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Preface

This volume constitutes the proceedings of the 18th International Conference on
Artificial Intelligence and Soft Computing ICAISC 2019, held in Zakopane, Poland,
during June 16–20, 2019. The conference was organized by the Polish Neural Network
Society in cooperation with the University of Social Sciences in Łódź, the Institute of
Computational Intelligence at the Częstochowa University of Technology, and the
IEEE Computational Intelligence Society, Poland Chapter. Previous conferences took
place in Kule (1994), Szczyrk (1996), Kule (1997), and Zakopane (1999, 2000, 2002,
2004, 2006, 2008, 2010, 2012, 2013, 2014, 2015, 2016, 2017 and 2018) and attracted a
large number of papers and internationally recognized speakers: Lotfi A. Zadeh,
Hojjat Adeli, Rafal Angryk, Igor Aizenberg, Cesare Alippi, Shun-ichi Amari, Daniel
Amit, Plamen Angelov, Albert Bifet, Piero P. Bonissone, Jim Bezdek, Zdzisław
Bubnicki, Andrzej Cichocki, Swagatam Das, Ewa Dudek-Dyduch, Włodzisław Duch,
Pablo A. Estévez, João Gama, Erol Gelenbe, Jerzy Grzymala-Busse, Martin Hagan,
Yoichi Hayashi, Akira Hirose, Kaoru Hirota, Adrian Horzyk, Eyke Hüllermeier, Hisao
Ishibuchi, Er Meng Joo, Janusz Kacprzyk, Jim Keller, Laszlo T. Koczy, Tomasz
Kopacz, Zdzislaw Kowalczuk, Adam Krzyzak, Rudolf Kruse, James Tin-Yau Kwok,
Soo-Young Lee, Derong Liu, Robert Marks, Evangelia Micheli-Tzanakou, Kaisa
Miettinen, Krystian Mikołajczyk, Henning Müller, Ngoc Thanh Nguyen, Andrzej
Obuchowicz, Erkki Oja, Witold Pedrycz, Marios M. Polycarpou, José C. Príncipe,
Jagath C. Rajapakse, Šarunas Raudys, Enrique Ruspini, Jörg Siekmann, Andrzej
Skowron, Roman Słowiński, Igor Spiridonov, Boris Stilman, Ponnuthurai Nagaratnam
Suganthan, Ryszard Tadeusiewicz, Ah-Hwee Tan, Shiro Usui, Thomas Villmann,
Fei-Yue Wang, Jun Wang, Bogdan M. Wilamowski, Ronald Y. Yager, Xin Yao,
Syozo Yasui, Gary Yen, Ivan Zelinka, and Jacek Zurada. The aim of this conference is
to build a bridge between traditional artificial intelligence techniques and so-called soft
computing techniques. It was pointed out by Lotfi A. Zadeh that “soft computing
(SC) is a coalition of methodologies which are oriented toward the conception and
design of information/intelligent systems. The principal members of the coalition are:
fuzzy logic (FL), neurocomputing (NC), evolutionary computing (EC), probabilistic
computing (PC), chaotic computing (CC), and machine learning (ML). The constituent
methodologies of SC are, for the most part, complementary and synergistic rather than
competitive.” These proceedings present both traditional artificial intelligence methods
and soft computing techniques. Our goal is to bring together scientists representing
both areas of research. This volume is divided into five parts:

– Neural Networks and Their Applications
– Fuzzy Systems and Their Applications
– Evolutionary Algorithms and Their Applications
– Pattern Classification
– Artificial Intelligence in Modeling and Simulation



The conference attracted a total of 333 submissions from 43 countries and after the
review process, 122 papers were accepted for publication.

I would like to thank our participants, invited speakers, and reviewers of the papers
for their scientific and personal contribution to the conference.

Finally, I thank my co-workers Łukasz Bartczuk, Piotr Dziwiński, Marcin Gabryel,
Marcin Korytkowski as well as the conference secretary, Rafał Scherer, for their
enormous efforts to make the conference a very successful event. Moreover, I
appreciate the work of Marcin Korytkowski, who was responsible for the Internet
submission system.

June 2019 Leszek Rutkowski
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Abstract. Currently, crop management through automatic monitoring
is growing momentum, but presents various challenges. One key challenge
is to quantify yield traits from images captured automatically. Wheat is
one of the three major crops in the world with a total demand expected
to exceed 850 million tons by 2050. In this paper we attempt estima-
tion of wheat spikelets from high-definition RGB infield images using
a fully convolutional model. We propose also the use of transfer learn-
ing and segmentation to improve the model. We report cross validated
Mean Absolute Error (MAE) and Mean Square Error (MSE) of 53.0,
71.2 respectively on 15 real field images. We produce visualisations which
show the good fit of our model to the task. We also concluded that both
transfer learning and segmentation lead to a very positive impact for
CNN-based models, reducing error by up to 89%, when extracting key
traits such as wheat spikelet counts.

Keywords: Wheat · Spikelet counting · Plant phenotyping ·
Image analysis · CNN · Density estimation

1 Introduction

The application of the internet of things (IoT) in agriculture has enabled the
monitoring of crop growth through networked remote sensors and non-invasive
imaging devices [7,27]. Analysis of the output of such systems with machine
learning and image processing techniques can help to extract meaningful infor-
mation to assist crop management. For example, yield quantification can be tied
to other features measured (e.g. temperature, humidity, variety of seed, etc.)
to ultimately develop fully automated monitoring systems capable of delivering
real-time information to farmers.
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Wheat is one of the threemajor crops in theworldwith a total demand expected
to exceed 850 million tons by 2050 [1]. One of the key challenges for wheat is to
stabilise the yield and quality in wheat production [22]. However, climate change
and related environmental issues have affected yield production [11].

In this paper, we focus on the task of counting spikelets in wheat images as
a form of yield quantification for wheat crops. In particular, we use a density
estimation method which has been applied in the context of crowd counting [14],
to count spikelets.

The tasks of counting wheat spikelets from infield images (Fig. 1) (as opposed
to images obtained in some constrained lab environment) presents some real chal-
lenges because of their self-similarity, high volume per image, and severe occlu-
sion as well as the challenges posed by lighting and other variations in the images
captured. Image processing or machine-learning approaches for object counting
require manual identification of features. Deep learning can automatically extract
useful features, and can also lead to high accuracy in image classification tasks
[13]. Convolutional Neural Networks (CNNs), a particular type of deep learning
model, learn their own features representations and have shown real promise in
many areas in computer vision and plant phenotyping [24]. For that reason and
because density estimation is considered as structural problem (requiring a pre-
diction for each pixel in the image), we employ a Fully Convolutional Network
(FCN) [15] to solve the task.

(a) (b)

Spikelets

Spikes

Fig. 1. Example of images from (a) ACID dataset and (b) CropQuant dataset which
shows spikes, and spikelets.

Furthermore, because the data annotation required to extract ‘ground truth’
from images is expensive in term of time and resources, we utilised transfer
learning in the task of density estimation [18,25]. Transfer learning enhances the
image training set with further labelled images from other context and those can
be used to pre-train some of the parameters improving the model fit.

Our overall approach is as follows. We employ a fully convolutional model
(SpikeletFCN) to perform density estimation from dot annotated images. We
utilise additional labelled data for the density estimation by means of trans-
fer learning. In addition, we investigate training SpikeletFCN with and with-
out prior segmentation and compare the performance of each. Section 2 presents
research that is relevant to our method. Section 3 discusses the datasets we used,
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the architecture of SpikeletFCN, model optimisation and training procedure
details. Section 4 describes the performance results of testing SpikeletFCN and
the their interpretation. Finally, Sect. 5 presents our conclusions.

