δ test statistic
values exceed the observed value and only four of the δ test statistic values are
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Table 6.2 Arrangements of the observed data listed in Table 6.1 with corresponding ξ1, ξ2, δ, and
|t | values

Number Arrangement ξ1 ξ2 δ |t |
1∗ 1, 2, 3 4, 5, 6, 7 2.0000 3.3333 2.8000 3.8730

2∗ 5, 6, 7 1, 2, 3, 4 2.0000 3.3333 2.8000 3.8730

3∗ 1, 2, 4 3, 5, 6, 7 4.6667 5.8333 5.3667 2.3313

4∗ 4, 6, 7 1, 2, 3, 5 4.6667 5.8333 5.3667 2.3313

5 1, 2, 5 3, 4, 6, 7 8.6667 6.6667 7.4667 1.5811

6 1, 3, 4 2, 5, 6, 7 4.6667 9.3333 7.4667 1.5811

7 4, 5, 7 1, 2, 3, 6 4.6667 9.3333 7.4667 1.5811

8 3, 6, 7 1, 2, 4, 5 8.6667 6.6666 7.4667 1.5811

9 1, 2, 6 3, 4, 5, 7 14.0000 5.8333 9.1000 1.0742

10 1, 3, 5 2, 4, 6, 7 8.0000 9.8333 9.1000 1.0742

11 2, 3, 4 1, 5, 6, 7 2.0000 13.8333 9.1000 1.0742

12 2, 6, 7 1, 3, 4, 5 14.0000 5.8333 9.1000 1.0742

13 3, 5, 7 1, 2, 4, 6 8.0000 9.8333 9.1000 1.0742

14 4, 5, 6 1, 2, 3, 7 2.0000 13.8333 9.1000 1.0742

15 1, 2, 7 3, 4, 5, 6 20.6667 3.3333 10.2667 0.6742

16 1, 3, 6 2, 4, 5, 7 12.6667 8.6667 10.2667 0.6742

17 1, 4, 5 2, 3, 6, 7 8.6667 11.3333 10.2667 0.6742

18 1, 6, 7 2, 3, 4, 5 20.6667 3.3333 10.2667 0.6742

19 2, 3, 5 1, 4, 6, 7 4.6667 14.0000 10.2667 0.6742

20 2, 5, 7 1, 3, 4, 6 12.6667 8.6667 10.2667 0.6742

21 3, 4, 7 1, 2, 5, 6 8.6667 11.3333 10.2667 0.6742

22 3, 5, 6 1, 2, 4, 7 4.6667 14.0000 10.2667 0.6742

23 3, 4, 6 1, 2, 5, 7 4.6667 15.1667 10.9667 0.3262

24 1, 3, 7 2, 4, 5, 6 18.6667 5.8333 10.9667 0.3262

25 1, 4, 6 2, 3, 5, 7 12.6667 9.8333 10.9667 0.3262

26 1, 5, 7 2, 3, 4, 6 18.6667 5.8333 10.9667 0.3262

27 2, 3, 6 1, 4, 5, 7 8.6667 12.5000 10.9667 0.3262

28 2, 4, 5 1, 3, 6, 7 4.6667 15.1667 10.9667 0.3262

29 2, 4, 7 1, 3, 5, 6 12.6667 9.8333 10.9667 0.3262

30 2, 5, 6 1, 3, 4, 7 8.6667 12.5000 10.9667 0.3262

31 1, 4, 7 2, 3, 5, 6 18.0000 6.6667 11.2000 0.0000

32 1, 5, 6 2, 3, 4, 7 14.0000 9.3333 11.2000 0.0000

33 2, 3, 7 1, 4, 5, 6 14.0000 9.3333 11.2000 0.0000

34 2, 4, 6 1, 3, 5, 7 8.0000 13.3333 11.2000 0.0000

35 3, 4, 5 1, 2, 6, 7 2.0000 17.3333 11.2000 0.0000

Sum 326.6667

equal to or less than the observed value. The rows containing the lowest four δ test
statistic values are indicated with asterisks in Table 6.2. If all M arrangements of
the observed data occur with equal chance under the Fisher–Pitman null hypothesis,
the exact probability value of δ = 5.3667 computed on the M = 35 possible
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arrangements of the observed data with n1 = 3 and n2 = 4 preserved for each
arrangement is

P
(
δ ≤ δo

) = number of δ values ≤ δo

M
= 4

35
= 0.1143 ,

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the N = 7 observations listed in Table 6.1.

Alternatively, there are only four |t| test statistic values that are larger than the
observed value of |t| = 2.3313. The rows containing the highest four |t| values are
indicated with asterisks in Table 6.2. Thus if all M arrangements of the observed
data occur with equal chance, the exact probability value of |t| = 2.3313 under the
Fisher–Pitman null hypothesis is

P
(|t| ≥ |to|

) = number of |t| values ≥ |to|
M

= 4

35
= 0.1143 ,

where to denotes the observed value of test statistic t . There is a considerable
difference between the asymptotic probability value of P = 0.0671 and the exact
probability value of P = 0.1143; that is,

�P = 0.1143 − 0.0671 = 0.0472 .

A continuous mathematical function such as Student’s t cannot be expected to
provide a precise fit to only n1 = 3 and n2 = 4 observed values.

For the example data listed in Table 6.1 on p. 160, the exact expected value of
test statistic δ under the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 326.6667

35
= 9.3333 .

Alternatively, under an analysis of variance model the exact expected value of test
statistic δ is

μδ = 2SSTotal

N − 1
= 2(28.00)

7 − 1
= 9.3333 ,

where the sum of the N = 7 observations listed in Table 6.1 is

N∑
i=1

xi = 1 + 2 + 4 + 3 + 5 + 6 + 7 = 28 ,
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the sum of the N = 7 squared observations is

N∑
i=1

x2
i = 12 + 22 + 42 + 32 + 52 + 62 + 72 = 140 ,

and the total sum-of-squares is

SSTotal =
N∑

i=1

x2
i −

(
N∑

i=1

xi

)2/
N = 140 − (28)2/7 = 28.00 .

Then the observed chance-corrected measure of effect size is

� = 1 − δ

μδ

= 1 − 5.3667

9.3333
= +0.4250 ,

indicating approximately 42% within-group agreement above what is expected by
chance.

6.4 Example 2: Measures of Effect Size

Measures of effect size express the practical or clinical significance of a difference
between independent sample means, as contrasted with the statistical significance
of a difference. Five measures of effect size are commonly used for determining the
magnitude of treatment effects in conventional tests for two independent samples:
Cohen’s d̂ measure of effect size given by

d̂ = |x̄1 − x̄2|√
s2
p

,

Pearson’s r2 measure of effect size given by

r2 = t2

t2 + N − 2
,

Kelley’s ε2 measure of effect size given by

ε2 = t2 − 1

t2 + N − 2
,
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Hays’ ω̂2 measure of effect size given by

ω̂2 = t2 − 1

t2 + N − 1
,

and Mielke and Berry’s � measure of effect size given by

� = 1 − δ

μδ

,

where the permutation test statistic δ is defined in Eq. (6.1) on p. 157 and μδ is
the exact expected value of test statistic δ under the Fisher–Pitman null hypothesis
given by

μδ = 1

M

M∑
i=1

δi ,

where for a test of two independent samples, the number of possible arrangements
of the observed data is given by

M = (n1 + n2)!
n1! n2! .

For the age data given in Table 6.1 on p. 160 for N = 7 subjects, Student’s test
statistic is t = −2.3313, Cohen’s d̂ measure of effect size is

d̂ = |x̄1 − x̄2|√
s2
p

= |2.3333 − 5.25|√
2.6833

= 1.7805 ,

indicating a strong effect size (d̂ ≥ 0.80); Pearson’s r2 measure of effect size is

r2 = t2

t2 + N − 2
= (−2.3313)2

(−2.3313)2 + 7 − 2
= 0.5208 ,

also indicating a strong effect size (r2 ≥ 0.25); Kelley’s ε2 measure of effect size is

ε2 = t2

t2 + N − 2
= (−2.3313)2 − 1

(−2.3313)2 + 7 − 2
= 0.4250 ;

Hays’ ω̂2 measure of effect size is

ω̂2 = t2 − 1

t2 + N − 1
= (−2.3313)2 − 1

(−2.3313)2 + 7 − 1
= 0.3878 ;
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and Mielke and Berry’s � measure of effect size is

� = 1 − δ

μδ

= 1 − 5.3667

9.3333
= +0.4250 ,

where δ is defined in Eq. (6.1) on p. 157, μδ is the exact expected value of δ under
the Fisher–Pitman null hypothesis given by

μδ = 1

M

M∑
i=1

δi = 326.6667

35
= 9.3333 ,

and the sum of the M = 35 δ test statistic values,

M∑
i=1

δi = 326.6667 ,

is calculated in Table 6.2 on p. 163.
It is readily apparent that for a test of two independent samples, the five measures

of effect size, d̂ , r2, ε2, ω̂2, and � provide similar results when v = 2,

C1 = n1 − 1

N − 2
, and C2 = n2 − 1

N − 2
,

and are directly related to each other and to Student’s t test statistic for two
independent samples. It can easily be shown that Kelley’s ε2 and Mielke and Berry’s
� are identical measures of effect size for two independent samples under the
Neyman–Pearson population model; that is,

ε2 = � = t2 − 1

t2 + N − 2
= (−2.3313)2 − 1

(−2.3313)2 + 7 − 2
= +0.4250 .

6.4.1 Efficient Calculation of μδ

Although the exact expected value of test statistic δ is defined as

μδ = 1

M

M∑
i=1

δi , (6.8)

there is a more efficient way to calculate the expected value of δ than utilizing the
expression given in Eq. (6.8) [11]. Because permutation methods are by their very
nature computationally intensive methods, efficient calculation of the permutation
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test statistic δ and the exact expected value of δ is imperative. Define

μδ = (N − 2)!
N !

N∑
i=1

N∑
j=1

�(i, j) , (6.9)

where the symmetric distance function between paired objects i and j is given by
�(i, j) = |xi − xj |v .

Table 6.3 illustrates the calculation of μδ for the example data listed in Table 6.1
with v = 2. Given the double sum,

N∑
i=1

N∑
j=1

�(i, j) = 392

Table 6.3 Example data for a test of two independent samples with N = 7 subjects and N2 =
72 = 49 possible values

Index �(i, j) Index �(i, j)

1 �(1, 1) = |1 − 1|2 = 0 26 �(4, 5) = |4 − 5|2 = 1

2 �(1, 2) = |1 − 2|2 = 1 27 �(4, 6) = |4 − 6|2 = 4

3 �(1, 3) = |1 − 3|2 = 9 28 �(4, 7) = |4 − 7|2 = 9

4 �(1, 4) = |1 − 3|2 = 4 29 �(5, 1) = |5 − 1|2 = 16

5 �(1, 5) = |1 − 5|2 = 16 30 �(5, 2) = |5 − 2|2 = 9

6 �(1, 6) = |1 − 6|2 = 25 31 �(5, 3) = |5 − 4|2 = 1

7 �(1, 7) = |1 − 7|2 = 36 32 �(5, 4) = |5 − 3|2 = 4

8 �(2, 1) = |2 − 1|2 = 1 33 �(5, 5) = |5 − 5|2 = 0

9 �(2, 2) = |2 − 2|2 = 0 34 �(5, 6) = |5 − 6|2 = 1

10 �(2, 3) = |2 − 4|2 = 4 35 �(5, 7) = |5 − 7|2 = 4

11 �(2, 4) = |2 − 3|2 = 1 36 �(6, 1) = |6 − 1|2 = 25

12 �(2, 5) = |2 − 5|2 = 9 37 �(6, 2) = |6 − 2|2 = 16

13 �(2, 6) = |2 − 6|2 = 16 38 �(6, 3) = |6 − 4|2 = 4

14 �(2, 7) = |1 − 2|2 = 25 39 �(6, 4) = |6 − 3|2 = 9

15 �(3, 1) = |3 − 1|2 = 4 40 �(6, 5) = |6 − 5|2 = 1

16 �(3, 2) = |3 − 2|2 = 1 41 �(6, 6) = |6 − 6|2 = 0

17 �(3, 3) = |3 − 4|2 = 1 42 �(6, 7) = |6 − 7|2 = 1

18 �(3, 4) = |3 − 3|2 = 0 43 �(7, 1) = |7 − 1|2 = 36

19 �(3, 5) = |3 − 5|2 = 4 44 �(7, 2) = |7 − 2|2 = 25

20 �(3, 6) = |3 − 6|2 = 9 45 �(7, 3) = |7 − 4|2 = 9

21 �(3, 7) = |3 − 7|2 = 16 46 �(7, 4) = |7 − 3|2 = 16

22 �(4, 1) = |4 − 1|2 = 9 47 �(7, 5) = |7 − 5|2 = 4

23 �(4, 2) = |4 − 2|2 = 4 48 �(7, 6) = |7 − 6|2 = 1

24 �(4, 3) = |4 − 4|2 = 0 49 �(7, 7) = |7 − 7|2 = 0

25 �(4, 4) = |4 − 3|2 = 1

Sum 392
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calculated in Table 6.3,

μδ = (N − 2)!
N !

N∑
i=1

N∑
j=1

�(i, j) = (7 − 2)!
7! (392) = 47,040

5,040
= 9.3333 .

Thus the actual computation of μδ involves only N2 operations to obtain the exact
expected value of test statistic δ. For example, if n1 = n2 = 15 there are

M = (n1 + n2)!
n1! n2! = (15 + 15)!

15! 15! = 155,117,520

δ test statistic values to be computed using the expression for μδ given in Eq. (6.8),
but only (15+15)2 = 302 = 900 �(i, j) values to be computed using the expression
for μδ given in Eq. (6.9) for i, j = 1, . . . , N—a much more efficient solution
resulting in a substantial savings in computation time.

6.4.2 Comparisons of Effect Size Measures

The four measures of effect size and Student’s t test statistic are all interrelated. Any
one of the measures can be derived from any of the other measures. The functional
relationships between Student’s t test statistic and Mielke and Berry’s � measure of
effect size for tests of two independent samples are given by

t =
[�(N − 2) + 1

1 − �
]1/2

and � = t2 − 1

t2 + N − 2
, (6.10)

the relationships between Pearson’s r2 measure of effect size and Mielke and
Berry’s � measure of effect size are given by

r2 = � + (
t2 + N − 2

)−1 and � = r2 − (
t2 + N − 2

)−1
, (6.11)

the relationships between Hays’ ω̂2 measure of effect size and Mielke and Berry’s
� measure of effect size are given by

ω̂2 = �
(

t2 + N − 2

t2 + N − 1

)
and � = ω̂2

(
t2 + N − 1

t2 + N − 2

)
, (6.12)

the relationships between Cohen’s d̂ measure of effect size and Mielke and Berry’s
� measure of effect size are given by

d̂ =
[�N(N − 2) + N

n1n2(1 − �)

]1/2

and � = n1n2d̂
2 − N

n1n2d̂ 2 + N(N − 2)
, (6.13)
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the relationships between Cohen’s d̂ measure of effect size and Student’s t test
statistic are given by

d̂ =
(

Nt2

n1n2

)1/2

and t =
(

n1n2d̂
2

N

)1/2

, (6.14)

the relationships between Pearson’s r2 measure of effect size and Student’s t test
statistic are given by

r2 = t2

t2 + N − 2
and t =

[
r2(N − 2)

1 − r2

]1/2

, (6.15)

the relationships between Pearson’s r2 measure of effect size and Cohen’s d̂ measure
of effect size are given by

r2 = n1n2d̂
2

n1n2d̂ 2 + N(N − 2)
and d̂ =

[
r2N(N − 2)

n1n2(1 − r2)

]1/2

, (6.16)

the relationships between Pearson’s r2 measure of effect size and Hays’ ω̂2 measure
of effect size are given by

r2 = ω̂2(N − 1) + 1

ω̂2 + N − 1
and ω̂2 = r2(N − 1) − 1

N − (1 + r2)
, (6.17)

the relationships between Student’s t test statistic and Hays’ ω̂2 measure of effect
size are given by

t =
[

ω̂2(N − 1) + 1

1 − ω̂2

]1/2

and ω̂2 = t2 − 1

t2 + N − 1
, (6.18)

and the relationships between Cohen’s d̂ measure of effect size and Hays’ ω̂2

measure of effect size are given by

d̂ =
{

N
[
ω̂2(N − 1) + 1

]
n1n2(1 − ω̂2)

}1/2

and ω̂2 = n1n2d̂
2 − N

n1n2d̂ 2 + N(N − 1)
. (6.19)

It is important to note that the relationships between Student’s t and Mielke and
Berry’s �, Pearson’s r2 and Mielke and Berry’s �, Hays’ ω̂2 and Mielke and Berry’s
�, Cohen’s d̂ and Mielke and Berry’s �, Cohen’s d̂ and Student’s t , Pearson’s r2

and Student’s t , Pearson’s r2 and Cohen’s d̂ , Pearson’s r2 and Hays’ ω̂2, Student’s
t and Hays’ ω̂2, and Cohen’s d̂ and Hays’ ω̂2 hold only for Student’s pooled two-
sample t test. The measures of effect size, d̂ , r2, and ω̂2, all require homogeneity
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of variance and the relationships listed above do not hold for Student’s non-pooled
two-sample t test. On the other hand, � does not require homogeneity of variance
and is appropriate for both pooled and non-pooled two-sample tests [5].

6.4.3 Example Effect Size Comparisons

In this section, comparisons of Student’s t , Cohen’s d̂ , Mielke and Berry’s �, Hays’
ω̂2, and Pearson’s r2 are illustrated with the example data listed in Table 6.1 on
p. 160 with n1 = 3, n2 = 4, and N = 7 observations.

Given the age data listed in Table 6.1 and following the expressions given in
Eq. (6.10) for Student’s t test statistic and Mielke and Berry’s � measure of effect
size, the observed value for Student’s t test statistic with respect to the observed
value of Mielke and Berry’s � measure of effect size is

t =
[�(N − 2) + 1

1 − �
]1/2

=
[

0.4250(7 − 2) + 1

1 − 0.4250

]1/2

= ±2.3313

and the observed value for Mielke and Berry’s � measure of effect size with respect
to the observed value of Student’s t test statistic is

� = t2 − 1

t2 + N − 2
= (−2.3313)2 − 1

(−2.3313)2 + 7 − 2
= +0.4250 .

Following the expressions given in Eq. (6.11) for Pearson’s r2 measure of effect
size and Mielke and Berry’s � measure of effect size, the observed value for
Pearson’s r2 measure of effect size with respect to the observed value of Mielke
and Berry’s � measure of effect size is

r2 = � + (
t2 + N − 2

)−1 = 0.4250 + [
(−2.3313)2 + 7 − 2

]−1 = 0.5208

and the observed value for Mielke and Berry’s � measure of effect size with respect
to the observed value of Pearson’s r2 measure of effect size is

� = r2 − (
t2 + N − 2

)−1 = 0.5208 − [
(−2.3313)2 + 7 − 2

]−1 = +0.4250 .

Following the expressions given in Eq. (6.12) for Hays’ ω̂2 measure of effect size
and Mielke and Berry’s � measure of effect size, the observed value for Hays’ ω̂2

measure of effect size with respect to the observed value of Mielke and Berry’s �
measure of effect size is

ω̂2 = �
(

t2 + N − 2

t2 + N − 1

)
=

[
(−2.3313)2 + 7 − 2

(−2.3313)2 + 7 − 1

]
= 0.3878
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and the observed value for Mielke and Berry’s � measure of effect size with respect
to the observed value of Hays’ ω̂2 measure of effect size is

� = ω̂2
(

t2 + N − 1

t2 + N − 2

)
=

[
(−2.3313)2 + 7 − 1

(−2.3313)2 + 7 − 2

]
= +0.4250 .

Following the expressions given in Eq. (6.13) for Cohen’s d̂ measure of effect
size and Mielke and Berry’s � measure of effect size, the observed value for Cohen’s
d̂ measure of effect size with respect to the observed value of Mielke and Berry’s �
measure of effect size is

d̂ =
[�N(N − 2) + N

n1n2(1 − �)

]1/2

=
[

(0.4250)(7)(7 − 2) + 7

(3)(4)(1 − 0.4250)

]1/2

= ±1.7805

and the observed value for Mielke and Berry’s � measure of effect size with respect
to the observed value of Cohen’s d̂ measure of effect size is

� = n1n2d̂
2 − N

n1n2d̂ 2 + N(N − 2)
= (3)(4)(1.7805)2

(3)(4)(1.7805)2 + (7)(7 − 2)
= +0.4250 .

Following the expressions given in Eq. (6.14) for Cohen’s d̂ measure of effect
size and Student’s t test statistic, the observed value for Cohen’s d̂ measure of effect
size with respect to the observed value of Student’s t statistic is

d̂ =
(

Nt2

n1n2

)1/2

=
[

7(−2.3313)2

(3)(4)

]1/2

= ±1.7805

and the observed value of Student’s t test statistic with respect to the observed value
of Cohen’s d̂ measure of effect size is

t =
(

n1n2d̂
2

N

)1/2

=
[

(3)(4)(1.7805)2

7

]1/2

= ±2.3313 .

Following the expressions given in Eq. (6.15) for Pearson’s r2 measure of effect
size and Student’s t test statistic, the observed value for Pearson’s r2 measure of
effect size with respect to the observed value of Student’s t statistic is

r2 = t2

t2 + N − 2
= (−2.3313)2

(−2.3313)2 + 7 − 2
= 0.5208
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and the observed value for Student’s t test statistic with respect to the observed value
of Pearson’s r2 measure of effect size is

t =
[
r2(N − 2)

1 − r2

]1/2

=
[

0.5208(7 − 2)

1 − 0.5208

]1/2

= ±2.3313 .

Following the expressions given in Eq. (6.16) for Pearson’s r2 measure of effect
size and Cohen’s d̂ measure of effect size, the observed value for Pearson’s r2

measure of effect size with respect to the observed value of Cohen’s d̂ measure
of effect size is

r2 = n1n2d̂
2

n1n2d̂ 2 + N(N − 2)
= (3)(4)(−1.7805)2

(3)(4)(−1.7805)2 + 7(7 − 2)
= 0.5208

and the observed value for Cohen’s d̂ measure of effect size with respect to the
observed value of Pearson’s r2 measure of effect size is

d̂ =
[

r2N(N − 2)

n1n2(1 − r2)

]1/2

=
[
(0.5208)(7)(7 − 2)

(3)(4)(1 − 0.5208)

]1/2

= ±1.7805 .

Following the expressions given in Eq. (6.17) for Pearson’s r2 measure of effect
size and Hays’ ω̂2 measure of effect size, the observed value for Pearson’s r2

measure of effect size with respect to the observed value of Hays’ ω̂2 measure of
effect size is

r2 = ω̂2(N − 1) + 1

ω̂2 + N − 1
= (0.3878)(7 − 1) + 1

0.3878 + 7 − 1
= 0.5208

and the observed value for Hays’ ω̂2 measure of effect size with respect to the
observed value of Pearson’s r2 measure of effect size is

ω̂2 = r2(N − 1) − 1

N − (1 + r2)
= (0.5208)(7 − 1) − 1

7 − (1 + 0.5208)
= 0.3878 .

Following the expressions given in Eq. (6.18) for Student’s t test statistic and
Hays’ ω̂2 measure of effect size, the observed value for Student’s t statistic with
respect to the observed value of Hays’ ω̂2 measure of effect size is

t =
[
ω̂2(N − 1) + 1

1 − ω̂2

]1/2

=
[
(0.3878)(7 − 1) + 1

1 − 0.3878

]1/2

= ±2.3313
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and the observed value for Hays’ ω̂2 measure of effect size with respect to the
observed value of Student’s t test statistic is

ω̂2 = t2 − 1

t2 + N − 1
= (−2.3313)2 − 1

(−2.3313)2 + 7 − 1
= 0.3878 .

And following the expressions given in Eq. (6.19) for Cohen’s d̂ measure of
effect size and Hays’ ω̂2 measure of effect size, the observed value for Cohen’s d̂

measure of effect size with respect to the observed value of Hays’ ω̂2 measure of
effect size is

d̂ =
{

N
[
ω̂2(N − 1) + 1

]
n1n2(1 − ω̂2)

}1/2

=
{

7
[
0.3878(7 − 1) + 1

]
(3)(4)(1 − 0.3878)

}1/2

= ±1.7805

and the observed value for Hays’ ω̂2 measure of effect size with respect to the
observed value of Cohen’s d̂ measure of effect size is

ω̂2 = n1n2d̂
2 − N

n1n2d̂ 2 + N(N − 1)
= (3)(4)(−1.7805)2 − 7

(3)(4)(−1.7805)2 + 7(7 − 1)
= 0.3878 .

6.5 Example 3: Analyses with v = 2 and v = 1

For a third example of tests of differences for two independent samples, consider
the error scores obtained for two groups of experimental animals running a maze
under two different treatment conditions: treatment Group 1 without a reward and
treatment Group 2 with a reward. The example data are given in Table 6.4.

Under the Neyman–Pearson population model with H0: μ1 = μ2, n1 = 8,
n2 = 6, N = 14, x̄1 = 11.00, x̄2 = 8.00, s2

1 = 57.7143, s2
2 = 63.60, the unbiased

Table 6.4 Example data for
a test of two independent
samples with N = 14
subjects

Group 1 Group 2

Subject Error Subject Error

1 16 9 20

2 9 10 5

3 4 11 1

4 23 12 16

5 19 13 2

6 10 14 4

7 5

8 2
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pooled estimate of the population variance is

s2
p = (n1 − 1)s2

1 + (n2 − 1)s2
2

N − 2

= (8 − 1)(57.7143) + (6 − 1)(63.60)

14 − 2
= 60.1667 ,

and the observed value of Student’s t test statistic is

t = x̄1 − x̄2[
s2
p

(
1

n1
+ 1

n2

)]1/2 = 11.00 − 8.00[
60.1667

(
1

8
+ 1

6

)]1/2 = +0.7161 .

Under the Neyman–Pearson null hypothesis, H0: μ1 = μ2, test statistic t is
asymptotically distributed as Student’s t with N − 2 degrees of freedom. With N −
2 = 14 − 2 = 12 degrees of freedom, the asymptotic two-tail probability value of
t = +0.7161 is P = 0.4876, under the assumptions of normality and homogeneity.

6.5.1 An Exact Analysis with v = 2

Under the Fisher–Pitman permutation model, employing squared Euclidean scaling
with v = 2 and treatment-group weights

C1 = n1 − 1

N − 2
and C2 = n2 − 1

N − 2

for correspondence with Student’s two-sample t test, the average distance-function
values for treatment Groups 1 and 2 are

ξ1 = 115.4286 and ξ2 = 127.20 ,

respectively, and the observed permutation test statistic value is

δ =
2∑

i=1

Ciξi =
(

8 − 1

14 − 2

)
(115.4286) +

(
6 − 1

14 − 2

)
(127.20) = 120.3333 .

Alternatively, in terms of Student’s t test statistic the average distance-function
values are

ξ1 = 2s2
1 = 2(57.7143) = 115.4286 , ξ2 = 2s2

2 = 2(63.60) = 127.20 ,
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and the observed permutation test statistic value is

δ = 2s2
p = 2(60.1667) = 120.3333 .

For the example data listed in Table 6.4, the sum of the N = 14 observations is

N∑
i=1

xi = 16 + 9 + 4 + 23 + 19 + 10 + 5

+ 2 + 20 + 5 + 1 + 16 + 2 + 4 = 136 ,

the sum of the N = 14 squared observations is

N∑
i=1

x2
i = 162 + 92 + 42 + 232 + 192 + 102

+ 52 + 22 + 202 + 52 + 12 + 162 + 22 + 42 = 2074 ,

and the total sum-of-squares is

SSTotal =
N∑

i=1

x2
i −

(
N∑

i=1

xi

)2/
N = 2074 − (136)2/14 = 752.8571 .

Then based on the expressions given in Eq. (6.5), the observed value for test statistic
δ with respect to the observed value of Student’s t test statistic is

δ = 2SSTotal

t2 + N − 2
= 2(752.8571)

(+0.7161)2 + 14 − 2
= 120.3333

and the observed value for Student’s t test statistic with respect to the observed value
of test statistic δ is

t =
(

2SSTotal

δ
− N + 2

)1/2

=
[

2(752.8571)

120.3333
− 14 + 2

]1/2

= ±0.7161 .

Under the Fisher–Pitman permutation model there are only

M = (n1 + n2)!
n1! n2! = (8 + 6)!

8! 6! = 3003

possible, equally-likely arrangements in the reference set of all permutations of
the error data listed in Table 6.4, making an exact permutation analysis possible.
Under the Fisher–Pitman permutation model, the exact probability of an observed
δ is the proportion of δ test statistic values computed on all possible, equally-likely
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arrangements of the observed data that are equal to or less than the observed value
of δ = 120.3333. There are exactly 1487 δ test statistic values that are equal to
or less than the observed value of δ = 120.3333. If all M arrangements of the
N = 14 observations listed in Table 6.4 occur with equal chance under the Fisher–
Pitman null hypothesis, the exact probability value of δ = 120.3333 computed on
the M = 3003 possible arrangements of the observed data with n1 = 8 and n2 = 6
preserved for each arrangement is

P
(
δ ≤ δo

) = number of δ values ≤ δo

M
= 1487

3003
= 0.5275 ,

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the N = 14 observations listed in Table 6.4.
Alternatively, the exact two-tail probability value of |t| = 0.7161 is

P
(|t| ≥ |to|

) = number of |t| values ≥ |to|
M

= 1487

3003
= 0.5275 ,

where to denotes the observed value of test statistic t .

6.5.2 Measures of Effect Size

For the example data listed in Table 6.4 on p. 174, Cohen’s d̂ measure of effect size
is

d̂ = |x̄1 − x̄2|√
s2
p

= |11.00 − 8.00|√
60.1667

= 0.3868 ,

Pearson’s r2 measure of effect size is

r2 = t2

t2 + N − 2
= (+0.7161)2

(+0.7161)2 + 14 − 2
= 0.0410 ,

Kelley’s ε2 measure of effect size is

ε2 = t2 − 1

t2 + N − 2
= (+0.7161)2 − 1

(+0.7161)2 + 14 − 2
= −0.0389 , (6.20)

Hays’ ω̂2 measure of effect size is

ω̂2 = t2 − 1

t2 + N − 1
= (+0.7161)2 − 1

(+0.7161)2 + 14 − 1
= −0.0361 , (6.21)
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and Mielke and Berry’s � measure of effect size is

� = 1 − δ

μδ

= 1 − 120.3333

115.8242
= −0.0389 ,

where, for the example data listed in Table 6.4, the exact expected value of test
statistic δ under the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 347,820

3003
= 115.8242 .

Alternatively, under an analysis of variance model,

μδ = 2SSTotal

N − 1
= 2(752.8571)

14 − 1
= 115.8242 ,

where

SSTotal =
N∑

i=1

x2
i −

(
N∑

i=1

xi

)2/
N = 2074 − (136)2/14 = 752.8571 .

6.5.3 Chance-Corrected Measures of Effect Size

As is evident in Eqs. (6.20) and (6.21), some squared measures of effect size can
be negative; in this case, Kelley’s ε2 = −0.0389 and Hays’ ω̂2 = −0.0361. It
is somewhat disconcerting, to say the least, to try to interpret squared coefficients
with negative values. It is also important to recognize that negative values cannot
simply be dismissed on theoretical grounds [10, p. 1000]. A number of authors have
suggested that negative values be treated as zero [9]. It is not widely recognized
that, like Mielke and Berry’s � measure of effect size, Kelley’s ε2 and Hays’ ω̂2 are
chance-corrected measures of effect size. In fact � and ε2 are equivalent measures
of effect size for tests of two independent samples. This places Kelley’s ε2 and
Hays’ ω̂2 into the family of chance-corrected measures that includes such well-
known members as Scott’s π coefficient of inter-coder agreement [12], Cohen’s κ

coefficient of weighted agreement [2], Kendall and Babington Smith’s u measure
of agreement [7], and Spearman’s footrule measure [13]. Negative values simply
indicate that the magnitude of the differences between the two samples is less than
expected by chance. It can easily be shown that, for the two-sample t test, the
minimum value of � and ε2 is given by −1/(N − 2). Thus, for the example data
listed in Table 6.4,

min(�) = min(ε2) = −1

N − 2
= −1

14 − 2
= −0.0833 .
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Incidentally, the minimum value for Hays’ ω̂2 measure of effect size is given by
−1/(N − 1). Thus for the data listed in Table 6.4, the minimum value of Hays’ ω̂2

is −1/(14 − 1) = −0.0769.

6.5.4 An Exact Analysis with v = 1

Consider an analysis of the error data listed in Table 6.4 on p. 174 under the Fisher–
Pitman permutation model with v = 1 and treatment-group weights given by

C1 = n1 − 1

N − 2
and C2 = n2 − 1

N − 2
.

For v = 1, the average distance-function values for the two treatment groups are

ξ1 = 9.1429 and ξ2 = 9.20 ,

respectively, and the observed permutation test statistic is

δ =
2∑

i=1

Ciξi =
(

8 − 1

14 − 2

)
(9.1429) +

(
6 − 1

14 − 2

)
(9.20) = 9.1667 .

There are only

M = (n1 + n2)!
n1! n2! = (8 + 6)!

8! 6! = 3003

possible, equally-likely arrangements in the reference set of all permutations of
the error data listed in Table 6.4, making an exact permutation analysis possible.
Under the Fisher–Pitman permutation model, the exact probability of an observed
δ is the proportion of δ test statistic values computed on all possible, equally-likely
arrangements of the observed data that are equal to or less than the observed value of
δ = 9.1667. There are exactly 2114 δ test statistic values that are equal to or less than
the observed value of δ = 9.1667. If all M arrangements of the N = 14 observations
listed in Table 6.4 occur with equal chance under the Fisher–Pitman null hypothesis,
the exact probability value of δ = 9.1667 computed on the M = 3003 possible
arrangements of the observed data with n1 = 8 and n2 = 6 preserved for each
arrangement is

P
(
δ ≤ δo

) = number of δ values ≤ δo

M
= 2114

3003
= 0.7040 ,

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the N = 14 observations listed in Table 6.4.
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No comparison is made with Student’s t test statistic for two independent samples
as Student’s t is undefined for ordinary Euclidean scaling.

For the example data listed in Table 6.4, the exact expected value of test statistic
δ under the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 26,400

3003
= 8.7912

and the observed chance-corrected measure of effect size is

� = 1 − δ

μδ

= 1 − 9.1667

8.7912
= −0.0427 ,

indicating less than chance within-group agreement. No comparisons are made with
Cohen’s d̂ , Pearson’s r2, Kelley’s ε2, or Hays’ ω̂2 conventional measures of effect
size for two independent samples as d̂ , r2, ε2, and ω̂2 are undefined for ordinary
Euclidean scaling.

6.5.5 The Effects of Extreme Values

For the example data listed in Table 6.4 on p. 174, the exact probability value
employing squared Euclidean scaling with v = 2 is P = 0.5275 and the exact
probability value employing ordinary Euclidean scaling with v = 1 is P = 0.7040.
The difference between the two probability values of

�P = 0.7040 − 0.5275 = 0.1765

is entirely due to the squared and non-squared differences obtained with v = 2
and v = 1, respectively, under the Fisher–Pitman permutation model. Permutation
test statistics employing squared Euclidean scaling with v = 2 are based on the
sample mean (x̄) and permutation test statistics employing ordinary Euclidean
scaling with v = 1 are based on the sample median (x̃). Median-based statistics
are highly resistant to extreme values and both treatment Group 1 and treatment
Group 2 contain extreme values: x14 = 23 for Group 1 and x21 = 20 for Group 2.
While these two values are not highly extreme, they are sufficiently removed from
their respective mean values of x̄1 = 11.00 and x̄2 = 8.00 to strongly affect the
probability value with v = 2. Incidentally, the median value for Group 1 is x̃ = 9.50
and the median value for Group 2 is x̃ = 4.50.

Extreme values are prevalent in applied research. Most variables are not even
close to normally distributed and many are highly skewed, often positively. Some
examples of positively-skewed variables are family income, net worth, prices of
houses sold in a given month, age at first marriage, length of first marriage, and
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Table 6.5 Raw-score
observed values for two
samples with n1 = n2 = 13
objects randomly assigned to
each sample

Sample 1 Sample 2

Object Value Object Value

1 264.3 1 263.4

2 264.6 2 263.7

3 264.6 3 263.7

4 264.6 4 263.7

5 264.9 5 264.0

6 264.9 6 264.0

7 264.9 7 264.0

8 264.9 8 264.3

9 265.2 9 264.3

10 265.2 10 264.3

11 265.2 11 264.3

12 265.5 12 264.6

13 265.5 13 w

student debt. Consider the case of student debt: in 2017 upon graduation the
average student debt was reported to be approximately $34,000, while the median
student debt was only approximately $12,000. The mean is pulled higher than the
median due to a small proportion of students with substantial debt. Graduate and
professional students in veterinary medicine, dental school, law school, and medical
school often graduate with hundreds of thousands of dollars in student debt.4

To demonstrate the difference between analyses based on squared Euclidean
scaling with v = 2 and ordinary Euclidean scaling with v = 1, consider the two-
sample data listed in Table 6.5. While the n1 = 13 values in Sample 1 are fixed,
one value in Sample 2, indicated by w, is allowed to vary in order to determine
its effect on the exact probability values. Table 6.6 lists 21 values for w ranging
from a low value of w = 40 up to a high value of w = 988, the exact permutation
probability values with v = 1 and v = 2, and the two-tail probability values for
Student’s two-sample t test, under the usual assumptions of normality, homogeneity,
and independence. Each of the exact probability values in Table 6.6 is based on

M = (n1 + n2)!
n1! n2! = (13 + 13)!

13! 13! = 10,400,600

possible, equally-likely arrangements of the N = 26 data values listed in Table 6.5,
with the assigned value for w included. The two-tail probability values for the
classical two-sample t test listed in Table 6.6 are based on Student’s t distribution
with n1 + n2 − 2 = 13 + 13 − 2 = 24 degrees of freedom.

4In 2017 the average student debt for law-school graduates was reported to be $141,000 and the
average student debt for medical-school graduates was reported to be $192,000.
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Table 6.6 Probability value
comparisons for exact
permutation tests with v = 1
and v = 2 and the classical
Student two-sample t test for
the data listed in Table 6.5

Exact permutation test

w v = 1 v = 2 Student’s t test

40 0.4038×10−5 0.4038×10−5 0.3026

80 0.4038×10−5 0.4038×10−5 0.2975

120 0.4038×10−5 0.4038×10−5 0.2895

160 0.4038×10−5 0.4038×10−5 0.2759

200 0.4038×10−5 0.4038×10−5 0.2470

240 0.4038×10−5 0.4038×10−5 0.1481

258 0.4038×10−5 0.4038×10−5 0.8538×10−2

261 0.4038×10−5 0.4038×10−5 0.2646×10−3

264 0.4038×10−5 0.4038×10−5 0.5837×10−6

267 0.9115×10−4 0.0157 0.0159

270 0.9115×10−4 0.4728 0.3455

273 0.9115×10−4 0.9772 0.7459

276 0.9115×10−4 1.0000 1.0000

288 0.9115×10−4 1.0000 0.6222

388 0.9115×10−4 1.0000 0.3753

488 0.9115×10−4 1.0000 0.3533

588 0.9115×10−4 1.0000 0.3451

688 0.9115×10−4 1.0000 0.3409

788 0.9115×10−4 1.0000 0.3382

888 0.9115×10−4 1.0000 0.3365

988 0.9115×10−4 1.0000 0.3352

As illustrated in Table 6.6, the exact probability values for the two-sample
permutation test with v = 1 are stable, consistent, and relatively unaffected by the
extreme values of w in either direction. The small change in the exact probability
values from P = 0.4038×10−5 to P = 0.9115×10−4; that is,

�P = 0.9115×10−4 − 0.4038×10−5 = 0.8711×10−4 ,

with v = 1 occurs when w changes from w = 264 to w = 267 and passes the
median value of x̃ = 264.9. In contrast, the exact probability values for the two-
sample permutation test with v = 2 range from P = 0.4038×10−5 for small values
of w up to P = 1.0000 for large values of w, relative to the fixed values. Finally, the
asymptotic two-tail probability values for the classical two-sample t test approach a
common value as w becomes very small or very large, relative to the fixed values,
and the classical t test is unable to detect the obvious differences in location between
Samples 1 and 2.
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6.5.6 Treatment-Group Weights

The treatment-group weighting functions with N − 2 degrees of freedom given by

C1 = n1 − 1

N − 2
and C2 = n2 − 1

N − 2

are essential for Student’s t test for two independent samples, but are not required
for a permutation test, as degrees of freedom are irrelevant for nonparametric,
distribution-free permutation methods.5 For a reanalysis of the example data listed
in Table 6.4 on p. 174, the treatment-group weighting functions are set to

C1 = n1

N
and C2 = n2

N
,

simply weighting each treatment group proportional to the number of observations
in the group and setting v = 1, employing ordinary Euclidean difference between
the pairs of values. For the example data listed in Table 6.4 on p. 174 the permutation
test statistic is δ = 9.1673.

Under the Fisher–Pitman permutation model, the exact probability of an
observed δ is the proportion of δ test statistic values computed on all possible,
equally-likely arrangements of the observed data that are equal to or less than the
observed value of δ = 9.1673. There are exactly 2127 δ test statistic values that are
equal to or less than the observed value of δ = 9.1673. If all M arrangements of
the N = 14 observed values listed in Table 6.4 on p. 174 occur with equal chance
under the Fisher–Pitman null hypothesis, the exact probability value of δ = 9.1673
computed on the M = 3003 possible arrangements of the observed data with n1 = 8
and n2 = 6 preserved for each arrangement is

P
(
δ ≤ δo

) = number of δ values ≤ δo

M
= 2127

3003
= 0.7083 ,

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the N = 14 observations listed in Table 6.4.

For comparison, the exact probability values based on squared Euclidean scaling
with v = 2 and ordinary Euclidean scaling with v = 1 and

C1 = n1 − 1

N − 2
and C2 = n2 − 1

N − 2
,

5Degrees of freedom are not relevant for any nonparametric, distribution-free statistic. However, it
is noteworthy that degrees of freedom may be required for a test statistic that is nonparametric but
is not distribution-free, such as Pearson’s χ2 test statistics for goodness of fit and independence.
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are P = 0.5275 and P = 0.7040, respectively. No comparison is made with
Student’s two-sample t test for two independent samples as Student’s t is undefined
for Ci = ni/N , i = 1, 2.

The exact expected value of the M = 3003 δ test statistic values with v = 1 is

μδ = 1

M

M∑
i=1

δi = 26,400

3003
= 8.7912

and the observed chance-corrected measure of effect size is

� = 1 − δ

μδ

= 1 − 9.1673

8.7912
= −0.0428 ,

indicating less than chance within-group agreement. No comparisons are made with
Cohen’s d̂ , Pearson’s r2, Kelley’s ε2, or Hays’ ω̂2 conventional measures of effect
size for two independent samples as d̂, r2, ε2, and ω̂2 are undefined for Ci = ni/N ,
i = 1, 2.

6.6 Example 4: Exact and Monte Carlo Analyses

For a fourth, larger example of a test for two independent samples, consider the
data on N = 28 subjects under the Neyman–Pearson population model, randomly
divided into two groups of n1 = n2 = 14 subjects each and listed in Table 6.7.
For the example data listed in Table 6.7, the null hypothesis is H0: μ1 = μ2; that

Table 6.7 Example data for
a test of two independent
samples with N = 28
subjects

Group 1 Group 2

Case Value Case Value

1 72.87 15 72.92

2 72.78 16 72.86

3 72.61 17 72.85

4 72.55 18 72.80

5 72.53 19 72.74

6 72.50 20 72.73

7 72.47 21 72.69

8 72.47 22 72.66

9 72.44 23 72.66

10 72.42 24 72.62

11 72.38 25 72.57

12 72.31 26 72.51

13 72.17 27 72.36

14 72.14 28 72.25
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is, no mean difference is expected between the two populations from which the
samples are presumed to have been drawn. The two groups are of equal size with
n1 = n2 = 14, the mean of treatment Group 1 is x̄1 = 72.4743, the mean of
treatment Group 2 is x̄2 = 72.6586, the estimated population variance for Group 1
is s2

1 = 0.0402, the estimated population variance for Group 2 is s2
2 = 0.0358, the

unbiased pooled estimate of the population variance is

s2
p = (n1 − 1)s2

1 + (n2 − 1)s2
2

N − 2

= (14 − 1)(0.0402) + (14 − 1)(0.0358)

28 − 2
= 0.0380 ,

and the observed value of Student’s t test statistic is

t = x̄1 − x̄2[
s2
p

(
1

n1
+ 1

n2

)]1/2 = 72.4743 − 72.6586[
0.0380

(
1

14
+ 1

14

)]1/2 = −2.5011 .

Under the Neyman–Pearson null hypothesis, test statistic t is asymptotically
distributed as Student’s t with N −2 degrees of freedom. With N −2 = 28−2 = 26
degrees of freedom, the asymptotic two-tail probability value of t = −2.5011 is
P = 0.0190, under the assumptions of normality and homogeneity.

6.6.1 A Monte Carlo Analysis with v = 2

Under the Fisher–Pitman permutation model, employing squared Euclidean scaling
with v = 2 and treatment-group weights

C1 = n1 − 1

N − 2
and C2 = n2 − 1

N − 2

for correspondence with Student’s two-sample t test, the average distance-function
values for Groups 1 and 2 are

ξ1 = 0.0804 and ξ2 = 0.0717 ,

respectively, and the observed permutation test statistic is

δ =
2∑

i=1

Ciξi =
(

14 − 1

28 − 2

)
(0.0804) +

(
14 − 1

28 − 2

)
(0.0717) = 0.0760 .
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Alternatively, in terms of Student’s t test statistic,

ξ1 = 2s2
1 = 2(0.0402) = 0.0804 , ξ2 = 2s2

2 = 2(0.0358) = 0.0717 ,

and

δ = 2s2
p = 2(0.0380) = 0.0760 .

For the example data listed in Table 6.7, the sum of the N = 28 observations is

N∑
i=1

xi = 72.87 + 72.78 + · · · + 72.36 + 72.25 = 2031.8600 ,

the sum of the N = 28 squared observations is

N∑
i=1

x2
i = 72.872 + 72.782 + · · · + 72.362 + 72.252 = 147,446.0494 ,

and the total sum-of-squares is

SSTotal =
N∑

i=1

x2
i −

(
N∑

i=1

xi

)2/
N

= 147,446.0494 − (2031.8600)2/28 = 1.2258 .

Based on the expressions given in Eq. (6.5) on p. 159, the observed value for test
statistic δ with respect to the observed value of Student’s t statistic is

δ = 2SSTotal

t2 + N − 2
= 2(1.2258)

(−2.5011)2 + 28 − 2
= 0.0760

and the observed value for Student’s t statistic with respect to the observed value of
test statistic δ is

t =
(

2SSTotal

δ
− N + 2

)1/2

=
[

2(1.2258)

0.0760
− 28 + 2

]1/2

= ±2.5011 .

Under the Fisher–Pitman permutation model there are

M = (n1 + n2)!
n1! n2! = (14 + 14)!

14! 14! = 40,116,600
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possible, equally-likely arrangements in the reference set of all permutations of the
observed data listed in Table 6.7, making an exact permutation analysis impractical.
Under the Fisher–Pitman permutation model, the Monte Carlo probability of an
observed δ is the proportion of δ test statistic values computed on the randomly-
selected, equally-likely arrangements of the observed data that are equal to or
less than the observed value of δ = 0.0760. Based on L = 1,000,000 random
arrangements of the observed data, there are exactly 20,439 δ test statistic values that
are equal to or less than the observed value of δ = 0.0760. If all M arrangements
of the N = 28 observations listed in Table 6.7 occur with equal chance under the
Fisher–Pitman null hypothesis, the Monte Carlo probability value of δ = 0.0760
computed on L = 1,000,000 random arrangements of the observed data with
n1 = n2 = 14 preserved for each arrangement is

P
(
δ ≤ δo

) = number of δ values ≤ δo

L
= 20,439

1,000,000
= 0.0204 ,

where δo denotes the observed value of test statistic δ and L is the number of
randomly-selected, equally-likely arrangements of the N = 28 observations listed
in Table 6.7. Alternatively, the Monte Carlo probability value of |t| = 2.5011 under
the Fisher–Pitman null hypothesis is

P
(|t| ≥ |to|

) = number of |t| values ≥ |to|
L

= 20,439

1,000,000
= 0.0204 ,

where to denotes the observed value of test statistic t .
For the example data listed in Table 6.7 the exact expected value of test statistic

δ under the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 3,642,715

40,116,600
= 0.0908 .

Alternatively, in terms of an analysis of variance model the exact expected value of
test statistic δ is

μδ = 2SSTotal

N − 1
= 2(1.2258)

28 − 1
= 0.0908 ,

where

SSTotal =
N∑

i=1

x2
i −

(
N∑

i=1

xi

)2/
N

= 147,446.0494 − (2031.8600)/28 = 1.2258 .
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Finally, the observed chance-corrected measure of effect size is

� = 1 − δ

μδ

= 1 − 0.0760

0.0908
= +0.1629 ,

indicating approximately 16% within-group agreement above what is expected by
chance.

6.6.2 An Exact Analysis with v = 2

While an exact analysis may be impractical with M = 40,116,600 possible
arrangements of the observed data, it is not impossible. For an exact test under
the Fisher–Pitman permutation model with v = 2, the observed value of δ is still
δ = 0.0760, the exact expected value of δ under the Fisher–Pitman null hypothesis
is μδ = 0.0908, there are exactly 815,878 δ test statistic values that are equal to or
less than the observed value of δ = 0.0760, and the exact probability value based
on all M = 40,116,600 arrangements of the observed data under the Fisher–Pitman
null hypothesis is

P
(
δ ≤ δo|H0

) = number of δ values ≤ δo

M
= 815,878

40,116,600
= 0.0203 ,

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the N = 28 observations listed in Table 6.7.

Alternatively, the exact two-tail probability value of |t| = 2.5011 under the null
hypothesis is

P
(|t| ≥ |to|

) = number of |t| values ≥ |to|
M

= 815,878

40,116,600
= 0.0203 ,

where to denotes the observed value of test statistic t . The observed chance-
corrected measure of effect size is unchanged at

� = 1 − δ

μδ

= 1 − 0.0760

0.0908
= +0.1629 ,

indicating approximately 16% within-group agreement above what is expected by
chance.
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6.6.3 Measures of Effect Size

For comparison, for the example data with N = 28 observations listed in Table 6.7
Cohen’s d̂ measure of effect size is

d̂ = |x̄1 − x̄2|√
s2
p

= |72.4743 − 72.6586√
0.0380

= 0.9454 ,

Pearson’s r2 measure of effect size is

r2 = t2

t2 + N − 2
= (−2.5011)2

(−2.5011)2 + 28 − 2
= 0.1939 ,

Kelley’s ε2 measure of effect size is

ε2 = t2 − 1

t2 + N − 2
= (−2.5011)2 − 1

(−2.5011)2 + 28 − 2
= 0.1629 ,

and Hays’ ω̂2 measure of effect size is

ω̂2 = t2 − 1

t2 + N − 1
= (−2.5011)2 − 1

(−2.5011)2 + 28 − 2
= 0.1580 .

There is a considerable difference between the value for Cohen’s measure of
effect size (d̂ = 0.9454) and the other three measures (Pearson’s r2 = 0.1939,
Kelley’s ε2 = 0.1629, and Hays’ ω̂2 = 0.1580). In general, members of the
r family, such as Pearson’s r2, Kelley’s ε2, and Hays’ ω̂2, produce measures of
effect size that vary between the limits of 0 and 1, while members of the d family,
such as Cohen’s d̂ , produce measures of effect size in standard deviation units and,
theoretically, can vary between 0 and ∞.

For comparison purposes, Cohen’s d̂ measure of effect size can be converted
to the r family of measures of effect size. Cohen’s d̂ can then be compared with
Pearson’s r2, Kelley’s ε2, and Hays’ ω̂2. Thus,

r2 = n1n2d̂
2

n1n2d̂2 + N(N − 2)
= (14)(14)(0.9454)2

(14)(14)(0.9454)2 + 28(28 − 2)
= 0.1939 ,

which is similar to Kelley’s ε2 = 0.1629 and Hays’ ω̂2 = 0.1580.
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6.6.4 A Monte Carlo Analysis with v = 1

Consider an analysis of the error data listed in Table 6.7 under the Fisher–Pitman
permutation model employing ordinary Euclidean scaling with v = 1, N = 28, and
treatment-group weights

C1 = n1 − 1

N − 2
and C2 = n2 − 1

N − 2
.

For v = 1, the average distance-function values for treatment Groups 1 and 2 are

ξ1 = 0.2288 and ξ2 = 0.2167 ,

respectively, and the observed permutation test statistic is

δ =
2∑

i=1

Ciξi =
(

14 − 1

28 − 2

)
(0.2288) +

(
14 − 1

28 − 2

)
(0.2167) = 0.2227 .

There are exactly

M = (n1 + n2)!
n1! n2! = (14 + 14)!

14! 14! = 40,116,600

possible, equally-likely arrangements in the reference set of all permutations of the
example data listed in Table 6.7. Under the Fisher–Pitman permutation model the
Monte Carlo probability of an observed δ is the proportion of δ test statistic values
computed on the randomly-selected, equally-likely arrangements of the observed
data that are equal to or less than the observed value of δ = 0.2227. Based on
L = 1,000,000 random arrangements of the observed data, there are exactly 14,493
δ test statistic values that are equal to or less than the observed value of δ = 0.2227.
If all M arrangements of the N = 28 observations listed in Table 6.7 occur with
equal chance under the Fisher–Pitman null hypothesis, the Monte Carlo probability
value of δ = 0.2227 computed on L = 1,000,000 random arrangements of the
observed data with n1 = n2 = 14 preserved for each arrangement is

P
(
δ ≤ δo|H0

) = number of δvalues ≤ δo

L
= 14,493

1,000,000
= 0.0145 ,

where δo denotes the observed value of test statistic δ and L is the number
of randomly-selected, equally-likely arrangements of the N = 28 observations
listed in Table 6.7. No comparison is made with Student’s t test statistic for two
independent samples as Student’s t is undefined for ordinary Euclidean scaling.
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For the data listed in Table 6.7, the exact expected value of test statistic δ under
the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 10,997,042

40,116,600
= 0.2741 ,

and the observed chance-corrected measure of effect size is

� = 1 − δ

μδ

= 1 − 0.2227

0.2741
= +0.1875 ,

indicating approximately 19% within-group agreement above what is expected by
chance. No comparisons are made with Cohen’s d̂ , Pearson’s r2, Kelley’s ε2, or
Hays’ ω̂2 measures of effect size for two independent samples as d̂ , r2, ε2, and ω̂2

are undefined for ordinary Euclidean scaling.

6.6.5 An Exact Analysis with v = 1

For comparison, with v = 1 and treatment-group weights

C1 = n1 − 1

N − 2
and C2 = n2 − 1

N − 2
,

the exact probability value of δ = 0.2227 computed on the M = 40,116,600
possible arrangements of the observed data with n1 = n2 = 14 preserved for each
arrangement is

P
(
δ ≤ δo

) = number of δ values ≤ δo

M
= 583,424

40,116,600
= 0.0145 ,

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the N = 28 observations listed in Table 6.7
on p. 184.

6.7 Example 5: Rank-Score Permutation Analyses

Oftentimes in conventional research it becomes necessary to analyze rank-score
data, either because the observed data are collected as ranks or because the necessary
parametric assumptions cannot be met and the raw data are subsequently converted
to ranks. There is never any reason to convert raw scores to ranks with permutation
statistical methods [3], so this example merely serves to demonstrate the relationship
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between a quotidian two-sample test of rank-score data and a permutation test of
rank-score data. The conventional approach to rank-score data for two independent
samples under the Neyman–Pearson population model is the Wilcoxon–Mann–
Whitney (WMW) two-sample rank-sum test.

6.7.1 The Wilcoxon–Mann–Whitney Test

Consider a two-sample rank test for N univariate rank scores with n1 and n2 rank
scores in the first and second samples, respectively. Under the Neyman–Pearson
population model, the WMW two-sample rank-sum test is given by

W =
n1∑
i=1

Ri ,

where Ri denotes the rank function of the ith response measurement and n1 is,
typically, the smaller of the two-sample sizes.

For an example analysis of rank-score data, consider the rank scores listed in
Table 6.8, where for two samples, n1 = 8, n2 = 12, N = n1 + n2 = 8 + 12 = 20
total scores, and there are no tied rank scores. For this application, let n1 = 8 denote
the rank scores in Sample 1 and n2 = 12 denote the rank scores in Sample 2.

The conventional Wilcoxon–Mann–Whitney two-sample rank-sum test on the
N = 20 rank scores listed in Table 6.8 yields an observed test statistic value of

W =
n1∑
i=1

Ri = 1 + 2 + 3 + 4 + 5 + 6 + 8 + 11 = 40 ,

Table 6.8 Example
rank-score data for a
conventional
Wilcoxon–Mann–Whitney
two-sample rank-sum test
with n1 = 8 and n2 = 12
subjects

Sample 1 Sample 2

Subject Score Subject Score

1 1 9 7

2 2 10 9

3 3 11 10

4 4 12 12

5 5 13 13

6 6 14 14

7 8 15 15

8 11 16 16

17 17

18 18

19 19

20 20
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where statistic W is asymptotically distributed N(0, 1) under the Neyman–Pearson
null hypothesis as N → ∞. For the rank scores listed in Table 6.8, the mean value
of test statistic W is

μW = n1(N + 1)

2
= 8(20 + 1)

2
= 84 ,

the variance of test statistic W is

σ 2
W = n1n2(N + 1)

12
= (8)(12)(20 + 1)

12
= 168 ,

the standard score, corrected for continuity, is6

z = W + 0.5 − μW√
σ 2

W

= 40 + 0.5 − 84√
168

= −3.3561 ,

and the asymptotic two-tail N(0, 1) probability value is P = 0.3952×10−3.

6.7.2 An Exact Analysis with v = 2

For an analysis of the rank-score data listed in Table 6.8 under the Fisher–Pitman
permutation model let v = 2, employing squared Euclidean differences between the
pairs of rank scores, and let the treatment-group weights be given by

C1 = n1 − 1

N − 2
and C2 = n2 − 1

N − 2

for correspondence with the Wilcoxon–Mann–Whitney two-sample rank-sum test.
Following Eq. (6.2) on p. 157, the average distance-function values for Samples 1
and 2 are

ξ1 = 21.7143 and ξ2 = 33.7576 ,

respectively, and the observed value of the permutation test statistic δ is

δ =
2∑

i=1

Ciξi =
(

8 − 1

20 − 2

)
(21.7143) +

(
12 − 1

20 − 2

)
(33.7576) = 29.0741 .

6When fitting a continuous mathematical function, such as the normal probability distribution,
to a discrete permutation distribution, it is oftentimes necessary to correct the fit by adding or
subtracting 0.5 to compensate for the discreteness of the distribution.
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Although no self-respecting researcher would seriously consider calculating an
estimated population variance on rank scores, since the WMW two-sample rank-
sum test is directly derived from Student’s two-sample t test, certain relationships
still hold. Thus,

ξ1 = 2s2
1 = 2(10.8571) = 21.7143 , ξ2 = 2s2

2 = 2(16.8788) = 33.7576 ,

and

δ = 2s2
p = 2(14.5370) = 29.0741 ,

where s2
1 = 10.8571 and s2

2 = 16.8788 are calculated on the rank-score data listed
in Table 6.8.

Because there are only

M = (n1 + n2)!
n1! n2! = (8 + 12)!

8! 12! = 125,970

possible, equally-likely arrangements in the reference set of all permutations of the
N = 20 rank scores listed in Table 6.8, an exact permutation analysis is feasible.
Under the Fisher–Pitman permutation model, the exact probability of an observed
δ is the proportion of δ test statistic values computed on all possible, equally-likely
arrangements of the observed data that are equal to or less than the observed value of
δ = 29.0741. There are exactly 24 δ test statistic values that are equal to or less than
the observed value of δ = 29.0741. If all M arrangements of the N = 20 rank scores
listed in Table 6.8 occur with equal chance under the Fisher–Pitman null hypothesis,
the exact probability value of δ = 29.0741 computed on the M = 125,970 possible
arrangements of the observed data with n1 = 8 and n2 = 12 preserved for each
arrangement is

P
(
δ ≤ δo|H0

) = number of δ values ≤ δo

M
= 24

125,970
= 0.1905×10−3 ,

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the N = 20 observations listed in Table 6.8.

The functional relationships between test statistics δ and W are given by

δ = 2

N(N − 2)

[
NT − S2 − (NW − n1S)2

n1n2

]
(6.22)

and

W = n1S

N
−

{
n1n2

N2

[
NT − S2 − N(N − 2)δ

2

]}1/2

, (6.23)



6.7 Example 5: Rank-Score Permutation Analyses 195

where

S =
N∑

i=1

Ri and T =
N∑

i=1

R2
i .

In the absence of any tied rank scores, it is well known that S and T may simply
be expressed as

S =
N∑

i=1

i = N(N + 1)

2
and T =

N∑
i=1

i2 = N(N + 1)(2N + 1)

6
.

The relationships between test statistics δ and W are confirmed as follows. For
the N = 20 rank scores listed in Table 6.8 with no tied values, the observed value
of S is

S =
N∑

i=1

i = N(N + 1)

2
= 20(20 + 1)

2
= 210

and the observed value of T is

T =
N∑

i=1

i2 = N(N + 1)(2N + 1)

6
= 20(20 + 1)[2(20) + 1]

6
= 2870 .

Then following Eq. (6.22), the observed value of test statistic δ with respect to the
observed value of test statistic W for the rank scores listed in Table 6.8 is

δ = 2

N(N − 2)

[
NT − S2 − (NW − n1S)2

n1n2

]

= 2

20(20 − 2)

{
20(2, 870) − (210)2 − [20(40) − 8(210)]2

(8)(12)

}

= 2

360

(
13,300 − 774,400

96

)
= 29.0741

and following Eq. (6.23), the observed value of test statistic W with respect to the
observed value of test statistic δ is

W = n1S

N
−

{
n1n2

N2

[
NT − S2 − N(N − 2)δ

2

]}1/2

= (8)(210)

20
−

{
(8)(12)

202

[
(20)(2870) − (210)2 − 20(20 − 2)(29.0741)

2

]}

= 84 − [
(0.24)(8,066.6667)

]1/2 = 40 .



196 6 Two-Sample Tests

Because of the relationship between test statistics δ and W , the exact probability
of W = 40 is the same as the exact probability of δ = 29.0741. Thus,

P
(
δ ≤ δo|H0

) = number of δ values ≤ δo

M
= 24

125,970
= 0.1905×10−3

and

P
(
W ≥ Wo|H0

) = number of W values ≥ Wo

M

= 24

125,970
= 0.1905×10−3 ,

where δo and Wo denote the observed values of test statistics δ and W , respectively,
and M is the number of possible, equally-likely arrangements of the N = 20 rank
scores listed in Table 6.8.

Following Eq. (6.7) on p. 160, the exact expected value of the M = 125,970 δ

test statistic values under the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 8,817,900

125,970
= 70.00

and following Eq. (6.6) on p. 160, the observed chance-corrected measure of effect
size is

� = 1 − δ

μδ

= 1 − 29.0741

70.00
= +0.5847 ,

indicating approximately 58% within-group agreement above what is expected by
chance. No comparisons are made with Cohen’s d̂ , Pearson’s r2, Kelley’s ε2, or
Hays’ ω̂2 measures of effect size for two independent samples as d̂ , r2, ε2, and ω̂2

are undefined for rank-score data.

6.7.3 An Exact Analysis with v = 1

For a reanalysis of the rank-score data listed in Table 6.8 on p. 192 under the
Fisher–Pitman permutation model let v = 1 instead of v = 2, employing ordinary
Euclidean differences between the pairs of rank scores, and let the treatment-group
weights be given by

C1 = n1 − 1

N − 2
and C2 = n2 − 1

N − 2
.
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Following Eq. (6.2) on p. 157, the average distance-function values for Samples 1
and 2 are

ξ1 = 3.9286 and ξ2 = 4.9091 ,

respectively, and the observed value of test statistic δ is

δ =
2∑

i=1

Ciξi =
(

8 − 1

20 − 2

)
(3.9286) +

(
12 − 1

20 − 2

)
(4.9091) = 4.5278 .

Because there are only

M = (n1 + n2)!
n1! n2! = (8 + 12)!

8! 12! = 125,970

possible, equally-likely arrangements in the reference set of all permutations of the
N = 20 rank scores listed in Table 6.8, an exact permutation analysis is feasible.
Under the Fisher–Pitman permutation model, the exact probability of an observed
δ is the proportion of δ test statistic values computed on all possible, equally-likely
arrangements of the observed data that are equal to or less than the observed value of
δ = 4.5278. There are exactly 24 δ test statistic values that are equal to or less than
the observed value of δ = 4.5278. If all M arrangements of the N = 20 rank scores
listed in Table 6.8 occur with equal chance under the Fisher–Pitman null hypothesis,
the exact probability value of δ = 4.5278 computed on the M = 125,970 possible
arrangements of the observed data with n1 = 8 and n2 = 12 preserved for each
arrangement is

P
(
δ ≤ δo|H0

) = number of δ values ≤ δo

M
= 24

125,970
= 0.1905×10−3 ,

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the N = 20 observations listed in Table 6.8.
For comparison, the exact probability value based on v = 2, M = 125,970, and
treatment-group weights

C1 = n1 − 1

N − 2
and C2 = n2 − 1

N − 2

in the previous analysis was also P = 0.1905×10−3. No comparison is made with
the conventional Wilcoxon–Mann–Whitney two-sample rank-sum test as the WMW
test is undefined for ordinary Euclidean scaling.
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Following Eq. (6.7) on p. 160, the exact expected value of the M = 125,970 δ

test statistic values under the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 881,790

125,970
= 7.00

and, following Eq. (6.6) on p. 160, the observed chance-corrected measure of effect
size is

� = 1 − δ

μδ

= 1 − 4.5278

7.00
= +0.3532 ,

indicating approximately 35% within-group agreement above what is expected by
chance. No comparisons are made with Cohen’s d̂ , Pearson’s r2, Kelley’s ε2, or
Hays’ ω̂2 measures of effect size for two independent samples as d̂ , r2, ε2, and ω̂2

are undefined for rank-score data.
Finally, it should be noted that for the example data listed in Table 6.8 the

observed ξ1 and ξ2 values differ for v = 2 (ξ1 = 21.7143 and ξ2 = 33.7576)
and v = 1 (ξ1 = 3.9286 and ξ2 = 4.9091), the observed δ values differ for v = 2
(δ = 29.0741) and v = 1 (δ = 4.5278), and the exact values for μδ also differ
for v = 2 (μδ = 70.00) and v = 1 (μδ = 7.00). However, the probability values
for v = 2 (P = 0.1905×10−3) and v = 1 (P = 0.1905×10−3) do not differ.
This is always true for two-sample tests of rank scores under the Fisher–Pitman
permutation model. Unlike two-sample tests of raw (interval-level) values, there is
never any difference in probability values for v = 2 and v = 1 with rank-score
(ordinal-level) data.

