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Abstract. Active vibration suppression is a well explored area when
it comes to simple problems, however as the problem complexity grows
to a time variant system, the amount of researched solutions drops by
a large margin, which is further increased with the added requirement
of very limited knowledge about the controlled system. These condi-
tions make the problem significantly more complicated, often rendering
classic approaches suboptimal or unusable, requiring a more intelligent
approach - such as utilizing soft computing. This work proposes a Arti-
ficial Neural Network (ANN) Model Predictive Control (MPC) scheme,
inspired by horizon techniques which are used for MPC. The proposed
approach aims to solve the problem of active vibration control of an
unknown and largely unobservable time variant system, while attempt-
ing to keep the controller fast by introducing several methods of reducing
the amount of calculations inside the control loop - which with proper
tuning have no negative impact on the controller’s performance. The
proposed approach outperforms the multi-input Proportional-Derivative
(PD) controller preoptimized using a genetic algorithm.

Keywords: Neural network · Adaptive control · Unknown system ·
System identification · Vibration suppression

1 Introduction

1.1 Vibration Suppression

Vibrations have always been a problem for both structures and machines. They
hamper the usability of the object by reducing user comfort, negatively impact-
ing precision of machines, causing quicker wear or even putting people in direct
danger. While taking them into account during design phase of the object is
often enough, in some cases they need to be further reduced or eliminated alto-
gether. In consequence, the necessity of reducing or eliminating vibrations [12]
inevitably led to the development of vibration suppression technologies [9].
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There is a multitude of ways to address vibration suppression, the most com-
mon ones being stiffening, isolation and damping. In addition, some semi-active
(or semi-passive) methods have also been developed - e.g. magnetorheological
(MR) fluid damper, with adjustable viscosity of oil [14]. However, this type of
a solution is still inherently passive, in opposition to active vibration cancelling,
in which an actuator is effectively adding energy into the system to counteract
the vibrations, due to which an inadequately controlled active suppression may
destabilize the system - but a well controlled one offers higher performance than
passive suppression [11].

It is hardly a new approach [4,7], but it is heavily limited in its applications
due to several factors, amongst them unknown and changing system dynamics,
which in many cases are also complex - e.g. a bridge with constantly shifting mass
distribution and multiple excitation points as cars drive through it. Naturally,
controlling a system with close to no knowledge of it is a non-trivial task.

1.2 Soft-Computing-Based Adaptive Control Systems

There are two major approaches to design of control algorithms for time-varying
systems: robust approach in which the algorithm should work reasonably well
under all circumstances possible and adaptive approach in which the control algo-
rithm is able to adjust itself to the changing behavior of the object. In general
a robust approach provides lower efficiency and is possible to use when changes
in the system are relatively small [16]. For that reason, when either the system
changes significantly or the precise control is required, adaptive algorithms are
preferred. A schematic view of the adaptive control can be seen in Fig. 1: a reg-
ular control system with the addition of adaptation loop that gauges the system
performance and adjusts it if necessary [5]. In cases when there is little to no
knowledge regarding the system dynamics, a soft-computing approaches can be
used to adapt to system changes on-the-fly. While there are numerous advances
in utilizing soft computing in many engineering branches for control - includ-
ing model identification [3] and vibration suppression [9] - the field is far from
saturated as these solutions often concern a very limited area of applications,
leaving many topics unexplored, or even untouched. Few examples of Artificial-
neural-network-based applications of vibration reduction include manipulators
[17], buildings [13], beams [15] or spacecrafts [6] but in most of these examples
the system is either partially known, assumed to be stationary or is subjected
to other artificial constraints that limit the possibility of applying particular
control scheme to other cases. In particular, lack of classic solutions to adaptive
vibration control did not trigger development of efficient soft-computing ones,
even though these methods are naturally suited for such problems.

1.3 Contribution and Organization of the Article

The article introduces a novel adaptive control algorithm based on the Artificial
Neural Network. The work uses an approach known as a Neural Net Model
Predictive Control (MPC) scheme, inspired by horizon techniques which are used
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for MPC. The method is designed to work for systems with unknown dynamics
with large variability of system parameters. Several ways of computational time
reduction were proposed as well.