2 Related Work

Object counting from images is a difficult problem that emerges in many dif-
ferent scenarios, for example, monitoring crowds [26], performing wildlife census
[2], counting blood cells in images [8] and others. Supervised counting methods
required labelled images with ground truth. Methods for supervised counting
include counting by detection or by segmentation, regression based methods
such as global regression [3,6,12], local regression [4] and density estimation
[14].

Many works [2,19,21] have used detection or segmentation in various ways,
but they may require intensive labelling. However, when the only task required
is to determine the total number of a certain object in an image rather than
detecting them or their position, then counting by regression can be more natural
and suitable, specially when the number of objects per image is high. It can be
divided into three sub-methods: global regression, density estimation and local
regression.

Global Regression often maps global image features to a real number [3,6,12].
However, as stated by Lempitsky and Zisserman [14] extracting these features
globally discards information about the location of the objects which may be
important in some contexts. Also, sufficient labelled images would be required
to represent different counts for training purposes.

Learning to count objects through density estimation regression [14] takes
into account the spatial information of objects. Density estimation regression
learns mapping from local features into pixel level densities. This gives the
advantage of integral density estimation over any image regions. Lempitsky and
Zisserman [14] used dot annotations to infer density maps and utilised them as
training ground truths by applying a normalised 2D Gaussian kernel. Then, they
designed a counting cost function that minimises the distance between the target
density map and the inferred ground truth one. Subsequently, Fiaschi et al. [5]
used random forest regression, which optimised the training process to predict
the density map.

On the other hand, Local Regression [4] predicts the local count of a small
region in the image directly without the need to predict a density map. How-
ever, it uses the density map in the training stage to infer object counts. Also,
it employs the concept of redundant counting to ensure maximum counting
precision.

Although it captures the local features of objects, it can be expensive and
inefficient in term of time and computational resources.
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2.1 Counting in Plant Phenotyping

Counting organs or constituent parts of plants is an essential and important task
to be tackled in plant phenotyping. For example, TasselNet [16] was developed to
count maize tassels from infield maize crop. TasselNet performs counting by local
regression using a deep convolutional neural network-based approach. Pound
et al. [18] developed a multi-task deep learning model to count and localise wheat
spikes and spikelets, achieving good accuracy. They tested the model on wheat
crop images captured in a controlled environment inside a glasshouse. Their
problem is therefore similar to ours but simpler given the reduced variation in
the controlled laboratory environment as opposed to a real field image. Figure 1
shows both type of images.

Also, Madec et al. [17] investigated counting spikes from infield wheat crop
images captured by UAV platform using two CNN-based models. The first was
Faster-RCNN [20], a CNN based object detection model. The second was an
adaptation of TasselNet [16] for this task. They concluded that both models
achieved similar results when tested on images containing crops that have a
similar distribution of spikes as the images both models trained on. However,
they found that Faster-RCNN outperformed other models when tested on images
containing more mature crops.

(a) (b) (c)

Fig. 2. An example of spikelets density generation where: (a) represents sub-image of a
wheat crop, (b) represents corresponding dot annotation and (c) the generated density
map from the dot annotation.

conv1 conv2 conv3 conv4 conv5
F
C
6

F
C
7

P1 P4P3P2 P5 Upsample
(FCN-32) 

Upsample 
(FCN-16) 

Upsample
(FCN-8) 

Score 

Score 
P 4

Score
P 3

Fig. 3. SpikeletFCN architecture
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Also, Hasan et al. [9] tackled the problem of counting spikes by using an
R-CNN object detector. They trained four versions of R-CNN on four different
growth stages of infield wheat images that vary in growth stage and variety and
reported good results.

3 Spikelets Counting Using SpikeletFCN

3.1 Problem Statement

We propose to model the problem of counting spikelets as a density estimation
problem. Given N input images I1, I2, . . . , IN with a size of H × W × D that
represent infield wheat crop plots, for each image, Ii, there is a corresponding
dot map Pi that can be represented as a set of 2D points Pi = {P1, . . . , PSPCi

},
where |Pi| is the number of spikelets in image Ii. Each point is placed at the
centre of each spikelet as shown in Fig. 2(b). To generate the ground truth map
GTi (shown in Fig. 2(c)), a 2D Gaussian kernel N (p;P, σ212×2) is applied to the
dot map Pi which generates a density for each pixel p of image Ii. Therefore,
the size of GTi is the same as the input image: GTi = {DP1 , . . . , DPH×W } where
DPj is the generated density for the jth pixel in image Ii.

The effect of applying the Gaussian kernel is that it can reflect the crowding
around a spikelet by taking into account the information of the pixel’s neigh-
bourhood when updating its density value. In other words, the more spikelet
occlusion in a certain region, the high density values will be assigned to pixels
in the region.

The total number of spikelets in a certain image Ii is the sum of all pixels
densities in GTi:

|Pi| = SPCi =
∑

p∈Ii

Dp (1)

3.2 Datasets

CropQuant Dataset [27]. We used 15 high-dimensional RGB image series of
6× 1.5 m wheat plots collected at Norwich Research Park (NRP) between May
and July 2016. The image series covers one growing stage: flowering. The res-
olution of images is 2592 by 1944 pixels, which were captured hourly by R-pi
camera modules integrated in the CropQuant workstation. Image data were syn-
chronised with HPC data storage infrastructure at NRP. We have dot annotated
each image by placing a dot in the centre of each spikelet. The total number of
spikelets in all images is 63,006 and the average spikelet number per scene is
4200.4 with a standard deviation of 197.

ACID Dataset. The Annotated Crop Image Dataset (ACID) has 520 images
of wheat plants captured from 21 pots in a glasshouse with a resolution of
1956 × 1530. The imaging is done by 12 MP cameras and all images have a
black background. The images show different spike arrangements and leaves and
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were obtained in consistent lighting. Also, the images were dot annotated by
placing a dot in the centre of each spikelet. The total number of spikelets in
all images is 48,000 and the average spikelet number per scene is 92.3 with a
standard deviation of 28.52.

Figure 1 shows examples of both CropQuant and ACID images which exem-
plify their similarities and differences.

3.3 SpikeletFCN Architecture

In our approach, we apply a fully convolutional network to tackle the problem of
spikelet counting. Figure 3 represents our architecture. The last fully connected
layers attached in any CNN-based classifiers are converted to convolutions. This
ensures that the semantics of target objects are preserved which are essential
for tasks that require structural predictions (predictions for each pixel) because
converting those layers to convolutions provide localisation and shape informa-
tion about target objects. Our model, SpikeletFCN, is composed of a Very Deep
Convolutional Network (VGG16) [23] (Fig. 3: conv1-P5), formed by two fully
convolutional (Fig. 3: FC6 and FC7) layers and three upsampling layers. The
filter size selected for all convolutional layers is 3 × 3 with a stride of 1 and
the max-pool layers have a pooling size of 2 × 2 with a stride of 2. We employ
the concept of feature fusion by adding two skip connections (Fig. 3: after P3
and P4) to fuse the local features related to spikelets from lower layers to other
shape and semantic features related to the wheat crops from higher layers. We
added upsampling layers to ensure we recover the original image size affected
by the application of repetitive convolutions and subsampling which reduces the
input size.

We found that using a pixel-wise L2 loss function (Eq. 2) as the cost function
for model optimisation gave the best results to regress the per pixel density:

L =
∑

p∈Ii

(Dp
GTi

− Dp
predicted)

2 (2)

where Dp
GTi

is the density ground truth and Dp
predicted is the predicted density

for a certain pixel p in image Ii.
The weights were updated for every learning iteration using a mini-batch

RMSprop optimising algorithm [10] with a learning rate of 0.001 and mini-batch
of 20.