6.8 Example 6: Multivariate Permutation Analyses

Oftentimes a research design calls for a test of difference between two independent
treatment groups when r ≥ 2 response measurements have been obtained for each
subject. The conventional approach to such a research design under the Neyman–
Pearson population model is Hotelling’s multivariate T 2 test for two independent
samples given by

T 2 = n1n2

N

(
ȳ2 − ȳ2

)
S−1(ȳ1 − ȳ2

)
, (6.24)

where ȳ1 and ȳ2 denote vectors of mean differences between treatment Groups 1
and 2, respectively, n1 and n2 are the number of multivariate measurement scores in
treatment Groups 1 and 2, respectively, N = n1+n2, and S is a variance–covariance
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matrix given by

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

N

N∑
I=1

(y1I − ȳ1)
2 · · · 1

N

N∑
I=1

(y1I − ȳ1) (yrI − ȳr )

...
...

1

N

N∑
I=1

(yrI − ȳr ) (y1I − ȳ1) · · · 1

N

N∑
I=1

(yrI − ȳr )
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The observed value of Hotelling’s T 2 is conventionally transformed into an F

test statistic by

F = N − r − 1

r(N − 2)
T 2 ,

which is asymptotically distributed as Snedecor’s F under the Neyman–Pearson null
hypothesis with ν1 = r and ν2 = N − r − 1 degrees of freedom.

6.8.1 The Hotelling Two-Sample T 2 Test

To illustrate a conventional multivariate analysis under the Neyman–Pearson pop-
ulation model, consider the multivariate measurement scores listed in Table 6.9,
where r = 2, n1 = 4, n2 = 6, and N = n1 + n2 = 4 + 6 = 10.

A conventional two-sample Hotelling T 2 test of the N = 10 multivariate
measurement scores listed in Table 6.9 yields

ȳ11 = 2.7750 ,

s2
11 = 3.1092 ,

ȳ12 = 4.5250 ,

s2
12 = 5.1892 ,

Table 6.9 Example
multivariate response
measurement scores with
r = 2, n1 = 4, n2 = 6, and
N = n1 + n2 = 10

Treatment

1 2

(1.2, 3.1) (3.7, 6.1)

(2.9, 6.8) (6.1, 8.3)

(1.8, 2.1) (6.2, 7.9)

(5.2, 6.1) (4.8, 9.7)

(5.1, 9.9)

(4.2, 7.8)
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cov(1, 2)1 = +2.9042 ,

ȳ21 = 5.0167

s2
21 = 1.0057 ,

ȳ22 = 8.2833 ,

s2
22 = 1.9537 ,

and

cov(1, 2)2 = +0.5323 .

Then the vector of mean differences for treatment Group 1 is

ȳ1 = ȳ11 − ȳ21 = 2.7550 − 5.0167 = −2.2417

and the vector of mean differences for treatment Group 2 is

ȳ2 = ȳ12 − ȳ22 = 4.5250 − 8.2833 = −3.7583 .

The variance–covariance matrices for Treatments 1 and 2 are

�̂1 =
[

3.1092 +2.9042

+2.9042 5.1892

]
and �̂2 =

[
1.0057 +0.5323

+0.5323 1.9537

]
,

respectively, and the pooled variance–covariance matrix and its inverse are

S =
[

1.7945 +1.4218

+1.4218 3.1670

]
and S−1 =

[+0.8649 −0.3883

−0.3883 +0.4901

]
,

respectively.
Following Eq. (6.24) on p. 198, the observed value of Hotelling’s T 2 is

T 2 = n1n2

N
(ȳ1 − ȳ2)

′ S−1 (ȳ1 − ȳ2)

= (4)(6)

10

[−2.2417 −3.7583
] [+0.8649 −0.3883

−0.3883 +0.4901

][−2.2417

−3.7583

]

= (2.40)(4.7260) = 11.3423



6.8 Example 6: Multivariate Permutation Analyses 201

and the F test statistic for Hotelling’s T 2 is

F = N − r − 1

r(N − 2)
T 2

o = 10 − 2 − 1

2(10 − 2)
(11.3423) = 4.9623 ,

where T 2
o denotes the observed value of Hotelling’s T 2.

Assuming independence, normality, homogeneity of variance, and homogeneity
of covariance, Hotelling’s F test statistic is asymptotically distributed as Snedecor’s
F with ν1 = r = 2 and ν2 = N −r−1 = 10−2−1 = 7 degrees of freedom. Under
the Neyman–Pearson null hypothesis, the observed value of F = 4.9623 yields an
asymptotic probability value of P = 0.0455.

6.8.2 An Exact Analysis with v = 2

For an analysis under the Fisher–Pitman permutation model let v = 2, employing
squared Euclidean differences between pairs of measurement scores and let the
treatment-group weights be given by

C1 = n1 − 1

N − 2
and C2 = n2 − 1

N − 2

for correspondence with Hotelling’s T 2 test for two independent samples. Since
there are only

M = (n1 + n2)!
n1! n2! = (4 + 6)!

4! 6! = 210

possible, equally-likely arrangements in the reference set of all permutations of the
N = 10 multivariate measurement scores listed in Table 6.9, an exact permutation
analysis is feasible. The multivariate measurement scores listed in Table 6.9 yield
average distance-function values for Treatments 1 and 2 of

ξ1 = 0.4862 and ξ2 = 0.2737 ,

respectively, and the observed permutation test statistic is

δ =
2∑

i=1

Ciξi =
(

4 − 1

10 − 2

)
(0.4862) +

(
6 − 1

10 − 2

)
(0.2737) = 0.3534 .

If all M arrangements of the N = 10 observed multivariate measurement scores
listed in Table 6.9 occur with equal chance under the Fisher–Pitman null hypothesis,
the exact probability value of δ = 0.3534 computed on the M = 210 possible
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arrangements of the observed data with n1 = 4 and n2 = 6 scores preserved for
each arrangement is

P
(
δ ≤ δo|H0

) = number of δ values ≤ δo

M
= 12

210
= 0.0571 ,

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the N = 10 multivariate observations listed
in Table 6.9.

Following Eq. (6.7) on p. 160, the exact expected value of the M = 210 δ test
statistic values under the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 93.3333

210
= 0.4444

and following Eq. (6.6) on p. 160, the observed chance-corrected measure of effect
size is

� = 1 − δ

μδ

= 1 − 0.3534

0.4444
= +0.2049 ,

indicating approximately 20% within-group agreement above what is expected by
chance. No comparisons are made with Cohen’s d̂ , Pearson’s r2, Kelley’s ε2, or
Hays’ ω̂2 measures of effect size for two-sample tests as d̂ , r2, ε2, and ω̂2 are
undefined for multivariate data.

The identity relating Hotelling’s two-sample T 2 test and the permutation test
statistic is given by

δ = 2
[
r − V (s)

]
N − 2

, (6.25)

where

V (s) = T 2

T 2 + N − 2
(6.26)

and s = min(g − 1, r); in this case with g − 1 = 2 − 1 = 1 and r = 2, s =
min(2 − 1, 2) = 1. Thus, following Eqs. (6.25) and (6.26), the observed value of
V (1) is

V (1) = T 2

T 2 + N − 2
= 11.3423

11.3423 + 10 − 2
= 11.3423

19.3423
= 0.5864

and the observed value of δ is

δ = 2(r − V (s))

N − g
= 2(2 − 0.5864)

10 − 2
= 2.8272

8
= 0.3534 .
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6.8.3 An Exact Analysis with v = 1

Under the Fisher–Pitman permutation model, it is not necessary to set v = 2, thereby
illuminating the squared differences between pairs of measurement scores. For a
reanalysis of the measurement scores listed in Table 6.9 on p. 199, let the treatment-
group weights be given by

C1 = n1 − 1

N − 2
and C2 = n2 − 1

N − 2

as in the previous example, but set v = 1 instead of v = 2, employing ordinary
Euclidean differences between pairs of measurement scores. Following Eq. (6.2) on
p. 157, the average distance-function values for Treatments 1 and 2 are

ξ1 = 3.7865 and ξ2 = 2.2200 ,

respectively, and following Eq. (6.1) on p. 157, the observed value of the permuta-
tion test statistic is

δ =
2∑

i=1

Ciξi =
(

4 − 1

10 − 2

)
(3.7865) +

(
6 − 1

10 − 2

)
(2.2200) = 2.8074 .

If all M arrangements of the N = 10 observed multivariate measurement scores
listed in Table 6.9 occur with equal chance under the Fisher–Pitman null hypothesis,
the exact probability value of δ = 2.8074 computed on the M = 210 possible
arrangements of the observed data with n1 = 4 and n2 = 6 measurement scores
preserved for each arrangement is

P
(
δ ≤ δo|H0

) = number of δ values ≤ δo

M
= 4

210
= 0.0190 ,

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the N = 10 multivariate observations listed
in Table 6.9. For comparison, the exact probability value based on v = 2, M = 210,
and treatment-group weights

C1 = n1 − 1

N − 2
and C2 = n2 − 1

N − 2

in the previous example is P = 0.0571. No comparison is made with Hotelling’s
multivariate two-sample T 2 test as T 2 is undefined for ordinary Euclidean scaling.

Following Eq. (6.7) on p. 160, the exact expected value of the M = 210 δ test
statistic values under the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 790.1880

210
= 3.7628
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and, following Eq. (6.6) on p. 160, the observed chance-corrected measure of effect
size is

� = 1 − δ

μδ

= 1 − 2.8074

3.7628
= +0.2539 ,

indicating approximately 25% within-group agreement above what is expected by
chance. No comparisons are made with Cohen’s d̂ , Pearson’s r2, Kelley’s ε2, or
Hays’ ω̂2 measures of effect size for two-sample tests as d̂ , r2, ε2, and ω̂2 are
undefined for multivariate data.

6.9 Summary

This chapter examined tests for two independent samples where the null hypothesis
under the Neyman–Pearson population model typically posits no difference between
the means of two populations; that is, H0: μ1 = μ2. The conventional tests for
two independent samples and four measures of effect size under the Neyman–
Pearson population model were described and illustrated: Student’s two-sample t

test and Cohen’s d̂ , Pearson’s r2, Kelley’s ε2, and Hays’ ω̂2 measures of effect size,
respectively.

Under the Fisher–Pitman permutation model, test statistic δ and associated
measure of effect size � were introduced and illustrated for tests of two independent
samples. Test statistic δ was related to Student’s t test statistic and shown to be
flexible enough to incorporate either ordinary or squared Euclidean scaling with
v = 1 and v = 2, respectively. Effect-size measure � was shown to be applicable
to either v = 1 or v = 2 without modification and to have a clear and meaningful
chance-corrected interpretation.

Six examples illustrated permutation statistics δ and �. In the first example, a
small sample of N = 7 values was utilized to describe and illustrate the calculations
of δ and � for two independent samples. The second example demonstrated the
permutation-based, chance-corrected measure of effect size, �, and related � to the
four conventional measures of effect size for two independent samples: Cohen’s
d̂ , Pearson’s r2, Kelley’s ε2, and Hays’ ω̂2. The third example with N = 14
values was designed to illustrate the effects of extreme values on both conventional
and permutation tests for two independent samples. The fourth example utilized
a larger sample with N = 28 observations to compare and contrast exact and
Monte Carlo permutation tests for two independent samples. The fifth example
applied permutation methods to univariate rank-score data and compared the
permutation results with conventional results from the Wilcoxon–Mann–Whitney
two-sample rank-sum test. Finally, the sixth example illustrated the application of
permutation methods to multivariate data and compared the permutation results with
conventional results from Hotelling’s T 2 test for two independent samples.
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Chapter 7 continues the presentation of permutation statistical methods for two
samples, but examines research designs in which the subjects in the two samples
have been matched on specific characteristics; that is to say, not independent.
Research designs that posit no mean difference between two matched treatment
groups in which univariate measurements have been obtained are ubiquitous in the
statistical literature. Matched-pairs tests are the simplest of the tests in an extensive
class of randomized-blocks tests and are taught in every introductory course.
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Chapter 7
Matched-Pairs Tests

Abstract This chapter introduces permutation methods for matched-pairs tests.
Included in this chapter are six example analyses illustrating computation of exact
permutation probability values for matched-pairs tests, calculation of measures of
effect size for matched-pairs tests, the effect of extreme values on conventional and
permutation matched-pairs tests, exact and Monte Carlo permutation procedures
for matched-pairs tests, application of permutation methods to matched-pairs rank-
score data, and analysis of matched-pairs multivariate data. Included in this chapter
are permutation versions of Student’s matched-pairs t test, Wilcoxon’s signed-ranks
test, the sign test, Hotelling’s multivariate T 2 test for two matched samples, and a
permutation-based alternative for the two conventional measures of effect size for
matched pairs: Cohen’s d̂ and Pearson’s r2.

This chapter presents exact and Monte Carlo permutation statistical methods for
two matched or otherwise related samples, commonly called matched-pairs tests
under the Neyman–Pearson population model of statistical inference. As noted in
Chap. 6, statistical tests for differences between two samples are of two varieties.
The first examines two independent samples, such as in control- and treatment-
group designs. The second variety examines two matched samples, such as in
before-and-after research designs. Two-sample tests for independent samples were
presented in Chap. 6. Matched-pairs tests for two related samples are presented in
this chapter.

Two-sample tests of experimental differences between matched samples are the
backbone of research in such diverse fields as psychology, education, biology, and
horticulture. As in Chaps. 5 and 6, six example analyses illustrate permutation
methods for matched-pairs tests. The first example utilizes a small set of data to
illustrate the computation of exact permutation statistical methods for two matched
samples, wherein the permutation test statistic, δ, is developed and compared with
Student’s conventional matched-pairs t test statistic. The second example develops
a permutation-based measure of effect size as a chance-corrected alternative to the
two conventional measures of effect size for matched-pairs tests: Cohen’s d̂ and
Pearson’s r2. The third example compares permutation statistical methods based
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on ordinary and squared Euclidean scaling functions, emphasizing methods of
analysis for data sets containing extreme values. The fourth example compares exact
permutation statistical methods with Monte Carlo permutation statistical methods,
demonstrating the accuracy, efficiency, and practicality of Monte Carlo statistical
methods. The fifth example illustrates the application of permutation statistical
methods to univariate rank-score data, comparing permutation statistical methods
to Wilcoxon’s conventional signed-ranks test and the sign test. The sixth example
illustrates the application of permutation statistical methods to multivariate data,
comparing permutation statistical methods to Hotelling’s conventional multivariate
T 2 test for two matched samples.

7.1 Introduction

Consider Student’s conventional matched-pairs t test where variables x1 and x2
denote univariate observations taken on two sets of matched subjects, such as twins,
or observations on the same subjects at two time periods—before and after an
intervention, treatment, or administration of a test stimulus. Matched-pairs tests
go by a variety of names in addition to matched pairs: repeated measures, within-
subjects, randomized-blocks, or dependent samples, but they all indicate tests on the
same or matched sets of subjects.1

Given two sets of values obtained from matched subjects denoted by xi1 and xi2
for i = 1, . . . , N pairs of subjects, the most popular matched-pairs test is Student’s
t test wherein the null hypothesis (H0) posits no difference between the means of
two populations; for example, H0: μ1 = μ2 or H0: μd = 0, where μd = μ1 − μ2.
Matched-pairs tests have become extremely popular in biology, animal husbandry,
and horticulture where cloning and embryo transplants produce closely matched
subjects.2

There are four advantages to matched-pairs tests under the Neyman–Pearson
population model when compared with tests for two independent samples under
the same model. First, because the variability between treatments has been reduced
by matching, matched-pairs tests generally provide either more power than a test for
two independent samples with the same number of subjects or the same power with
fewer subjects, where power is defined as the probability of rejecting a false null
hypothesis. In addition, permutation statistical methods are efficient alternatives for

1When the same, not matched, subjects are observed at two time periods, the test is often called
repeated-measures, within-subjects, subject-is-own-control, or a before-and-after test.
2It should be emphasized that cloning does not produce identical offspring. All the inherited
information is not carried in the genes of a cell’s nucleus. A very small number of genes are carried
by intracellular bodies, the mitochondria. When an egg cell has its nucleus removed to make room
for the genes of the donor cell, the egg cell has not had its mitochondria removed. The result of the
egg fusion is then a mixture of the nucleus genes from the donor and the mitochondrial genes from
the recipient.
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matched-pairs tests where the two samples are comprised of only a few observations
and where the approximating function may be a poor fit to the underlying discrete
sampling distribution.

Second, matched-pairs tests always have the same number of subjects in
each treatment. Tests for two independent samples often have different numbers
of subjects in each treatment—oftentimes wildly different numbers of subjects,
especially in survey research. Unequal numbers of subjects always yield a reduction
in power. Moreover, when the smaller of the two samples has the greater variance,
there is the risk of an increase in type I or α error: incorrectly rejecting a true null
hypothesis. On the other hand, when the larger of the two samples has the greater
variance, there is increased risk of type II or β error: failure to reject a false null
hypothesis. The problems are largely moot with matched-pairs tests as the sample
sizes are always equal.

Third, matched-pairs tests utilize the same or matched subjects in both treatment
conditions. Consequently, there is little risk that the subjects in one treatment
group differ substantially from the subjects in the other treatment group. With an
independent two-sample test there is always the possibility that the results are biased
because the subjects in one treatment are systematically different from the subjects
in the other treatment; for example, smarter, older, taller, richer, more educated,
bigger, faster, and so on.

Fourth, an underlying assumption of tests for two independent samples is
homogeneity of variance; that is, σ 2

1 = σ 2
2 . As Alvan Feinstein observed many

years ago, it is usually known that the variances of the two samples are not
remotely similar for a test of two independent samples [2]. When, for a test of two
independent samples the variances are unequal, then strictly speaking the t statistic
is not distributed as Student’s t with N − 2 degrees of freedom. This is generally
recognized as the Behrens–Fisher problem. When the variances are unequal test
statistic t is, in fact, distributed as Student’s t , but the degrees of freedom are known
with certitude only within defined limits; that is,

min(n1 − 1, n2 − 1) ≤ df ≤ n1 + n2 − 2 ,

and need to be approximated, typically using either a procedure given by Satterth-
waite [6]

d̂f =
(
s2

1/n1 + s2
2/n2

)2

(
s2

1/n1
)2/(

n1 − 1
) + (

s2
2/n2

)2/(
n2 − 1

)

or Welch [7]

d̂f =
(
s2

1/n1 + s2
2/n2

)2

(
s2

1/n1
)2/(

n1 + 1
) + (

s2
2/n2

)2/(
n2 + 1

) − 2 ,
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where n1 and n2 denote the sample sizes for samples 1 and 2, respectively, and
s2

1 and s2
2 denote the sample-estimated population variances for samples 1 and 2,

respectively.
Especially problematic is the combination of unequal variances and unequal

sample sizes, which often occurs in survey research. In general, homogeneity of
variance is not of concern with a matched-pairs t test as the two samples are either
matched or identical, except for exposure to a test stimulus or an experimental
intervention.

The primary disadvantage to matched-pairs designs whenever the same subjects
are used before and after a treatment or intervention is that factors other than the
treatment effect might cause a subject’s score to change from the first treatment
to the second. While the other factors might be the subject’s mood, health, stress,
and so on, the largest concern is carry-over or order effects, where participation in
the first treatment may influence the subject’s responses in the second treatment.
Subjects are quite often sensitized to information after exposure to the first
treatment. For example, a subject might gain experience in the first treatment that
helps the subject improve on the second treatment. In such cases, the difference in
the scores might not be due to the treatment, but might be due to practice. One way to
control for carry-over or order effects is to counterbalance the order of presentation
of treatments. Thus, half the subjects receive treatment 1 followed by treatment 2
and the other half receive treatment 2 followed by treatment 1, but this is not possible
in many applications.

The most common test for two matched samples under the Neyman–Pearson
population model of inference is a test wherein the null hypothesis (H0) posits no
mean difference between the two populations; for example, H0: μd = 0, where
μd = μ1 − μ2. Student’s t test is the most popular test for the mean difference
between two matched samples and is presented in every introductory textbook.3

Under the Neyman–Pearson population model with null hypothesis, H0: μd = 0,
Student’s t test for two matched samples is given by

t = d̄ − μd

sd̄
= d̄ − 0

sd̄
,

where d̄ is the arithmetic mean of the differences between variables x1 and x2 given
by

d̄ = 1

N

N∑
i=1

di ,

3Technically, when di = xi1 − xi2 for i = 1, . . . , N , Student’s t test for two matched samples is
simply a one-sample test and is treated as such in many introductory textbooks.
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di denotes the ith of N observed differences between xi1 and xi2 for i = 1, . . . , N ,
sd̄ is the sample-estimated standard error of d̄ given by

sd̄ = sd√
N

,

and sd denotes the sample-estimated population standard deviation of variable d

given by

sd =
[

1

N − 1

N∑
i=1

(
di − d̄

)2

]1/2

.

Assuming independence and normality, test statistic t is asymptotically dis-
tributed as Student’s t under the Neyman–Pearson null hypothesis with N − 1
degrees of freedom. The permissible probability of a type I error is denoted by α

and if the observed value of t is more extreme than the critical values of ±t that
define α, the null hypothesis is rejected with a probability of type I error equal to
or less than α for Student’s t distribution with N − 1 degrees of freedom, under the
assumption of normality.

The assumptions underlying Student’s matched-pairs t test are (1) the observa-
tions are independent within variables x1 and x2, (2) the data are random samples
from a well-defined population, and (3) variables x1 and x2 are normally distributed
in the population.

7.2 A Permutation Approach

Consider a matched-pairs test under the permutation model. Under the Fisher–
Pitman permutation model there is no null hypothesis specifying a population
parameter. Instead the null hypothesis is simply that all possible arrangements of
the observed differences occur with equal chance [4]. Furthermore, there is no
alternative hypothesis under the permutation model, no degrees of freedom, and
no specified α level. Moreover, there is no requirement of random sampling and no
assumption of normality.

A permutation alternative to the conventional matched-pairs t test is easily
defined [1]. Let di = xi1 − xi2 denote the observed sample differences for i =
1, . . . , N . The permutation matched-pairs test statistic is given by

δ =
(

N

2

)−1 N−1∑
i=1

N∑
j=i+1

∣∣di − dj

∣∣v , (7.1)

where for correspondence with Student’s matched-pairs t test, v = 2.
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Under the Fisher–Pitman permutation model, the exact probability of an
observed δ is the proportion of δ test statistic values calculated on all possible,
equally-likely arrangements of the observed differences that are equal to or less
than the observed value of δ; that is,

P(δ ≤ δo|H0) = number of δ values ≤ δo

M
,

where δo denotes the observed value of δ and M = 2N is the number of possible,
equally-likely arrangements of the N observed differences.

7.2.1 The Relationship Between Statistics t and δ

Under the Neyman–Pearson null hypothesis, H0: μd = 0, the functional relation-
ships between test statistics δ and t are given by

δ =
2

N∑
i=1

d2
i

t2 + N − 1
and t =

(
2

δ

N∑
i=1

d2
i − N + 1

)1/2

, (7.2)

where di = xi1 − xi2 for i = 1, . . . , N .

7.3 Example 1: Test Statistics t and δ

An example will serve to illustrate the relationships between test statistics t and
δ. As in previous chapters, consider a small set of data with N = 5 matched
subjects, as given in Table 7.1. For the example data listed in Table 7.1, N = 5,
d1 = +9, d2 = +7, d3 = +6, d4 = +5, d5 = +3, and let H0: μd = 0. Under
the Neyman–Pearson population model the sample mean is d̄ = 6.00, the sample

Table 7.1 Example data for
a matched-pairs test with
N = 5 subjects

Subject x1 x2 d

1 27 18 +9

2 24 17 +7

3 26 20 +6

4 24 19 +5

5 25 22 +3
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standard deviation of the differences is sd = 2.2361, the standard error of d̄ is

sd̄ = sd√
N

= 2.2361√
5

= 1.00 ,

and the observed value of Student’s t test statistic is

t = d̄ − μd

sd̄
= 6.00 − 0

1.00
= +6.00 .

Under the Neyman–Pearson null hypothesis, H0: μd = 0, test statistic t is
asymptotically distributed as Student’s t with N − 1 degrees of freedom. With
N − 1 = 5 − 1 = 4 degrees of freedom, the asymptotic two-tail probability value
of t = +6.00 is P = 0.3883×10−2, under the assumption of normality.

7.3.1 An Exact Analysis with v = 2

Under the Fisher–Pitman permutation model, employing squared Euclidean scaling
with v = 2 for correspondence with Student’s matched-pairs t test, the sum of the
squared differences between all pairs of differences is

N−1∑
i=1

N∑
j=i+1

∣∣di − dj

∣∣2 = |9 − 7|2 + |9 − 6|2 + |9 − 5|2 + |9 − 3|2

+ |7 − 6|2 + |7 − 5|2 + |7 − 3|2 + |6 − 5|2 + |6 − 3|2 + |5 − 3|2 = 100

and following Eq. (7.1) with v = 2, the observed value of test statistic δ is

δ =
(

N

2

)−1 N−1∑
i=1

N∑
j=i+1

∣∣di − dj

∣∣2 =
(

5

2

)−1

(100) = 2(100)

5(5 − 1)
= 10.00 .

Alternatively, the observed value of test statistic δ is

δ = 2s2
d = 2(2.2361)2 = 10.00 .

Following the expressions given in Eq. (7.2) for the functional relationships
between test statistics δ and t , the observed value of test statistic δ with respect
to the observed value of Student’s t test statistic is

δ =
2

N∑
i=1

d2
i

t2 + N − 1
= 2(92 + 72 + 62 + 52 + 32)

(6.00)2 + 5 − 1
= 10.00
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and the observed value of Student’s t test statistic with respect to the observed value
of test statistic δ is

t =
(

2

δ

N∑
i=1

d2
i − N + 1

)1/2

=
[

2(92 + 72 + 62 + 52 + 32)

10.00
− 5 + 1

]1/2

= ±6.00 .

Because of the functional relationship between test statistics δ and t , the exact
probability values given by

P(δ ≤ δo) = number of δ values ≤ δo

M

and

P(|t| ≥ |to|) = number of |t| values ≥ |to|
M

are equivalent under the Fisher–Pitman null hypothesis, where δo and to denote the
observed values of δ and t , respectively, and M is the number of possible, equally-
likely arrangements of the N = 5 matched pairs listed in Table 7.1.

To establish the exact permutation probability of δ = 10.00 (or t = ±6.00) under
the Fisher–Pitman permutation model, it is necessary to completely enumerate all
possible arrangements of the observed data, of which there are only

M = 2N = 25 = 32

possible, equally-likely arrangements in the reference set of all permutations of the
matched-pairs data listed in Table 7.1. Let yi = dizi denote the transformed di

values for i = 1, . . . , N where zi is either plus or minus one. Since M = 32 is a
small number, it is possible to list the z, y, δ, and |t| values in Table 7.2. Under
the Fisher–Pitman permutation model, the exact probability of an observed δ is
the proportion of δ test statistic values calculated on all possible, equally-likely
arrangements of the N = 5 matched pairs listed in Table 7.1 that are equal to
or less than the observed value of δ. For test statistic δ there are only two δ test
statistic values that are equal to or less than the observed value of δ = 10.00
(numbers 1 and 32 marked with asterisks) in Table 7.2. If all M arrangements of
the N = 10 observations listed in Table 7.1 occur with equal chance under the
Fisher–Pitman null hypothesis, the exact probability value computed on all M = 32
possible arrangements of the observed data with N = 5 subjects preserved for each
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Table 7.2 Calculation of δ and |t | values for differences d1 = +9, d2 = +7, d3 = +6, d4 = +5,
and d5 = +3

Number z y δ |t |
1∗ +1 + 1 + 1 + 1 + 1 +9 + 7 + 6 + 5 + 3 10.00 6.0000

2 +1 + 1 + 1 + 1 − 1 +9 + 7 + 6 + 5 − 3 42.40 2.3311

3 +1 + 1 + 1 − 1 + 1 +9 + 7 + 6 − 5 + 3 60.00 1.6330

4 +1 + 1 − 1 + 1 + 1 +9 + 7 − 6 + 5 + 3 67.60 1.3846

5 +1 − 1 + 1 + 1 + 1 +9 − 7 + 6 + 5 + 3 74.40 1.1732

6 −1 + 1 + 1 + 1 + 1 −9 + 7 + 6 + 5 + 3 85.60 0.8203

7 +1 + 1 + 1 − 1 − 1 +9 + 7 + 6 − 5 − 3 80.40 0.9875

8 +1 + 1 − 1 − 1 + 1 +9 + 7 − 6 − 5 + 3 93.60 0.5230

9 +1 − 1 − 1 + 1 + 1 +9 − 7 − 6 + 5 + 3 98.40 0.2550

10 −1 − 1 + 1 + 1 + 1 −9 − 7 + 6 + 5 + 3 99.60 0.1267

11 +1 + 1 − 1 + 1 − 1 +9 + 7 − 6 + 5 − 3 85.60 0.8203

12 +1 − 1 + 1 − 1 + 1 +9 − 7 + 6 − 5 + 3 96.40 0.3865

13 −1 + 1 − 1 + 1 + 1 −9 + 7 − 6 + 5 + 3 100.00 0.0000

14 +1 − 1 + 1 + 1 − 1 +9 − 7 + 6 + 5 − 3 90.00 0.6667

15 −1 + 1 + 1 − 1 + 1 −9 + 7 + 6 − 5 + 3 99.60 0.1267

16 −1 + 1 + 1 + 1 − 1 −9 + 7 + 6 + 5 − 3 96.40 0.3865

17 −1 − 1 − 1 + 1 + 1 −9 − 7 − 6 + 5 + 3 80.40 0.9875

18 −1 − 1 + 1 + 1 − 1 −9 − 7 + 6 + 5 − 3 93.60 0.5230

19 −1 + 1 + 1 − 1 − 1 −9 + 7 + 6 − 5 − 3 98.40 0.2550

20 +1 + 1 − 1 − 1 − 1 +9 + 7 − 6 − 5 − 3 99.60 0.1267

21 −1 − 1 + 1 − 1 + 1 −9 − 7 + 6 − 5 + 3 85.60 0.8203

22 −1 + 1 − 1 + 1 − 1 −9 + 7 − 6 + 5 − 3 96.40 0.3865

23 +1 − 1 + 1 − 1 − 1 +9 − 7 + 6 − 5 − 3 100.00 0.0000

24 −1 + 1 − 1 − 1 + 1 −9 + 7 − 6 − 5 + 3 90.00 0.6667

25 +1 − 1 − 1 + 1 − 1 +9 − 7 − 6 + 5 − 3 99.60 0.1267

26 +1 − 1 − 1 − 1 + 1 +9 − 7 − 6 − 5 + 3 96.40 0.3865

27 −1 − 1 − 1 − 1 + 1 −9 − 7 − 6 − 5 + 3 42.40 2.3311

28 −1 − 1 − 1 + 1 − 1 −9 − 7 − 6 + 5 − 3 60.00 1.6330

29 −1 − 1 + 1 − 1 − 1 −9 − 7 + 6 − 5 − 3 67.60 1.3846

30 −1 + 1 − 1 − 1 − 1 −9 + 7 − 6 − 5 − 3 74.40 1.1732

31 +1 − 1 − 1 − 1 − 1 +9 − 7 − 6 − 5 − 3 85.60 0.8203

32∗ −1 − 1 − 1 − 1 − 1 −9 − 7 − 6 − 5 − 2 10.00 6.0000

Sum 2560.00

arrangement is

P(δ ≤ δo) = number of δ values ≤ δo

M
= 2

32
= 0.0625 ,

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the N = 5 matched pairs listed in Table 7.1.
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Alternatively, for test statistic t there are exactly two |t| values that are equal to
or greater than the observed value of |t| = 6.00 (numbers 1 and 32 marked with
asterisks) in Table 7.2. If all M = 32 arrangements of the observed data listed in
Table 7.1 occur with equal chance, the exact probability value is

P(|t| ≥ |to|) = number of |t| values ≥ |to|
M

= 2

32
= 0.0625 ,

where to denotes the observed value of test statistic t .
Finally, for computational efficiency it should be noted that the δ and |t| values

in Table 7.2 possess duplicate values; for example, δ1 = δ32 = 10.00, δ2 = δ27 =
42.40, δ3 = δ28 = 60.00, and so on. Therefore, it is only necessary to generate

M = 2N−1 = 25−1 = 16 instead of M = 2N = 25 = 32

equally-likely arrangements of the observed data. Table 7.3 lists the M = 16 non-
duplicated values ordered by the δ values from low (δ1 = 10.00) to high (δ16 =
100.00) and by the |t| values from high (t1 = 6.0000) to low (t16 = 0.0000).

In this example analysis there is a considerable difference between the asymp-
totic probability value (P = 0.3883×10−2) and the exact permutation probability
value (P = 0.0625); the actual difference between the two probability values is

�P = 0.0625 − 0.0039 = 0.0586 .

Table 7.3 Calculation of δ and |t | values for x1 = 9, x2 = 7, x3 = 5, and x4 = 2

Number z y δ |t |
1 +1 + 1 + 1 + 1 + 1 +9 + 7 + 6 + 5 + 3 10.00 6.0000

2 +1 + 1 + 1 + 1 − 1 +9 + 7 + 6 + 5 − 3 42.40 2.3311

3 +1 + 1 + 1 − 1 + 1 +9 + 7 + 6 − 5 + 3 60.00 1.6330

4 +1 + 1 − 1 + 1 + 1 +9 + 7 − 6 + 5 + 3 67.60 1.3846

5 +1 − 1 + 1 + 1 + 1 +9 − 7 + 6 + 5 + 3 74.40 1.1732

7 +1 + 1 + 1 − 1 − 1 +9 + 7 + 6 − 5 − 3 80.40 0.9875

6 −1 + 1 + 1 + 1 + 1 −9 + 7 + 6 + 5 + 3 85.60 0.8203

8 +1 + 1 − 1 + 1 − 1 +9 + 7 − 6 + 5 − 3 85.60 0.8203

9 +1 − 1 + 1 + 1 − 1 +9 − 7 + 6 + 5 − 3 90.00 0.6667

10 +1 + 1 − 1 − 1 + 1 +9 + 7 − 6 − 5 + 3 93.60 0.5230

11 +1 − 1 + 1 − 1 + 1 +9 − 7 + 6 − 5 + 3 96.40 0.3865

12 −1 + 1 + 1 + 1 − 1 −9 + 7 + 6 + 5 − 3 96.40 0.3865

13 +1 − 1 − 1 + 1 + 1 +9 − 7 − 6 + 5 + 3 98.40 0.2550

14 −1 − 1 + 1 + 1 + 1 −9 − 7 + 6 + 5 + 3 99.60 0.1267

15 −1 + 1 + 1 − 1 + 1 −9 + 7 + 6 − 5 + 3 99.60 0.1267

16 −1 + 1 − 1 + 1 + 1 −9 + 7 − 6 + 5 + 3 100.00 0.0000
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In general, asymptotic tests are not appropriate for samples as small as N = 5, while
exact permutation tests are ideally suited for small samples. Fitting a continuous
mathematical function such as Student’s t to a discrete distribution with only M =
16 data points of which only 13 values are different often results in a poor fit to the
discrete probability distribution. A larger example in Sect. 7.6 on p. 230 with N =
30 observations and M = 1,073,741,824 possible arrangements better illustrates
the differences in probability values produced by a conventional matched-pairs t

test and a permutation matched-pairs test with v = 2.

7.4 Example 2: Measures of Effect Size

Measures of effect size express the practical or clinical significance of a difference
between sample means, as contrasted with the statistical significance of the differ-
ence. The usual measures of effect size for a conventional matched-pairs t test are
Cohen’s d̂ given by

d̂ = |d̄ − μd |
sd

,

Pearson’s r2 given by

r2 = t2

t2 + N − 1
,

and Mielke and Berry’s � given by

� = 1 − δ

μδ

, (7.3)

where δ is defined in Eq. (7.1) on p. 211 and μδ is the exact expected value of test
statistic δ under the Fisher–Pitman null hypothesis given by

μδ = 1

M

M∑
i=1

δi , (7.4)

where for a matched-pairs test M = 2N . For calculation purposes the exact expected
value of test statistic δ is given by

μδ = 1

N(N − 1)

N−1∑
i=1

N∑
j=i+1

(
|di − dj |2 + |di + dj |2

)
. (7.5)
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Alternatively, in terms of an analysis of variance model the expected value of test
statistic δ is given by

μδ = 2SSTotal

N(1 − r2)
,

where the total sum-of-squares is given by

SSTotal =
N∑

i=1

(
di − d̄

)2
,

the mean of the N differences is given by

d̄ = 1

N

N∑
i=1

di ,

and Pearson’s r2 measure of effect size is given by

r2 = t2

t2 + N − 1
.

For the example data with N = 5, d1 = +9, d2 = +7, d3 = +6, d4 = +5,
d5 = +3, and H0: μd = 0, Cohen’s d̂ measure of effect size is

d̂ = |d̄ − μd |
sd

= |6.00 − 0|
2.2361

= 2.6833 ,

indicating a large effect size (d̂ ≥ 0.80) and Pearson’s r2 measure of effect size is

r2 = t2

t2 + N − 1
= (6.00)2

(6.00)2 + 5 − 1
= 0.90 ,

also indicating a large effect size (r2 ≥ 0.25).4

For Mielke and Berry’s � measure of effect size, the observed value of test
statistic δ is δ = 10.00 and following Eq. (7.4), the exact expected value of test

4Given the relationships between Cohen’s d̂ and Pearson’s r2 and given the wide range of values
defining “small,” “medium,” and “large” effect sizes, the results for d̂ and r2 often agree, but
occasionally will disagree.
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statistic δ under the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 2560

32
= 80.00 ,

where the sum,

M∑
i=1

δi = 2560 ,

is calculated in Table 7.2 on p. 215. Alternatively, following Eq. (7.4) the exact
expected value of test statistic δ under the Fisher–Pitman null hypothesis is

μδ = 1

N(N − 1)

N−1∑
i=1

N∑
j=i+1

(|di − dj |2 + |di + dj |2
) = 1600

5(5 − 1)
= 80.00 ,

where the sum,

N−1∑
i=1

N∑
j=i+1

(
|di − dj |2 + |di + dj |2

)
= 1600 ,

is calculated in Table 7.4 on the

N(N − 1)

2
= 5(5 − 1)

2
= 10

Table 7.4 Example calculation of
∑N−1

i=1
∑N

j=i+1

(|di − dj |2 + |di + dj |2
)

Number |di − dj |2 |di + dj |2 |di − dj |2 + |di + dj |2
1 |9 − 7|2 = 4 |9 + 7|2 = 256 260

2 |9 − 6|2 = 9 |9 + 6|2 = 225 234

3 |9 − 5|2 = 16 |9 + 5|2 = 196 212

4 |9 − 3|2 = 36 |9 + 3|2 = 144 180

5 |7 − 6|2 = 1 |7 + 6|2 = 169 170

6 |7 − 5|2 = 4 |7 + 5|2 = 144 148

7 |7 − 3|2 = 16 |7 + 3|2 = 100 116

8 |6 − 5|2 = 1 |6 + 5|2 = 121 122

9 |6 − 3|2 = 9 |6 + 3|2 = 81 90

10 |5 − 3|2 = 4 |5 + 3|2 = 64 68

Sum 1600
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pairs of squared differences. Then the observed chance-corrected measure of effect
size is

� = 1 − δ

μδ

= 1 − 10.00

80.00
= +0.8750 ,

indicating approximately 87% agreement above what is expected by chance.

7.4.1 Relationships Among Measures of Effect Size

For a matched-pairs test, Student’s t , Cohen’s d̂ , Pearson’s r2, and Mielke and
Berry’s � are all interrelated. Any one of the measures can be derived from any of
the other measures. The relationships between Student’s t test statistic and Cohen’s
d̂ measure of effect size are given by

t = d̂
√

N and d̂ = t√
N

, (7.6)

the relationships between Student’s t test statistic and Pearson’s r2 measure of effect
size are given by

t =
[
r2(N − 1)

1 − r2

]1/2

and r2 = t2

t2 + N − 1
, (7.7)

the relationships between Student’s t test statistic and Mielke and Berry’s � measure
of effect size are given by

t =
[�(N − 1) + 1

1 − �
]1/2

and � = t2 − 1

t2 + N − 1
, (7.8)

the relationships between Cohen’s d̂ measure of effect size and Pearson’s r2 measure
of effect size are given by

d̂ =
[
r2(N − 1)

N(1 − r2)

]1/2

and r2 = Nd̂ 2

N(d̂ 2 + 1) − 1
, (7.9)

the relationships between Cohen’s d̂ measure of effect size and Mielke and Berry’s
� measure of effect size are given by

d̂ =
[�(N − 1) + 1

N(1 − �)

]1/2

and � = Nd̂ 2 − 1

N(d̂ 2 + 1) − 1
, (7.10)
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and the relationships between Pearson’s r2 measure of effect size and Mielke and
Berry’s � measure of effect size are given by

r2 = 1 − (1 − �)(N − 1)

N
and � = 1 − N(1 − r2)

N − 1
. (7.11)

For the example data listed in Table 7.1 on p. 212 and following the expressions
given in Eq. (7.6) for Student’s t test statistic and Cohen’s d̂ measure of effect size,
the observed value for Student’s t test statistic with respect to the observed value of
Cohen’s d̂ measure of effect size is

t = d̂
√

N = 2.6833
√

5 = ±6.00

and the observed value for Cohen’s d̂ measure of effect size with respect to the
observed value of Student’s t test statistic is

d̂ = t√
N

= ±6.00√
5

= ±2.6833 .

Following the expressions given in Eq. (7.7) for Student’s t test statistic and
Pearson’s r2 measure of effect size, the observed value for Student’s t test statistic
with respect to the observed value of Pearson’s r2 measure of effect size is

t =
[
r2(N − 1)

1 − r2

]1/2

=
[

0.90(5 − 1)

1 − 0.90

]1/2

= ±6.00

and the observed value of Pearson’s r2 measure of effect size with respect to the
observed value of Student’s t test statistic is

r2 = t2

t2 + N − 1
= (6.00)2

(6.00)2 + 5 − 1
= 0.90 .

Following the expressions given in Eq. (7.8) for Student’s t test statistic and
Mielke and Berry’s � measure of effect size, the observed value for Student’s t

test statistic with respect to the observed value of Mielke and Berry’s � measure of
effect size is

t =
[�(N − 1) + 1

1 − �
]1/2

=
[

0.8750(5 − 1) + 1

1 − 0.8750

]1/2

= ±6.00

and the observed value of Mielke and Berry’s � measure of effect size with respect
to the observed value of Student’s t test statistic is

� = t2 − 1

t2 + N − 1
= (6.00)2 − 1

(6.00)2 + 5 − 1
= +0.8750 .
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Following the expressions given in Eq. (7.9) for Cohen’s d̂ measure of effect size
and Pearson’s r2 measure of effect size, the observed value for Cohen’s d̂ measure
of effect size with respect to the observed value of Pearson’s r2 measure of effect
size is

d̂ =
[
r2(N − 1)

N(1 − r2)

]1/2

=
[

0.90(5 − 1)

5(1 − 0.90)

]1/2

= ±2.6833

and the observed value of Pearson’s r2 measure of effect size with respect to the
observed value of Cohen’s d̂ measure of effect size is

r2 = Nd̂ 2

N(d̂ 2 + 1) − 1
= 5(2.6833)2

5[(2.6833)2 + 1] − 1
= 0.90 .

Following the expressions given in Eq. (7.10) for Cohen’s d̂ measure of effect
size and Mielke and Berry’s � measure of effect size, the observed value of Cohen’s
d̂ measure of effect size with respect to the observed value of Mielke and Berry’s �
measure of effect size is

d̂ =
[�(N − 1) + 1

N(1 − �)

]1/2

=
[

0.8750(5 − 1) + 1

5(1 − 0.8750)

]1/2

= ±2.6833

and the observed value of Mielke and Berry’s � measure of effect size with respect
to the observed value of Cohen’s d̂ measure of effect size is

� = Nd̂ 2 − 1

N(d̂ 2 + 1) − 1
= 5(2.6833)2 − 1

5[(2.6833)2 + 1] − 1
= +0.8750 .

And following the expressions given in Eq. (7.11) for Pearson’s r2 measure of
effect size and Mielke and Berry’s � measure of effect size, the observed value for
Pearson’s r2 measure of effect size with respect to the observed value of Mielke and
Berry’s � measure of effect size is

r2 = 1 − (1 − �)(N − 1)

N
= 1 − (1 − 0.8750)(5 − 1)

5
= 0.90

and the observed value of Mielke and Berry’s � measure of effect size with respect
to the observed value of Pearson’s r2 measure of effect size is

� = 1 − N(1 − r2)

N − 1
= 1 − 5(1 − 0.90)

5 − 1
= +0.8750 .
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7.5 Example 3: Analyses with v = 2 and v = 1

For a third example of a matched-pairs test under the Neyman–Pearson population
model, consider the data on N = 9 subjects listed in Table 7.5. For the example
data listed in Table 7.5, the null hypothesis is H0: μd = 0; that is, no difference
is expected between the treatments. The sample mean is d̄ = −2.00, the sample
standard deviation of the differences is sd = 2.00, the standard error of d̄ is

sd̄ = sd√
N

= 2.00√
9

= 0.6667 ,

and the observed value of Student’s matched-pairs t test statistic is

t = d̄ − μd

sd̄
= −2.00 − 0

0.6667
= −3.00 .

Under the Neyman–Pearson null hypothesis, H0: μd = 0, test statistic t is
asymptotically distributed as Student’s t with N − 1 degrees of freedom. With
N − 1 = 9 − 1 = 8 degrees of freedom, the asymptotic two-tail probability value
of t = −3.00 is P = 0.0171, under the assumption of normality.

7.5.1 An Exact Analysis with v = 2

Under the Fisher–Pitman permutation model, employing squared Euclidean scaling
with v = 2 for correspondence with Student’s conventional matched-pairs t test, the
observed value of test statistic δ is

δ =
(

N

2

)−1 N−1∑
i=1

N∑
j=i+1

∣∣di − dj

∣∣v =
(

9

2

)−1

(288) = 2(288)

9(9 − 1)
= 8.00 .

Table 7.5 Example data for
a matched-pairs test with
N = 9 subjects

Subject x1 x2 d d2

1 9 7 −2 4

2 8 7 −1 1

3 7 3 −4 16

4 7 8 +1 1

5 8 6 −2 4

6 9 4 −5 25

7 7 6 −1 1

8 7 7 0 0

9 8 4 −4 16

Sum −18 68
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Following the expressions given in Eq. (7.2) on p. 212 for the relationships between
test statistics δ and t , the observed value of test statistic δ with respect to the
observed value of Student’s t test statistic is

δ =
2

N∑
i=1

d2
i

t2 + N − 1
= 2(68)

(−3.00)2 + 9 − 1
= 8.00 .

Alternatively, the observed value of test statistic δ is

δ = 2s2
d = 2(2.00)2 = 8.00 ,

or in terms of an analysis of variance model,

δ = 2SSTotal

N − 1
= 2(32)

9 − 1
= 8.00 ,

where for the example data listed in Table 7.5, the sum of the N = 9 differences is

N∑
i=1

di = (−2) + (−1) + (−4) + · · · + (0) + (−1) = −18 ,

the sum of the N = 9 squared differences is

N∑
i=1

d2
i = (−2)2 + (−1)2 + (−4)2 + · · · + (0)2 + (−1)2 = 68 ,

and the total sum-of-squares is

SSTotal =
N∑

i=1

d2
i −

(
N∑

i=1

di

)2/
N = 68 − (18)2/9 = 32 .

Conversely, the observed value of Student’s t test statistic with respect to the
observed value of test statistic δ is

t =
(

2

δ

N∑
i=1

d2
i − N + 1

)1/2

=
[

2(68)

8.00
− 9 + 1

]1/2

= ±3.00 .

Because of the relationship between test statistic δ and Student’s t , the probability
values given by

P(δ ≤ δo) = number of δ values ≤ δo

M
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and

P(|t| ≥ |to|) = number of |t| values ≥ |to|
M

are equivalent under the Fisher–Pitman null hypothesis, where δo and to denote
the observed values of test statistics δ and t , respectively, and M is the number of
possible, equally-likely arrangements of the N = 9 matched pairs listed in Table 7.5.

There are only

M = 2N = 29 = 512

possible, equally-likely arrangements in the reference set of all permutations of the
matched-pairs data listed in Table 7.5, making an exact analysis possible. Under
the Fisher–Pitman permutation model, the exact probability of an observed δ is
the proportion of δ test statistic values calculated on all possible, equally-likely
arrangements of the N = 9 matched pairs listed in Table 7.5 that are equal to or
less than the observed value of δ = 8.00. For test statistic δ there are exactly 16 δ

test statistic values that are equal to or less than the observed value of δ = 8.00.
If all M arrangements of the N = 18 observations listed in Table 7.5 occur with
equal chance under the Fisher–Pitman null hypothesis, the exact probability value
computed on the M = 512 possible arrangements of the observed data with N = 9
subjects preserved for each arrangement is

P(δ ≤ δo) = number of δ values ≤ δo

M
= 16

512
= 0.0313

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the N = 9 matched pairs listed in Table 7.5.

Alternatively, for test statistic t there are 16 |t| test statistic values that are equal
to or greater than the observed value of |t| = 6.00. Then if all M arrangements of
the observed data occur with equal chance under the Fisher–Pitman null hypothesis,
the exact two-tail probability value is

P(|t| ≥ |to|) = number of |t| values ≥ |to|
M

= 16

512
= 0.0313 ,

where to denotes the observed value of test statistic t .

7.5.2 Chance-Corrected Measures of Effect Size

The conventional measures of effect size for a matched-pairs t test are Cohen’s d̂

measure given by

d̂ = |d̄ − μd |
sd

,
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Pearson’s r2 measure given by

r2 = t2

t2 + N − 1
,

and Mielke and Berry’s � measure given by

� = 1 − δ

μδ

,

where test statistic δ is defined in Eq. (7.1) on p. 211 and μδ is the exact expected
value of test statistic δ under the Fisher–Pitman null hypothesis given by

μδ = 1

M

M∑
i=1

δi , (7.12)

where for a matched-pairs test, M = 2N . For calculation purposes,

μδ = 1

N(N − 1)

N−1∑
i=1

N∑
j=i+1

(
|di − dj |2 + |di + dj |2

)
. (7.13)

For the example data listed in Table 7.5 with N = 9 matched pairs and null
hypothesis, H0: μd = 0, Cohen’s d̂ measure of effect size is

d̂ = |d̄ − μd |
sd

= | − 2.00 − 0|
2.00

= 1.00 ,

indicating a large effect size (d̂ ≥ 0.80) and Pearson’s r2 measure of effect size is

r2 = t2

t2 + N − 1
= (−3.00)2

(−3.00)2 + 9 − 1
= 0.5294 ,

also indicating a large effect size (r2 ≥ 0.25). For Mielke and Berry’s � measure of
effect size, the observed value of test statistic δ is δ = 8.00 and following Eq. (7.4)
on p. 217 the exact expected value of test statistic δ under the Fisher–Pitman null
hypothesis is

μδ = 1

M

M∑
i=1

δi = 7736.8888

512
= 15.1111 .
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Alternatively, following Eq. (7.5) on p. 217,

μδ = 1

N(N − 1)

N−1∑
i=1

N∑
j=i+1

(
|di − dj |2 + |di + dj |2

)

= 1088

9(9 − 1)
= 15.1111 .

Then the observed chance-corrected measure of effect size is

� = 1 − δ

μδ

= 1 − 8.00

15.1111
= +0.4707 ,

indicating approximately 47% agreement above what is expected by chance.

7.5.3 An Exact Analysis with v = 1

Consider an analysis of the example data listed in Table 7.5 on p. 223 under
the Fisher–Pitman permutation model with v = 1, employing ordinary Euclidean
scaling. For the N = 9 matched pairs listed in Table 7.5 with v = 1, the observed
value of test statistic δ is

δ =
(

N

2

)−1 N−1∑
i=1

N∑
j=i+1

∣∣di − dj

∣∣v =
(

9

2

)−1

(86) = 2(86)

9(9 − 1)
= 2.3889 .

There are only

M = 2N = 29 = 512

possible, equally-likely arrangements in the reference set of all permutations of
the N = 9 matched pairs listed in Table 7.5, making an exact analysis feasible.
Under the Fisher–Pitman permutation model, the exact probability of an observed
δ is the proportion of δ test statistic values calculated on all possible, equally-likely
arrangements of the N = 9 matched pairs listed in Table 7.5 that are equal to or
less than the observed value of δ = 2.3889. For test statistic δ there are exactly 16 δ

test statistic values that are equal to or less than the observed value of δ = 2.3889.
If all M arrangements of the N = 18 observations listed in Table 7.5 occur with
equal chance under the Fisher–Pitman null hypothesis, the exact probability value
computed on the M = 512 possible arrangements of the observed data with N = 9
subjects preserved for each arrangement is

P(δ ≤ δo|H0) = number of δ values ≤ δo

M
= 16

512
= 0.0313 ,
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where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the N = 9 matched pairs listed in Table 7.5.
No comparison is made with Student’s t test statistic for two matched samples as
Student’s t is undefined for ordinary Euclidean scaling.

Following Eq. (7.5) on p. 217 the exact expected value of test statistic δ under the
Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 1649.7778

512
= 3.2222

and the observed chance-corrected measure of effect size is

� = 1 − δ

μδ

= 1 − 2.3889

3.2222
= +0.2586 ,

indicating approximately 26% agreement above what is expected by chance. No
comparisons are made with Cohen’s d̂ or Pearson’s r2 conventional measures of
effect size for two matched samples as d̂ and r2 are undefined for ordinary Euclidean
scaling.

7.5.4 A Comparison of v = 2 and v = 1

Unlike the tests for two independent samples discussed in Chap. 6, matched-pairs
designs often exhibit very little difference under squared Euclidean scaling with
v = 2 and ordinary Euclidean scaling with v = 1. To illustrate, for the example data
listed in Table 7.5 on p. 223 with N = 9 matched pairs, v = 2, and δ = 8.00, the
exact probability value to five decimal places is P = 0.03125. For the same data
with v = 1 and δ = 2.3889, the exact probability value to five decimal places is
also P = 0.03125.

Inserting an extreme value does not alter the result. Consider the example data
listed in Table 7.6 which is the same data listed in Table 7.5 with one alteration: the
x1 score for Subject 9 has been increased from 8 to 18 and the associated difference
score has been decreased from −4 to −14. For the example data listed in Table 7.6
with v = 2 and δ = 40.2222, the exact probability value is unchanged at P =
0.03125. For the data listed in Table 7.6 with v = 1 and δ = 4.5556, the exact
probability value is unchanged at P = 0.03125.

For matched-pairs analyses, whenever all, or almost all, of the difference scores
possess the same sign, v = 2 and v = 1 typically yield the same result, even with an
included extreme score. In the case of the example data listed in Tables 7.5 and 7.6,
seven of the N = 9 difference scores are negative, only one difference score is
positive, and one is unsigned (zero).
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Table 7.6 Example data for
a matched-pairs test with
N = 9 subjects, including an
extreme difference score
(x91 = 18)

Subject x1 x2 d d2

1 9 7 −2 4

2 8 7 −1 1

3 7 3 −4 16

4 7 8 +1 1

5 8 6 −2 4

6 9 4 −5 25

7 7 6 −1 1

8 7 7 0 0

9 18 4 −14 196

Sum −28 248

Table 7.7 Example data for
a matched-pairs test with
N = 9 subjects and no
extreme values

Subject x1 x2 d d2

1 7 9 +2 4

2 7 8 +1 1

3 3 7 +4 16

4 7 8 +1 1

5 8 6 −2 4

6 9 4 −5 25

7 7 6 −1 1

8 7 7 0 0

9 8 4 −4 16

Sum −4 68

Now consider a set of data with a mix of positive and negative difference scores,
such as in Table 7.7. The data listed in Table 7.7 are the same difference scores
listed in Table 7.5, but some signs have been changed so that there are four positive
difference scores, four negative difference scores, and one unsigned (zero) score.
For the example data listed in Table 7.7 with v = 2 and δ = 13.00, the exact
probability value is P = 0.1953. For the data listed in Table 7.7 with v = 1 and
δ = 3.0556, the exact probability value is P = 0.2013 for a difference between the
two probability values of only

�P = 0.2013 − 0.1953 = 0.0060 .

The analysis of the matched-pairs data listed in Table 7.7 illustrates that v = 2
and v = 1 yield similar results when the signs are mixed and there are no extreme
values.

Finally, consider the example data listed in Table 7.8. The data listed in Table 7.8
are the same data listed in Table 7.7 with one alteration: the x1 score for Subject
9 has been increased from 8 to 18 and the associated difference score has been
decreased from −4 to −14. For the example data listed in Table 7.8 with v = 2
and δ = 55.5556, the exact probability value is P = 0.5547. For the data listed in
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Table 7.8 Example data for
a matched-pairs test with
N = 9 subjects, including an
extreme difference score
(x91 = 18)

Subject x1 x2 d d2

1 7 9 +2 4

2 7 8 +1 1

3 3 7 +4 16

4 7 8 +1 1

5 8 6 −2 4

6 9 4 −5 25

7 7 6 −1 1

8 7 7 0 0

9 18 4 −14 196

Sum −14 248

Table 7.8 with v = 1 and δ = 5.6111, the exact probability value is P = 0.8594,
for a difference between the two probability values with v = 2 and v = 1 of

�P = 0.8594 − 0.5547 = 0.3047 .

The analysis of the matched-pairs data listed in Table 7.8 illustrates the possible
differences between v = 2 and v = 1 with an extreme difference score and mixed
positive and negative signs.

7.6 Example 4: Exact and Monte Carlo Analyses

For a fourth, larger example of a matched-pairs test under the Neyman–Pearson
population model, consider the data on N = 30 matched pairs listed in Table 7.9.
The data listed in Table 7.9 represent the number of correct answers on two
standardized examinations with 240 multiple-choice questions each on Mathematics
(x1) and English (x2) taken by N = 30 students in the 7th grade at a private charter
school. For the score data listed in Table 7.9, the null hypothesis is H0: μd = 0,
where μd = μ1 − μ2; that is, no difference is expected between the two tests.
The mean of the difference scores is d̄ = +23.7667, the standard deviation of the
difference scores is sd = 65.8639, the standard error of d̄ is

sd̄ = sd√
N

= 65.8639√
30

= 12.0250 ,

and the observed value of Student’s t test statistic is

t = d̄ − μd

sd̄
= +23.7667 − 0

12.0250
= +1.9764 .
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Table 7.9 Examination
scores in Mathematics (x1)
and English (x2) for N = 30
students in the 7th grade at a
private charter school

Subject x1 x2 d Subject x1 x2 d

1 207 118 +89 16 179 128 +51

2 200 113 +87 17 205 154 +51

3 203 116 +87 18 199 149 +50

4 198 113 +85 19 188 138 +50

5 197 112 +85 20 160 110 +50

6 193 110 +83 21 132 178 −46

7 186 109 +77 22 146 197 −51

8 185 108 +77 23 135 191 −56

9 185 109 +76 24 140 199 −59

10 181 109 +72 25 152 218 −66

11 172 104 +68 26 167 234 −67

12 184 119 +65 27 129 200 −71

13 190 130 +60 28 133 207 −74

14 186 131 +55 29 128 209 −81

15 185 133 +52 30 142 228 −86

Under the Neyman–Pearson null hypothesis, H0: μd = 0, test statistic t is
asymptotically distributed as Student’s t with N − 1 degrees of freedom. With
N − 1 = 30 − 1 = 29 degrees of freedom, the asymptotic two-tail probability
value of t = +1.9764 is P = 0.0577, under the assumption of normality.

7.6.1 A Monte Carlo Analysis with v = 2

For the first analysis of the examination score data listed in Table 7.9 under the
Fisher–Pitman permutation model, employing squared Euclidean scaling with v = 2
for correspondence with Student’s conventional matched-pairs t test, the observed
value of test statistic δ is

δ =
(

N

2

)−1 N−1∑
i=1

N∑
j=i+1

∣∣di − dj

∣∣v = 2(3,774,101)

30(30 − 1)
= 8676.0943 .

Alternatively, in terms of an analysis of variance model,

δ = 2SSTotal

N − 1
= 2(125,803.3667)

30 − 1
= 8676.0943 ,

where for the examination data listed in Table 7.9, the sum of the N = 30 differences
is

N∑
i=1

di = (+89) + (+87) + (+87) + · · · + (−81) + (−86) = +713 ,
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the sum of the N = 30 squared differences is

N∑
i=1

d2
i = (+89)2 + (+87)2 + (+87)2 + · · · + (−81)2 + (−86)2 = 142,749 ,

and the total sum-of-squares is

SSTotal =
N∑

i=1

d2
i −

(
N∑

i=1

di

)2/
N

= 142,749 − (713)2/30 = 125,803.3667 .

Following the expressions given in Eq. (7.2) on p. 212 for the relationships
between test statistics δ and t , the observed value of test statistic δ with respect
to the observed value of Student’s t test statistic is

δ =
2

N∑
i=1

d2
i

t2 + N − 1
= 2(142,749)

(+1.9764)2 + 30 − 1
= 8676.0943

and the observed value of Student’s t test statistic with respect to the observed value
of test statistic δ is

t =
(

2

δ

N∑
i=1

d2
i − N + 1

)1/2

=
[

2(142,749)

8676.0943
− 30 + 1

]1/2

= ±1.9764 .

Because of the functional relationship between test statistic δ and Student’s t , the
probability values given by

P(δ ≤ δo) = number of δ values ≤ δo

M

and

P(|t| ≥ |to|) = number of |t| values ≥ |to|
M

are equivalent under the Fisher–Pitman null hypothesis, where δo and to denote the
observed values of δ and t , respectively, and M is the number of possible, equally-
likely arrangements of the N = 30 matched-pairs examination scores listed in
Table 7.9.
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There are

M = 2N = 230 = 1,073,741,824

possible, equally-likely arrangements in the reference set of all permutations of the
N = 30 matched-pairs examination scores listed in Table 7.9, making an exact per-
mutation analysis impractical. When the number of possible arrangements is very
large, Monte Carlo permutation methods are more practical than exact permutation
methods. Monte Carlo permutation methods generate and evaluate a large random
sample of all possible arrangements of the observed data. Under the Fisher–Pitman
permutation model, the Monte Carlo probability value is the proportion of δ test
statistic values computed on the randomly-selected arrangements of the observed
data that are equal to or less than the observed test statistic value. In general, a
random sample of L = 1,000,000 is sufficient to ensure three decimal places of
accuracy [5].

For the examination score data listed in Table 7.9 a sample of L = 1,000,000
random arrangements of the observed data yields exactly 53,342 δ test statistic
values that are equal to or less than the observed value of δ = 8676.0943. If all
M arrangements of the N = 30 observations listed in Table 7.9 occur with equal
chance under the Fisher–Pitman null hypothesis, the Monte Carlo probability value
of δ = 8676.0943 is

P(δ ≤ δo) = number of δ values ≤ δo

L
= 53,342

1,000,000
= 0.0533 ,

where δo denotes the observed value of δ and L is the number of randomly-selected,
equally-likely arrangements of the N = 30 matched-pairs examination scores listed
in Table 7.9. For the examination score data listed in Table 7.9, the exact expected
value of test statistic δ under the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 10,218,371,442,278.40

1,073,741,824
= 9516.60

and the observed chance-corrected measure of effect size is

� = 1 − δ

μδ

= 1 − 8676.0943

9516.60
= +0.0883 ,

indicating approximately 9% agreement among the N = 30 scores above what is
expected by chance. For comparison, Cohen’s measure of effect size is

d̂ = |d̄ − μd |
sd

= 23.7667 − 0

65.8639
= 0.3608 ,
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indicating a medium effect size (0.20 < d̂ < 0.80), and Pearson’s measure of effect
size is

r2 = t2

t2 + N − 1
= (+1.9764)2

(+1.9764)2 + 30 − 1
= 0.1187 ,

also indicating a medium effect size (0.09 < r2 < 0.25).

7.6.2 An Exact Analysis with v = 2

Although an exact permutation analysis is not practical for the score data listed
in Table 7.9, it is not impossible. For an exact permutation analysis with v = 2,
the observed value of δ is δ = 8676.0943, the exact expected value of test
statistic δ under the Fisher–Pitman null hypothesis is μδ = 9516.60, and there
are exactly 56,876,624 δ test statistic values that are equal to or less than the
observed value of δ = 8676.0943. If all M arrangements of the N = 30
observations listed in Table 7.9 occur with equal chance under the Fisher–Pitman
null hypothesis, the exact probability value computed on the M = 1,073,741,824
possible arrangements of the observed data with N = 30 examination scores
preserved for each arrangement is

P(δ ≤ δo|H0) = number of δ values ≤ δo

M
= 56,876,624

1,073,741,824
= 0.0530 .

Note that the Monte Carlo probability value of P = 0.0533 based on L =
1,000,000 randomly-selected arrangements of the observed data compares favor-
ably with the exact probability value of P = 0.0530 based on all M =
1,073,741,824 arrangements of the observed data. The difference between the two
probability values is only

�P = 0.0533 − 0.0530 = 0.0003 .

In general, a random sample of L = 1,000,000 arrangements ensures a probability
value accurate to three decimal places, provided the probability value is not too
small [5]. Finally, the observed chance-corrected measure of effect size is

� = 1 − δ

μδ

= 1 − 8676.0943

9516.60
= +0.0883 ,

indicating approximately 9% agreement among the N = 30 scores above what is
expected by chance. Alternatively, in terms of Student’s t test statistic

� = t2 − 1

t2 + N − 1
= (+1.9764)2 − 1

(+1.9764)2 + 30 − 1
= +0.0883 .
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7.6.3 A Monte Carlo Analysis with v = 1

For a second analysis of the data listed in Table 7.9 under the Fisher–Pitman
permutation model, employing ordinary Euclidean scaling with v = 1, the observed
value of test statistic δ is δ = 70.6391, the exact expected value of test statistic δ

under the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 81,377,282,228.2240

1,073,741,824
= 75.7885 ,

and the Monte Carlo probability value based on a sample of L = 1,000,000 random
arrangements of the observed data with N = 30 examination scores preserved for
each arrangement is

P(δ ≤ δo) = number of δ values ≤ δo

L
= 50,302

1,000,000
= 0.0503 ,

where δo denotes the observed value of δ and L is the number of randomly-selected,
equally-likely arrangements of the N = 30 matched-pairs examination scores listed
in Table 7.9. No comparison is made with Student’s t test statistic for two matched
samples as Student’s t is undefined for ordinary Euclidean scaling.

