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Abstract. Clustering is an attractive technique used in many fields and
lots of clustering algorithms have been proposed so far. The Density-
Based Spatial Clustering of Applications with Noise (DBSCAN) is one
of the most popular algorithms, which has been widely applied in many
different applications. This algorithm can discover clusters of arbitrary
shapes in large datasets. However, the fundamental issue is the right
choice of two input parameters, i.e. radius eps and density threshold
MinPts. In this paper, a new method is proposed to determine the value
of eps. The suggested approach is based on an analysis of the sorted
values of the distance function. The performance of the new approach
has been demonstrated for several different datasets.
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1 Introduction

Data clustering is one of the most important approaches used to discover
naturally occurring structures in a dataset. Clustering is a process, which refers
to grouping objects into meaningful clusters so that the elements of a cluster are
similar, whereas they are dissimilar in different clusters. Nowadays, a variety of
large collections of data are created. This brings a great challenge for clustering
algorithms, so new different clustering algorithms and their configurations are
being intensively developed, e.g. [12–15,26]. Data clustering is applied in many
areas, such as biology, spatial data analysis, business, and others. It should be
noted that there is no a clustering algorithm, which creates the right data par-
tition for all datasets. Moreover, the same algorithm can also produce different
results depending on the input parameters applied. Therefore, cluster valida-
tion should be also used to assess results of data clustering. So far, a number
of authors have proposed different cluster validity indices or modifications of
existing ones, e.g., [11,25,29–31].
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Among clustering algorithms four categories can be distinguished: partition-
ing, hierarchical, grid-based and density-based clustering. For example, the well-
known partitioning algorithms are, e.g. K-means, Partitioning Around Medoids
(PAM) [6,34] and Expectation Maximization (EM) [19], whereas the hierarchi-
cal clustering includes agglomerative and divisive approaches, e.g. the Single-
linkage, Complete-linkage or Average-linkage or DIvisive ANAlysis Clustering
(DIANA) [20,24]. Then, the grid-based approach includes methods such as e.g.
the Statistical Information Grid-based (STING) or Wavelet-based Clustering
(WaveCluster) [21,28,32]. The next category of clustering algorithms is the
density-based approach. The Density Based Spatial Clustering of Application
with Noise (DBSCAN) is the most famous density-based algorithm [10]. It can
discover clusters of an arbitrary shape and size, but is rarely used to cluster mul-
tidimensional data due to so-called “curse of dimensionality”. Consequently, it
has many extensions, e.g. [5,7,8,18,27,33]. However, the DBSCAN also requires
two input parameters, i.e. radius eps and density threshold MinPts. Determi-
nation of these parameters is crucial to the right performance of this clustering
method. Especially the eps radius is very difficult to be determined correctly.
Recently, new concepts have been proposed for the determining of these input
parameters [16]. It is important to note that clustering methods can be used dur-
ing a process of designing various neural networks [1–3], fuzzy and rule systems
[4,9,17,22,23].

In this paper, a new approach to determining the eps radius is proposed.
It is based on an analysis of a knee, which appears in the sorted values of the
distance function used in the dataset. This paper is organized as follows: Sect. 2
presents a detailed description of the DBSCAN clustering algorithm. In Sect. 3
the new method to determine the eps radius is outlined while Sect. 4 illustrates
experimental results on datasets. Finally, Sect. 5 presents conclusions.

2 The Concept of the DBSCAN Clustering Algorithm

In this section the basic concept of the DBSCAN algorithm is described. As
mentioned above, it is a very popular algorithm because it can find clusters of
arbitrary shapes and requires only two input parameters, i.e. the eps radius and
the density threshold MinPts. To understand the basic concept of the algorithm
several terms should be explained. Let us denote the eps radius by ε and a dataset
by X, where a point p ∈ X. The ε is usually determined by the user and the
right choice of this parameter is a key issue for this algorithm. The MinPts is
the minimal number of neighboring points belonging to a so-called core point.

Definition 1: The ε-neighborhood of point p ∈ X is called Nε(p) and is defined
as follows: Nε (p) = {q ∈ X|dist(p, q) ≤ ε}, where dist(p, q) is a distance function
between p and q.

When a number of points belonging to the ε-neighborhood of p is greater or
equal to the MinPts, p is called the core point.
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Definition 2: A point p is directly density-reachable from a point q with
respect to ε and the MinPts when q is a core point and p belongs to the ε-
neighborhood of q.

When a point p is directly density-reachable from a point q and a number
of points belonging to the ε-neighborhood of p is smaller than the MinPts, p is
called a border point.

Definition 3: A point p is a noise if it is neither a core point nor a border
point.

Definition 4: A point p is density-reachable from a point q with respect to the
ε and the MinPts when there is a chain of points p1, p2, . . . , pn, p1 = q, pn = p
so that pi+1 is directly density-reachable from pi.

Definition 5: A point p is density-connected to a point q with respect to the ε
and the MinPts when there is a point o such that p and q are density-reachable
from the point o.