The article is organized as follows: Sect. 1 provides a brief introduction to the
subject; Sect. 2 introduces the adaptive control algorithm, Sect. 3 describes the
problem in which the algorithm is to be applied, Sect. 4 provides the results of
the numerical experiment, finally, Sect. 5 summarizes and concludes the article.

Fig. 1. Basic schematic of an adaptive controller consisting of distinct control and
adaptation loops

2 The Method

2.1 Problem Assumptions

While the algorithm wasn’t designed for one specific problem, some assumptions
regarding the system and available knowledge about it had to be made - as
these factors can severely limit viable approaches, and in consequence render
some types of algorithm unfeasible. The assumptions for the controlled system
are as follows:

– the system is a Multi-Degree-of-Freedom (MDOF) system with at least
3 degrees of freedom

– no knowledge of the system parameters or degrees of freedom is available
– only two points are observable - the object of suppression, and the point of

application of the actuator
– these two points are separate, no information about their relation is available
– the system is subject to an unknown external excitation that causes vibra-

tions, applied at a third point
– the system may change over time

2.2 Algorithm Design

The control problem at hand is a complex one, owing it’s difficulty to three
major factors:
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1. The system is completely unknown
2. The system is changing over time
3. The actuator force is not applied directly on the suppression target

In consequence the algorithm design process was centered around addressing
each of these issues.

The resulting control algorithm is a variation of neural net based model
predictive control - a control approach that makes use of the model of the system
to simulate the system response over a set time horizon, and then provide a
control signal which best realizes the control goal over this horizon. In other
words: the algorithm predicts damped system response for variety of possible
inputs and then selects the input which minimizes the response over selected
time period. In order to do that the algorithm needs to learn the system so the
prediction of responses to particular inputs would be possible.

The usage of such a controller is normally split into 2 phases - model iden-
tification, where the neural net is trained using data from the system to reflect
its behaviour, and then predictive control, where at each timestep the optimizer
- neural net loop - simulates the possible future outcomes and returns optimal
control signal.

This type of controller solves issues 1 and 3, as identifying the system via
neural network requires no prior knowledge of the system, and giving the net
proper information on outputs (such as state of both suppressed and actuated
objects) should lead to accurate modelling of the transmission path between
these 2 points. Issue no. 2 is then solved by the addition of adaptation loop
within which the neural net is periodically retrained.

2.3 Algorithm Schematic

The proposed algorithm is composed of 2 major elements - controller and adap-
tation control - as seen in Fig. 2 - the former of which provides the input values
for the controlled system, while the latter handles the controller’s adaptation
as well as online-learning capabilities. The schematic does not include reference
signal since for vibration control it is simply a static 0 - however if this algorithm
was to be applied to a problem where supplying reference signal is necessary, it
would be passed into the selection algorithm block inside the controller.

2.4 Controller

The controller itself is built around a neural net, which aims to be a representa-
tion of the controlled system. The control algorithm is based on a streamlined
predictive control, bearing similarities to fixed and receding horizon optimiza-
tions [1]. In both of these, several time steps for the systems output are estimated
sequentially, and a control strategy is picked to best realize control goal over this
horizon - the difference between these two is in applying this strategy. For fixed
horizon, the strategy is realized for however many time-steps the horizon was
set for, while in receding horizon only the first time step input is used. If the
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Fig. 2. Schematic of the proposed predictive control algorithm depicting the Controller,
responsible for supplying Plant loop with proper control inputs, as well as Adaptation
Control which harvests data from Plant loop in order to perform parameter updates on
Controller’s neural network core. For suppression task the reference signal is static 0

model used for predicting future states was a perfect reflection of the physi-
cal model, both of these methods would result in the same control signal, with
receding horizon controller requiring more calculations (as they are necessary in
each step). However since the identified models are generally not perfect, the
extra calculations pay off in higher confidence of the predictions, minimizing the
effect of error stacking in recurrent predictions.

The proposed algorithm goes in a different direction to avoid error stack-
ing, as well as reduce the necessary calculations. Instead of performing series of
recurrent predictions, the neural net predicts the outcomes for a single timestep,
and the optimal input for this timestep is then used as control signal, as seen in
Fig. 3.

To further improve performance, a naive approach of control signal persis-
tence (CSP) is proposed - the control signal value which was deemed optimal for
the single timestep persists for multiple ones, eliminating the need to recalculate
it at every step. The rationale behind this approach is that for a sufficiently
small persistence window the state of the controlled system does not undergo a
significant change. Logically, if the system state does not change in a big way,
neither does the optimal control signal. The calculation amount reduction is
given by Eq. 1.

