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Abstract. We consider the problem of classifying image sequences to
several classes. Such problems arise in numerous applications, e.g., when
a task to be completed requires that all sub-tasks are properly executed.
In order to derive realistic classifiers for such complicated problems, we
assume that images in the sequence form a Markov chain, while the con-
ditional probability density function of transitions has the matrix normal
distribution, i.e., it has the covariance matrix being the Kronecker prod-
uct of inter-rows and inter-columns covariance matrices. Under these
assumptions we derive the Bayes classifier for image sequences and its
empirical version that is based on applying the plug-in rule. We also
provide interpretable versions of such classifiers at the expense of addi-
tional assumptions. The proposed classifier is tested on the sequence of
images from the laboratory experiments of detecting stages of an addi-
tive manufacturing process. Finally, we state conclusions and (partial)
explanations on why the problem of classifying sequences of images is
(much) more difficult than that of classifying individual images.

Keywords: Matrix normal distribution · Bayesian classifier ·
Classification of image sequences

1 Introduction

Our aim is discuss a way to develop a classifier for image sequences. Each
sequence is considered as a whole entity that can be a member of a certain
class and our aim is to build an appropriate classifier. In other words, a classifier
obtains an ordered set of images as one input.

This task only seemingly reduces to known classification problems by vec-
torization, because then it is extremely difficult to take into account stochastic
dependencies between images and their covariance structures.

A large number of examples can be pointed out when we need (or it is desir-
able) to classify whole image sequences. In particular, they include the following
cases.
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– Quality control of a manufacturing process when at each stage we have images
of properly and improperly produced items. Then, we can classify an item
as conforming only when all the sequence of images is similar to the proper
sequence. This class of examples is our main focus (see Sect. 6).

– Learning and teaching of complicated tasks to be performed requiring high
precision of movements. Examples include: laparoscopic surgery (see [26]),
training professional sportsmen and women and autonomous parking (see,
e.g., [13]).

– Collecting, e.g., cytological images of the same patient (see [2]) along time
and comparing them with image sequences of other patients.

– Subsequent histological sections of the same tissue (see [5,6]), but recognized
as one entity in the same spirit as in CT and in MRI images.

– When states of a dynamic systems are described as matrices or images (see,
e.g. [20]), then the ability of classifying their sequences are of importance to
decide at which state of the evolution the system is, e.g., whether it is still in
transient states or near the equilibria states.

– Recognition of untidy hand written words by splitting them into letters, but
considering them as one entity and testing to which word they are mostly
similar.

The ability of classifying whole image sequences can also be useful for image
understanding, but this topic is far outside the scope of this paper. We refer
the reader to [24] for more detailed discussion on image understanding and the
bibliography.

Clearly, it is rather impossible to construct a universal classifier for image
sequences. We impose the following constraints on the class of considered clas-
sification tasks (see the next section for details):

– we confine ourselves to images represented by grey levels,
– images in a given sequence have the Markov property of the first order (a

generalization to a higher order Markov chains is not difficult),
– conditional densities of the Markov chain have matrix normal distributions

(MND) – see Appendix for basic properties of MND.

The last assumption is made for pragmatic reasons, otherwise we usually do not
have enough observations in order to estimate the full covariance matrix of large
images. An alternative approach, when we do not have enough observations, is
proposed in [23].

The paper is organized as follows:

– in the following section we provide a short review of the works that have
common points with this paper,

– then, in Sect. 3, we provide the problem statement and preliminary results on
the Bayesian classifiers for image sequences,

– these topics are continued in the next section, in which special cases are
discussed,

– in Sect. 5 we provide the empirical version of the Bayes MND classifier for
image sequencies, while
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– a laboratory example is discussed in Sect. 5.

The paper ends by concluding remarks, including a discussion on the following
question: why is the classification of an image sequence such a difficult problem?

2 Previous Work

In this section we provide a short survey of papers on classifiers that arise in
cases when the assumption that class densities have the MND distribution holds.
Then, we briefly discuss recent works on classifying image sequences.

