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Abstract. The objective of this work is to offer an approach of applica-
tion of machine learning (ML) in the problem of design of pharmaceuti-
cal technology of tablets, which basically consists of choosing qualitative
and quantitative content of the corresponding excipients, enabling us
necessary values of pharmaceutical and technological characteristics. At
the first stage, we choose technology and qualitative content of tablets,
including filler, acidity regulator, disintegrant, binder and stabilizer.
After selecting excipients ensuring some acceptable values of output vari-
ables for tablets, at the second stage, the problem of optimization of some
objective variable is considered subject to quantitative content of excip-
ients. An example, which is devoted to the development of a technology
of tablets of acetylsalicylic acid with atorvastatin is considered.

Keywords: Machine learning · Pharmaceutical technology ·
Neural network · R · Tablets

1 Introduction

In pharmaceutical research tasks a large number of experiments taking into
account several factors and their combinations are required. Special experiment
plans can be very useful, which are based on combinatorial configurations. Apply-
ing special plans (e.g., using a second-order Latin cube), the problem can be
solved using fewer experiments [4,6]. In this case, the experimental material
obtained will meet all requirements. Tasks of this type are typical for a large
number of research areas. This is the search for new drugs, fertilizers, feed,
construction materials, alloys, lubricating oils, and many other mixtures. Exper-
iment planning and analysis are an important branch of statistical methods,
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which are designed to detect and verify causal relationships between input vari-
ables (factors) and output (responses).

The objective of this work is to offer an approach of application of ML in
the problem of design of pharmaceutical technology of tablets, which basically
consists of choosing qualitative and quantitative content of the corresponding
excipients (auxiliary substances), enabling us necessary values of pharmaceutical
and technological characteristics.

“Tablets may be defined as the solid unit dosage form of medicament or
medicaments with or without suitable excipients and prepared either by mold-
ing or by compression. It includes a mixture of active substances and excipients,
usually in powder form, pressed or compacted from a powder into a solid dose.
The excipients can include diluents, binders or granulating agents, glidants (flow
aids) and lubricants to ensure efficient tableting; disintegrants to promote tablet
break-up in the digestive tract; sweeteners or flavors to enhance taste; and pig-
ments to make the tablets visually attractive or aid in visual identification of an
unknown tablet” [2].

Currently, there are two main methods of producing tablets. They are the
direct compression of substances and granulation.

The method of direct compression has several advantages. It allows you to
achieve high productivity, significantly reduce the time of the technological cycle
by eliminating a number of operations and stages, eliminate the use of several
equipment items, reduce production areas, and reduce energy and labor costs.
The direct compression makes it possible to obtain tablets from moisture, ther-
molabile and incompatible substances. Nowadays, however, less than 20% of
tablets are obtained by this method. It follows from the fact that the major-
ity of medicinal substances do not possess the properties providing their direct
compression. These properties include the isodiametric shape of crystals, good
flowability (fluidity) and compressibility, low adhesiveness to the compression
tool of the tablet machine.

Granulation is directed enlargement of particles, i.e. it is the process of turn-
ing a powdered material into grains of a certain size. Granulation is necessary to
improve the flowability of the tableting mass, which occurs as a result of a signif-
icant decrease in the total surface of the particles when they stick together into
granules and, therefore, a corresponding reduction in friction that occurs between
these particles during movement. The stratification of a multi-component pow-
der mixture usually occurs due to the difference in particle sizes and the specific
gravity values of the medicinal and auxiliary components included in its compo-
sition. This separation is possible with various kinds of vibrations of the tablet
machine or its funnel. The stratification of the tableted mass is a dangerous and
unacceptable process, in some cases causing an almost complete separation of
the component with the highest specific gravity from the mixture and violation
of its dosage. Granulation prevents this danger since particles of various sizes and
specific densities stick together in its process. The resulting granulate, subject to
the equality of the sizes of the resulting granules, acquires a fairly constant bulk
density. The strength of the granules also plays an important role, i.e., strong
granules are less prone to abrasion and have better flowability.
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The currently existing methods of granulation are divided into the following
main types: dry granulation; wet granulation or extrusion granulation; structural
granulation.

2 General Scheme of Design of Tablet Technology with
the Help of ML

The general scheme of ML is based on the application of neural networks.
Namely, if there is only one hidden layer and only one output unit, then the
set of all implemented neural networks with N hidden units is

R(N)
n (ψ) =

⎧
⎨

⎩
h(x) : Rn → R|h(x) =

N∑

j=1

βj(w�
j x − θj)

⎫
⎬

⎭
,

where ψ is the common activation function of the hidden units and � denotes
transpose, output units are always assumed to be linear [7].