For v = 1, the observed chance-corrected measure of effect size is

� = 1 − δ

μδ

= 1 − 70.6391

75.7885
= +0.0679 ,

indicating approximately 7% agreement among the N = 30 scores above what
is expected by chance. No comparisons are made with Cohen’s d̂ or Pearson’s r2

measures of effect size for matched pairs as d̂ and r2 are undefined for ordinary
Euclidean scaling.

7.6.4 An Exact Analysis with v = 1

For an exact permutation analysis of the data listed in Table 7.9 with v = 1, the
observed value of test statistic δ is δ = 70.6391, the exact expected value of test
statistic δ under the Fisher–Pitman null hypothesis is μδ = 75.7885, the exact
probability value based on the M = 1,073,741,824 possible arrangements of the
observed data with N = 30 subjects preserved for each arrangement is

P(δ ≤ δo) = number of δ values ≤ δo

M
= 63,555,742

1,073,741,824
= 0.0592 ,
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and the observed chance-corrected measure of effect size is

� = 1 − δ

μδ

= 1 − 70.6391

75.7885
= +0.0679 ,

indicating approximately 7% agreement among the N = 30 scores above what is
expected by chance.

7.7 Example 5: Rank-Score Permutation Analyses

Occasionally it becomes necessary for researchers to analyze rank-score data. Rank
scores customarily arise under one of three scenarios. First, data may be gathered
as ranks such as when respondents are asked to rank objects in order of preference.
For example, frequent travelers may be asked to rank their favorite brands of hotels
in which to stay or their preferred airlines on which to fly. Second, rank scores are
commonly gathered and reported in the popular press. For example, each year the
Social Security Administration provides a list of the most popular female and male
baby names for the previous year. Third, raw interval-level data may not meet the
assumptions of tests such as t or F tests and are, therefore, converted to rank scores
where the nonparametric statistical tests designed for rank scores are free of many
of the assumptions associated with conventional parametric statistical tests.

7.7.1 The Wilcoxon Signed-Ranks Test

The conventional approach to rank-score data under the Neyman–Pearson popula-
tion model is Wilcoxon’s signed-ranks test [8]. Consider a matched-pairs test for N

univariate rank scores. Wilcoxon’s signed-ranks test statistic is simply the smaller
of the sums of the like-signed ranks. An example set of N = 8 rank scores is listed
in Table 7.10, where eight sets of identical twins serve as subjects. At random, one
twin from each pair is assigned to attend nursery school for a term. At the end of the
term, the 16 children are each given a test of social perceptiveness.

Table 7.10 Perception
scores of nursery- and
home-schooled children with
differences (d) and signed
ranks

Pair Nursery Home d rank

1 82 63 +19 +7

2 69 42 +27 +8

3 73 74 −1 −1

4 43 37 +6 +4

5 58 51 +7 +5

6 56 43 +13 +6

7 76 80 −4 −3

8 85 82 +3 +2
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The sums of the (+) and (−) signed ranks in Table 7.10 are

∑
(+) = 7 + 8 + 4 + 5 + 6 + 2 = 32

and

∑
(−) = 1 + 3 = 4 ,

respectively. Then Wilcoxon’s test statistic is T = ∑
(−) = 4.

Test statistic T is asymptotically distributed N(0, 1) under the Neyman–Pearson
null hypothesis as N → ∞. For the N = 8 rank scores listed in Table 7.10, the
mean value of Wilcoxon’s T test statistic is

μT = N(N + 1)

4
= 8(8 + 1)

4
= 18 ,

the standard deviation of Wilcoxon’s T is

σT =
[
N(N + 1)(2N + 1)

24

]1/2

=
{

8(8 + 1)[2(8) + 1]
24

}1/2

= 7.1414 ,

and the standard score of T = 4 is

z = T − μT

σT

= 4 − 18

7.1414
= −1.9604 ,

yielding an asymptotic N(0, 1) two-tail probability value of P = 0.0499, under the
assumption of normality. If a correction for continuity is applied,

z = T + 0.50 − μT

σT

= 4 + 0.50 − 18

7.1414
= −1.8904

and the two-tail probability value of Wilcoxon’s T is increased to P = 0.0587.

7.7.2 An Exact Analysis with v = 2

For an analysis of the rank-score data listed in Table 7.10 under the Fisher–Pitman
permutation model let v = 2, employing squared Euclidean differences between the
rank scores for correspondence with Wilcoxon’s signed-ranks test, and let xi denote
the observed rank-score values for i = 1, . . . , N . Then the permutation test statistic
is given by

δ =
(

N

2

)−1 N−1∑
i=1

N∑
j=i+1

∣∣xi − xj

∣∣v . (7.14)
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Following Eq. (7.14) for the rank-score data listed in Table 7.10 with N = 8 and
v = 2, the observed value of the permutation test statistic is

δ = 2

(8)(8 − 1)

[∣∣(+7) − (+8)
∣∣2 + ∣∣(+7) − (−1)

∣∣2

+ · · · + ∣∣(−3) − (+2)
∣∣2] = 30.2857 .

Because there are only

M = 2N = 28 = 256

possible, equally-likely arrangements in the reference set of all permutations of
the perceptiveness-score data listed in Table 7.10, an exact permutation analysis
is feasible. Under the Fisher–Pitman permutation model, the exact probability of
an observed δ is the proportion of δ test statistic values calculated on all possible,
equally-likely arrangements of the N = 8 perceptiveness scores listed in Table 7.10
that are equal to or less than the observed value of δ = 30.2857.

There are exactly 14 δ test statistic values that are equal to or less than the
observed value of δ = 30.2857. If all M arrangements of the N = 8 rank
scores listed in Table 7.10 occur with equal chance under the Fisher–Pitman null
hypothesis, the exact probability value of δ = 30.2857 computed on the M = 256
possible arrangements of the observed data with N = 8 observations preserved for
each arrangement is

P(δ ≤ δo|H0) = number of δ values ≤ δo

M
= 14

256
= 0.0547 ,

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the N = 8 matched-pairs perceptiveness
scores listed in Table 7.10.

7.7.3 The Relationship Between Statistics T and δ

The functional relationships between test statistics T and δ are given by

δ = N(N + 1)(2N + 1)

3(N − 1)
−

[
4T − N(N + 1)

]2

2N(N − 1)
(7.15)

and

T = N(N + 1)

4
−

{
N
[
N(N + 1)(2N + 1) − 3(N − 1)δ

]
24

}1/2

. (7.16)
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Following Eq. (7.15), the observed value of test statistic δ with respect to the
observed value of Wilcoxon’s T test statistic for the rank-score data listed in
Table 7.10 is

δ = 8(8 + 1)[2(8) + 1]
3(8 − 1)

−
[
4(4) − 8(8 + 1)

]2

2(8)(8 − 1)

= 58.2857 − 28.00 = 30.2857

and following Eq. (7.16), the observed value of Wilcoxon’s T test statistic with
respect to the observed value of test statistic δ is

T = 8(8 + 1)

4

−
(

8
{
8(8 + 1)

[
2(8) + 1

] − 3(8 − 1)(30.2857)
}

24

)1/2

= 18.00 − 14.00 = 4.00 .

Because test statistics δ and T are equivalent under the Fisher–Pitman null
hypothesis, the exact probability value of Wilcoxon’s T = 4 is identical to the
exact probability value of δ = 30.2557; that is,

P(δ ≤ δo) = number of δ values ≤ δo

M
= 14

256
= 0.0547

and

P(T ≥ To) = number of T values ≥ To

M
= 14

256
= 0.0547 ,

where δo and To denote the observed values of test statistics δ and T , respectively,
and M is the number of possible, equally-likely arrangements of the observed data
listed in Table 7.10.

Following Eq. (7.4) on p. 217, the exact expected value of the M = 256 δ test
statistic values under the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 10,404.5722

256
= 40.6429

and following Eq. (7.4) on p. 217, the observed chance-corrected measure of effect
size is

� = 1 − δ

μδ

= 1 − 30.2857

40.6429
= +0.2548 ,
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indicating approximately 25% within-group agreement above what is expected by
chance. No comparisons are made with Cohen’s d̂ or Pearson’s r2 measures of effect
size for matched pairs as d̂ and r2 are undefined for rank-score data.

7.7.4 An Exact Analysis with v = 1

For an analysis of the rank-score data listed in Table 7.10 on p. 236 under the Fisher–
Pitman permutation model let v = 1, employing ordinary Euclidean differences
between the rank scores. Then the observed value of the permutation test statistic is

δ =
(

N

2

)−1 N−1∑
i=1

N∑
j=i+1

∣∣xi − xj

∣∣v

= 2

(8)(8 − 1)

[∣∣(+7) − (+8)
∣∣1 + ∣∣(+7) − (−1)

∣∣1

+ · · · + ∣∣(−3) − (+2)
∣∣1] = 4.6429 .

There are only

M = 2N = 28 = 256

possible, equally-likely arrangements in the reference set of all permutations of the
perceptiveness-score data listed in Table 7.10, making an exact permutation analysis
possible. Under the Fisher–Pitman permutation model, the exact probability of an
observed δ is the proportion of δ test statistic values calculated on all possible,
equally-likely arrangements of the N = 8 perceptiveness scores listed in Table 7.10
that are equal to or less than the observed value of δ = 4.6429. There are exactly four
δ test statistic values that are equal to or less than the observed value of δ = 4.6429.
If all M arrangements of the N = 8 rank scores listed in Table 7.10 occur with
equal chance under the Fisher–Pitman null hypothesis, the exact probability value
of δ = 4.6429 computed on the M = 256 possible arrangements of the observed
data with N = 8 observations preserved for each arrangement is

P(δ ≤ δo|H0) = number of δ values ≤ δo

M
= 4

256
= 0.0156 ,

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the N = 8 matched-pairs perceptiveness
scores listed in Table 7.10.
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Following Eq. (7.4) on p. 217, the exact expected value of the M = 256 δ test
statistic values under the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 1746.2784

256
= 6.8214

and following Eq. (7.3) on p. 217, the observed chance-corrected measure of effect
size is

� = 1 − δ

μδ

= 1 − 4.6429

6.8214
= +0.3194 ,

indicating approximately 32% within-group agreement above what is expected by
chance. No comparisons are made with Cohen’s d̂ or Pearson’s r2 measures of effect
size for matched pairs as d̂ and r2 are undefined for rank-score data.

7.7.5 The Sign Test

The sign test is the most elementary of all tests of differences. Although the sign
test is a very simple test, it is also very useful in a variety of research settings. The
sign test is so named because the test statistic is computed from data that consist of,
or have been reduced to, simple plus (+) and minus (−) signs, representing positive
and negative differences between values, respectively. The test statistic, denoted by
S, is the smaller of the number of (+) or (−) signs. Because there are only two
values, the sign test follows the discrete binomial probability distribution.

To illustrate the sign test, consider the signed-ranks data listed in Table 7.10 on
p. 236, replicated in Table 7.11 with the ranks removed. For the sign data listed
in Table 7.11, there are six (+) signs and two (−) signs; thus, S = 2. Under the
Neyman–Pearson null hypothesis that the measurement of perceptiveness is equally
likely for the nursery school and home children, the sign test provides the exact
probability of an arrangement with S = 2 minus signs and N − S = 6 plus signs,
or an arrangement more extreme.

Table 7.11 Perception
scores of nursery- and
home-schooled children with
differences (d) and signs

Pair Nursery Home d Sign

1 82 63 +19 +
2 69 42 +27 +
3 73 74 −1 −
4 43 37 +6 +
5 58 51 +7 +
6 56 43 +13 +
7 76 80 −4 −
8 85 82 +3 +
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Let p denote the probability of success on a single trial. The signs are asymptoti-
cally distributed N(0, 1) under the Neyman–Pearson null hypothesis, H0: p = 0.50,
as N → ∞. For the sign data listed in Table 7.11, the mean of the binomial
probability distribution with N = 8 and p = 0.50 is

μb = Np = (8)(0.50) = 4.00 ,

the standard deviation of the binomial probability distribution is

σb = √
Np(1 − p) = √

(8)(0.50)(1.00 − 0.50) = 1.4142 ,

and the standard score of S = 2 is

z = S − μb

σb

= 2 − 4

1.4142
= −1.4142 ,

yielding an asymptotic N(0, 1) two-tail probability value of P = 0.1573 under the
assumption of normality. Since N = 8 is a very small sample size, a correction for
continuity is essential. Thus,

z = S + 0.50 − μb

σb

= 2 + 0.50 − 4

1.4142
= −1.0607 ,

yielding an asymptotic N(0, 1) two-tail probability value of P = 0.2888, under the
assumption of normality.

For comparison, the exact cumulative binomial probability value for any S is
given by

P(S|N) =
S∑

i=0

(
N

i

)
pi(1 − p)N−i , (7.17)

where p is the probability of success on a single trial. Since the null hypothesis for
the sign test is simply that there is no difference expected between the number of
(+) and (−) signs; that is H0: p = 0.50, Eq. (7.17) reduces to

P(S|N) =
S∑

i=0

(
N

i

)
(0.50)N .

For the sign data listed in Table 7.11 with i = 0, 1, 2,

p(0|8) =
(

8

0

)
(0.50)8 = 8!

0! 8!(0.50)8 = 1

256
= 0.0039 ,

p(1|8) =
(

8

1

)
(0.50)8 = 8!

1! 7!(0.50)8 = 8

256
= 0.0312 ,
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and

p(2|8) =
(

8

2

)
(0.50)8 = 8!

2! 6!(0.50)8 = 28

256
= 0.1094 .

Because the probability of success is p = 0.50, the binomial probability distribution
is symmetrical and the exact two-tail binomial probability value is

P = 2(0.0039 + 0.0312 + 0.1094) = 0.2891 .

7.7.6 An Exact Analysis with v = 2

For an analysis of the sign data listed in Table 7.11 under the Fisher–Pitman
permutation model let v = 2, employing squared Euclidean differences between
the pairs of signs for correspondence with the sign test and let xi = ±1 denote the
observed signs for i = 1, . . . , N . Then the permutation test statistic is given by

δ =
(

N

2

)−1 N−1∑
i=1

N∑
j=i+1

∣∣xi − xj

∣∣v . (7.18)

Following Eq. (7.18) for the sign data listed in Table 7.11 with N = 8 and v = 2,
the observed value of the permutation test statistic is

δ = 2

(8)(8 − 1)

[∣∣(+1) − (+1)
∣∣2 + ∣∣(+1) − (−1)

∣∣2

+ · · · + ∣∣(−1) − (+1)
∣∣2] = 1.7143 .

Because there are only

M = 2N = 28 = 256

possible, equally-likely arrangements in the reference set of all permutations of the
sign data listed in Table 7.11, an exact permutation analysis is possible. Under
the Fisher–Pitman permutation model, the exact probability of an observed δ is
the proportion of δ test statistic values calculated on all possible, equally-likely
arrangements of the N = 8(+) and (−) signs listed in Table 7.11 that are equal
to or less than the observed value of δ = 1.7143. There are exactly 74 δ test statistic
values that are equal to or less than the observed value of δ = 1.7143. If all M

arrangements of the N = 8 signs listed in Table 7.11 occur with equal chance
under the Fisher–Pitman null hypothesis, the exact probability value of δ = 1.7143
computed on the M = 256 possible arrangements of the observed signs with N = 8
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observations preserved for each arrangement is

P(δ ≤ δo|H0) = number of δ values ≤ δo

M
= 74

256
= 0.2891 ,

which is the same probability value as the binomial probability value.

7.7.7 The Relationship Between Statistics S and δ

Under the Neyman–Pearson null hypothesis, H0: p = 0.50, the functional
relationships between test statistics δ and S are given by

δ = 2S(N − S)

N(N − 1)p2 = 8S(N − S)

N(N − 1)
, (7.19)

where p = 0.50 and

S = N

2
±

√
4N2 − 2δN(N − 1)

4
. (7.20)

Following Eq. (7.19), the observed value of test statistic δ with respect to the
observed value of test statistic S for the sign data listed in Table 7.11 is

δ = (8)(2)(8 − 2)

(8)(8 − 1)
= 96

56
= 1.7143

and following Eq. (7.20), the observed value of test statistic S with respect to the
observed value of test statistic δ is

S = 8

2
±

√
4(8)2 − 2(1.7143)(8)(8 − 1)

4
= 8

2
±

√
64

4
= 4 ± 2 ,

where the two roots of the quadratic equation yield 4 + 2 = 6 and 4 − 2 = 2, which
are the values for N − S = 8 − 2 = 6 (+) signs and S = 2 (−) signs, respectively.

Because statistics δ and S are equivalent under the Fisher–Pitman null hypothe-
sis, the exact probability value of S = 2 is identical to the exact probability value of
δ = 1.7143; that is,

P(δ ≤ δo) = number of δ values ≤ δo

M
= 74

256
= 0.2891

and

P(S ≥ So) = number of S values ≥ So

M
= 74

256
= 0.2891 ,
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where δo and So denote the observed values of δ and S, respectively, and M is the
number of possible, equally-likely arrangements of the sign data listed in Table 7.11.

Following Eq. (7.4) on p. 217, the exact expected value of the M = 256 δ test
statistic values under the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 512

256
= 2.00

and following Eq. (7.3) on p. 217, the observed chance-corrected measure of effect
size is

� = 1 − δ

μδ

= 1 − 1.7143

2.00
= +0.1429 ,

indicating approximately 14% within-group agreement above what is expected by
chance. No comparisons are made with Cohen’s d̂ or Pearson’s r2 measures of effect
size for matched pairs as d̂ and r2 are undefined for simple sign data.

7.7.8 An Exact Analysis with v = 1

For an analysis of the sign data listed in Table 7.11 under the Fisher–Pitman
permutation model with v = 1, employing ordinary Euclidean differences between
the pairs of signs, the observed value of the permutation test statistic is

δ =
(

N

2

)−1 N−1∑
i=1

N∑
j=i+1

∣∣xi − xj

∣∣v

= 2

(8)(8 − 1)

[∣∣(+1) − (+1)
∣∣1 + ∣∣(+1) − (−1)

∣∣1

+ · · · + ∣∣(−1) − (+1)
∣∣1] = 0.8571 .

There are only

M = 2N = 28 = 256

possible, equally-likely arrangements in the reference set of all permutations of the
sign data listed in Table 7.11. Under the Fisher–Pitman permutation model, the exact
probability of an observed δ is the proportion of δ test statistic values calculated on
all possible, equally-likely arrangements of the N = 8 (+) and (−) signs listed
in Table 7.11 that are equal to or less than the observed value of δ = 0.8571.
There are exactly 74 δ test statistic values that are equal to or less than the observed
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value of δ = 0.8571. If all arrangements of the N = 8 (+) and (−) signs listed
in Table 7.11 occur with equal chance under the Fisher–Pitman null hypothesis,
the exact probability value of δ = 0.8571 computed on the M = 256 possible
arrangements of the observed data with N = 8 observations preserved for each
arrangement is

P(δ ≤ δo|H0) = number of δ values ≤ δo

M
= 74

256
= 0.2891 ,

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the sign data listed in Table 7.11. No
comparison is made with the conventional sign test as S is undefined for ordinary
Euclidean scaling.

Following Eq. (7.4) on p. 217, the exact expected value of the M = 256 δ test
statistic values under the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 256

256
= 1.00

and following Eq. (7.3) on p. 217, the observed chance-corrected measure of effect
size is

� = 1 − δ

μδo

= 1 − 0.8571

1.00
= +0.1429 ,

indicating approximately 14% within-group agreement above what is expected by
chance. No comparisons are made with Cohen’s d̂ or Pearson’s r2 measures of effect
size for matched pairs as d̂ and r2 are undefined for simple sign data.

Because all values for the sign test are either +1 or −1, the probability values
for v = 2 and v = 1 are identical; that is, P = 0.2891. Also, the permutation
test statistic value for v = 2 (δ = 1.7143) is exactly twice the value for v = 1
(δ = 0.8571) and the exact expected value of δ for v = 2 (μδ = 2.00) is exactly
twice the expected value of δ for v = 1 (μδ = 1.00). Consequently, the chance-
corrected value for the measure of effect size with v = 2 (� = +0.1429) is identical
to the value for the measure of effect size with v = 1 (� = +0.1429).

7.8 Example 6: Multivariate Permutation Analyses

Oftentimes a research design calls for a test of difference between g = 2 matched
treatment groups when multivariate (r ≥ 2) measurements have been obtained for
each of N ≥ 2 subjects. The conventional approach to such a research design under
the Neyman–Pearson population model is Hotelling’s multivariate T 2 test for two
matched samples [3].
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Suppose that r ≥ 2 measurements and N ≥ 2 subjects are associated with a
multivariate pre-treatment and post-treatment matched-pairs permutation test and
let

(w11j , . . . , wr1j ) and (w12j , . . . , wr2j )

denote r-dimensional row vectors with elements comprised of the r measurements
on the j th subject from the pre- and post-treatments, respectively, where j =
1, . . . , N . Let

x1j =
⎡
⎢⎣

x11j

...

xr1j

⎤
⎥⎦ ,

where xk1j = wk1j − wk2j for k = 1, . . . , r , be the r dimensional column vector
of differences between pre-treatment and post-treatment measurement scores for the
j th subject, and let x2j = −x1j be the r-dimensional origin reflection of x1j for j =
1, . . . , N . The probability under the null hypothesis is P(x1j ) = P(x2j ) = 0.50
for j = 1, . . . , N . For the multivariate matched-pairs research design, test statistic
δ is given by

δ =
(

N

2

)−1 N−1∑
m=1

N∑
n=m+1

�(x1m, x1n) , (7.21)

where

�(x1m, x1n) = [
(x1m, x1n)

′(x1m, x1n)
]v/2

(7.22)

is the r-dimensional Euclidean difference between the mth and nth subjects’
differences. When v = 1 in Eq. (7.22), �(x1m, x1n) is an ordinary Euclidean scaling
metric and when v = 2 in Eq. (7.22), �(x1m, x1n) is a squared Euclidean scaling
function and is not a metric function since the triangle inequality is not satisfied;
that is, �(x, y) ≤ �(x, z) + �(y, z).

Hotelling’s multivariate matched-pairs T 2 test statistic is given by

T 2 = Nx̄ ′
1S−1x̄1 ,
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where S is an r×r variance-covariance matrix given by

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

N − 1

N∑
I=1

(x1I − x̄1)
2 · · · 1

N − 1

N∑
I=1

(x1I − x̄1) (xrI − x̄r )

...
...

1

N − 1

N∑
I=1

(xrI − x̄r ) (x1I − x̄1) · · · 1

N − 1

N∑
I=1

(xrI − x̄r )
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

x̄1 = 1

N

N∑
j=1

x1j .

While the permutation test is applicable to all combinations of r and N , any
application of Hotelling’s T 2 test statistic under the Neyman–Pearson null hypoth-
esis with the assumption of multivariate normality requires that min(r,N − r) ≥ 1
since the distribution of the adjusted T 2 test statistic given by

F = (N − r)T 2

(N − 1)r

is asymptotically distributed as Snedecor’s F with ν1 = r and ν2 = N − r degrees
of freedom. When v = 2 and squared Euclidean scaling is employed, the functional
relationships between Hotelling’s T 2 and test statistic δ are given by

T 2 = r(N − 1)2
[
2SSTotal − g(N − 1)δ

]
g(N − r)(N − 1)δ − 2SSBetween

(7.23)

and

δ = 2
[
r(N − 1)2SSTotal + T 2SSBetween

]
g(N − 1)

[
T 2(N − r) + r(N − 1)2

] , (7.24)

respectively, where g denotes the number of treatments and SSBetween and SSTotal
are defined as usual; that is, the sum-of-squares between treatments is given by

SSBetween = N

g∑
i=1

(
x̄i. − x̄..

)2
,

the sum-of-squares total is given by

SSTotal =
g∑

i=1

N∑
j=1

(
xij − x̄..

)2
,
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the mean of the ith of g treatments is given by

x̄i. = 1

N

N∑
j=1

xij , i = 1, . . . , g ,

the grand mean over all g treatments is given by

x̄.. = 1

Ng

g∑
i=1

N∑
j=1

xij ,

and xij is the univariate measurement score of the ith of g treatments for the j th of
N judges.

If the observed values of δ and T 2 are denoted by δo and T 2
o , respectively, then

the exact probability value of δo and T 2
o is given by

P(T 2 ≥ T 2
o |H0) = P(δ ≤ δo|H0) = number of δ values ≤ δo

M
,

where M = (g!)N in this application. When M is large a Monte Carlo method
to approximate the probability value is essential. A Monte Carlo permutation
procedure provides an approximate probability value for δ and is given by

P(δ ≤ δo|H0) = number of δ values ≤ δo

L
,

where L is a random sample of all possible, equally-likely arrangements of the 2Nr

measurements.

7.8.1 The Hotelling’s Matched-Pairs T 2 Test

Consider the following scenario: paired, but randomly arranged, pre-training and
post-training writing samples of r = 11 students were blindly presented to N = 13
experienced teachers of language arts for grading. Each of the N = 13 judges scored
each of the 22 writing samples on a scale from 0 to 10. The pre- and post-training
writing assessment scores are listed in Tables 7.12 and 7.13, respectively.

The example analysis blocks on the N = 13 judges and compares the pre-training
and post-training scores of the r = 11 students. The analysis evaluates the following
question: Did the course work result in significant pre- and post-training writing
differences among the students? A conventional Hotelling’s matched-pairs T 2 test
on the measurement scores listed in Tables 7.12 and 7.13 yields an observed T 2
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Table 7.12 Pre-training
writing assessment scores
assigned by N = 13 judges to
writing samples of r = 11
students

Judge
Student

1 2 3 4 5 6 7 8 9 10 11

1 1 6 1 1 8 1 5 8 6 3 1

2 3 4 6 2 8 3 6 9 9 7 3

3 1 6 2 3 7 3 3 5 5 2 4

4 2 5 5 1 8 2 4 7 8 6 4

5 3 6 5 2 8 2 3 5 9 4 2

6 0 4 3 0 8 0 3 9 7 3 0

7 1 5 0 1 7 0 1 2 8 5 1

8 5 8 4 0 2 0 2 10 2 2 0

9 1 7 2 5 9 2 6 6 9 6 3

10 2 3 2 0 6 1 5 7 5 3 3

11 1 5 2 1 7 1 2 8 8 7 4

12 0 4 1 0 9 0 2 5 3 2 1

13 4 9 2 2 5 3 3 9 8 4 3

Table 7.13 Post-training
writing assessment scores
assigned by N = 13 judges to
writing samples of r = 11
students

Judge
Student

1 2 3 4 5 6 7 8 9 10 11

1 9 5 3 1 8 1 7 6 6 4 5

2 8 5 5 2 9 2 6 6 7 5 5

3 5 6 2 3 3 3 6 8 7 5 8

4 7 6 3 2 9 4 5 6 6 4 7

5 8 7 4 2 8 4 7 8 6 3 5

6 6 7 2 0 6 0 5 7 6 5 4

7 5 5 2 1 5 3 5 5 4 0 7

8 4 9 6 0 3 3 10 8 5 3 5

9 9 5 5 7 8 3 8 8 8 7 8

10 4 4 1 0 4 3 4 5 6 6 6

11 6 3 3 2 9 2 9 7 7 5 9

12 6 2 3 1 5 1 6 9 6 5 6

13 9 6 4 4 7 6 9 7 6 7 5

value of T 2 = 766.0821 and the observed F test statistic value is

F = (N − r)T 2

(N − 1)r
= (13 − 11)(766.0821)

(13 − 1)(11)
= 11.6073 .

Assuming independence, multivariate normality, homogeneity of variance,
and homogeneity of covariance, test statistic F is asymptotically distributed as
Snedecor’s F under the Neyman–Pearson null hypothesis with ν1 = r = 11 and
ν2 = N − r = 13 − 11 = 2 degrees of freedom. Under the Neyman–Pearson
null hypothesis the observed value of F = 11.673 yields an asymptotic probability
value of P = 0.0819, under the assumptions of normality and homogeneity.
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7.8.2 An Exact Analysis with v = 2

There are only

M = (
g!)N = (

2!)13 = 8192

possible, equally-likely arrangements in the reference set of all permutations of
the scores of the N = 13 judges listed in Tables 7.12 and 7.13, making an
exact permutation analysis possible. For this permutation analysis where r =
11, g = 2, and N = 13, let v = 2 in Eq. (7.22) on p. 247, employing
squared Euclidean differences between measurement scores for correspondence
with Hotelling’s matched-pairs T 2 test. Following Eq. (7.21) on p. 247, the observed
value of δ with v = 2 is δ = 65.9872.

The functional relationships between test statistics T 2 and δ given in Eqs. (7.23)
and (7.24), respectively, can be confirmed with the data listed in Tables 7.12
and 7.13. For the data listed in Tables 7.12 and 7.13 the sum-of-squares between
treatments is

SSBetween = N

g∑
i=1

(
x̄i. − x̄..

)2 = 9.7346

and the sum-of-squares total is

SSTotal =
g∑

i=1

N∑
j=1

(
xij − x̄..

)2 = 1553.0719 .

Then, following Eq. (7.24) on p. 248, the observed value of test statistic δ with
respect to the observed value of Hotelling’s T 2 test statistic for the pre- and post-
training scores listed in Tables 7.12 and 7.13 is

δ = 2
[
r(N − 1)2SSTotal + T 2SSBetween

]
g(N − 1)

[
T 2(N − r) + r(N − 1)2

]

= 2
[
11(13 − 1)2(1553.0719) + (766.0821)(9.7346)

]
2(13 − 1)

[
(766.0821)(13 − 11) + 11(13 − 1)2

]

= 4,935,046.8072

74,787.9408
= 65.9872
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and, following Eq. (7.23) on p. 248, the observed value of Hotelling’s T 2 test
statistic with respect to the observed value of test statistic δ is

T 2 = r(N − 1)2
[
2SSTotal − g(N − 1)δ

]
g(N − r)(N − 1)δ − 2SSBetween

= 11(13 − 1)2
[
2(1553.0719) − 2(13 − 1)(65.9872)

]
2(13 − 11)(13 − 1)(65.9872) − 2(9.7264)

= 2,411,562.4063

3147.9164
= 766.0821 .

If all M arrangements of the observed writing assessment scores listed in
Tables 7.12 and 7.13 occur with equal chance under the Fisher–Pitman null
hypothesis, the exact probability value of δ = 65.9872 computed on the M = 8192
possible arrangements of the observed data with N = 13 judges preserved for each
arrangement is

P(δ ≤ δo|H0) = number of δ values ≤ δo

M
= 2

8192
= 0.2441×10−3 ,

where δo denotes the observed value of test statistic δ and M is the number
of possible, equally-likely arrangements of the pre- and post-training writing
assessment scores listed in Tables 7.12 and 7.13.

There is a considerable difference between the Hotelling’s T 2 probability value
of P = 0.0819 and the exact probability value of P = 0.2441×10−3. The difference
is quite possibly due to the violation of the assumptions of multivariate normality,
homogeneity of variance, and homogeneity of covariance required by Hotelling’s
T 2, but not required by the permutation test.

The exact expected value of the M = 8192 δ test statistic values under the
Fisher–Pitman null hypothesis is μδ = 90.1731 and the observed chance-corrected
measure of effect size is

� = 1 − δ

μδ

= 1 − 65.9872

90.1731
= +0.2682 ,

indicating approximately 27% within-judges agreement above what is expected by
chance. No comparisons are made with Cohen’s d̂ or Pearson’s r2 measures of effect
size for matched pairs as d̂ and r2 are undefined for multivariate data.

7.8.3 An Exact Analysis with v = 1

For a comparison analysis of the multivariate data listed in Tables 7.12 and 7.13
under the Fisher–Pitman permutation model, let v = 1 instead of v = 2 in Eq. (7.22)
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on p. 247, thereby employing ordinary Euclidean differences between measurement
scores. For the pre- and post-training writing assessment scores listed in Tables 7.12
and 7.13, the number of possible, equally-likely arrangements in the reference set
of all permutations of the N = 13 judges listed in Tables 7.12 and 7.13 is still only

M = (
g!)N = (

2!)13 = 8192 .

The observed value of test statistic δ with v = 1 is δ = 0.0928. If all M

arrangements of the N = 13 writing assessment scores listed in Tables 7.12
and 7.13 occur with equal chance under the Fisher–Pitman null hypothesis, the exact
probability value of δ = 0.0928 computed on the M = 8192 possible arrangements
of the observed writing assessment scores with N = 13 judges preserved for each
arrangement is

P(δ ≤ δo|H0) = number of δ values ≤ δo

M
= 634

8192
= 0.0774 ,

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the writing assessment scores listed in
Tables 7.12 and 7.13.

In this example analysis there is considerable difference in probability values,
where with v = 2, the exact probability value is P = 0.2441×10−3, and with
v = 1, the exact probability value is P = 0.0774. The substantial difference in
probability values is possibly due to large differences between pre-test and post-
test writing assessment scores that are amplified by squaring the differences with
v = 2; for example, Student 1 and Judge 1 with pre- and post-test scores of
1 and 9, respectively; Student 1 and Judge 9 with pre- and post-test scores of 1
and 9, respectively; Student 7 and Judge 8 with pre- and post-test scores of 2 and
10, respectively; and others in Tables 7.12 and 7.13. No comparison is made with
Hotelling’s T 2 test as T 2 is undefined for ordinary Euclidean scaling.

The exact expected value of the M = 8192 δ test statistic values under the
Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 922

8192
= 0.1125

and the observed chance-corrected measure of effect size is

� = 1 − δ

μδ

= 1 − 0.0928

0.1125
= +0.1755 ,

indicating approximately 18% within-judges agreement above what is expected by
chance. No comparisons are made with Cohen’s d̂ or Pearson’s r2 measures of effect
size for matched pairs as d̂ and r2 are undefined for multivariate data.
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7.9 Summary

This chapter examined matched-pairs tests where the null hypothesis under the
Neyman–Pearson population model typically posits no difference between two
population means. The conventional matched-pairs test and two measures of effect
size under the Neyman–Pearson population model of inference were described and
illustrated: Student’s matched-pairs t test, and Cohen’s d̂ and Pearson’s r2 measures
of effect size, respectively.

Under the Fisher–Pitman permutation model of inference, test statistic δ and
associated measure of effect size, �, were introduced and illustrated for two
matched samples. For tests of two matched samples, test statistic δ was demon-
strated to be flexible enough to incorporate both ordinary and squared Euclidean
scaling functions with v = 1 and v = 2, respectively. Effect size measure, �, was
shown to be applicable to either v = 1 or v = 2 without modification and to have a
clear and meaningful chance-corrected interpretation in both cases.

Six examples illustrated permutation-based test statistics δ and �. In the first
example, a small sample of N = 5 matched subjects was utilized to describe and
illustrate the calculation of test statistics δ and � for two matched samples. The
second example demonstrated the permutation-based, chance-corrected measure of
effect size, �, and related � to the conventional measures of effect size for two
matched samples: Cohen’s d̂ and Pearson’s r2. The third example with N = 9
observations illustrated the effects of extreme values on various combinations of
plus-and-minus values with both v = 2 and v = 1. The fourth example with N = 30
observations compared exact and Monte Carlo permutation methods, illustrating
the accuracy and efficiency of Monte Carlo analyses. The fifth example with N = 8
rank scores illustrated an application of permutation statistical methods to univariate
rank-score data, including Wilcoxon’s conventional signed-ranks test and the sign
test. Finally, in the sixth example, both statistic δ and effect-size measure � were
extended to multivariate data with N = 13 subjects and r = 11 variates and
compared with Hotelling’s conventional T 2 test for two matched samples.

Chapter 8 continues the presentation of permutation statistical methods for
independent samples initiated in Chap. 6, but extends the permutation methods to
examine research designs in which more than g = 2 samples are considered.
Research designs incorporating multiple treatments are prevalent in many fields of
research. When the Neyman–Pearson null hypothesis posits no difference among the
g ≥ 3 population means, the designs are commonly known as fully- or completely-
randomized analysis of variance designs.
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Chapter 8
Completely-Randomized Designs

Abstract This chapter introduces permutation methods for multiple independent
variables; that is, completely-randomized designs. Included in this chapter are six
example analyses illustrating computation of exact permutation probability values
for multi-sample tests, calculation of measures of effect size for multi-sample tests,
the effect of extreme values on conventional and permutation multi-sample tests,
exact and Monte Carlo permutation procedures for multi-sample tests, application of
permutation methods to multi-sample rank-score data, and analysis of multi-sample
multivariate data. Included in this chapter are permutation versions of Fisher’s F

test for one-way, completely-randomized analysis of variance, the Kruskal–Wallis
one-way analysis of variance for ranks, the Bartlett–Nanda–Pillai trace test for
multivariate analysis of variance, and a permutation-based alternative for the four
conventional measures of effect size for multi-sample tests: Cohen’s d̂ , Pearson’s
η2, Kelley’s η̂2, and Hays’ ω̂2.

This chapter presents exact and Monte Carlo permutation statistical methods for
multi-sample tests. Multi-sample tests are of two types: tests for experimental
differences among three or more independent samples (completely-randomized
designs) and tests for experimental differences among three or more dependent
samples (randomized-blocks designs).1 Permutation statistical methods for multiple
dependent samples are presented in Chap. 9. Permutation statistical methods for
multiple independent samples are presented in this chapter. In addition there are
mixed models with one or more independent samples and one or more dependent
samples, but these models are beyond the scope of this introductory book on
permutation statistical methods. Interested readers can consult a 2016 book on
Permutation Statistical Methods: An Integrated Approach by the authors [2].

Multi-sample tests for independent samples constitute a large family of tests in
conventional statistical methods. Included in this family are one-way analysis of
variance with univariate responses (ANOVA), one-way analysis of variance with

1In some disciplines tests on multiple independent samples are known as between-subjects tests
and tests for multiple dependent or related samples are known as within-subjects tests.
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multivariate responses (MANOVA), one-way analysis of variance with one or more
covariates and univariate responses (ANCOVA), one-way analysis of variance with
one or more covariates and multivariate responses (MANCOVA), and a variety
of factorial designs that may be two-way, three-way, four-way, nested, balanced,
unbalanced, fixed, random, or mixed.

In this chapter, permutation statistical methods for multiple independent samples
are illustrated with six example analyses. The first example utilizes a small set
of data to illustrate the computation of exact permutation methods for multiple
independent samples, wherein the permutation test statistic, δ, is developed and
compared with Fisher’s conventional F -ratio test statistic. The second example
develops a permutation-based measure of effect size as a chance-corrected alterna-
tive to the five conventional measures of effect size for multi-sample tests: Cohen’s
d̂ , Pearson’s η2, Kelley’s η̂2, Hays’ ω̂2

F for fixed models, and Hays’ ω̂2
R for random

models. The third example compares permutation statistical methods based on
ordinary and squared Euclidean scaling functions, with an emphasis on the analysis
of data sets containing extreme values. The fourth example utilizes a larger data set
to provide a comparison of exact permutation methods and Monte Carlo permutation
methods, demonstrating the efficiency and accuracy of Monte Carlo statistical
methods for multi-sample tests. The fifth example illustrates the application of per-
mutation statistical methods to univariate rank-score data, comparing permutation
statistical methods to the conventional Kruskal–Wallis one-way analysis of variance
for ranks test. The sixth example illustrates the application of permutation statistical
methods to multivariate data, comparing permutation statistical methods with the
conventional Bartlett–Nanda–Pillai trace test for multivariate data.

8.1 Introduction

The most popular univariate test for g ≥ 3 independent samples under the Neyman–
Pearson population model of statistical inference is Fisher’s one-way analysis of
variance wherein the null hypothesis (H0) posits no mean differences among the g

populations from which the samples are presumed to have been randomly drawn;
that is, H0: μ1 = μ2 = · · · = μg. It should be noted that Fisher, writing in
the first edition of Statistical Methods for Research Workers in 1925, named the
aforementioned statistic the variance-ratio test, symbolized it as z, and defined it as

z = 1

2
loge

(
ν1

ν0

)
,

where ν1 = MSBetween and ν0 = MSWithin in modern notation. In 1934, in an effort
to eliminate the calculation of the natural logarithm required for calculating Fisher’s
z test, George Snedecor at Iowa State University published tabled values in a small
monograph for Fisher’s variance-ratio z statistic and renamed the test statistic F ,
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presumably in honor of Fisher [22]. It has often been reported that Fisher was
displeased when the variance-ratio z test statistic was renamed F by Snedecor [4, 8].

Fisher’s F -ratio test for a completely-randomized design does not determine
whether or not the null hypothesis is true, but only provides the probability that,
if the null hypothesis is true, the samples have been drawn from populations with
identical mean values, assuming normality and homogeneity of variance.

Consider a conventional multi-sample F test with samples of independent and
identically distributed univariate random variables of sizes n1, . . . , ng , viz.,

{x11, . . . , xn11}, . . . , {x1g, . . . , xngg} ,

drawn from g specified populations with cumulative distribution functions
F1(x), . . . , Fg(x), respectively. For simplicity, suppose that population i is normal
with mean μi and variance σ 2 for i = 1, . . . , g. This is the standard one-
way classification model with g treatment groups. Under the Neyman–Pearson
population model of statistical inference, the null hypothesis of no differences
among the population means tests

H0: μ1 = μ2 = · · · = μg versus H1: μi 	= μj for some i 	= j

for g treatment groups. The permissible probability of a type I error is denoted by
α and if the observed value of Fisher’s F -ratio test statistic is equal to or greater
than the critical value of F that defines α, the null hypothesis is rejected with a
probability of type I error equal to or less than α, under the assumptions of normality
and homogeneity.

For multi-sample tests with g treatment groups and N observations, Fisher’s F -
ratio test statistic is given by

F = MSBetween

MSWithin
,

where the mean-square between treatments is given by2

MSBetween = SSBetween

g − 1
,

the sum-of-squares between treatments is given by

SSBetween =
g∑

i=1

ni

(
x̄i − ¯̄x)2

,

2The terms MSBetween and MSWithin are only one set of descriptive labels for the numerator and
denominator of the F -ratio test statistic. MSBetween is often replaced by either MSTreatment or
MSFactor and MSWithin is often replaced by MSError.
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the mean-square within treatments is given by

MSWithin = SSWithin

N − g
,

the sum-of-squares within treatments is given by

SSWithin =
g∑

i=1

ni∑
j=1

(
xij − x̄i

)2
,

the sum-of-squares total is given by

SSTotal = SSBetween + SSWithin =
g∑

i=1

ni∑
j=1

(
xij − ¯̄x)2

,

the mean value for the ith of g treatment groups is given by

x̄i = 1

ni

ni∑
j=1

xij ,

the grand mean for all g treatment groups combined is given by

¯̄x = 1

N

g∑
i=1

ni∑
j=1

xij ,

and the total number of observations is

N =
g∑

i=1

ni .

Under the Neyman–Pearson null hypothesis, H0: μ1 = μ2 = · · · = μg, test
statistic F is asymptotically distributed as Snedecor’s F distribution with ν1 = g−1
degrees of freedom in the numerator and ν2 = N − g degrees of freedom in the
denominator. However, if any of the g populations is not normally distributed, then
the distribution of test statistic F no longer follows Snedecor’s F distribution with
ν1 = g − 1 and ν2 = N − g degrees of freedom.

The assumptions underlying Fisher’s F -ratio test for multiple independent sam-
ples are (1) the observations are independent, (2) the data are random samples from
well-defined, normally-distributed populations, and (3) homogeneity of variance;
that is, σ 2

1 = σ 2
2 = · · · = σ 2

g .
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8.2 A Permutation Approach

Now consider a test for multiple independent samples under the Fisher–Pitman
permutation model of statistical inference. Under the Fisher–Pitman permutation
model there is no null hypothesis specifying population parameters. Instead the
null hypothesis simply states that all possible arrangements of the observations
occur with equal chance [10]. Also, there is no alternative hypothesis under the
permutation model and no specified α level. Moreover, there is no requirement
of random sampling, no degrees of freedom, no assumption of normality, and no
assumption of homogeneity of variance.

A permutation alternative to the conventional F test for multiple independent
samples is easily defined. The permutation test statistic for g ≥ 3 independent
samples is given by

δ =
g∑

i=1

Ciξi , (8.1)

where Ci > 0 is a positive treatment-group weight for i = 1, . . . , g,

ξi =
(

ni

2

)−1 N−1∑
j=1

N∑
k=j+1

�(j, k)�i(ωj )�i(ωk) (8.2)

is the average distance-function value for all distinct pairs of objects in sample Si

for i = 1, . . . , g,

�(j, k) = ∣∣xj − xk

∣∣v
denotes a symmetric distance-function value for a single pair of objects,

N =
g∑

i=1

ni ,

and �(·) is an indicator function given by

�i(ωj ) =
⎧⎨
⎩

1 if ωj ∈ Si ,

0 otherwise .

Under the Fisher–Pitman permutation model, the null hypothesis simply states
that equal probabilities are assigned to each of the

M = N !
g∏

i=1

ni !
(8.3)
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possible, equally-likely allocations of the N objects to the g samples [10]. The
probability value associated with an observed value of δ, say δo, is the probability
under the null hypothesis of observing a value of δ as extreme or more extreme than
δo. Thus, an exact probability value for δo may be expressed as

P
(
δ ≤ δo|H0

) = number of δ values ≤ δo

M
. (8.4)

When M is large, an approximate probability value for δ may be obtained from
a Monte Carlo permutation procedure, where

P
(
δ ≤ δo|H0

) = number of δ values ≤ δo

L

and L denotes the number of randomly-sampled test statistic values. Typically, L is
set to a large number to ensure accuracy; for example, L = 1,000,000 [11].

8.3 The Relationship Between Statistics F and δ

When the null hypothesis under the Neyman–Pearson population model states
H0: μ1 = μ2 = · · · = μg, v = 2, and the treatment-group weights are given
by

Ci = ni − 1

N − g
, i = 1, . . . , g ,

the functional relationships between test statistic δ and Fisher’s F -ratio test statistic
are given by

δ = 2SSTotal

N − g + (g − 1)F
and F = 2SSTotal

(g − 1)δ
− N − g

g − 1
, (8.5)

where

SSTotal =
N∑

i=1

x2
i −

(
N∑

i=1

xi

)2/
N ,

and xi is a univariate measurement score for the ith of N objects. The permutation
analogue of the F test is generally known as the Fisher–Pitman permutation test [3].

Because of the relationship between test statistics δ and F , the exact probability
values given by

P
(
δ ≤ δo|H0

) = number of δ values ≤ δo

M
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and

P
(
F ≥ Fo|H0

) = number of F values ≥ Fo

M

are equivalent under the Fisher–Pitman null hypothesis, where δo and Fo denote the
observed values of δ and F , respectively, and M is the number of possible, equally-
likely arrangements of the observed data.

A chance-corrected measure of agreement among the N measurement scores is
given by

� = 1 − δ

μδ

, (8.6)

where μδ is the arithmetic average of the M δ test statistic values calculated on all
possible arrangements of the observed measurements; that is,

μδ = 1

M

M∑
i=1

δi . (8.7)

Alternatively, in terms of a one-way analysis of variance model, the exact expected
value of test statistic δ is a simple function of the total sum-of-squares; that is,

μδ = 2SSTotal

N − 1
.

8.4 Example 1: Test Statistics F and δ

A small example will serve to illustrate the relationship between test statistics F

and δ. Consider the example data listed in Table 8.1 with g = 3 treatment groups,
sample sizes of n1 = n2 = 3, n3 = 4, and N = n1 + n2 + n3 = 3 + 3 + 4 =
10 total observations. Under the Neyman–Pearson population model with sample
sizes n1 = n2 = 3, and n3 = 4, treatment-group means x̄1 = 3, x̄2 = 4, and
x̄3 = 8, grand mean ¯̄x = 5.30, estimated population variances s2

1 = s2
2 = 1.00 and

Table 8.1 Example data for
a test of g = 3 independent
samples with N = 10
observations

Treatment group

1 2 3

2 3 7

3 4 8

4 5 8

9
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s2
3 = 0.6667, the sum-of-squares between treatments is

SSBetween =
g∑

i=1

ni

(
x̄i − ¯̄x)2 = 50.10 ,

the sum-of-squares within treatments is

SSWithin =
g∑

i=1

ni∑
j=1

(
xij − x̄i

)2 = 6.00 ,

the sum-of-squares total is

SSTotal = SSBetween + SSWithin = 50.10 + 6.00 = 56.10 ,

the mean-square between treatments is

MSBetween = SSBetween

g − 1
= 50.10

3 − 1
= 25.05 ,

the mean-square within treatments is

MSWithin = SSWithin

N − g
= 6.00

10 − 3
= 0.8571 ,

and the observed value of Fisher’s F -ratio test statistic is

F = MSBetween

MSWithin
= 25.05

0.8571
= 29.2250 .

The essential factors, sums of squares (SS), degrees of freedom (df ), mean squares
(MS), and variance-ratio test statistic (F ) are summarized in Table 8.2.

Under the Neyman–Pearson null hypothesis, H0: μ1 = μ2 = μ3, Fisher’s F -
ratio test statistic is asymptotically distributed as Snedecor’s F with ν1 = g − 1 and
ν2 = N − g degrees of freedom. With ν1 = g − 1 = 3 − 1 = 2 and ν2 = N − g =
10 − 3 = 7 degrees of freedom, the asymptotic probability value of F = 29.2250 is
P = 0.4001×10−3, under the assumptions of normality and homogeneity.

Table 8.2 Source table for
the example data listed in
Table 8.1

Factor SS df MS F

Between 50.10 2 25.0500 29.2250

Within 6.00 7 0.8571

Total 56.10
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8.4.1 An Exact Analysis with v = 2

For the first permutation analysis of the example data listed in Table 8.1 let v = 2,
employing squared Euclidean scaling, and let the treatment-group weights be given
by

Ci = ni − 1

N − g
, i = 1, . . . , g ,

for correspondence with Fisher’s F -ratio test statistic.
Because there are only

M = N !
g∏

i=1

ni !
= 10!

3! 3! 4! = 4200

possible, equally-likely arrangements in the reference set of all permutations of
the N = 10 observations listed in Table 8.1, an exact permutation analysis is
feasible. While M = 4200 arrangements are too many to list, Table 8.3 illustrates
the calculation of the ξ , δ, and F values for a small sample of the M possible
arrangements of the N = 10 observations listed in Table 8.1.

Following Eq. (8.1) on p. 261, the N = 10 observations yield g = 3 average
distance-function values of

ξi = ξ2 = 2.00 and ξ3 = 1.3333 .

Alternatively, in terms of a one-way analysis of variance model the average distance-
function values are ξ1 = 2s2

1 = 2(1.00) = 2.00, ξ2 = 2s2
2 = 2(1.00) = 2.00, and

ξ3 = 2s2
3 = 2(0.6667) = 1.3333.

Following Eq. (8.1) on p. 260, the observed value of the permutation test statistic
based on v = 2 and treatment-group weights

Ci = ni − 1

N − g
, i = 1, 2, 3 ,

is

δ =
g∑

i=1

Ciξi = 1

10 − 3

[
(3 − 1)(2.00) + (3 − 1)(2.00)

+ (4 − 1)(1.3333)
] = 1.7143 .
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Table 8.3 Sample arrangements of the example data listed in Table 8.1 with associated ξ1, ξ2, δ,
and F values

Number Arrangement ξ1 ξ2 ξ3 δ F

1 234 345 7889 2.0000 2.0000 1.3333 1.7143 29.2250

2 234 347 5889 2.0000 8.6667 6.0000 5.6190 6.4839

3 234 347 4889 2.0000 8.6667 9.8333 7.2619 4.4318

4 234 457 3889 2.0000 4.6667 14.6667 8.1905 3.3494

5 234 348 5789 2.0000 14.0000 5.8333 7.0714 4.4333

6 234 358 4789 2.0000 12.6667 9.3333 8.1905 3.3494

7 234 458 3789 2.0000 8.6667 13.8333 8.9762 2.7499

8 234 378 4589 2.0000 14.0000 11.3333 9.4286 2.4500

9 234 478 3589 2.0000 8.6667 15.1667 9.5476 2.3758

10 234 578 3489 2.0000 4.6667 17.3333 9.3333 2.5107

11 234 348 5789 2.0000 14.0000 5.8333 7.0714 4.4333

12 234 358 4789 2.0000 12.6667 9.3333 8.1905 3.3494

13 234 458 3789 2.0000 8.6667 13.8333 8.9762 2.7499

14 234 378 4589 2.0000 14.0000 11.3333 9.4286 2.4500

15 234 478 3589 2.0000 8.6667 15.1667 9.5476 2.3758

16 234 578 3489 2.0000 4.6667 17.3333 9.3333 2.5107

17 234 488 4579 2.0000 10.6667 9.8333 7.8333 3.1894

18 234 488 3579 2.0000 10.6667 13.3333 9.3333 2.5107

19 234 588 3479 2.0000 6.0000 15.1667 8.7857 2.8854

20 234 788 3459 2.0000 0.6667 13.8333 6.6905 4.8851
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

4199 889 357 2344 0.6667 8.0000 1.8333 3.2619 13.6985

4200 889 457 2343 0.6667 4.6667 1.3333 2.0952 23.2750

Alternatively, in terms of a one-way analysis of variance model the permutation test
statistic is

δ = 2MSWithin = 2(0.8571) = 1.7143 .

For the example data listed in Table 8.1, the sum of the N = 10 observations is

N∑
i=1

xi = 2 + 3 + 4 + 3 + 4 + 5 + 7 + 8 + 8 + 9 = 53 ,

the sum of the N = 10 squared observations is

N∑
i=1

x2
i = 22 + 32 + 42 + 32 + 42 + 52 + 72 + 82 + 82 + 92 = 337 ,
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and the total sum-of-squares is

SSTotal =
N∑

i=1

(
xi − ¯̄x)2 =

N∑
i=1

x2
i −

(
N∑

i=1

xi

)2/
N

= 337 − (53)2/10 = 56.10 ,

where ¯̄x denotes the grand mean of all N = 10 observations. Then following the
expressions given in Eq. (8.5) on p. 262 for test statistics δ and F , the observed
value of test statistic δ with respect to test statistic F is

δ = 2SSTotal

N − g + (g − 1)F
= 2(56.10)

10 − 3 + (3 − 1)(29.2250)
= 1.7143

and the observed value of test statistic F with respect to test statistic δ is

F = 2SSTotal

(g − 1)δ
− N − g

g − 1
= 2(56.10)

(3 − 1)(1.7143)
− 10 − 3

3 − 1
= 29.2250 .

Under the Fisher–Pitman permutation model, the exact probability of an
observed δ is the proportion of δ test statistic values computed on all possible,
equally-likely arrangements of the N = 10 observations listed in Table 8.1 that
are equal to or less than the observed value of δ = 1.7143. There are exactly 10 δ

test statistic values that are equal to or less than the observed value of δ = 1.7143.
If all M arrangements of the N = 10 observations listed in Table 8.1 occur with
equal chance under the Fisher–Pitman null hypothesis, the exact probability value
of δ = 1.7143 computed on all M = 4200 arrangements of the observed data with
n1 = n2 = 3 and n3 = 4 preserved for each arrangement is

P
(
δ ≤ δo|H0

) = number of δ values ≤ δo

M
= 10

4200
= 0.2381×10−2 ,

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the N = 10 observations listed in Table 8.1.

Alternatively, there are only 10 F values that are larger than the observed value
of F = 29.2250. Thus, if all arrangements of the observed data occur with equal
chance, the exact probability value of F = 29.2250 under the Fisher–Pitman null
hypothesis is

P
(
F ≥ Fo|H0

) = number of F values ≥ Fo

M
= 10

4200
= 0.2381×10−2 ,

where Fo denotes the observed value of test statistic F .
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Following Eq. (8.7) on p. 263, the exact expected value of the M = 4200 δ test
statistic values under the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 52,360

4200
= 12.4667 .

Alternatively, in terms of a one-way analysis of variance model the exact expected
value of test statistic δ is

μδ = 2SSTotal

N − 1
= 2(56.10)

10 − 1
= 12.4667 .

Following Eq. (8.6) on p. 263, the observed chance-corrected measure of effect size
is

� = 1 − δ

μδ

= 1 − 1.7143

12.4667
= +0.8625 ,

indicating approximately 86% within-group agreement above what is expected by
chance. Alternatively, in terms of a one-way analysis of variance model the chance-
corrected measure of effect size is

� = 1 − δ

μδ

= 1 − 2MSWithin

2SSTotal

N − 1

= 1 − (N − 1)(MSWithin)

SSTotal

= 1 − (10 − 1)(0.8571)

56.10
= +0.8625 .

8.5 Example 2: Measures of Effect Size

Measures of effect size express the practical or clinical significance of differences
among multiple independent sample means, as contrasted with the statistical
significance of differences. Five measures of effect size are commonly used for
determining the magnitude of treatment effects for multiple independent samples:
Cohen’s d̂, Pearson’s η2, Kelley’s η̂2, Hays’ ω̂2

F for fixed models, and Hays’ ω̂2
R , for

random models. Cohen’s d̂ measure of effect size is given by

d̂ =
[

1

g − 1

(
SSBetween

nMSWithin

)]1/2

=
[
F

n

]1/2

,
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where n denotes the common size of each treatment group. Pearson’s η2 measure of
effect size is given by

η2 = SSBetween

SSTotal
= 1 − N − g

F(g − 1) + N − g
,

which is equivalent to Pearson’s r2 for a one-way analysis of variance design.
Kelley’s “unbiased” correlation ratio is given by3

η̂2 = SSTotal − (N − 1)MSWithin

SSTotal
= 1 − N − 1

F(g − 1) + N − g
,

which is equivalent to an adjusted or “shrunken” squared multiple correlation
coefficient reported by most computer statistical packages and given by

η̂2 = R2
adj = 1 − (1 − R2)(N − 1)

N − p − 1
,

where R2 is the squared product-moment multiple correlation coefficient and p is
the number of predictors. Hays’ ω̂2

F measure of effect size for a fixed-effects analysis
of variance model is given by

ω̂2
F = SSBetween − (g − 1)MSWithin

SSTotal + MSWithin
= 1 − N

(F − 1)(g − 1) + N
.

Hays’ ω̂2
R measure of effect size for a random-effects analysis of variance model is

given by

ω̂2
R = MSBetween − MSWithin

MSBetween + (n − 1)MSWithin
= 1 − n

F + n − 1
,

where n denotes the common size of each treatment group. Mielke and Berry’s �
chance-corrected measure of effect size is given by

� = 1 − δ

μδ

,

where δ is defined in Eq. (8.1) on p. 261 and μδ is the exact expected value of δ

under the Fisher–Pitman null hypothesis given by

μδ = 1

M

M∑
i=1

δi ,

3It is well known that Kelley’s correlation ratio is not unbiased, but since the title of Truman
Kelley’s 1935 article was “An unbiased correlation ratio measure,” the label has persisted.
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where, for a test of g ≥ 3 independent samples, the number of possible, equally-
likely arrangements of the observed data is given by

M = N !
g∏

i=1

ni !
.

For the example data listed in Table 8.1 on p. 263 for N = 10 observations,
Cohen’s d̂ measure of effect size is4

d̂ =
[

1

g − 1

(
SSBetween

n̄MSWithin

)]1/2

=
[
F

n̄

]1/2

=
[

29.2250

3.3333

]1/2

= ±2.9610 .

Pearson’s r2 measure of effect size is usually labeled as η2 when reported with an
analysis of variance. For the example data listed in Table 8.1, η2 is

η2 = SSBetween

SSTotal
= 1 − N − g

F(g − 1) + N − g

= 1 − 10 − 3

(29.2250)(3 − 1) + 10 − 3
= 0.8930 ,

Kelley’s η̂2 measure of effect size is

η̂2 = SSTotal − (N − 1)MSWithin

SSTotal
= 1 − N − 1

F(g − 1) + N − g

= 1 − 10 − 1

(29.2250)(3 − 1) + 10 − 3
= 0.8625 ,

Hays’ ω̂2
F measure of effect size for a fixed-effects analysis of variance model is

ω̂2
F = SSBetween − (g − 1)MSWithin

SSTotal + MSWithin
= 1 − N

(F − 1)(g − 1) + N

= 1 − 10

(29.2250 − 1)(3 − 1) + 10
= 0.8495 ,

4Since the sizes of the treatment groups are not equal, the average value of n̄ = 3.3333 is used for
both Cohen’s d̂ measure of effect size and Hays’ ω̂2

R measure of effect size for a random-effects
model. In cases where the treatment-group sizes differ greatly, a weighted average recommended
by Haggard is often adopted [6].
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Hays’ ω̂2
R measure of effect size for a random-effects analysis of variance model is5

ω̂2
R = MSBetween − MSWithin

MSBetween + (n̄ − 1)MSWithin
= 1 − n̄

F + n̄ − 1

= 1 − 3.3333

29.2250 + 3.3333 − 1
= 0.8944 ,

and Mielke and Berry’s � chance-corrected measure of effect size is

� = 1 − δ

μδ
= 1 − 1.7143

12.4667
= +0.8625 ,

where the exact expected value of test statistic δ under the Fisher–Pitman null
hypothesis is

μδ = 1

M

M∑
i=1

δi = 52,360

4200
= 12.4667 .

It can easily be shown that Mielke and Berry’s � chance-corrected measure of effect
size is identical to Kelley’s η̂2 measure of effect size for a one-way, completely-
randomized analysis of variance design, under the Neyman–Pearson population
model.

8.5.1 Comparisons of Effect Size Measures

In this section the various measures of effect size are compared and contrasted.
Because Pearson’s r2 and η2 are equivalent and Kelley’s η̂2 and Mielke and Berry’s
� are equivalent for multi-sample designs, only η2 and � are utilized for the
comparisons. The functional relationships between Cohen’s d̂ measure of effect
size and Pearson’s η2 (r2) measure of effect size for g ≥ 3 independent samples
are given by

d̂ =
[

η2(N − g)

n(g − 1)(1 − η2)

]1/2

and η2 = 1 − N − g

nd̂2(g − 1) + N − g
, (8.8)

where n denotes the common treatment-group size. The relationships between
Cohen’s d̂ measure of effect size and Mielke and Berry’s � (η̂2) chance-corrected

5For a one-way completely-randomized analysis of variance, a fixed-effects model and a random-
effects model yield the same F -ratio, but measures of effect size can differ under the two models.
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measure of effect size are given by

d̂ =
[�(N − g) + g − 1

n(g − 1)(1 − �)

]1/2

and � = 1 − N − 1

nd̂2(g − 1) + N − g
. (8.9)

The relationships between Cohen’s d̂ measure of effect size and Hays’ ω̂2
F measure

of effect size for a fixed-effects model are given by

d̂ =
[

(N − g + 1)ω̂2
F + g − 1

n(g − 1)(1 − ω̂2
F)

]1/2

(8.10)

and

ω̂2
F = 1 − N

(nd̂2 − 1)(g − 1) + N
. (8.11)

The relationships between Cohen’s d̂ measure of effect size and Hays’ ω̂2
R measure

of effect size for a random-effects model are given by

d̂ =
[

ω̂2
R(n − 1) + 1

n(1 − ω̂2
R)

]1/2

and ω̂2
R = 1 − n

n(d̂2 + 1) − 1
. (8.12)

The relationships between Pearson’s η2 (r2) measure of effect size and Mielke and
Berry’s � (η̂2) measure of effect size are given by

η2 = 1 − (N − g)(1 − �)

N − 1
and � = 1 − (N − 1)(1 − η2)

N − g
. (8.13)

The relationships between Pearson’s η2 (r2) measure of effect size and Hays’ ω̂2
F

measure of effect size for a fixed-effects model are given by

η2 = (N − g + 1)ω̂2
F + g − 1

N + ω̂2
F − 1

(8.14)

and

ω̂2
F = η2(N − 1) − g + 1

N − η2 − g + 1
. (8.15)
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The relationships between Pearson’s η2 (r2) measure of effect size and Hays’ ω̂2
R

measure of effect size for a random-effects model are given by

η2 = 1 − (N − g)(1 − ω̂2
R)

(g − 1)[ω̂2
R(n − 1) + 1] + (N − g)(1 − ω̂2

R)
(8.16)

and

ω̂2
R = η2(N − 1) − g + 1

(N − g)η2 + (g − 1)(1 − η2)(n − 1)
. (8.17)

The relationships between Mielke and Berry’s � (η̂2) measure of effect size and
Hays’ ω̂2

F measure of effect size for a fixed-effects model are given by

� = Nω̂2
F

N + ω̂2
F − 1

and ω̂2
F = �(N − 1)

N − � . (8.18)

The relationships between Mielke and Berry’s � (η̂2) measure of effect size and
Hays’ ω̂2

R measure of effect size for a random-effects model are given by

� = 1 − (N − 1)(1 − ω̂2
R)

nω̂2
R(g − 1) + (N − 1))(1 − ω̂2

R)
(8.19)

and

ω̂2
R = η̂2(N − 1)

N� − 1 + (1 − �)[n(g − 1) + 1] . (8.20)

And the relationships between Hays’ ω̂2
F measure of effect size for a fixed-effects

model and Hays’ ω̂2
R measure of effect size for a random-effects model are given by

ω̂2
F = nω̂2

R(g − 1)

nω̂2
R + N(1 − ω̂2

R)
and ω̂2

R = Nω̂2
F

Nω̂2
F − n(g − 1)(1 − ω̂2

F)
. (8.21)

8.5.2 Example Comparisons of Effect Size Measures

In this section comparisons of Cohen’s d̂ , Pearson’s η2, Mielke and Berry’s �, Hays’
ω̂2

F, and Hays’ ω̂2
R measures of effect size are illustrated with the example data listed

in Table 8.1 on p. 263 with n1 = n2 = 3, n3 = 4, and N = n1 + n2 + n3 =
3 + 3 + 4 = 10 observations. Because the treatment-group sizes are unequal, the
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ns in the equations for Cohen’s d̂ and Hays’ ω̂2
R are replaced with a simple average;

that is, n̄ = (3 + 3 + 4)/3 = 3.3333.
Given the example data listed in Table 8.1 and following the expressions given

in Eq. (8.8) for Cohen’s d̂ measure of effect size and Pearson’s η2 (r2) measure of
effect size, the observed value for Cohen’s d̂ measure of effect size with respect to
the observed value of Pearson’s η2 (r2) measure of effect size is

d̂ =
[

η2(N − g)

n̄(g − 1)(1 − η2)

]1/2

=
[

(0.8930)(10 − 3)

(3.3333)(3 − 1)(1 − 0.8930)

]1/2

= ±2.9610

and the observed value for Pearson’s η2 (r2) measure of effect size with respect to
the observed value of Cohen’s d̂ measure of effect size is

η2 = 1 − N − g

n̄d̂ 2(g − 1) + N − g

= 1 − 10 − 3

(3.3333)(2.9610)2(3 − 1) + 10 − 3
= 0.8930 .

Following the expressions given in Eq. (8.9) for Cohen’s d̂ measure of effect
size and Mielke and Berry’s � (η̂2) measure of effect size, the observed value for
Cohen’s d̂ measure of effect size with respect to the observed value of Mielke and
Berry’s � (η̂2) measure of effect size is

d̂ =
[�(N − g) + g − 1

n̄(g − 1)(1 − �)

]1/2

=
[

0.8625(10 − 3) + 3 − 1

(3.3333)(3 − 1)(1 − 0.8625)

]1/2

= ±2.9610

and the observed value for Mielke and Berry’s � (η̂2) measure of effect size with
respect to the observed value of Cohen’s d̂ measure of effect size is

� = 1 − N − 1

n̄d̂ 2(g − 1) + N − g

= 1 − 10 − 1

(3.3333)(2.9610)2(3 − 1) + 10 − 3
= +0.8625 .