Definition 6: A cluster C with respect to the ε and the MinPts is a non-empty
subset of X, where the following conditions are satisfied:

1. ∀p, q: if p ∈ C and q is density-reachable from p with respect to the ε and
the MinPts, then q ∈ C.

2. ∀p, q ∈ C: p is density-connected to q with respect to the ε and the MinPts.

The DBSCAN algorithm creates clusters according to Definition 6. At first, a
point p is selected randomly and if |Nε(p)| ≥ MinPts than the point p will
be the core point and will be marked as a new cluster. Next, the new cluster
is expanded by the points which are density-reachable from p. This process is
repeated until no cluster found. On the other hand, if |Nε(p)| < MinPts, then
the point p will be considered as a new noise. However, this point can be included
in another cluster if it is density-reachable from some core point.

3 Explanation of the New Approach to Determine
the Eps Parameter

As mentioned above the right choice of the eps (ε) parameter is a fundamental
issue for a high performance of the DBSCAN. However, it is a very difficult

Fig. 1. An example of 2-dimensional dataset consisting of three clusters.
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Fig. 2. Sorted values of the kdist function with respect to k = 5 and k = 6 for the
dataset.

task. One of the most popular ideas bases on a distance function which com-
putes a distance between each point p ∈ X and its k-th nearest neighbor. This
function can be denoted by kdist. It requires an input parameter k, which is
the number of the nearest neighbors of the point p. For instance, Fig. 1 shows
an example of a 2-dimensional dataset consisting of three clusters. The clusters
contain 150, 100 and 50 elements, respectively. The kdist function can be used
in the dataset, and then the results are sorted in an ascending order. Figure 2
presents the sorted results for two values of the k parameter, i.e. k = 5 and k
= 6. It can be observed that the plots include a “knee”, where the distances
change significantly. Moreover, the number of calculated distances for k=6 is
greater than for k = 5, because additional distances have to be calculated. The
fundamental issue is the appropriate determining of a threshold point, which
defines the maximal kdist value in the clusters of a dataset. All the points with
kdist values higher than the maximal kdist value are considered to be a noise. It
can be noted that the threshold point refers to the “knee” but it is very difficult
to determine this point correctly. To solve this problem, a new method, which
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Fig. 3. Partition of the range for four equal parts: part1, part2, part3 and part4.
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consists of a few steps, is proposed. Let us denote a set of all the sorted values of
kdist function for the X dataset by Vsdist. The ε (eps), mentioned above, depends
on the threshold point occurring in the dataset for the given k number of the
nearest neighbors of the point. It should be noted that in Fig. 2 the values of the
kdist function increase abruptly when they are to the right of the “knee”. This
means that there are points beyond the threshold point of the dataset and they
can be interpreted as a noise. Moreover, the “knee” usually appears at the end
of the sorted values of the kdist function and its size depends on the properties of
the dataset. Among the sorted values, it is possible to determine a range, which
indicates the knee more precisely. It can be defined by vstart and vstop points as
follows:

vstart = |Vsdist| − |X|
vstop = |Vsdist|

(1)

where |Vsdist| is the number of the elements of the Vsdist and |X| is the number of
the elements of the X. Furthermore, the range is divided into four equal parts,
i.e. part1, part2, part3 and part4. The size of such part is equal to |X| /4. For
example, Fig. 3 shows the partition of the range for four equal parts. Next, for
each of the parts the average values are calculated as follows:

Sv1 =
1
n

n∑

i=v1

kdist (i)

Sv2 =
1
n

n∑

i=v2

kdist (i)

Sv3 =
1
n

n∑

i=v3

kdist (i)

Sv4 =
1
n

n∑

i=v4

kdist (i)

(2)

where n is the number of the kdist values occurring in each part and vj is the
start point of the jth part, j = 1..4. These start points are defined as follows:
v1 = vstart, v2 = v1 + n, v3 = v2 + n and v4 = v3 + n. Next, the “knee” can be
analyzed by these calculated averages values. First, three factors a, b and c are
computed. They can be expressed as follows:

a =
Sv2

Sv1
b =

Sv3

Sv2
c =

Sv4

Sv3
(3)

These factors play a key role in the analysis of the “knee”. For instance, when
the values of the kdist increase very slowly in part1, part2 and part3, the average
values Sv1, Sv2, Sv3 also do not change significantly. Thus, the values of a and b
are almost equal. Furthermore, if values of the kdist function increase abruptly in
part4, then parameter c will have a large value. In this case, the ε should equal
Sv4 because there is a high probability that the Sv4 refers to the threshold point
occurring in this dataset so it can be expressed as:
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if(a ≈ b) ∧ (c ≥ T ) then

ε = Sv4

(4)

where T is a constant value and is determined experimentally (T = 1.4). On
the other hand, when c < T , the values of the kdist increase slowly in part4 and
the “knee” can be quite wide, so smaller values of the kdist function refer to the
threshold point. In this case, the ε should be calculated with respect to part2,
part3 and part4 so it is defined as follows:

if(a ≈ b) ∧ (c < T ) then

ε =
Sv2 + Sv3 + Sv4

3

(5)

Next, when the values of the kdist increase significantly in part1, part2 and
part3, the values of a and b are different, i.e. the b is much bigger than the a
factor. It means that the threshold point refers to the values from part3 and
part4. Thus, the ε can be defined as follows:

if(a �= b) then

ε =
Sv3 + Sv4

2

(6)

In the next section, the results of the experimental studies are presented to
confirm the effectiveness of this new approach.