The role of multivariate normal distributions with the Kronecker product
structure of the covariance matrix for deriving classifiers was appreciated in
[10], where earlier results are cited. In this paper the motivation for assuming
the Kronecker product structure comes from repeated observations of the same
object to be classified. The topic of classifying repeated measurements was fur-
ther developed in [11], where repeated observations are stacked into a matrix
according to their ordering along the time axis. In [11] the test for verifying
the hypothesis on the Kronecker product structure of the covariance matrix was
developed. The classifier based on the MND’s assumption occurred to be useful
for classifying images (see [17,18], where it was applied to classifying images of
flames from a gas burner). In [19] it was documented – by extensive simulations
– that such classifiers are relatively robust against the class imbalance.

As far as we know, classifiers that are based on MND’s for recognizing image
sequences, considered as entities, were not considered in the literature and this
is the main topic of this paper.

The above does not mean that the topic of classifying image sequence was
not considered. It was, but using other assumptions and approaches. It is worth
distinguishing the following cases.

1. A rough classification of videos according to their type (comedy, drama etc.).
The stream of literature on these topics is the largest. It is completely outside
the scope of this paper. The closest paper in this stream is [8], in which the
classification of sporting disciplines by convolutional neural networks (CNN)
is discussed.

2. Detecting changes in a video stream, e.g., for safety monitoring. Here, one
can distinguish two problem statements, namely,

– the so-called novelty detection, when a proper state is known, but the
type of changes is unspecified (see [21], [15])

– a directional change detection, when the class of possible changes is a
priori known. One can meet such tasks in monitoring of production pro-
cesses. They are similar in spirit to pattern recognition problems (see [16]
for an example).

3. The classification of (an) object(s) that are visible on several subsequent
frames (see [9] and bibliography therein).

4. The classification of image sequences, where each sequence is considered as
one entity. This is our main topic.
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The differences between group 3 and group 4 are, in some cases, subtle. For
example, consider a camera mounted over a road and two cars (say, a truck
and a small car behind it). If one is interested in classifying cars into small and
large ones (and possibly in classifying their types), then we are faced with case
3. However, if the small car overtakes the large one, we can ask whether the
overtaking maneuver was done properly or not. This task illustrates the one
from group 4, since we have to recognize all stages of this maneuver.

3 Problem Statement and Preliminary Results

By X we denote a sequence of ordered images Xk, k = 1, 2, . . . ,K, represented
by m × n matrices of grey levels that are considered to be real-valued variables.
In practice, grey levels are represented by integers from the range 0 to 255, but –
at this level of generality – it seems reasonable to consider them as real numbers,
without imposing constraints on their range.

Sequence X can be classified to one of J > 1 classes, labeled as j =
1, 2, . . . , J . The following assumptions apply to all J classes, but we avoid index-
ing them by class labels, unless necessary.

As (1) X is a random tensor, having a probability density function (p.d.f.),
denoted further by f(X) or, equivalently, by f(X1, X2, . . . , XK). Slightly
abusing the notation, we shall write f(XL1 , . . . , XL2) for p.d.f.’s of sub-
sequences of X, where 1 ≤ L1 < L2 ≤ K.

As (2) Elements of X form a Markov chain in the following sense:

f(Xk|Xk−1, . . . , X1) = fk(Xk|Xk−1), for k = 2, . . . K, (1)

where fk(Xk|Xk−1) is the conditional p.d.f. of Xk when Xk−1 is given.
fk(Xk|Xk−1) is known as the transition p.d.f. of moving from Xk−1 to Xk,
for every k > 1.
For k = 1 we assume that f1(X1|X0) = f1(X1), i.e., f1 is the unconditional
p.d.f. of random matrix X1.

As (3) We assume that X1 ∼ Nn,m(M1, U1, V1), i.e., f1(X1) is the MND with
the expectation matrix M1 and U1 as n×n inter-rows covariance matrix and
V1 as m × m covariance matrix between columns (see Appendix).