Assume we consider some active pharmaceutical ingredient (API or medica-
ment) P 1.

Stage 1. Choice of Technology and Qualitative Content. In general case,
we start tablet design from investigating the possibility of application of the
direct compression. For this purpose we consider some excipients (auxiliary sub-
stances), including filler A, acidity regulator B, disintegrant C, binder D and
stabilizer E. We note that from viewpoint of ML we have the following categor-
ical variables and their values corresponding to certain excipients

A ∈ {a1, a2, . . . , anA
}, B ∈ {b1, b2, . . . , bnB

}, C ∈ {c1, c2, . . . , cnC
},

D ∈ {d1, d2, . . . , dnD
}, E ∈ {e1, e2, . . . , enB

}.

Here nA, nB , nC , nD, nE ∈ N are the quantities of different fillers, acidity regu-
lators, disintegrants, binders and stabilizers, respectively, which are considered
in the tablet design.

When developing ML model we consider the tuples of input variables in the
following binary form

{a1, a2, . . . , anA , b1, b2, . . . , bnB , c1, c2, . . . , cnC , d1, d2, . . . , dnD , e1, e2, . . . , enB} ∈ B
n,

where n = nA +nB +nC +nD +nE , Bn =
{
(b1, b2, . . . , bn)|bi ∈ {0, 1}, i = 1, n

}
.

Each tuple of input variables Ei, i = 1, p (p ∈ N is the number of experiments)
corresponds to the certain experiment implying the application of corresponding
excipients.

As a rule after mixing active ingredient with excipients, we get a powder with
some properties with respect to compression. If the powder (as a tablet mass)

1 It can be some complex of ingredients, as it is shown in Sect. 3.
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can be compressed we produce tablets through direct compression, otherwise,
we apply granulation at first.

In any case we should investigate the pharmaceutical and technological
indices of granules (in case of granulation) yi ∈ R, i = 1, 6 (see Table 1), tablet
mass yi ∈ R, i = 7, 12 (see Table 2) and tablets yi ∈ R, i = 13, 15 (see Table 3),
which are considered as output variables in ML algorithms.

For example, in case of compressible tablet mass we consider yi, i = 7, 12 as
outputs, in case of preliminary application of granulation we need yi, i = 1, 6
and then we observe yi, i = 7, 12. Finally, we get tablets, which are characterised
by the variables yi ∈ R, i = 13, 15.

After fulfilling p experiments, which are described by the binary matrix of
input variables E ∈ B

p×n and real-valued matrix of output variables Y = (yj
i ) ∈

R
p×15, we construct 15 neural networks hi ∈ R(N)

n , i = 1, 16 corresponding
pharmaceutical and technological indices yi, i = 1, 15.

Table 1. Output variables for granulate

Denotion Meaning Units

y1 Humidity of the granulate %

y2 Bulk density of the granulate g/ml

y3 Density after shrinkage of the granulate g/ml

y4 Carra index of granulate %

y5 Flow of granulate c/100 g

y6 Angle of slope of the granulate ◦

Table 2. Output variables for tablet mass

Denotion Meaning Units

y7 Bulk density of the tablet mass g/ml

y8 Density after shrinkage of the tablet mass g/ml

y9 Carra index of tablet mass %

y10 Pill weight c/100 g

y11 Slope of the tablet mass ◦

y12 Homogeneity of mass %

Stage 2. Quantitative Optimization. After selecting excipients ensuring
some acceptable values of output variables for tablets yi, i = 13, 15 there appears
the problem of optimization of some objective variable yi∗ , i∗ ∈ 13, 15. Namely,
let us assume we have selected some values ai∗ , bj∗ , ck∗ , dl∗ , em∗ , i∗ ∈ 1, nA,
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Table 3. Output variables for tablets

Denotion Meaning Units

y13 Resistance to crushing N

y14 Erasure %

y15 Decomposition Min

j∗ ∈ 1, nB , k∗ ∈ 1, nC , l∗ ∈ 1, nD, m∗ ∈ 1, nE , characterizing excipients. The
goal is to search the quantities of excipients enabling us the optimal2 value of
an index yr, r ∈ 13, 15.

We offer the following approach. We consider five levels for each of the excip-
ients ai∗ , bj∗ , ck∗ , dl∗ , em∗ , determining the corresponding concentrations. We
denote them as

lai∗
1 , lai∗

2 , . . . , lai∗
5 , lbi∗1 , lbi∗2 , . . . , lbi∗5 , lci∗1 , lci∗2 , . . . , lci∗5 ,

ldi∗
1 , ldi∗

2 , . . . , ldi∗
5 , lei∗1 , lei∗2 , . . . , lei∗5 ,

The choice of values for levels of concentrations depends on concrete sub-
stances and is a sort of art.