4 Experimental Results

In this section, several experiments have been conducted on 2-dimensional arti-
ficial datasets using the original DBSCAN algorithm. This algorithm is one of
most popular clustering methods, because it can recognize clusters with arbitrary
shapes. Artificial datasets include clusters of various sizes and shapes. The first

Table 1. A detailed description of the artificial datasets

Datasets No. of elements Clusters

Data 1 75 4

Data 2 500 4

Data 3 700 6

Data 4 700 3

Data 5 900 4

Data 6 500 4

Data 7 700 2

Data 8 2300 7

Data 9 3000 3
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parameter k (MinPts) equaled 6 in all the experiments. Such value of the k guar-
antees that the algorithm does not create clusters of too low a density threshold.
To automatically determine the radius ε, the new approach described above is
used. Moreover, the evaluation of the accuracy the DBSCAN algorithm is con-
ducted by visual inspection. It can be noted that this algorithm is rarely used to
cluster multidimensional data due to the so-called “curse of dimensionality”.
Recently, however, a modification of this algorithm has been proposed to solve
this problem [7].

4.1 Datasets

In the conducted experiments nine 2-dimensional datasets are used. Most of
them come from the R package. The artificial data are called Data 1, Data 2,
Data 3, Data 4, Data 5, Data 6, Data 7, Data 8 and Data 9, respectively.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4. Examples of 2-dimensional artificial datasets: (a) Data 1, (b) Data 2, (c) Data 3,
(d) Data 4, (e) Data 5, (f) Data 6, (g) Data 7, (h) Data 8 and (i) Data 9.
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They consist of various number of clusters, i.e. 2, 3, 4, 6, and 7 clusters.
The scatter plot of these data is presented in Fig. 4. As it can be observed on
the plot, the distances between the clusters are very different and some clusters
are quite close. Generally, the clusters are located in different areas and some
of the clusters are very close and others quite far. For instance, in Data 5 the
elements create Gaussian, square, triangle and wave shapes, Data 6 consists
of 2 Gaussian eyes, a trapezoid nose and a parabola mouth (with a vertical
Gaussian one) and Data 7 is so-called the spirals problem, where points are on
two entangled spirals. Moreover, the sizes of the clusters are different and they
contain a various number of elements. Table 1 shows a detailed description of
these datasets used in the experiments.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5. Results of the DBSCAN clustering algorithm for 2-dimensional datasets: (a)
Data 1, (b) Data 2, (c) Data 3, (d) Data 4, (e) Data 5, (f) Data 6, (g) Data 7, (h)
Data 8 and (i) Data 9
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4.2 Experiments

The experimental analysis is designed to evaluate the performance of the new
method to automatically specify the ε parameter. As mentioned above, this
parameter is very important for the DBSCAN algorithm to work correctly and
it is usually determined by visual inspection of the sorted values of the kdist

function. On the other hand, the new approach described in Sect. 3 allows us to
determine this parameter in an automatic way. In these experiments the nine
2-dimensional datasets used are called Data 1, Data 2, Data 3, Data 4, Data 5,
Data 6, Data 7, Data 8 and Data 9 datasets. It needs to be noted that the value
of the k (MinPts) parameter equals 6 in all the experiments. Then, when the ε
parameter is specified by the new method, the DBSCAN algorithm can be used
to cluster these datasets. Figure 5 shows the results of the DBSCAN algorithm,
where each cluster is marked with different signs. The data elements classified
as the noise are marked with a circle. It should be noted that the new approach
provides correct values of the ε in all the experiments. Thus, despite the fact
that the differences of distances and shapes between clusters are significant, all
the datasets are clustered correctly by the DBSCAN . Moreover, the number of
data elements classified as noise in all the datasets is small.

5 Conclusions

In this paper a new method is proposed for computing the ε parameter for the
DBSCAN algorithm. This method uses the kdist function, which computes the
distance between each point p ∈ X and its kth nearest neighbor. The funda-
mental issue is to correctly determine the threshold point, which defines the
maximal kdist value in the dataset clusters. To solve this problem, first, the new
method finds out the region of the kdist values creating the knee and divides it
into four parts. Next, average values of these parts are determined. This makes it
possible to calculate the right value of ε. In the conducted experiments, several
2-dimensional datasets were used, where the number of clusters, sizes and shapes
varied within a wide range. From the perspective of the conducted experiments
this automatic way to compute ε is useful and easy. All the presented results
confirm a very high efficiency of the newly proposed approach.
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