As (4) For k > 1 the transition p.d.f.’s fk(Xk|Xk−1) are also assumed to have
the MND’s of the following form:

α

c
exp

[
−1

2
tr[U−1(Xk(α) − Mk)V −1 (Xk(α) − Mk)T

]
, (2)

where c is the normalization constant which is given by:

c
def
= (2π)0.5nm det[U ]0.5n det[V ]0.5m , (3)

while n × m matrix Xk(α) is defined as follows: for 0 ≤ α ≤ 1

Xk(α) = αXk + (1 − α)Xk−1. (4)
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In the above, Mk plays the role of the mean matrix of the image sequence
(video frame) at k-th step.

Several remarks are in order, concerning the above assumptions.

Remark 1 – By selecting 0 ≤ α ≤ 1, one can control the influence of the
previous image on the p.d.f. of the present one. The choice is case dependent.
For example, when a small object is slowly moving over almost the same
background, the influence of the previous frame is large, suggesting smaller
values of α.

– For α = 1 we obtain the independence between Xk and Xk−1. This case can
happen, e.g., when images are taken from a very fast-moving train.

Proposition 1. Let As (1)–As (4) hold. Tentatively, we additionally assume:

U1 = U and V1 = V. (5)

Then, each Xk, k = 2, . . . , K has the matrix normal distribution with the expec-
tation matrix, denoted as Mk(α), of the following form:

Mk(α) = α−1 [Mk − (1 − α)Mk−1(α)] , k = 2, 3, . . . , K, (6)

where M1(α)
def
= M1.

The covariance matrices of Xk’s are of the form:

Ck−1(α)U1, Ck−1(α)V1, k = 2, 3, . . . , K, (7)

where
C(α)

def
= (1 + (1 − α)2)/α2. (8)

Notice that Mk(α) → Mk and C(α) → 1 as α → 1.

Proof. For k = 2 it suffices to integrate f2(X2|X1) f1(X1) with respect to X1.
The rest of the proof goes by the induction, since – after this integration – we
again obtain MND with the expectation (6) and the covariances (7), when k = 2
is substituted. •
Notice the growth of the variances in (7). For this reason, it is advisable to use
α < 1, but close to 1 and to apply the Markov scheme, proposed in As (4), to
rather short image sequences.

Under As (1) and As (2) it is easy to derive the following expression for the
natural logarithm of f

log f(X) =
K∑

k=2

log fk(Xk|Xk−1) + log f1(X1). (9)

If, additionally, As (3) and As (4) hold, then for minus log f(X) we obtain:

LLF (X, M, U, V )
def
= − log f(X) = log(c/α) (10)

+
1
2

K∑
k=2

tr[U−1(Xk(α) − Mk)V −1 (Xk(α) − Mk)T

+tr[U−1
1 (X1 − M1)V −1

1 (X1 − M1)T ,
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where M consists of Mk, k = 1, 2, . . . , K. The LLF also depends on K, α, m,
n, but we omit displaying them as arguments, since – in a given application –
they remain the same for each class.

Each class has its own p.d.f., denoted further by fj(X) and the correspond-
ing minus log-likelihood function: LLF (X, M(j), U (j), V (j)), where M

(j) is the
sequence of means for j-th class, while U (j), V (j) are the corresponding covari-
ance matrices, j = 1, 2, . . . , J . We assume that for each class there exists a
priori probability pj > 0 that sequence X was drawn from this class. Clearly∑J

j=1 pj = 1.
It is well known (see, e.g., [4]) that for the 0-1 loss function the Bayes risk of

classifying X is minimized by the following classification rule:

j∗ = arg max
1≤j≤J

pj f (j)(X), (11)

where f (j) is the p.d.f. of sequences X from j-th class.
Under all the above assumptions As (1)–As (4), our aim in this paper is the

following:

1. having learning sequences of mutually independent X
(j)
n ’s from j-th class,

n = 1, 2, . . . , Nj , j = 1, 2, . . . , J
2. and assuming proper classifications to one of the classes
3. to construct an empirical classifier that mimics (11) decision rule in the plug-

in way

and to test this rule on real data. Notice that each X
(j)
n is a sequence itself. Its

elements will further be denoted as X(j)
k,n, k = 1, 2, . . . , K.