Following the expressions given in Eqs. (8.10) and (8.11) for Cohen’s d̂ measure
of effect size and Hays’ ω̂2

F measure of effect size for a fixed-effects model, the
observed value for Cohen’s d̂ measure of effect size with respect to the observed



8.5 Example 2: Measures of Effect Size 275

value of Hays’ ω̂2
F measure of effect size is

d̂ =
[

(N − g + 1)ω̂2
F + g − 1

n̄(g − 1)(1 − ω̂2
F)

]1/2

=
[

(10 − 3 + 1)(0.8495) + 3 − 1

(3.3333)(3 − 1)(1 − 0.8495)

]1/2

= ±2.9610

and the observed value for Hays’ ω̂2
F measure of effect size with respect to the

observed value of Cohen’s d̂ measure of effect size is

ω̂2
F = 1 − N

(n̄d̂ 2 − 1)(g − 1) + N

= 1 − 10

[(3.3333)(2.9610)2 − 1](3 − 1) + 10
= 0.8495 .

Following the expressions given in Eq. (8.12) for Cohen’s d̂ measure of effect
size and Hays’ ω̂2

R measure of effect size for a random-effects model, the observed
value for Cohen’s d̂ measure of effect size with respect to the observed value of
Hays’ ω̂2

R measure of effect size is

d̂ =
[

ω̂2
R(n̄ − 1) + 1

n̄(1 − ω̂2
R)

]1/2

=
[

(0.8944)(3.3333 − 1) + 1

(3.3333)(1 − 0.8944)

]1/2

= ±2.9610

and the observed value of Hays’ ω̂2
R measure of effect size with respect to the

observed value of Cohen’s d̂ measure of effect size is

ω̂2
R = 1 − n̄

n̄(d̂ 2 + 1) − 1
= 1 − 3.3333

(3.3333)[(2.9610)2 + 1] − 1
= 0.8944 .

Following the expressions given in Eq. (8.13) for Pearson’s η2 (r2) measure of
effect size and Mielke and Berry’s � (η̂2) measure of effect size, the observed value
for Pearson’s η2 (r2) measure of effect size with respect to the observed value of
Mielke and Berry’s � (η̂2) measure of effect size is

η2 = 1 − (N − g)(1 − �)

N − 1
= 1 − (10 − 3)(1 − 0.8625)

10 − 1
= 0.8930

and the observed value for Mielke and Berry’s � (η̂2) measure of effect size with
respect to the observed value of Pearson’s η2 (r2) measure of effect size is

� = 1 − (N − 1)(1 − η2)

N − g
= 1 − (10 − 1)(1 − 0.8930)

10 − 3
= +0.8625 .
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Following the expressions given in Eqs. (8.14) and (8.15) for Pearson’s η2 (r2)
measure of effect size and Hays’ ω̂2

F measure of effect size for a fixed-effects model,
the observed value for Pearson’s η2 (r2) measure of effect size with respect to the
observed value of Hays’ ω̂2

F measure of effect size is

η2 = (N − g + 1)ω̂2
F + g − 1

N + ω̂2
F − 1

= (10 − 3 + 1)(0.8495) + 3 − 1

10 + 0.8495 − 1
= 0.8930

and the observed value for Hays’ ω̂2
F measure of effect size with respect to the

observed value of Pearson’s η2 (r2) measure of effect size is

ω̂2
F = η2(N − 1) − g + 1

N − η2 − g + 1
= (0.8930)(10 − 1) − 3 + 1

10 − 0.8930 − 3 + 1
= 0.8495 .

Following the expressions given in Eqs. (8.16) and (8.17) for Pearson’s η2 (r2)
measure of effect size and Hays’ ω̂2

R measure of effect size for a random-effects
model, the observed value for Pearson’s η2 (r2) measure of effect size with respect
to the observed value of Hays’ ω̂2

R measure of effect size is

η2 = 1 − (N − g)(1 − ω̂2
R)

(g − 1)[ω̂2
R(n̄ − 1) + 1] + (N − g)(1 − ω̂2

R)

= 1 − (10 − 3)(1 − 0.8944)

(3 − 1)[(0.8944)(3.3333 − 1) + 1] + (10 − 3)(1 − 0.8944)

= 0.8930

and the observed value for Hays’ ω̂2
R measure of effect size with respect to the

observed value of Pearson’s η2 (r2) measure of effect size is

ω̂2
R = η2(N − 1) − g + 1

(N − g)η2 + (g − 1)(1 − η2)(n̄ − 1)

= 0.8930(10 − 1) − 3 + 1

(10 − 3)(0.8930) + (3 − 1)(1 − 0.8930)(3.3333 − 1)
= 0.8944 .

Following the expressions given in Eq. (8.18) for Mielke and Berry’s � (η̂2)
measure of effect size and Hays’ ω̂2

F measure of effect size for a fixed-effects model,
the observed value for Mielke and Berry’s � (η̂2) measure of effect size with respect
to the observed value of Hays’ ω̂2

F measure of effect size is

� = Nω̂2
F

N + ω̂2
F − 1

= (10)(0.8495)

10 + 0.8495 − 1
= +0.8625
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and the observed value for Hays’ ω̂2
F measure of effect size with respect to the

observed value of Mielke and Berry’s � (η̂2) measure of effect size is

ω̂2
F = �(N − 1)

N − � = (0.8625)(10 − 1)

10 − 0.8625
= 0.8495 .

Following the expressions given in Eqs. (8.19) and (8.20) for Mielke and Berry’s
� (η̂2) measure of effect size and Hays’ ω̂2

R measure of effect size for a random-
effects model, the observed value for Mielke and Berry’s � (η̂2) measure of effect
size with respect to the observed value of Hays’ ω̂2

R measure of effect size is

� = 1 − (N − 1)(1 − ω̂2
R)

n̄ω̂2
R(g − 1) + (N − 1)(1 − ω̂2

R)

= 1 − (10 − 1)(1 − 0.8944)

(3.3333)(0.8944)(3 − 1) + (10 − 1)(1 − 0.8944)
= +0.8625

and the observed value for Hays’ ω̂2
R measure of effect size with respect to the

observed value for Mielke and Berry’s � (η̂2) measure of effect size is

ω̂2
R = η̂2(N − 1)

N� − 1 + (1 − �)[n̄(g − 1) + 1]
= (0.8625)(10 − 1)

(10)(0.8625) − 1 + (1 − 0.8625)[(3.3333)(3 − 1) + 1] = 0.8944 .

Following the expressions given in Eq. (8.21) for Hays’ ω̂2
F measure of effect size

for a fixed-effects model and Hays’ ω̂2
R measure of effect size for a random-effects

model, the observed value for Hays’ ω̂2
F measure of effect size with respect to the

observed value of Hays’ ω̂2
R measure of effect size is

ω̂2
F = n̄ω̂2

R(g − 1)

n̄ω̂2
R(g − 1) + N(1 − ω̂2

R)

= (3.3333)(0.8944)(3 − 1)

(3.3333)(0.8944)(3 − 1) + (10)(1 − 0.8944)
= 0.8495

and the observed value for Hays’ ω̂2
R measure of effect size with respect to the

observed value of Hays’ ω̂2
F measure of effect size is

ω̂2
R = Nω̂2

F

Nω̂2
F + n̄(g − 1)(1 − ω̂2

F)

= (10)(0.8495)

(10)(0.8495) + (3.3333)(3 − 1)(1 − 0.8495)
= 0.8944 .
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8.6 Example 3: Analyses with v = 2 and v = 1

For a third example of tests of differences among g ≥ 3 independent samples,
consider the example data set given in Table 8.4 with g = 4 treatment groups,
sample sizes of n1 = n2 = n3 = n4 = 7, and N = 28 total observations. Under
the Neyman–Pearson population model with sample sizes n1 = n2 = n3 = n4 = 7,
treatment-group means x̄1 = 20.4286, x̄2 = 20.8571, x̄3 = 9.1429, and x̄4 =
14.1429, grand mean ¯̄x = 16.1429, estimated population variances s2

1 = 27.9524,
s2

2 = 35.4762, and s2
3 = s2

4 = 8.8095, the sum-of-squares between treatments is

SSBetween =
g∑

i=1

ni

(
x̄i − ¯̄x)2 = 655.1429 ,

the sum-of-squares within treatments is

SSWithin =
g∑

i=1

ni∑
j=1

(
xij − x̄i

)2 = 486.2857 ,

the sum-of-squares total is

SSTotal = SSBetween + SSWithin = 655.1429 + 486.2857 = 1141.4286 ,

the mean-square between treatments is

MSBetween = SSBetween

g − 1
= 655.1429

4 − 1
= 218.3810 ,

the mean-square within treatments is

MSWithin = SSWithin

N − g
= 486.28571

28 − 4
= 20.2619 ,

Table 8.4 Example data for
a test of g = 4 independent
samples with N = 28
observations

Treatment group

1 2 3 4

15 24 10 15

23 14 5 13

18 15 8 10

16 19 13 17

25 30 6 18

29 26 10 11

17 18 12 15
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Table 8.5 Source table for
the data listed in Table 8.4

Factor SS df MS F

Between 655.1429 3 218.3810 10.7779

Within 486.1429 24 20.2619

Total 1141.4286

and the observed value of Fisher’s F -ratio test statistic is

F = MSBetween

MSWithin
= 218.3810

20.2619
= 10.7779 .

The essential factors, sums of squares (SS), degrees of freedom (df ), mean squares
(MS), and variance-ratio test statistic (F ) are summarized in Table 8.5.

Under the Neyman–Pearson null hypothesis, H0: μ1 = μ2 = μ3 = μ4, Fisher’s
F -ratio test statistic is asymptotically distributed as Snedecor’s F with ν1 = g − 1
and ν2 = N−g degrees of freedom. With ν1 = g−1 = 4−1 = 3 and ν2 = N−g =
28 − 4 = 24 degrees of freedom, the asymptotic probability value of F = 10.7778
is P = 0.1122×10−3, under the assumptions of normality and homogeneity.

8.6.1 A Monte Carlo Analysis with v = 2

For the first analysis of the example data listed in Table 8.4 on p. 278 under the
Fisher–Pitman permutation model let v = 2, employing squared Euclidean scaling,
and let the treatment-group weights be given by

Ci = ni − 1

N − g
, i = 1, . . . , g ,

for correspondence with Fisher’s F -ratio test statistic.
Because there are

M = N !
g∏

i=1

ni !
= 28!

7! 7! 7! 7! = 472,518,347,558,400

possible, equally-likely arrangements in the reference set of all permutations of
the N = 28 observations listed in Table 8.4, an exact permutation analysis is not
possible and a Monte Carlo analysis is required.

Following Eq. (8.2) on p. 261, the N = 28 observations yield g = 4 average
distance-function values of

ξi = 55.9048 , ξ2 = 70.9524 , and ξ3 = ξ4 = 17.6190 .
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Alternatively, in terms of a one-way analysis of variance model the average distance-
function values are ξ1 = 2s2

1 = 2(27.9524) = 55.9048, ξ2 = 2s2
2 = 2(34.4762) =

70.9524, ξ3 = 2s2
3 = 2(8.8095) = 2(8.8095) = 17.6190, and ξ4 = 2s2

4 =
2(8.8095) = 17.6190.

Following Eq. (8.1) on p. 261, the observed value of the permutation test statistic
based on v = 2 and treatment-group weights

Ci = ni − 1

N − g
, i = 1, . . . , 4 ,

is

δ =
g∑

i=1

Ciξi = 7 − 1

28 − 4

(
55.9048 + 70.9524

+ 17.6190 + 17.6190
) = 40.5238 .

Alternatively, in terms of a one-way analysis of variance model the permutation test
statistic is

δ = 2MSWithin = 2(20.2619) = 40.5238 .

For the example data listed in Table 8.4, the sum of the N = 28 observations is

N∑
i=1

xi = 15 + 23 + 18 + · · · + 11 + 15 = 452 ,

the sum of the N = 28 squared observations is

N∑
i=1

x2
i = 152 + 232 + 182 + · · · + 112 + 152 = 8438 ,

and the total sum-of-squares is

SSTotal =
N∑

i=1

(
xi − ¯̄x)2 =

N∑
i=1

x2
i −

(
N∑

i=1

xi

)2/
N

= 8438 − (452)2/28 = 1141.4286 ,

where ¯̄x denotes the grand mean of all N = 28 observations.
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Then following the expressions given in Eq. (8.5) on p. 262 for test statistics δ

and F , the observed value for test statistic δ with respect to the observed value of
test statistic F is

δ = 2SSTotal

N − g + (g − 1)F
= 2(1141.4286)

28 − 4 + (4 − 1)(10.7779)
= 40.5238

and the observed value of test statistic F with respect to the observed value of test
statistic δ is

F = 2SSTotal

(g − 1)δ
− N − g

g − 1
= 2(1141.4286)

(4 − 1)(40.5238)
− 28 − 4

4 − 1
= 10.7779 .

Under the Fisher–Pitman permutation model, the Monte Carlo probability of an
observed δ is the proportion of δ test statistic values computed on the randomly-
selected, equally-likely arrangements of the N = 28 observations listed in Table 8.4
that are equal to or less than the observed value of δ = 40.5238. There are
exactly 138 δ test statistic values that are equal to or less than the observed value
of δ = 40.5238. If all M arrangements of the N = 28 observations listed in
Table 8.4 occur with equal chance under the Fisher–Pitman null hypothesis, the
Monte Carlo probability value of δ = 40.5238 computed on L = 1,000,000 random
arrangements of the observed data with n1 = n2 = n3 = n4 = 7 preserved for each
arrangement is

P
(
δ ≤ δo

) = number of δ values ≤ δo

L
= 138

1,000,000
= 0.1380×10−3 ,

where δo denotes the observed value of test statistic δ and L is the number of
randomly-selected, equally-likely arrangements of the N = 28 observations listed
in Table 8.4.

In terms of a one-way analysis of variance model, there are only 138 F values that
are larger than the observed value of F = 10.7779. Thus, if all arrangements of the
observed data occur with equal chance, the exact probability value of F = 10.7779
under the Fisher–Pitman null hypothesis is

P
(
F ≥ Fo

) = number of F values ≥ Fo

L
= 138

1,000,000
= 0.1380×10−3 ,

where Fo denotes the observed value of test statistic F and L is the number of
random, equally-likely arrangements of the example data listed in Table 8.4.

Following Eq. (8.7) on p. 263, the exact expected value of the M = 4200 δ test
statistic values under the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 39,951,568,041,566,987

472,518,347,558,400
= 84.5503 .
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Alternatively, in terms of a one-way analysis of variance model the exact expected
value of test statistic δ under the Fisher–Pitman null hypothesis is

μδ = 2SSTotal

N − 1
= 2(1141.4286)

28 − 1
= 84.5503 .

Following Eq. (8.6) on p. 263, the observed chance-corrected measure of effect size
is

� = 1 − δ

μδ

= 1 − 40.5238

84.5503
= +0.5207 ,

indicating approximately 52% within-group agreement above what is expected
by chance. Alternatively, in terms of a one-way analysis of variance model, the
observed chance-corrected measure of effect size is

� = 1 − (N − 1)(MSWithin)

SSTotal
= 1 − (28 − 1)(20.2619)

1141.4286
= +0.5207 .

Alternatively, in terms of Fisher’s F -ratio test statistic the chance-corrected measure
of effect size is

� = 1 − N − 1

F(g − 1) + N − g
= 1 − 28 − 1

10.7779(4 − 1) + 28 − 4
= +0.5207 .

8.6.2 Measures of Effect Size

For the example data listed in Table 8.4, Cohen’s d̂ measure of effect size is

d̂ =
[

1

g − 1

(
SSBetween

nMSWithin

)]1/2

=
[

1

4 − 1

(
655.1429

(7)(20.2619)

)]1/2

= ±1.2408 ,

Pearson’s η2 (r2) measure of effect size is

η2 = SSBetween

SSTotal
= 655.1429

1141.4286
= 0.5740 ,

Kelley’s η̂2 measure of effect size is

η̂2 = SSTotal − (N − 1)MSWithin

SSTotal

= 1141.4286 − (28 − 1)(20.2619)

1141.4286
= 0.5207 ,
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Hays’ ω̂2
F measure of effect size for a fixed-effects model is

ω̂2
F = SSBetween − (g − 1)MSWithin

SSTotal + MSWithin

= 655.1429 − (4 − 1)(20.2619)

1141.4286 + 20.2619
= 0.5116 ,

Hays’ ω̂2
R measure of effect size for a random-effects model is

ω̂2
R = MSBetween − MSWithin

MSBetween + (n − 1)MSWithin

= 655.1429 − 20.2619

655.1429 + (7 − 1)(20.2619)
= 0.8174 ,

and the observed chance-corrected measure of effect size is

� = 1 − δ

μδ

= 1 − 40.5238

84.5503
= +0.5207 ,

indicating approximately 52% within-group agreement above what is expected by
chance.

8.6.3 A Monte Carlo Analysis with v = 1

Consider a second analysis of the example data listed in Table 8.4 on p. 278 under
the Fisher–Pitman permutation model with v = 1 and treatment-group weights

Ci = ni − 1

N − g
, i = 1, . . . , g .

For v = 1, the average distance-function values for the g = 4 treatment groups are

ξ1 = 6.2857 , ξ2 = 7.2381 , and ξ3 = ξ4 = 3.6190 ,

respectively, and the observed permutation test statistic is

δ =
g∑

i=1

Ciξi

=
(

7 − 1

28 − 4

)
(6.2857 + 7.2381 + 3.6190 + 3.6190) = 5.1905 .
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Because there are

M = N !
g∏

i=1

ni !
= 28!

7! 7! 7! 7! = 472,518,347,558,400

possible, equally-likely arrangements in the reference set of all permutations of
the N = 28 observations listed in Table 8.4, an exact permutation analysis is
impossible and a Monte Carlo permutation analysis is required. Under the Fisher–
Pitman permutation model, the Monte Carlo probability of an observed δ is the
proportion of δ test statistic values computed on the randomly-selected, equally-
likely arrangements of the N = 28 observations listed in Table 8.4 that are equal
to or less than the observed value of δ = 5.1905. There are exactly 204 δ test
statistic values that are equal to or less than the observed value of δ = 5.1905. If
all M arrangements of the N = 28 observations listed in Table 8.4 occur with equal
chance under the Fisher–Pitman null hypothesis, the Monte Carlo probability value
of δ = 5.1905 computed on L = 1,000,000 random arrangements of the observed
data with n1 = n2 = n3 = n4 = 7 preserved for each arrangement is

P
(
δ ≤ δo|H0

) = number of δ values ≤ δo

L
= 204

1,000,000
= 0.2040×10−3 ,

where δo denotes the observed value of test statistic δ and L is the number of
randomly-selected, equally-likely arrangements of the N = 28 observations listed
in Table 8.4. No comparison is made with Fisher’s F -ratio test statistic as F is
undefined for ordinary Euclidean scaling.

For the example data listed in Table 8.4, the exact expected value of test statistic
δ under the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 3,497,628,060,462,033

472,518,347,558,400
= 7.4021 (8.22)

and the observed chance-corrected measure of effect size is

� = 1 − δ

μδ

= 1 − 5.1905

7.4021
= +0.2988 ,

indicating approximately 30% within-group agreement above what is expected by
chance. No comparisons are made with Cohen’s d̂ , Pearson’s η2 (r2), Kelley’s η̂2,
Hays’ ω̂2

F, or Hays’ ω̂2
R conventional measures of effect size as d̂ , η2, η̂2, ω̂2

F, and
ω̂2

R are undefined for ordinary Euclidean scaling.
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8.6.4 The Effects of Extreme Values

To illustrate the robustness to the inclusion of extreme values of ordinary Euclidean
scaling with v = 1, consider the example data listed in Table 8.4 on p. 278 with one
alteration. The seventh (last) observation in Group 4 in Table 8.4 has been increased
from x7,4 = 15 to x7,4 = 75, as shown in Table 8.6. Under the Neyman–Pearson
population model with sample sizes n1 = n2 = n3 = n4 = 7, treatment-group
means x̄1 = 20.4286, x̄2 = 20.8571, x̄3 = 9.1429, and x̄4 = 22.7143, grand
mean ¯̄x = 18.2857, estimated population variances s2

1 = 27.9524, s2
2 = 35.4762,

s2
3 = 8.8095, and s2

4 = 540.2381, the sum-of-squares between treatments is

SSBetween =
g∑

i=1

ni

(
x̄i − ¯̄x)2 = 800.8571 ,

the sum-of-squares within treatments is

SSWithin =
g∑

i=1

ni∑
j=1

(
xij − x̄i

)2 = 3674.8571,

the sum-of-squares total is

SSTotal = SSBetween + SSWithin = 800.8571 + 3674.8571 = 4475.7142 ,

the mean-square between treatments is

MSBetween = SSBetween

g − 1
= 655.1429

4 − 1
= 266.9524 ,

the mean-square within treatments is

MSWithin = SSWithin

N − g
= 486.28571

28 − 4
= 153.1190 ,

Table 8.6 Example data for
a test of g = 4 independent
samples with N = 28
observations and one extreme
value, x7,4 = 75

Treatment group

1 2 3 4

15 24 10 15

23 14 5 13

18 15 8 10

16 19 13 17

25 30 6 18

29 26 10 11

17 18 12 75
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Table 8.7 Source table for
the data listed in Table 8.6

Factor SS df MS F

Between 800.8571 3 266.9524 1.7434

Within 3674.8571 24 153.1190

Total 4475.7142

and the observed value of Fisher’s F -ratio test statistic is

F = MSBetween

MSWithin
= 266.9524

153.1190
= 1.7434 .

The essential factors, sums of squares (SS), degrees of freedom (df ), mean squares
(MS), and variance-ratio test statistic (F ) are summarized in Table 8.7.

Under the Neyman–Pearson null hypothesis, H0: μ1 = μ2 = μ3 = μ4, Fisher’s
F -ratio test statistic is asymptotically distributed as Snedecor’s F with ν1 = g − 1
and ν2 = N−g degrees of freedom. With ν1 = g−1 = 4−1 = 3 and ν2 = N−g =
28 − 4 = 24 degrees of freedom, the asymptotic probability value of F = 1.7434
is P = 0.1849, under the assumptions of normality and homogeneity. The original
F -ratio test statistic value with observation x7,4 = 15 was F = 10.7779 with an
asymptotic probability value of P = 0.1122×10−3, yielding a difference between
the two probability values of

�P = 0.1849 − 0.1122×10−3 = 0.1848 .

8.6.5 A Monte Carlo Analysis with v = 2

For the first analysis of the example data listed in Table 8.6 on p. 285 under the
Fisher–Pitman permutation model let v = 2, employing squared Euclidean scaling,
and let the treatment-group weights be given by

Ci = ni − 1

N − g
, i = 1, . . . , g ,

for correspondence with Fisher’s F -ratio test statistic.
Because there are

M = N !
g∏

i=1

ni !
= 28!

7! 7! 7! 7! = 472,518,347,558,400

possible, equally-likely arrangements in the reference set of all permutations of
the N = 28 observations listed in Table 8.6, an exact permutation analysis is not
possible and a Monte Carlo analysis is required.
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Following Eq. (8.2) on p. 261, the N = 28 observations yield g = 4 average
distance-function values of

ξi = 55.9048 , ξ2 = 70.9524 , ξ3 = 17.6190 , and ξ4 = 1080.4762 .

Alternatively, under an analysis of variance model, ξ1 = 2s2
1 = 2(27.9524) =

55.9048, ξ2 = 2s2
2 = 2(35.4762) = 70.9524, ξ3 = 2s2

3 = 2(8.8095) = 17.6190,
and ξ4 = 2s2

4 = 2(540.2381) = 1080.4762.
Following Eq. (8.1) on p. 261, the observed value of the permutation test statistic

based on v = 2 and treatment-group weights

Ci = ni − 1

N − g
, i = 1, . . . , 4 ,

is

δ =
g∑

i=1

Ciξi = 7 − 1

28 − 4

(
55.9048 + 70.9524

+ 17.6190 + 1080.4762
) = 306.2381 .

Under the Fisher–Pitman permutation model, the Monte Carlo probability of an
observed δ is the proportion of δ test statistic values computed on the randomly-
selected, equally-likely arrangements of the N = 28 observations listed in Table 8.6
that are equal to or less than the observed value of δ = 306.2381. There are exactly
128,239 δ test statistic values that are equal to or less than the observed value
of δ = 306.2381. If all M arrangements of the N = 28 observations listed in
Table 8.6 occur with equal chance under the Fisher–Pitman null hypothesis, the
Monte Carlo probability value of δ = 306.2381 computed on L = 1,000,000
random arrangements of the observed data with n1 = n2 = n3 = n4 = 7 preserved
for each arrangement is

P
(
δ ≤ δo|H0

) = number of δ values ≤ δo

L
= 128,239

1,000,000
= 0.1282 ,

where δo denotes the observed value of test statistic δ and L is the number of
randomly-selected, equally-likely arrangements of the N = 28 observations listed
in Table 8.6. For comparison, the original value of test statistic δ based on v = 2
with observation x7,4 = 15 was δ = 40.5238 with a Monte Carlo probability value
of P = 0.1380×10−3, yielding a difference between the two probability values of

�P = 0.1282 − 0.1380×10−3 = 0.1281 .
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8.6.6 A Monte Carlo Analysis with v = 1

For the second analysis of the example data listed in Table 8.6 on p. 285 under the
Fisher–Pitman permutation model let v = 1, employing ordinary Euclidean scaling,
and let the treatment-group weights be given by

Ci = ni − 1

N − g
, i = 1, . . . , g .

Setting v = 1 can be expected to reduce the outsized effect of extreme value x7,4 =
75.

Because there are

M = N !
g∏

i=1

ni !
= 28!

7! 7! 7! 7! = 472,518,347,558,400

possible, equally-likely arrangements in the reference set of all permutations of
the N = 28 observations listed in Table 8.6, an exact permutation analysis is not
possible and a Monte Carlo analysis is required.

Following Eq. (8.2) on p. 261, the N = 28 observations yield g = 4 average
distance-function values of

ξi = 6.2857 , ξ2 = 7.2381 , ξ3 = 3.6190 , and ξ4 = 20.2857 .

Following Eq. (8.1) on p. 261, the observed value of the permutation test statistic
based on v = 1 and treatment-group weights

Ci = ni − 1

N − g
, i = 1, . . . , 4 ,

is

δ =
g∑

i=1

Ciξi = 7 − 1

28 − 4

(
6.2857 + 7.2381 + 3.6190 + 20.2857

) = 9.3571 .

Under the Fisher–Pitman permutation model, the exact probability of an
observed δ is the proportion of δ test statistic values computed on the randomly-
selected, equally-likely arrangements of the N = 28 observations listed in Table 8.6
that are equal to or less than the observed value of δ = 9.3571. There are exactly
1960 δ test statistic values that are equal to or less than the observed value of
δ = 9.3571. If all M arrangements of the N = 28 observations listed in Table 8.6
occur with equal chance, the Monte Carlo probability value of δ = 9.3571
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computed on L = 1,000,000 random arrangements of the observed data with
n1 = n2 = n3 = n4 = 7 preserved for each arrangement is

P
(
δ ≤ δo|H0

) = number of δ values ≤ δo

L
= 1960

1,000,000
= 0.1960×10−2 ,

where δo denotes the observed value of δ and L is the number of randomly-selected,
equally-likely arrangements of the N = 28 observations listed in Table 8.6.

The original value of test statistic δ based on v = 1 with observation x7,4 =
15 was δ = 5.1905 with a Monte Carlo probability value of P = 0.2040×10−3,
yielding a difference between the two probability values of only

�P = 0.1960×10−2 − 0.2040×10−3 = 0.1756×10−2 .

Multi-sample permutation tests based on ordinary Euclidean scaling with v = 1
tend to be relatively robust with respect to extreme values when compared with
permutation tests based on squared Euclidean scaling with v = 2.

8.7 Example 4: Exact and Monte Carlo Analyses

For a fourth, larger example of tests for differences among g ≥ 3 independent
samples, consider the example data given in Table 8.8 with g = 4 treatment groups,
sample sizes of n1 = n2 = 3, n3 = 4, n4 = 5, and N = n1 + n2 + n3 + n4 =
3 + 3 + 4 + 5 = 15 total observations. Under the Neyman–Pearson population
model with sample sizes n1 = n2 = 3, n3 = 4, and n4 = 5, treatment-group means
x̄1 = 11.00, x̄2 = 12.00, x̄3 = 13.50, and x̄4 = 19.00, grand mean ¯̄x = 14.5333,
estimated population variances s2

1 = s2
2 = 1.00, s2

3 = 1.6667, and s2
4 = 62.50, the

sum-of-squares between treatments is

SSBetween =
g∑

i=1

ni

(
x̄i − ¯̄x)2 = 160.7333 ,

Table 8.8 Example data for
a test of g = 4 independent
samples with N = 15
observations

Treatment group

1 2 3 4

10 11 12 14

11 12 13 15

12 13 14 16

15 17

33
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Table 8.9 Source table for
the data listed in Table 8.8

Factor SS df MS F

Between 160.7333 3 53.5778 2.2755

Within 259.0000 11 23.5455

Total 419.7333

the sum-of-squares within treatments is

SSWithin =
g∑

i=1

ni∑
j=1

(
xij − x̄i

)2 = 259.00 ,

the sum-of-squares total is

SSTotal = SSBetween + SSWithin = 160.7333 + 259.00 = 419.7333 ,

the mean-square between treatments is

MSBetween = SSBetween

g − 1
= 160.7333

4 − 1
= 53.5778 ,

the mean-square within treatments is

MSWithin = SSWithin

N − g
= 259.00

15 − 4
= 23.5455 ,

and the observed value of Fisher’s F -ratio test statistic is

F = MSBetween

MSWithin
= 53.5778

23.5455
= 2.2755 .

The essential factors, sums of squares (SS), degrees of freedom (df ), mean squares
(MS), and variance-ratio test statistic (F ) are summarized in Table 8.9.

Under the Neyman–Pearson null hypothesis, H0: μ1 = μ2 = μ3 = μ4, Fisher’s
F -ratio test statistic is asymptotically distributed as Snedecor’s F with ν1 = g − 1
and ν2 = N − g degrees of freedom. With ν1 = g − 1 = 4 − 1 = 3 and ν2 =
N − g = 15 − 4 = 11 degrees of freedom, the asymptotic probability value of
F = 2.2755 is P = 0.1366, under the assumptions of normality and homogeneity.

8.7.1 A Permutation Analysis with v = 2

For the first analysis of the example data listed in Table 8.8 under the Fisher–Pitman
permutation model let v = 2, employing squared Euclidean scaling, and let the
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treatment-group weighting functions be given by

Ci = ni − 1

N − g
, i = 1, . . . , g ,

for correspondence with Fisher’s F -ratio test statistic.
Because there are

M = N !
g∏

i=1

ni !
= 15!

3! 3! 4! 5! = 12,612,600

possible, equally-likely arrangements in the reference set of all permutations of
the N = 15 observations listed in Table 8.8, an exact permutation analysis is not
practical and a Monte Carlo analysis is utilized.

Following Eq. (8.2) on p. 261, the N = 15 observations yield g = 4 average
distance-function values of

ξ1 = ξ2 = 2.00 , ξ3 = 3.3333 , and ξ4 = 125.00 .

Alternatively, in terms of a one-way analysis of variance model the average distance-
function values are ξ1 = 2s2

1 = 2(1.00) = 2.00, ξ2 = 2s2
2 = 2(1.00) = 2.00,

ξ3 = 2s2
3 = 2(1.667) = 3.3333, and ξ4 = 2s2

4 = 2(62.50) = 125.00.
Following Eq. (8.1) on p. 261, the observed value of the permutation test statistic

based on v = 2 and treatment-group weights

Ci = ni − 1

N − g
, i = 1, . . . , 4 ,

is

δ =
g∑

i=1

Ciξi = 1

15 − 4

[
(3 − 1)(2.00) + (3 − 1)(2.00)

+ (4 − 1)(3.3333) + (5 − 1)(125.00)
] = 47.0909 .

Alternatively, in terms of a one-way analysis of variance model the permutation test
statistic is

δ = 2MSWithin = 2(23.5455) = 47.0909 .

For the example data listed in Table 8.8, the sum of the N = 15 observations is

N∑
i=1

xi = 10 + 11 + 12 + · · · + 17 + 33 = 218 ,
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the sum of the N = 15 squared observations is

N∑
i=1

x2
i = 102 + 112 + 122 + · · · + 172 + 332 = 3588 ,

and the total sum-of-squares is

SSTotal =
N∑

i=1

(
xi − ¯̄x)2 =

N∑
i=1

d2
i −

(
N∑

i=1

di

)2/
N

= 3588 − (218)2/15 = 419.7333 ,

where ¯̄x denotes the grand mean of all N = 15 observations. Then following the
expressions given in Eq. (8.5) on p. 262 for test statistics δ and F , the observed
value for test statistic δ with respect to the observed value of test statistic F is

δ = 2SSTotal

N − g + (g − 1)F
= 2(419.7333)

15 − 4 + (4 − 1)(2.2755)
= 47.0909

and the observed value for test statistic F with respect to the observed value of test
statistic δ is

F = 2SSTotal

(g − 1)δ
− N − g

g − 1
= 2(419.7333)

(4 − 1)(47.0909)
− 15 − 4

4 − 1
= 2.2755 .

Under the Fisher–Pitman permutation model, the Monte Carlo probability of an
observed δ is the proportion of δ test statistic values computed on the randomly-
selected, equally-likely arrangements of the N = 15 observations listed in Table 8.8
that are equal to or less than the observed value of δ = 47.0909. There are exactly
53,200 δ test statistic values that are equal to or less than the observed value of
δ = 47.0909. If all M arrangements of the N = 15 observations listed in Table 8.8
occur with equal chance under the Fisher–Pitman null hypothesis, the Monte Carlo
probability value of δ = 47.0909 computed on L = 1,000,000 randomly-selected
arrangements of the observed data with n1 = n2 = 3 = n3 = 4, and n4 = 5
preserved for each arrangement is

P
(
δ ≤ δo|H0

) = number of δ values ≤ δo

L
= 53,200

1,000,000
= 0.0532 ,

where δo denotes the observed value of test statistic δ and L is the number of
randomly-selected, equally-likely arrangements of the N = 15 observations listed
in Table 8.8.

Alternatively, in terms of a one-way analysis of variance model, there are 53,200
F values that are equal to or greater than the observed value of F = 2.2755. Thus, if
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all arrangements of the observed data occur with equal chance, the exact probability
value of F = 2.2755 under the Fisher–Pitman null hypothesis is

P
(
F ≥ Fo|H0

) = number of F values ≥ Fo

L
= 53,200

1,000,000
= 0.0532 ,

where Fo denotes the observed value of test statistic F .
Following Eq. (8.7) on p. 263, the exact expected value of the M = 12,612,600

δ test statistic values under the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 756,275,456

12,612,600
= 59.9619 .

In terms of a one-way analysis of variance model the exact expected value of test
statistic δ is

μδ = 2SSTotal

N − 1
= 2(419.7333)

15 − 1
= 59.9619 .

Following Eq. (8.6) on p. 263, the observed chance-corrected measure of effect size
is

� = 1 − δ

μδ

= 1 − 47.0909

59.9619
= +0.2147 ,

indicating approximately 21% within-group agreement above what is expected
by chance. Alternatively, in terms of a one-way analysis of variance model, the
observed measure of effect size is

� = 1 − (N − 1)(MSWithin)

SSTotal
= 1 − (15 − 1)(23.5455)

419.7333
= +0.2147 .

8.7.2 Measures of Effect Size

For the example data listed in Table 8.8 on p. 289, the average treatment-group size
is

n̄ = 1

g

g∑
i=1

ni = 3 + 3 + 4 + 5

4
= 3.75 ,
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Cohen’s d̂ measure of effect size is

d̂ =
[

1

g − 1

(
SSBetween

n̄MSWithin

)]1/2

=
[

1

4 − 1

(
160.7333

(3.75)(23.5455)

)]1/2

= ±0.7336 ,

Pearson’s η2 (r2) measure of effect size is

η2 = SSBetween

SSTotal
= 160.7333

419.7333
= 0.3829 ,

Kelley’s η̂2 measure of effect size is

η̂2 = SSTotal − (N − 1)MSWithin

SSTotal

= 419.7333 − (15 − 1)(23.5455)

419.7333
= 0.2147 ,

Hays’ ω̂2
F measure of effect size for a fixed-effects model is

ω̂2
F = SSBetween − (g − 1)MSWithin

SSTotal + MSWithin

= 160.7333 − (4 − 1)(23.5455)

419.7333 + 23.5455
= 0.2033 ,

Hays’ ω̂2
R measure of effect size for a random-effects model is

ω̂2
R = MSBetween − MSWithin

MSBetween + (n̄ − 1)MSWithin

= 53.5777 − 23.5455

53.5777 + (3.75)(23.5455)
= 0.2117 ,

and Mielke and Berry’s � chance-corrected measure of effect size is

� = 1 − δ

μδ

= 1 − 47.0909

56.9619
= +0.2147 ,

indicating approximately 21% within-group agreement above what is expected by
chance.
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8.7.3 An Exact Analysis with v = 2

While an exact permutation analysis with M = 12,612,600 possible arrangements
of the observed data may be impractical, it is not impossible. An exact analysis of
the N = 15 observations listed in Table 8.8 on p. 289 under the Fisher–Pitman
permutation model yields g = 4 average distance-function values of

ξ1 = ξ2 = 2.00 , ξ3 = 3.3333 , and ξ4 = 125.00 .

The observed value of the permutation test statistic based on v = 2 and treatment-
group weights

Ci = ni − 1

N − g
, i = 1, . . . , 4 ,

is

δ =
g∑

i=1

Ciξi = 1

15 − 4

[
(3 − 1)(2.00) + (3 − 1)(2.00)

+ (4 − 1)(3.3333) + (5 − 1)(125.00)
] = 47.0909 .

Under the Fisher–Pitman permutation model, the exact probability of an
observed δ is the proportion of δ test statistic values computed on all possible,
equally-likely arrangements of the N = 15 observations listed in Table 8.8 that are
equal to or less than the observed value of δ = 47.0909. There are exactly 673,490 δ

test statistic values that are equal to or less than the observed value of δ = 47.0909.
If all M arrangements of the N = 15 observations listed in Table 8.8 occur with
equal chance under the Fisher–Pitman null hypothesis, the exact probability value
of δ = 47.0909 computed on the M = 12,612,600 possible arrangements of
the observed data with n1 = n2 = 3 = n3 = 4, and n4 = 5 preserved for each
arrangement is

P
(
δ ≤ δo|H0

) = number of δ values ≤ δo

M
= 673,490

12,612,600
= 0.0534 ,

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the N = 15 observations listed in Table 8.8.

Carrying the Monte Carlo probability value based on L = 1,000,000 random
arrangements and the exact probability value based on M = 12,612,600 possible
arrangements to a few extra decimal places allows for a more direct comparison of
the Monte Carlo and exact permutation approaches. The Monte Carlo approximate
probability value and the corresponding exact probability value to six decimal places
are

P = 0.053242 and P = 0.053398 ,
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respectively. The difference between the two probability values is only

�P = 0.053398 − 0.053242 = 0.000156 ,

demonstrating the efficiency and accuracy of a Monte Carlo approach for permu-
tation methods when L is large and the exact probability value is not too small. In
general, L = 1,000,000 random arrangements of the observed data is sufficient to
ensure three decimal places of accuracy [11].

8.7.4 A Monte Carlo Analysis with v = 1

Consider a second analysis of the example data listed in Table 8.8 on p. 289 under
the Fisher–Pitman permutation model with v = 1 and treatment-group weights

Ci = ni − 1

N − g
, i = 1, . . . , g .

For v = 1, employing ordinary Euclidean scaling between the observations, thereby
reducing the effects of any extreme values, the average distance-function values for
the g = 4 treatment groups are

ξ1 = ξ2 = 1.3333 , ξ3 = 1, 6667 , and ξ4 = 8.00 ,

respectively, and the observed permutation test statistic is

δ =
g∑

i=1

Ciξi =
(

1

15 − 4

)
(3 − 1)(1.3333) + (3 − 1)(1.3333)

+ (4 − 1)(1.6667) + (5 − 1)(8.00) = 3.8485 .

Because there are

M = N !
g∏

i=1

ni !
= 15!

3! 3! 4! 5! = 12,612,600

possible, equally-likely arrangements in the reference set of all permutations of the
N = 28 observations listed in Table 8.8, a Monte Carlo permutation analysis is
recommended.

Under the Fisher–Pitman permutation model, the Monte Carlo probability of an
observed δ is the proportion of δ test statistic values computed on the randomly-
selected, equally-likely arrangements of the N = 15 observations listed in Table 8.8
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that are equal to or less than the observed value of δ = 3.8485. There are exactly
18,000 δ test statistic values that are equal to or less than the observed value of
δ = 3.8485. If all M arrangements of the N = 15 observations listed in Table 8.8
occur with equal chance under the Fisher–Pitman null hypothesis, the Monte Carlo
probability value of δ = 3.8485 computed on L = 1,000,000 random arrangements
of the observed data with n1 = n2 = 3, n3 = 4, and n4 = 5 preserved for each
arrangement is

P
(
δ ≤ δo|H0

) = number of δ values ≤ δo

L
= 18,000

1,000,000
= 0.0180 ,

where δo denotes the observed value of test statistic δ and L is the number of
randomly-selected, equally-likely arrangements of the N = 15 observations listed
in Table 8.8.

For comparison, the approximate Monte Carlo probability value based on v = 2,
L = 1,000,000, and

Ci = ni − 1

N − g
, i = 1, . . . , g ,

is P = 0.0532. The difference between the two probability values, P = 0.0180 and
P = 0.0532, is due to the single extreme value of x5,4 = 33 in the fourth treatment
group. No comparison is made with Fisher’s F -ratio test statistic as F is undefined
for ordinary Euclidean scaling.

For the example data listed in Table 8.8 on p. 289, the exact expected value of
the M = 12,612,600 δ test statistic values under the Fisher–Pitman null hypothesis
is

μδ = 1

M

M∑
i=1

δi = 59,579,400

12,612,600
= 4.7238 (8.23)

and the observed chance-corrected measure of effect size is

� = 1 − δ

μδ

= 1 − 3.8485

4.7238
= +0.1853 ,

indicating approximately 19% within-group agreement above what is expected by
chance. No comparisons are made with Cohen’s d̂ , Pearson’s η2 (r2), Kelley’s η̂2,
Hays’ ω̂2

F, or Hays’ ω̂2
R conventional measures of effect size as d̂ , η2, η̂2, ω̂2

F, and
ω̂2

R are undefined for ordinary Euclidean scaling.
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8.7.5 An Exact Analysis with v = 1

An exact permutation analysis of the observations listed in Table 8.8 with v = 1
yields g = 4 average distance-function values of

ξ1 = ξ2 = 1.3333 , ξ3 = 1, 6667 , and ξ4 = 8.00 .

The observed value of the permutation test statistic based on v = 1 and treatment-
group weights

Ci = ni − 1

N − g
, i = 1, . . . , 4 ,

is

δ =
g∑

i=1

Ciξi = 1

15 − 4

[
(3 − 1)(1.3333) + (3 − 1)(1.3333)

+ (4 − 1)(1.6667) + (5 − 1)(8.00)
] = 3.8485 .

Under the Fisher–Pitman permutation model, the exact probability of an
observed δ is the proportion of δ test statistic values computed on all possible,
equally-likely arrangements of the N = 15 observations listed in Table 8.8 that are
equal to or less than the observed value of δ = 3.8485. There are exactly 225,720 δ

test statistic values that are equal to or less than the observed value of δ = 3.8485.
If all M arrangements of the N = 15 observations listed in Table 8.8 occur with
equal chance under the Fisher–Pitman null hypothesis, the exact probability value
of δ = 3.8485 computed on the M = 12,612,600 possible arrangements of the
observed data with n1 = n2 = 3, n3 = 4, and n4 = 5 preserved for each
arrangement is

P
(
δ ≤ δo|H0

) = number of δ values ≤ δo

M
= 225,720

12,612,600
= 0.0179 ,

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the N = 15 observations listed in Table 8.8.

The exact expected value of the M = 12,612,600 δ test statistic values under the
Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 59,579,400

12,612,600
= 4.7238

and the observed chance-corrected measure of effect size is

� = 1 − δ

μδ

= 1 − 3.8485

4.7238
= +0.1853 ,
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indicating approximately 19% within-group agreement above what is expected by
chance. No comparisons are made with Cohen’s d̂ , Pearson’s η2 (r2), Kelley’s η̂2,
Hays’ ω̂2

F, or Hays’ ω̂2
R conventional measures of effect size as d̂ , η2, η̂2, ω̂2

F, and
ω̂2

R are undefined for ordinary Euclidean scaling.
Finally, note the effect of a single extreme value (x4,5 = 33) in Treatment 4 in

the analysis based on ordinary Euclidean scaling with v = 1, compared with the
analysis based on squared Euclidean scaling with v = 2. In the analysis based on
v = 2, the value for the fourth average distance-function value was ξ4 = 125.00,
but in the analysis based on v = 1, ξ4 was reduced to only ξ4 = 8.00. Also, in
the analysis based on v = 2 the exact probability value was P = 0.0534, but in
the analysis based on v = 1 the exact probability value was only P = 0.0179, a
reduction of approximately 66%. For comparison, the asymptotic probability value
of F = 2.2755 with ν1 = g − 1 = 4 − 1 = 3 and ν2 = N − g = 15 − 4 = 11
degrees of freedom was P = 0.1366.

8.8 Example 5: Rank-Score Permutation Analyses

In many research applications it becomes necessary to analyze rank-score data,
typically because the required parametric assumptions of normality and homo-
geneity cannot be met. Consequently, the raw scores are often converted to rank
scores and analyzed under a less-restrictive model. While it is never necessary
to convert raw scores to rank scores under the Fisher–Pitman permutation model,
sometimes the observed data are simply collected as rank scores. Thus, this fifth
example serves merely to demonstrate the relationship between a g-sample test of
rank-score observations under the population model and the same test under the
permutation model. The conventional approach to univariate rank-score data for
multiple independent samples under the Neyman–Pearson population model is the
Kruskal–Wallis g-sample rank-sum test. As Kruskal and Wallis explained, the rank-
sum test stemmed from two statistical methods: rank transformations of the original
raw scores and permutations of the rank-order statistics [12].

8.8.1 The Kruskal–Wallis Rank-Sum Test

Consider g random samples of possibly different sizes and denote the size of the ith
sample by ni for i = 1, . . . , g. Let

N =
g∑

i=1

ni
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denote the total number of observations, assign rank 1 to the smallest of the N

observations, rank 2 to the next smallest observation, continuing to the largest
observation that is assigned rank N , and let Ri denote the sum of the rank scores in
the ith sample, i = 1, . . . , g. If there are no tied rank scores, the Kruskal–Wallis
g-sample rank-sum test statistic is given by

H = 12

N(N + 1)

g∑
i=1

Ri

ni

− 3(N + 1) . (8.24)

When g = 2, H is equivalent to the Wilcoxon [25], Festinger [5], Mann–
Whitney [15], Haldane–Smith [7], and van der Reyden [24] two-sample rank-sum
tests.

For an example analysis of g-sample rank-score data, consider the rank scores
listed in Table 8.10 with g = 3 samples, n1 = n2 = n3 = 6, N = 18, and no tied
rank scores.

The conventional Kruskal–Wallis g-sample rank-sum test on the N = 18 rank
scores listed in Table 8.10 yields an observed test statistic of

H = 12

N(N + 1)

g∑
i=1

Ri

ni

− 3(N + 1)

= 12

18(18 + 1)

[
(63)2

6
+ (30)2

6
+ (78)2

6

]
− 3(18 + 1) = 7.0526 ,

where test statistic H is asymptotically distributed as Pearson’s chi-squared under
the Neyman–Pearson null hypothesis with g − 1 degrees of freedom as N → ∞.
Under the Neyman–Pearson null hypothesis with g − 1 = 3 − 1 = 2 degrees of
freedom, the observed value of H = 7.0526 yields an asymptotic probability value
of P = 0.0294, under the assumption of normality.

Table 8.10 Ranking of
g = 3 with
n1 = n2 = n3 = 6 and
N = 18

Treatment group

1 2 3

4 2 17

7 3 14

10 11 12

15 1 13

9 8 16

18 5 6

Ri 63 30 78
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8.8.2 A Monte Carlo Analysis with v = 2

For the first analysis of the rank-score data listed in Table 8.10 under the Fisher–
Pitman permutation model let v = 2, employing squared Euclidean scaling between
the pairs of rank scores, and let the treatment-groups weights be given by

Ci = ni − 1

N − g
, i = 1, . . . , g ,

for correspondence with the Kruskal–Wallis g-sample rank-sum test. The average
distance-function values for the g = 3 samples are

ξ1 = 53.40 , ξ2 = 29.60 , and ξ3 = 30.40 ,

and the observed value of the permutation test statistic based on v = 2 is

δ =
g∑

i=1

Ciξi = 6 − 1

18 − 3

(
53.40 + 29.60 + 30.40

) = 37.80 .

Because there are

M = N !
g∏

i=1

ni !
= 18!

6! 6! 6! = 17,153,136

possible, equally-likely arrangements in the reference set of all permutations of
the N = 18 rank scores listed in Table 8.10, an exact permutation analysis is not
practical and a Monte Carlo permutation analysis is utilized.

Under the Fisher–Pitman permutation model, the Monte Carlo probability of an
observed δ is the proportion of δ test statistic values computed on the randomly-
selected, equally-likely arrangements of the N = 18 rank scores listed in Table 8.10
that are equal to or less than the observed value of δ = 37.80. There are exactly
21,810 δ test statistic values that are equal to or less than the observed value of
δ = 37.80. If all M arrangements of the N = 18 observations listed in Table 8.10
occur with equal chance under the Fisher–Pitman null hypothesis, the Monte Carlo
probability value of δ = 37.80 computed on L = 1,000,000 random arrangements
of the observed data with n1 = n2 = n3 = 6 preserved for each arrangement is

P
(
δ ≤ δo|H0

) = number of δ values ≤ δo

L
= 21,810

1,000,000
= 0.0218 ,

where δo denotes the observed value of test statistic δ and L is the number of
randomly-selected, equally-likely arrangements of the N = 18 rank scores listed in
Table 8.10. It should be noted that whereas the Kruskal–Wallis test statistic, H , as
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defined in Eq. (8.24) does not allow for tied rank scores, test statistic δ automatically
accommodates tied rank scores.

The functional relationships between test statistics δ and H are given by

δ =
2

(
T −

{
S

6

[
H + 3(N + 1)

]})

N − g
(8.25)

and

H = 6

S

[
T − δ

2
(N − g)

]
− 3(N + 1) , (8.26)

where, if no rank scores are tied, S and T may simply be expressed as

S =
N∑

i=1

i = N(N + 1)

2
and T =

N∑
i=1

i2 = N(N + 1)(2N + 1)

6
.

Note that in Eqs. (8.25) and (8.26), S, T , N , and g are invariant under permutation,
along with the constants 2, 3, and 6.

The relationships between test statistics δ and H can be confirmed with the rank-
score data listed in Table 8.10. For the rank scores listed in Table 8.10 with no tied
values, the observed value of S is

S =
N∑

i=1

i = N(N + 1)

2
= 18(18 + 1)

2
= 171 ,

and the observed value of T is

T =
N∑

i=1

i2 = N(N + 1)(2N + 1)

6
= 18(18 + 2)[(2)(18) + 1]

6
= 2109 .

Then following Eq. (8.25), the observed value of the permutation test statistic for
the N = 18 rank scores listed in Table 8.10 is

δ =
2

(
T −

{
S

6

[
H + 3(N + 1)

]})

N − g
= N(N + 1)(N − 1 − H)

6(N − g)

= 18(18 + 1)(18 − 1 − 7.0526)

6(18 − 3)
= 37.80
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and, following Eq. (8.26), the observed value of the Kruskal–Wallis test statistic is

H = 6

S

[
T − δ

2
(N − g)

]
− 3(N + 1) = N − 1 − 6δ(N − g)

N(N + 1)

= 18 − 1 − 6(37.80)(18 − 3)

18(18 + 1)
= 7.0526 .

Because of the relationship between test statistics δ and H , the Monte Carlo
probability value of the realized value of H = 7.0526 is identical to the Monte Carlo
probability value of δ = 37.80 under the Fisher–Pitman null hypothesis. Thus,

P
(
H ≥ Ho|H0

) = number of H values ≥ Ho

L
= 21,810

1,000,000
= 0.0218 ,

where Ho denotes the observed value of test statistic H .
The exact expected value of the M = 17,153,136 δ test statistic values under the

Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 977,728,752

17,153,136
= 57.00

and the observed chance-corrected measure of effect size is

� = 1 − δ

μδ

= 1 − 37.80

57.00
= +0.3368 ,

indicating approximately 34% within-group agreement above what is expected by
chance. No comparisons are made with Cohen’s d̂ , Pearson’s η2 (r2), Kelley’s η̂2,
Hays’ ω̂2, or Hays’ ω̂2

R measures of effect size as d̂, η2, η̂2, ω̂2
F, and ω̂2

R are undefined
for rank-score data.

8.8.3 An Exact Analysis with v = 2

Although an exact permutation analysis with M = 17,153,136 possible arrange-
ments of the observed data may be impractical, it is not impossible. An exact
permutation analysis of the N = 18 observations listed in Table 8.10 yields g = 3
average distance-function values of

ξ1 = 53.40 , ξ2 = 29.60 , and ξ3 = 30.40 ,
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and the observed value of the permutation test statistic based on v = 2 and
treatment-group weights

Ci = Ni − 1

N − g
, i = 1, 2, 3 ,

is

δ =
g∑

i=1

Ciξi = 6 − 1

18 − 3

(
53.40 + 29.60 + 30.40

) = 37.80 .

There are

M = N !
g∏

i=1

ni !
= 18!

6! 6! 6! = 17,153,136

possible, equally-likely arrangements in the reference set of all permutations of the
N = 18 rank scores listed in Table 8.10, making an exact permutation analysis
feasible. Under the Fisher–Pitman permutation model, the exact probability of an
observed δ is the proportion of δ test statistic values computed on all possible,
equally-likely arrangements of the N = 18 rank scores listed in Table 8.10 that
are equal to or less than the observed value of δ = 37.80. There are exactly 376,704
δ test statistic values that are equal to or less than the observed value of δ = 37.80.
If all M arrangements of the N = 18 rank scores listed in Table 8.10 occur with
equal chance under the Fisher–Pitman null hypothesis, the exact probability value
of δ = 37.80 computed on the M = 17,153,136 possible arrangements of the
observed data with n1 = n2 = n3 = 6 preserved for each arrangement is

P
(
δ ≤ δo|H0

) = number of δ values ≤ δo

M
= 376,704

17,153,136
= 0.0220 ,

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the N = 18 rank scores listed in Table 8.10.
For comparison, the Monte Carlo probability value based on v = 2, L = 1,000,000
random arrangements of the observed data, and treatment-group weights given by

Ci = ni − 1

N − g
, i = 1, 2, 3 ,

is P = 0.0218 for a difference between the two probability values of only

�P = 0.0220 − 0.0218 = 0.0002 .
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8.8.4 An Exact Analysis with v = 1

For a second analysis of the rank-score data listed in Table 8.10, let the treatment-
group weights be given by

Ci = ni − 1

N − g
, i = 1, . . . , g ,

as in the previous example but set v = 1, employing ordinary Euclidean scaling
between the pairs of rank scores. The N = 18 rank scores listed in Table 8.10 yield
g = 3 average distance-function values of

ξ1 = 6.3333 , ξ2 = 4.6667 , and ξ3 = 4.5333 ,

and the observed value of the permutation test statistic based on v = 1 is

δ =
g∑

i=1

Ciξi = 6 − 1

18 − 3

(
6.3333 + 4.6667 + 4.5333

) = 5.1778 .

Under the Fisher–Pitman permutation model, the exact probability of an
observed δ is the proportion of δ test statistic values computed on all possible,
equally-likely arrangements of the N = 18 rank scores listed in Table 8.10 that are
equal to or less than the observed value of δ = 5.1778. There are exactly 547,662 δ

test statistic values that are equal to or less than the observed value of δ = 5.1778.
If all M arrangements of the N = 18 rank scores listed in Table 8.10 occur with
equal chance under the Fisher–Pitman null hypothesis, the exact probability value
of δ = 5.1778 computed on the M = 17,153,136 possible arrangements of the
observed data with n1 = n2 = n3 = 6 preserved for each arrangement is

P
(
δ ≤ δo|H0

) = number of δ values ≤ δo

M
= 547,662

17,153,136
= 0.0319 ,

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the N = 18 rank scores listed in Table 8.10.
For comparison, the exact probability value based on v = 2, M = 17,153,136, and

Ci = ni − 1

N − g
, i = 1, 2, 3 ,

is P = 0.0220. No comparison is made with the conventional Kruskal–Wallis g-
sample rank-sum test as H is undefined for ordinary Euclidean scaling.
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The exact expected value of the M = 17,153,136 δ test statistic values under the
Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 108, 636, 5232

17,153,136
= 6.3333 ,

and the observed chance-corrected measure of effect size is

� = 1 − δ

μδ

= 1 − 5.1778

6.3333
= +0.1825 ,

indicating approximately 18% within-group agreement above what is expected by
chance. No comparisons are made with Cohen’s d̂ , Pearson’s r2 (η2), Kelley’s η̂2,
Hays’ ω̂2

F, or Hays’ ω̂2
R measures of effect size as d̂ , r2, η̂2, ω̂2

F, and ω̂2
R are undefined

for rank-score data.

8.9 Example 6: Multivariate Permutation Analyses

It is sometimes desirable to test for differences among g ≥ 3 independent treatment
groups where r ≥ 2 measurement scores have been obtained from each object. The
conventional approach is a one-way multivariate analysis of variance (MANOVA)
for which a number of statistical tests have been proposed, including the Bartlett–
Nanda–Pillai (BNP) trace test [1, 16, 19], Wilks’ likelihood-ratio test [26], Roy’s
maximum-root test [20, 21], and the Lawley–Hotelling trace test [9, 13, 14]. The
Bartlett–Nanda–Pillai trace test is considered to be the most powerful and robust of
the four tests [17, 18, 23, p. 269].

8.9.1 The Bartlett–Nanda–Pillai Trace Test

To illustrate a conventional multivariate analysis of variance, consider the BNP trace
test given by

V (s) = trace
[
B(W + B)−1],

where W denotes the Within matrix summarizing within-object variability, B
denotes the hypothesized Between matrix summarizing between-object variability,
and s = min(r, g − 1). For a conventional test of significance, the BNP trace
statistic, V (s), can be transformed into a conventional F test statistic by

F = 2u + s + 1

2t + s + 1

(
V (s)

s − V (s)

)
, (8.27)
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Table 8.11 Example
multivariate response
measurement scores with
r = 2 measurement scores,
g = 3 treatment groups,
n1 = 5, n2 = 4, n3 = 3, and
N = 12 observations

Treatment group

1 2 3

(5.8, 6.0) (4.1, 2.9) (4.2, 7.8)

(6.2, 3.9) (3.9, 4.1) (5.1, 5.9)

(3.9, 4.1) (4.9, 3.9) (4.8, 7.2)

(5.1, 5.2) (2.1, 5.1)

(3.0, 2.8)

where s = min(r, g − 1), u = 0.50(N − g − r − 1), t = 0.50(|r − q| − 1), and
q = g − 1. Assuming independence, normality, and homogeneity of variance and
covariance, test statistic F is asymptotically distributed as Snedecor’s F under the
Neyman–Pearson null hypothesis with ν1 = s(2t + s + 1) and ν2 = s(2u + s + 1)

degrees of freedom.
To illustrate the BNP trace test, consider the multivariate observations listed in

Table 8.11, where r = 2 measurements, g = 3 treatment groups, n1 = 5, n2 = 4,
and n3 = 3 sample sizes, and N = 12 multivariate observations.

A conventional BNP analysis of the multivariate observations listed in Table 8.11
yields

W =
[

11.71000 1.17000

1.17000 10.42667

]
, B =

[
2.75250 3.19755

3.19755 17.30242

]
,

W + B =
[

14.46250 4.36755

4.36755 27.72909

]
,

(W + B)−1 =
[

0.07260 −0.01143

−0.01143 0.03786

]
,

B(W + B)−1 =
[

0.16328 0.08960

0.03476 0.61852

]
,

and

V (2) = trace
[
B(W + B)−1] = 0.16328 + 0.61852 = 0.7818 .

Then, q = g − 1 = 3 − 1 = 2, s = min(r, q) = min(2, 3 − 1) = 2,
u = 0.50(N − g − r − 1) = 0.50(12 − 3 − 2 − 1) = 3, t = 0.50(|r − q| − 1) =
0.50(|2 − 2| − 1) = −0.50, and following Eq. (8.27) on p. 306, the observed value
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of Fisher’s F -ratio test statistic is

F = 2(3) + 2 + 1

2(−0.50) + 2 + 1

(
0.7818

2 − 0.7818

)
= 9

2
(0.6414) = 2.8879 .

Assuming independence, normality, homogeneity of variance, and homogeneity
of covariance, test statistic F is asymptotically distributed as Snedecor’s F with
ν1 = s(2t+s+1) = 2[(2)(−0.50)+2+1] = 4 and ν2 = s(2u+s+1) = 2[(2)(3)+
2 + 1] = 18 degrees of freedom. Under the Neyman–Pearson null hypothesis, the
observed value of F = 2.8879 with ν1 = 4 and ν2 = 18 degrees of freedom yields
an asymptotic probability value of P = 0.0521.

8.9.2 An Exact Analysis with v = 2

For the first analysis of the observed data listed in Table 8.11 under the Fisher–
Pitman permutation model let v = 2, employing squared Euclidean scaling between
the pairs of multivariate observations, and let the treatment-group weights be given
by

Ci = ni − 1

N − g
, i = 1, . . . , g ,

for correspondence with the BNP trace test. An exact permutation analysis is
feasible for the multivariate observations listed in Table 8.11 as there are only

M = N !
g∏

i=1

ni !
= 12!

5! 4! 3! = 27,720

possible, equally-likely arrangements in the reference set of all permutations of the
N = 12 multivariate scores listed in Table 8.11.

Following Eq. (8.2) on p. 261, the multivariate observations listed in Table 8.11
yield g = 3 average distance-function values of

ξ1 = 0.3242 , ξ2 = 0.2994 , and ξ3 = 0.1207 .

Following Eq. (8.1) on p. 261, the observed value of the permutation test statistic
based on v = 2 and treatment-group weights

Ci = ni − 1

N − g
, i = 1, 2, 3 ,
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is

δ =
g∑

i=1

Ciξi = 1

12 − 3

[
(5 − 1)(0.3242) + (4 − 1)(0.2994)

+ (3 − 1)(0.1207)
] = 0.2707 .

Under the Fisher–Pitman permutation model, the exact probability of an
observed δ is the proportion of δ test statistic values computed on all possible,
equally-likely arrangements of the N = 12 multivariate observations listed in
Table 8.11 that are equal to or less than the observed value of δ = 0.2707. There are
exactly 967 δ test statistic values that are equal to or less than the observed value
of δ = 0.2702. If all M arrangements of the N = 12 multivariate scores listed
in Table 8.11 occur with equal chance under the Fisher–Pitman null hypothesis,
the exact probability value of δ = 0.2707 computed on the M = 27,720 possible
arrangements of the observed data with n1 = 5, n2 = 4, and n3 = 3 multivariate
observations preserved for each arrangement is

P
(
δ ≤ δo|H0

) = number of δ values ≤ δo

M
= 967

27,720
= 0.0349 ,

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the N = 12 multivariate observations listed
in Table 8.11.

Following Eq. (8.7) on p. 263, the exact expected value of the M = 27,720 δ test
statistic values under the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 10,080

27,720
= 0.3636

and, following Eq. (8.6) on p. 263, the observed chance-corrected measure of effect
size is

� = 1 − δ

μδ

= 1 − 0.2707

0.3636
= +0.2556 ,

indicating approximately 26% within-group agreement above what is expected by
chance.

A convenient, although positively biased, measure of effect size for the BNP
trace test is given by

η2 = V (2)

s
= 0.7818

2
= 0.3909 ,
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which can be compared with the unbiased chance-corrected measure of effect size,
� = +0.2556. No comparisons are made with Cohen’s d̂ , Kelley’s η̂2, Hays’ ω̂2

F, or
Hays’ ω̂2

R measures of effect size as d̂ , η̂2, ω̂2
F, and ω̂2

R are undefined for multivariate
data.

The functional relationships between statistic δ and the V (2) BNP trace statistic
are given by

δ = 2
(
r − V (2)

)
N − g

and V (2) = r − δ(N − g)

2
. (8.28)

Following the expressions given in Eq. (8.28) for test statistics δ and V 2, the
observed value for test statistic δ with respect to the observed value of test statistic
V 2 is

δ = 2
(
r − V (2)

)
N − g

= 2(2 − 0.7818)

12 − 3
= 0.2707

and the observed value for test statistic V 2 with respect to the observed value of test
statistic δ is

V (2) = r − δ(N − g)

2
= 2 − (0.2707)(12 − 3)

2
= 0.7818 .

8.9.3 An Exact Analysis with v = 1

For a second analysis of the multivariate measurement scores listed in Table 8.11 on
p. 307 under the Fisher–Pitman permutation model, let the treatment-group weights
again be given by

Ci = ni − 1

N − g
, i = 1, . . . , g ,

but set v = 1 instead of v = 2, employing ordinary Euclidean scaling between the
N = 12 multivariate scores. Following Eq. (8.2) on p. 261, the multivariate scores
listed in Table 8.11 yield g = 3 average distance-function values of

ξ1 = 2.3933 , ξ2 = 1.9326 , and ξ3 = 1.4284 .

Following Eq. (8.1) on p. 261, the observed value of the permutation test statistic
based on v = 1 and treatment-group weights

Ci = ni − 1

N − g
, i = 1, 2, 3 ,
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is

δ =
g∑

i=1

Ciξi = 1

12 − 3

[
(5 − 1)(2.3933) + (4 − 1)(1.9326)

+ (3 − 1)(1.4284)
] = 2.0253 .

There are only

M = N !
g∏

i=1

ni !
= 12!

5! 4! 3! = 27,720

possible, equally-likely arrangements in the reference set of all permutations of the
N = 12 multivariate observations listed in Table 8.11, making an exact permutation
analysis feasible.