3.4 Experimental Set Up

We first formed the training and validation set from the ACID dataset according
to the 80:20 split rule. Then, we randomly sampled sub-images with a size of
512 × 512 for each set. After that, we manually selected 1241 sub-images from
the training set and 303 sub-images from the validation set that contain spike
regions. With those images we trained the model for 100 epochs for the transfer
learning experiments described below.
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On the other hand, for the CQ 2016 dataset, the limitations imposed by the
task of dot annotating, which is time consuming and could therefore only be
accomplish for a very reduced number of images, meant we only had 15 images
dot annotated for our experiments. We therefore decided to divide them into
3-folds for cross validation, with 5 images per fold. Then, we randomly subsam-
pled 512 × 512 sub-images from each fold individually.

To investigate whether segmenting spike regions could enhance the spikelets
counting task, we manually remove the background using ground truth masks.
In future research, we intend to also use a CNN to tackle the segmentation,
instead of a manual approach.

We trained the model on each fold of the CQ 2016 dataset, validated and
tested on the other two folds in four steps:

1. We first trained the model from scratch on the original images (no segmen-
tation) and the model converged after an average of 155 epochs.

2. We then trained the model from scratch on the images with the spike regions
isolated so after this manual segmentation the model converged after an aver-
age of 75 epochs.

3. We then loaded parameters learned from training the model on the ACID
dataset, as described earlier, and continued fine tuning the model using the
original images. The model converged after an average of 36 epochs. This
represents transfer learning, using the ACID dataset in the initial stage of
parameter initialisation and the CQ 2016 dataset to train the final model.

4. We repeated the previous transfer learning model building step, but then
combined it with continued fine tuning on the CQ 2016 dataset images with
the spike regions isolated and the model converged after an average of 30
epochs.

For the testing phase, SpikeletFCN predicts the density of each pixel in a certain
image. Then, the number of spikelets in the image is calculated by summing all
the predicted densities over the whole image according to Eq. 1 in Sect. 3.1.

4 Results

Object counting methods use two evaluation metrics to measure the model per-
formance when applied on testing images: mean absolute error (MAE) and means
square error (MSE).

We have calculated the cross-validated performance of the SpikeletFCN
model for the different experimental steps described in Sect. 3.4 using the MAE
and MSE measures. Table 1 shows our results. Table 1 shows that applying seg-
mentation before counting has decreased the spikelet counting error to 82.2 and
102.0 for MAE and MSE respectively when training SpikeletFCN from scratch.
This represents a reduction of 83.5% and 81.2% respectively for MAE and MSE
with respect to error measures without segmentation.

In terms of transfer learning, loading ACID pre-trained parameters has a pos-
itive impact on the model performance by decreasing MAE and MSE to 53.0 and
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Table 1. The MAE and MSE of estimating the number of spikelets for two experi-
mental setups (as columns): training SpikeletFCN from scratch and by loading ACID
dataset learned parameters and for pre-segmenting images (in rows) on CQ 2016
images.

Scratch ACID [18]

MAE MSE MAE MSE

With segmentation 82.2 102.0 53.0 71.2

Without segmentation 498.0 543.5 77.12 107.1

71.2 respectively when segmentation is also applied. This represents a decrease
of 35.5% and 30.2% respectively when segmentation is applied with respect to
the error from the scratch model. When no segmentation is applied, the trans-
fer learning reduces error by 84.5% and 80.3% respectively for MAE and MSE.
Hence both segmentation and transfer learning have a very significant effect on
error rates. It is worth noting that the pre-trained ACID model has minimised
the gap between the SpikeletFCN performance with and without segmentation.
The difference in missed spikelets when training from scratch is 415.8 for MAE
and 441.5 for MSE. On the other hand, the comparative difference when loading
pre-trained ACID parameters is 24.12 for MAE and 35.9 for MSE. Overall, the
difference between the best model (with segmentation and transfer learning) and
the worse (the scratch model without segmentation) is over 89% for MAE and
over 86% for MSE.

In term of model training time, we can infer from Sect. 3 that loading ACID
pre-trained parameters and training the model in images with segmentation have
resulted on faster training of the model.

Also, we analysed the results in more detail through visualisation. Figure 4
shows some images with their density maps and respective spikelet counts. They
show that visually the density maps obtained appear to be reasonably accurate
with respect to the original images and seem to improve with the segmentation,
though in some cases the prediction represents under or over-counting.

More detailed visual analysis, in this case for the ACID images, is shown in
Fig. 5. By comparing the density maps generated from our models (column (b)
of Fig. 5 with the ‘ground truth’ density maps derived from the dot annotation
(column (c)) we can note that in some images, SpikeletFCN may be considered
as over-counting because it is able to detect spikelets that were miss-annotated
(missed) by accident in the dot annotation. For example, in Fig. 5, SpikeletFCN
predicted spikelet number for the second and third images as 53.47 and 49.93
while the ground truth for both images was 46.0 and 46.61. However, in these
images, spikes that appear to contain a single row of spikelets in the dot anno-
tation are recognised as having more spikelets by the SpikeletFCN model and
this seems to correlate to the images in column (a). We can assume that as
the dot annotation gets much more complex in the very crowded infield images,
dot annotation may also be more inaccurate, so some of our errors may reflect
the inaccuracies of our ground truth.
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(a) (b) (c) (d) (e)

N=1325.18 N=1080.39 N=1202.68

N=288.60 N=273.83 N=253.39

N=888.22 N=792.46 N=858.77

Fig. 4. Visualisation of density map results of testing SpikeletFCN on some CQ 2016
sub-images where (a) represents image patch, (b) image patch without background
(c) ground truth for spikelet density map and counts, and (d) and (e) are predicted
spikelet density map and count for the original image patch and image patch without
background respectively.

(a) (b) (c)

N=108.00 N=102.17

N=46.00 N=53.47

N=46.61 N=49.93

Fig. 5. Visualisation of density maps resulting from testing for the Adapted Spikelet-
FCN on ACID dataset. (a) is image patch, (b) is ‘ground truth’ spikelet density map
and count obtained after dot annotation, and (c) is the predicted spikelet density map
and count.

5 Conclusion

Counting spikelets from infield wheat crop images is a vital step in quantify-
ing yield traits but is very challenging given the variability, density and occlu-
sion associated with spikelets in real wheat images. In this paper, we trained
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and tested SpikeletFCN to count spikelets using a density estimation approach.
We also attempted to improve our learning by applying transfer learning and
segmentation.

Our experimental results were very promising and resulted in good error
rates, much improved by using both manual segmentation and transfer learning.
In particular transfer learning did help to improve the performance of the models
trained on infield crops images. Error rates decreased by over 81% when using
manual segmentation and over 86% when combining segmentation with transfer
learning. Also, it led to faster training of the model.

Visualisation helped us to discover that the process of obtaining ground truth
by dot annotation is imperfect and models may actually uncover spikelets which
have not been dot annotated. This is encouraging as it means the model is able
to learn features of the spikelets, even in the context of imperfect training data.

In the future, we plan to test our model on more infield wheat crops that
vary in year growth, growth stages and other factors. We will also develop CNN-
based models to tackle the task of spike segmentation as we have shown that it
can play an important role in improving the task of spikelets counting.
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Abstract. The Givens algorithm is a supervised training method for
neural networks. This paper presents several optimization techniques
that could be applied on the top of the Givens algorithm. First, the clas-
sic variant of the Givens method is briefly described. The main section
of the article contains a detailed description of the proposed retry worst
samples, skip best samples, and the Givens epoch update optimization
techniques. The paper concludes with the simulation results and an over-
all summary.