4 Some Properties of the Bayes Classifier for Sequences

From (11) we obtain that the Bayesian classifier for sequence X is the form:

j∗ = arg min
1≤j≤J

[
− log(pj) + LLF (X, M(j), U (j), V (j))

]
(12)

or – in the full form:
X is classified to class j∗, for which the following expression is minimal with

respect to j:
{

1
2

K∑
k=2

tr[(U (j))−1 (Xk(α) − M(j)
k ) (V (j))−1 (Xk(α) − M(j)

k )T (13)

+tr[U (j)
1 )−1 (X1 − M1) (V (j)

1 )−1 (X1 − M1)T + log(c(j))
}

− log(pj).

Above and further on the summand log(1/α2) is omitted, since it does not
depend on j.

In order to reveal the interpretation of the optimal classifier (13), it is expe-
dient to consider the following special cases.
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Corollary 1. Let As (1)–As (4) hold and, additionally, the a priori class prob-
abilities are equi-distributed, i.e., pi = 1/J . Then, the Bayes risk is minimized
by this j for which the sum of the Mahalanobis distances between Xk(α) and
M(j)

k is minimized.

Proof. It suffices to observe that

tr[(U (j))−1 (Xk(α) − M(j)
k ) (V (j))−1 (Xk(α) − M(j)

k )T (14)

= vecT (Xk(α) − M(j)
k )Σ−1

j vec(Xk(α) − M(j)
k ),

where Σj
def
= Uj ⊗ Vj , while ⊗ is the Kronecker product of matrices. •

Corollary 2. If – in addition to the assumptions made in Corollary 1 – there
are no correlations between rows and between columns (Uj’s and Vj’s are the
identity matrices) and there are no correlations between images (α = 0), then
sequence X is classified to this class j for which

K∑
k=1

||vec(Xk − M(j)
k )||2 (15)

is minimal, where ||.|| is the Euclidean norm of a vector. Thus, (15) is the nearest
mean classifier in the generalized sense, i.e., the distance of all the sequence X

is compared to the sequences of all mean matrices M
(j), j = 1, 2, . . . , J and the

closest one is selected.

Corollary 2 is intuitively pleasing, but it is a very special case of (13).

Corollary 3. For J = 2, if U
(1)
1 = U

(2)
1 , V

(1)
1 = V

(2)
1 and U

(1)
2 = U

(2)
2 ,

V
(1)
2 = V

(2)
2 , then the classifier (13) is linear with respect to vec(Xk(α)),

k = 1, 2, . . . , K.

Proof. Follows directly from the right hand side of the equality in (14), since –
under our assumptions – we have Σ1 = Σ2 and the quadratic terms vanish. •

5 An Empirical Bayes, Plug-In Classifier for Sequences
of Matrices (images)

Having learning sequences of X
(j)
n , n = 1, 2, . . . , Nj , for each class j – j =

1, 2, . . . , J – at our disposal, we construct the empirical Bayes classifier, using the
classical plug-in approach. Its derivation relays the assumptions As (1)–As (4),
but – as we shall see – we can formally try to use it without imposing the MND
structure of the observations. Clearly, if the observations do not follow MND,
information contained in the full covariance matrix is partially lost, since we use
only inter-rows and inter-columns covariances. On the other hand, however, we
obtain a classifier, which is able to classify image sequences of a moderate size.
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A Classifier for MND Sequences (CMNDS)

The learning phase. Firstly, pj ’s are estimated as p̂j = Nj/N , where N =∑J
j=1 Nj . The means M

(j) are estimated as the empirical means of X
(j)
n ,

n = 1, 2, . . . , Nj , but for large images and large K (long sequences) this
is not a trivial computational task. These empirical means are denoted as
M̂

(j)’s. Notice that, for practical reasons, we propose to estimate M
(j) as

if X
(j)
n , n = 1, 2, . . . , Nj were mutually independent, i.e., for α = 1. We

introduce α < 1 in the testing phase only when it leads to the reduction of
the classification error.
The estimation of U (j)’s and V (j)’s is done in a non-classic way. Details are
provided in the Appendix. The resulting estimates are denoted as Û (j)’s and
V̂ (j)’s.