Under the Fisher–Pitman permutation model, the exact probability of an
observed δ is the proportion of δ test statistic values computed on all possible,
equally-likely arrangements of the N = 12 multivariate observations listed in
Table 8.11 that are equal to or less than the observed value of δ = 2.0253. There are
exactly 618 δ test statistic values that are equal to or less than the observed value of
δ = 2.0253. If all M arrangements of the N = 12 multivariate observations listed
in Table 8.11 occur with equal chance under the Fisher–Pitman null hypothesis,
the exact probability value of δ = 2.0253 computed on the M = 27,720 possible
arrangements of the observed data with n1 = 5, n2 = 4, and n3 = 3 multivariate
observations preserved for each arrangement is

P
(
δ ≤ δo|H0

) = number of δ values ≤ δo

M
= 618

27,720
= 0.0223 ,

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the N = 12 multivariate observations listed
in Table 8.11. No comparison is made with the Bartlett–Nanda–Pillai trace test as
the BNP test is undefined for ordinary Euclidean scaling.

Following Eq. (8.7) on p. 263, the exact expected value of the M = 27,720 δ test
statistic values under the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 69, 854

27,720
= 2.5200

and, following Eq. (8.6) on p. 263, the observed chance-corrected measure of effect
size is

� = 1 − δ

μδ

= 1 − 2.0253

2.5200
= +0.1963 ,
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indicating approximately 20% within-group agreement above that expected by
chance. No comparison is made with the conventional measure of effect size as
η2 is undefined for ordinary Euclidean scaling.

8.10 Summary

This chapter examined statistical methods for multiple independent samples where
the null hypothesis posits no differences among the g ≥ 3 populations that the g

random samples are presumed to represent. Under the Neyman–Pearson population
model of statistical inference, a conventional one-way analysis of variance and five
measures of effect size were described and illustrated: Fisher’s F -ratio test statistic,
and Cohen’s d̂ , Pearson’s η2, Kelley’s η̂2, Hays’ ω̂2

F, and Hays’ ω̂2
R measures of

effect size, respectively.
Under the Fisher–Pitman permutation model of statistical inference, test statistic

δ and associated measure of effect size, �, were described and illustrated for
multi-sample tests. For tests of g ≥ 3 independent samples, test statistic δ was
demonstrated to be flexible enough to incorporate both ordinary and squared
Euclidean scaling functions with v = 1 and v = 2, respectively. Effect size measure
� was shown to be applicable to either v = 1 or v = 2 without modification and to
have a clear and meaningful chance-corrected interpretation.

Six examples illustrated permutation-based statistics δ and �. In the first
example, a small sample of N = 10 observations in g = 3 treatment groups
was utilized to describe and illustrate the calculation of test statistics δ and � for
multiple independent samples. The second example with N = 10 observations
in g = 3 treatment groups demonstrated the chance-corrected measure of effect
size, �, and related � to the five conventional measures of effect size for g ≥ 3
independent samples: Cohen’s d̂, Pearson’s η2, Kelley’s η̂2, Hays’ ω̂2

F, and Hays’
ω̂2

R. The third example with N = 28 observations in g = 4 treatment groups
illustrated the effects of extreme values on analyses using v = 1 for ordinary
Euclidean scaling and v = 2 for squared Euclidean scaling. The fourth example with
N = 15 observations in g = 4 treatment groups compared exact and Monte Carlo
permutation statistical methods, illustrating the accuracy and efficiency of Monte
Carlo analyses. The fifth example with N = 18 rank scores in g = 3 treatment
groups illustrated an application of permutation statistical methods to univariate
rank-score data, comparing a permutation analysis of the rank-score data with the
conventional Kruskal–Wallis g-sample one-way analysis of variance for ranks. In
the sixth example, both test statistic δ and effect size measure � were extended to
multivariate data with N = 12 multivariate observations in g = 3 treatment groups
and compared the permutation analysis of the multivariate data to the conventional
Bartlett–Nanda–Pillai trace test for multivariate independent samples.

Chapter 9 continues the presentation of permutation statistical methods for g ≥ 3
samples, but examines research designs in which the subjects in the g ≥ 3 samples
are matched on specific characteristics; that is, not independent. Research designs



References 313

that posit no differences among matched treatment groups have a long history and
are ubiquitous in the contemporary statistical literature and are generally known as
randomized-blocks designs, of which there exist a large variety.
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Chapter 9
Randomized-Blocks Designs

Abstract This chapter introduces permutation methods for multiple matched
samples, i.e., randomized-blocks designs. Included in this chapter are six exam-
ple analyses illustrating computation of exact permutation probability values for
randomized-blocks designs, calculation of measures of effect size for randomized-
blocks designs, the effect of extreme values on conventional and permutation
randomized-blocks designs, exact and Monte Carlo permutation procedures for
randomized-blocks designs, application of permutation methods to randomized-
blocks designs with rank-score data, and analysis of randomized-blocks designs
with multivariate data. Included in this chapter are permutation versions of Fisher’s
F test for a one-way randomized-blocks design, Friedman’s two-way analysis of
variance for ranks, and a permutation-based alternative for the four conventional
measures of effect size for randomized-blocks designs: Hays’ ω̂2, Pearson’s η2,
Cohen’s partial η2, and Cohen’s f 2.

This chapter presents exact and Monte Carlo permutation statistical methods for
tests of experimental differences among three or more matched or otherwise related
samples, commonly called randomized-blocks designs under the Neyman–Pearson
population model of statistical inference. As with matched-pairs tests discussed
in Chap. 7, the samples may either be matched on specific criteria; for example,
age, education, gender, or the same subjects may be observed at different times or
under different treatments or interventions. While most randomized-blocks designs
take observations at two, three, or four time periods, there have been a number of
long-running studies that follow clients over many years. The best-known of these
are the Fels Longitudinal Study founded in 1929 as a division of the Fels Research
Institute in Yellow Springs, Ohio, the Framingham Heart Study initiated in 1948 in
Framingham, Massachusetts, and the Terman Genetic Study of Genius founded at
Stanford University in 1921. All three studies continue today.1

1Studies such as these that observe the same or matched subjects for many years are often referred
to as “panel studies” and require a different statistical approach.

© Springer Nature Switzerland AG 2019
K. J. Berry et al., A Primer of Permutation Statistical Methods,
https://doi.org/10.1007/978-3-030-20933-9_9

315

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20933-9_9&domain=pdf
https://doi.org/10.1007/978-3-030-20933-9_9


316 9 Randomized-Blocks Designs

As in previous chapters, six examples illustrate permutation statistical methods
for randomized-blocks designs. The first example utilizes a small set of data to
illustrate the computation of exact permutation methods for multiple matched
samples, wherein the permutation test statistic, δ, is developed and compared
with Fisher’s conventional F -ratio test statistic for multiple dependent samples.
The second example develops a permutation-based measure of effect size as
a chance-corrected alternative to the four conventional measures of effect size
for randomized-blocks designs: Hays’ ω̂2, Pearson’s η2, Cohen’s partial η2, and
Cohen’s f 2. The third example compares permutation statistical methods based on
ordinary and squared Euclidean scaling functions, with an emphasis on the analysis
of data sets containing extreme values. The fourth example utilizes a larger set
of data to provide a comparison of exact permutation methods and Monte Carlo
permutation methods, demonstrating the efficiency and accuracy of Monte Carlo
permutation statistical methods for multiple matched samples. The fifth example
illustrates the application of permutation statistical methods to univariate rank-score
data, comparing permutation statistical methods to Friedman’s conventional two-
way analysis of variance for ranks. The sixth example illustrates the application of
permutation statistical methods to multivariate data.

9.1 Introduction

The standard univariate test for g ≥ 3 matched samples under the Neyman–
Pearson population model of inference is Fisher’s randomized-blocks analysis of
variance wherein the null hypothesis (H0) posits no mean differences among the g

populations from which the samples presumably have been randomly drawn; that
is, H0: μ1 = μ2 = · · · = μg. Fisher’s randomized-blocks analysis of variance
does not determine whether or not the null hypothesis is true, but only provides
the probability that, if the null hypothesis is true, the samples have been randomly
drawn from populations with identical mean values, assuming normality.

Consider samples of N = bg independent random variables xij with cumulative
distribution functions Fi(x + βj ) for i = 1, . . . , g and j = 1, . . . , b, respectively,
where g denotes the number of treatments and b denotes the number of blocks. For
simplicity, assume that the xij values are randomly drawn from a normal distribution
with mean μi + βj and variance σ 2

x , i = 1, . . . , g and j = 1, . . . , b. Under the
Neyman–Pearson population model, the null hypothesis of no mean differences tests

H0: μ1 = μ2 = · · · = μg versus H1: μi 	= μj for some i 	= j

for g treatment groups. The permissible probability of a type I error is denoted by α

and if the observed value of Fisher’s F is equal to or greater than the critical value
of F that defines α, the null hypothesis is rejected with a probability of type I error
equal to or less than α, under the assumption of normality.
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For multi-sample tests with g treatment groups and b blocks, Fisher’s F -ratio test
statistic is given by

F = MSTreatments

MSError
,

where the mean-square treatments is given by

MSTreatments = SSTreatments

g − 1
,

the sum-of-squares treatments is given by

SSTreatments = b

g∑
i=1

(
x̄i. − x̄..

)2
,

the mean-square error is given by

MSError = SSError

(b − 1)(g − 1)
,

the sum-of-squares error is given by

SSError =
g∑

i=1

b∑
j=1

(
xij − x̄i. − x̄.j + x̄..

)2
,

the sum-of-squares blocks is given by

SSBlocks = g

b∑
j=1

(
x̄.j − x̄..

)2
,

the sum-of-squares total is given by

SSTotal =
g∑

i=1

b∑
j=1

(
xij − x̄..

)2
,

the mean value for the ith of g treatments is

x̄i. = 1

b

b∑
j=1

xij , i = 1, . . . , g ,
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the mean value for the j th of b blocks is

x̄.j = 1

g

g∑
i=1

xij , j = 1, . . . , b ,

the grand mean over all b blocks and g treatments is given by

x̄.. = 1

gb

g∑
i=1

b∑
j=1

xij ,

and xij denotes the value of the j th block in the ith treatment for j = 1, . . . , b and
i = 1, . . . , g.

Under the Neyman–Pearson null hypothesis, H0: μ1 = μ2 = · · · = μg, Fisher’s
F -ratio test statistic is asymptotically distributed as Snedecor’s F with ν1 = g −
1 degrees of freedom (df ) in the numerator and ν2 = (b − 1)(g − 1) df in the
denominator. If the xij values, i = 1, . . . , g and j = 1, . . . , b, are not randomly
sampled from a normally-distributed population, then Fisher’s F -ratio test statistic
no longer follows Snedecor’s F distribution with ν1 = g−1 and ν2 = (b−1)(g−1)

degrees of freedom.
The assumptions underlying Fisher’s F test for multiple matched samples are

(1) the observations are independent, (2) the data are random samples from well-
defined, normally-distributed populations, (3) homogeneity of variance, and (4)
homogeneity of covariance.

9.2 A Permutation Approach

Alternatively, consider a test for multiple matched samples under the Fisher–Pitman
permutation model of statistical inference. Under the Fisher–Pitman permutation
model there is no null hypothesis specifying population parameters. Instead the
null hypothesis simply states that all possible arrangements of the observations
occur with equal chance [4]. Moreover, there is no alternative hypothesis under
the permutation model and no specified α level. Also, there is no requirement
of random sampling, no degrees of freedom, no assumption of normality, no
assumption of homogeneity of variance, and no assumption of homogeneity of
covariance. This is not to imply that the results of permutation statistical methods
are unaffected by homogeneity of variance and covariance, but homogeneity of
variance and covariance are not requirements for permutation methods as they are
for conventional statistical methods under the Neyman–Pearson population model.

A permutation alternative to Fisher’s conventional F -ratio test for g ≥ 3 matched
samples is given by

δ =
[
g

(
b

2

)]−1 g∑
i=1

b−1∑
j=1

b∑
k=j+1

�
(
xij , xik

)
, (9.1)
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where the symmetric distance functions are given by

�(x, y) =
[(

xi − yi

)2
]v/2

(9.2)

and v > 0. When v = 1, ordinary Euclidean scaling is employed, and when v = 2,
squared Euclidean scaling is employed [7].

Under the Fisher–Pitman permutation model, the null hypothesis states that equal
probabilities are assigned to each of the

M = (
g!)b

possible allocations of the observations to the g treatments within each of the
b blocks. The probability value associated with an observed value of δ is the
probability under the Fisher–Pitman null hypothesis of observing a value of δ that
is equal to or less than the observed value of δ. An exact probability value for δ may
be expressed as

P(δ ≤ δo|H0) = number of δ values ≤ δo

M
,

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the observed data.

When M is large, an approximate probability value for test statistic δ may
be obtained from a Monte Carlo procedure, where a large random sample of
arrangements of the observed data is drawn. Then an approximate probability value
for test statistic δ is given by

P(δ ≤ δo|H0) = number of δ values ≤ δo

L
,

where L denotes the number of the randomly-selected, equally-likely arrangements
of the observed data.

9.3 The Relationship Between Statistics F and δ

When the null hypothesis under the Neyman–Pearson population model states
H0: μ1 = μ2 = · · · = μg and v = 2, the functional relationships between test
statistic δ and Fisher’s F test statistic are given by

F = (b − 1)[2SSTotal − g(b − 1)δ]
g(b − 1)δ − 2SSBlocks

(9.3)
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and

δ = 2[FSSBlocks + (b − 1)SSTotal]
g(b − 1)(F + b − 1)

. (9.4)

Because of the relationship between test statistics δ and F , the exact probability
values given by

P(δ ≤ δo|H0) = number of δ values ≤ δo

M

and

P(F ≥ Fo|H0) = number of F values ≥ Fo

M
.

are equivalent under the Fisher–Pitman null hypothesis, where δo and Fo denote
the observed values of test statistics δ and F , respectively, and M is the number of
possible, equally-likely arrangements of the observed data.

A chance-corrected measure of agreement is given by

� = 1 − δ

μδ
, (9.5)

where μδ, the exact expected value of the M δ test statistic values calculated on all
possible arrangements of the observed measurements, is given by

μδ = 1

M

M∑
i=1

δi . (9.6)

9.4 Example 1: Test Statistics F and δ

A small example will serve to illustrate the relationships between test statistics F

and δ. Consider the example randomized-blocks data listed in Table 9.1 with g = 2
treatment groups, b = 4 blocks, and N = bg = (4)(2) = 8 total observations.

Table 9.1 Example data
with g = 2 treatments and
b = 4 blocks

Treatment

Block 1 2

1 105 21

2 144 52

3 109 97

4 113 32
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Under the Neyman–Pearson population model with treatment means x̄1. =
117.75 and x̄2. = 50.50, block means x̄.1 = 63.00, x̄.2 = 98.00, x̄.3 = 103.00,
and x̄.4 = 72.50, grand mean x̄.. = 84.1250, the sum-of-squares total is

SSTotal =
g∑

i=1

b∑
j=1

(
xij − x̄..

)2 = 13,372.8750 ,

the sum-of-squares treatments is

SSTreatments = b

g∑
i=1

(
x̄i. − x̄..

)2 = 9045.1250 ,

the mean-square treatments is

MSTreatments = SSTreatments

g − 1
= 9045.1250

2 − 1
= 9045.1250 ,

the sum-of-squares blocks is

SSBlocks = g

b∑
j=1

(
x̄.j − x̄..

)2 = 2260.3750 ,

the sum-of-squares error is

SSError =
g∑

i=1

b∑
j=1

(
xij − x̄i. − x̄.j + x̄..

)2 = 2067.3750 ,

the mean-square error is

MSError = SSError

(b − 1)(g − 1)
= 2067.3750

(4 − 1)(2 − 1)
= 689.1250 ,

and the observed value of Fisher’s F -ratio test statistic is

F = MSTreatments

MSError
= 9045.1250

689.1250
= 13.1255 .

For computational efficiency, SSError can easily be obtained by simple subtraction;
for example,

SSError = SSTotal − SSBlocks − SSTreatments

= 13,372.8750 − 2260.3750 − 9045.1250 = 2067.3750 .
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Table 9.2 Source table for the data listed in Table 9.1

Factor SS df MS F

Blocks 2260.3750

Treatments 9045.1250 1 9045.1250 13.1255

Error 2067.3750 3 689.1250

Total 13,372.8750

The essential factors, sums of squares (SS), degrees of freedom (df ), mean squares
(MS), and variance-ratio test statistic (F ) are summarized in Table 9.2.

Under the Neyman–Pearson null hypothesis, H0: μ1 = μ2 = · · · = μg, Fisher’s
F -ratio test statistic is asymptotically distributed as Snedecor’s F with ν1 = g − 1
and ν2 = (b−1)(g−1) degrees of freedom. With ν1 = g−1 = 2−1 = 1 and ν2 =
(b− 1)(g− 1) = (4 − 1)(2 − 1) = 3 degrees of freedom, the asymptotic probability
value of F = 13.1255 is P = 0.0362, under the assumptions of normality and
homogeneity.

9.4.1 An Exact Analysis with v = 2

For an exact analysis under the Fisher–Pitman permutation model let v = 2,
employing squared Euclidean scaling for correspondence with Fisher’s F -ratio test
statistic. Following Eq. (9.2) on p. 319 with v = 2 for Treatment 1, the six distance-
function values are

�(1, 2) =
(∣∣105 − 144

∣∣2)2/2 = 1521 ,

�(1, 3) =
(∣∣105 − 109

∣∣2)2/2 = 16 ,

�(1, 4) =
(∣∣105 − 113

∣∣2)2/2 = 64 ,

�(2, 3) =
(∣∣144 − 109

∣∣2)2/2 = 1225 ,

�(2, 4) =
(∣∣144 − 113

∣∣2)2/2 = 961 ,

�(3, 4) =
(∣∣109 − 113

∣∣2)2/2 = 16 ,



9.4 Example 1: Test Statistics F and δ 323

and for Treatment 2, the six distance-function values are

�(1, 2) =
(∣∣21 − 52

∣∣2)2/2 = 961 ,

�(1, 3) =
(∣∣21 − 97

∣∣2)2/2 = 5776 ,

�(1, 4) =
(∣∣21 − 32

∣∣2)2/2 = 121 ,

�(2, 3) =
(∣∣52 − 97

∣∣2)2/2 = 2025 ,

�(2, 4) =
(∣∣52 − 32

∣∣2)2/2 = 400 ,

�(3, 4) =
(∣∣97 − 32

∣∣2)2/2 = 4225 .

Following Eq. (9.1) on p. 318, the observed value of test statistic δ is

δ =
[
g

(
b

2

)]−1 g∑
i=1

b−1∑
j=1

b∑
k=j+1

�
(
xij , xik

)

=
[

2

(
4

2

)]−1 [
�(1, 2) + �(1, 3) + · · · + �(3, 4)

]

= 1

12

(
1521 + 16 + 64 + · · · + 400 + 4225

) = 1442.5833 .

Alternatively, in terms of a randomized-blocks analysis of variance model the
observed permutation test statistic is

δ = 2(SSTotal − SSTreatments)

N − g

= 2(13,372.8750 − 9045.1250)

8 − 2
= 1442.5833 .

Based on the expressions given in Eqs. (9.3) and (9.4) on p. 319, the observed
value of test statistic F with respect to the observed value of test statistic δ is

F = (b − 1)[2SSTotal − g(b − 1)δ]
g(b − 1)δ − 2SSBlocks

= (4 − 1)[2(13,372.8750) − (2)(4 − 1)(1442.5833)]
2(4 − 1)(1442.5833) − 2(2260.3750)

= 13.1255
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and the observed value of test statistic δ with respect to the observed value of test
statistic F is

δ = 2[FSSBlocks + (b − 1)SSTotal]
g(b − 1)(F + b − 1)

= 2[(13.1255)(2260.3750)+ (4 − 1)(13,372.8750)]
2(4 − 1)(13.1255 + 4 − 1)

= 1442.5833 .

Because there are only

M = (
g!)b = (

2!)4 = 16

possible, equally-likely arrangements in the reference set of all permutations of the
N = 8 observations listed in Table 9.1, an exact permutation analysis is feasible.
Under the Fisher–Pitman permutation model, the exact probability of an observed
δ is the proportion of δ test statistic values computed on all possible, equally-likely
arrangements of the N = 8 observations listed in Table 9.1 that are equal to or less
than the observed value of δ = 1442.5833. Table 9.3 lists the M = 16 possible δ

values, ordered from the lowest (δ1 = 1442.5833) to the highest (δ16 = 4302.5833).
It is readily apparent from Table 9.3 that there are duplicate arrangements of the

observed scores and duplicate δ values; for example, Order 1 {105, 144, 109, 113}
minus Order 2 {21, 52, 97, 32} yields the same absolute difference as Order 15
{21, 52, 97, 32} minus Order 16 {105, 144, 109, 113}. It is more efficient to fix the

Table 9.3 Permutations of the observed scores listed in Table 9.1 with values for δ based on v = 2
ordered from lowest to highest

Order Treatment 1 Treatment 2 δ

1 {105, 144, 109, 113} { 21, 52, 97, 32} 1442.5833

2 { 21, 52, 97, 32} {105, 144, 109, 113} 1442.5833

3 {105, 144, 97, 113} { 21, 52, 109, 32} 1956.5833

4 { 21, 52, 109, 32} {105, 144, 97, 113} 1956.5833

5 { 21, 52, 97, 113} {105, 144, 109, 32} 3980.5833

6 {105, 144, 109, 32} { 21, 52, 97, 113} 3980.5833

7 { 21, 144, 109, 113} {105, 52, 97, 32} 4032.5833

8 {105, 52, 97, 32} { 21, 144, 109, 113} 4032.5833

9 {105, 52, 109, 113} { 21, 144, 97, 32} 4156.5833

10 { 21, 144, 97, 32} {105, 52, 109, 113} 4156.5833

11 { 21, 52, 109, 113} {105, 144, 97, 32} 4170.5833

12 {105, 144, 97, 32} { 21, 52, 109, 113} 4170.5833

13 { 21, 144, 97, 113} {105, 52, 109, 32} 4210.5833

14 {105, 52, 109, 32} { 21, 144, 97, 113} 4210.5833

15 {105, 52, 97, 113} { 21, 144, 109, 32} 4302.5833

16 { 21, 144, 109, 32} {105, 52, 97, 113} 4302.5833
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Table 9.4 Permutations of the observed scores listed in Table 9.1 with values for δ based on v = 2
ordered from lowest to highest

Order Treatment 1 Treatment 2 δ

1 {105, 144, 109, 113} { 21, 52, 97, 32} 1442.5833

2 {105, 144, 97, 113} { 21, 52, 109, 32} 1956.5833

3 { 21, 52, 97, 113} {105, 144, 109, 32} 3980.5833

4 { 21, 144, 109, 113} {105, 52, 97, 32} 4032.5833

5 {105, 52, 109, 113} { 21, 144, 97, 32} 4156.5833

6 { 21, 52, 109, 113} {105, 144, 97, 32} 4170.5833

7 { 21, 144, 97, 113} {105, 52, 109, 32} 4210.5833

8 {105, 52, 97, 113} { 21, 144, 109, 32} 4302.5833

Total 28,252.6667

scores in one block and permute the remaining blocks. Thus,

M = (
g!)b = (

2!)4 = 16 is replaced by M = (
g!)b−1 = (

2!)4−1 = 8

and the results are listed in Table 9.4. There is only one δ value in Table 9.4 that is
equal to or less than the observed value of δ = 1442.5833. If all M arrangements of
the N = 8 observations listed in Table 9.4 occur with equal chance under the Fisher–
Pitman null hypothesis, the exact probability value of δ = 1442.5833 computed on
all M = 8 arrangements of the observed data with b = 4 blocks preserved for each
arrangement is

P(δ ≤ δo|H0) = number of δ values ≤ δo

M
= 1

8
= 0.1250 ,

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the N = 8 observations listed in Table 9.1.

Alternatively, there is only one F value that is equal to or greater than the
observed value of F = 13.1255, as illustrated in Table 9.5. Thus if all M

arrangements of the N = 8 observations listed in Table 9.1 occur with equal

Table 9.5 Permutations of
the observed scores listed in
Table 9.1 with values for
Fisher’s F -ratio ordered from
highest to lowest

Order Treatment 1 Treatment 2 F -ratio

1 {105, 144, 109, 113} { 21, 52, 97, 32} 13.1255

2 {105, 144, 97, 113} { 21, 52, 109, 32} 6.2364

3 { 21, 52, 97, 113} {105, 144, 109, 32} 0.4435

4 { 21, 144, 109, 113} {105, 52, 97, 32} 0.3889

5 {105, 52, 109, 113} { 21, 144, 97, 32} 0.2654

6 { 21, 52, 109, 113} {105, 144, 97, 32} 0.2520

7 { 21, 144, 97, 113} {105, 52, 109, 32} 0.2144

8 {105, 52, 97, 113} { 21, 144, 109, 32} 0.1311
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chance under the Fisher–Pitman null hypothesis, the exact probability value of
F = 13.1255 is

P(F ≥ Fo|H0) = number of F values ≥ Fo

M
= 1

8
= 0.1250 ,

where Fo denotes the observed value of test statistic F .
There is a considerable difference between the conventional asymptotic proba-

bility value for F (P = 0.0362) and the exact permutation probability value for δ

(P = 0.1250). The difference between the two probability values of

�P = 0.1250 − 0.0362 = 0.0888

is most likely due to the very small number of blocks. A continuous mathematical
function such as Snedecor’s F cannot be expected to provide a precise fit to only
M = 8 discrete data points.

Following Eq. (9.6) on p. 320, the exact expected value of the M = 8 δ test
statistic values under the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 28,252.6667

8
= 3531.5833 .

Following Eq. (9.5) on p. 320, the observed chance-corrected measure of effect
size is

� = 1 − δ

μδ

= 1 − 1442.5833

3531.5833
= +0.5915 ,

indicating approximately 59% within-block agreement above what is expected by
chance.

9.5 Example 2: Measures of Effect Size

Many researchers deplore the sole reliance on tests of statistical significance
and recommend that indices of effect size—magnitude of experimental effects—
accompany tests of significance. Measures of effect size express the practical or
clinical significance of differences among sample means, as contrasted with the
statistical significance of the differences. Consequently, the reporting of measures
of effect size in addition to tests of significance has become increasingly important
in the contemporary research literature. For example, a 2018 article in The Lancet
sought to establish the risk thresholds for alcohol consumption using a meta-
analysis for 83 observational studies with a total of 599,912 consumers of alcohol,
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concluding that no level of alcohol consumption is safe [11]. A critique of the article
in the New York Times noted that no measure of effect size was included:

[W]hen we compile observational study on top of observational study, we become more
likely to achieve statistical significance without improving clinical significance. In other
words, very small differences are real, but that doesn’t mean those differences are critical [1,
p. A12].

Five conventional measures of effect size for randomized-blocks analysis of
variance designs are described and compared in this section: Hays’ ω̂2, Pearson’s
η2, Cohen’s partial η2, Cohen’s f 2, and Mielke and Berry’s �.

Hays’ ω̂2 measure of effect size is given by

ω̂2 = (g − 1)(MSTreatments − MSError)

SSTotal + MSWithin Blocks
, (9.7)

where the mean-square within blocks is given by

MSWithin Blocks = SSWithin Blocks

b(g − 1)
,

b and g denote the number of blocks and treatments, respectively, and the sum-of-
squares within blocks is given by

SSWithin Blocks = SSTotal − SSBlocks . (9.8)

Pearson’s η2 measure of effect size is given by2

η2 = SSTreatments

SSTotal
. (9.9)

Cohen’s partial η2 measure of effect size is given by

η2
Partial = SSTreatments

SSTotal − SSError
. (9.10)

Cohen’s f 2 measure of effect size is given by

f 2 = SSTreatments

SSTotal − SSTreatments
. (9.11)

Mielke and Berry’s chance-corrected measure of effect size is given by

� = 1 − δ

μδ

, (9.12)

2Pearson’s η2 measure of effect size is often erroneously referred to as the “correlation ratio.”
Technically, η is the correlation ratio and η2 is the differentiation ratio [9, p. 137].
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where δ is defined in Eq. (9.1) on p. 318 and μδ is the exact expected value of test
statistic δ under the Fisher–Pitman null hypothesis given by

μδ = 1

M

M∑
i=1

δi ,

where for a test of g ≥ 3 matched samples, the number of possible arrangements of
the observed data is given by

M = (
g!)b−1

, (9.13)

where g and b denote the number of treatments and blocks, respectively.

9.5.1 An Example Analysis

To illustrate the calculation of the five measures of effect size, suppose that a fast-
food chain of restaurants decides to evaluate the service at four randomly-chosen
restaurants. The customer-service director for the chain hires six evaluators with
varied experiences in food-service evaluations to act as raters. In this example, the
g = 4 restaurants are the treatments and the b = 6 raters are the blocks. The six
raters evaluate the service at each of the four restaurants in random order. A rating
scale from 0 (low) to 100 (high) is used. Table 9.6 summarizes the evaluation data.

Under the Neyman–Pearson population model with treatment means x̄1. =
77.5000, x̄2. = 66.6667, x̄3. = 91.0000, and x̄4. = 79.3333, block means
x̄.1 = 71.7500, x̄.2 = 79.0000, x̄.3 = 78.2500, x̄.4 = 78.7500, x̄.5 = 81.5000,
and x̄.6 = 82.500, grand mean x̄.. = 78.6250, the sum-of-squares total is

SSTotal =
g∑

i=1

b∑
j=1

(
xij − x̄..

)2 = 2295.6250 ,

Table 9.6 Example
restaurant data with g = 4
treatments and b = 6 blocks

Restaurant

Rater A B C D

1 70 61 82 74

2 77 75 88 76

3 76 67 90 80

4 80 63 96 76

5 84 66 92 84

6 78 68 98 86
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the sum-of-squares treatments is

SSTreatments = b

g∑
i=1

(
x̄i. − x̄..

)2 = 1787.4583 ,

the mean-square treatments is

MSTreatments = SSTreatments

g − 1
= 1787.4583

4 − 1
= 595.8194 ,

the sum-of-squares blocks is

SSBlocks = g

b∑
j=1

(
x̄.j − x̄..

)2 = 283.3750 ,

the sum-of-squares error is

SSError = SSTotal − SSBlocks − SSTreatments

= 2295.6250 − 283.3750 − 1787.4583 = 224.7917 ,

the mean-square error is

MSError = SSError

(b − 1)(g − 1)
= 224.7917

(6 − 1)(4 − 1)
= 14.9861 ,

and the observed value of Fisher’s F -ratio test statistic is

F = MSTreatments

MSError
= 595.8194

14.9861
= 39.7581 .

The essential factors, sums of squares (SS), degrees of freedom (df ), mean squares
(MS), and variance-ratio test statistic (F ) are summarized in Table 9.7.

Table 9.7 Source table for
the data listed in Table 9.6

Factor SS df MS F

Blocks 283.3750

Treatments 1787.4583 3 595.8194 39.7581

Error 224.7917 15 14.9861

Total 2295.6250
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Given the summary data in Table 9.7, Hays’ ω̂2 measure of effect size is

ω̂2 = (g − 1)(MSTreatments − MSError)

SSTotal + MSWithin Blocks

= (4 − 1)(595.8194 − 14.9861)

2295.6250 − 111.7917
= 0.7238 ,

where the mean-square within blocks is

MSWithin Blocks = SSWithin Blocks

b(g − 1)
= 2012.2500

6(4 − 1)
= 111.7917 ,

and the sum-of-squares within blocks is

SSWithin Blocks = SSTotal − SSBlocks

= 2295.6250 − 283.3750 = 2012.2500 .

Following Eq. (9.9) on p. 327, Pearson’s η2 measure of effect size is

η2 = SSTreatments

SSTotal
= 1787.4583

2295.6250
= 0.7786 .

Following Eq. (9.10) on p. 327, Cohen’s partial η2 measure of effect size is

η2
Partial = SSTreatments

SSTotal − SSError
= 1787.4583

2295.6250 − 224.7917
= 0.8632 .

Following Eq. (9.11) on p. 327, Cohen’s f 2 measure of effect size is

f 2 = SSTreatments

SSTotal − SSTreatments
= 1787.4583

2295.6250 − 1787.4583
= 3.5175 .

Cohen’s f 2 measure of effect size can also be defined in terms of Pearson’s η2

measure of effect size and calculated as

f 2 = η2

1 − η2 = 0.7786

1 − 0.7786
= 3.5175 .

Following Eq. (9.13) on p. 328 with δ = 50.8167,

M = (
g!)b−1 = (

4!)6−1 = 7962,624 ,
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and following Eq. (9.6) on p. 320 the exact expected value of test statistic δ under
the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 1,560,873,370

7,962,624
= 196.0250 .

Then following Eq. (9.5) on p. 320, Mielke and Berry’s chance-corrected measure
of effect size is

� = 1 − δ

μδ

= 1 − 50.8167

196.0250
= +0.7408 ,

indicating approximately 78% within-blocks agreement above what is expected by
chance.

A number of criticisms have been directed at the four conventional measures of
effect size: Hays’ ω̂2, Pearson’s η2, Cohen’s partial η2, and Cohen’s f 2. As can be
seen in Eq. (9.8) on p. 327, in the unusual case when MSTreatments is smaller than
MSError, yielding F < 1, Hays’ ω̂2 will be negative and it is difficult to interpret a
squared measure of effect size that is negative. Moreover, unless a measure of effect
size norms properly between the limits of 0 and 1, intermediate values are difficult
to interpret.

Because Pearson’s η2 is simply the ratio of SSTreatments to SSTotal, η2 norms
properly between 0 and 1, providing an interpretation of the total variability in the
dependent variable that is accounted for by variation in the independent variable.
Moreover, when there is one degree of freedom in the numerator (g = 2 treatments),
η2 is equal to the product-moment coefficient of determination, r2, and when there is
more than one degree of freedom in the numerator (g ≥ 3 treatments), η2 is equal to
the squared multiple product-moment correlation coefficient, R2. Most researchers
are familiar with Pearson’s r2 and R2 correlation coefficients, making η2 a useful
index to understand the magnitude of effect sizes. Consequently, Pearson’s η2 is the
most widely reported measure of effect size for randomized-blocks designs. On the
other hand, η2 is a biased estimator of effect size, systematically overestimating the
size of treatment effects. Finally, as Sechrest and Yeaton concluded:

As a general proposition it can be stated that all measures of variance accounted for are
specific to the characteristics of the experiment from which the estimates were obtained,
and therefore the ultimate interpretation of proportion of variance accounted for is a dubious
prospect at best [10, p. 592].3

Cohen’s partial η2 is especially troublesome as reported by Kennedy [5], Levine
and Hullett [6], Pedhazur [8, pp. 507–510], and Richardson [9]. In a classical
one-way, completely-randomized analysis of variance design, η2 and η2

Partial yield
identical results. However, η2 and η2

Partial yield different results in randomized-

3Emphasis in the original.
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blocks analysis of variance designs, with η2
Partial values being equal to or greater than

η2 values. Thus if η2 systematically overestimates effect size, η2
Partial overestimates

effect size even more so. As Levine and Hullett concluded in reference to η2:

[B]ecause eta squared is always equal to partial eta squared or smaller, it may be seen as
a more conservative estimate than partial eta squared and this may be appealing to many
readers, reviewers, and editors [6, p. 620].

Since Cohen’s η2
Partial is not a percentage of the total sum-of-squares, it therefore

is not additive like η2. Moreover, η2 has the advantage of being equivalent to the
familiar r2 and R2 Pearson product-moment correlation coefficients.

Pedhazur pointed to another limitation of both η2 and η2
Partial as measures of effect

size. While both η2 and η2
Partial have a logical upper bound of 1, the only situation

in which η2 and η2
Partial can achieve an upper limit of 1 is when all values in each

treatment are of one score, but differ among treatments. Pedhazur demonstrated that
if the dependent variable is normally distributed, both η2 and η2

Partial have an upper
limit of approximately 0.64 [8, p. 507]. Finally, Levine and Hullett concluded that
“[O]ur examination of the literature revealed little reason for the reporting of partial
eta squared” [6, p. 620].

Cohen’s f 2 measure of effect size is seldom found in the literature as it is simply
a function of Pearson’s η2. Cohen’s f 2 is difficult to interpret as it varies between
zero and infinity; for example, anytime Pearson’s η2 > 0.50, f 2 will exceed unity.
Cohen suggested that small, medium, and large effects are reflected in values of f 2

equal to 0.01, 0.0625, and 0.16, respectively. In general, researchers desire more
precision than simply small, medium, and large effect sizes.

On a more positive note, � is a measure of effect size that possesses a clear
and useful chance-corrected interpretation. Positive values of � indicate agreement
greater than expected by chance, negative values of � indicate agreement less than
expected by chance, and a value of zero indicates chance agreement. Moreover, �
is a universal measure of effect size and can be used in a wide variety of statistical
applications, including one-sample t tests, matched-pairs t tests, simple and multiple
regression, all manner of analysis of variance designs, and numerous contingency
table analyses.

9.6 Example 3: Analyses with v = 2 and v = 1

For a third example of tests of differences among g ≥ 3 matched samples, consider
the example data set given in Table 9.8 with g = 3 treatments, b = 8 blocks, and
N = bg = 24 total observations. Under the Neyman–Pearson population model
with treatment-group means x̄1. = 229.25, x̄2. = 236.25, and x̄3. = 247.00,
block means x̄.1 = 241.00, x̄.2 = 290.00, x̄.3 = 118.6667, x̄.4 = 246.3333,
x̄.5 = 122.6667, x̄.6 = 336.00, x̄.7 = 176.3333, and x̄.8 = 369.00, grand mean
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Table 9.8 Example data for
comparing analyses with
v = 2 and v = 1 given g = 3
treatments and b = 8 blocks

Treatment

Block 1 2 3

1 221 247 255

2 283 302 285

3 103 130 123

4 254 223 262

5 115 113 140

6 322 344 342

7 161 181 187

8 375 350 382

x̄.. = 237.50, the sum-of-squares total is

SSTotal =
g∑

i=1

b∑
j=1

(
xij − x̄..

)2 = 186,448.00 ,

the sum-of-squares treatments is

SSTreatments = b

g∑
i=1

(
x̄i. − x̄..

)2 = 1279.00 ,

the mean-square treatments is

MSTreatments = SSTreatments

g − 1
= 1279.00

3 − 1
= 639.50 ,

the sum-of-squares blocks is

SSBlocks = g

b∑
j=1

(
x̄.j − x̄..

)2 = 182,671.3333 ,

the sum-of-squares error is

SSError = SSTotal − SSBlocks − SSTreatments

= 186,448.00 − 182,671.3333 − 1279.00 = 2497.6667 ,

the mean-square error is

MSError = SSError

(b − 1)(g − 1)
= 2497.6667

(8 − 1)(3 − 1)
= 178.4048 ,
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Table 9.9 Source table for
the data listed in Table 9.8

Factor SS df MS F

Blocks 182,671.3333

Treatments 1279.0000 2 639.5000 3.5845

Error 2497.6667 14 178.4048

Total 186,448.0000

and the observed value of Fisher’s F -ratio test statistic is

F = MSTreatments

MSError
= 639.50

178.4048
= 3.5845 .

The essential factors, sums of squares (SS), degrees of freedom (df ), mean squares
(MS), and variance-ratio test statistic (F ) are summarized in Table 9.9.

Under the Neyman–Pearson null hypothesis, H0: μ1 = μ2 = · · · = μg, Fisher’s
F -ratio test statistic is asymptotically distributed as Snedecor’s F with ν1 = g − 1
and ν2 = (b − 1)(g − 1) degrees of freedom. With ν1 = g − 1 = 3 − 1 = 2 and
ν2 = (b − 1)(g − 1) = (8 − 1)(3 − 1) = 14 degrees of freedom, the asymptotic
probability of F = 3.5845 is P = 0.0553, under the assumptions of normality and
homogeneity.

9.6.1 An Exact Analysis with v = 2

For the example data listed in Table 9.8 with g = 3 treatments, b = 8 blocks, and
N = bg = 24 observations, the observed value of the permutation test statistic with
v = 2 is

δ = 2[FSSBlocks + (b − 1)SSTotal]
g(b − 1)(F + b − 1)

= 2[(3.5845)(182,671.3333) + (8 − 1)(186,448.00)]
3(8 − 1)(3.5845 + 8 − 1)

= 17,635.1430 .

Alternatively, in terms of a randomized-blocks analysis of variance model the
observed permutation test statistic is

δ = 2(SSTotal − SSTreatments)

N − g

= 2(186,448.00 − 1279.00)

24 − 3
= 17,635.1430 .



9.6 Example 3: Analyses with v = 2 and v = 1 335

Because there are only

M = (
g!)b−1 = (

3!)8−1 = 279,936

possible, equally-likely arrangements in the reference set of all permutations of the
observations listed in Table 9.8, an exact permutation analysis is feasible. Under
the Fisher–Pitman permutation model, the exact probability of an observed δ is
the proportion of δ test statistic values computed on all possible, equally-likely
arrangements of the N = 24 observations listed in Table 9.8 that are equal to or
less than the observed value of δ = 17,635.1430. There are exactly 15,840 δ test
statistic values that are equal to or less than the observed value of δ = 17,635.1430.
If all M arrangements of the N = 24 observations listed in Table 9.8 occur with
equal chance under the Fisher–Pitman null hypothesis, the exact probability value
computed on the M = 279,936 possible arrangements of the observed data with
b = 8 blocks preserved for each arrangement is

P(δ ≤ δo|H0) = number of δ values ≤ δo

M
= 15,840

279,936
= 0.0566 ,

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the N = 24 observations listed in Table 9.8.

There are exactly 15,840 F values that are equal to or greater than the observed
value of F = 3.8582. Thus, if all M arrangements of the N = 24 observations listed
in Table 9.8 occur with equal chance under the Fisher–Pitman null hypothesis, the
exact probability value of F = 3.8582 is

P(F ≥ Fo|H0) = number of F values ≥ Fo

M
= 15,840

279,936
= 0.0566 ,

where Fo denotes the observed value of test statistic F .
Following Eq. (9.6) on p. 320, the exact expected value of the M = 279,936 δ

test statistic values under the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 4,958,224,209

279,936
= 17,711.9921 .

Following Eq. (9.5) on p. 320, the observed chance-corrected measure of effect
size is

� = 1 − δ

μδ

= 1 − 17,635.1430

17,711.9921
= +0.4339×10−2 ,

indicating approximately chance within-block agreement.
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9.6.2 Measures of Effect Size

Given the summary data in Table 9.9, Hays’ ω̂2 measure of effect size is

ω̂2 = (g − 1)(MSTreatments)

SSTotal + MSWithin Blocks

= (3 − 1)(639.50 − 178.4048)

186,448.00 + 236.0417
= 0.4940×10−2 ,

where the mean-square within blocks is

MSWithin Blocks = SSWithin Blocks

n(g − 1)
= 3776.6667

8(3 − 1)
= 236.0417

and the sum-of-squares within blocks is

SSWithin Blocks = SSTotal − SSBlocks

= 186,448.00 − 182,671.3333 = 3776.6667 .

Pearson’s η2 measure of effect size is

η2 = SSTreatments

SSTotal
= 1279.00

186,448.00
= 0.6860×10−2 .

Cohen’s partial η2 measure of effect size is

η2
Partial = SSTreatments

SSTotal − SSError
= 1279.00

186,448.00 − 2497.6667
= 0.6953×10−2 .

And Cohen’s f 2 measure of effect size is

f 2 = SSTreatments

SSTotal − SSTreatments
= 1279.00

186,448.00 − 1279.00
= 0.6813×10−2 .

For comparison, Mielke and Berry’s � chance-corrected measure of effect size is

� = 1 − δ

μδ

= 1 − 17,635.1430

17,711.9921
= +0.4339×10−2 .

In this case, the five measures of effect size yield about the same magnitude of
experimental effect.
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9.6.3 An Exact Analysis with v = 1

Following Eq. (9.1) on p. 318, for the example data listed in Table 9.8 on p. 333 with
g = 3 treatments, b = 8 blocks, and N = bg = 24 observations, the observed value
of the permutation test statistic with v = 1 is δ = 114.0238. Under the Fisher–
Pitman permutation model, the exact probability of an observed δ is the proportion
of δ test statistic values computed on all possible, equally-likely arrangements of the
N = 12 observations listed in Table 9.8 that are equal to or less than the observed
value of δ = 114.0238. There are exactly 172,986 δ test statistic values that are equal
to or less than the observed value of δ = 114.0238. If all M arrangements of the
N = 24 observations listed in Table 9.8 occur with equal chance under the Fisher–
Pitman null hypothesis, the exact probability value computed on the M = 279,936
possible arrangements of the observed data with b = 8 blocks preserved for each
arrangement is

P(δ ≤ δo|H0) = number of δ values ≤ δo

M
= 163,296

279,936
= 0.5833 ,

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the N = 24 observations listed in Table 9.8.
No comparison is made with Fisher’s F -ratio test statistic as F is undefined for
ordinary Euclidean scaling.

Following Eq. (9.6) on p. 320, the exact expected value of the M = 279,936 δ

test statistic values under the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 31,883,815

279,936
= 113.8968 ,

and following Eq. (9.5) on p. 320, the observed chance-corrected measure of effect
size is

� = 1 − δ

μδ

= 1 − 114.0238

113.8968
= −0.1114×10−2 ,

indicating slightly less than chance within-block agreement. No comparisons are
made with Hays’ ω̂2, Pearson’s η2, Cohen’s partial η2, or Cohen’s f 2 measures of
effect size as ω̂2, η2, η2

Partial, and f 2 are undefined for ordinary Euclidean scaling.

9.6.4 The Effects of Extreme Values

To illustrate the robustness of ordinary Euclidean scaling with v = 1, consider the
example data listed in Table 9.8 on p. 333 with changes made to the observations
in Block 8. Suppose that an additional 20 points have been added to each of the
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Table 9.10 Comparisons of
exact permutation probability
values with v = 2 and v = 1
for extreme block values

Probability

Change Block 8 v = 2 v = 1

+0 375, 350, 382 0.057474 0.583333

+20 395, 370, 402 0.057474 0.583333

+40 415, 390, 422 0.057474 0.583333

+60 435, 410, 442 0.057474 0.583333

+80 455, 430, 462 0.057474 0.583333

+100 475, 450, 482 0.057474 0.583333

+120 495, 470, 502 0.057474 0.583333

+140 515, 490, 522 0.057474 0.583333

+160 535, 510, 542 0.057474 0.583333

+180 555, 530, 562 0.057474 0.583333

+200 575, 550, 582 0.057474 0.583333

g = 3 treatment values in Block 8. Block 8 contains the three largest values in
each of the g = 3 treatments, making it the most extreme of all b = 8 blocks. The
addition of 20 points increases the three values in Block 8 from {375, 350, 382} to
{395, 370, 402}. A reanalysis of the data with the additional 20 points reveals that
the probability values for v = 2 and v = 1 are unaffected by the extra 20 points. In
fact, adding an additional 20 points (40 points total) does not alter the probability
values. Table 9.10 illustrates the successive addition of 20 points, increasing up to
an additional 200 points, demonstrating that the two permutation probability values
remain constant. Thus tests under the Fisher–Pitman permutation model with both
squared Euclidean scaling with v = 2 and ordinary Euclidean scaling with v = 1
are shown to be robust to an extreme block of data.

The same pattern holds with Fisher’s F -ratio test statistic and asymptotic proba-
bility values. Table 9.11 lists the same block data as Table 9.10 with increments of
20 points added to the most extreme block, along with the associated F -ratio test
statistic values and asymptotic probability values. The addition of extreme values

Table 9.11 Comparisons of
Fisher’s F -ratio test statistics
and associated asymptotic
probability values for extreme
block values

Change Block 8 F -ratio Probability

+0 375, 350, 382 3.584545 0.055334

+20 395, 370, 402 3.584545 0.055334

+40 415, 390, 422 3.584545 0.055334

+60 435, 410, 442 3.584545 0.055334

+80 455, 430, 462 3.584545 0.055334

+100 475, 450, 482 3.584545 0.055334

+120 495, 470, 502 3.584545 0.055334

+140 515, 490, 522 3.584545 0.055334

+160 535, 510, 542 3.584545 0.055334

+180 555, 530, 562 3.584545 0.055334

+200 575, 550, 582 3.584545 0.055334
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Table 9.12 Comparisons of
exact permutation probability
values with v = 2 and v = 1
for a single extreme value

Probability

Change Block 8 v = 2 v = 1

+0 375, 350, 382 0.057474 0.583333

+20 375, 350, 402 0.040431 0.583333

+40 375, 350, 422 0.036912 0.583333

+60 375, 350, 442 0.032968 0.583333

+80 375, 350, 462 0.029635 0.583333

+100 375, 350, 482 0.027449 0.583333

+120 375, 350, 502 0.026299 0.583333

+140 375, 350, 522 0.025524 0.583333

+160 375, 350, 542 0.024945 0.583333

+180 375, 350, 562 0.024291 0.583333

+200 375, 350, 582 0.023823 0.583333

to a block does not change either the value of Fisher’s F -ratio test statistic or the
asymptotic probability value.

Now consider a different scenario. Suppose that an additional 20 points is added
to only one treatment value in Block 8 in Table 9.8 on p. 333. The third value
in Block 8 (382) is the largest of the N = 24 values. An additional 20 points
increases value 382 to 402. In this case, the probability value based on ordinary
Euclidean scaling with v = 1 is unchanged, remaining at P = 0.583333. However,
the probability value based on squared Euclidean scaling with v = 2 decreases to
P = 0.040431 from P = 0.057474. Table 9.12 illustrates the successive addition
of 20 points, increasing up to an additional 200 points, demonstrating that ordinary
Euclidean scaling with v = 1 under the Fisher–Pitman permutation model is robust
to individual extreme values in randomized-blocks designs, while squared Euclidean
scaling with v = 2 is not robust under the same model. The final probability value
based on v = 2 of P = 0.023823 is less than half of the original probability value
of P = 0.057474. The difference between the two exact probability values is

�P = 0.057474 − 0.023823 = 0.033651 .

For comparison, consider the block data listed in Table 9.13. The data listed
in Table 9.13 are the same data listed in Table 9.12, but Table 9.13 also contains
the F -ratio test statistic values and associated asymptotic probability values. As is
clear from the results given in Table 9.13, Fisher’s F -ratio test statistic values are
strongly affected by the inclusion of a single extreme value in one block, as are the
associated asymptotic probability values. The difference between the two F -ratio
test statistics is

�F = 3.584545 − 2.162474 = 1.422071

and the difference between the two asymptotic probability values is

�P = 0.151914 − 0.055334 = 0.096580 .
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Table 9.13 Comparisons of
Fisher’s F -ratio test statistic
values and associated
asymptotic probability values
for a single extreme value

Change Block 8 F -ratio Probability

+0 375, 350, 382 3.584545 0.055334

+20 375, 350, 402 4.126205 0.039017

+40 375, 350, 422 4.097638 0.039726

+60 375, 350, 442 3.793197 0.048265

+80 375, 350, 462 3.434890 0.061132

+100 375, 350, 482 3.109992 0.076284

+120 375, 350, 502 2.838128 0.092321

+140 375, 350, 522 2.615944 0.108329

+160 375, 350, 542 2.434712 0.123762

+180 375, 350, 562 2.285893 0.138331

+200 375, 350, 582 2.162474 0.151914

9.7 Example 4: Exact and Monte Carlo Analyses

For a fourth example of tests for differences, consider the example data given in
Table 9.14. It is generally understood that repeated experience with the Graduate
Record Examination (GRE) leads to better scores, even without any intervening
study. Suppose that eight subjects take the GRE verbal examination on successive
Saturday mornings for three weeks. The data with g = 3 treatments, b = 8 blocks,
and N = 24 scores are listed in Table 9.14.

Under the Neyman–Pearson population model with treatment means x̄1. =
552.50, x̄2. = 564.3750, and x̄3. = 574.3750, block means x̄.1 = 568.3333,
x̄.2 = 450.00, x̄.3 = 616.6667, x̄.4 = 663.3333, x̄.5 = 436.6667, x̄.6 = 696.6667,
x̄.7 = 505.00, and x̄.8 = 573.3333, grand mean x̄.. = 563.75, the sum-of-squares
total is

SSTotal =
g∑

i=1

b∑
j=1

(
xij − x̄..

)2 = 194,512.50 ,

Table 9.14 Example GRE
scores for exact and Monte
Carlo analyses with b = 8
blocks and g = 3 treatments

Treatment

Block 1 2 3

1 550 575 580

2 440 440 470

3 610 630 610

4 650 670 670

5 400 460 450

6 700 680 710

7 490 510 515

8 580 550 590
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the sum-of-squares treatments is

SSTreatments = b

g∑
i=1

(
x̄i. − x̄..

)2 = 1918.75 ,

the mean-square treatments is

MSTreatments = SSTreatments

g − 1
= 1918.75

3 − 1
= 959.3750 ,

the sum-of-squares blocks is

SSBlocks = g

b∑
j=1

(
x̄.j − x̄..

)2 = 189,112.50 ,

the sum-of-squares error is

SSError = SSTotal − SSBlocks − SSTreatments

= 194,512.50 − 189,112.50 − 1918.75 = 3481.25 ,

the mean-square error is

MSError = SSError

(b − 1)(g − 1)
= 3481.25

(8 − 1)(3 − 1)
= 248.6607 ,

and the observed value of Fisher’s F -ratio test statistic is

F = MSTreatments

MSError
= 959.3750

248.6607
= 3.8582 .

The essential factors, sums of squares (SS), degrees of freedom (df ), mean squares
(MS), and variance-ratio test statistic (F ) are summarized in Table 9.15.

Under the Neyman–Pearson null hypothesis, H0: μ1 = μ2 = · · · = μg, Fisher’s
F -ratio test statistic is asymptotically distributed as Snedecor’s F with ν1 = g − 1
and ν2 = (b − 1)(g − 1) degrees of freedom. With ν1 = g − 1 = 3 − 1 = 2 and
ν2 = (b − 1)(g − 1) = (8 − 1)(3 − 1) = 14 degrees of freedom, the asymptotic
probability value of F = 3.8582 is P = 0.0463, under the assumptions of normality
and homogeneity.

Table 9.15 Source table for
the GRE data listed in
Table 9.13

Factor SS df MS F

Blocks 189,112.5000

Treatments 1918.7500 2 959.3750 3.8582

Error 3481.2500 14 248.6607

Total 194,512.5000
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9.7.1 An Exact Analysis with v = 2

For the first analysis of the data in Table 9.14 under the Fisher–Pitman permutation
model let v = 2, employing squared Euclidean scaling for correspondence with
Fisher’s F -ratio test statistic. Because there are only

M = (
g!)b−1 = (

3!)8−1 = 279,936

possible, equally-likely arrangements in the reference set of all permutations of the
N = 24 GRE scores listed in Table 9.14, an exact permutation analysis is feasible.
Following Eq. (9.1) on p. 318, the observed value of the permutation test statistic is
δ = 18,342.2620. Based on the expressions given in Eqs. (9.3) and (9.4) on p. 319,
the observed values of test statistics F and δ are

F = (b − 1)[2SSTotal − g(b − 1)δ]
g(b − 1)δ − 2SSBlocks

= (8 − 1)[2(194,512.50) − 3(8 − 1)(18,342.2620)]
3(8 − 1)(18,342.2620) − 2(189,112.50)

= 3.8582

and

δ = 2[FSSBlocks + (b − 1)SSTotal]
g(b − 1)(F + b − 1)

= 2[(3.8582)(189,112.50) + (8 − 1)(194,512.50)]
3(8 − 1)(3.8582 + 8 − 1)

= 18,342.2620 .

Alternatively, in terms of a randomized-blocks analysis of variance model the
observed permutation test statistic is

δ = 2(SSTotal − SSTreatments)

N − g

= 2(194,512.50 − 1918.75)

24 − 3
= 18,342.2620 .

Under the Fisher–Pitman permutation model, the exact probability of an
observed δ is the proportion of δ test statistic values computed on all possible,
equally-likely arrangements of the N = 24 observations listed in Table 9.14 that
are equal to or less than the observed value of δ = 18,342.2620. There are exactly
12,063 δ test statistic values that are equal to or less than the observed value
of δ = 18,342.2620. If all M arrangements of the N = 24 observations listed
in Table 9.14 occur with equal chance under the Fisher–Pitman null hypothesis,
the exact probability value of δ = 18,342.2620 computed on the M = 279,936
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possible arrangements of the observed data with b = 8 blocks preserved for each
arrangement is

P(δ ≤ δo|H0) = number of δ values ≤ δo

M
= 12,063

279,936
= 0.0431 ,

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the GRE data listed in Table 9.14.

Alternatively, there are exactly 12,063 F -ratio test statistic values that are equal
to or greater than the observed test statistic value of F = 3.8582. Thus, if all M

arrangements of the N = 24 observations listed in Table 9.14 occur with equal
chance under the Fisher–Pitman null hypothesis, the exact probability value of F =
3.8582 computed on the M = 279,936 arrangements of the observed data with
b = 4 blocks preserved for each arrangement is

P(F ≥ Fo|H0) = number of F values ≥ Fo

M
= 12,063

279,936
= 0.0431 ,

where Fo denotes the observed value of test statistic F .
Following Eq. (9.6) on p. 320, the exact expected value of the M = 279,936 δ

test statistic values under the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 5,167,818,515

279,936
= 18,460.7143 .

Following Eq. (9.5) on p. 320, the observed chance-corrected measure of effect
size is

� = 1 − δ

μδ

= 1 − 18,342.2620

18,460.7143
= +0.6416×10−2 ,

indicating approximately chance within-block agreement.

9.7.2 Measures of Effect Size

For the GRE data listed in Table 9.14, Hays’ ω̂2 measure of effect size is

ω̂2 = (g − 1)(MSTreatments)

SSTotal + MSWithin Blocks

= (3 − 1)(959.3750 − 248.6607)

194,512.00 + 337.50
= 0.7295×10−2 ,
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where the mean-square within blocks is

MSWithin Blocks = SSWithin Blocks

n(g − 1)
= 5400.00

8(3 − 1)
= 337.50

and the sum-of-squares within blocks is

SSWithin Blocks = SSTotal − SSBlocks

= 194,512.00 − 189,112.50 = 5400.00 .

Pearson’s η2 measure of effect size is

η2 = SSTreatments

SSTotal
= 1918.75

194,512.50
= 0.9864×10−2 ,

Cohen’s partial η2 measure of effect size is

η2
Partial = SSTreatments

SSTotal − SSError
= 1918.75

194,512.00 − 3481.25
= 0.1004×10−1 ,

and Cohen’s f 2 measure of effect size is

f 2 = SSTreatments

SSTotal − SSTreatments
= 1918.75

194,512.50 − 1918.75
= 0.9963×10−2 .

For comparison, Mielke and Berry’s � chance-corrected measure of effect size is

� = 1 − δ

μδ

= 1 − 18,342.2620

18,460.7143
= +0.6416×10−2 .

Thus, the five measures of effect size yield about the same magnitude of experimen-
tal effect for this example analysis.

9.7.3 A Monte Carlo Analysis with v = 2

Although there are only M = 279,936 possible arrangements of the data listed
in Table 9.14, making an exact permutation analysis feasible, many computer
programs for permutation methods do not provide an option for an exact analysis.
Moreover, over-sampling of the M possible arrangements is quite common in
the permutation literature because of its efficiency in certain applications; for
example, permutation analyses of contingency tables. In this section, over-sampling
is demonstrated where L = 1,000,000 random arrangements is greater than the
M = 279,936 possible arrangements.
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For the example data listed in Table 9.14 on p. 340 with v = 2, the observed
value of the permutation test statistic with v = 2 is δ = 18,342.2620. Under the
Fisher–Pitman permutation model, the Monte Carlo probability of an observed δ is
the proportion of δ test statistic values computed on the randomly-selected, equally-
likely arrangements of the N = 24 observations listed in Table 9.14 that are equal to
or less than the observed value of δ = 18,342.2620. There are exactly 44,421 δ test
statistic values that are equal to or less than the observed value of δ = 18,342.2620.
If all M arrangements of the N = 24 observations listed in Table 9.14 occur with
equal chance under the Fisher–Pitman null hypothesis, the Monte Carlo probability
value computed on a sample of L = 1,000,000 random arrangements of the
observed data with b = 8 blocks preserved for each arrangement is

P(δ ≤ δo|H0) = number of δ values ≤ δo

L
= 44,421

1,000,000
= 0.0444 ,

where δo denotes the observed value of test statistic δ and L is the number
of randomly-selected, equally-likely arrangements of the GRE data listed in
Table 9.14.

Alternatively, there are 44,421 F -ratio test statistic values that are equal to or
greater than the observed value of F = 3.8582. Thus, if all M arrangements of
the N = 24 observations listed in Table 9.14 occur with equal chance under the
Fisher–Pitman null hypothesis, the Monte Carlo probability value of F = 3.8582 is

P(F ≥ Fo|H0) = number of F values ≥ Fo

L
= 44,421

1,000,000
= 0.0444 ,

where Fo denotes the observed value of test statistic F .
The Monte Carlo probability value of P = 0.0444 based on L = 1,000,000

randomly-selected arrangements of the observed data compares favorably with the
exact probability value of P = 0.0431 based on all M = 279,936 possible
arrangements of the observed data.

Following Eq. (9.6) on p. 320, the exact expected value of the M = 279,936 δ

test statistic values under the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 5,167,818,515

279,936
= 18,460.7143 ,

and following Eq. (9.5) on p. 320, the observed chance-corrected measure of effect
size is

� = 1 − δ

μδ

= 1 − 18,342.2620

18,460.7143
= +0.6416×10−2 ,

indicating approximately chance within-block agreement.
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9.7.4 An Exact Analysis with v = 1

Consider a second analysis of the example data listed in Table 9.14 on p. 340
under the Fisher–Pitman permutation model with v = 1, employing ordinary
Euclidean scaling between observations. For the data listed in Table 9.14 with g = 3
treatments, b = 8 blocks, and N = bg = (8)(3) = 24 observations, the observed
permutation test statistic with v = 1 is δ = 116.3095.

Because there are still only

M = (
g!)b−1 = (

3!)8−1 = 279,936

possible, equally-likely arrangements in the reference set of all permutations of the
N = 24 GRE scores listed in Table 9.14, an exact permutation analysis is feasible.

Under the Fisher–Pitman permutation model, the exact probability of an
observed δ is the proportion of δ test statistic values computed on all possible,
equally-likely arrangements of the N = 24 observations listed in Table 9.14 that
are equal to or less than the observed value of δ = 116.3095. There are exactly
186,624 δ test statistic values that are equal to or less than the observed value
of δ = 116.3095. If all M arrangements of the N = 24 observations listed in
Table 9.14 occur with equal chance under the Fisher–Pitman null hypothesis,
the exact probability value of δ = 116.3095 computed on the M = 279,936
possible arrangements of the observed data with b = 8 blocks preserved for each
arrangement is

P(δ ≤ δo|H0) = number of δ values ≤ δo

M
= 186,624

279,936
= 0.6667 ,

where δo denotes the observed value of test statistic δ and M is the number
of possible, equally-likely arrangements of the GRE data listed in Table 9.14.
No comparison is made with Fisher’s F -ratio test statistic as Fisher’s F -ratio is
undefined for ordinary Euclidean scaling.

Following Eq. (9.6) on p. 320, the exact expected value of the M = 279,936 δ

test statistic values under the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 32,514,790

279,936
= 116.1508 ,

and following Eq. (9.5) on p. 320, the observed chance-corrected measure of effect
size is

� = 1 − δ

μδ

= 1 − 116.3095

116.1508
= −0.1367×10−2 ,
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indicating slightly less than chance within-block agreement. No comparisons are
made with Hays’ ω̂2, Pearson’s η2, Cohen’s partial η2, or Cohen’s f 2 measures of
effect size as ω̂2, η2, η2

Partial, and f 2 are undefined for ordinary Euclidean scaling.
For comparison, a Monte Carlo analysis based on L = 1,000,000 randomly-

selected arrangements of the observed data listed in Table 9.14 with v = 1 yields
δ = 116.3095. Under the Fisher–Pitman permutation model, the Monte Carlo
probability of an observed δ is the proportion of δ test statistic values computed
on the randomly-selected, equally-likely arrangements of the N = 24 observations
listed in Table 9.14 that are equal to or less than the observed value of δ = 116.3095.
There are exactly 666,384 δ test statistic values that are equal to or less than
the observed value of δ = 116.3095. If all M arrangements of the N = 24
observations listed in Table 9.14 occur with equal chance under the Fisher–Pitman
null hypothesis, the Monte Carlo probability value of δ = 116.3095 computed on
a sample of L = 1,000,000 randomly-selected arrangements of the observed data
with b = 8 blocks preserved for each arrangement is

P(δ ≤ δo|H0) = number of δ values ≤ δo

L
= 666,384

1,000,000
= 0.6664 ,

where δo denotes the observed value of test statistic δ and L is the number
of randomly-selected, equally-likely arrangements of the GRE data listed in
Table 9.14.

It is perhaps interesting that, for the example data listed in Table 9.14, the
asymptotic probability value of F = 3.8582 with ν1 = 2 and ν2 = 14 degrees of
freedom is P = 0.0463, the exact permutation probability value of δ = 18,342.2620
with v = 2 is P = 0.0431, the Monte Carlo probability value of δ = 18,342.2620
based on L = 1,000,000 random arrangements of the observed data is P = 0.0444,
but the exact permutation probability value of δ = 116.3095 with v = 1 is
P = 0.6667. Thus the difference in exact probability values between analyses based
on v = 1 and v = 2 is

�P = 0.6667 − 0.0431 = 0.6236 ,

which is a considerable discrepancy.
To be sure, the set of example data listed in Table 9.14 is rather innocuous—

nothing unusual or extreme immediately presents itself. However, two values are
somewhat extreme and it is extreme values that usually account for large differences
in probability values based on squared Euclidean scaling with v = 2 and ordinary
Euclidean scaling with v = 1. The two somewhat extreme values are x6,1 = 700 in
Treatment 1 and x6,3 = 710 in Treatment 3. The value of 700 is 147.50 points above
the average of Treatment 1 (x̄1. = 552.50) and 1.42 standard deviations above the
average value in Treatment 1. The value of 710 is 135.6250 points above the average
of Treatment 3 (x̄3. = 574.3750) and 1.48 standard deviations above the average
value in Treatment 3.
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The effects of these two values can be revealed by reducing the two values and
re-analyzing the revised data. Consider reducing value x6,1 = 700 to x6,1 = 600,
which with a standard score of +0.46 is closer to the mean of x̄.1 = 552.50, and
also reducing value x6,3 = 710 to x6,3 = 600, which with a standard score of
+0.28 is closer to the mean of x̄.3 = 574.3750. The result is to bring the probability
values closer together, with an exact probability value based on squared Euclidean
scaling with v = 2 of P = 0.0799, an exact probability value based on ordinary
Euclidean scaling with v = 1 of P = 0.2716, and a difference between the two
exact probability values of

�P = 0.2716 − 0.0799 = 0.1917

instead of a difference of

�P = 0.6667 − 0.0431 = 0.6236 .