Keywords: Feed-forward neural network · Training algorithm ·
Optimization · QR decomposition · Givens rotation ·
Training acceleration

1 Introduction

The direction of the modern artificial intelligence development is driven by neural
networks. Many researchers across the globe focus their attention on developing
algorithms and training sets to solve various problems, e.g. human handwriting,
image or sound recognition [9,10,15–23]. Neural networks also find numerous
uses in the areas of economics, medicine or industry [1,2,8,24–26]. This wide
usage of artificial intelligence implies a great need of improving training algo-
rithms for neural networks.

Some learning methods, such as Back Propagation, are well known and easy
to implement but they require a huge effort to train advanced models [14].
Many researches have been conducted to improve performance of the classic
BP algorithm [13]. There are also more complex algorithms such as Levenberg-
Marquardt that is able to speed up a training process to just a few epochs [12].
Many researches have also been carried out in the areas of improving the LM
algorithm [3,4,7]. This paper presents a few approaches to the optimization
techniques that could be applied for the Givens algorithm [5]. The described
methods have been tested on several mathematical problems such as a single
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and two real variables functions approximations (logistic curve, hang and sinc)
and a two-spirals classification problem.

2 The Classic Givens Algorithm

The Givens rotation is a well known orthogonal transformation method derived
from the n-dimensional linear algebra [11]. In neural networks it can be used in
a minimization method for the error criterion. The following sections cover the
basics of the Givens rotations along with the QR decomposition method in order
to compute the weights update for a neural network.

2.1 Rotation Basics

Let a ∈ R
n and G ∈ R

n,n. The elementary step of the Givens algorithm is to
compute a rotation matrix with the following structure

Gpq =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 · · · 0
. . .

c · · · s
...

...
. . .

...
...

−s · · · c
. . .

0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

p

q

p q

(1)

The given rotation matrix is applied to the transformed vector by the left-sided
multiplication

a → ā = Gpqa. (2)

Parameters c and s are responsible for the angle of the rotation which is applied
to vector a. Due to the structure of matrix Gpq, only elements ap and aq of
vector a are affected by a single rotation as follows

āp = cap + saq

āq = −sap + caq

āi = ai (i �= p, q; i = 1, . . . , n).
(3)

The goal of the Givens elimination step is to manipulate parameters c and s in
order to substitute element aq by 0. To achieve that, the parameters of matrix
Gpq are computed as follows

c =
ap

ρ
s =

aq

ρ
, (4)

where ρ is obtained from equation

ρ =

⎧
⎨
⎩

ap

√
1 + (aq/ap)

2 for |ap| ≥ |aq|
aq

√
1 + (ap/aq)

2 for |ap| < |aq| .
(5)
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The application of Eqs. (4) and (5) to Eq. (3) results in

āp = cap + saq = ρ
āq = −sap + caq = 0.

(6)

2.2 QR Decomposition Based on Rotations

The previous section focuses on a single rotation which leads to elimination of a
single element of a vector. The QR decomposition is an iterative method of trans-
forming any non-singular matrix A ∈ R

m,n into the product of the orthogonal
Q and the upper-triangle R matrices as shown in the following equation

A = QR, (7)

where
QTQ = I, (8)

QT = Q−1, (9)

rij = 0 for i > j. (10)

Note that the computation of orthogonal matrix Q is not explicitly needed. In
each iteration of the algorithm only parameters c and s of the rotations are
calculated. At the final stage the decomposition is accomplished as shown below

R = Gm−1 . . .G1A1 = Gm−1,m . . .G23 . . .G2mG12 . . .G1mA1 = QTA. (11)

Nevertheless, matrix Q can be calculated back by inversion of the respective
rotations as shown in the following equation

Q = GT
1 . . .GT

m−1 = GT
1m . . .GT

12G
T
2m . . .GT

23 . . .GT
m−1,m. (12)

2.3 Weights Update

The Givens training algorithm is assumed to be effective for any multi-layered
neural network which uses any differentiable activation function. In order to
compute the weights update, the error measure given by Eq. (13) needs to be
minimized.

J (n) =
n∑

t=1

λn−t
NL∑
j=1

ε
(L)2
j (t) =

n∑
t=1

λn−t
NL∑
j=1

[
d
(L)
j (t) − f

(
x(L)T (t)w(L)

j (n)
)]2

.

(13)
At this stage Eq. (13) needs to be derived and linearized to its normal form given
by

n∑
t=1

λn−tf ′2
(
s
(l)
i (t)

) [
b
(l)
i (t) − x(l)T (t)w(l)

i (n)
]
x(l)T (t) = 0. (14)
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To obtain the entry point to the Givens training algorithm, Eq. (14) needs to be
transformed into its vector form as follows

A(l)
i (n)w(l)

i (n) = h(l)
i (n) , (15)

where

A(l)
i (n) =

n∑
t=1

λn−tz(l)i (t) z(l)Ti (t), (16)

h(l)
i (n) =

n∑
t=1

λn−tf ′
(
s
(l)
i (t)

)
b
(l)
i (t) z(l)i (t), (17)

where
z(l)i (t) = f ′

(
s
(l)
i (t)

)
x(l) (t) . (18)

b
(l)
i (n) =

{
f−1

(
d
(l)
i (n)

)

s
(l)
i (n) + e

(l)
i (n)

for l = L
for l = 1 . . . L − 1,

(19)

e
(k)
i (n) =

Nk+1∑
j=1

f ′
(
s
(k)
i (n)

)
w

(k+1)
ji (n) e

(k+1)
j (n) for k = 1 . . . L − 1. (20)

Since each neuron computes its own linear response (s(l)i ) Eq. (15) needs to be
applied for all the neurons of a network. In order to solve Eq. (15) the Givens QR
decomposition is used as described in the previous section. Orthogonal matrix
QT is implicitly acquired during the decomposition process as shown in the
following equations

Q(l)T
i (n)A(l)

i (n)w(l)
i (n) = Q(l)T

i (n)h(l)
i (n) , (21)

R(l)
i (n)w(l)

i (n) = Q(l)T
i (n)h(l)

i (n) . (22)

At this stage matrix A is fully transformed into upper-triangle matrix R, so its
inversion is not that complex anymore. The weights update for i-th neuron is
calculated due to the equations

ŵ(l)
i (n) = R(l)−1

i (n) Q(l)T
i (n) h(l)

i (n) , (23)

w(l)
i (n) = (1 − η)w(l)

i (n − 1) + η ŵ(l)
i (n) . (24)

3 Modifications of the Givens Algorithm

The neural network training process of the Givens method is based on the pre-
sentation of consecutive epochs. A single epoch includes all samples of a teaching
sequence. Each sample contains input and expected data. The teaching process
is assumed to be completed once the overall network’s error ε is below a pre-
defined threshold (ε < Θ)—success or if the epoch limit is exceeded—failure.
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The first proposed optimization is to retry the samples whose error was higher
than the given multiplication of a target error. The second idea is to skip the
samples whose error already fell below a given percent of a target error. In the
classic Givens algorithm the weights update occurs after the presentation of each
sample. In the last approach weight update is performed only once per epoch,
after all the samples have been presented. The convergence criteria for all the
modifications are the same as for the classic Givens (CG).