1 − 1
window size

(1)
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Fig. 3. Schematic of the inner workings of the neural Controller, which predicts out-
comes of pre-defined available input forces, and proceeds to select the optimal outcome.

An alternative to CSP was also explored, where instead of predicting 1 step
ahead, and setting the control signal for x steps, a single (non-iterative) pre-
diction would be made for x steps ahead, to answer the question of finding the
optimal static control signal for these x steps. However this approach was dis-
carded since the controllers simply failed to reach satisfying level of suppression.
The assumed reason behind this is that predicting x steps ahead is a consider-
ably more difficult problem to model and - if possible at all - would require much
larger neural nets, and in consequence much more training time and slower oper-
ation. This stands in opposition to the reason behind implementing such method
in the first place - which is to speed the controller up.

In addition to that, the controller is also constrained in what control signals
it can use - a quantized vector of possible inputs is specified to avoid free (and
time consuming) iterative exploration of options.

A single cycle for the controller is as follows:

1. The controller receives current state of the system.
2. Current state + quantized input vector is fed into the neural net.
3. The net returns predicted system states for each of the proposed inputs, at

the end of control time window.
4. The selection algorithm picks the control signal for the time window based

on the estimated states.
5. The static (over the duration of the control time window) control signal is

passed to the model.

While the computational weight of the control algorithm is lower than horizon-
based model predictive control methods, it does require selection of CSP window
length, as well as the quantized input vector. Selection of the latter is straight-
forward, as the actuator output range is generally limited, picking several values
from this range is a simple precision vs speed tradeoff. While reducing the con-
tinuous range of inputs to a discrete list may seem like a bad idea at first glance,
the importance of having a continuous range needs to be reconsidered - e.g. in
many cases the difference between applying the force of 0.6N, and 0.603N is
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very likely to be negligible. Needless to say, if the controlled system is a highly
sensitive, the input vector quantization should reflect that.

As for the CSP window length selection, it is dependent on both the con-
trolled system as well as the actuator used, with window size increasing con-
troller speed and theoretically decreasing its effectiveness due to its approxima-
tion implications:

1. the window needs to be small enough to still reflect relatively small time
steps, not making large leaps and omitting crucial parts of the signal - e.g.,
if the oscillation frequency is 50 Hz, then picking a window of size 0.05 s will
render the controller useless.

2. the window needs to be small enough to fit controller speed requirements.
3. lastly, the window needs to be long enough to allow for actuator reaction.

2.5 Adaptation Control

To deploy the controller, firstly the net is trained on some measured data, prefer-
ably one previously controlled with a different method, so that some effects of
the input to the system are known. The controller is then operational - however
depending on the quality of data provided for initial training, as well as changes
that happen within the model - the control may very well be suboptimal, which
is why another module is necessary. The adaptation control module of the pro-
posed algorithm is not only devoted to the adaptation of the controller in case of
change in the model, but is also responsible for its online learning capabilities.

After each control step it receives the data about it - what inputs were
used, and what effects they had. These are then retained in the system’s simple
“memory” model with a set fixed size, where old entries are replaced with new
ones. Periodically, the neural net will undergo a brief re-training process, fitting
the neural net to the data stored in its memory, essentially “forgetting” how the
model acted in past, and reinforcing knowledge on how it is behaving currently.
This process leads to general self-improvement of the model during its operation,
including adaptation.

2.6 PD Controller

PD-based controllers are often used in vibration suppression tasks [8,10]. Here,
a simple multi-input PD control scheme was included [2] as a reference point
for an ANN-based algorithm. The PD method operates based on a following
equation:

F (t) =
∑

P1, i ∗ yi(t) + P2i ∗ (yi(t − 1) − yi(t)) (2)

where Pi and P2,i refer to adjustable parameters, i refer to the observable mass
under investigation, yi(t) is a displacement of i-th mass at time t while yi(t−1) is
a displacement of i-th mass in time t−1. P1,i thus refer to adjustable proportional
parameters of a controller while P2,i refer to adjustable derivative parameters
of a controller. Depending on the parameters’ values, the controller can either
be treated as a robust or adaptive one. In this scenario it is pre-trained for a
particular system state and then compared with adaptive ANN solution.
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3 Problem Definition and Simulation Setup

While the system’s parameter change over time is not of concern, the system on
which the tests are to be carried out should comply with the other 2 main issues
of the control problem that the controller was designed for - the knowledge of the
system should be severely limited, and the system itself ought to be a complex
MDOF one, with separate points for external disturbance, active component
actuation and suppression target. The problem is an extension of the 3-degree-
of-freedom unknown system for which the evolutionary-optimized PD controller
was proposed before [2]. The resulting system can be seen in Fig. 4.