The effects of the two extreme values can further be revealed by eliminating the two
values. When the two values are eliminated—set equal to zero—and re-analyzed,
the exact probability value based on squared Euclidean scaling with v = 2 is P =
0.2651 and the exact probability value based on ordinary Euclidean scaling with
v = 1 is P = 0.3914 with a difference between the two exact probability values of
only

�P = 0.3914 − 0.2651 = 0.1263 .

Table 9.16 lists the raw GRE scores from Table 9.14 on p. 340 along with
associated standard scores, given in parentheses. To emphasize that the standard
scores +1.48 and +1.42 are extreme relative to other scores listed in Table 9.16, a
listing of the 13 positive standard scores in order is

Standard score: + 1.48, +1.42, +1.27, +1.27, +1.04, +0.94,

+ 0.72, +0.55, +0.39, +0.27, +0.17, +0.16, +0.12 .

Table 9.16 Example data
from Table 9.14 with raw
GRE scores and associated
standard scores (in
parentheses)

Treatment

Block 1 2 3

1 550 (−0.02) 575 (+0.12) 580 (+0.06)

2 440 (−1.09) 440 (−1.36) 470 (−1.14)

3 610 (+0.55) 630 (+0.72) 610 (+0.39)

4 650 (+0.94) 670 (+1.16) 670 (+1.04)

5 400 (−1.47) 460 (−1.14) 450 (−1.36)

6 700 (+1.42) 680 (+1.27) 710 (+1.48)

7 490 (−0.60) 510 (−0.52) 515 (−0.65)

8 580 (+0.27) 550 (−0.16) 590 (+0.17)
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9.8 Example 5: Rank-Score Permutation Analyses

It is often necessary to analyze rank-score data when the required parametric
assumptions of randomized-blocks designs cannot be met. However, with permu-
tation methods it is never necessary to convert raw-score data to ranks [2]. The
conventional approach to multi-sample rank-score data is Friedman’s two-way
analysis of variance for ranks [3].

9.8.1 The Friedman Analysis of Variance for Ranks

Let b denote the number of blocks and g denote the number of objects to be ranked.
Then Friedman’s test statistic is given by

χ2
r = 12

bg(g + 1)

g∑
i=1

R2
i − 3b(g + 1) ,

where Ri for i = 1, . . . , g is the sum of the rank scores for the ith object and
there are no tied rank scores. A number of statistics are either identical, related, or
equivalent to Friedman’s χ2

r test statistic. Among these are Kendall and Babington
Smith’s coefficient of concordance, the average value of all pairwise Spearman’s
rank-order correlation coefficients, and the Wallis rank-order correlation ratio.

To illustrate Friedman’s analysis of variance for ranks, consider the rank scores
listed in Table 9.17; that is, rank scores rij for i = 1, . . . , g and j = 1, . . . , b. For
the rank-score data listed in Table 9.17, the sum of the squared rank scores is

g∑
i=1

R2
i = 42 + 142 + 152 + 132 + 112 + 62 = 763 ,

Table 9.17 Example data for
the Friedman analysis of
variance for ranks with b = 3
blocks and g = 6 objects

Block

Object 1 2 3 R

1 1 1 2 4

2 6 5 3 14

3 3 6 6 15

4 4 4 5 13

5 5 2 4 11

6 2 3 1 6

Sum 63



350 9 Randomized-Blocks Designs

and the observed value of Friedman’s test statistic is

χ2
r = 12

bg(g + 1)

g∑
i=1

R2
i − 3b(g + 1)

= 12

(3)(6)(6 + 1)
763 − (3)(3)(6 + 1) = 9.6667 .

Friedman’s χ2
r test statistic is asymptotically distributed as Pearson’s chi-squared

under the Neyman–Pearson null hypothesis with g − 1 degrees of freedom. Under
the Neyman–Pearson null hypothesis, the observed value of χ2

r = 9.6667 with
g − 1 = 6 − 1 = 5 degrees of freedom yields an asymptotic probability value of
P = 0.0853.

9.8.2 An Exact Analysis with v = 2

For the first analysis of the rank-score data listed in Table 9.17 under the Fisher–
Pitman permutation model let v = 2, employing squared Euclidean scaling between
the pairs of rank scores for correspondence with Friedman’s χ2

r test statistic, and let

x ′
ij = (x1ij , x2ij , x3ij , . . . , xrij )

denote a transposed vector of r measurements associated with the ith treatment and
j th block. Then the permutation test statistic is given by

δ =
[
g

(
b

2

)]−1 g∑
i=1

b−1∑
j=1

b∑
k=j+1

�(xij , xik) , (9.14)

where �(x, y) is a symmetric distance-function value of two points x ′ =
(x1, x2, . . . , xr) and y ′ = (y1, y2, . . . , yr) in an r-dimensional Euclidean space.
In the context of a randomized-block design,

�(x, y) =
r∑

i=1

∣∣xi − yi

∣∣v ,

where v > 0.
For the rank-score data listed in Table 9.17 there are only

M = (
g!)b−1 = (

6!)3−1 = 518,400
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possible, equally-likely arrangements in the reference set of all permutations of the
rank-score data listed in Table 9.17, making an exact permutation analysis feasible.
For the rank scores listed in Table 9.17 let v = 2, employing squared Euclidean
scaling between the pairs of rank scores for correspondence with Friedman’s χ2

r

test statistic, the observed value of the permutation test statistic with v = 2 is δ =
3.1111.

Under the Fisher–Pitman permutation model, the exact probability of an
observed δ is the proportion of δ test statistic values computed on all possible,
equally-likely arrangements of the N = 18 rank scores listed in Table 9.17 that are
equal to or less than the observed value of δ = 3.1111. There are exactly 29,047 δ

test statistic values that are equal to or less than δ = 3.1111. If all M arrangements
of the N = 18 rank scores listed in Table 9.17 occur with equal chance under the
Fisher–Pitman null hypothesis, the exact probability of δ = 3.1111 computed on
the M = 518,400 possible arrangements of the observed rank scores with b = 3
blocks preserved for each arrangement is

P(δ ≤ δo|H0) = number of δ values ≤ δo

M
= 29,047

518,400
= 0.0560 ,

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the N = 18 rank scores listed in Table 9.17.

The functional relationships between test statistics χ2
r and δ with v = 2 are given

by

χ2
r = b(g2 − 1) − 6(b − 1)δ

g + 1
(9.15)

and

δ = b(g2 − 1) − (g + 1)χ2
r

6(b − 1)
. (9.16)

Following Eq. (9.15) for the N = 18 rank scores listed in Table 9.17, the observed
value of test statistic χ2

r with respect to the observed value of test statistic δ is

χ2
r = 3(62 − 1) − 6(3 − 1)(3.1111)

6 + 1
= 9.6667

and following Eq. (9.16), the observed value of test statistic δ with respect to the
observed value of test statistic χ2

r is

δ = 3(62 − 1) − (6 + 1)(9.6667)

6(3 − 1)
= 3.1111 .
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Following Eq. (9.6) on p. 320, the exact expected value of the M = 518,400 δ

test statistic values under the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 3,024,000

518,400
= 5.8333 .

Alternatively, in terms of a randomized-blocks analysis of variance model the exact
expected value of test statistic δ is

μδ = 2SSTotal

N
= 2(52.50)

18
= 5.8333 ,

where

SSTotal =
g∑

i=1

b∑
j=1

r2
ij −

⎛
⎝ g∑

i=1

b∑
j=1

rij

⎞
⎠

2/
bg

= 273 − (63)2/(3)(6) = 52.50 .

Following Eq. (9.5) on p. 320, the observed chance-corrected measure of effect
size is

� = 1 − δ

μδ

= 1 − 3.1111

5.8333
= +0.4667 ,

indicating approximately 47% within-block agreement above what is expected by
chance. No comparisons are made with Hays’ ω̂2, Pearson’s η2, Cohen’s partial η2,
or Cohen’s f 2 measures of effect size as ω̂2, η2, η2

Partial, and f 2 are undefined for
rank-score data.

9.8.3 An Exact Analysis with v = 1

For a second analysis of the rank-score data listed in Table 9.17 under the Fisher–
Pitman permutation model let v = 1, employing ordinary Euclidean scaling
between the rank scores. For the rank scores listed in Table 9.17 there are still only

M = (
g!)b−1 = (

6!)3−1 = 518,400

possible, equally-likely arrangements in the reference set of all permutations of
the rank-score data listed in Table 9.17, making an exact permutation analysis
feasible. For the N = 18 rank scores listed in Table 9.17 the observed value of
the permutation test statistic with v = 1 is δ = 1.4444.
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Under the Fisher–Pitman permutation model, the exact probability of an
observed δ is the proportion of δ test statistic values computed on all possible,
equally-likely arrangements of the N = 18 rank scores listed in Table 9.17 that
are equal to or less than the observed value of δ = 1.4444. There are exactly
55,528 δ test statistic values that are equal to or greater than δ = 1.4444. If all
M arrangements of the N = 18 rank scores listed in Table 9.17 occur with equal
chance under the Fisher–Pitman null hypothesis, the exact probability of δ = 1.4444
computed on the M = 518,400 possible arrangements of the observed rank scores
with b = 3 blocks preserved for each arrangement is

P(δ ≤ δo|H0) = number of δ values ≤ δo

M
= 55,528

518,400
= 0.1071 ,

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the N = 18 rank scores listed in Table 9.17.
No comparison is made with Friedman’s χ2

r analysis of variance for ranks as χ2
r is

undefined for ordinary Euclidean scaling.
Following Eq. (9.6) on p. 320, the exact expected value of the M = 518,400 δ

test statistic values under the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 1,008,000

518,400
= 1.9444

and following Eq. (9.5) on p. 320, the observed chance-corrected measure of effect
size is

� = 1 − δ

μδ

= 1 − 1.4444

1.9444
= +0.2571 ,

indicating approximately 26% within-block agreement above what is expected by
chance. No comparisons are made with Hays’ ω̂2, Pearson’s η2, Cohen’s partial η2,
or Cohen’s f 2 measures of effect size as ω̂2, η2, η2

Partial, and f 2 are undefined for
rank-score data.

9.9 Example 6: Multivariate Permutation Analyses

It is oftentimes necessary to test for differences among g ≥ 3 treatment groups
where r ≥ 2 measurements scores have been obtained from each of b ≥ 2 blocks.
To illustrate the analysis of randomized blocks with multivariate measurements,
consider the data listed in Table 9.18 wherein each of two observers is asked to
estimate distance and elevation in meters of 12 distant objects.
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Table 9.18 Example data
with g = 12 objects, b = 2
blocks, and r = 2
measurements

Observer A Observer B

Object Distance Elevation Distance Elevation

1 120 10 125 10

2 80 15 85 20

3 100 5 95 10

4 150 20 140 15

5 75 10 60 5

6 50 5 60 10

7 50 20 50 25

8 20 20 25 15

9 90 15 90 15

10 95 25 90 20

11 100 25 90 20

12 70 5 70 5

9.9.1 A Monte Carlo Analysis with v = 2

For the example data listed in Table 9.18 with g = 12 treatments (objects), b = 2
blocks (observers), r = 2 measurements, and N = bg = (2)(12) = 24 multivariate
observations, the observed value of the permutation test statistic with v = 2 is
δ = 72.9167. There are

M = (
g!)b−1 = (

12!)2−1 = 479,001,600

possible, equally-likely arrangements in the reference set of all permutations of the
multivariate data listed in Table 9.18, making an exact permutation analysis imprac-
tical and a Monte Carlo analysis advisable. Under the Fisher–Pitman permutation
model, the Monte Carlo probability value of an observed δ is the proportion of δ test
statistic values computed on the randomly-selected, equally-likely arrangements of
the N = 24 multivariate observations listed in Table 9.18 that are equal to or less
than the observed value of δ = 72.9167.

For the example data listed in Table 9.18 and L = 1,000,000 random
arrangements of the observed data, there are exactly four δ test statistic values that
are equal to or less than the observed value of δ = 72.9167. If all M arrangements
of the N = 24 observations listed in Table 9.18 occur with equal chance under the
Fisher–Pitman null hypothesis, the Monte Carlo probability value of δ = 72.9167
computed on L = 1,000,000 random arrangements of the observed data with b = 2
blocks preserved for each arrangement is

P(δ ≤ δo|H0) = number of δ values ≤ δo

L
= 4

1,000,000
= 0.4000×10−5 ,
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where δo denotes the observed value of test statistic δ and L is the number of
randomly-selected, equally-likely arrangements of the distance-elevation data listed
in Table 9.18.

When the probability value is very small, as it is in this case, Monte Carlo
permutation methods are not very precise with only L = 1,000,000 random
arrangements of the observed data. A reanalysis of the multivariate data listed
in Table 9.18 with L = 100,000,000 random arrangements yields a probability
value of

P(δ ≤ δo|H0) = number of δ values ≤ δo

L
= 5

100,000,000
= 0.5000×10−7 .

Following Eq. (9.6) on p. 320, the exact expected value of test statistic δ under
the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 1,001,246,506,445

479,001,600
= 2090.2780

and following Eq. (9.5) on p. 320, the observed chance-corrected measure of effect
size is

� = 1 − δ

μδ

= 1 − 72.9167

2,090.2780
= +0.9651 ,

indicating approximately 97% within-block agreement above what is expected by
chance. No comparisons are made with Hays’ ω̂2, Pearson’s η2, Cohen’s partial η2,
or Cohen’s f 2 measures of effect size as ω̂2, η2, η2

Partial, and f 2 are undefined for
multivariate data.

9.9.2 An Exact Analysis with v = 2

Although an exact permutation analysis with M = 479,001,600 possible arrange-
ments of the observed data is not practical for the example data listed in Table 9.18,
it is not impossible. For an exact permutation analysis with v = 2, the observed
value of δ is δ = 72.9167. There are exactly 20 δ test statistic values that are equal
to or less than the observed value of δ = 72.9167. If all M arrangements of the
observed data occur with equal chance under the Fisher–Pitman null hypothesis, the
exact probability value computed on the M = 479,001,600 possible arrangements
of the observed data with b = 2 blocks preserved for each arrangement is

P(δ ≤ δo|H0) = number of δ values ≤ δo

M
= 20

479,001,600
= 0.4175×10−7 ,
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where δo denotes the observed value of test statistic δ and M is the number
of possible, equally-likely arrangements of the distance-elevation data listed in
Table 9.18.

Following Eq. (9.6) on p. 320, the exact expected value of test statistic δ under
the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 0.1001×1013

479,001,600
= 2090.2780

and following Eq. (9.5) on p. 320 the observed chance-corrected measure of effect
size is

� = 1 − δ

μδ

= 1 − 72.9167

2090.2780
= +0.9651 ,

indicating approximately 97% within-block agreement above what is expected by
chance. No comparisons are made with Hays’ ω̂2, Pearson’s η2, Cohen’s partial η2,
or Cohen’s f 2 measures of effect size as ω̂2, η2, η2

Partial, and f 2 are undefined for
multivariate data.

9.9.3 A Monte Carlo Analysis with v = 1

For the data listed in Table 9.18 with v = 1, the observed value of δ is δ = 7.1305.
Since there are still

M = (
g!)b−1 = (

12!)2−1 = 479,001,600

possible, equally-likely arrangements in the reference set of all permutations of the
multivariate data listed in Table 9.18, a Monte Carlo analysis is preferred. Under
the Fisher–Pitman permutation model, the Monte Carlo probability value of an
observed δ is the proportion of δ test statistic values computed on the randomly-
selected, equally-likely arrangements of the N = 24 multivariate observations listed
in Table 9.18 that are equal to or less than the observed value of δ = 7.1305. For the
data listed in Table 9.18 and L = 1,000,000 random arrangements of the data, there
are exactly three δ test statistic values that are equal to or less than the observed value
of δ = 7.1305. If all M arrangements of the N = 24 multivariate observations listed
in Table 9.18 occur with equal chance under the Fisher–Pitman null hypothesis, the
Monte Carlo probability value of δ = 7.1305 is

P(δ ≤ δo|H0) = number of δ values ≤ δo

L
= 3

1,000,000
= 0.3000×10−5 ,
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where δo denotes the observed value of test statistic δ and L is the number of
randomly-selected, equally-likely arrangements of the distance-elevation data listed
in Table 9.18.

Following Eq. (9.6) on p. 320, the exact expected value of test statistic δ under
the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 17,916,053,734

479,001,600
= 37.4029

and following Eq. (9.5) on p. 320, the observed chance-corrected measure of effect
size is

� = 1 − δ

μδ

= 1 − 7.1305

37.4029
= +0.8094 ,

indicating approximately 81% within-block agreement above that is expected by
chance. No comparisons are made with Hays’ ω̂2, Pearson’s η2, Cohen’s partial η2,
or Cohen’s f 2 measures of effect size as ω̂2, η2, η2

Partial, and f 2 are undefined for
multivariate data.

9.9.4 An Exact Analysis with v = 1

For an exact permutation analysis with v = 1, the observed value of δ is δ =
7.1305. There are exactly four δ test statistic values that are equal to or less than the
observed value of δ = 7.1305. If all M arrangements of the N = 24 multivariate
observations listed in Table 9.18 occur with equal chance under the Fisher–Pitman
null hypothesis, the exact probability value of δ computed on the M = 479,001,600
possible arrangements of the observed data with b = 2 blocks reserved for each
arrangement is

P(δ ≤ δo|H0) = number of δ values ≤ δo

M

= 4

479,001,600
= 0.8351×10−8 ,

where δo denotes the observed value of test statistic δ and M is the number
of possible, equally-likely arrangements of the distance-elevation data listed in
Table 9.18.

Following Eq. (9.6) on p. 320, the exact expected value of test statistic δ under
the Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 17,916,053,734

479,001,600
= 37.4029
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and following Eq. (9.5) on p. 320 the observed chance-corrected measure of effect
size is

� = 1 − δ

μδ

= 1 − 7.1305

37.4029
= +0.8094 ,

indicating approximately 81% within-block agreement above what is expected by
chance. No comparisons are made with Hays’ ω̂2, Pearson’s η2, Cohen’s partial η2,
or Cohen’s f 2 measures of effect size as ω̂2, η2, η2

Partial, and f 2 are undefined for
multivariate data.

9.10 Summary

This chapter examined statistical methods for multiple dependent samples where
the null hypothesis under the Neyman–Pearson population model posits no exper-
imental differences among the g ≥ 3 populations that the g random samples
are presumed to represent. Under the Neyman–Pearson population model of
statistical inference the conventional randomized-blocks analysis of variance and
four measures of effect size were described and illustrated: Fisher’s F test statistic,
and Hays’ ω̂2, Pearson’s η2, Cohen’s η2

Partial, and Cohen’s f 2 measures of effect
size, respectively.

Under the Fisher–Pitman permutation model of statistical inference, test statistic
δ and associated measure of effect size � were described and illustrated for
randomized-blocks designs. For tests of g ≥ 3 dependent samples, test statistic δ

was demonstrated to be applicable to both ordinary Euclidean scaling functions with
v = 1 and squared Euclidean scaling functions with v = 2. Effect size measure, �,
was shown to be applicable to either v = 1 or v = 2 without modification with a
chance-corrected interpretation.

Six examples illustrated permutation-based test statistics δ and � for
randomized-blocks designs. In the first example, a small sample of N = 8
observations in g = 2 treatment groups and b = 4 blocks was utilized to describe
and illustrate the calculation of test statistics δ and � for randomized-blocks
designs. The second example with N = 24 observations in g = 4 treatment groups
and b = 6 blocks demonstrated the chance-corrected measure of effect size, �, for
randomized-blocks designs and compared � to the four conventional measures of
effect size for g ≥ 3 dependent samples: Hays’ ω̂2, Pearson’s η2, Cohen’s partial η2,
and Cohen’s f 2. The third example with N = 24 observations in g = 3 treatment
groups and b = 8 blocks illustrated the effects of extreme values on analyses based
on v = 1 for ordinary Euclidean scaling and v = 2 for squared Euclidean scaling.
The fourth example with N = 24 observations in g = 3 treatment groups and
b = 8 blocks compared exact and Monte Carlo permutation statistical methods for
randomized-blocks designs, illustrating the accuracy and efficiency of Monte Carlo
analyses. The fifth example with N = 18 observations in g = 6 treatment groups
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and b = 3 blocks illustrated an application of permutation statistical methods to
univariate rank-score data, comparing a permutation analysis of rank-score data
with Friedman’s g-sample analysis of variance for ranks. In the sixth example,
both test statistic δ and effect-size measure � were extended to multivariate data
with N = 48 observations in g = 12 treatment groups, b = 2 blocks, and r = 2
measurements.

Chapter 10 continues the presentation of permutation statistical methods, exam-
ining permutation alternatives to simple linear correlation and regression. Research
designs that utilize correlation and regression have a long history, are taught in
every introductory class, and are among the most popular tests in the contemporary
research literature.
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Chapter 10
Correlation and Regression

Abstract This chapter introduces permutation methods for measures of correlation
and regression, the best-known of which is Pearson’s product-moment correlation
coefficient. Included in this chapter are six example analyses illustrating com-
putation of exact permutation probability values for correlation and regression,
calculation of measures of effect size for measures of correlation and regression,
the effects of extreme values on conventional (ordinary least squares) and permu-
tation (least absolute deviation) correlation and regression, exact and Monte Carlo
permutation procedures for measures of correlation and regression, application of
permutation methods to correlation and regression with rank-score data, and analy-
sis of multiple correlation and regression. Included in this chapter are permutation
versions of ordinary least squares correlation and regression, least absolute deviation
correlation and regression, Spearman’s rank-order correlation coefficient, Kendall’s
rank-order correlation coefficient, Spearman’s footrule measure of correlation, and
a permutation-based alternative for the conventional measures of effect size for
correlation and regression: Pearson’s r2.

This chapter presents exact and Monte Carlo permutation statistical methods for
measures of linear correlation and regression. Also presented in this chapter is a
permutation-based measure of effect size for a variety of measures of linear corre-
lation and regression. Simple linear correlation coefficients between two variables
constitute the foundation for a large family of advanced analytic techniques and are
taught in every introductory course.

In this chapter, permutation statistical methods for measures of linear correlation
and regression are illustrated with six example analyses. The first example utilizes a
small set of observations to illustrate the computation of exact permutation methods
for measures of linear correlation, wherein the permutation test statistic, δ, is
developed and compared with Pearson’s conventional product-moment correlation
coefficient. The second example develops a permutation-based measure of effect
size as a chance-corrected alternative to Pearson’s squared product-moment cor-
relation coefficient. The third example compares permutation statistical methods
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based on ordinary and squared Euclidean scaling functions, with an emphasis on
the analysis of data sets containing extreme values. Ordinary least squares (OLS)
regression, based on squared Euclidean scaling, and least absolute deviation (LAD)
regression, based on ordinary Euclidean scaling, are compared and contrasted.
The fourth example utilizes a larger data set for providing comparisons of exact
permutation methods and Monte Carlo permutation methods, demonstrating the
efficiency of Monte Carlo statistical methods for correlation analyses. The fifth
example illustrates the application of permutation statistical methods to univari-
ate rank-score data, comparing permutation statistical methods with Spearman’s
rank-order correlation coefficient, Kendall’s rank-order correlation coefficient, and
Spearman’s footrule measure of rank-order correlation. The sixth example illustrates
the application of permutation statistical methods to multivariate correlation and
regression. Both OLS and LAD multivariate linear regression are described and
compared for multivariate observations.

10.1 Introduction

The most popular measure of linear correlation between two interval-level variables,
say, x and y, is Pearson’s rxy product-moment correlation coefficient wherein the
Neyman–Pearson null hypothesis (H0) posits a value for a population parameter,
such as a population correlation coefficient; that is, H0: ρxy = θ , where θ is
a specified value between −1 and +1. For example, the null hypothesis might
stipulate that the correlation in the population from which a bivariate sample has
been drawn is H0: ρxy = 0. In this chapter the null hypothesis, H0: ρxy = 0, is used
exclusively for two reasons. First, most introductory courses in statistical methods
restrict their discussions to H0: ρxy = 0. Null hypotheses such as H0: ρxy 	=
0 are usually treated in more advanced courses. Second, Fisher’s normalizing
transformation for rxy when ρxy 	= 0 has been found to be unsatisfactory unless
either the population correlation coefficient ρxy = 0 or the population is known to
be bivariate normal [4].

The problem is easy to illustrate. Consider a population in which the product-
moment correlation is equal to zero; that is, ρxy = 0, such as depicted in Fig. 10.1.
Random sampling from a population in which ρxy = 0 produces a symmetric,
discrete sampling distribution of rxy values that can be approximated by Student’s t

distribution with N − 2 degrees of freedom, such as depicted in Fig. 10.2.
Now consider a population in which the product-moment correlation is not equal

to zero; that is, ρxy = +0.60, such as depicted in Fig. 10.3. Random sampling
from a population in which ρxy = +0.60 produces an negatively-skewed, discrete
sampling distribution of rxy values that cannot be approximated by Student’s t

distribution with N − 2 degrees of freedom, such as depicted in Fig. 10.4.
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Fig. 10.1 Simulated
scatterplot of a population
with ρxy = 0.00
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Fig. 10.2 Simulated discrete
permutation distribution of
rxy from a population with
ρxy = +0.00
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Fig. 10.3 Simulated
scatterplot of a population
with ρxy = +0.60
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Fig. 10.4 Simulated discrete
permutation distribution of
rxy from a population with
ρxy = +0.60

1 0 1

For simple linear correlation with two interval-level variables and N paired
observations, Pearson’s product-moment correlation coefficient is given by

rxy =

N∑
i=1

(
xi − x̄

)(
yi − ȳ

)
√√√√

[
N∑

i=1

(
xi − x̄

)2

][
N∑

i=1

(
yi − ȳ

)2

] ,

where x̄ and ȳ denote the arithmetic means of variables x and y given by

x̄ = 1

N

N∑
i=1

xi and ȳ = 1

N

N∑
i=1

yi ,

respectively, xi and yi denote the ith observed sample values for i = 1, . . . , N , and
N is the number of bivariate observations.

Under the Neyman–Pearson population model the null hypothesis is H0: ρxy = θ

and the two-tail alternative hypothesis is H1: ρxy 	= θ , where θ is a hypothesized
value for the population correlation coefficient. The conventional test of signifi-
cance for Pearson’s product-moment correlation coefficient with null hypothesis,
H0: ρxy = 0, is Student’s t test statistic given by

t = rxy

√
N − 2

1 − r2
xy

,

which is assumed to follow Student’s t distribution with N − 2 degrees of freedom,
under the assumptions of normality and homogeneity. The permissible probability
of a type I error is denoted by α and if the observed value of t is more extreme
than the critical values of ±t that define α, the null hypothesis is rejected with a
probability of type I error equal to or less than α. The test of significance does
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not determine whether or not the null hypothesis is true, but only provides the
probability that, if the null hypothesis is true, the sample has been drawn from a
population with the value specified under the null hypothesis.

The assumptions underlying Pearson’s product-moment correlation coefficient
are (1) the observations are independent, (2) the data are a random sample from a
well-defined population with ρxy = 0, (3) the relationship between the predictor
variable and the criterion variable is linear, (4) homogeneity of variance, and (5) the
target variables x and y are distributed bivariate normal in the population.

10.1.1 A Permutation Approach

Consider a simple linear correlation analysis between two variables under the
Fisher–Pitman permutation model of statistical inference. As discussed in previous
chapters, the permutation model differs from the Neyman–Pearson population
model in several ways. Under the Fisher–Pitman permutation model there is no
null hypothesis specifying a population parameter. Instead, the Fisher–Pitman null
hypothesis simply states that all possible arrangements of the observed data occur
with equal chance [5]. Also, there is no alternative hypothesis under the permutation
model and no specified α level. Moreover, there is no requirement of random
sampling, no degrees of freedom, and no assumption of normality or homogeneity.
Finally, the Fisher–Pitman permutation statistical model provides exact probability
values.

A permutation alternative to a conventional correlation analysis for two variables
is easily defined. Let xi and yi denote the paired sample values for i = 1, . . . , N .
The permutation test statistic is given by

δ = S2
x + S2

y − 2|rxy |SxSy + (x̄ − ȳ)2 ,

where the sample means for variables x and y are given by

x̄ = 1

N

N∑
i=1

xi and ȳ = 1

N

N∑
i=1

yi ,

respectively, and the sample variances for variables x and y are given by

S2
x = 1

N

N∑
i=1

(
xi − x̄

)2 and S2
y = 1

N

N∑
i=1

(
yi − ȳ

)2
,

respectively.1

1Note that whereas a permutation approach eschews estimated population parameters and degrees
of freedom, the summations are divided by N , not N − 1. Thus S2

x and S2
y denote the sample

variances, not the estimated population variances.
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Under the Fisher–Pitman null hypothesis, the exact probability value of an
observed δ is the proportion of δ test statistic values calculated on all possible
arrangements of the observed data that are equal to or less than the observed value
of δ; that is,

P(δ ≤ δo|H0) = number of δ values ≤ δo

M
,

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements in the reference set of all permutations of the
observed data.

10.2 Example 1: The Relationship Between rxy and δ

An example will serve to illustrate the relationships between test statistics rxy and δ

for a simple correlation analysis. Consider the small set of data listed in Table 10.1
with N = 4 bivariate observations. For the example bivariate observations listed in
Table 10.1, the sample means for variables x and y are

x̄ = 1

N

N∑
i=1

xi = 24 + 31 + 55 + 43

4
= 38.25

and

ȳ = 1

N

N∑
i=1

yi = 20 + 36 + 49 + 35

4
= 35.00 ,

respectively, the sample product-moment correlation coefficient is

rxy =

N∑
i=1

(
xi − x̄

)(
yi − ȳ

)
√√√√

[
N∑

i=1

(
xi − x̄

)2

][
N∑

i=1

(
yi − ȳ

)2

]

= +441.00√
(558.75)(422.00)

= +0.9082 ,

Table 10.1 Example
correlation data on N = 4
bivariate observations

Variable

Object x y

1 24 20

2 31 36

3 55 49

4 43 35
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and Student’s t test statistic is

t = rxy

√
N − 2

1 − r2
xy

= +0.9082

√
4 − 2

1 − (+0.9082)2
= +3.0684 .

Under the Neyman–Pearson null hypothesis, H0: ρxy = 0, test statistic t is
asymptotically distributed as Student’s t with N − 2 degrees of freedom. With
N − 2 = 4 − 2 = 2 degrees of freedom, the asymptotic two-tail probability value
of t = +3.0684 is P = 0.0918, under the assumptions of linearity, normality, and
homogeneity.

10.2.1 An Exact Permutation Analysis

Now consider the bivariate data listed in Table 10.1 under the Fisher–Pitman
permutation model. For the example bivariate data listed in Table 10.1, the sample
means are x̄ = 38.25 and ȳ = 35.00, the sample variances are S2

x = 139.6875 and
S2

y = 105.50, the sample standard deviations are Sx = 11.8189 and Sy = 10.2713,
the sample product-moment correlation coefficient is rxy = +0.9082, and the
observed permutation test statistic is

δ = S2
x + S2

y − 2|rxy |SxSy + (x̄ − ȳ)2 = 139.6875 + 105.50

− 2(0.9082)(11.8189)(10.2713)+ (38.25 − 35.00)2 = 35.25 . (10.1)

Note that in Eq. (10.1), Sx , S2
x , Sy , S2

y , x̄, ȳ, and the constant 2 are all invariant
under permutation, leaving only |rxy | to be calculated for each arrangement of the
observed data.

An exact permutation analysis requires exhaustive shuffles of either the N = 4 x

values or the N = 4 y values while holding the other set of values constant. For the
example data listed in Table 10.1 there are only

M = N ! = 4! = 24

possible, equally-likely arrangements in the reference set of all permutations of the
bivariate data listed in Table 10.1, making an exact permutation analysis feasible.
Under the Fisher–Pitman permutation model, the exact probability of an observed
δ is the proportion of δ test statistic values computed on all possible, equally-likely
arrangements of the N = 4 bivariate observations listed in Table 10.1 that are equal
to or less than the observed value of δ = 35.25. Table 10.2 lists the M = 24
arrangements of the example data listed in Table 10.1 with the x values shuffled
and the associated values for rxy and δ, ordered by the |rxy | values from largest
(|r1| = 0.9432) to smallest (|r24| = 0.1524) and by the δ values from smallest
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Table 10.2 All M = 24 possible, equally-likely arrangements of the bivariate data listed in
Table 10.1

Arrangement Variable x Variable y |rxy | δ

1∗ 55, 31, 24, 43 20, 36, 49, 35 0.9432 26.75

2∗ 24, 43, 55, 31 20, 36, 49, 35 0.9329 29.25

3∗ 55, 43, 24, 31 20, 36, 49, 35 0.9185 32.75

4∗ 24, 31, 55, 43 20, 36, 49, 35 0.9082 35.25

5 55, 24, 31, 43 20, 36, 49, 35 0.7558 72.25

6 31, 43, 55, 24 20, 36, 49, 35 0.7167 81.75

7 55, 43, 31, 24 20, 36, 49, 35 0.7167 81.75

8 31, 24, 55, 43 20, 36, 49, 35 0.6775 91.25

9 24, 55, 43, 31 20, 36, 49, 35 0.6116 107.25

10 43, 31, 24, 55 20, 36, 49, 35 0.5725 116.75

11 24, 31, 43, 55 20, 36, 49, 35 0.5622 119.25

12 43, 55, 24, 31 20, 36, 49, 35 0.5231 128.75

13 55, 24, 43, 31 20, 36, 49, 35 0.4098 156.25

14 31, 55, 43, 24 20, 36, 49, 35 0.3954 159.75

15 55, 31, 43, 24 20, 36, 49, 35 0.3954 159.75

16 43, 24, 31, 55 20, 36, 49, 35 0.3851 162.25

17 31, 24, 43, 55 20, 36, 49, 35 0.3316 175.25

18 43, 31, 55, 24 20, 36, 49, 35 0.3213 177.75

19 43, 55, 31, 24 20, 36, 49, 35 0.3213 177.75

20 43, 24, 55, 31 20, 36, 49, 35 0.3068 181.25

21 24, 55, 31, 43 20, 36, 49, 35 0.2657 191.25

22 24, 43, 31, 55 20, 36, 49, 35 0.2409 197.25

23 31, 43, 24, 55 20, 36, 49, 35 0.1771 212.75

24 31, 55, 24, 43 20, 36, 49, 35 0.1524 218.75

(δ1 = 29.25) to largest (δ24 = 218.75). For test statistic δ there are four δ test
statistic values that are equal to or less than the observed value of δ = 35.25 (δ1 =
26.75, δ2 = 29.25, δ3 = 32.75, and δ4 = 35.25). The arrangements yielding the four
smallest δ values are indicated with asterisks in Table 10.2. If all M arrangements
of the N = 4 bivariate observations listed in Table 10.1 occur with equal chance
under the Fisher–Pitman null hypothesis, the exact probability value of δ = 35.25
computed on the M = 24 possible arrangements of the observed data with N = 4
bivariate observations preserved for each arrangement is

P(δ ≤ δo) = number of δ values ≤ δo

M
= 4

24
= 0.1667 ,

where δo denotes the observed value of δ and M is the number of possible, equally-
likely arrangements of the N = 4 bivariate observations listed in Table 10.1.

Alternatively, since test statistics δ and rxy are equivalent under the Fisher–
Pitman null hypothesis, there are four |rxy | values that are equal to or greater than
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the observed value of |rxy | = 0.9082 (|r1| = 0.9432, |r2| = 0.9329, |r3| = 0.9185,
and |r4| = 0.9082) yielding an exact probability value for |rxy | = 0.9082 of

P(|rxy | ≥ |ro|) = number of |rxy | values ≥ |ro|
M

= 4

24
= 0.1667 ,

where |ro| denotes the observed value of |rxy |. There is a considerable difference
between the asymptotic probability value for rxy based on Student’s t distribution
(P = 0.0918) and the exact permutation probability value for δ (P = 0.1667). The
actual difference between the two probability values is

�P = 0.1667 − 0.0918 = 0.0749 .

The difference is most probably due to the very small number of arrangements of
the observed data. A continuous mathematical function such as Student’s t cannot
be expected to provide a precise fit to only 24 data points of which only 21 are
different.

10.3 Example 2: Measures of Effect Size

Measures of effect size express the practical or clinical significance of a sample
correlation coefficient, as contrasted with the statistical significance of the correla-
tion coefficient. For an illustration of the measurement of effect size, consider the
example data listed in Table 10.3 with N = 11 bivariate observations. The standard
measure of effect size is simply the squared Pearson product-moment correlation
between variables x and y. For the example bivariate data listed in Table 10.3, the

Table 10.3 Example
correlation data on N = 11
bivariate observations

Variable

Object x y

1 11 4

2 18 11

3 12 1

4 27 16

5 15 5

6 21 9

7 25 10

8 15 2

9 18 8

10 23 7

11 12 3
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sample means for variables x and y are

x̄ = 1

N

N∑
i=1

xi = 11 + 18 + · · · + 12

11
= 17.9091

and

ȳ = 1

N

N∑
i=1

yi = 4 + 11 + · · · + 3

11
= 6.9091 ,

respectively, the sample product-moment correlation coefficient is

rxy =

N∑
i=1

(
xi − x̄

)(
yi − ȳ

)
√√√√

[
N∑

i=1

(
xi − x̄

)2

][
N∑

i=1

(
yi − ȳ

)2

]

= +209.9091√
(302.9091)(200.9091)

= +0.8509 ,

the squared product-moment measure of effect size is

r2
xy = (+0.8509)2 = 0.7240 ,

and Student’s t test statistic is

t = rxy

√
N − 2

1 − r2
xy

= +0.8509

√
11 − 2

1 − (+0.8509)2
= +4.8592 .

Under the Neyman–Pearson null hypothesis, H0: ρxy = 0, test statistic t is
asymptotically distributed as Student’s t with N − 2 degrees of freedom. With
N − 2 = 11 − 2 = 9 degrees of freedom, the asymptotic two-tail probability
value of t = +4.8592 is P = 0.8969×10−3, under the assumptions of linearity,
normality, and homogeneity.

10.3.1 An Exact Permutation Analysis

Now consider the example data listed in Table 10.3 under the Fisher–Pitman
permutation model. For the example data listed in Table 10.3, the sample means
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are x̄ = 17.9091 and ȳ = 6.9091, the sample variances are S2
x = 27.5372 and

S2
y = 18.2645, the sample standard deviations are Sx = 5.2476 and Sy = 4.2737,

the sample product-moment correlation coefficient is rxy = +0.8509, and the
observed permutation test statistic is

δ = S2
x + S2

y − 2|rxy |SxSy + (x̄ − ȳ)2 = 27.5372 + 18.2645

− 2(0.8509)(5.2476)(4.2737)+ (17.9091 − 6.9091)2 = 128.6364 .

An exact permutation analysis requires shuffling of either the N = 11 x values or
the N = 11 y values while holding the other set of values constant. For the example
data listed in Table 10.3 there are

M = N ! = 11! = 39,916,800

possible, equally-likely arrangements in the reference set of all permutations of the
observed bivariate data, making an exact permutation analysis feasible.

The exact expected value of the M = 39,916,800 δ test statistic values under the
Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 6,658,188,218

39,916,800
= 166.8017 .

Alternatively, the exact expected value of test statistic δ is

μδ = S2
x + S2

y + (x̄ − ȳ)2

= 27.5372 + 18.2645 + (17.9091 − 6.9091)2 = 166.8017 .

The observed chance-corrected measure of effect size is

� = 1 − δ

μδ

= 1 − 128.6364

166.8017
= +0.2288 ,

indicating approximately 23% agreement between the x and y values above what is
expected by chance.

Under the Fisher–Pitman permutation model, the exact probability of an
observed δ is the proportion of δ test statistic values computed on all possible,
equally-likely arrangements of the N = 11 bivariate observations that are equal to
or less than the observed value of δ = 128.6364. There are exactly 35,216 δ test
statistic values that are equal to or less than the observed value of δ = 128.6364. If
all M arrangements of the N = 11 bivariate observations listed in Table 10.3 occur
with equal chance under the Fisher–Pitman null hypothesis, the exact probability
value of δ = 128.6364 computed on the M = 39,916,800 possible arrangements
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of the observed data with N = 11 bivariate observations preserved for each
arrangement is

P(δ ≤ δo|H0) = number of δ values ≤ δo

M
= 35,216

39,916,800
= 0.8822×10−3 ,

where δo denotes the observed value of test statistic δ and M is the number
of possible, equally-likely arrangements of the N = 11 bivariate observations
listed in Table 10.3. In this example there are 39,916,800 data points to be fit
by Student’s t distribution and there are no extreme values. Thus the asymptotic
probability value (P = 0.8969×10−3) and the exact permutation probability value
(P = 0.8822×10−3) are similar, with a difference between the probability values
of only

�P = 0.8969×10−3 − 0.8822×10−3 = 0.1459×10−4 .

10.4 Example 3: Analyses with v = 2 and v = 1

Ordinary least squares (OLS) linear regression and correlation have long been
recognized as useful tools in many areas of research. The optimal properties of
OLS linear regression and correlation are well known when the errors are normally
distributed. However, in practice the assumption of normality is rarely justified.
Least absolute deviation (LAD) regression and correlation are often superior to
OLS linear regression and correlation when the errors are not normally distributed.
Estimators of OLS regression parameters can be severely affected by unusual values
in the criterion variable, in one or more of the predictor variables, or both. In
contrast, LAD regression is less sensitive to the effects of unusual variables because
the errors are not squared [3]. The effect of extreme values on OLS and LAD
regression and correlation is analogous to the effect of extreme values on the mean
and median as measures of location.

Consider N paired xi and yi observed values for i = 1, . . . , N . For the OLS
regression equation given by

ŷi = α̂yx + β̂yxxi ,

where ŷi is the ith of N predicted criterion values and xi is the ith of N predictor
values, α̂yx and β̂ys are the OLS parameter estimators of the population intercept
(αyx) and population slope (βyx), respectively, and are given by

β̂yx =

N∑
i=1

(
xi − x̄

)(
yi − ȳ

)

N∑
i=1

(
xi − x̄

)2
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and

α̂yx = ȳ − β̂yxx̄ ,

where x̄ and ȳ are the sample means of variables x and y, respectively. Estimators
of OLS regression parameters minimize the sum of the squared differences between
the observed (yi) and predicted (ŷi) criterion values for i = 1, . . . , N ; that is,

N∑
i=1

∣∣yi − ŷi

∣∣v ,

where for OLS regression based on a squared Euclidean scaling function, v = 2.
For the LAD regression equation given by

ỹi = α̃yx + β̃yxxi ,

where ỹi is the ith of N predicted criterion values and xi is the ith of N predictor
values, α̃yx and β̃yx are the LAD parameter estimators of the population intercept
(αyx) and population slope (βyx), respectively.2

Unlike OLS regression, no simple expressions can be given for LAD regression
estimators α̃yx and β̃yx . However, values for α̃yx and β̃yx may be found through
an efficient linear programming algorithm, such as provided by Barrodale and
Roberts [1, 2]. In contrast to estimators of OLS regression parameters, estimators of
LAD regression parameters minimize the sum of the absolute differences between
the observed (yi) and predicted (ỹi) criterion values for i = 1, . . . , N ; that is,

N∑
i=1

∣∣yi − ỹi

∣∣v ,

where for LAD regression based on ordinary Euclidean scaling, v = 1.
For LAD regression it is convenient to have a measure of agreement, not

product-moment correlation, between the observed and predicted y values. Let the
permutation test statistic be given by

δ = 1

N

N∑
i=1

∣∣yi − ỹi

∣∣v

2In this section, a caret(∧) over a symbol such as α̂ or β̂ indicates an OLS regression model
predicted value of a corresponding population parameter, while a tilde (∼) over a symbol such as α̃

or β̃ indicates a LAD regression model predicted value of a corresponding population parameter.
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Table 10.4 Example
bivariate correlation data on
N = 10 subjects

Subject x y

1 14 25

2 8 23

3 5 21

4 2 10

5 1 12

6 3 11

7 9 19

8 2 13

9 3 13

10 9 16

and let v = 1 for correspondence with LAD regression. Then the exact expected
value of test statistic δ under the Fisher–Pitman null hypothesis is given by

μδ = 1

N2

N∑
i=1

N∑
j=1

∣∣yi − ỹj

∣∣v ,

and a chance-corrected measure of agreement between the observed yi values and
the LAD predicted ỹi values for i = 1, . . . , N is given by

� = 1 − δ

μδ

.

10.4.1 An Example OLS Regression Analysis

To illustrate the relative differences between OLS and LAD regression, consider
the small example set of bivariate values listed in Table 10.4 for N = 10
subjects. For the bivariate data listed in Table 10.4 the OLS estimate of the
population slope is β̂yx = +1.0673, the OLS estimate of the population intercept is
α̂yx = +10.3229, and the Pearson product-moment correlation coefficient is rxy =
+0.8414. Table 10.5 lists the N = 10 observed values for variables x and y, the
OLS predicted y values (ŷ), the residual errors (ê), and the squared residual errors
(ê2). Under the Neyman–Pearson population model Pearson’s product-moment
correlation coefficient is asymptotically distributed as Student’s t under the null
hypothesis, H0: ρxy = 0, with N −2 degrees of freedom.3 For the N = 10 bivariate

3One degree of freedom is lost due to the sample estimate (α̂yx ) of the population intercept and
one degree of freedom is lost due to the sample estimate (β̂yx ) of the population slope.
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Table 10.5 Observed x and
y values with associated
predicted values (ŷ), residual
errors (ê), and squared
residual errors (ê2) from the
bivariate correlation data
listed in Table 10.4

Subject x y ŷ ê ê2

1 14 25 25.2656 −0.2656 0.0705

2 8 23 18.8616 +4.1384 17.1264

3 5 21 15.6596 +5.3404 28.5199

4 2 10 12.4576 −2.4576 6.0398

5 1 12 11.3903 +0.6097 0.3718

6 3 11 13.5249 −2.5249 6.3753

7 9 19 19.9289 −0.9289 0.8629

8 2 13 12.4576 +0.5424 0.2942

9 3 13 13.5249 −0.5249 0.2756

10 9 16 19.9289 −3.9289 15.4365

Sum 56 163 163.0000 0.0000 75.3728

observations listed in Table 10.4 with N − 2 = 10 − 2 = 8 degrees of freedom
Student’s test statistic,

t = rxy

√
N − 2

1 − r2
xy

= +0.8414

√
10 − 2

1 − (+0.8414)2 = +4.4039 ,

yields an asymptotic two-tail probability value of P = 0.2275×10−2, under the
assumptions of linearity, normality, and homogeneity.

10.4.2 An Example LAD Regression Analysis

For the bivariate data listed in Table 10.4, the LAD estimate of the population
intercept is α̃yx = +9.7273, the LAD estimate of the population slope is β̃yx =
+1.0909, the observed permutation test statistic is

δ = 1

N

N∑
i=1

∣∣yi − ỹi

∣∣ = 20.6364

10
= 2.0636 ,

the exact expected value of test statistic δ under the Fisher–Pitman null hypothesis is

μδ = 1

N2

N∑
i=1

N∑
j=1

∣∣yi − ỹj

∣∣ = 533.8182

102 = 5.3382 ,
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Table 10.6 Observed x and
y values with associated
predicted values (ỹ), residual
errors (ẽ), and absolute
residual errors (|ẽ|) from the
bivariate correlation data
listed in Table 10.4

Subject x y ỹ ẽ |ẽ|
1 14 25 25.0000 0.0000 0.0000

2 8 23 18.4545 +4.5455 4.5455

3 5 21 15.1818 +5.8182 5.8182

4 2 10 11.9090 −1.9091 1.9091

5 1 12 10.8182 +1.1818 1.1818

6 3 11 13.0000 −2.0000 2.0000

7 9 19 19.5455 −0.5455 0.5455

8 2 13 11.9090 +1.0909 1.0909

9 3 13 13.0000 0.0000 0.0000

10 9 16 19.5455 −3.5455 3.5455

Sum 56 163 158.3636 +4.6364 20.6364

and the chance-corrected measure of agreement between the observed y values and
the LAD predicted ỹ values is

� = 1 − δ

μδ

= 1 − 2.0636

5.3382
= +0.6134 ,

indicating approximately 61% agreement between the observed and predicted
values of variable y.

Table 10.6 lists the N = 10 observed values of variables x and y, the predicted
y values (ỹ), the residual errors (ẽ), and the absolute residual errors (|ẽ|).

Since there are only

M = N ! = 10! = 3,628,800

possible, equally-likely arrangements in the reference set of all permutations of
the bivariate data listed in Table 10.4, an exact permutation analysis is possible.
Under the Fisher–Pitman permutation model, the exact probability of an observed
δ is the proportion of δ test statistic values computed on all possible, equally-
likely arrangements of the N = 10 bivariate observations listed in Table 10.4
that are equal to or less than the observed value of δ = 2.0636. Alternatively, the
exact probability value of an observed � agreement coefficient is the proportion of
� values computed on all possible, equally-likely arrangements of the N = 10
bivariate observations listed in Table 10.4 that are equal to or greater than the
observed value of � = +0.6134. There are exactly 15,533 � test statistic values
that are equal to or greater than the observed value of � = +0.6134.

If all M arrangements of the N = 10 bivariate observations listed in Table 10.4
occur with equal chance under the Fisher–Pitman null hypothesis, the exact
probability value of � = +0.6134 computed on the M = 3,628,800 possible
arrangements of the observed data with N = 10 bivariate observations preserved
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for each arrangement is

P(� ≥ �o|H0) = number of � values ≥ �o

M
= 15,533

3,628,800
= 0.4280×10−2 ,

where �o denotes the observed value of test statistic �.
Alternatively, since μδ = 5.3382 is a constant,

P(δ ≤ δo|H0) = number of δ values ≤ δo

M
= 15,533

3,628,800
= 0.4280×10−2 ,

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the N = 10 bivariate observations listed
in Table 10.4.

10.4.3 The Effects of Extreme Values

For the example bivariate data listed in Table 10.4 on p. 374, the exact probability
value based on LAD regression and ordinary Euclidean scaling with v = 1 is
P = 0.4280×10−2 and the asymptotic probability value based on OLS regression
and squared Euclidean scaling with v = 2 is P = 0.2275×10−2. In this case the
difference between the asymptotic and exact probability values is only

�P = 0.4280×10−2 − 0.2275×10−2 = 0.2006×10−2 .

The small difference in probability values is due to the fact that there are no extreme
values in the data listed in Table 10.4 on p. 374. OLS analyses based on squared
Euclidean scaling with v = 2 are mean-based and LAD analyses based on ordinary
Euclidean scaling with v = 1 are median-based. Consequently, LAD regression
analyses are highly resistant to extreme values.

Extreme values are common in applied research. To demonstrate the difference
between OLS analyses based on squared Euclidean scaling with v = 2 and LAD
analyses based on ordinary Euclidean scaling with v = 1 when the data contain
an extreme value, consider the bivariate data listed in Table 10.7. The data listed
in Table 10.7 are the same data listed in Table 10.4 on p. 374 with one alteration:
the value of y2 = 23 has been increased to y2 = 90, thereby providing an extreme
value.

For the bivariate data listed in Table 10.4 on p. 374 without an extreme value
(y2 = 23), the OLS sample correlation coefficient is rxy = +0.8414, Student’s t test
statistic is t = +4.4039, and the asymptotic probability value to six decimal places
is P = 0.002275. For the bivariate data listed in Table 10.7 with an extreme value
(y2 = 90), the OLS sample correlation coefficient is rxy = +0.3636, Student’s t

test statistic is t = +1.1042, and the asymptotic probability value is P = 0.301606.
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Table 10.7 Example
bivariate LAD correlation
data on N = 10 subjects with
an extreme value included

Subject x y

1 14 25

2 8 90

3 5 21

4 2 10

5 1 12

6 3 11

7 9 19

8 2 13

9 3 13

10 9 16

The difference between the two OLS correlation coefficients is

�rxy = 0.8414 − 0.3636 = 0.4778

and the difference between the two OLS probability values is

�P = 0.301606 − 0.002275 = 0.299331 .

For the bivariate data listed in Table 10.4 on p. 374 without an extreme value
(y2 = 23), the LAD agreement measure is � = +0.6134 and the exact probability
value to six decimal places is P = 0.004280. For the bivariate data listed in
Table 10.7 with an extreme value (y2 = 90), the LAD agreement measure is
� = +0.2696 and the exact probability value is P = 0.006317. The difference
between the two LAD agreement measures is

�� = 0.6134 − 0.2696 = 0.3438

and the difference between the two LAD probability values is

�P = 0.006317 − 0.004280 = 0.002037 .

The difference between the two LAD agreement measures (�� = 0.3438)
is considerably smaller than the difference between the two OLS correlation
coefficients (�rxy = 0.4778) and the difference between the two LAD probability
values (�P = 0.002037) is almost two orders of magnitude smaller than the
difference between the two OLS probability values (�P = 0.299331). While the
LAD regression analysis of the data listed in Table 10.7 is clearly affected by the
presence of an extreme value, LAD regression based on ordinary Euclidean scaling
with v = 1 is a robust procedure relative to OLS regression based on squared
Euclidean scaling with v = 2 when extreme values are present.
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10.5 Example 4: Exact and Monte Carlo Analyses

As sample sizes become large, the number of possible arrangements of the observed
data makes exact permutation methods impractical. For example, for a sample size
of N = 20 there are

M = N ! = 20! = 2,432,902,008,176,640,000

possible, equally-likely arrangements in the reference set of all permutations of
the observed data to be analyzed. Far too many arrangements to be practical.
Monte Carlo permutation methods examine a random sample of all M possible
arrangements of the observed data, providing efficient and accurate results. Provided
that the probability value is not too small, L = 1,000,000 random arrangements are
usually sufficient to ensure three decimal places of accuracy [6].

For a fourth, larger example of bivariate correlation, consider the data on N = 12
objects listed in Table 10.8 under the Neyman–Pearson population model. For the
example data listed in Table 10.8 with N = 12 bivariate observations, the means of
variables x and y are

x̄ = 1

N

N∑
i=1

xi = 9 + 10 + · · · + 8

12
= 17.3333

and

ȳ = 1

N

N∑
i=1

yi = 21 + 25 + · · · + 18

12
= 6.9167 ,

Table 10.8 Example
correlation data on N = 12
bivariate observations

Variable

Object x y

1 9 21

2 10 25

3 2 15

4 4 11

5 5 15

6 16 27

7 1 12

8 11 18

9 7 11

10 3 12

11 7 23

12 8 18
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respectively, and Pearson’s product-moment correlation coefficient between vari-
ables x and y is

rxy =

N∑
i=1

(xi − x̄)(yi − ȳ)

√√√√
[

N∑
i=1

(xi − x̄)2

][
N∑

i=1

(yi − ȳ)2

]

= +209.3333√[
(346.6667)(200.9167)

] = +0.7932 .

The conventional test of significance for Pearson’s product-moment correlation
coefficient is given by

t = rxy

√
N − 2

1 − r2
xy

.

Under the Neyman–Pearson null hypothesis, H0: ρxy = 0, test statistic t is
asymptotically distributed as Student’s t with N − 2 degrees of freedom.

For the example data listed in Table 10.8,

t = rxy

√
N − 2

1 − r2
xy

= +0.7932

√
12 − 2

1 − (+0.7932)2 = +4.1188

and with N − 2 = 12 − 2 = 10 degrees of freedom the asymptotic two-
tail probability value is P = 0.2081×10−2, under the assumptions of linearity,
normality, and homogeneity.

10.5.1 A Monte Carlo Permutation Analysis

Now consider the data listed in Table 10.8 under the Fisher–Pitman permutation
model. For the example data listed in Table 10.8 with N = 12 bivariate observations,
the sample means are x̄ = 6.9167 and ȳ = 17.3333, the sample variances are S2

x =
16.7431 and S2

y = 28.8889, the sample standard deviations are Sx = 4.0918 and
Sy = 5.3748, the sample product-moment correlation coefficient is rxy = +0.7932,
and the observed permutation test statistic is

δ = S2
x + S2

y − 2|rxy |SxSy + (x̄ − ȳ)2 = 16.7431 + 28.8889

− 2(0.7932)(4.0918)(5.3748)+ (6.9167 − 17.3333)2 = 119.25 .
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A permutation analysis of correlation requires shuffling either the N = 12 x

values or the N = 12 y values, while holding the other variable constant. Even with
the small sample of N = 12 bivariate observations, there are

M = N ! = 12! = 479,001,600

possible, equally-likely arrangements in the reference set of all permutations of the
example data listed in Table 10.8, making an exact permutation analysis impractical.
Under the Fisher–Pitman permutation model, the Monte Carlo probability of an
observed δ is the proportion of δ test statistic values computed on the randomly-
selected, equally-likely arrangements of the N = 12 bivariate observations listed in
Table 10.8 that are equal to or less than the observed value of δ = 119.25. Based on
L = 1,000,000 random arrangements of the N = 12 bivariate observations listed
in Table 10.8, there are exactly 1868 δ test statistic values that are equal to or less
than the observed value of δ = 119.25.

If all M arrangements of the N = 12 bivariate observations listed in Table 10.8
occur with equal chance under the Fisher–Pitman null hypothesis, the Monte Carlo
probability value of δ = 119.25 computed on L = 1,000,000 random arrangements
of the observed data with N = 12 bivariate observations preserved for each
arrangement is

P(δ ≤ δo|H0) = number of δ values ≤ δo

L
= 1868

1,000,000
= 0.1868×10−2 ,

where δo denotes the observed value of test statistic δ and L is the number of
randomly-selected, equally-likely arrangements of the N = 12 bivariate observa-
tions listed in Table 10.8.

10.5.2 An Exact Permutation Analysis

While M = 479,001,600 possible arrangements may make an exact permutation
analysis impractical, it is not impossible. There are exactly 896,384 δ test statistic
values that are equal to or less than the observed value of δ = 119.25. If all M

arrangements of the N = 12 bivariate observations listed in Table 10.8 occur with
equal chance under the Fisher–Pitman null hypothesis, the exact probability value
of δ = 119.25 computed on the M = 479,001,600 possible arrangements of the
observed data with N = 12 bivariate observations preserved for each arrangement is

P(δ ≤ δo) = number of δ values ≤ δo

M
= 896,384

479,001,600
= 0.1871×10−2 ,

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the N = 12 bivariate observations listed
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in Table 10.8. Alternatively,

P(|rxy | ≥ |ro|) = number of |rxy | values ≥ |ro|
M

= 896,384

479,001,600
= 0.1871×10−2 ,

where |ro| denotes the observed value of |rxy |.
The difference between the exact probability value based on all M =

479,001,600 possible arrangements of the example data listed in Table 10.8 and the
Monte Carlo probability value based on L = 1,000,000 random arrangements of
the example data is only

�P = 0.001871 − 0.001868 = 0.000003 .

To illustrate the accuracy of Monte Carlo permutation methods, Table 10.9 lists
10 independent Monte Carlo analyses of the bivariate data listed in Table 10.8
each initialized with a different seed and each analysis based on L = 1,000,000
random arrangements of the observed data, comparing the Monte Carlo probability
values with the exact probability value based on all M = 479,001,600 possible
arrangements of the observed data. The exact probability value is P = 0.001871,
the average of the 10 Monte Carlo probability values listed in Table 10.9 is P =
0.001868, and the difference between the average of the 10 Monte Carlo probability
values and the exact probability value is

�P = 0.001868 − 0.001871 = 0.000003 ,

Table 10.9 Ten independent Monte Carlo runs on the data listed in Table 10.8 based on L =
1,000,000 random arrangements for each run

Run Seed Monte Carlo probability Exact probability Difference

1 11 0.001912 0.001871 +0.000041

2 13 0.001809 0.001871 −0.000062

3 17 0.001900 0.001871 +0.000029

4 19 0.001896 0.001871 +0.000025

5 23 0.001916 0.001871 +0.000045

6 29 0.001861 0.001871 −0.000010

7 31 0.001809 0.001871 −0.000062

8 37 0.001847 0.001871 −0.000024

9 41 0.001851 0.001871 −0.000020

10 43 0.001883 0.001871 +0.000012
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demonstrating the accuracy and efficiency of Monte Carlo permutation statistical
methods. Finally, it should be noted that not only are all the differences listed in
Table 10.9 very small, but half of the differences are positive and half are negative.

10.6 Example 5: Rank-Score Permutation Analyses

It is not uncommon for researchers to analyze data consisting of rank scores. The
correlation coefficients for untied rank-score data most often found in the literature
are Spearman’s rank-order correlation coefficient given by

rs = 1 −
6

N∑
i=1

d2
i

N(N2 − 1)
, (10.2)

where for variables x and y, di = xi − yi for i = 1, . . . , N bivariate observations,
and Kendall’s rank-order correlation coefficient given by

τ = 2S

N(N − 1)
,

where S denotes the number of concordant pairs of rank scores (C) minus the
number of discordant pairs (D).4

10.6.1 Spearman’s Rank-Order Correlation Coefficient

Consider Spearman’s rank-order correlation coefficient for N bivariate rank scores
under the Neyman–Pearson population model. An example set of data is given in
Table 10.10 with N = 11 bivariate rank scores.

Following Eq. (10.2) for the data listed in Table 10.10, Spearman’s rank-order
correlation coefficient is

rs = 1 −
6

N∑
i=1

d2
i

N(N2 − 1)
= 1 − 6(138)

11(112 − 1)
= +0.3727 .

Under the Neyman–Pearson null hypothesis, H0: ρxy = 0, Spearman’s rs test
statistic is asymptotically distributed as Student’s t with N − 2 degrees of freedom.

4For simplification and clarity the formulæ and examples are limited to untied rank-score data.
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Table 10.10 Average weekly spending in dollars on alcohol (x) and tobacco (y) in N = 11
Confederate states in 1863

State Alcohol (x) Tobacco (y) Rank x Rank y d d2

Florida 6.57 2.73 1 11 −10 100

Georgia 6.20 4.48 2 2 0 0

Alabama 6.15 4.51 3 1 +2 4

Mississippi 6.08 3.87 4 4 0 0

Louisiana 5.91 3.54 5 6 −1 1

Arkansas 5.61 3.72 6 5 +1 1

Missouri 5.34 4.21 7 3 +4 16

South Carolina 5.11 2.88 8 10 −2 4

North Carolina 4.87 3.41 9 7 +2 4

Texas 4.49 3.29 10 8 +2 4

Virginia 4.41 3.11 11 9 +2 4

Sum 0 138

For the N = 11 bivariate rank scores listed in Table 10.10 with N −2 = 11−2 = 9
degrees of freedom,

t = rs

√
N − 2

1 − r2
s

= +0.3727

√
11 − 2

1 − (+0.3727)2 = +1.2050

yielding an asymptotic two-tail probability value of P = 0.2589, under the
assumption of normality.

10.6.2 An Exact Permutation Analysis

For an analysis of the bivariate correlation data listed in Table 10.10 under the
Fisher–Pitman permutation model let the differences between the rank scores be
squared for correspondence with Spearman’s rank-order correlation coefficient. Let
di = xi − yi for i = 1, . . . , N , then the permutation test statistic is given by

δ = 1

N

N∑
i=1

d2
i . (10.3)

Following Eq. (10.3), for the rank-score data listed in Table 10.10 with N = 11
bivariate observations the observed value of the permutation test statistic is

δ = 1

N

N∑
i=1

d2
i = 138

11
= 12.5455 .
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Because there are only

M = N ! = 11! = 39,916,800

possible, equally-likely arrangements in the reference set of all permutations of the
alcohol and tobacco data listed in Table 10.10, an exact permutation analysis is
feasible. Under the Fisher–Pitman permutation model, the exact probability of an
observed δ is the proportion of δ test statistic values computed on all possible,
equally-likely arrangements of the N = 11 rank scores listed in Table 10.10 that
are equal to or less than the observed value of δ = 12.5455.5 There are exactly
10,400,726 δ test statistic values that are equal to less than the observed value of
δ = 12.5455. If all M arrangements of the N = 11 bivariate rank scores listed in
Table 10.10 occur with equal chance under the Fisher–Pitman null hypothesis, the
exact probability value of δ = 12.5455 computed on the M = 39,916,800 possible
arrangements of the observed data with N = 11 bivariate observations preserved
for each arrangement is

P(δ ≤ δo|H0) = number of δ values ≤ δo

M
= 10,400,726

39,916,800
= 0.2606 ,

where δo denotes the observed value of test statistic δ and M is the number of
possible, equally-likely arrangements of the N = 11 bivariate rank scores listed
in Table 10.10.

10.6.3 The Relationship Between rs and δ

The functional relationships between test statistics δ and rs are given by

δ = (N2 − 1)(1 − rs )

6
and rs = 1 − 6δ

N2 − 1
. (10.4)

Following the first expression given in Eq. (10.4), the observed value of test statistic
δ with respect to the observed value of Spearman’s rs is

δ = (N2 − 1)(1 − rs )

6
= (112 − 1)(1 − 0.3727)

6
= 12.5455

5Note that in Eq. (10.3) N is a constant, so only the sum-of-squared differences need be calculated
for each arrangement of the observed data.
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and, following the second expression in Eq. (10.4), the observed value of Spear-
man’s rs with respect to the observed value of test statistic δ is

rs = 1 − 6δ

N2 − 1
= 1 − 6(12.5455)

112 − 1
= +0.3727 .

Because test statistics δ and rs are equivalent under the Fisher–Pitman null
hypothesis, the exact probability value of Spearman’s rs = +0.3727 is identical
to the exact probability value of δ = 12.5455; that is,

P(δ ≤ δo) = number of δ values ≤ δo

M
= 10,400,726

39,916,800
= 0.2606

and

P(|rs | ≥ |ro|) = number of |rs | values ≥ |ro|
M

= 10,400,726

39,916,800
= 0.2606 ,

where δo and ro denote the observed values of δ and rs , respectively, and M is the
number of possible, equally-likely arrangements of the N = 11 bivariate rank scores
listed in Table 10.10.

The exact expected value of the M = 39,916,800 δ test statistic values under the
Fisher–Pitman null hypothesis is

μδ = 1

M

M∑
i=1

δi = 798,336,000

39,916,800
= 20.00 .

Alternatively, the exact expected value of test statistic δ is

μδ = N2 − 1

6
= 112 − 1

6
= 20.00 .

Then the observed chance-corrected measure of effect size is

� = 1 − δ

μδ

= 1 − 12.5455

20.00
= +0.3727 ,

indicating approximately 37% agreement between the x and y rank-score values
above what is expected by chance.

When the N rank-score values in variable y are a simple permutation of the rank-
score values in variable x it can easily be shown that Mielke and Berry’s � measure
of effect size and Spearman’s rs rank-order correlation coefficient are equivalent
under the Neyman–Pearson population model with squared Euclidean scaling; that
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is, � = +0.3727 and rs = +0.3727. Specifically, given

δ = (N2 − 1)(1 − rs)

6
and μδ = N2 − 1

6
,

then

� = 1 − δ

μδ

= 1 − (N2 − 1)(1 − rs)

6
× 6

N2 − 1
= 1 − (1 − rs) = rs .