3.1 Retry Worst Samples

The retry worst samples modification (RWS) is based on the idea to run the
whole training process again using only a subset of a teaching sequence. The
samples that need to be trained again are selected based on the network’s error
for the given sample

es =
1
2

NL∑
i=1

ε2i , (25)

where s is a sample index, i = 1 . . . NL is an output neuron index, ε is a nonlinear
output neuron’s error. At the early stage of a network’s training the randomly
selected weights are barely starting to shape. At this stage it is too early to
apply the RWS modification, because all samples from the epoch are most likely
to be presented again. To stop this from happening, the RWS modification’s
activation threshold t is introduced and calculated as shown

t = Θp, (26)

where Θ is an accepted network error threshold and p ≥ 1 is a RWS modifica-
tion’s parameter. The epoch error is based on the selected error criterion. For
the average epoch error criterion it is calculated as follows

ε̄ =

S∑
s=1

es

S
. (27)

For the maximum epoch error criterion it is calculated due to

ε̄ = max(es). (28)

Once the network error satisfies the RWS modification’s prerequisite given by
Eq. (29), the individual errors of all samples are being verified by Eq. (30) if
they need to be trained again.

ε̄ < t (29)

es > t (30)
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The RWS modification can be summarized by the following steps:

1. Present all samples from the teaching sequence to the network.
2. Verify if the overall network error ε̄ is less than the predefined modification’s

activation threshold t. If Eq. (29) is satisfied, then continue to step 3. Other-
wise, skip the RWS modification, proceed to the next epoch and go back to
step 1.

3. For each sample verify if its error es is above the modification’s activation
threshold t. If Eq. (30) is satisfied, then run the teaching process for this
sample again. Otherwise continue.

3.2 Skip Best Samples

The skip best samples modification (SBS) is based on the idea to suppress the
training process for a subset of a teaching sequence. The samples that can be
skipped must satisfy the following equation

es < Θp, (31)

where es is a network’s error for the given sample calculated due to (25), Θ is
an accepted network error threshold and p ∈ (0 . . . 1) is an SBS modification’s
parameter. Parameter p in the SBS modification denotes a percentage of the
target network’s error. The samples with an error below this threshold are treated
as well trained, hence the weight update is skipped. The SBS modification can
be summarized by the following steps:

1. Present the next sample to the network and calculate its error es.
2. If error es of the current sample satisfies Eq. (31), then suppress the weight

update and go to the next sample. Otherwise, proceed with the training.

3.3 Epoch Weight Update

In the classic Givens algorithm the weight update vector is applied to the neuron
in every iteration (23, 24). In the epoch weight update modification (EG - Epoch
Givens), the update vector of each iteration ŵ is accumulated in resultant vector
v̂. Based on that, in the EG modification Eq. (24) from the CG is substituted
by the following

v̂(l)
i =

N∑
n=1

ŵ(l)
i (n) − w(l)

i (0). (32)

Once the epoch is completed, the resultant vector of consecutive corrections v̂ is
created. Then vector v̂ is scaled by teaching step η and applied to the neuron’s
weights as follows

w(l)
i = w(l)

i (0) + η v̂(l)
i

. (33)

The epoch weight update modification can be summarized by the following steps:
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1. Perform calculations as for the classic Givens algorithm with respect to
Eqs. (13–23).

2. For each sample accumulate the difference between the current update vector
and the initial weight vector for the current epoch as shown in Eq. (32).

3. Once all samples have been presented to the network, scale the vector of
updates v̂ by η and apply it to the weight’s vector as shown in Eq. (33).

4 Simulation Results

The discussed modifications have been tested on an authorial implementation of
the neural network. This section is divided into several subsections. Each section is
fully devoted to a respective teaching problem. Each section also contains a setup
description for the given experiment. The performance factor ξ defined by Eq. (34)
has been used to reveal the best combination of parameters across all tested algo-
rithms. The following sections contain the best results in terms of the lowest epoch
count and the biggest success ratio selected from all experimental results.

ξalgorithm =
SuccessRatio
EpochAverage

(34)

4.1 Single Variable Function Approximation - Logistic Curve

The first approach to the Givens modifications performance tests is approximat-
ing the function of a single real variable. The function represents a logistic curve
given by

f (x) = 4x(1 − x) x ∈ [0, 1]. (35)

During the experiment a fully connected MLP network with the total of 6 neu-
rons (1-5-1) has been used. The teaching sequence consists of 11 samples pre-
sented in a random order in each epoch. Target error Θ has been set to 0.001
as a maximum epoch error. A detailed setup description is presented in Table 1.
The experiment presents the best results which are given in Table 2.

Table 1. Setup for the logistic function approximation

Target error Θ 0.001

Criterion Epoch max

Limit 1000

Network topology 1-5-1 full connected

Activation in hidden layers Hyperbolic tangent

Teaching sequence size 11

Sequence type Random order

Weights starting range Random in [−0.5, 0.5]

Experiment retry count 100
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The classic Givens algorithm (CG) has achieved the best performance with
η = 0.006 and λ = 0.911. 98 out of 100 teaching trials ended up with a success
giving a value of 38.34 as an average of the required epochs for reaching the
predefined training goal. A single teaching process took 11.74 ms on average.

Table 2. Results of the logistic function approximation

CG RWS SBS EG

p - 1.5 0.9 -

η 0.006 0.006 0.006 0.1

λ 0.911 0.911 0.911 0.962

Success ratio 98% 100% 100% 84%

Epoch avg 38.34 42.18 37.72 86.71

Duration avg [ms] 11.48 12.67 9.11 29.64

The RWS modification achieved the best performance once the repetition
threshold was set to p = 1.5. The RWS modification proves to be more successful
than CG but on average at the cost of a few additional epochs.

The SBS modification has achieved the best performance once the skip sam-
ple threshold was set to p = 0.9. The SBS modification turns out to be more
successful and slightly more epoch efficient on average than CG.

The EG modification has achieved the best performance for η = 0.1 and
λ = 0.962. Unfortunately, in the case of the logistic curve approximation, the
epoch Givens modification does not give any better results in terms of the success
ratio nor epoch average.

4.2 Two Variables Function Approximation - Hang

The next approach to the Givens modifications performance tests is approxi-
mating the non-linear function of two real variables. The trained Hang function
is given by

f (x1, x2) =
(

1 + x−2
1 +

√
x−3
2

)2

x1, x2 ∈ [1, 5]. (36)

During the experiment a fully connected MLP network with a total of 16 neurons
(2-15-1) has been used. The teaching sequence consists of 50 samples presented
in a random order in each epoch. Target error Θ has been set to 0.001 as an
average epoch error. A detailed setup description is presented in Table 3. The
best results obtained in the experiment are presented in Table 4.

The classic Givens algorithm (CG) has achieved the best performance with
η = 0.02 and λ = 0.966. 99 out of 100 teaching trials were successful giving a
value of 26.04 as an average of the epochs required for reaching a predefined
training goal. A single teaching process took 156.16 ms on average.
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The RWS modification has achieved the best performance once the repetition
threshold was set to p = 4. That means a lot of samples can be retried during
each epoch. The RWS modification turns out to be more successful than CG
with a better average epoch count.

The SBS modification has achieved the best performance once the skip sam-
ple threshold was set to p = 0.6. The results show that many samples were able
to achieve error smaller than 60% of the target error Θ. This is reflected by a
short average duration time of a single training. 75.36 ms for SBS comparing to
156.16 ms for CG. The SBS modification turns out to be more successful and
slightly more epoch efficient in epoch average than CG, but with twice as big
improvement in an average training duration time.