The recognition phase. When new sequence X is to be classified we use the
empirical version of (12) rule, i.e., it is classified to class ĵ such that

ĵ = arg min
1≤j≤J

[
− log(p̂j) + LLF (X, M̂(j), Û (j), V̂ (j))

]
. (16)

The constant c that is present in LLF also depends on j, but our experiments
indicate that in some cases it is better to consider it as a constant and to neglect
it (as done in the example presented in the next section).

The assessment of the quality of learning can be done by the classic approach,
namely, by the cross-validation. Notice, however, that we have to estimate two
covariance matrices for each class, which may be difficult, even for small images,
due to the lack of sufficiently long learning sequences. The second difficulty is
the possibility that Û (j) and/or V̂ (j) are ill-conditioned. Even if we replace the
calculations of their inversions by solving the corresponding sets of linear matrix
equations, a kind of the regularization may be necessary.

6 A Laboratory Example

In order to test the CMNDS, we use the same example as in [17], but this time
we consider triples of subsequent images as one sequence to be classified. These
images were taken during the monitoring of a laser based additive manufacturing
process of constructing a thin wall, described in more detail in [22].

The classification (and then decision) problem that arises during monitor-
ing of this process is to determine whether the laser head is above the main
body of the wall (Class 1) or near one of its ends (Class 2). This task cannot
be solved just by gauging positions of the laser head, since near the ends the
wall it becomes thicker and thicker as construction of the wall is progressing.
Additionally, these thicker parts occupy larger and larger of the wall. Precisely
this unwanted behavior is to be prevented by: firstly, recognizing that a thicker
end begins and then by reducing the laser power appropriately (see [22] for
details concerning the reduction of the laser power). Here, we concentrate on
the recognition phase only.
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Original images were down-sampled by 10 to the size 12 × 24. Then, they
were averaged (each class separately). The resulting images are shown in Fig. 1,
where the left hand side image corresponds to Class 1 and the second one is
typical for Class 2.

Three element sequences, typical for Class 1, consists of:

(a) either three images as the one on the l.h.s. of Fig. 1 or
(b) two such images and the one similar to that on the r.h.s. of this figure.

Analogously, the triples typical for Class 2 contain:

(c) either three images like the one on the r.h.s. or
(d) two of this kind and one similar to the l.h.s. sub-image.

For learning and testing purposes we had 300 such triples, but classes are
not well balanced, since the laser head spends much more time in the middle of
the wall than near its ends.

Remark 2. Notice that ordering of images in these two kinds of sequences is
not artificial – it is natural for this process, since the laser head moves back and
forth along the wall. However, the presence of the sequences like those described
as (b) and such as mentioned in (d) may lead to large classification errors.

Fig. 1. Averaged images typical for Class 1 (left panel) and for Class 2 (right panel)

Fig. 2. Estimated V matrices for Class 1 (left panel) and Class 2 (right panel)

Matrices U and V for both classes were estimated by the method that is
described in the learning phase of CMNDS and in the Appendix. The results are
shown in Fig. 2 for V -type matrices and in Fig. 3 for U -type matrices. As one
can observe, both U -type and V -type matrices are essentially different between



604 E. Rafaj�lowicz

Fig. 3. Estimated U matrices for Class 1 (left panel) and Class 2 (right panel)

classes. Thus, we cannot use a linear classifier and therefore the full version of
the quadratic classifier (16) was used in our example.