Fig. 4. Schematic of the 9-DOF mechanical system used for suppression simulations

The simulations themselves had following parameters:

– Total time - 15 s
– Simulation timestep - 0.001 s
– External disturbance of a 0.005 s long impulse starting at 0.1 s with the mag-

nitude of 100N applied to m1

– Suppression target set - m3

– Actively actuated mass - m5

The controller was tested in a volatile environment, with random changes
to each parameter at every simulation cycle, leaving no time to properly adapt.
The system’s parameters were selected in following way:

– All masses were initialized at 5 kg, changed by a random number (uniform
distribution) between −1 and 1 at every simulation cycle. Masses were kept
within 0.1–10 boundaries).

– All damping ratios were initialized at 2.5, changed by a random number (uni-
form distribution) between −0.2 and 0.2 at every simulation cycle. Damping
ratios were kept within 0.01–5 boundaries).

– Spring constants linearily decayed by 20% over the simulation length.
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The NN predictive control was initialized with pre-trained net based on PD
control of a time-invariant version of this system, reducing the magnitude of
weight changes necessary properly fit the constantly changing system during the
first few simulation cycles as the net starts at a point where it is familiar with
the dynamics of the system in broad sense. The predictive control performance is
compared to static multi-input PD control tuned with the use of a simple genetic
algorithm: the system state at the beginning of simulation was copied for the
genetic algorithm so the adjustable parameters of the PD algorithm were set
to optimum for particular state of the system. Although this step would not be
possible in practical scenario (usually there is no possibility to freeze the system
so the PD controller would be able to learn it properly), this step was performed
to provide a worst-case-scenario for the ANN-based algorithm to compete with.

4 Results

Since the changes in the system were quite significant, it comes as no surprise
that the static multi-input PD controller destabilized the system on multiple
occasions. Results of the simulation are plotted in Fig. 5. Logarithmic scale is
used so the results of all the three algorithms could be compared in one plot.
It is worth noting that simulation starts with a PD approach being compara-
ble with the NN-based one. That is because of the pre-optimization performed
before the experiment. As the experiment progressed, the PD control started
to obtain significantly worse results - often destabilizing the system. The fact
that all the three solutions seem to be correlated is due to the fact, that the
parameters of the system contribute significantly to the vibration suppression.
In some configurations (e.g. - higher damping ratios) the algorithms have “less
work to do” - therefore they are compared against each other and against the
uncontrolled system behavior instead of absolute RMS values.

Various metrics allowing for comparison of all the three solutions are given
in Table 1. The superiority of the proposed approach over the pre-optimized
multi-input PD one is well pronounced in all the metrics used.

Table 1. Results of the experiment averaged for the whole simulation.

Metric No control Multi-input PD Predictive NN

Total RMS worse than uncontrolled [%] n/a 36.25 0.65

RMS relative to the uncontrolled [Fraction] n/a 5.58 0.81

Destabilized system [%] 0 31.90 0.05

Average RMS [m] 0.0286 0.2366 0.0227
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Fig. 5. Total RMS results of the adaptability test. Logarithmic scale was used for y
axis for the purpose of better readability.

5 Conclusions

The results of the test bring several important takeaways:

– The proposed algorithm can very quickly fit to an unknown model which is
constantly changing.

– The proposed algorithm struggles to achieve a very good performance - at
multiple points its control results were worse than those of the multiple-input
PD controller.

– While generally not providing optimal control per se, the algorithm was very
capable at making adaptations that didn’t result in the controller amplifying
the systems vibrations, with only 0.65% of the cycles ending up in that state,
as opposed to the fixed controller, for which this happened in 36.25% of the
cases.

– Even though the stability analysis was not performed in this case, obtained
results clearly show the proposed approach is generally stable, and safe enough
for practical applications.
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