Table 3. Setup for the Hang function approximation

Target error Θ 0.001

Criterion Epoch average

Limit 1000

Network topology 2-15-1 full connected

Activation in hidden layers Hyperbolic tangent

Teaching sequence size 50

Sequence type Random order

Weights starting range Random in [−0.5, 0.5]

Experiment retry count 100

Table 4. The results of the Hang function approximation

CG RWS SBS EG

p - 4 0.6 -

η 0.02 0.02 0.02 0.01

λ 0.966 0.966 0.966 0.994

Success ratio 99% 100% 100% 100%

Epoch avg 26.04 24.3 25.38 71.64

Duration avg [ms] 156.16 105.99 75.36 295.4

The EG modification has achieved the best performance for η = 0.01 and
λ = 0.994. The epoch modification brings the only improvement in terms of suc-
cess ratio. The epoch average and the average duration time are not improved
for the Hang approximation comparing to the classic variant of the Givens algo-
rithm.
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4.3 Two Variables Function Approximation - Sinc

Thenext approach to theGivensmodifications performance tests is approximating
the non-linear function of two real variables. The Sinc function is given by

f(x1, x2) =

⎧
⎪⎪⎨
⎪⎪⎩

1 x1 = x2 = 0
sinx2
x2

x1 = 0 ∧ x2 �= 0
sinx1
x1

x2 = 0 ∧ x1 �= 0
sinx1
x1

sin x2
x2

(37)

During the experiment a fully connected MLP network with a total of 16 neurons
(2-15-1) has been used. The teaching sequence consists of 121 samples presented
in a random order in each epoch. Target error Θ has been set to 0.005 as an
average epoch error. A detailed setup description is presented in Table 5. The
experiment reveals the best results presented in Table 6.

Table 5. Setup for the Sinc function approximation

Target error Θ 0.005

Criterion Epoch average

Limit 1000

Network topology 2-15-1 full connected

Activation in hidden layers Hyperbolic tangent

Teaching sequence size 121

Sequence type Random order

Weights starting range Random in [−0.5, 0.5]

Experiment retry count 100

Table 6. The results of the Sinc function approximation

CG RWS SBS EG

p - 2 0.2 -

η 0.02 0.02 0.02 0.006

λ 0.984 0.984 0.984 0.972

Success ratio 100% 100% 100% 100%

Epoch avg 92.29 60.09 83.09 86.06

Duration avg [ms] 1197.89 728.75 494.28 1136.44

The classic Givens algorithm (CG) has achieved the best performance with
η = 0.02 and λ = 0.984. 100% of the teaching trials were successful giving a value
of 92.29 as an average of required epochs for reaching a predefined training goal.
A single teaching process took 1197.89 ms on average.
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The RWS modification has achieved the best performance once the repetition
threshold was set to p = 2. The RWS modification turns out to be as successful
as CG with a much better average epoch count and duration time.

The SBS modification has achieved the best performance once the skip sam-
ple threshold was set to p = 0.2. The results show that many samples were
able to achieve the error smaller than 20% of target error Θ. This is reflected
by a short average duration of a single training. 494.28 ms for SBS comparing
to 1197.89 ms for CG. The SBS modification turns out to be as successful as
CG with a slightly better epoch average and a huge improvement in an average
training duration time.

The EG modification has achieved the best performance for η = 0.006 and
λ = 0.972. The epoch modification is as good as CG in terms of success ratio.
The EG modification also shows noticeable improvements in the area of average
epoch count and training duration time comparing to the CG method.

4.4 Classification Problem - Two Spirals

The final approach to the Givens modifications performance tests is a two vari-
ables classification problem known as the two spirals. During the experiment a
fully connected MLP network with a total of 16 neurons (2-5-5-5-1) has been
used. The teaching sequence consists of 96 samples presented in a random order
in each epoch. Target error Θ has been set to 0.1 as the maximum epoch error.
A detailed setup description is presented in Table 7. The experiment presents
the best results which are given in Table 8.

Table 7. Setup for the two spirals classification

Target error Θ 0.1

Criterion Epoch max

Limit 5000

Network topology 2-5-5-5-1 full connected

Activation in hidden layers Hyperbolic tangent

Teaching sequence size 96

Sequence type Random order

Weights starting range Random in [−0.5, 0.5]

Experiment retry count 100

The classic Givens algorithm (CG) has achieved the best performance with
η = 0.02 and λ = 0.991. 90 out of 100 teaching trials ended up with a success
giving a value of 51.59 as an average of the epochs required for reaching a
predefined training goal. A single teaching process took 1195.99 ms on average.

The RWS modification has achieved the best performance once the repetition
threshold was set to p = 3.5. Unfortunately, the RWS modification turns out to
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Table 8. The results of the two spirals classification

CG RWS SBS EG

p - 3.5 0.8 -

η 0.02 0.02 0.02 0.0003

λ 0.991 0.991 0.991 0.996

Success ratio 90% 34% 74% 79%

Epoch avg 51.59 47.74 58.28 306.42

Duration avg [ms] 1195.99 843.53 380.45 6212.55

be rather unstable for a two-spirals problem as the success ratio drops to 34%
bringing only a small improvement in the case of epoch average.

The SBS modification has achieved the best performance once the skip sam-
ple threshold was set to p = 0.8. The SBS modification reduced the success ratio
to 74% but the average duration time is also reduced to 380.45 milliseconds per
training on average.

The EG modification has achieved the best performance for η = 0.0003 and
λ = 0.996. The epoch modification does not bring any improvements comparing
to the classic Givens algorithm.

5 Conclusions

The paper discusses a rather complex experiment with a great number of statis-
tics data embedded in it. To make the summary section clearer, the usability
of each modification is investigated in the areas of success ratio, average epoch
count and average duration time of the training process across all tested scenar-
ios. In the following tables number 1 denotes the best performance in a given
category and number 4 stands for the worst statistics.

Table 9. The summary in scope of success ratio

Log Hang Sinc Spirals

CG 2 2 1 1

RWS 1 1 1 4

SBS 1 1 1 3

EG 3 1 1 2

In the area of the success ratio (Table 9), the RWS and SBS modifications
manifest the best - 100% - efficiency for the tested approximation problems while
performing worst in the two-spirals problem. The EG modification proves to be
slightly more efficient than CG only in the Hang simulation.
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Table 10. The summary in terms of average epoch count

Log Hang Sinc Spirals

CG 2 3 4 2

RWS 3 1 1 1

SBS 1 2 2 3

EG 4 4 3 4

In the area of the average epoch count (Table 10), the best performing mod-
ification is RWS followed by SBS. The EG modification comes last in the table
with the worst overall performance in the area of the average epoch count.

Table 11. The summary in terms of average time duration

Log Hang Sinc Spirals

CG 2 3 4 3

RWS 3 2 2 2

SBS 1 1 1 1

EG 4 4 3 4

The ability of skipping a training process for given samples turns out to be
the key to time optimization even if some additional epochs are required. In
the area of the average teaching duration time (Table 11), the SBS modification
is the best performing optimization for the Givens algorithm. Again, the EG
modification turns out to be less effective and shows its potential only during
the sinc experiment.

From the perspective of the selected training problems, the sinc function
approximation seems to be the most flexible problem to have teaching modifica-
tions applied in it. The classic Givens manifests the worst performance during
the Sinc function approximation training.

In the nearest future further research is likely to be attempted. The first idea
is to apply more than a single modification to the training process at the same
time. Additionally, the proposed modifications could be tested with different
training sets. The presented modifications could also be applied to different
training algorithms, especially to the parallel Givens implementation as proposed
in [6].

This work was supported by the Polish National Science Center under Grant
2017/27/B/ST6/02852.
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Abstract. This paper presents a study about the use of two deep neural
networks (MLP and LSTM) in the Dynamic Helper System (DHS), which
is a system that only exists in the EFC railway. The DHS assists a fully
loaded train in sections with slopes and climbs. Therefore, this work
shows that it is possible to predict the next action of the DHS using a
classification algorithm, specifically, deep neural networks. The training
and testing dataset is a real one, and the training task was performed
using PyCUDA, Keras, and TensorFlow in a General Purpose GPU.
Results using a real-world dataset indicate that deep neural networks
can reach an accuracy above 99% and precision about 81% on predicting
the next action of the DHS.

