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Abstract. Chromosome analysis plays an important role in investigat-
ing one’s genetic disorders and abnormalities. Many works are done on
automating this operation for decades. Segmentation of chromosomes is
the first step of this process, and it is essential for the next step which
is classification. However, it is not an easy task due to a very noisy
background, the presence of other cells and the variation of chromosome
structures. In this paper, we propose a raw G-band chromosome image
segmentation method using U-net based convolutional neural network.
To this end, we constructed a raw G-band chromosome dataset which
consists of 40 images. In order to prevent over-fitting, we implemented
augmentations on the training and the validation set images. The trained
model achieved 96.97% dice score. The experimental results showed that,
the convolutional neural network can provide satisfying results, especially
with highly noisy images.
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1 Introduction

Chromosomes are considered the main genetic information carriers. Every
healthy individual has 46 chromosomes in total, 22 pairs of non-sex and two
sex chromosomes. Analyzing the quantity and the structure of these chromo-
somes helps us to investigate one’s genetic disorders (e.g. Down syndrome and
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Turner syndrome) and genetic abnormalities [3]. It is difficult to differentiate the
chromosomes under a light microscope. Therefore, scientists developed different
staining methods (bandings), which are used to color different parts of the chro-
mosomes, in order to display their structural details. These bandings make the
chromosome identification easier and more reliable. The most known ones are
G-banding, Q-banding, R-banding, and C-banding. G-band images are obtained
by using Giemsa dye, which reacts differently for each nucleic acid base pairs. It
leads to a set of bright or dark gray bands throughout the chromosomes. Today,
G-banding is the most used method for karyotyping.

Thanks to the improvements in computer science in the last 30 years, the
use of computers on chromosome analysis is now achievable. Automated chro-
mosome analysis has been studied by many researchers. Preprocessing and seg-
mentation of chromosomes from the background pixels are the first step for an
automated solution and necessary for the next steps, which are the classification
of chromosomes and karyotyping. However, it is a challenging task for several
reasons: a very noisy background, the presence of other cells and the variation
of chromosome structures.

Otsu thresholding method [11] was used by Ji [5]. However, using a global
threshold value caused losses on the bright chromosome parts and the chromo-
some satellites. To cope with this issue, Ji [6] and Stanley [15] proposed a local
re-thresholding method. This method consists of two steps. Firstly, Otsu thresh-
olding is applied on the whole image. Secondly, the objects are separated from
the segmented image using connected components and then applied a second
Otsu thresholding on each object. Grisan et al. [4] presented locally adaptive
thresholding for the segmentation of Q-band chromosome images. The images
are divided into small squares, 100 pixels by 100 pixels, and Otsu thresholding
was applied on each square. Then, the squares are resized to the original image
size using bilinear interpolation to obtain a pixel-wise map. Sugapriyaa et al. [16]
adopted this method and applied it on G-band metaphase images. Lerner [9],
Cao et al. [1] and Soumya [14] employed clustering based segmentation meth-
ods for the chromosome and background separation, such as K-means clustering
and fuzzy C-means clustering algorithm. Poletti et al. [12] implemented and
compared the performance of different thresholding methods on Q-band chro-
mosome images in their review paper. As observed in the article, adaptive and
region based thresholding methods provided better results compared to global
thresholding methods. Yilmaz et al. [17] cleared the background pixels of G-band
chromosome images by implementing a thresholding method based on the peak
value of the image histogram. Afterward, the interphase cells were removed using
their characteristics and Gaussian filter was applied to obtain clear chromosome
borders. Unlike the others, in [17] raw images are used. Most of the works car-
ried in this field need human interaction to achieve good results. In addition, the
used images are preprocessed: the chromosomes are already separated from the
background pixels and the noise is reduced or removed.