When developing ML model we consider the tuples of input variables in the
following binary form

{lai∗
1 , lai∗

2 , . . . , lai∗
5 , lbi∗1 , lbi∗2 , . . . , lbi∗5 , lci∗1 , lci∗2 , . . . , lci∗5 ,

ldi∗
1 , ldi∗

2 , . . . , ldi∗
5 , lei∗1 , lei∗2 , . . . , lei∗5 } ∈ B

25

Each tuple of input variables E ′
i , i = 1, p′ (p′ ∈ N is the number of experiments)

corresponds to the certain experiment implying application of excipients ai∗ , bj∗ ,
ck∗ , dl∗ , em∗ at given levels of concentrations. yr is considered as output variable
in ML algorithm.

After fulfilling pr experiments, which are described by the binary matrix
of input variables Er ∈ B

pr×25 and vector of output variables Yr = (yjr) ∈
R

pr , we construct neural network hr ∈ R(N)
25 , corresponding pharmaceutical (or

technological) index yr.
At last, we apply the optimization algorithm (e.g., genetic algorithm) for the

objective function given by neural network hr. As a result we get some optimal
solution

{lai∗
j∗ , lbi∗j∗ , lci∗j∗ , ldi∗

j∗ , lei∗j∗ } ∈ B
5

resulting to the optimal value of yr
3.

2 Without loss of generality we look for minimal value.
3 Without loss of generality we choose unique index j∗ for all excipients, which it can

be reached by reordering levels.
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3 Application for Tablets of Acetyl Salicylic Acid with
Atorvastatin

In the following example, we demonstrate the application of the general scheme
presented above for the design of tablets based on atorvastatin.

The release of active ingredient and poor flowability of the tablet mass
requires optimization. Therefore, the decision is made to combine atorvastatin
with poor flowability with a solution in granules, which improves flowability.

In the literature, atorvastatin calcium is described as an unstable substance
and many approaches are proposed for obtaining a stable pharmaceutical form
of atorvastatin. If necessary, the problem can be solved by obtaining atorvas-
tatin calcium only in crystalline form (see WO 97/3958 and WO 97/3959) [3]
and only in amorphous form (see WO 97/3960, WO 01/42209 and P-9900271)
[8,10], respectively, before entering it into a formulation requiring an additional
operation in which 5–10% of the substance is lost. Therefore, 10.36 mg of ator-
vastatin calcium powder per tablet should be used for the obtaining of 10 mg of
atorvastatin to the dosage form.

The solubility of various forms of atorvastatin calcium and, accordingly, its
solubility can also be solved at the drug level by adding to the formulation a
basic or buffering agent (see WO 00/35425 (D2), WO 94/16693 (D1 (WL8)))
[9], which increases the bioavailability of atorvastatin by increasing its solubility
and dissolution rate in aqueous solutions. To obtain a stabilized amorphous
substance, a combination of methods described in WO 01/42209, P-9900271
and WO 01/42209 can be used. An additional argument in favor of this solution
is the fact that atorvastatin calcium is an expensive substance.

The researchers found that the solubility of atorvastatin calcium in aqueous
solutions is significantly improved with pH values equal to pKa+1 or higher. At
the same time, the difference between the solubility of atorvastatin calcium in
the crystalline and amorphous form becomes insignificant. The value of pKa of
the final carboxyl group of atorvastatin is 4.5. To increase the pH of the aqueous
solution to the desired range of values, the pharmaceutical formulation may con-
tain a substance B adjusting the pH of 0.2–2.0 mmol, preferably 0.4–1.2 mmol.
Accordingly, the best adjusting substances are metal oxides, inorganic or organic
bases, salts of organic or inorganic acids and alkaline earth metals, in particular,
magnesium oxide, alkaline phosphate buffers, in particular, sodium phosphate
and hydrophosphate, and organic amines, in particular, tris (hydroxymethyl)
methylamine.

Mills and co-authors of U.S. Patent No. 5686104 state that the pharma-
ceutical composition may contain an inorganic base of calcium, magnesium,
aluminum, or lithium salt. Examples of such salts include calcium carbonate,
calcium hydroxide, magnesium carbonate, magnesium hydroxide, magnesium
silicate, magnesium aluminate, aluminum hydroxide or lithium hydroxide [N
5686104]. In addition, U.S. Patent No. US20040247673 states that since adding
alkaline earth metal salts can affect the bioavailability of atorvastatin, this is nec-
essary to ensure that it is added to atorvastatin when wet granulation of the com-
position (see US20040247673). Among buffering agents, WO 00/35425 describes
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sodium or potassium citrate, sodium phosphate, sodium sulfate, sodium car-
bonate or magnesium, sodium ascorbinate, sodium benzoate, sodium carbonate
or potassium bicarbonate, lauryl sulfate, or a mixture of such buffers (see WO
00/35425).