Keywords: Deep neural networks · Helper System · GPU

1 Introduction

A railway is an excellent alternative to transport large volumes of materials,
like fuel, seeds, and minerals. Particularly in this work, a freight train usually
transports ferrous metal from a mine to a port [16], using an infrastructure that
consists of the train by itself, communication networks, and radio equipment.
Between these two extreme points, the railway has to deal with many problems,
such as vandalism, equipment failures, weather, and geographic conditions.

The tracks generally contain simple segments, known as CDV and segments
that allow line changing, known as WT. This is a simplification of a duplicate
railroad, that ignores telecommunication, automation and signaling equipment
(Fig. 1).
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Fig. 1. Railway representation

As previously mentioned, railways are also subjected to many geographic
conditions, such as erosions, landslides, and long hills. In this paper, a geographic
condition called slope is essential to understand the importance of the DHS.
The slope refers to the tangent of the angle from a surface to the horizontal and
can be defined by {d, δh, I, α}, where d is the horizontal distance, δh is the high,
I is the slope length, and α is the angle of inclination. A slope with α �= 0 is
presented as a climb when the train goes from the lowest point to the highest
point, as presented in Fig. 2. In this situation, the train needs extra power to
continue its journey because the train is usually fully loaded. The DHS gives the
required extra power.

Fig. 2. Railway climb representation

In this context, the main idea of this paper is to identify the next step of the
DHS to help the train to overcome the slope using deep neural networks particu-
larly when it is fully loaded. At the best of our knowledge, there are no other works
that explore any classification algorithm in the DHS. Moreover, the training task
has been conducted in a General Purpose Graphical Unit Processing (GPGPU).
The main reason for using GPGPUs is their parallel and high precision comput-
ing [14]. In fact, Artificial Neural Networks have been accelerated using GPUs in
many types of research as presented in [11,15,23]. Further, using GPUs in Deep
Learning is the cutting edge in Deep Neural Networks as shown in [9,10,21,22].
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Thus, this paper is divided as follows: Sect. 2 describes how DHS works;
Sect. 3 gives a brief introduction to deep neural networks and how the GPGPU
was used in this work; Sect. 4 shows the results of the experiment using two
different deep neural networks; finally, Sect. 5 presents the conclusions and future
directions of this work.

2 The Dynamic Helper System

As previously mentioned, the DHS helps trains to climb slope sections of the
railway. In this context, we need two definitions as follows:

Definition 1: A train is a set of loaded wagons.

Definition 2: Helping is the action of coupling at the end of a fully loaded
train to give it the extra power required to overcome a climb [8].

Hence, there are two ways of using the DHS. The first one is called Conven-
tional Helper, in which it is necessary to stop the train to start the procedure.
In this particular case, the helping locomotive will leave the parallel line and
pass to the traffic line. Afterward, the helper locomotive driver is responsible for
the manual coupling of the air ducts that will synchronize the two trains brakes.
This kind of helping is harmful for two reasons: it increases the required fuel in
significant levels because it is necessary a new acceleration of the freight train,
and decreases the availability of the line, i.e. if there is a train in the line it has
to stop as well.

The second way is named Dynamic Helper and aims to avoid the problems
caused by Conventional Helper. The word dynamic refers to the fact that the
coupling between the helper wagon and the freight train occurs in movement.
In this context, many electronics and pneumatic types of equipment compose
the Dynamic Helper. One of them is called End Of Train (EOT), which is
electro-pneumatic equipment that couples in the freight train tail and allows the
train driver to perform the Helper procedure in a supervised way. Either, there
exists a set of equipment that monitors the entire process, ensuring that the DH
procedure is agile and secure.

The coupling process happens as follows: once the two locomotives are in
the same line, a laser range-finder installed in the front of helper locomotive
constantly measures the relative distance between the two trains, from about
100 m. The EOT contains a transducer that monitors the air ducts pressure and
a GPS which informs the geographic position and the freight train speed (see
simplified diagram in Fig. 3). All these information are given to the train driver
by a friendly interface inside the locomotive, which presents alerts If any of the
equipment variables are out of their respective limits; thus emergency actions
can be taken, for example, the traction cut. Given that the speed and distance
are monitored in meters by:{

Laser Range-finder → if x ≥ 0 and x ≤ 100
EOT GPS → if x ≥ 101 and x ≤ 1000

(1)
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Fig. 3. Dynamic helper representation

with x being the current distance, the train driver is responsible for accelerating
and break the Helper Locomotive using all this information. The locomotive
interface presents in all routes the next action to be applied.

The entire process, from coupling to decoupling, involves the generation of
time series at the end of the process—these series concern to distance and speed
as presented in Fig. 4. These data are stored in text logs that are treated and
used in this work to training the deep neural networks. Table 1 presents the
main attributes we can find in the log file. These features help the driver to
achieve a successful helping procedure. In this context, the possible actions are
{ACEL, MANT, FREIE, CTR, EMER, ACOP}, which mean accelerate,
maintain, brake, traction cut, emergency and couple, respectively.

Table 1. Attributes of Dynamic Helper log

Name Description

GPS POS DH locomotive position from GPS

GPS SP DH locomotive speed from GPS

L DIST Relative distance from Rangefinder

L SPEED Relative speed from Rangefinder

B PRESS Brake pressure in moment

EOT BAT EOT battery level in moment

EOT PRESS Air ducts pressure in moment

EOT GPS Freight train position from EOT

EOT SP Freight train speed from EOT

AP Acceleration point applied

REL SP Relative speed of persecution

REL DIS Relative distance of persecution

TRAC CUT Cut-off

ADV VAL Advance valve

CONT GPS Communication count
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Fig. 4. Speed temporal series

3 Deep Neural Networks

Neural networks stayed out of favor as a general area of research until the eighties
[2]. Since then, a significant breakthrough has been made in the field. Especially,
after powerful computer architectures have popularized and big data becom-
ing accessible to the general public. This scenario brought up all the condition
to evolve a new area called deep learning, which is a field of machine learning
consisting of learning successive layers to get increasingly meaningful represen-
tations [4]. Modern models of deep learning consist of tens or hundreds of suc-
cessive layers that apply transformations learned from data to minimize a loss
function using an optimizer as presented in Fig. 5. Concerning implementation,
these transformations are often matrix and vector operations, which are more
costly as the size of the data increases, i.e., the bigger the data size, the higher
the cost of training.

Hence, as we can see, Deep-learning networks are distinguished from the more
conventional single-hidden-layer neural networks by their depth, i.e., the number
of node layers through which data passes in the process of pattern recognition. In
deep-learning networks, each layer of nodes can train on a distinct set of features
based on the previous layer’s output. The further we advance into the neural
net, the more complex the features nodes can recognize since they aggregate
and recombine features from the previous layer.

In this work, we use two types of deep neural networks, a regular densely
neural network, similar to MLP and the LSTM recurrent neural network [20].
The two chosen models have already been applied in a series of problems [17,18,
24] and are widely known in the literature.

In this work, we use two types of deep neural networks, a regular densely
neural network, similar to MLP and a LSTM recurrent neural network [20].
These models have already been applied in a series of problems [17,18,24] and
are widely known in the literature. All in all, the differences between those
models are two. Each unit uses information of the current instance to apply
weighted-sum operations passing the results to the forward layer in MLP, and
each unit has multiple activation functions allowing past data to be used along
with current instances, which is an exceptional characteristic given that data is
sequential in LSTM.
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Fig. 5. Deep Default model

3.1 DNN in a GPU

With GPU’s prices decreasing along the time, the development of deep neural
networks became more forthcoming, allowing the fast development of many types
of deep models, using frameworks like TensorFlow [1] and Caffe [12].