10.6.4 Kendall’s Rank-Order Correlation Coefficient

A popular alternative to Spearman’s rs rank-order correlation coefficient is Kendall’s
τ rank-order correlation coefficient given by

τ = S(
N

2

) = 2S

N(N − 1)
,

where S = C − D, C denotes the number of concordant pairs of the observed data,
and D denotes the number of discordant pairs of the observed data. To illustrate the
difference between concordant and discordant pairs, consider the example data with
N = 4 bivariate rank scores listed in Table 10.11. There are

M =
(

N

2

)
=

(
4

2

)
= 4(4 − 1)

2
= 6

possible, equally-likely arrangements in the reference set of all permutations of the
example data listed in Table 10.11 to be considered. The first (x,y) pair is x1 = 1
and x2 = 2, and y1 = 2 and y2 = 3. Since x1 = 1 is less than x2 = 2 and y1 = 2 is
less than y2 = 3, the first (x,y) pair is considered to be concordant as the values of
variables x and y are in the same order for the pair.

The next (x,y) pair is x1 = 1 and x3 = 3, and y1 = 2 and y3 = 1. Since
x1 = 1 is less than x3 = 3 but y1 = 2 is greater than y3 = 1, the second (x,y)

Table 10.11 Example
rank-score data on N = 4
bivariate observations

Variable

Object x y

1 1 2

2 2 3

3 3 1

4 4 4
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Table 10.12 Calculation of
concordant (C) and
discordant (D) pairs for the
example rank-score data
listed in Table 10.11

Variable

Pair x y C D

1 1 < 2 2 < 3 1

2 1 < 3 2 > 1 1

3 1 < 4 2 < 4 1

4 2 < 3 3 > 1 1

5 2 < 4 3 < 4 1

6 3 < 4 1 < 4 1

Sum 4 2

pair is considered to be discordant as the values of variables x and y are not in the
same order for the pair. Table 10.12 illustrates the calculation of the six concordant
(C) and discordant (D) pairs for the rank-score data listed in Table 10.11. For the
six (x,y) pairs listed in Table 10.12, the number of concordant pairs is C = 4, the
number of discordant pairs is D = 2, and Kendall’s S = C−D = 4−2 = +2. When
M becomes large the calculations can become cumbersome. Table 10.13 illustrates
the calculation of Kendall’s S for the rank-score data listed in Table 10.12 on p. 388
with N = 11 bivariate pairs.

The process illustrated in Table 10.13 is straightforward. Determine the value for
Kendall’s S by arranging the values of variable x in their natural order and arranging
the values of variable y corresponding to the values of variable x, as in Table 10.13.
Starting with the first value of variable y on the left (11), count the number of rank
scores to the right of 11 that are smaller than 11 and score each as (−1); these (−1)
values represent the disagreements in order. For the calculations listed in Table 10.13
there are 10 values that are smaller than 11. Next count the number of rank scores
to the right of 11 that are larger than 11 and score each as (+1); these (+1) values

Table 10.13 Example calculations for determining the value of Kendall’s S test statistic

x 1 2 3 4 5 6 7 8 9 10 11

y 11 2 1 4 6 5 3 10 7 8 9 Sum

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −10

−1 +1 +1 +1 +1 +1 +1 +1 +1 +7

+1 +1 +1 +1 +1 +1 +1 +1 +8

+1 +1 −1 +1 +1 +1 +1 +5

−1 −1 +1 +1 +1 +1 +2

−1 +1 +1 +1 +1 +3

+1 +1 +1 +1 +4

−1 −1 −1 −3

+1 +1 +2

+1 +1

0

Sum +19
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represent the agreements in order. In this case there are no values larger than 11.
Sum the 10 (−1) and zero (+1) values and place the sum at the end of the first row.

The next y value is 2. Count the number of rank scores to the right of 2 that are
smaller than 2 and score each as (−1); there is only one value (1) that is smaller
than 2. Next count the number of rank scores to the right of 2 that are larger than
2 and score each as (+1); there are eight values that are larger than 2. Sum the one
(−1) and eight (+1) values and place the sum at the end of the second row. Continue
the procedure for all ranks in variable y, summing the results. The final sum is the
value for Kendall’s S. Alternatively, there are 37 (+1) values in Table 10.13; these
are the concordant pairs (C). There are 18 (−1) values in Table 10.13; these are the
discordant pairs (D). Then, S = C − D = 37 − 18 = +19.

For the rank-score data listed in Table 10.10 on p. 384 with N = 11 untied rank
scores, Kendall’s rank-order correlation coefficient is

τ = 2S

N(N − 1)
= 2(+19)

11(11 − 1)
= +0.3455 .

In testing the significance of the association between paired ranks it is more
convenient to apply a test directly to S rather than τ as the number of pairs,
N(N − 1)/2, is a constant. Kendall’s S is asymptotically distributed N(0, 1) with
mean of zero and variance given by

σ 2
S = N(N − 1)(2N + 5)

18

as N → ∞. Since the normal distribution is an approximation to the discrete
sampling distribution of S, a correction for continuity should be applied. For the
rank-score data listed in Table 10.10 on p. 384, the normal deviate with continuity
correction applied is

z = |S| − 1[
N(N − 1)(2N + 5)/18

]1/2

= 19 − 1{
11(11 − 1)[(2)(11) + 5]/18

}1/2 = +1.4013 ,

yielding an asymptotic two-tail probability value of P = 0.1611, under the
assumption of normality.

10.6.5 An Exact Permutation Analysis

Consider an analysis of the correlation data listed in Table 10.10 on p. 384 with
N = 11 bivariate observations under the Fisher–Pitman permutation model. There
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are

M = N ! = 11! = 39,916,800

possible, equally-likely arrangements in the reference set of all permutations of the
example data listed in Table 10.10, making an exact permutation analysis feasible.
Under the Fisher–Pitman permutation model, the exact probability of an observed
value of Kendall’s S is the proportion of S test statistic values computed on all
possible, equally-likely arrangements of the N = 11 bivariate rank scores listed
in Table 10.10 that are equal to or greater than the observed value of S = +19.
There are exactly 6,436,200 S test statistic values that are equal to or greater than
the observed value of S = +19. If all M arrangements of the N = 11 bivariate rank
scores listed in Table 10.10 occur with equal chance under the Fisher–Pitman null
hypothesis, the exact probability value of S = 19 computed on the M = 39,916,800
possible arrangements of the observed data with N = 11 bivariate observations
preserved for each arrangement is

P(|S| ≥ |So|) = number of |S| values ≥ |So|
M

= 6,436,200

39,916,800
= 0.1612 ,

where So denotes the observed value of Kendall’s S and M is the number of
possible, equally-likely arrangements of the N = 11 bivariate observations listed
in Table 10.10.

10.6.6 Spearman’s Footrule Correlation Coefficient

While Charles Spearman is most often remembered for his contributions to factor
analysis and his development of the rank-order correlation coefficient given by

rs = 1 −
6

2∑
i=1

d2
i

N(N2 − 1)
,

which was discussed in Sect. 10.6.1, Spearman also developed a lesser-known
correlation coefficient that he called the “footrule” given by

R = 1 −
3

N∑
i=1

∣∣xi − yi

∣∣
N2 − 1

,

where xi and yi denote the ith observed rank-score values for i = 1, . . . , N and N

is the number of bivariate rank scores.
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Table 10.14 Example
bivariate rank-score
correlation data with N = 8
pairs of data

Pair x y x − y |x − y|
1 8 7 +1 1

2 6 6 0 0

3 2 4 −2 2

4 4 2 +2 2

5 7 8 −1 1

6 5 5 0 0

7 1 3 −2 2

8 3 1 +2 2

Sum 10

To illustrate Spearman’s footrule measure of correlation, consider the example
data listed in Table 10.14 with N = 8 bivariate untied rank-score observations.
For the N = 8 bivariate rank-score observations listed in Table 10.14, Spearman’s
footrule is

R = 1 −
3

N∑
i=1

∣∣xi − yi

∣∣
N2 − 1

= 1 − 3(10)

82 − 1
= +0.5238 .

For comparison, Spearman’s rank-order correlation coefficient calculated on the
rank-score data listed in Table 10.14 is rs = +0.7857 and Kendall’s rank-order
correlation coefficient is τ = +0.6429.

Since there are only

M = N ! = 8! = 40,320

possible, equally-likely arrangements in the reference set of all permutations of the
observed x and y rank scores listed in Table 10.14, an exact permutation analysis
is feasible. Under the Fisher–Pitman permutation model, the exact probability of an
observed R is the proportion of R test statistic values computed on all possible,
equally-likely arrangements of the N = 8 bivariate rank scores listed in Table 10.14
that are equal to or greater than the observed value of R = +0.5238. There are
exactly 1248 R test statistic values that are equal to or greater than the observed
value of R = +0.5238. If all M arrangements of the N = 8 rank scores listed in
Table 10.14 occur with equal chance under the Fisher–Pitman null hypothesis, the
exact probability value of R = +0.5238 computed on the M = 40,320 possible
arrangements of the observed data with N = 8 bivariate rank scores preserved for
each arrangement is

P(R ≥ Ro|H0) = number of R values ≥ Ro

M
= 1248

40,320
= 0.0310 ,
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where Ro denotes the observed value of Spearman’s R and M is the number of
possible, equally-likely arrangements of the N = 8 bivariate rank scores listed in
Table 10.14.

10.6.7 The Relationship Between Statistics R and �

It can easily be demonstrated that Spearman’s R footrule measure and Mielke and
Berry’s � measure of effect size are equivalent measures under the Fisher–Pitman
permutation model with ordinary Euclidean scaling. Let

δ = 1

N

N∑
i=1

∣∣xi − yi

∣∣ (10.5)

denote an average distance function based on all possible paired absolute differences
among values of the two rankings and let

μδ = 1

N2

N∑
i=1

N∑
j=1

∣∣xi − yj

∣∣ (10.6)

denote the expected value of test statistic δ. Then Spearman’s footrule measure is
given by

R = 1 − δ

μδ

, (10.7)

which is also the equation for Mielke and Berry’s � measure of effect size.
The calculation of test statistics δ, μδ , and � can be illustrated and compared

with Spearman’s R footrule measure using an example set of data. Consider the
small set of rank-score data listed in Table 10.15 with N = 5 bivariate observations.
Table 10.16 illustrates the calculation of Spearman’s footrule measure for the rank-
score data listed in Table 10.15. Given the calculations listed in Table 10.16, the

Table 10.15 Bivariate rank
scores assigned to N = 5
objects

Object x y

1 5 4

2 2 1

3 1 2

4 3 3

5 4 5
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Table 10.16 Detailed
calculations for Spearman’s
footrule measure with N = 5
bivariate observations

Pair i xi yi xi − yi |xi − yi |
1 1 5 4 −1 1

2 2 2 1 +1 1

3 3 1 2 −1 1

4 4 3 3 0 0

5 5 4 5 −1 1

Table 10.17 Calculation of
|xi − yi | for i = 1, . . . , N

for δ

Pair i xi yi |xi − yi |
1 1 5 4 |5 − 4| = 1

2 2 2 1 |2 − 1| = 1

3 3 1 2 |1 − 2| = 1

4 4 3 3 |3 − 3| = 0

5 5 4 5 |4 − 5| = 1

observed value of Spearman’s footrule measure is

R =
3

N∑
i=1

∣∣xi − yi

∣∣
N2 − 1

= 3(1 + 1 + 1 + 0 + 1)

52 − 1
= +0.50 .

Table 10.17 illustrates the calculation of δ for the rank-score data listed in
Table 10.15. Given the calculations listed in Table 10.17, the observed value of test
statistic δ is

δ = 1

N

N∑
i=1

∣∣xi − yi

∣∣ = 1 + 1 + 1 + 0 + 1

5
= 0.80 .

Table 10.18 illustrates the calculation of μδ for the rank-score data listed in
Table 10.15. Given the calculations listed in Table 10.18, the exact expected value
of the N2 δ test statistic values under the Fisher–Pitman null hypothesis is

μδ = 1

N2

N∑
i=1

N∑
j=1

∣∣xi − yj

∣∣ = 1 + 0 + 2 + · · · + 2 + 0 + 1

52 = 1.60 .

Then the chance-corrected measure of agreement is

� = 1 − δ

μδ

= 1 − 0.80

1.60
= +0.50 ,
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Table 10.18 Calculation of
|xi − yj | for i, j = 1, . . . , N

for μδ

Pair i j |xi − yj | Pair i j |xi − yj |
1 1 2 |1 − 2| = 1 14 3 5 |3 − 5| = 2

2 1 1 |1 − 1| = 0 15 3 4 |3 − 4| = 1

3 1 3 |1 − 3| = 2 16 4 2 |4 − 2| = 2

4 1 5 |1 − 5| = 4 17 4 1 |4 − 1| = 3

5 1 4 |1 − 4| = 3 18 4 3 |4 − 3| = 1

6 2 2 |2 − 2| = 0 19 4 5 |4 − 5| = 1

7 2 1 |2 − 1| = 1 20 4 4 |4 − 4| = 0

8 2 3 |2 − 3| = 1 21 5 2 |5 − 2| = 3

9 2 5 |2 − 5| = 3 22 5 1 |5 − 1| = 4

10 2 4 |2 − 4| = 2 23 5 3 |5 − 3| = 2

11 3 2 |3 − 2| = 1 24 5 5 |5 − 5| = 0

12 3 1 |3 − 1| = 2 25 5 4 |5 − 4| = 1

13 3 3 |2 − 5| = 0

indicating 50% agreement above that expected by chance. Thus, the equivalence
between

R = 1 −
3

N∑
i=1

|xi − yi |

N2 − 1
and � = 1 − δ

μδ

is demonstrated.

10.6.8 A More Rigorous Proof

In this section a proof is offered that mathematically establishes the equivalence of
Spearman’s footrule measure and Mielke and Berry’s chance-corrected measure of
effect size. Consider the expected value of test statistic δ as defined in Eq. (10.6) and
given by

μδ = 1

N2

N∑
i=1

N∑
j=1

∣∣xi − yj

∣∣ .

Then,

μδ = 2

N2

N−1∑
i=1

N∑
j=i+1

(j − i)

= 1

N2

N−1∑
i=1

[
N(N + 1) + i2 − i(2N + 1)

]
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= N(N − 1)

6N2

[
6(N + 1) + (2N − 1) − 3(2N + 1)

]

= N − 1

6N

[
2(N + 1)

]

= N2 − 1

3N

The chance-corrected measure of effect size defined in Eq. (10.7) on p. 392 is

� = 1 − δ

μδ

.

Therefore,

δ = μδ(1 − �) .

Given the permutation test statistic defined in Eq. (10.5) on p. 392; that is,

δ = 1

N

N∑
i=1

∣∣xi − yi

∣∣ ,

and substituting δ into Spearman’s footrule measure

R = 1 −
3

N∑
i=1

∣∣xi − yi

∣∣
N2 − 1

yields

R = 1 − 3Nδ

N2 − 1

and substituting μδ(1 − �) for δ yields

R = 1 − 3Nμδ(1 − �)

N2 − 1
.

Finally, substituting (N2 − 1)/3N for μδ yields

R = 1 −
3N

(
N2 − 1

3N

)
(1 − �)

N2 − 1
= 1 − (1 − �) = � .
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10.7 Example 6: Multivariate Permutation Analyses

Many introductory textbooks in statistics include a brief introduction to multiple
correlation, usually limiting the discussion to two predictors for simplicity. The OLS
multiple regression equation is given by

ŷ = β̂0 + β̂1x1 + β̂2x2 + · · · + β̂pxp ,

where ŷ denotes the predicted value of the criterion variable, x1, x2, . . . , xp denote
p predictor variables, β̂1, β̂2, . . . , β̂p denote the OLS regression weights for each
of the p predictor variables, and β̂0 is the estimate of the population intercept.
The assumptions underlying OLS multiple regression are (1) the observations are
independent, (2) a linear relationship exists between the criterion variable and the
predictor variables, (3) multivariate normality, (4) no multicollinearity among the
variables, and (5) the variances of the error terms are similar across the values of the
p predictor variables; that is, homogeneity.

10.7.1 A Conventional OLS Multivariate Analysis

To illustrate multiple correlation analyses with OLS and LAD regression, consider
the example data listed in Table 10.19 with p = 2 predictors where variable y is
Hours of Housework done by husbands per week, variable x1 is Number of Children
in the family, and variable x2 is husband’s Years of Education for N = 12 families.
For the multivariate data listed in Table 10.19, the unstandardized OLS regression
coefficients are

β̂0 = +2.5260 , β̂1 = +0.6356 , and β̂2 = −0.0649 ,

Table 10.19 Example
multivariate correlation data
on N = 12 families with
p = 2 predictors

Family x1 x2 y

A 1 12 1

B 1 14 2

C 1 16 3

D 1 16 5

E 2 18 3

F 2 16 1

G 3 12 5

H 3 12 0

I 4 10 6

J 4 12 3

K 5 10 7

L 5 16 4
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Table 10.20 Observed x and
y values with associated
predicted values (ŷ), residual
errors (ê), and squared
residual errors (ê2) for the
multivariate correlation data
listed in Table 10.19

Family x1 x2 y ŷ ê ê2

A 1 12 1 2.3823 −1.3823 1.9108

B 1 14 2 2.2525 −0.2525 0.0638

C 1 16 3 2.1226 +0.8774 0.7698

D 1 16 5 2.1226 +2.8774 8.2795

E 2 18 3 2.6283 +0.3717 0.1382

F 2 16 1 2.7581 −1.7582 3.0911

G 3 12 5 3.6534 +1.3466 1.8132

H 3 12 0 3.6534 −3.6534 13.3477

I 4 10 6 4.4189 +1.5811 2.5000

J 4 12 3 4.2889 −1.2890 1.6615

K 5 10 7 5.0544 +1.9456 3.7853

L 6 16 4 4.6648 −0.6648 0.4420

Sum 32 164 40 40.0000 0.0000 37.8028

and the observed squared OLS multiple correlation coefficient is R2 = 0.2539.
Table 10.20 lists the N = 12 observed values for variables x and y, the predicted y

values (ŷ), the residual errors (ê), and the squared residual errors (ê2).
The summary statistics given in Table 10.20 suggest an alternative method to

determine the value of the multiple correlation coefficient. Define

R2 = r2
yŷ

=

[
N

N∑
i=1

yŷ −
(

N∑
i=1

yi

)(
N∑

i=1

ŷ

)]2

⎡
⎣N

N∑
i=1

y2
i −

(
N∑

i=1

yi

)2 ⎤
⎦
⎡
⎣N

N∑
i=1

ŷ2
i −

(
N∑

i=1

ŷi

)2 ⎤
⎦

. (10.8)

For the multivariate data listed in Table 10.19, N = 12,

N∑
i=1

yi = 40.00 ,

N∑
i=1

y2
i = 184.00

N∑
i=1

ŷi = 40.00 ,

N∑
i=1

ŷ2
i = 146.1984 ,

and

N∑
i=1

yŷ = 146.1984 .

Then following Eq. (10.8),

R2 = r2
yŷ

=
[
12(146.1984) − (40)(40)

]2

[
12(184.00) − (40)2

][
12(146.1984)− (40)2

]] = 0.2539 .
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If, under the Neyman–Pearson population model the null hypothesis posits the
population correlation is zero; that is, H0: Ry·x1,x2 = 0, the conventional OLS test
of significance is given by

F = R2(N − p − 1)

p(1 − R2)
,

which is asymptotically distributed as Snedecor’s F with ν1 = p and ν2 = N−p−1
degrees of freedom. For the multivariate data listed in Table 10.19,

F = R2(N − p − 1)

p(1 − R2)
= 0.2539(12 − 2 − 1)

2(1 − 0.2539)
= 1.5313

and with ν1 = p = 2 and ν2 = N −p−1 = 12−2−1 = 9 degrees of freedom, the
asymptotic probability value of F = 1.5313 is P = 0.2677, under the assumptions
of linearity, normality, and homogeneity.

10.7.2 A Monte Carlo Permutation Analysis

Because there are

M = N ! = 12! = 479,001,600

possible, equally-likely arrangements in the reference set of all permutations of
the family data listed in Table 10.19, a Monte Carlo permutation analysis is
most appropriate. Under the Fisher–Pitman permutation model, the Monte Carlo
probability of an observed R2 is the proportion of R2 test statistic values computed
on the randomly-selected, equally-likely arrangements of the N = 12 multivariate
observations listed in Table 10.19 that are equal to or greater than the observed value
of R2 = 0.2539. Based on L = 1,000,000 randomly-selected arrangements of the
N = 12 multivariate observations listed in Table 10.19, there are exactly 268,026 R2

test statistic values that are equal to greater than the observed value of R2 = 0.2539.
If all M arrangements of the N = 12 multivariate observations listed in

Table 10.19 occur with equal chance under the Fisher–Pitman null hypothesis, the
Monte Carlo probability value of R2 = 0.2539 computed on L = 1,000,000
randomly-selected arrangements of the observed data with N = 12 multivariate
observations preserved for each arrangement is

P
(
R2 ≥ R2

o |H0
) = number of R2 values ≥ R2

o

L
= 268,026

1,000,000
= 0.2680 ,
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where R2
o denotes the observed value of R2 and L is the number of randomly-

selected, equally-likely arrangements of the multivariate observations listed in
Table 10.19.

10.7.3 An Exact Permutation Analysis

While M = 479,001,600 possible arrangements may make an exact permutation
analysis impractical, it is not impossible. There are exactly 128,420,329 R2 test
statistic values that are equal to or greater than the observed value of R2 =
0.2539. If all M arrangements of the N = 12 multivariate observations listed
in Table 10.19 occur with equal chance under the Fisher–Pitman null hypothesis,
the exact probability value of R2 = 0.2539 computed on the M = 479,001,600
possible arrangements of the observed data with N = 12 multivariate observations
preserved for each arrangement is

P
(
R2 ≥ R2

o |H0
) = number of R2 values ≥ R2

o

M
= 128,420,329

479,001,600
= 0.2681 ,

where R2
o denotes the observed value of R2 and M is the number of possible,

equally-likely arrangements of the multivariate observations listed in Table 10.19.

10.7.4 A LAD Multivariate Regression Analysis

Now consider a LAD regression analysis of the multivariate data listed in
Table 10.19 on p. 396. Table 10.21 lists the N = 12 observed values for variables
x1, x2, and y, the predicted y values (ỹ), the residual errors (ẽ), and the absolute
residual errors (|ẽ|).

For the family data listed in Table 10.19, the LAD regression coefficients are

β̃0 = +4.7500 , β̃1 = +0.2500 , and β̃2 = −0.1250 ,

the observed permutation test statistic is

δ = 1

N

N∑
i=1

∣∣yi − ỹi

∣∣ = 1

N

N∑
i=1

|ẽ| = 18

12
= 1.50 ,
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Table 10.21 Observed x and
y values with associated
predicted values (ỹ), residual
errors (ẽ), and absolute errors
(|ẽ|) for the multivariate
correlation data listed in
Table 10.19

Family x1 x2 y ỹ ẽ |ẽ|
A 1 12 1 3.5000 −2.5000 2.5000

B 1 14 2 3.2500 −1.2500 1.2500

C 1 16 3 3.0000 0.0000 0.0000

D 1 16 5 3.0000 +2.0000 2.0000

E 2 18 3 3.0000 0.0000 0.0000

F 2 16 1 3.2500 −2.2500 2.2500

G 3 12 5 4.0000 +1.0000 1.0000

H 3 12 0 4.0000 −4.0000 4.0000

I 4 10 6 4.5000 +1.5000 1.5000

J 4 12 3 4.2500 −1.2500 1.2500

K 5 10 7 4.7500 +2.2500 2.2500

L 6 16 4 4.0000 0.0000 0.0000

Sum 32 164 40 44.5000 −4.5000 18.0000

the exact expected value of test statistic δ under the Fisher–Pitman null hypothesis is

μδ = 1

N2

N∑
i=1

N∑
j=1

∣∣yi − ỹj

∣∣

= |1 − 3.50| + |1 − 3.25| + |1 − 3.00| + · · · + |4 − 4.75| + |4 − 4.00|
122

= 260

144
= 1.8056 ,

and the observed LAD measure of agreement between the y and ỹ values is

� = 1 − δ

μδ

= 1 − 1.5000

1.8056
= +0.1692 ,

indicating approximately 17% agreement between the observed and predicted y

values.
There are

M = N ! = 12! = 479,001,600

possible, equally-likely arrangements in the reference set of all permutations of the
family data listed in Table 10.19, making an exact permutation analysis impractical.
Under the Fisher–Pitman permutation model, the Monte Carlo probability of an
observed � is the proportion of � test statistic values computed on the randomly-
selected, equally-likely arrangements of the N = 12 multivariate observations
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listed in Table 10.19 that are equal to or greater than the observed value of
� = +0.1692. Based on L = 1,000,000 randomly-selected arrangements of the
N = 12 multivariate observations listed in Table 10.19, there are exactly 37,824 �
test statistic values that are equal to greater than the observed value of � = +0.1692.

If all M arrangements of the N = 12 multivariate observations listed in
Table 10.19 occur with equal chance under the Fisher–Pitman null hypothesis, the
Monte Carlo probability value of � = +0.1692 computed on L = 1,000,000
randomly-selected arrangements of the observed data with N = 12 multivariate
observations preserved for each arrangement is

P
(� ≥ �o|H0

) = number of � values ≥ �o

L
= 37,824

1,000,000
= 0.0378 ,

where �o denotes the observed value of � and L is the number of randomly-
selected, equally-likely arrangements of the N = 12 multivariate observations listed
in Table 10.19.

10.7.5 An Exact Permutation Analysis

Now consider an exact permutation analysis of the M = 479,001,600 arrangements
of the family data listed in Table 10.19. If all M arrangements of the N = 12
multivariate observations listed in Table 10.19 occur with equal chance under
the Fisher–Pitman null hypothesis, the exact probability value of � = +0.1692
computed on the M = 479,001,600 possible arrangements of the observed data
with N = 12 multivariate observations preserved for each arrangement is

P
(� ≥ �o|H0

) = number of � values ≥ �o

M
= 18,117,645

479,001,600
= 0.0378 ,

where �o denotes the observed value of � and M is the number of possible, equally-
likely arrangements of the N = 12 multivariate observations listed in Table 10.19.

10.7.6 Analyses with an Extreme Value

Suppose that the husband in Family “L” in Table 10.19 on p. 396 was a stay-at-
home house-husband and instead of contributing just 4 h of housework per week, he
actually contributed 40 h, as in Table 10.22.
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Table 10.22 Example
multivariate correlation data
on N = 12 families with
p = 2 predictors, where the
husband in family L
contributed 40 h of
housework per week

Family x1 x2 y

A 1 12 1

B 1 14 2

C 1 16 3

D 1 16 5

E 2 18 3

F 2 16 1

G 3 12 5

H 3 12 0

I 4 10 6

J 4 12 3

K 5 10 7

L 5 16 40

10.7.7 An Ordinary Least Squares (OLS) Analysis

For the multivariate data listed in Table 10.22, the unstandardized OLS regression
coefficients are

β̂0 = −41.6558 , β̂1 = +5.7492 , and β̂2 = +2.3896 ,

and the observed squared OLS multiple correlation coefficient is R2 = 0.5786.
There are

M = N ! = 12! = 479,001,600

possible, equally-likely arrangements in the reference set of all permutations of the
family data listed in Table 10.22, making an exact permutation analysis impractical.
Under the Fisher–Pitman permutation model, the Monte Carlo probability of an
observed R2 is the proportion of R2 test statistic values computed on the randomly-
selected, equally-likely arrangements of the observed data that are equal to or greater
than the observed value of R2 = 0.5786. Based on L = 1,000,000 randomly-
selected arrangements of the N = 12 multivariate observations listed in Table 10.22,
there are exactly 15,215 R2 test statistic values that are equal to greater than the
observed value of R2 = 0.5786.

If all M arrangements of the N = 12 multivariate observations listed in
Table 10.22 occur with equal chance under the Fisher–Pitman null hypothesis, the
Monte Carlo probability value of R2 = 0.5786 computed on L = 1,000,000
random arrangements of the observed data with N = 12 multivariate observations
preserved for each arrangement is

P
(
R2 ≥ R2

o |H0
) = number of R2 values ≥ R2

o

L
= 15,215

1,000,000
= 0.0152 ,
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where R2
o denotes the observed value of R2 and L is the number of randomly-

selected, equally-likely arrangements of the N = 12 multivariate observations listed
in Table 10.22.

Although an exact permutation analysis of M = 479,001,600 arrangements of
the family data listed in Table 10.22 may be impractical, it is not impossible. If all M

arrangements of the N = 12 multivariate observations listed in Table 10.22 occur
with equal chance under the Fisher–Pitman null hypothesis, the exact probability
value of R2 = 0.5786 computed on the M = 479,001,600 possible arrangements
of the observed data with N = 12 multivariate observations preserved for each
arrangement is

P
(
R2 ≥ R2

o |H0
) = number of R2 values ≥ R2

o

M
= 7,328,725

479,001,600
= 0.0153 ,

where R2
o denotes the observed value of R2 and M is the number of possible,

equally-likely arrangements of the N = 12 multivariate observations listed in
Table 10.22.

For comparison,

F = R2(N − p − 1)

p(1 − R2)
= 0.5786(12 − 2 − 1)

2(1 − 0.5786)
= 6.1785 ,

where F is asymptotically distributed as Snedecor’s F with ν1 = p and ν2 =
N−p−1 degrees of freedom. With ν1 = p = 2 and ν2 = N−p−1 = 12−2−1 = 9
degrees of freedom, the asymptotic probability value of F = 6.1785 is P = 0.0205,
under the assumptions of linearity, normality, and homogeneity.

10.7.8 A Least Absolute Deviation (LAD) Analysis

For the multivariate family data listed in Table 10.22 on p. 402, the LAD regression
coefficients are

β̃0 = −6.75 , β̃1 = +1.75 , β̃2 = +0.50 ,

the observed permutation test statistic is δ = 3.9583, the exact expected value of
δ under the Fisher–Pitman null hypothesis is μδ = 5.4687, and the LAD chance-
corrected measure of agreement between the observed y values and the predicted ỹ

values is

� = 1 − δ

μδ

= 1 − 3.9583

5.4687
= +0.2762 ,

indicating approximately 28% agreement between the observed and predicted y

values.
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There are

M = N ! = 12! = 479,001,600

possible, equally-likely arrangements in the reference set of all permutations of the
family data listed in Table 10.22, making an exact permutation analysis impractical.
Under the Fisher–Pitman permutation model, the Monte Carlo probability of an
observed � is the proportion of � test statistic values computed on the randomly-
selected, equally-likely arrangements of the observed data that are equal to or greater
than the observed value of � = +0.2762. Based on L = 1,000,000 randomly-
selected arrangements of the N = 12 multivariate observations listed in Table 10.22,
there are exactly 3409 � test statistic values that are equal to greater than the
observed value of � = +0.2762.

If all M arrangements of the N = 12 multivariate observations listed in
Table 10.22 occur with equal chance under the Fisher–Pitman null hypothesis, the
Monte Carlo probability value of � = +0.2762 computed on L = 1,000,000
randomly-selected arrangements of the observed data with N = 12 multivariate
observations preserved for each arrangement is

P
(� ≥ �o|H0

) = number of � values ≥ �o

L

= 3409

1,000,000
= 0.3409×10−2 ,

where �o denotes the observed value of � and L is the number of randomly-
selected, equally-likely arrangements of the N = 12 multivariate observations listed
in Table 10.22.

For comparison, consider an exact permutation analysis of the M = 479,001,600
arrangements of the observed data. If all M arrangements of the N = 12
multivariate observations listed in Table 10.22 occur with equal chance under
the Fisher–Pitman null hypothesis, the exact probability value of � = +0.2762
computed on the M = 479,001,600 possible arrangements of the observed data
with N = 12 multivariate observations preserved for each arrangement is

P
(� ≥ �o|H0

) = number of � values ≥ �o

M

= 163,234,242

479,001,600
= 0.3408×10−2 ,

where �o denotes the observed value of � and M is the number of possible, equally-
likely arrangements of the N = 12 multivariate observations listed in Table 10.22.

The results of the comparison of the OLS and LAD regression analyses with
y12 = 4 and y12 = 40 h of housework by the husband in family “L” are summarized
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Table 10.23 Comparison of OLS and LAD analyses for the data given in Table 10.19 with 4 h of
housework for the husband in family L and the data given in Table 10.22 with 40 h of housework
for the husband in family L

OLS analysis LAD analysis

Hours R2 Probability � Probability

4 0.2539 0.2681 0.1692 0.0378

40 0.5786 0.0153 0.2762 0.0034

|�| 0.3247 0.2528 0.1070 0.0344

in Table 10.23. The value of 40 h of housework by the husband in family “L” is,
by any definition, an extreme value. It is readily apparent that the extreme value of
40 h had a profound impact on the results of the OLS analysis. The OLS multiple
correlation coefficient more than doubled from R2 = 0.2539 to R2 = 0.5786,
yielding a difference between the two OLS multiple correlation coefficients of

�R2 = 0.5786 − 0.2539 = 0.3247 ,

and the corresponding exact probability value decreased from P = 0.2681 to P =
0.0153, yielding a difference between the two OLS probability values of

�P = 0.2681 − 0.0153 = 0.2528 .

The impact of 40 h of housework on the LAD analysis is more modest with the LAD
chance-corrected measure of agreement increasing only slightly from � = 0.1692
to � = 0.2762, yielding a difference between the two LAD multiple correlation
coefficients of

�� = 0.2762 − 0.1692 = 0.1070 ,

and the exact probability value decreasing from P = 0.0378 to P = 0.0034,
yielding a difference between the two LAD probability values of only

�P = 0.0378 − 0.0034 = 0.0344 .

10.8 Summary

Under the Neyman–Pearson population model of statistical inference, this chapter
examined product-moment linear correlation and regression, including both simple
and multiple linear correlation and regression. The conventional measure of effect
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size for simple OLS correlation and regression is Pearson’s r2
xy . Under the Fisher–

Pitman permutation model of statistical inference, test statistics δ and associated
measure of effect size � were developed and illustrated for simple correlation and
regression.

As in previous chapters, six examples illustrated statistics δ and � for measures
of linear correlation and regression. In the first example, a small sample of
N = 4 bivariate observations was utilized to describe and simplify the calculation
of statistics δ and � for linear correlation and regression. The second example
developed the permutation-based, chance-corrected measure of effect size, �, and
related the permutation measure to Pearson’s r2

xy measure of effect size. The third
example with N = 10 bivariate observations illustrated the effects of extreme
values on both ordinary least squares (OLS) regression based on squared Euclidean
scaling with v = 2 and least absolute deviation (LAD) regression based on ordinary
Euclidean scaling with v = 1. The fourth example with N = 12 bivariate
observations compared exact and Monte Carlo probability procedures. A Monte
Carlo permutation procedure was shown to be an accurate and efficient alternative
to the calculation of an exact probability value, provided the probability value is not
too small. The fifth example with N = 11 bivariate rank scores applied permutation
statistical methods to rank-score correlation data, comparing permutation statistical
methods to Spearman’s rank-order correlation coefficient, Kendall’s rank-order
correlation coefficient, and Spearman’s footrule correlation coefficient. The sixth
example extended statistics δ and � to multivariate correlation data. An example
with N = 12 multivariate observations was analyzed with both OLS and LAD
regression. A final example containing an extreme value provided a comparison of
the two regression models when extreme values occur.

Chapter 11 concludes the presentation of permutation statistical methods with
analyses of contingency tables. Six examples illustrate various permutation proce-
dures applied to the analysis of contingency tables. The first example is devoted
to goodness-of-fit tests. The second example considers contingency tables in
which two nominal-level (categorical) variables have been cross-classified. The
third example considers contingency tables in which two ordinal-level (ranked)
variables have been cross-classified. The fourth example considers contingency
tables in which one nominal-level variable and one ordinal-level variable have
been cross-classified. The fifth example considers contingency tables in which one
nominal-level variable and one interval-level variable have been cross-classified.
The sixth example considers contingency tables in which one ordinal-level variable
and one interval-level variable have been cross-classified.
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Chapter 11
Contingency Tables

Abstract This chapter introduces permutation methods for the analysis of con-
tingency tables. Included in this chapter are six example analyses illustrating
computation of permutation methods for goodness-of-fit tests, analysis of contin-
gency tables composed of two nominal-level (categorical) variables, analysis of
contingency tables composed of two ordinal-level (ranked) variables, analysis of
contingency tables composed of one nominal-level variable and one ordinal-level
variable, analysis of contingency tables composed of one nominal-level variable
and one interval-level variable, and analysis of contingency tables composed of
one ordinal-level variable and one interval-level variable. Included in this chapter
are permutation versions of Pearson chi-squared goodness-of-fit test, Pearson’s
chi-squared test of independence, Cramér’s symmetrical measure of nominal asso-
ciation, Goodman and Kruskal’s τa and τb asymmetric measures of association for
two categorical variables, Goodman and Kruskal’s G measure of association for
two ranked variables, Somers’ dyx and dxy asymmetric measures of association
for two ranked variables, Freeman’s θ measure of association for a categorical
independent variable and a ranked dependent variable, Pearson’s point-biserial
correlation coefficient for one dichotomous variable and one interval-level variable,
and Jaspen’s correlation coefficient for one ranked variable and one interval-level
variable.

This chapter introduces exact and Monte Carlo permutation statistical methods
for selected measures of relationship among nominal-, ordinal-, and interval-level
variables, commonly called contingency table analysis. The analysis of contingency
tables with their associated measures of effect size and tests of significance
constitutes a substantial portion of nonparametric statistical methods.

In this last chapter, exact and Monte Carlo permutation statistical methods for
the analysis of contingency tables are illustrated with six types of analyses. The
first section of the chapter considers permutation statistical methods applied to con-
ventional goodness-of-fit tests; for example, Pearson’s chi-squared goodness-of-fit
test. The second section is devoted to permutation statistical methods for analyzing
contingency tables composed of two cross-classified nominal-level (categorical)
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variables; for example, Pearson’s symmetric chi-squared test of independence
for two categorical variables and Goodman and Kruskal’s ta and tb asymmetric
measures of association for two categorical variables. The third section utilizes
permutation statistical methods for analyzing contingency tables composed of
two cross-classified ordinal-level (ranked) variables; for example, Goodman and
Kruskal’s symmetric G measure of association for two ranked variables and Somers’
dyx and dxy asymmetric measures of association for two ranked variables. The
fourth section is the first of three sections utilizing permutation statistical methods
for analyzing contingency tables composed of two cross-classified mixed-level
variables. In this fourth section permutation statistical methods are utilized for
analyzing contingency tables composed of one nominal-level (categorical) variable
cross-classified with one ordinal-level (ranked) variable; for example, Freeman’s
θ measure for one categorical independent variable and one ranked dependent
variable. The fifth section utilizes permutation statistical methods for analyzing
contingency tables composed of one nominal-level variable cross-classified with
one interval-level variable; for example, Pearson’s point-biserial correlation coeffi-
cient for one dichotomous variable and one interval-level variable. The sixth section
utilizes permutation statistical methods for analyzing contingency tables composed
of one ordinal-level variable cross-classified with one interval-level variable; for
example, Jaspen’s correlation coefficient for one ranked variable and one interval-
level variable.1

There exist a vast array of measures of association and correlation. The few
measures described here illustrate the application of permutation statistical methods
to the analysis of two-way contingency tables at various levels of measurement
and were selected for their popularity in the research literature and inclusion in
various introductory textbooks. For a more comprehensive treatment of permutation
statistical methods applied to measures of association and correlation see a 2018
book on The Measurement of Association by the authors [2].

11.1 Goodness-of-Fit Tests

Goodness-of-fit tests are essential for determining how well observed data conform
to hypothetical models. When at all reasonable, exact goodness-of-fit tests are
preferred over asymptotic tests. More specifically, goodness-of-fit tests are designed
to compare the observed values in k discrete, unordered categories with values that
are expected to occur under chance conditions. For example, for a fair coin the
expectation for 100 independent trials is 50 heads and 50 tails over many, many trials
of 100 tosses. The observed values, say 60 heads and 40 tails, are then compared
with expected values under the null hypothesis, H0: p(H) = p(T ) = 0.50.

1There is never any reason to relate a higher-level independent variable with a lower-level
dependent variable due to the loss of information from the independent variable.
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The most popular goodness-of-fit test for k discrete, unordered categories is
Pearson’s chi-squared test, although Wald’s likelihood-ratio test is occasionally
encountered in the contemporary literature. Utilizing the conventional notation
presented in many introductory textbooks, Pearson’s chi-squared goodness-of-fit
test for k discrete, unordered categories is given by

χ2 =
k∑

i=1

O2
i

Ei

− N ,

where Oi and Ei denote the observed and expected frequency values, respectively,
for i = 1, . . . , k. Under the Neyman–Pearson null hypothesis, H0: Oi = Ei for
i = 1, . . . , k, χ2 is asymptotically distributed as Pearson’s χ2 with k − 1 degrees
of freedom, under the assumption of normality.2

Consider the random assignment of N objects to k discrete, unordered categories
where the probability that any one of the N objects occurs in the ith category is
pi > 0 for i = 1, . . . , k. Then the probability that Oi objects occur in the ith
category for i = 1, . . . , k is the multinomial probability given by

P(O1,O2, . . . , Ok|p1, p2, . . . , pk,N) = N !
k∏

i=1

Oi !

k∏
i=1

p
Oi

i ,

where

k∑
i=1

Oi = N and
k∑

i=1

pi = 1 .

11.1.1 Example 1

Two example analyses will serve to illustrate the permutation approach to goodness-
of-fit-tests. For the first analysis under the Neyman–Pearson population model of
statistical inference, consider a small example set of data with k = 3 unordered
categories, N = 6 total objects, O1 = 5 objects in the first category, O2 = 1 object
in the second category, and O3 = 0 objects in the third category. The observed and
expected frequencies along with the associated theoretical proportions are listed in
Table 11.1. For the example data listed in Table 11.1 with N = 6 observations,

2Pearson’s χ2 test statistic is one of several test statistics that utilizes a lower-case Greek letter for
both the sample test statistic and the population parameter.
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Table 11.1 Example data for
Pearson’s chi-squared
goodness-of-fit test statistic
with k = 3 discrete,
unordered categories and
N = 6 observations

Category Observed Expected Theoretical
number frequency frequency proportion

1 5 2 0.3333

2 1 2 0.3333

3 0 2 0.3333

Sum 6 6 1.0000

Pearson’s chi-squared goodness-of-fit test statistic is

χ2 =
k∑

i=1

O2
i

Ei

− N = 52

2
+ 12

2
+ 02

2
− 6 = 7.00 .

Under the Neyman–Pearson null hypothesis, H0: Oi = Ei for i = 1, . . . , k, χ2

is asymptotically distributed as Pearson’s χ2 with k − 1 degrees of freedom. With
k−1 = 3−1 = 2 degrees of freedom, the asymptotic probability value of χ2 = 7.00
is P = 0.0302, under the assumption of normality.

11.1.2 An Exact Permutation Analysis

For the example data listed in Table 11.1 under the Fisher–Pitman permutation
model of statistical inference there are exactly

M =
(

N + k − 1

k − 1

)
=

(
6 + 3 − 1

3 − 1

)
=

(
8

2

)
= 28

possible, equally-likely arrangements in the reference set of all permutations of the
example data listed in Table 11.1. Table 11.2 lists the M = 28 arrangements of
the observed data, the associated χ2 values, and the multinomial point probability
values to six decimal places, ordered by the χ2 values from lowest (χ2

1 = 0.00)
to highest (χ2

28 = 12.00). The exact probability value of χ2 = 7.00 is the sum
of the multinomial point probability values associated with values of χ2 that are
equal to or greater than the observed χ2 value. There are only nine arrangements of
the observed data with χ2 test statistic values that are equal to or greater than the
observed value of χ2 = 7.00: six values of χ2 = 7.00 and three values of χ2 =
12.00, all in rows indicated with asterisks in Table 11.2. Thus if all M arrangements
of the N = 6 observations listed in Table 11.1 occur with equal chance under the
Fisher–Pitman null hypothesis, the exact probability value of χ2 = 7.00 computed
on the M = 28 possible arrangements of the observed data with k = 4 categories
preserved for each arrangement is

P = 6(0.008230) + 3(0.001372) = 0.053496 .
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Table 11.2 Example discrete
probability distribution for
the data given in Table 11.1
with χ2 test statistic values
and associated multinomial
probability values

Order Frequencies χ2 value Probability

1 2 2 2 0.00 0.123457

2 3 2 1 1.00 0.082305

3 3 1 2 1.00 0.082305

4 2 3 1 1.00 0.082305

5 2 1 3 1.00 0.082305

6 1 3 2 1.00 0.082305

7 1 2 3 3.00 0.082305

8 3 3 0 3.00 0.027435

9 3 0 3 3.00 0.027435

10 0 3 3 3.00 0.027435

11 4 1 1 3.00 0.041152

12 1 4 1 3.00 0.041152

13 1 1 4 3.00 0.041152

14 4 2 0 4.00 0.020576

15 4 0 2 4.00 0.020576

16 2 4 0 4.00 0.020576

17 2 0 4 4.00 0.020576

18 0 4 2 4.00 0.020576

19 0 2 4 4.00 0.020576

20∗ 5 1 0 7.00 0.008230

21∗ 5 0 1 7.00 0.008230

22∗ 1 5 0 7.00 0.008230

23∗ 1 0 5 7.00 0.008230

24∗ 0 5 1 7.00 0.008230

25∗ 0 1 5 7.00 0.008230

26∗ 6 0 0 12.00 0.001372

27∗ 0 6 0 12.00 0.001372

28∗ 0 0 6 12.00 0.001372

Sum 1.000000

There is a substantial difference between the exact probability value of P =
0.0535 and the asymptotic probability value of P = 0.0302; that is,

�P = 0.0535 − 0.0302 = 0.0233 .

With the sparse data given in Table 11.1 there are only M = 28 possible
arrangements of cell frequencies given the marginal frequency totals and it would
be unreasonable to expect a continuous mathematical function such as Pearson’s χ2

to fit such a small discrete distribution consisting of only six different values with
any precision.
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Fig. 11.1 Punnett square
depicting RYRY, RYRy,
RYrY, RYry, RyRY, RyrY,
rYRY, rYRy, and ryRY
hybrids with nine black
circles, RyRy, Ryry, and ryRy
hybrids with three dark gray
circles, rYrY, rYry, and ryrY
hybrids with three light gray
circles, and the sole ryry
hybrid with a single white
circle
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RY
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rY
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Type of Egg

RY Ry rY ry

RYRY RYRy RYrY RYry

RyRY RyRy RyrY Ryry

rYRY rYRy rYrY rYry

ryRY ryRy ryrY ryry

11.1.3 Example 2

Gregor Mendel (1822–1884) is notable for his studies of hybridization utilizing
the common garden pea while he resided in the Augustinian monastery of St.
Thomas at Brünn in Austrian Silesia.3,4 In one of his many studies of garden
peas, Mendel crossed hybrid plants producing round yellow peas with hybrid plants
producing wrinkled green peas. To produce his hybrids, Mendel carefully brushed
the pollen of one pea plant onto the pistils of another plant. The first generation, as
expected, produced all round yellow peas—both dominant characteristics. However,
the second generation yielded four varieties of peas: round yellow, wrinkled yellow,
round green, and wrinkled green.5

Figure 11.1 displays the different varieties of peas in a Punnett square where
RY denotes round yellow peas, Ry denotes round green peas, rY denotes wrinkled
yellow peas, and ry denotes wrinkled green peas.6 In the Punnett diagram in
Fig. 11.1, the round-yellow hybrids, RYRY, RYRy, RYrY, RYry, RyRY, RyrY, rYRY,
rYRy, and ryRY, are indicated by nine black circles ( ), the round-green hybrids,
RyRy, Ryry, and ryRy, are indicated by three dark gray circles ( ), the wrinkled-

3Presently the region of Silesia is located largely in Poland with smaller parts in the Czech Republic
and in Germany.
4Mendel’s birth name was Johann, but he adopted the name Gregor when he entered the monastery
in 1843 at the age of 21.
5Mendel was elected abbot of the monastery in 1868 at the age of 46, the administrative duties of
which precluded any further research. Mendel passed away in 1884 at the age of 62.
6More technically, RY denotes round and yellow, Ry denotes round and not yellow, rY denotes
not-round and yellow, and ry denotes not-round and not-yellow.
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Table 11.3 Mendel’s
second-generation
hybridization frequency data
for N = 556 common garden
peas

Frequency

Category Ratio Observed Expected

RY 9 315 312.75

Ry 3 101 104.25

rY 3 108 104.25

ry 1 32 34.75

Sum 556 556.00

yellow hybrids, rYrY, rYry, and ryrY, are indicated by three light gray circles ( ),
and the single wrinkled-green ryry hybrid is indicated by a white circle ( ).

Mendel’s 15 double-hybrid plants produced a sample of N = 556 peas. Mendel’s
data for the N = 556 second-generation hybrids are listed in Table 11.3, along with
the expected values which approximate the ratios 9:3:3:1.

For Mendel’s hybridization data listed in Table 11.3, Pearson’s chi-squared
goodness-of-fit test statistic is

χ2 =
k∑

i=1

O2
i

Ei

− N = 3152

312.75
+ 1012

104.25
+ 1082

104.25
+ 322

34.75
− 556 = 0.4700 .

Under the Neyman–Pearson null hypothesis, H0: Oi = Ei for i = 1, . . . , k, χ2

is asymptotically distributed as Pearson’s χ2 with k − 1 degrees of freedom. With
k − 1 = 4 − 1 = 3 degrees of freedom, the asymptotic probability value of χ2 =
0.4700 is P = 0.9254, under the assumption of normality.

In a 1936 paper published in Annals of Science, R.A. Fisher, Galton Professor
of Eugenics at University College, London, re-examined Mendel’s hybridization
data, questioned Mendel’s recording of his observations, and concluded that the
very close agreement between Mendel’s observed and expected series was unlikely
to have arisen by chance [4]. Fisher submitted his paper at Christmas time in 1936
to Annals of Science with a comment to the editor, Dr. Douglas McKie:

I had not expected to find the strong evidence which has appeared that the data had been
cooked. This makes my paper far more sensational than ever I had intended. . . (quoted in
Box [3, p. 297]).

11.1.4 An Exact Permutation Analysis

Under the Fisher–Pitman permutation model, the exact probability value of an
observed chi-squared value of χ2 = 7.00 is given by the sum of the multinomial
point probability values associated with the values of χ2 that are equal to or greater
than the observed χ2 value. For the Mendel hybridization data listed in Table 11.3
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under the permutation model there are

M =
(

N + k − 1

k − 1

)
=

(
556 + 4 − 1

4 − 1

)
=

(
559

3

)
= 28,956,759

possible, equally-likely arrangements in the reference set of all permutations of
Mendel’s hybridization data listed in Table 11.3, making an exact permutation
analysis feasible. If all M arrangements of the N = 556 observations listed in
Table 11.3 occur with equal chance under the Fisher–Pitman null hypothesis, the
exact probability value of the observed chi-squared value of χ2 = 0.4700 computed
on the M = 28,956,759 possible arrangements of the observed data with k = 4
categories preserved for each arrangement is P = 0.9381; that is, the sum of the
multinomial probability values associated with values of χ2 = 0.4700 or greater.

11.1.5 A Measure of Effect Size

A chi-squared test of goodness-of-fit and its associated probability value provide
no information as to the closeness of the fit between the observed and theoretical
values, only whether they are statistically significant under the Neyman–Pearson
population-model null hypothesis. Measures of effect size are essential in such
cases as they index the magnitude of the fit between the observed and expected
frequencies and indicate the practical significance of the research. A maximum-
corrected measure of effect size is easily specified for a chi-squared goodness-of-fit
test [1].

Define

q = min(E1, E2, . . . , Ek)

for k disjoint, unordered categories. Then with q determined, the maximum value
of χ2 is given by

χ2
max = N(N − q)

q
(11.1)

and a maximum-corrected measure of effect size for Pearson’s chi-squared
goodness-of-fit test is given by

ES(χ2) = χ2
o

χ2
max

,

where χ2
o denotes the observed value of χ2 [8].
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Table 11.4 Maximum
arrangement of cell
frequencies for Mendel’s
second-generation
hybridization frequency data
with N = 556 observations

Frequency

Category Ratio Observed Expected

RY 9 0 312.75

Ry 3 0 104.25

rY 3 0 104.25

ry 1 556 34.75

Sum 556 556.00

For Mendel’s hybridization data listed in Table 11.3, the minimum expected
frequency value is

q = min(E1, E2, E3, E4) = min(312.75, 104.25, 104.25, 34.75) = 34.75 ,

and the maximum possible Pearson’s χ2 test statistic value given k = 4, q = 34.75,
and N = 556 is

χ2
max = N(N − q)

q
= 556(566 − 34.75)

34.75
= 8340 .

To illustrate the function of Eq. (11.1) imagine that all N = 556 observations are
concentrated in the one category with the smallest expected value and the remaining
k−1 categories contain zero observations. In this case all N = 556 observations are
concentrated in the last category with the minimum expected value of E4 = 34.75,
such as depicted in Table 11.4. Then the maximum value of Pearson’s chi-squared
goodness-of-fit test statistic is

χ2
max =

k∑
i=1

O2
i

Ei

− N

= 02

312.75
+ 02

104.25
+ 02

104.25
+ 5562

34.75
− 556 = 8340 ,

and the maximum-corrected measure of effect size is

ES(χ2) = χ2

χ2
max

= 0.4700

8340
= 0.5636×10−4 ,

indicating that the observed value of χ2 = 0.4700 is an insignificantly small
proportion of the maximum possible χ2 value, given the expected values E1 =
312.75, E2 = 104.25, E3 = 104.25, and E4 = 34.75.
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11.2 Contingency Measures: Nominal by Nominal

The most popular test for the cross-classification of two nominal-level (categorical)
variables is Pearson’s chi-squared test of independence, which is presented in
every introductory textbook. Utilizing the conventional notation presented in many
introductory textbooks for a contingency table with r rows and c columns, Pearson’s
chi-squared test statistic is given by

χ2 = N

⎛
⎝ r∑

i=1

c∑
j=1

O2
ij

RiCj

− 1

⎞
⎠ , (11.2)

where Oij denotes the observed frequency in the ith row and j th column for i =
1, . . . , r and j = 1, . . . , c, Ri denotes a row marginal frequency total for i =
1, . . . , r , Cj denotes a column marginal frequency total for j = 1, . . . , c, and N

denotes the total number of values in the observed contingency table.

11.2.1 Example 1

Two examples will serve to illustrate Pearson’s chi-squared test of independence for
an r×c contingency table. For an analysis under the Neyman–Pearson population
model, consider the sparse example data given in Table 11.5 with r = 3 rows, c = 3
columns, and N = 9 observations. Under the Neyman–Pearson population model,
the chi-squared test statistic value for the example data given in Table 11.5 is

χ2 = N

⎛
⎝ r∑

i=1

c∑
j=1

O2
ij

RiCj

− 1

⎞
⎠

= 9

[
02

(2)(2)
+ 02

(2)(3)
+ 22

(2)(4)
+ 02

(3)(2)
+ 32

(3)(3)
+ 02

(3)(4)

+ 22

(4)(2)
+ 02

(4)(3)
+ 22

(4)(4)
− 1

]
= 11.2500 .

Table 11.5 Example data for
Pearson’s chi-squared test of
independence with r = 3
rows, c = 3 columns, and
N = 9 cross-classified
observations

Column

Row 1 2 3 Total

1 0 0 2 2

2 0 3 0 3

3 2 0 2 4

Total 2 3 4 9



11.2 Contingency Measures: Nominal by Nominal 419

Under the Neyman–Pearson null hypothesis, H0: Oij = Eij for i = 1, . . . , r

and j = 1, . . . , c, where the expected cell values are given by

Eij = Oij

RiCj

for i = 1, . . . , r and j = 1, . . . , c, χ2 is asymptotically distributed as Pearson’s
χ2 with (r −1)(c−1) degrees of freedom. With (r −1)(c−1) = (3−1)(3−1) = 4
degrees of freedom, the asymptotic probability value of χ2 = 11.2500 is P =
0.0239, under the assumption of normality.

11.2.2 A Measure of Effect Size

The fact that a chi-squared statistical test produces a low probability value indicates
only that there are differences among the response measurement scores between the
two variables that (possibly) cannot be attributed to error. The obtained probability
value does not indicate whether these differences are of any practical value.
Measures of effect size express the practical or clinical significance of an obtained
chi-squared value, as contrasted with the statistical significance of a chi-squared
value. The most popular measure of effect size for Pearson’s chi-squared test of
independence is Cramér’s V given by

V =
√

χ2

N
[

min(r − 1, c − 1)
] .

For the example data given in Table 11.6 with χ2 = 11.2500, Cramér’s measure of
effect size is

V =
√

11.2500

9
[

min(3 − 1, 3 − 1)
] =

√
11.2500

18.00
= 0.7906 .

For a critical evaluation of Cramér’s V measure of effect size, see a discussion in
The Measurement of Association by the authors [2, pp. 80–82].

Occasionally in the contemporary literature, Cohen’s measure of effect size for a
chi-squared test of independence is encountered. Cohen’s measure is given by

w =
√

χ2

N
.
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Table 11.6 All M = 39 arrangements of the frequency data given in Table 11.5 with associated
chi-squared values and hypergeometric point probability values

Observed frequencies

Table O11 O12 O21 O22 Chi-squared Probability

1∗ 2 0 0 3 18.0000 0.793651×10−3

2∗ 2 0 0 0 14.0625 0.317460×10−2

3∗ 0 2 0 2 13.0000 0.238095×10−2

4∗ 0 0 0 3 11.2500 0.476190×10−2

5 2 0 0 2 10.5625 0.952381×10−2

6 0 2 0 0 9.5625 0.952381×10−2

7 0 0 2 0 9.5625 0.952381×10−2

8 0 2 2 0 9.5625 0.952381×10−2

9 1 0 0 3 9.5625 0.634921×10−2

10 1 1 1 2 9.2500 0.476190×10−2

11 2 0 0 1 9.2500 0.14286

12 1 0 0 0 9.0000 0.634921×10−2

13 0 1 0 0 7.8750 0.952381×10−2

14 0 0 1 0 7.8750 0.952381×10−2

15 0 2 0 1 7.7500 0.014286

16 0 0 2 1 7.7500 0.014286

17 0 0 0 1 7.0000 0.014286

18 0 2 1 1 6.4375 0.019048

19 0 1 2 1 6.4375 0.019048

20 1 1 0 0 6.1875 0.019048

21 1 0 1 0 6.1875 0.019048

22 0 0 0 2 6.0625 0.028571

23 1 1 0 2 5.6875 0.019048

24 1 0 1 2 5.6875 0.019048

25 0 2 1 0 5.6250 0.028571

26 0 1 2 0 5.6250 0.028571

27 0 1 1 2 5.3125 0.019048

28 0 1 0 2 5.1250 0.028571

28 0 0 1 2 5.1250 0.028571

30 1 1 1 0 4.5000 0.028571

31 1 1 1 1 3.8125 0.038952

32 0 1 0 1 3.4375 0.057143

33 0 0 1 1 3.4375 0.057143

34 1 0 0 2 3.2500 0.057143

35 1 0 0 1 3.0625 0.057143

36 1 1 0 1 2.8750 0.057143

37 1 0 1 1 2.8750 0.057143

38 0 1 1 0 2.8125 0.057143

39 0 1 1 1 1.0000 0.114285

Sum 1.000000
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For the example data given in Table 11.5, Cohen’s measure of effect size is

w =
√

11.2500

9
= 1.1180 .

11.2.3 An Exact Permutation Analysis

Given the observed marginal frequency totals for the example data, there are
only M = 39 possible, equally-likely arrangements of cell frequencies in the
reference set of all permutations of the N = 9 observations given in Table 11.5,
making an exact permutation analysis possible. Table 11.6 lists the M = 39
arrangements of cell frequencies, the associated chi-squared test statistic values,
and the hypergeometric point probability values given by

p(O11, . . . ,Orc|R1, . . . , Rr , C1, . . . , Cc,N) =

(
r∏

i=1

Ri !
)⎛
⎝ c∏

j=1

Cj !
⎞
⎠

N !
r∏

i=1

c∏
j=1

Oij !
.

Because the observed marginal frequency totals are fixed, Table 11.6 lists only cell
frequencies O11, O12, O21, and O22, as the remaining five cell frequencies can be
determined from the observed marginal frequency totals.

Under the Fisher–Pitman permutation model, the exact probability value of χ2 =
11.2500 is the sum of the hypergeometric point probability values associated with
the chi-squared values that are equal to or greater than the observed chi-squared
value. For the results listed in Table 11.6, there are four chi-squared test statistic
values that are equal to or greater than the observed value of χ2 = 11.2500: χ2

1 =
18.0000, χ2

2 = 14.0625, χ2
3 = 13.0000, and χ2

4 = 11.2500, in rows 1, 2, 3, and 4,
respectively, and indicated by asterisks. Thus the exact probability value of χ2 =
11.2500 is

0.7937×10−3 + 0.3175×10−2 + 0.2381×10−2 + 0.4762×10−2 = 0.0111 .

There is a substantial difference between the exact probability value of P =
0.0111 and the asymptotic probability value of P = 0.0239; that is,

�P = 0.0239 − 0.0111 = 0.0128 .

With such sparse data as given in Table 11.5 there are only M = 39 possible
arrangements of cell frequencies given the marginal frequency totals with only 25
different chi-squared values and it would be unreasonable to expect a continuous
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Table 11.7 Example data for
Pearson’s chi-squared test of
independence with r = 3
rows, c = 5 columns, and
N = 63 cross-classified
observations

Column

Row 1 2 3 4 5 Total

1 6 2 5 7 1 21

2 0 8 5 8 4 25

3 1 1 6 6 3 17

Total 7 11 16 21 8 63

mathematical function such as Pearson’s χ2 to fit such a small discrete distribution
with any precision.

11.2.4 Example 2

For a second example of a chi-squared analysis of a nominal-nominal contingency
table, consider the 3×5 contingency table with cell frequencies given in Table 11.7.
Following Eq. (11.2), Pearson’s chi-squared test statistic for the frequency data
given in Table 11.7 is

χ2 = N

⎛
⎝ r∑

i=1

c∑
j=1

O2
ij

RiCj

− 1

⎞
⎠

= 63

[
62

(21)(7)
+ 22

(21)(11)
+ · · · + 62

(17)(21)
+ 32

(17)(8)
− 1

]
= 16.6279 .

Under the Neyman–Pearson null hypothesis the chi-squared test statistic is asymp-
totically distributed as Pearson’s χ2 with (r − 1)(c − 1) degrees of freedom. With
(r − 1)(c− 1) = (3 − 1)(5 − 1) = 8 degrees of freedom, the asymptotic probability
value of χ2 = 16.6279 is P = 0.0342, under the assumption of normality.

11.2.5 A Measure of Effect Size

For the frequency data given in Table 11.7, Cramér’s measure of effect size is

V =
√

χ2

N
[

min(r − 1, c − 1)
]

=
√

16.6279

63
[

min(3 − 1, 5 − 1)
] =

√
16.6279

126.00
= 0.3633
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and Cohen’s measure of effect size is

w =
√

χ2

N
=

√
16.6279

63
= 0.2639 .

11.2.6 An Exact Permutation Analysis

Given the observed marginal frequency totals for the example data, there are
M = 11,356,797 possible, equally-likely arrangements of the cell frequencies
in the reference set of all permutations of the N = 63 observations given in
Table 11.7, making an exact permutation analysis possible. Under the Fisher–
Pitman permutation model, the exact probability of χ2 = 16.6279 is the sum
of the hypergeometric point probability values associated with the chi-squared
values calculated on all M possible arrangements of the cell frequencies, given the
observed marginal frequency totals. For the frequency data given in Table 11.7, there
are M = 11,356,797 possible, equally-likely arrangements of the cell frequencies
given the observed marginal frequency totals, of which 10,559,996 chi-squared test
statistic values are equal to or greater than the observed chi-squared value of χ2 =
16.6279, yielding an exact hypergeometric probability value of P = 0.0306. Note
that with M = 11,356,797 possible arrangements of the data given in Table 11.7,
the asymptotic χ2 probability value of P = 0.0342 closely approximates the exact
hypergeometric probability value of P = 0.0306.

11.2.7 Goodman–Kruskal’s ta and tb Measures

While all measures of association based on Pearson’s chi-squared are symmetric
measures, Goodman and Kruskal’s two asymmetric proportional-reduction-in-error
measures (ta and tb) allow researchers to specify an independent and a dependent
variable. Consider two cross-classified, unordered polytomies, A and B, with vari-
able A the dependent variable and variable B the independent variable. Table 11.8

Table 11.8 Notation for the
cross-classification of two
categorical variables, Aj for
j = 1, . . . , c and Bi for
i = 1, . . . , r

A

B a1 a2 · · · ac Total

b1 n11 n12 · · · n1c n1.

b2 n21 n22 · · · n2c n2.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

br nr1 nr2 · · · nrc nr.

Total n.1 n.2 · · · n.c N
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provides notation for the cross-classification, where aj for j = 1, . . . , c denotes the
c categories for dependent variable A, bi for i = 1, . . . , r denotes the r categories
for independent variable B, N denotes the total of cell frequencies in the table, ni.

denotes a marginal frequency total for the ith row, i = 1, . . . , r , summed over all
columns, n.j denotes a marginal frequency total for the j th column, j = 1, . . . , c,
summed over all rows, and nij denotes a cell frequency for i = 1, . . . , r and
j = 1, . . . , c.

Goodman and Kruskal’s ta test statistic is a measure of the relative reduction in
prediction error where two types of errors are defined. The first type is the error in
prediction based solely on knowledge of the distribution of the dependent variable,
termed “errors of the first kind” (E1) and consisting of the expected number of
errors when predicting the c dependent variable categories (a1, . . . , ac) from the
observed distribution of the marginals of the dependent variable (n.1, . . . , n.c). The
second type is the error in prediction based on knowledge of the distributions of both
the independent and dependent variables, termed “errors of the second kind” (E2)
and consisting of the expected number or errors when predicting the c dependent
variable categories (a1, . . . , ac) from knowledge of the r independent variable
categories (b1, . . . , br ).

To illustrate the two error types, consider predicting category a1 only from
knowledge of its marginal distribution, n.1, . . . , n.c. Clearly, n.1 out of the N total
cases are in category a1, but exactly which n.1 of the N cases is unknown. The
probability of incorrectly identifying one of the N cases in category a1 by chance
alone is given by

N − n.1

N
.

Since there are n.1 such classifications required, the number of expected incorrect
classifications is

n.1(N − n.1)

N

and, for all c categories of variable A, the number of expected errors of the first kind
is given by

E1 =
c∑

j=1

n.j (N − n.j )

N
.

Likewise, to predict n11, . . . , n1c from the independent category b1, the proba-
bility of incorrectly classifying one of the n1. cases in cell n11 by chance alone is

n1. − n11

n1.

.
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Since there are n11 such classifications required, the number of incorrect classifica-
tions is

n11(n1. − n11)

n1.

and, for all cr cells, the number of expected errors of the second kind is given by

E2 =
c∑

j=1

r∑
i=1

nij (ni. − nij )

ni.
.