To enhance the disintegration of granules you can add a leavening agent C.
US20040247673 states that some disintegrators may be harmful to atorvastatin
stability, for example, croscarmellose sodium (see US20040247673).

WOO 1/76566 describes a stabilized pharmaceutical composition of ator-
vastatin calcium and an effective stabilizing amount of an amido group or
an amino group comprising a polymeric compound from the group consist-
ing of polyvinylpyrrolidone, crosslinked polyvinylpyrrolidone, copolymers of
vinylpyrrolidone and vinyl acetate and polynocycline (see WOO 1/76566).

The binders D may be selected from the group consisting of starch, gelatin,
dextrin, maltodextrin, natural and synthetic gums such as Arabic gum, alginic
acid, sodium alginate, guar gum, Irish moss extract, ghatti gum, husks mucus,
carboxymethyl cellulose, methyl cellulose, hydroxyethyl cellulose, hydroxypropyl
cellulose, hydroxypropylmethylcellulose, polyvinylpyrrolidone, wigum, arabo-
galactans and the like and their mixture. Typically, the number of binders may
vary from about 0.5% to about 10% by weight of the composition.

Increased stability can be achieved by introducing an additional stabilizer
of E. An additional stabilizer includes antioxidants selected from the group
consisting of butylated hydroxyanisole, butylated hydroxytoluene, DL-alpha-
tocopherol, propyl ghalate, octyl gallate, ethylenediaminetetraacetate, ascorbil
palmitate, acetylcysteine, ascorbic acid, sodium ascorbate, fumaric acid, lecithin,
and the like, and their mixtures. The number of antioxidants can vary from about
0.001% to about 0.01% by weight, preferably 0.009%.

In most of the cases, the stabilizer includes tromethamine, antioxidants, and
sodium lauryl sulfate. Sodium levels of lauryl sulfate may range from 1% to 2%
by weight of the composition.

Given the fact that atorvastatin is characterized by high lyophilicity, this
requires the addition of surfactants. A classic example is a polysorbate (Twin
80), but it is incompatible with phenol, salicylates. Therefore, poloxamer 338
was investigated as a stabilizer.

Fillers A that can be used include micro-cellulose, mannitol, dextritis, dex-
trin, dextrose, fructose, lactose, lactitol, maltitol, maltodextrin, maltose, and the
like. Mostly the filler is the micro-cellulose. For wet granulation commercially
available is micro-cellulose 101.

For the reasonings given above, the studied excipients were grouped by func-
tional purpose (see Table 4).

When receiving the granules, 10.36 g of the atorvastatin calcium was mixed
with 18.55 g of MCC 101 and there were added 22 g of the substance from the
group A, 33 g from B and 7.5 g from C. The substances D and E were added to
27.76 g of purified water. The powder mixture was moistened with the resulting
solution, passed through a sieve with a hole diameter of 2 mm and dried at 85 ◦C.
The dried granules were calibrated through a sieve with a diameter of holes of



ML Approach for the Design of Tablets 223

Table 4. Excipients to be considered in tablets of acetyl salicylic acid with atorvastatin
design

Variable Corresponding excipient

a1 Lactose monohydrate (Pharmattose 200M)

a2 Sorbitol (Parteck SI 150)

a3 Mannit (Parteck Delta M)

b1 Magnesium carbonate

b2 Calcium carbonate

b3 Calcium dihydrogen phosphate

c1 Corn starch

c2 Sodium croscarmellose

c3 Crospovidone XL-10

d1 PVP (Kollidone 17 PF)

d2 PVP (plasdone K 90)

d3 PVP (plasdone K 25)

d4 PVP (plasdone K 30)

d5 PVP (Pladdon S630)

d6 Gipromeloz E 5

d7 Gipromeloz E 15

d8 Klucel EXF

d9 Hydroxypropylmethylcellulose acetose succinate (Shin-Etsu AS-MF)

e1 Magnesium aluminosilicate (neusilin US2)

e2 Silicon dioxide anhydrous colloid (aerosil 200)

e3 Sodium stearyl fumarate

e4 Sodium lauryl sulfate

e5 Potato starch

e6 Potato starch pregelatinised (Starch 1500)

e7 PEG 4000

e8 PEG 8000 (macrogol)

e9 Poloxamer 338

1 mm and tested twice with respect to the pharmaceutical and technological
parameters. 92 g of granulate was added with 75 g of acetyl salicylic acid and the
following excipients: 1 g of citric acid, 21 g of MCC 102, 10 g of starch of corn. 1 g
of calcium stearate was used for flushing. Each series of tablet mass was tested
twice in all metrics according to pharmacopoeial requirements. Biconvex tablets
with a diameter of 8 mm and an average weight of 0.2 g were pressed.
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3.1 Implementation of the Neural Network Modeling in R