The following cross-validation methodology was used for testing CMNDS (see
[1] for the survey of the test error estimation of classifiers). The whole sequence
of triple sequences was split at random into the learning sequence of the length
125 the testing sequence of the length 175. Then, the matrices of means and
covariances were estimated and plugged-in into the classifier, which was tested
on the remaining 175 triples. The classification error was stored and the whole
cycle of random drawing, learning and testing was repeated 1000 times. The
averaged classification error (for α = 0.9) was the following: 32% with minor
fluctuations between all 1000 runs.

This result is rather disappointing, since for almost the same MND classifier,
but applied to individual images, we obtained 4% of the averaged classification
errors, using the same sequence of 900 images and the same methodology of
testing the classifier.

One of possible reasons is that we have a relatively small number of learn-
ing and testing examples, namely, 900 images provide only 300 of triple image
sequences. As a remedy in this example one may try to extend the data artifi-
cially, in a way similar to those that are used in imputation techniques, e.g., as
it is proposed in [7], but this is outside the scope of this paper.

The reasons of a high recognition errors can be case-dependent (see
Remark 2), but – in general – they indicate that the problem of classifying image
sequences is much more difficult in practice than one might expect. Notice, how-
ever, that we do not apply any feature selection techniques, i.e., raw image
triples were fed as inputs both in the learning and the testing phase. Applying
a dedicated feature selection technique, e.g., a modified version of the method
proposed in [3], one may expect much better results.

7 Concluding Remarks

Under several restricting, but interpretable and partly removable, assumptions
the method of classifying image sequences (considered as entities) is proposed.
It was extensively tested on image sequences from laboratory experiments, con-
cerning the monitoring of the additive manufacturing, laser based, process. The
results of testing indicate that the method works properly, but the percentage
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of correct classifications (68%) is lower than 94% obtainable under the MND
assumptions, i.e., when images are considered separately. This conclusion is in
agreement with the results reported in [8] that classifying individual images may
sometimes lead to a better correct classification rates than classifying whole
sequences. These facts indicate that problems of classifying image sequences
is much more difficult than classifying individual images. It requires further
research on deciding which problem statement is more appropriate in a given
application.

Acknowledgements. Special thanks are addressed to Professor J. Reiner and to
MSc. P. Jurewicz from the Faculty of Mechanical Engineering, Wroclaw University of
Technology for common research on laser power control for additive manufacturing.

Appendix: MND and Its Estimation

The matrix normal distribution (MND) has the probability density function of
the form (see, e.g., [14]):

f(X) =
1
c

exp
[
−1

2
tr[U−1(X − M)V −1 (X − M)T ]

]
, (17)

where c is the normalization constant, which is given by:

c
def
= (2π)0.5nm det[U ]0.5n det[V ]0.5m , (18)

where n × m matrix M denotes the mean.
Concerning the covariance structure of MND densities:

1. n × n matrix U denotes the covariance matrix between rows of an image,
2. m×m matrix V stands for the covariance matrix between columns, we assume

that det[U ] > 0, det[V ] > 0. We use the notation: X ∼ Nn,m(M, U, V ).
The MND is a special case of a general class of Gaussian p.d.f.’s, since
vec(X) ∼ Nnm(vec(M), Σ), where vec(X) is the operation of stacking
columns of matrix X, while Σ is an nm × nm covariance matrix, which
is the Kronecker product of U and V .
We assume that we have the sequence of observations: Xi, i = 1, 2, . . . N .
Conditions for estimating properly the covariance matrices can be found in
[12]. The maximum likelihood estimates (MLE) of the covariance matrices
fulfil the following set of equations (see [12,25]):

Û =
1

N m

N∑
i=1

(Xi − M̂) V̂ −1 (Xi − M̂)T , (19)

V̂ =
1

N n

N∑
i=1

(Xi − M̂)T Û−1 (Xi − M̂). (20)

Equations (19) and (20) can be solved by the flip-flop method. It was proved
in [25] that one iteration is sufficient to obtain the efficient estimators of Uj

and Vj .
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