In this paper, we introduced a U-net [13] based neural network for segmenta-
tion of raw G-band chromosome images. First, we created the dataset with the
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images taken from Renji Hospital. For the purpose of improving the segmenta-
tion results and to prevent over-fitting, we implemented augmentations on the
images in the dataset. For the evaluation of the model, Jaccard distance loss
and dice coefficient loss are employed as metrics, since these metrics provide a
better evaluation for the instance segmentation processes. Finally, we compared
the segmentation results with the local adaptive thresholding results.

2 Method

2.1 Dataset and Data Augmentation

For the experiments, the dataset is created with the images taken from Renji
Hospital. It consists of 40 raw G-band chromosome images, 25 images for the
training set, 5 images for the validation set and 10 images for the test set. The
images are all in the same resolution, 1200 × 1600 pixels. However, it is reduced
to 480×640 pixels to be able to train the model with the available GPU memory.
The training set and validation set images are labeled manually. Raw G-band
chromosome image and its mask are shown in Fig. 1.

Fig. 1. Raw G-band chromosome image and its mask.

Since the images in the dataset are not various and not numerous enough to
obtain satisfactory results and to prevent over-fitting, augmentations are used to
increase the number of images in the training set and in the validation set up to
3500 and 700, respectively. The summary of the applied augmentation methods
are given in Table 1.

2.2 U-Net Based Neural Network

Segmentation of medical images has constraints due to its characteristics, such as
detailed patterns, unclear object boundaries, among others. Long et al. [10] pro-
posed to use skip connections which combine two convolutional layers (encoding
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Table 1. Summary of applied augmentations

Method Range

Rotation ±45◦

Horizontal flip 50% chance

Vertical flip 50% chance

Width shift 5% of the total width

Height shift 5% of the total height

Shear intensity 10◦ in the counter-clockwise direction

Zoom ±10%

and decoding layers) to generate better segmentation results. Drozdzal et al. indi-
cated that skip connections can be used on biomedical images [2]. Ronneberger
et al. [13] also adopted this idea and proposed the original U-net architecture
for biomedical image segmentation.

Fig. 2. U-net architecture

Original U-net model [13] is symmetrical fully convolutional neural network
and it consists of two parts which are down-sampling (left side) and up-sampling
(right side). In total the network has 9 convolutional blocks and each block
consists of two convolutional layers with 3×3 kernel size. On the down-sampling
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part, each convolutional block is followed by a max pooling layer with 2×2 pool
size. After every max pooling layer, the size of the feature maps is divided by two
and the number of feature maps is duplicated by two. On the up-sampling part,
before every convolutional block, there is an up-sampling layer with the size of
2×2. The output of the up-sampling layers concatenates with the corresponding
feature maps from the down-sampling part. Unlike the down-sampling part, after
every convolutional block, the size of the feature maps is duplicated by two and
the number of feature maps divided by two. All convolutional layers use ReLU
as an activation function, except the last one which uses sigmoid function.

In this study, the U-net architecture (Fig. 2) is used with several changes:

– The number of the feature maps are half of the original U-net architecture to
be able to train the model with the available GPU memory.

– Input and Output image sizes are changed to 480 × 640.
– Since the number of future maps is large compared to the number of images

in the training dataset, to avoid over-fitting dropout layer is added after 4th
(before the max pooling layer) and 5th convolutional blocks.

– Adam optimizer [8] is used instead of stochastic gradient descent optimizer.
– Jaccard distance loss [7] and dice similarity coefficient are used for the eval-

uation of the model.

2.3 Evaluation Metrics

Jaccard Index. In biomedical image segmentation, binary cross-entropy is not
a good indicator for the evaluation. Instead, the Jaccard index, also known as
intersection over union score (IoU), is widely used. It measures the similarity
between ground truth and predicted masks. It is defined as the intersection of
the masks divided by the union of the masks and it returns a value between 0
and 1.

Jacc = |Mpred∩Mtruth|
|Mpred∪Mtruth| =

|Mpred ∩ Mtruth|
|Mpred| + |Mtruth| − |Mpred ∩ Mtruth|

=
True Positive

Union
(1)

where Mpred is the vector of predicted mask and Mtruth is the vector of ground
truth mask.