Calculations were implemented in RStudio (version 1.1.456). Nowadays it one
of the most effective ways to apply ML algorithms for practical tasks [5].

“Binarization” of input data, which were primarily stored in data frame df,
was implemented with help of R code4

flags = data.frame(Reduce(cbind,
lapply(levels(df$A),
function(x){(df$A == x)*1})

)) # transforming levels of A to binary values
names(flags) = levels(df$A) # names of columns corresponding to

# levels of A
df = cbind(df, flags) # binding binary columns

In case of atorvastatin tablets we have n = 27 binary input variables correspond-
ing to different excipients. We consider the results of p = 270 experiments.

Hence, names of all binarized input variables in the form of string, which can
be used in ML formula, are obtained in the following way

inputvariables = paste(c(paste(levels(df$A),collapse = " + "),
paste(levels(df$B),collapse = " + "),
paste(levels(df$C),collapse = " + "),
paste(levels(df$D),collapse = " + "),
paste(levels(df$E),collapse = " + ")),
collapse = " + ")

Neural network construction is implemented within package neuralnet with
help of the following function

net_y15 = neuralnet(paste("y15 ~ ", inputvariables), df,
hidden = c(18), threshold = 0.01)

Here we construct neural network for the output variable y15 on the basis of 27
binary input variable. We consider one hidden layer containing 18 neurons5 The
neural network obtained is presented on Fig. 1.

We applied cross-validation for building the predictive model. It implies
repeating K times of the following process [1]: 1. The train-test splitting in
the ratio of 90% of training tuples. 2. Fitting the model to the train set. 3.
Testing the model on the test set. 4. Calculating the prediction error.

When we let K = 30 for the amount of cross validation steps then we get
the mean value of MSE equal to 3.65e-05 (see Fig. 2).

4 It is example of code for input variable A.
5 The quantity of 18 neurons (i.e. 2/3 of the quantity of input variables) was chosen

experimentally with the aim to reach the smallest mean-squared error (MSE).
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Fig. 1. Neural network for predicting variable y15 on the basis of excipients for design
of tablets containing atorvastatin. The black lines show the connections between each
layer and the weights on each connection while the blue lines show the bias term added
in each step (Color figure online)

Fig. 2. MSE as a result of procedure of cross validation for design of atorvastatin
tablets
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Table 5. The levels of excipients (mg) for quantitative optimization

lc11 lc12 lc13 lc14 lc15
5.0 7.03 10.0 12.97 15.0

ld61 ld62 ld63 ld64 ld65
0 0.05 0.12 0.19 0.24

le51 le52 le53 le54 le55
0 0.36 0.89 1.42 1.78

Fig. 3. Visual comparison to the performance of the network and the linear model on
the test set

4 Conclusions

The best values of characteristics of the granulate, tablet mass and tablets are
provided by the following excipients: a2 (sorbitol (Parteck SI 150)), b2 (calcium
carbonate), c1 (corn starch), d6 (hypromellose E 5) and e5 (starch potatoes).
The combination of these substances was simultaneously investigated in the 5th
series. According to the results of the analysis, all of the studied parameters met
the pharmacopoeial requirements, but the decomposition (on average 11 min)
should be reduced.

In the second stage of the general scheme, in order to reduce the time of
disintegration of tablets it is reasonable to increase the amount of disintegrating
substance of corn starch (c1). When preparing the solution for moisture, it is
necessary to reduce the concentration of hypromellose E 5 (d6) and increase the
content of potato starch (e5). The quantities of these substances were studied at
5 levels (see Table 5).
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As a result of application of genetic algorithm we obtained the minimal value
of y15 at the levels lc14 , ld6

1 and le55 respectively. Such quantitative content of
excipients in tablets corresponds to experiments entirely [11,12].

We compared the application of neural network with a linear model. By
visually inspecting the plot (see Fig. 3) we can see that the predictions made by
the neural network are (in general) more concentrated around the line (a perfect
alignment with the line would indicate an MSE of 0 and thus an ideal perfect
prediction) than those made by the linear model (LM).
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