Goodman and Kruskal’s ta statistic can then be defined as

ta = E1 − E2

E1
.

An efficient computation form for Goodman and Kruskal’s ta test statistic is
given by

ta =
N

r∑
i=1

c∑
j=1

n2
ij

ni.

−
c∑

j=1

n2
.j

N2 −
c∑

j=1

n2
.j

. (11.3)

A computed value of ta indicates the proportional reduction in prediction error
given knowledge of the distribution of independent variable B over and above
knowledge of only the distribution of dependent variable A. As defined, ta is a point
estimator of Goodman and Kruskal’s population parameter τa for the population
from which the sample of N cases was obtained. If variable B is considered the
dependent variable and variable A the independent variable, then Goodman and
Kruskal’s test statistic tb and associated population parameter τb are analogously
defined.

11.2.8 An Example Analysis for ta

To illustrate Goodman and Kruskal’s ta measure of nominal-nominal association,
consider the contingency table given in Table 11.9 with r = 3 rows, c = 4
columns, and N = 110 cross-classified ordered observations. Following Eq. (11.3),
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Table 11.9 Example data for
Goodman and Kruskal’s ta
and tb measures of
nominal-nominal association
with r = 3 rows, c = 4
columns, and N = 110
cross-classified observations

Column (A)

Row (B) 1 2 3 4 Total

1 24 2 5 6 37

2 0 22 5 8 35

3 1 1 17 19 38

Total 25 25 27 33 110

the observed value of Goodman and Kruskal’s ta test statistic is

ta =
N

r∑
i=1

c∑
j=1

n2
ij

ni.

−
c∑

j=1

n2
.j

N2 −
c∑

j=1

n2
.j

=
110

(
242

37
+ 22

37
+ · · · + 172

38
+ 192

38

)
− (252 + 252 + 272 + 332)

1102 − (252 + 252 + 272 + 332)

= 0.2797 .

Under the Neyman–Pearson null hypothesis, H0: τa = 0, ta(N − 1)(r − 1) is
asymptotically distributed as Pearson’s χ2 with (r − 1)(c − 1) degrees of freedom.
With (r − 1)(c − 1) = (3 − 1)(4 − 1) = 6 degrees of freedom, the asymptotic
probability value of ta = 0.2797 is P = 0.2852×10−10, under the assumption of
normality.

11.2.9 An Exact Permutation Analysis for ta

Under the Fisher–Pitman permutation model, the exact probability value of an
observed value of Goodman and Kruskal’s ta is given by the sum of the hyper-
geometric point probability values associated with ta test statistic values that are
equal to or greater than the observed value of ta = 0.2797. For the frequency
data given in Table 11.9, there are M = 26,371,127 possible, equally-likely
arrangements in the reference set of all permutations of cell frequencies given
the observed row and column marginal frequency distributions, {37, 35, 38} and
{25, 25, 27, 33}, respectively, making an exact permutation analysis possible. There
are exactly 1,523,131 ta test statistic values that are equal to or greater than the
observed value of ta = 0.2797. The exact probability value of the observed ta value
under the Fisher–Pitman null hypothesis is P = 0.0578; that is, the sum of the
hypergeometric point probability values associated with values of ta = 0.2797 or
greater.
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11.2.10 An Example Analysis for tb

Now consider variable B as the dependent variable. A convenient computing
formula for tb is

tb =
N

c∑
j=1

r∑
i=1

n2
ij

n.j

−
r∑

i=1

n2
i.

N2 −
r∑

i=1

n2
i.

.

Thus, for the frequency data given in Table 11.9 the observed value of tb is

tb =
110

(
242

25
+ 22

25
+ · · · + 172

27
+ 192

33

)
− (372 + 352 + 382)

1102 − (372 + 352 + 382)
= 0.4428 .

Under the Neyman–Pearson null hypothesis, H0: τb = 0, tb(N − 1)(c − 1) is
asymptotically distributed as Pearson’s χ2 with (r − 1)(c − 1) degrees of freedom.
With (r − 1)(c − 1) = (3 − 1)(4 − 1) = 6 degrees of freedom, the asymptotic
probability value of tb = 0.4428 is P = 0.9738×10−28, under the assumption of
normality.

11.2.11 An Exact Permutation Analysis for tb

Under the Fisher–Pitman permutation model, the exact probability value of an
observed value of Goodman and Kruskal’s tb is given by the sum of the hypergeo-
metric point probability values associated with tb test statistic values that are equal
to or greater than the observed value of tb = 0.4428. For the frequency data given
in Table 11.9, there are M = 26,371,127 possible, equally-likely arrangements
in the reference set of all permutations of cell frequencies given the observed
row and column marginal frequency distributions, {37, 35, 38} and {25, 25, 27, 33},
respectively, making an exact permutation analysis possible. There are exactly
991,488 tb test statistic values that are equal to or greater than the observed value of
tb = 0.4428. The exact probability value of the observed tb value under the Fisher–
Pitman null hypothesis is P = 0.0376; that is, the sum of the hypergeometric point
probability values associated with values of tb = 0.4428 or greater.
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11.2.12 The Relationships Among ta , tb, and χ2

While no general equivalence exists between Goodman and Kruskal’s ta and tb
measures of nominal-nominal association and Pearson’s χ2 test of independence,
certain relationships hold among ta , tb, and χ2 under some limited conditions. Four
of the relationships can easily be specified.

First, if ni. = N/r for i = 1, . . . , r , then χ2 = N(r − 1)tb and tb = χ2/N(r −
1). To illustrate the relationship between Goodman and Kruskal’s tb asymmetric
measure of nominal-nominal association and Pearson’s χ2 test of independence
when ni. = N/r for i = 1, . . . , r , consider the frequency data given in Table 11.10
with r = 3 rows, c = 3 columns, N = 30 cross-classified observations, and
ni. = N/r = 10 for i = 1, . . . , r . For the frequency data given in Table 11.10
with N = 30 observations,

tb =
N

c∑
j=1

r∑
i=1

n2
ij

n.j

−
r∑

i=1

n2
i.

N2 −
r∑

i=1

n2
i.

=
30

(
22

5
+ 32

10
+ · · · + 32

10
+ 62

15

)
− (102 + 102 + 102)

362 − (102 + 102 + 102)

= 10

600
= 0.0167

and

χ2 = N

⎛
⎝ r∑

i=1

c∑
j=1

n2
ij

ni.n.j

− 1

⎞
⎠

= 30

[
22

(10)(5)
+ 32

(10)(10)
+ · · · + 32

(10)(10)
+ 62

(10)(15)

]

= 30 (1.0333 − 1) = 1.00 .

Table 11.10 Example data
for χ2 and tb with r = 3
rows, c = 3 columns, and
N = 30 cross-classified
observations

Column (A)

Row (B) 1 2 3 Total

1 2 3 5 10

2 2 4 4 10

3 1 3 6 10

Total 5 10 15 30
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Then the observed value of Pearson’s χ2 test statistic with respect to the observed
value of Goodman and Kruskal’s tb test statistic is

χ2 = N(r − 1)tb = 30(3 − 1)(0.0167) = 1.00

and the observed value of Goodman and Kruskal’s tb test statistic with respect to
the observed value of Pearson’s χ2 test statistic is

tb = χ2

N(r − 1)
= 1.00

30(3 − 1)
= 0.0167 .

Second, if n.j = N/c for j = 1, . . . , c, then χ2 = N(c − 1)ta and ta =
χ2/N(c − 1). To illustrate the relationship between Goodman and Kruskal’s ta
measure of nominal-nominal association and Pearson’s χ2 test of independence
when n.j = N/c for j = 1, . . . , c, consider the frequency data given in Table 11.11
with r = 2 rows, c = 4 columns, N = 40 cross-classified observations, and
n.j = N/c = 10 for j = 1, . . . , c. For the frequency data given in Table 11.11
with N = 40 observations,

ta =
N

r∑
i=1

c∑
j=1

n2
ij

ni.

−
c∑

j=1

n2
.j

N2 −
c∑

j=1

n2
.j

=
40

(
72

25
+ 62

25
+ · · · + 22

15
+ 62

15

)
− (102 + 102 + 102 + 102)

402 − (102 + 102 + 102 + 102)

= 37.3333

1200
= 0.0311

Table 11.11 Example data
for χ2 and ta with r = 2
rows, c = 4 columns, and
N = 40 cross-classified
observations

Column (A)

Row (B) 1 2 3 4 Total

1 7 6 8 4 25

2 3 4 2 6 15

Total 10 10 10 10 40
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and

χ2 = N

⎛
⎝ r∑

i=1

c∑
j=1

n2
ij

ni.n.j

− 1

⎞
⎠

= 40

[
72

(25)(10)
+ 62

(25)(10)
+ · · · + 22

(15)(10)
+ 62

(10)(15)

]

= 40 (1.0933 − 1) = 3.7333 .

Then the observed value of Pearson’s χ2 test statistic with respect to the observed
value of Goodman and Kruskal’s ta test statistic is

χ2 = N(c − 1)ta = 40(4 − 1)(0.0311) = 3.7333

and the observed value of Goodman and Kruskal’s ta test statistic with respect to
the observed value of Pearson’s χ2 test statistic is

ta = χ2

N(c − 1)
= 3.7333

40(4 − 1)
= 0.0311 .

Third, if r = 2, then χ2 = Nta and ta = χ2/N , which is Pearson’s φ2 coefficient
of contingency. Also, if c = 2, then χ2 = Ntb and tb = χ2/N . Thus, if r = c =
2, then χ2 = Nta = Ntb . To illustrate the relationships between Goodman and
Kruskal’s ta and tb measures of nominal-nominal association and Pearson’s χ2 test
of independence with r = c = 2, consider the frequency data given in Table 11.12
with r = 2 rows, c = 2 columns, and N = 90 cross-classified observations. For the
frequency data given in Table 11.12 with N = 90 observations,

ta =
N

r∑
i=1

c∑
j=1

n2
ij

ni.

−
c∑

j=1

n2
.j

N2 −
c∑

j=1

n2
.j

=
90

(
202

30
+ 102

30
+ 202

60
+ 402

60

)
− (402 + 502)

902 − (402 + 502)

= 400

4000
= 0.10 ,
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Table 11.12 Example data
for χ2, ta , and tb with r = 2
rows, c = 2 columns, and
N = 36 cross-classified
observations

Column (A)

Row (B) 1 2 Total

1 20 10 30

2 20 40 60

Total 40 50 90

tb =
N

c∑
j=1

r∑
i=1

n2
ij

n.j

−
r∑

i=1

n2
i.

N2 −
r∑

i=1

n2
i.

=
90

(
202

40
+ 102

50
+ 202

40
+ 402

50

)
− (302 + 602)

902 − (302 + 602)

= 360

3600
= 0.10 ,

and

χ2 = N

⎛
⎝ r∑

i=1

c∑
j=1

n2
ij

ni.n.j

− 1

⎞
⎠

= 90

[
202

(30)(40)
+ 102

(30)(50)
+ 202

(60)(40)
+ 402

(60)(50)

]

= 90 (1.1000 − 1) = 9.00 .

Then the observed value of Pearson’s χ2 test statistic with respect to the observed
value of Goodman and Kruskal’s ta test statistic is

χ2 = Nta = 90(0.10) = 9.00

and the observed value of Goodman and Kruskal’s ta test statistic with respect to
the observed value of Pearson’s χ2 test statistic is

ta = χ2

N
= 9.00

90
= 0.10 .
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Also, the observed value of Pearson’s χ2 test statistic with respect to Goodman and
Kruskal’s tb test statistic is

χ2 = Ntb = 90(0.10) = 9.00

and the observed value of Goodman and Kruskal’s tb test statistic with respect to
the observed value of Pearson’s χ2 test statistic is

tb = χ2

N
= 9.00

90
= 0.10 .

Fourth, if ni. = N/r and n.j = N/c for i = 1, . . . , r and j = 1, . . . , c, then
χ2 = N(c − 1)ta = N(r − 1)tb. To illustrate the relationships between Goodman
and Kruskal’s ta and tb asymmetric measures of nominal association and Pearson’s
χ2 test of independence with ni. = N/r = 12 for i = 1, . . . , r and n.j = N/c = 9
for j = 1, . . . , c, consider the frequency data given in Table 11.13 with r = 3
rows, c = 4 columns, and N = 36 cross-classified observations. For the frequency
data given in Table 11.13 with N = 36 observations,

ta =
N

r∑
i=1

c∑
j=1

n2
ij

ni.

−
c∑

j=1

n2
.j

N2 −
c∑

j=1

n2
.j

=
36

(
32

12
+ 22

12
+ · · · + 32

12
+ 42

12

)
− (92 + 92 + 92 + 92)

362 − (92 + 92 + 92 + 92)

= 24

972
= 0.0247 ,

Table 11.13 Example data
for χ2, ta , and tb with r = 3
rows, c = 4 columns, and
N = 36 cross-classified
observations

Column (A)

Row (B) 1 2 3 4 Total

1 3 2 4 3 12

2 4 4 2 2 12

3 2 3 3 4 12

Total 9 9 9 9 36
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tb =
N

c∑
j=1

r∑
i=1

n2
ij

n.j

−
r∑

i=1

n2
i.

N2 −
r∑

i=1

n2
i.

=
36

(
32

9
+ 22

9
+ · · · + 32

9
+ 42

9

)
− (122 + 122 + 122)

362 − (122 + 122 + 122)

= 32

864
= 0.0370 ,

and

χ2 = N

⎛
⎝ r∑

i=1

c∑
j=1

n2
ij

ni.n.j

− 1

⎞
⎠

= 36

[
32

(12)(9)
+ 22

(12)(9)
+ · · · + 32

(12)(9)
+ 42

(12)(9)

]

= 36

(
116

108
− 1

)
= 2.6667 .

Then the observed value of Pearson’s χ2 test statistic with respect to the observed
value of Goodman and Kruskal’s ta test statistic is

χ2 = N(c − 1)ta = 36(4 − 1)(0.0247) = 2.6667

and the observed value of Goodman and Kruskal’s ta test statistic with respect to
the observed value of Pearson’s χ2 test statistic is

ta = χ2

N(c − 1)
= 2.6667

36(4 − 1)
= 0.0247 .

Also, the observed value of Pearson’s χ2 test statistic with respect to Goodman and
Kruskal’s tb test statistic is

χ2 = N(r − 1)tb = 36(3 − 1)(0.0370) = 2.6667

and the observed value of Goodman and Kruskal’s tb test statistic with respect to
the observed value of Pearson’s χ2 test statistic is

tb = χ2

N(r − 1)
= 2.6667

36(3 − 1)
= 0.0370 .
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11.2.13 The Relationships Among tb, δ, and �

Goodman and Kruskal’s tb measure of nominal-nominal association is directly
related to the permutation test statistic δ and, hence, to the permutation-based,
chance-corrected � measure of effect size. To illustrate the relationships among
test statistics tb, δ, and �, consider the frequency data given in Table 11.9 on p. 426,
replicated in Table 11.14 for convenience. The conventional notation for an r×c

contingency table is given in Table 11.8 on p. 423 where the row marginal frequency
totals are denoted by ni. for i = 1, . . . , r , the column marginal frequency totals
are denoted by n.j for j = 1, . . . , c, the cell frequencies are denoted by nij for
i = 1, . . . , r and j = 1, . . . , c, and

N =
r∑

i=1

ni. =
c∑

j=1

n.j =
r∑

i=1

c∑
j=1

nij .

Then for the frequency data given in Table 11.14, Goodman and Kruskal’s tb test
statistic is

tb =
N

c∑
j=1

r∑
i=1

n2
ij

n.j

−
r∑

i=1

n2
i.

N2 −
r∑

i=1

n2
i.

=
110

(
242

25
+ 22

25
+ · · · + 172

27
+ 192

33

)
− (372 + 352 + 382)

1102 − (372 + 352 + 382)
= 0.4428 .

In 1971 Richard Light and Barry Margolin developed test statistic R2, based
on an analysis of variance technique for categorical response variables [6]. Light
and Margolin were unaware that R2 was identical to Goodman and Kruskal’s tb
test statistic and that they had asymptotically solved the long-standing problem of
testing the null hypothesis that the population parameter corresponding to Goodman
and Kruskal’s tb was zero; that is, H0: τb = 0. The identity between R2 and tb
was first recognized by Särndal in 1974 [9] and later discussed by Margolin and

Table 11.14 Example data
for illustrating the
relationships among tb, δ, and
� with r = 3 rows, c = 4
columns, and N = 110
cross-classified observations

Column (A)

Row (B) 1 2 3 4 Total

1 24 2 5 6 37

2 0 22 5 8 35

3 1 1 17 19 38

Total 25 25 27 33 110
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Light [7], where they showed that tb(N − 1)(c − 1) was distributed as Pearson’s
chi-squared with (r − 1)(c − 1) degrees of freedom.

Following Light and Margolin in the context of a completely-randomized
analysis of variance for the frequency data given in Table 11.14, the sum-of-squares
total is

SSTotal = N

2
− 1

2N

r∑
i=1

n2
i.

= 110

2
− 1

(2)(110)

(
372 + 352 + 382) = 36.6455 ,

the sum-of-squares between treatments is

SSBetween = 1

2

⎛
⎝ r∑

i=1

c∑
j=1

n2
ij

n.j

⎞
⎠ − 1

2N

r∑
i=1

n2
i.

= 1

2

(
242

25
+ 22

25
+ · · · + 192

33

)
− 1

(2)(110)

(
372 + 352 + 382) = 16.2281 ,

the sum-of-squares within treatments is

SSWithin =
c∑

j=1

(
n.j

2
− 1

2n.j

r∑
i=1

nij2

)

= 25

2
− 1

(2)(25)

(
242 + 02 + 12) + · · · + 33

2
− 1

(2)(33)

(
62 + 82 + 192

)

= 20.4174 ,

and Light and Margolin’s test statistic is

R2 = SSBetween

SSTotal
= 16.9857

36.6455
= 0.4428 ,

which is identical to Goodman and Kruskal’s tb = 0.4428.
The essential factors, sums of squares (SS), degrees of freedom (df ), mean

squares (MS), and variance-ratio test statistic (F ) are summarized in Table 11.15

Table 11.15 Source table for
the data listed in Table 11.14

Factor SS df MS F

Between 16.2281 3 5.4094 28.0835

Within 20.4174 106 0.1926

Total 36.6455 109



436 11 Contingency Tables

where dfBetween = c − 1 = 4 − 1 = 3, dfWithin = N − c = 110 − 4 = 106, and
dfTotal = N − 1 = 110 − 1 = 109. Under the Neyman–Pearson null hypothesis,
H0: nij = ni./c for i = 1, . . . , r and j = 1, . . . , c, where each of the c treatment
groups possesses the same multinomial probability structure, test statistic F is
asymptotically distributed as Snedecor’s F with ν1 = r −1 and ν2 = N − r degrees
of freedom. With ν1 = r−1 = 4−1 = 3 and ν2 = N−r = 110−4 = 106 degrees of
freedom, the asymptotic probability value of F = 28.0835 is P = 0.1917×10−12,
under the assumptions of normality and homogeneity.

For the frequency data given in Table 11.14, the permutation test statistic is

δ = 2SSWithin

N − c
= 2(20.4174)

110 − 4
= 0.3852 ,

the exact expected value of test statistic δ under the Fisher–Pitman null hypothesis is

μδ = 2SSTotal

N − 1
= 2(36.6455)

110 − 1
= 0.6724 ,

and Mielke and Berry’s chance-corrected measure of effect size is

� = 1 − δ

μδ

= 1 − 0.3852

0.6724
= +0.4271 ,

indicating approximately 43% agreement between variables A and B above what is
expected by chance.

Alternatively, in terms of a completely-randomized analysis of variance model
the chance-corrected measure of effect size is

� = 1 − (N − 1)(SSWithin)

(N − c)(SSTotal)
= 1 − (110 − 1)(20.4174)

(110 − 4)(36.6455)
= +0.4271 .

Then the observed value of test statistic δ with respect to the observed value of
Goodman and Kruskal’s tb test statistic is

δ = 2SSBetween(1 − tb)

tb(N − c)
= 2(16.2281)(1 − 0.4428)

(0.4428)(110 − 4)
= 0.3852

and the observed value of Goodman and Kruskal’s tb test statistic with respect to
the observed value of test statistic δ is

tb = 2SSBetween

δ(N − c) + 2SSBetween
= 2(16.2281)

(0.3852)(110 − 4) + 2(16.2281)
= 0.4428 .
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The observed value of test statistic δ with respect to the observed value of Fisher’s
F -ratio test statistic is

δ = 2SSBetween

F(c − 1)
= 2(16.2281)

(28.0835)(4 − 1)
= 0.3852

and the observed value of Fisher’s F -ratio test statistic with respect to the observed
value of test statistic δ is

F = 2SSBetween

δ(c − 1)
= 2(16.2281)

(0.3852)(4 − 1)
= 28.0835 .

The observed value of Goodman and Kruskal’s tb test statistic with respect to the
observed value of Mielke and Berry’s � measure of effect size is

tb = �(N − c) + c − 1

N − 1
= (0.4271)(110 − 4) + 4 − 1

110 − 1
= 0.4428

and the observed value of Mielke and Berry’s � measure of effect size with respect
to Goodman and Kruskal’s tb test statistic is

� = 1 − (N − 1)(1 − tb)

N − c
= 1 − (110 − 1)(1 − 0.4428)

110 − 4
= +0.4271 .

The observed value of Mielke and Berry’s � measure of effect size with respect to
the observed value of Fisher’s F -ratio test statistic is

� = 1 − (N − 1)SSBetween

F(c − 1)SSTotal
= 1 − (110 − 1)(16.2281)

(28.0835)(4 − 1)(36.6455)
= +0.4271

and the observed value of Fisher’s F -ratio test statistic with respect to the observed
value of Mielke and Berry’s � measure of effect size is

F = SSBetween(N − 1)

SSTotal(c − 1)(1 − �)
= (16.2281)(110 − 1)

(36.6455)(4 − 1)(1 − 0.4271)
= 28.0835 .

11.3 Contingency Measures: Ordinal by Ordinal

There exist numerous measures of association for the cross-classification of two
ordinal (ranked) variables. Three popular measures of ordinal-ordinal association
are Goodman and Kruskal’s symmetric measure of ordinal association denoted by
G and two asymmetric measures of ordinal association by Somers denoted by
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Table 11.16 Example data
for Goodman and Kruskal’s
G measure of ordinal-ordinal
association with r = 3 rows,
c = 5 columns, and N = 63
cross-classified observations

Column (y)

Row (x) 1 2 3 4 5 Total

1 6 2 5 7 1 21

2 0 8 5 8 4 25

3 1 1 6 6 3 17

Total 7 11 16 21 8 63

Table 11.17 Two sets of
N = 8 rank scores with no
tied scores

Variable

Object x y

1 1 3

2 3 4

3 2 1

4 4 2

5 5 5

6 7 8

7 8 6

8 6 7

dyx and dxy .7 These three measures and several others are based on the numbers
of concordant and discordant pairs present in the observed contingency table. To
illustrate the calculation of concordant and discordant pairs, consider the 3×5
contingency table given in Table 11.16 with N = 63 observations.

For any ordered contingency table there are five types of pairs to be considered:
concordant pairs (C), discordant pairs (D), pairs that are tied on variable x but not
tied on variable y (Tx), pairs tied on variable y but not tied on variable x (Ty), and
pairs tied on both variable x and variable y (Txy). Together they sum to the number
of possible pairs in the table; that is,

C + D + Tx + Ty + Txy = N(N − 1)

2
.

To demonstrate the calculation of concordant (C) and discordant (D) pairs,
consider the two sets of rank scores listed in Table 11.17, where there are no tied
ranks. Consider the first pair of objects: Objects 1 and 2. For Object 1, x1 = 1
and y1 = 3, and for Object 2, x2 = 3 and y2 = 4. Since x1 < x2 and y1 < y2
(1 < 3 and 3 < 4), the pair is considered to be concordant. Now consider a second
pair of objects: Objects 1 and 3. For Object 1, x1 = 1 and y1 = 3, and for Object
3, x3 = 2 and y3 = 1. Since x1 < x3 and y1 > y3 (1 < 2 and 3 > 1), the

7Goodman and Kruskal’s G measure of ordinal association is oftentimes denoted by the lower-case
Greek letter γ . In this section γ denotes the population parameter and G denotes the sample test
statistic.
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Table 11.18 Paired differences: concordant (C) and discordant (D) values for the rank scores
listed in Table 11.17

Pair xi and xj yi and yj Type Pair xi and xj yi and yj Type

1 1 < 3 3 < 4 C 15 2 < 5 1 < 5 C

2 1 < 2 3 > 1 D 16 2 < 7 1 < 8 C

3 1 < 4 3 > 2 D 17 2 < 8 1 < 6 C

4 1 < 5 3 < 5 C 18 2 < 6 1 < 7 C

5 1 < 7 3 < 8 C 19 4 < 5 2 < 5 C

6 1 < 8 3 < 6 C 20 4 < 7 2 < 8 C

7 1 < 6 3 < 7 C 21 4 < 8 2 < 6 C

8 3 > 2 4 > 1 C 22 4 < 6 2 < 7 C

9 3 < 4 4 > 2 D 23 5 < 7 5 < 8 C

10 3 < 5 4 < 5 C 24 5 < 8 5 < 6 C

11 3 < 7 4 < 8 C 25 5 < 6 5 < 7 C

12 3 < 8 4 < 6 C 26 7 < 8 8 > 6 D

13 3 < 6 4 < 7 C 27 7 > 6 8 > 7 C

14 2 < 4 1 < 2 C 28 8 > 6 6 < 7 D

Table 11.19 Two sets of
rank scores with tied scores

Variable

Object x y

1 1.5 2

2 1.5 2

3 3.5 4.5

4 5.5 2

5 3.5 4.5

6 5.5 6

pair is considered to be discordant. For the untied rank data listed in Table 11.17,
the number of concordant pairs is C = 23 and the number of concordant pairs is
D = 5. The

N(N − 1)

2
= 8(8 − 1)

2
= 28

concordant (C) and discordant (D) pairs for the rank-score data listed in Table 11.17
are listed in Table 11.18.

To illustrate the calculation of the Tx , Ty , and Txy tied pairs, consider the two
sets of rank scores listed in Table 11.19, where there are multiple tied rank scores on
both variable x and variable y. For the rank scores listed in Table 11.19, N = 6, the
number of concordant pairs is C = 8, the number of discordant pairs is D = 2, the
number of pairs tied on variable x is Tx = 1, the number of pairs tied on variable y

is Ty = 2, and the number of pairs tied on both variable x and variable y is Txy = 2.
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Table 11.20 Paired
differences: C, D, Tx , Ty , and
Txy values for the rank scores
listed in Table 11.19

Pair xi and xj yi and yj Type

1 1.5 = 1.5 2.0 = 2.0 Txy

2 1.5 < 3.5 2.0 < 4.5 C

3 1.5 < 5.5 2.0 = 2.0 Ty

4 1.5 < 3.5 2.0 < 4.5 C

5 1.5 < 5.5 2.0 < 6.0 C

6 1.5 < 3.5 2.0 < 4.4 C

7 1.5 < 5.5 2.0 = 2.0 Ty

8 1.5 < 3.5 2.0 < 4.5 C

9 1.5 < 5.5 2.0 < 6.0 C

10 3.5 < 5.5 4.5 > 2.0 D

11 3.5 = 3.5 4.5 = 4.5 Txy

12 3.5 < 5.5 4.5 < 6.0 C

13 5.5 > 3.5 2.0 < 4.5 D

14 5.5 = 5.5 2.0 < 6.0 Tx

15 3.5 < 5.5 4.5 < 6.0 C

Table 11.20 lists the

N(N − 1)

2
= 6(6 − 1)

2
= 15

paired differences: concordant pairs (C), discordant pairs (D), pairs tied on variable
x (Tx), pairs tied on variable y (Ty), and pairs tied on both variable x and variable y

(Txy).

11.3.1 An Example Analysis for G

For the example rank data given in Table 11.16 on p. 438 with N = 63 observations,
the number of concordant pairs is

C =
r−1∑
i=1

c−1∑
j=1

nij

⎛
⎝ r∑

k=i+1

c∑
l=j+1

nkl

⎞
⎠

= (6)(8 + 5 + 8 + 4 + 1 + 6 + 6 + 3) + (2)(5 + 8 + 4 + 6 + 6 + 3)

+ · · · + (5)(6 + 3) + (8)(3)) = 653 ,
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the number of discordant pairs is

D =
r−1∑
i=1

c−1∑
j=1

ni,c−j+1

⎛
⎝ r∑

k=i+1

c−j∑
l=1

nkl

⎞
⎠

= (1)(0 + 8 + 5 + 8 + 1 + 1 + 6 + 6) + (7)(0 + 8 + 5 + 1 + 1 + 6)

+ · · · + (5)(1 + 1) + (8)(1) = 372 ,

and Goodman and Kruskal’s measure of ordinal-ordinal association is

G = C − D

C + D
= 653 − 372

653 + 372
= +0.2741 .

Under the Neyman–Pearson null hypothesis, H0: γ = 0, Goodman and Kruskal’s
G measure of ordinal-ordinal association is asymptotically distributed N(0, 1) as
N → ∞ with a standard error given by

sG =
√

N(1 − G2)

C + D
.

For the frequency data given in Table 11.16,

z = G√
N(1 − G2)

C + D

= +0.2741√
63[1 − (0.2741)2]

653 + 372

= +1.1496 ,

yielding an asymptotic upper-tail N(0, 1) probability value of P = 0.1252, under
the assumption of normality.

11.3.2 An Exact Permutation Analysis for G

Under the Fisher–Pitman permutation model, the exact probability value of an
observed value of Goodman and Kruskal’s G measure of ordinal-ordinal association
is given by the sum of the hypergeometric point probability values associated
with values of test statistic G that are equal to or greater than the observed value
of G = +0.2741. For the frequency data given in Table 11.16 with N = 63
observations, there are M = 11,356,797 possible, equally-likely arrangements in
the reference set of all permutations of cell frequencies given the observed row
and column marginal frequency distributions {21, 25, 17} and {7, 11, 16, 21, 8},
respectively, making an exact permutation analysis feasible. The exact probability
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value of the observed value of test statistic G is P = 0.0336; that is, the sum of the
hypergeometric point probability values associated with values of G = +0.2741 or
greater.

11.3.3 The Relationship Between Statistics G and δ

The functional relationships between test statistic δ and Goodman and Kruskal’s G

measure of ordinal-ordinal association are given by

δ = N(N − 1) − 2G(C + D)

2N
and G =

N

(
N − 1

2
− δ

)

C + D
.

For the frequency data given in Table 11.16, the observed value of test statistic δ

with respect to the observed value of Goodman and Kruskal’s G measure of ordinal-
ordinal association is

δ = 63(63 − 1) − 1(+0.2741)(653 + 372)

(2)(63)
= 26.5404

and the observed value of Goodman and Kruskal’s G measure of ordinal-ordinal
association with respect to the observed value of test statistic δ is

G =
63

(
63 − 1

2
− 26.5404

)

653 + 372
= +0.2741 .

11.3.4 Somers’ dyx and dxy Measures

While Goodman and Kruskal’s G measure of ordinal-ordinal association is a sym-
metric measure, Somers’ two asymmetric proportional-reduction-in-error (PRE)
measures (dyx and dxy) allow researchers to specify an independent and a dependent
variable. For Somers’ dyx , the dependent variable is typically the column variable
labeled y and for Somers’ dxy , the dependent variable is typically the row variable
labeled x. The two asymmetric measures are given by

dyx = C − D

C + D + Ty
and dxy = C − D

C + D − Tx

, (11.4)

where C is the number of concordant pairs, D is the number of discordant pairs,
Tx is the number of pairs tied on the row variable, and Ty is the number of pairs
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tied on the column variable. As is evident in Eq. (11.4), Somers included in the
denominators of dyx and dxy the number of tied pairs on the dependent variable: Ty

for dyx and Tx for dxy . The rationale for including the tied pairs is simply that when
variable y is the dependent variable (dyx), then if two values of the independent
variable x differ, but the corresponding two values of the dependent variable y do not
differ (are tied), there is evidence of a lack of association and the ties on dependent
variable y (Ty) should be included in the denominator where they act to decrease the
value of dyx . The same rationale holds for Somers’ dxy where the ties on dependent
variable x (Tx) are included in the denominator.

11.3.5 An Example Analysis for dyx

For the frequency data given in Table 11.16 on p. 438, replicated in Table 11.21 for
convenience, the number of concordant pairs is

C =
r−1∑
i=1

c−1∑
j=1

nij

⎛
⎝ r∑

k=i+1

c∑
l=j+1

nkl

⎞
⎠

= (6)(8 + 5 + 8 + 4 + 1 + 6 + 6 + 3) + (2)(5 + 8 + 4 + 6 + 6 + 3)

+ · · · + (5)(6 + 3) + (8)(3)) = 653 ,

the number of discordant pairs is

D =
r−1∑
i=1

c−1∑
j=1

ni,c−j+1

⎛
⎝ r∑

k=i+1

c−j∑
l=1

nkl

⎞
⎠

= (1)(0 + 8 + 5 + 8 + 1 + 1 + 6 + 6) + (7)(0 + 8 + 5 + 1 + 1 + 6)

+ · · · + (5)(1 + 1) + (8)(1) = 372 ,

Table 11.21 Example data
for Somers’ dyx and dxy

measures of ordinal-ordinal
association with r = 3 rows,
c = 5 columns, and N = 63
cross-classified observations

Column (y)

Row (x) 1 2 3 4 5 Total

1 6 2 5 7 1 21

2 0 8 5 8 4 25

3 1 1 6 6 3 17

Total 7 11 16 21 8 63
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the number of pairs tied on variable x is

Tx =
r∑

i=1

c−1∑
j=1

nij

⎛
⎝ c∑

k=j+1

nik

⎞
⎠

= (6)(2 + 5 + 7 + 1) + (2)(5 + 7 + 1) + (5)(7 + 1) + (7)(1)

+ · · · + (1)(6 + 6 + 3) + (6)(6 + 3) + (6)(3) = 494 ,

the number of pairs tied on dependent variable y is

Ty =
c∑

j=1

r−1∑
i=1

nij

(
r∑

k=i+1

nkj

)

= (6)(0 + 1) + (0)(1) + (2)(8 + 1) + (8)(1)

+ · · · + (1)(4 + 3) + (4)(3) = 282 ,

and Somers’ dyx asymmetric measure of ordinal-ordinal association is

dyx = C − D

C + D + Ty

= 653 − 372

653 + 372 + 282
= +0.2150 .

For an r×c contingency table, dyx is asymptotically distributed N(0, 1) under
the Neyman–Pearson null hypothesis as N → ∞ with a standard error given by

sdyx = 2

3r

√
(r2 − 1)(c + 1)

N(c − 1)
.

For the frequency data given in Table 11.21,

z = dyx

2

3r

√
(r2 − 1)(c + 1)

N(c − 1)

= +0.2150

2

(3)(3)

√
(32 − 1)(5 + 1)

(63)(5 − 1)

= +2.2168 ,

yielding an asymptotic upper-tail N(0, 1) probability value of P = 0.0133, under
the assumption of normality.

11.3.6 An Exact Permutation Analysis for dyx

Under the Fisher–Pitman permutation model, the exact probability value of an
observed value of Somers’ dyx is given by the sum of the hypergeometric point
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probability values associated with values of test statistic dyx that are equal to or
greater than the observed value of dyx = +0.2150. For the frequency data given
in Table 11.21, there are M = 11,356,797 possible, equally-likely arrangements
in the reference set of all permutation of cell frequencies given the observed row
and column marginal frequency distributions {21, 25, 17} and {7, 11, 16, 21, 8},
respectively, making an exact permutation analysis feasible. The exact probability
value of dyx = +0.2150 is P = 0.0331; that is, the sum of the hypergeometric
point probability values associated with values of dyx = +0.2150 or greater.

11.3.7 The Relationship Between Statistics dyx and δ

The functional relationships between test statistic δ and Somers’ dyx asymmetric
measure of ordinal-ordinal association are given by

δ = N − 1

2
− dyx(C + D + Ty)

N
and dyx =

N

(
N − 1

2
− δ

)

C + D + Ty

.

For the frequency data given in Table 11.21, the observed value of test statistic
δ with respect to the observed value of Somers’ dyx measure of ordinal-ordinal
association is

δ = 63 − 1

2
− +0.2150(653 + 372 + 282)

63
= 26.5396

and the observed value of Somers’ dyx measure of ordinal-ordinal association with
respect to the observed value of test statistic δ is

dyx =
63

(
63 − 1

2
− 26.5396

)

653 + 372 + 282
= +0.2150 .

11.3.8 An Example Analysis for dxy

For the frequency data given in Table 11.21, the number of concordant pairs is
C = 653, the number of discordant pairs is D = 372, the number of pairs tied
on dependent variable x is Tx = 494, and Somers’ dxy asymmetric measure of
ordinal-ordinal association is

dxy = C − D

C + D + Tx

= 653 − 372

653 + 372 + 494
= +0.1850 .
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For an r×c contingency table, dyx is asymptotically distributed N(0, 1) under
the Neyman–Pearson null hypothesis as N → ∞ with a standard error given by

sdyx = 2

3c

√
(c2 − 1)(r + 1)

N(r − 1)
.

For the frequency data given in Table 11.21,

z = dyx

2

3c

√
(c2 − 1)(r + 1)

N(r − 1)

= +0.1850

2

(3)(5)

√
(52 − 1)(3 + 1)

(63)(5 − 1)

= +2.2480 ,

yielding an asymptotic upper-tail N(0, 1) probability value of P = 0.0123, under
the assumption of normality.

11.3.9 An Exact Permutation Analysis for dxy

Under the Fisher–Pitman permutation model, the exact probability value of an
observed value of Somers’ dxy is given by the sum of the hypergeometric point
probability values associated with values of test statistic dxy that are equal to or
greater than the observed value of dxy = +0.1850. For the frequency data given
in Table 11.21, there are M = 11,356,797 possible, equally-likely arrangements
in the reference set of all permutation of cell frequencies given the observed row
and column marginal frequency distributions {21, 25, 17} and {7, 11, 16, 21, 8},
respectively, making an exact permutation analysis feasible. The exact probability
value of dxy = +0.1850 is P = 0.0331; that is, the sum of the hypergeometric point
probability values associated with values of dxy = +0.1850 or greater.

11.3.10 The Relationship Between dxy and δ

The functional relationships between test statistic δ and Somers’ dxy asymmetric
measure of ordinal-ordinal association are given by

δ = N − 1

2
− dyx(C + D + Tx)

N
and dxy =

N

(
N − 1

2
− δ

)

C + D + Tx

.
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For the frequency data given in Table 11.21, the observed value of test statistic
δ with respect to the observed value of Somers’ dxy measure of ordinal-ordinal
association is

δ = 63 − 1

2
− +0.1850(653 + 372 + 494)

63
= 26.5394

and the observed value of Somers’ dxy measure of ordinal association with respect
to the observed value of test statistic δ is

dxy =
63

(
63 − 1

2
− 26.5394

)

653 + 372 + 494
= +0.1850 .

11.3.11 Probability Values for dyx and dxy

It may appear inconsistent that while Somers’ two measures of effect size differ
(dyx = +0.2150 and dxy = 0.1850), they both yield the same probability value of
P = 0.0331. It follows from the fact that the denominators of dyx and dxy (C+D+
Ty and C+D+Tx , respectively) can be computed from just the marginal frequency
distributions, which are fixed for all possible arrangements of cell frequencies and
are, therefore, invariant under permutation.

It is easily shown that C +D +Ty can be obtained from N and the row marginal
frequency distribution. Recall that for the frequency data listed in Table 11.21 on
p. 443, the number of concordant pairs is C = 653, the number of discordant pairs
is D = 372, the number of pairs tied on variable y is Ty = 282, and C + D + Ty =
653 + 372 + 282 = 1307. Then with N = 63,

C + D + Ty = 1

2

(
N2 −

r∑
i=1

n2
i.

)
= 1

2

[
632 − (

212 + 252 + 172)] = 1307 .

In such manner C + D + Tx can be obtained from N and the column marginal
frequency distribution. For the frequency data listed in Table 11.21, the number of
concordant pairs is C = 653, the number of discordant pairs is D = 372, the number
of pairs tied on variable x is Tx = 494, and C +D+Tx = 653+372+494 = 1519.
Then with N = 63,

C + D + Tx = 1

2

⎛
⎝N2 −

c∑
j=1

n2
.j

⎞
⎠

= 1

2

[
632 − (

72 + 112 + 162 + 212 + 82)] = 1519 .
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11.4 Contingency Measures: Nominal by Ordinal

There exist any number of measures of association for which the standard error
is unknown. Permutation statistical methods do not rely on knowledge of standard
errors and therefore provide much-needed probability values for a number of other-
wise very useful measures of association. One measure without a known standard
error is Freeman’s θ measure of nominal-ordinal association [5, pp. 108–119].

Consider an r×c contingency table where the r rows are a nominal-level
(categorical) independent variable (x) and the c columns are an ordinal-level
(ranked) dependent variable (y). For Freeman’s θ it is necessary to calculate the
absolute sum of the number of concordant pairs and number of discordant pairs for
all combinations of the nominal-level independent variable (rows) considered two
at a time. Assuming that the column ordered variable (y) is underlying continuous
and that ties in ranking result simply from a crude classification of the continuous
variable, Freeman’s nominal-ordinal measure of association is given by

θ =

r−1∑
i=1

r∑
j=i+1

∣∣Cij − Dij

∣∣
C + D + Ty

.

11.4.1 An Example Analysis for θ

To illustrate the calculation of Freeman’s θ measure of nominal-ordinal association,
consider the 4×5 contingency table given in Table 11.22 with N = 40 observations.
For the frequency data given in Table 11.22 with N = 40 observations, the number
of concordant pairs is

C =
r−1∑
i=1

c−1∑
j=1

nij

⎛
⎝ r∑

k=i+1

c∑
l=j+1

nkl

⎞
⎠

= (1)(5 + 5 + 0 + 0 + 0 + 2 + 2 + 1 + 0 + 0 + 2 + 3)

Table 11.22 Example data
for Freeman’s θ measure of
nominal-ordinal association
with r = 4 rows, c = 5
columns, and N = 40
cross-classified observations

Column (y)

Row (x) 1 2 3 4 5 Total

1 1 2 5 2 0 10

2 10 5 5 0 0 20

3 0 0 2 2 1 5

4 0 0 0 2 3 5

Total 11 7 12 6 4 40
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+ (2)(5 + 0 + 0 + 2 + 2 + 1 + 0 + 2 + 3)

+ · · · + (2)(2 + 3) + (2)(3)) = 304 ,

the number of discordant pairs is

D =
r−1∑
i=1

c−1∑
j=1

ni,c−j+1

⎛
⎝ r∑

k=i+1

c−j∑
l=1

nkl

⎞
⎠

= (0)(10 + 5 + 5 + 0 + 0 + 0 + 2 + 2 + 0 + 0 + 0 + 2)

+ (2)(10 + 5 + 6 + 0 + 0 + 2 + 0 + 0 + 0)

+ · · · + (2)(0 + 0) + (0)(0) = 141 ,

the number of pairs tied on variable y is

Ty =
c∑

j=1

r−1∑
i=1

nij

(
r∑

k=i+1

nkj

)

= (1)(10 + 0 + 0) + (10)(0 + 0) + (0)(0)

+ · · · + (0)(0 + 1 + 3) + (1)(1 + 3) + (1)(3) = 80 ,

the concordant and discordant pairs for the r = 4 rows considered two at a time are

C12 = (1)(5 + 5 + 0 + 0) + (2)(5 + 0 + 0) + (5)(0 + 0) + (2)(0) = 20 ,

D12 = (0)(10 + 5 + 5 + 0) + (2)(10 + 5 + 5) + (5)(10 + 5) + (2)(10) = 135 ,

C13 = (1)(0 + 2 + 2 + 1) + (2)(2 + 2 + 1) + (5)(2 + 1) + (2)(1) = 32 ,

D13 = (0)(0 + 0 + 2 + 2) + (2)(0 + 0 + 2) + (5)(0 + 0) + (2)(0) = 4 ,

C14 = (1)(0 + 0 + 2 + 3) + (2)(0 + 2 + 3) + (5)(2 + 3) + (2)(3) = 46 ,

D14 = (0)(0 + 0 + 0 + 2) + (2)(0 + 0 + 0) + (5)(0 + 0) + (2)(0) = 0 ,

C23 = (10)(0 + 2 + 2 + 1) + (5)(2 + 2 + 1) + (5)(2 + 1) + (0)(1) = 90 ,

D23 = (0)(0 + 0 + 2 + 2) + (0)(0 + 0 + 2) + (5)(0 + 0) + (5)(0) = 0 ,

C24 = (10)(0 + 0 + 2 + 3) + (5)(0 + 2 + 3) + (5)(2 + 3) + (0)(3) = 100 .

D24 = (0)(0 + 0 + 0 + 2) + (0)(0 + 0 + 0) + (5)(0 + 0) + (5)(0) = 0 ,

C34 = (0)(0 + 0 + 2 + 3) + (0)(0 + 2 + 3) + (2)(2 + 3) + (2)(3) = 16 ,

D34 = (1)(0 + 0 + 0 + 2) + (2)(0 + 0 + 0) + (2)(0 + 0) + (0)(0) = 2 ,
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and Freeman’s θ is

θ =

r−1∑
i=1

r∑
j=i+1

∣∣Cij − Dij

∣∣
C + D + Ty

= |20 − 135| + |32 − 4| + |46 − 0| + |90 − 0| + |100 − 0| + |16 − 2|
304 + 141 + 80

= 0.7486 .

11.4.2 An Exact Permutation Analysis for θ

Under the Fisher–Pitman permutation model, the exact probability value of an
observed value of θ = 0.7486 is given by the sum of the hypergeometric point
probability values associated with the values of test statistic θ calculated on all
M possible arrangements of the cell frequencies that are equal to or greater than
the observed value of θ = 0.7486. For the frequency data given in Table 11.22,
there are only M = 6,340,588 possible arrangements in the reference set of all
permutations of cell frequencies consistent with the observed row and column
marginal frequency distributions, {10, 20, 5, 5} and {11, 7, 12, 6, 4}, respectively,
making an exact permutation analysis feasible.

If all M possible arrangements of the observed data occur with equal chance, the
exact probability value of Freeman’s θ under the Fisher–Pitman null hypothesis
is the sum of the hypergeometric point probability values associated with the
arrangements of cell frequencies with values of θ that are equal to or greater than the
observed value of θ = 0.7486. Based on the underlying hypergeometric probability
distribution, the exact probability value of θ = 0.7486 is P = 0.2105×10−10.

11.5 Contingency Measures: Nominal by Interval

Pearson’s point-biserial correlation coefficient, denoted by rpb, measures the asso-
ciation between a nominal-level (categorical) variable with two categories and
an interval-level variable. Pearson’s point-biserial correlation coefficient is an
important measure in fields such as education and educational psychology where it
is typically used to measure the correlation between test questions scored as correct
(1) or incorrect (0) and the overall score on the test for N test takers. A low or
negative point-biserial correlation coefficient indicates that the test takers with the
highest scores on the test answered the question incorrectly and the test takers with
the lowest scores on the test answered the question correctly, alerting the instructor
to the possibility that the question failed to discriminate properly and may be faulty.
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Table 11.23 Example (0, 1)

coded data for Pearson’s
point-biserial correlation
coefficient

Variable Variable

Object x y Object x y

1 0 99 11 1 86

2 0 99 12 1 90

3 1 98 13 0 97

4 1 98 14 0 95

5 1 97 15 1 92

6 0 89 16 0 98

7 0 95 17 1 86

8 0 94 18 1 85

9 1 92 19 0 94

10 1 60 20 0 96

11.5.1 An Example Analysis for rpb

To illustrate the calculation of Pearson’s point-biserial correlation coefficient,
consider the dichotomous data listed in Table 11.23 for N = 20 observations where
variable x is the dichotomous variable and variable y is an unspecified interval-level
variable. The point-biserial correlation coefficient is often expressed as

rpb = ȳ0 − ȳ1

sy

√
n0n1

N(N − 1)
,

where n0 and n1 denote the number of y values coded 0 and 1, respectively, N =
n0 +n1, ȳ0 and ȳ1 denote the means of the y values coded 0 and 1, respectively, and
sy is the sample standard deviation of the y values given by

sy =
√√√√ 1

N − 1

N∑
i=1

(
yi − ȳ

)2
.

For the data listed in Table 11.23, n0 = n1 = 10,

ȳ0 = 1

n0

n0∑
i=1

yi = 99 + 99 + · · · + 89

10
= 88.40 ,

ȳ1 = 1

n1

n1∑
i=1

yi = 98 + 98 + · · · + 60

10
= 95.60 ,

sy =
√√√√ 1

N − 1

N∑
i=1

(
yi − ȳ

)2 =
√

1456

20 − 1
= 8.7539 ,
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and Pearson’s point-biserial correlation coefficient is

rpb = ȳ0 − ȳ1

sy

√
n0n1

N(N − 1)
= 88.40 − 95.60

8.7539

√
(10)(10)

20(20 − 1)
= −0.4219 .

Alternatively, with

N∑
i=1

xi = 10 ,

N∑
i=1

x2
i = 10 ,

N∑
i=1

yi = 1840 ,

N∑
i=1

y2
i = 170,736 ,

and
N∑

i=1

xiyi = 884 ,

Pearson’s point-biserial correlation coefficient is simply the product-moment corre-
lation between dichotomous variable x and interval-level variable y. Thus,

rpb =
N

N∑
i=1

xiyi −
N∑

i=1

xi

N∑
i=1

yi

√√√√√
⎡
⎣N

N∑
i=1

x2
i −

(
N∑

i=1

xi

)2 ⎤
⎦
⎡
⎣N

N∑
i=1

y2
i −

(
N∑

i=1

yi

)2 ⎤
⎦

= (20)(884) − (10)(1840)√[
(20)(10) − 102

][
(20)(170,736) − 18402

] = −0.4219 .

The conventional test of significance for Pearson’s point-biserial correlation
coefficient is

t = rpb

√
N − 2

1 − r2
pb

= −0.4219

√
20 − 2

1 − (−0.4219)2 = −1.9743 .

Under the Neyman–Pearson null hypothesis, H0: ρpb = 0, test statistic t is
asymptotically distributed as Student’s t with N − 2 degrees of freedom. With
N − 2 = 20 − 2 = 18 degrees of freedom, the asymptotic two-tail probability
value of t = −1.9743 is P = 0.0639, under the assumption of normality. For a
critical evaluation of the point-biserial correlation coefficient, see a discussion in
The Measurement of Association by the authors [2, pp. 417–424].
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11.5.2 An Exact Permutation Analysis for rpb

For the bivariate observations listed in Table 11.23, there are only

M = (n0 + n1)!
n0! n1! = (10 + 10)!

10! 10! = 184,756

possible, equally-likely arrangements in the reference set of all permutations of the
observed scores, making an exact permutation analysis possible. Under the Fisher–
Pitman permutation model, the exact probability of an observed value of Pearson’s
|rpb| is the proportion of |rpb| values calculated on all possible arrangements of the
observed data that are equal to or greater than the observed value of |rpb| = 0.4219.
There are exactly 11,296 |rpb| values that are equal to or greater than the observed
value of |rpb| = 0.4219. If all arrangements of the N = 20 observed scores occur
with equal chance, the exact probability value of |rpb| = 0.4219 computed on the
M = 184,756 possible arrangements of the observed data with n0 = n1 = 10
preserved for each arrangement is

P(rpb ≥ |ro|) = number of rpb values ≥ |ro|
M

= 11,296

184,756
= 0.0611 ,

where |ro| denotes the observed absolute value of test statistic rpb and M is
the number of possible, equally-likely arrangements of the N = 20 bivariate
observations listed in Table 11.23.

11.6 Contingency Measures: Ordinal by Interval

The best-known and most-widely reported measure of ordinal-by-interval associ-
ation is Jaspen’s multiserial correlation coefficient, which is simply the Pearson
product-moment correlation coefficient between an interval-level variable, Y , and
a transformation of an ordinal-level variable, X. Given N values on the interval
variable and k disjoint, ordered categories on the ordinal variable, the mean standard
score of the underlying scale for a given category is given by

Z̄j = YLj − YUj

pj

for j = 1, . . . , k ,

where YLj and YUj are the lower and upper ordinates of the segment of the
N(0, 1) distribution corresponding to the j th ordered category, and where pj is
the proportion of cases in the j th of k ordered categories. Given the obtained values
of Z̄j , j = 1, . . . , k, and the original N values of the interval-level variable, a
standard Pearson product-moment correlation between the Y and Z̄ values yields
the multiserial correlation coefficient.
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11.6.1 An Example Analysis for rYZ̄

To illustrate the calculation of Jaspen’s multiserial correlation coefficient, consider
the small set of data given in Table 11.24 where N = 32 interval-level variables
are listed in k = 4 disjoint, ordered categories: A, B, C, and D. Table 11.25
illustrates the calculation of Jaspen’s multiserial correlation coefficient. The first
column, headed X in Table 11.25, lists the k = 4 ordered categories of variable
X. The second column, headed n, lists the number of observations in each of
the k ordered categories. The third column, headed p, lists the proportion of
observations in each of the k ordered categories. The fourth column, headed P , lists
the cumulative proportion of observations in each of the k ordered categories. The
fifth column, headed z, lists the standard score that defines the cumulative proportion
from the fourth column under the unit-normal distribution for each of the k ordered
categories. For example, for category A the standard score that defines the lowest
(left-tail) of the normal distribution with proportion P = 0.1250 is z = −1.1503.
The sixth column, headed YL, lists the height of the ordinate at the standard score
listed in the fifth column below the specified segment of the unit-normal distribution.
For example, for category A,

YLA = exp(−z2/2)√
2π

= exp
[ − (−1.1503)2/2

]
√

2(3.1416)
= 0.2059 .

Table 11.24 Example
ordinal-by-interval data for
Jaspen’s correlation
coefficient with N = 32
observations

Category

A B C D

83 91 86 75

78 84 81 58

73 81 80 51

63 78 79 50

76 77 50

73 76 48

69 70 48

64 64

58 63

56 59

53

Table 11.25 Calculation of the mean standard scores for the k = 4 ordinal categories

X n p P z YL YU Z̄

A 4 0.1250 0.1250 −1.1503 0.2059 0.0000 +1.6472

B 10 0.3125 0.4375 −0.1573 0.3940 0.2059 +0.6019

C 11 0.3438 0.7813 +0.7766 0.2951 0.3940 −0.2877

D 7 0.2188 1.0000 +1.0000 0.0000 0.2951 −1.3487

Total 32 1.0000
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The seventh column, headed YU , lists the height of the ordinate at the standard score
listed in the fifth column above the specified segment of the unit-normal distribution.
For example, for category C,

YUC = exp(−z2/2)√
2π

= exp
[ − (−0.1573)2/2

]
√

2(3.1416)
= 0.3940 .

The last column, headed Z̄, lists the average standard scores for the k ordered
categories. For example, for category B,

Z̄B = YLB − YUB

pB

= 0.3940 − 0.2059

0.3125
= +0.6019

Jaspen’s multiserial correlation coefficient is the Pearson product-moment corre-
lation between the Y interval-level values given in Table 11.24 and the transformed
Z̄ values given in Table 11.25. Table 11.26 lists the Y , Z̄, Y 2, Z̄2, and YZ̄ values,
along with the corresponding sums.

For the summations given in Table 11.26, the Pearson product-moment correla-
tion between the Y and Z̄ values is

rYZ̄ =
N

N∑
i=1

YiZ̄i −
N∑

i=1

Yi

N∑
i=1

Z̄i

√√√√√
⎡
⎣N

N∑
i=1

Y 2
i −

(
N∑

i=1

Yi

)2 ⎤
⎦
⎡
⎣N

N∑
i=1

Z̄2
i −

(
N∑

i=1

Z̄i

)2 ⎤
⎦

= (32)(189.3918) − (2195)(0.0000)√[
(32)(155,471) − 21952

][
(32)(28.1193) − 0.00002

] = +0.5094 .

Jaspen’s multiserial correlation coefficient is known to be biased. The bias is
due to the grouping of the values into k categories. When k is small, the bias
can be pronounced. For the example data listed in Table 11.24, the correction for
grouping is

SZ̄ =
⎛
⎝ 1

N

k∑
j=1

nj Z̄
2
j

⎞
⎠

1/2

=
{

1

32

[
(4)(+1.6472)2 + (10)(+0.6019)2 + (11)(−0.2877)2

+ (7)(−1.3487)2
]}1/2

= 0.9374
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Table 11.26 Calculation of the sums needed for the Pearson product-moment correlation between
variables Y and Z̄

Category Y Z̄ Y 2 Z̄2 YZ̄

A 83 +1.6472 6889 2.7133 +136.7176

78 +1.6472 6084 2.7133 +128.4816

73 +1.6472 5329 2.7133 +120.2456

63 +1.6472 3969 2.7133 +103.7736

B 91 +0.6019 8281 0.3623 +54.7729

84 +0.6019 7056 0.3623 +50.5596

81 +0.6019 6561 0.3623 +48.7539

78 +0.6019 6084 0.3623 +46.9482

76 +0.6019 5776 0.3623 +45.7444

73 +0.6019 5329 0.3623 +43.9387

69 +0.6019 4761 0.3623 +41.5311

64 +0.6019 4096 0.3623 +38.5216

58 +0.6019 3364 0.3623 +34.9102

56 +0.6019 3136 0.3623 +33.7064

C 86 −0.2877 7396 0.0828 −23.8220

81 −0.2877 6561 0.0828 −22.4370

80 −0.2877 6400 0.0828 −22.1600

79 −0.2877 6241 0.0828 −21.8830

77 −0.2877 5929 0.0828 −21.3290

76 −0.2877 5776 0.0828 −21.0520

70 −0.2877 4900 0.0828 −19.3900

64 −0.2877 4096 0.0828 −17.7280

63 −0.2877 3969 0.0828 −17.4510

59 −0.2877 3481 0.0828 −16.3430

53 −0.2877 2809 0.0828 −14.6810

D 75 −1.3487 5625 1.8190 −101.1525

58 −1.3487 3364 1.8190 −78.2246

51 −1.3487 2601 1.8190 −68.7837

50 −1.3487 2500 1.8190 −67.4350

50 −1.3487 2500 1.8190 −67.4350

48 −1.3487 2304 1.8190 −64.7376

48 −1.3487 2304 1.8190 −64.7376

Sum 2195 0.0000 155,471 28.1193 +189.3918

and the corrected multiserial correlation coefficient is

rc = rYZ̄

SZ̄

= +0.5094

0.9374
= +0.5434 .

Jaspen’s rc is asymptotically distributed as Student’s t under the Neyman–
Pearson null hypothesis with N −2 degrees of freedom. If the population parameter,
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ρc, is assumed to be zero, then for the observed data in Table 11.24,

t = rc − ρc√
1 − r2

c

N − 2

= +0.5434 − 0.00√
1 − (0.5434)2

32 − 2

= +3.5455 ,

and with N − 2 = 32 − 2 = 30 degrees of freedom the asymptotic two-tail
probability value of rc = +0.5434 is P = 0.1308×10−2, under the assumption
of normality.

11.6.2 A Monte Carlo Permutation Analysis for rYZ̄

Because there are

M = N ! = 32! = 263,130,836,933,693,530,167,218,012,160,000,000

possible, equally-likely arrangements in the reference set of all permutations of the
observed values listed in Table 11.24, an exact permutation analysis is not possible
and a Monte Carlo analysis is mandated. Let ro indicate the observed value of rc.
Based on L = 1,000,000 randomly-selected arrangements of the observed data,
there are 3069 |rc| values that are equal to or greater than |ro| = 0.5434, yielding a
Monte Carlo probability value of

P(|rc| ≥ |ro|) = number of |rc| values ≥ |ro|
L

= 3069

1,000,000
= 0.3069×10−2 ,

where ro denotes the observed value of rc and L is the number of randomly-selected,
equally-likely arrangements of the ordinal-interval data listed in Table 11.24.

11.7 Summary

Under the Neyman–Pearson model of statistical inference, this chapter examined
various measures of nominal-nominal, ordinal-ordinal, nominal-ordinal, nominal-
interval, and ordinal-interval association. Asymptotic probability values were pro-
vided under either Pearson’s χ2 probability distribution, Student’s t distribution,
Snedecor’s F distribution, or the N(0, 1) probability distribution. Under the Fisher–
Pitman permutation model of statistical inference, procedures for both exact and
Monte Carlo probability values were developed.

Six sections provided examples and illustrative analyses of permutation statistical
methods for contingency tables. In the first section, goodness-of-fit measures for
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k discrete, mutually-exclusive categories were described and permutation methods
were utilized to obtain exact probability values. A measure of effect size for the
chi-squared goodness-of-fit test was presented and illustrated.

The second section illustrated the use of permutation statistical methods for
analyzing contingency tables in which two nominal-level variables have been
cross-classified. Three well-known and widely-used measures of nominal-nominal
association were introduced and analyzed with permutation methods: Cramér’s
symmetric V measure, based on Pearson’s chi-squared test statistic, and Goodman
and Kruskal’s ta and tb asymmetric measures, based on the differences between con-
cordant and discordant pairs of observations. The relationships between Pearson’s
χ2 test statistic and Goodman and Kruskal’s ta and tb measures were described.

The third section illustrated the use of permutation statistical methods for
analyzing contingency tables in which two ordinal-level variables have been cross-
classified. Three popular measures of ordinal-ordinal association were introduced
and analyzed with permutation methods: Goodman and Kruskal’s G symmetric
measure of ordinal-ordinal association and Somers’ dyx and dxy asymmetric
measures of ordinal-ordinal association.

The fourth section illustrated the use of permutation statistical methods for
analyzing contingency tables in which a nominal-level variable was cross-classified
with an ordinal-level variable. Freeman’s θ measure of association for a nominal-
level independent variable and an ordinal-level dependent variable was described
and illustrated with exact permutation statistical methods.

The fifth section illustrated the use of permutation statistical methods for
analyzing contingency tables in which a nominal-level variable was cross-classified
with an interval-level variable. Pearson’s point-biserial correlation coefficient for
a dichotomous nominal-level variable and a continuous interval-level variable was
described and analyzed with exact permutation statistical methods.

The sixth section illustrated the use of permutation statistical methods for analyz-
ing contingency tables in which an ordinal-level variable was cross-classified with
an interval-level variable. Jaspen’s multi-serial correlation coefficient for ordinal-
interval association was described and analyzed with Monte Carlo permutation
methods.
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Epilogue

The purpose of A Primer of Permutation Statistical Methods is to introduce exact
and Monte Carlo permutation statistical methods to a new audience of researchers
with a limited background in statistics. To this end the book assumes only one
course in statistics such as might be taken by an undergraduate student majoring
in biology, economics, political science, or psychology. The structure of the book
is that of any first-term textbook in statistics and includes measures of central
tendency and variability, permutation methods for one-sample tests, tests of two
independent samples, matched pairs tests, one-way fully-randomized designs, one-
way randomized-blocks designs, simple linear correlation and regression, and the
analysis of two-way contingency tables.

Two models of statistical inference are described and compared: the conventional
Neyman–Pearson population model that is taught in all introductory courses, and the
lesser-known Fisher–Pitman permutation model with which the reader is assumed to
be unfamiliar. The Neyman–Pearson population model assumes random sampling
from one or more fully specified populations. Under the population model, the level
of statistical significance that results from applying a statistical test to the results of
an experiment or survey corresponds to the frequency with which the null hypothesis
would be rejected in repeated random sampling from a specified population or
populations. Because repeated sampling of the specified population(s) is usually
impractical, it is assumed that the sampling distribution of test statistics generated
under repeated random sampling conforms to an approximating theoretical distribu-
tion, such as the normal distribution. The size of a statistical test is the probability
under the null hypothesis that repeated outcomes based on random samples of the
same size are equal to or more extreme than the observed outcome.

In contrast, the Fisher–Pitman permutation model does not assume random
sampling, but is completely data-dependent, relying entirely on the observed data.
Thus, a test statistic is computed for the observed data and the observations are
then permuted over all possible arrangements of the observed data and the selected
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test statistic is computed for each arrangement. The proportion of arrangements
with test statistic values equal to or more extreme than the observed test statistic
yields the exact probability of the observed test statistic value. When the number
of possible arrangements of the observed data is very large, exact permutation
methods are impractical and Monte Carlo permutation methods become necessary.
Monte Carlo permutation methods generate a large random sample of all possible
arrangements of the observed data and the Monte Carlo probability is the proportion
of arrangements with test statistic values equal to or more extreme than the observed
test statistic.

Three main themes characterize the 11 chapters of the book. First, the per-
mutation test statistic, denoted by δ, is introduced and defined. Statistic δ is
the fundamental test statistic for permutation statistical methods, serving as a
replacement for many conventional test statistics ranging from Student’s t test
statistic, Fisher’s F -ratio test statistic, and Pearson’s χ2 test statistic. Statistic δ is
central to the descriptions and analyses presented in Chaps. 5–11 and constitutes a
unifying test statistic for many permutation-based analyses.

Second, measures of effect size have become increasingly important in con-
temporary research with many journals now requiring both tests of significance
and measures of effect size. In addition, introductory textbooks routinely include
measures of effect size for most statistical tests and measures. Measures of effect
size provide information pertaining to the practical or clinical significance of a
result, complementing the conventional tests of statistical significance. A relatively
new measure of effect size, designated �, is introduced and described. � is a
permutation-based, chance-corrected measure of effect size with an interpretation
that is easily understood by the average undergraduate. Positive values indicate an
effect size that is above what is expected by chance, negative values indicate an
effect size that is less than what is expected by chance, and a value of zero indicates
an effect size that is equal to what is expected by chance. Effect-size measure �
is central to the analyses presented in Chaps. 5–11 and constitutes a generalized
unifying measure of effect size for many permutation-based analyses.

Third, conventional statistics as taught in every introductory course necessarily
assume random sampling, normality, and, where appropriate, homogeneity of vari-
ance. Permutation statistical methods are entirely data-dependent and do not assume
random sampling, normality, or homogeneity. Moreover, because conventional
statistical tests and measures assume normality they rely on squared deviations
among sample values. Permutation statistical methods do not assume normality and,
therefore, are not limited to squared deviations among values. While almost any
positive scaling factor can be used with permutation methods, ordinary Euclidean
scaling has proven to be the most justifiable. As such, ordinary Euclidean scaling
allows permutation statistical methods to minimize, or in many cases completely
eliminate, the influence of extreme values or statistical outliers without resorting to
trimming, Winsorizing, or converting raw values to rank scores.
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In this introductory book on permutation statistical methods, both exact and
Monte Carlo methods are introduced and applied to a wide variety of conventional
statistical tests and measures. The permutation methods described provide an alter-
native approach to conventional statistical methods that is entirely data-dependent,
does not depend on the usual assumptions of normality and homogeneity, is ideal
for small samples, and is appropriate for both random and nonrandom samples.
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