As mentioned before, for the evaluation of the model, Jaccard distance loss
[7] is used. Jaccard distance measures the dissimilarity between ground truth
and the predicted masks, and it can be derived as

1 − Jacc =
|Mpred \ Mtruth| + |Mtruth \ Mpred|

|Mpred ∪ Mtruth|

=
False Positive + False Negative

Union
(2)
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Dice Similarity Coefficient. Dice similarity coefficient (DSC) is the other
metric widely employed in instance segmentation problems. It calculates the
spatial overlap between the predicted mask and the ground truth mask. It is
defined as two times the intersection of the ground truth and the predicted
masks divided by the sum of the masks (Eq. 3) and it returns a value between 0
and 1.

DSC =
2 × |Mpred ∩ Mtruth|
|Mpred| + |Mtruth|

=
2 × True Positive

False Positive + False Negative + (2 × True Positive)
(3)

3 Experiments

3.1 Training

The model is implemented with Keras. As mentioned earlier, Adam optimizer
[8] is adopted for the model weights estimation. The beginning learning rate is
set to 0.0001, batch size is set to 2 and the number of epochs is set to 100. Keras
callback functions are used during the training. The learning rate is multiplied
by 0.2 when the loss metric stopped improving for two epochs. On the 22nd
epoch, the training was stopped, because the loss metric had not been improved
for the last 5 epochs. At the end of the training, the lowest Jaccard distance
loss recorded on the 17th epoch as 0.0589. The dice similarity coefficient was
recorded as 96.97%. Learning curves of Jaccard distance loss and dice similarity
coefficient are shown in Fig. 3.

Fig. 3. Jaccard distance loss and dice similarity coefficient learning curves
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3.2 Results

The trained model is tested on several images. It takes around 0.25 s to segment
one image. Segmentation results are depicted in Fig. 4. As it can be observed,
the proposed method also clears the interphase cells with the background pixels.
Besides, the chromosome boundaries are almost completely preserved.

(a) (b) (c)

(d) (e) (f)

Fig. 4. Segmentation results. (a) (d) Raw G-band chromosome images, (b) (e) The
predicted masks, (c) (f) Overlayed predicted masks

The proposed method is compared with the local adaptive thresholding
method. The comparison results of the two methods are shown in Figs. 5 and
6. When the G-band chromosome image is not very noisy, both methods pro-
vide satisfying results. However, the proposed method produces clearer chromo-
some borders than the local adaptive thresholding method. When the input
image is highly noisy, the local adaptive thresholding method provides very
poor results. On the contrary, the proposed method segments the chromosomes
with very small errors. The segmentation errors are marked with red ellipses in
Fig. 6b and e.
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(a) (b) (c)

(d) (e) (f)

Fig. 5. Comparison of the proposed method and locally adaptive thresholding method.
(a) (d) Original images, (b) (e) Predictions of the proposed method, (c) (f) Local
adaptive thresholding results

(a) (b) (c)

(d) (e) (f)

Fig. 6. Comparison of the proposed method and locally adaptive thresholding method.
(a) (d) Original highly noisy images, (b) (e) Predictions of the proposed method,
(c) (f) Local adaptive thresholding results
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4 Conclusion

In this paper, we presented a segmentation method for raw G-band chromo-
some images using U-net based convolutional neural network. The trained model
achieved a 96.97% dice score. The experimental results showed that the convolu-
tional neural network provides satisfying results for the segmentation task. Fur-
thermore, the proposed method segmented highly noisy images with small errors
compared to local adaptive thresholding method. The residual errors occured due
to lack of image variety in the dataset. For this reason, in the future, we plan
to increase the quantity and the diversity of the images in the dataset. Addi-
tionally, we intend to increase the segmentation accuracy by using multi-class
labels, such as chromosomes, interphase cells, and background masks, instead of
using single class mask input.
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