Deep neural networks have already been used in GPU in many previous
works, generally to make the training process faster. Like in [13], that uses GPU
to train of 1.2 million images in a large deep network; [6], that applies a Multi-
column DNN in a set of image recognition problems, like the MNIST dataset.

Besides common image processing, GPUs are used to run problems with
ample space of states, like in the multi DNN that mastering the famous game
GO [18] and for large-vocabulary speech recognition [7]. In the context of this
work, the GPUs are used to accelerate the training step, considering a large
number of instances in helper procedures. Besides the training stage, we also get
predictions faster, that is essential to open the possibility of automatic control.
The agility provided by the GPU operations in comparison with CPU’s allows
faster retraining of the model as the procedure log provides new information.

4 Computational Experiments

In this section, we present the results of the deep neural networks by using a
dataset generated by the attributes presented in Table 1. The dataset is devised
by 65064 instances and 54 attributes. Table 2 presents the configurations that
have been used in the training stage and tests. An expert in the area provided
the information on what attributes are more important to the operation. Thus,
booth algorithms receive the same 14 attributes as the input. The attributes
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are scaled and the prediction set {ACEL, MANT, FREIE, CTR, EMER,
ACOP} are mapped into {1, 2, 3, 4, 5, 6} in order to use both of neural
networks.

Table 2. Networks configuration

MLP LSTM

Architecture {14,15,6} {64,6}
Activations {relu, relu, softmax} {softmax}
Loss cat. crossentropy cat. crossentropy

Optimizer rmsprop rmsprop

All the tests were executed using the Keras API [3] over TensorFlow [1].
The algorithms are executed in a GPU NVIDIA GEFORCE 840M with 2 GB
of video memory and 384 cores. To evaluate the networks we used the k-fold
cross-validation method [5], with k = 10 and 1000 epochs. Doing so, each folder
is tested with 6506 instances, which means about 10% of the dataset.

Tables 3 and 4 shows the accuracy and loss metrics for each fold in training
process. Figures 6 and 7 shows the medium values over the epochs from each
model. The results of both algorithms show high accuracy, with MLP perform-
ing better than LSTM for most folds, whereas LSTM shows a lower mean loss.

Table 3. Folds accuracy

Fold MLP LSTM

1 0.99538 0.99215

2 0.99492 0.99369

3 0.99307 0.99384

4 0.99569 0.99461

5 0.99538 0.99261

6 0.99446 0.99369

7 0.99353 0.99400

8 0.99507 0.99461

9 0.99292 0.99369

10 0.99523 0.99338

Mean 0.99457 0.99363

Std. Dev 0.00010 0.00077

Table 4. Folds loss

Fold MLP LSTM

1 0.01834 0.02047

2 0.01418 0.01453

3 0.01539 0.01314

4 0.01915 0.01425

5 0.02697 0.01846

6 0.01312 0.02057

7 0.02418 0.01828

8 0.02587 0.02189

9 0.03827 0.02154

10 0.02922 0.02103

Mean 0.02247 0.01842

Std. Dev 0.00791 0.00329

Precision, recall, and accuracy, defined by Eqs. 2, 3 and 4 respectively, assess
the quality of the test phase, in which n is the number of classes, TPi represents
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Fig. 6. Accuracy and loss MLP

Fig. 7. Accuracy and loss LSTM

the number of observations ranked correctly as class i, TNi is the number of
observations labeled correctly as not belonging to the i class, FPi represents
the observations assigned incorrectly to the class i, and FNi is the amount of
observations wrongly labeled as class i [19].

∑i=n
i=1

TPi

TPi+FPi

n
(2)

∑i=n
i=1

TPi

TPi+FNi

n
(3)

∑i=n
i=1

TPi+TNi

TPi+FNi+FPi+TNi

n
(4)

The Table 5 shows the results for both deep networks.
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Table 5. Algorithms configuration

Name Precision Recall Accuracy

MLP 81.79365% 82.03600% 99.81900%

LSTM 81.82288% 81.05381% 99.78772%

According to the tests, the MLP architecture achieves the bests results show-
ing a very high accuracy. On the other hand, it is important to note that the
LSTM also produces very high accuracy, better than in the training step, show-
ing that the model reaches a good generalization from new data.

5 Conclusion and Future Work

This work shows that it is possible to predict the next action in the Dynamic
Helper System using deep neural networks with high accuracy. The MLP
achieved better results than LSTM on Recall and Accuracy metrics, whereas the
recurrent network achieved a better Precision. Anyway, the differences between
these two neural networks might be minimum when enough data is available,
which is the case in this work. The results can be improved by using more data,
that is available at the cost of more time for re-training.

Future work includes predicting the specific acceleration and breakpoint for
the helper locomotive and developing an automatic control for the system by
implementing a deep neural network in the locomotive directly.
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Abstract. Named entity recognition (NER) is one of the tasks in natu-
ral language processing that can greatly benefit from the use of external
knowledge sources. We propose a named entity recognition framework
composed of knowledge-based feature extractors and a deep learning
model including contextual word embeddings, long short-term memory
(LSTM) layers and conditional random fields (CRF) inference layer. We
use an entity linking module to integrate our system with Wikipedia.
The combination of effective neural architecture and external resources
allows us to obtain state-of-the-art results on recognition of Polish proper
names. We evaluate our model on the data from PolEval 2018 (http://
2018.poleval.pl/) NER challenge on which it outperforms other methods,
reducing the error rate by 22.4% compared to the winning solution.

Keywords: Named entity recognition · Wikipedia · Entity linking

1 Introduction

Named entity recognition (NER) is a problem of finding and classifying instances
of named entities in text. NER systems are usually designed to detect entities
from a pre-defined set of classes such as person names, temporal expressions,
organizations, addresses. Such methods can be used independently but they are
often one of the first steps in a complex natural language understanding (NLU)
workflows involving multiple models. Therefore the performance of NER systems
can affect the performance of NLU downstream tasks. The problem of named
entity recognition is challenging because often both contextual information and
domain knowledge are required to accurately recognize and categorize named
entities.

1.1 Prior Work

Popular approach to named entity recognition is to train a sequence labeling
model, i.e. a machine learning model that assigns a label to each word in a
sentence indicating whether that word is a part of named entity or not. In
c© Springer Nature Switzerland AG 2019
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the past few years, methods based on neural networks were the dominant solu-
tions to this problem. Collobert and Weston [6] showed that it is possible to
train effective sequence labelling models with neural architecture involving word
embeddings. Later, other word embedding approaches became popular, notably
Word2Vec [16], GloVe [19] and FastText [2]. Deep learning NER systems utilised
those models as well as LSTM layers (long short-term memory) for encoding the
sentence level information and CRF (conditional random fields) inference layer
[10,11,13,29]. Some studies highlighted the importance of character level features
by integrating additional character based representations. To this end, CNNs
(convolutional neural networks) [4,13,29] or bidirectional LSTMs [11,12,20,27]
were used. Most recently, state-of-the-art NER systems employed word repre-
sentations based on pre-trained language models, either replacing classic word
embedding approaches [20,21] or using both representations jointly [1]. In Polish,
early tools for named entity recognition were based on heuristic rules and pre-
defined grammars [9,22] or CRF models with hand-crafted features [15,26,30].
Pohl [24] used OpenCyc and Wikipedia to build purely knowledge-based NER
system. Only recently methods involving deep learning were introduced [3,14].

While modern named entity recognition methods have made considerable
progress in exploiting contextual information and long term dependencies in
text, in some cases it is not sufficient to accurately recognize a named entity.
When the context does not provide enough information, model should be able
to use external knowledge to help with the detection and classification. Such
a need exists, for example, in the case of abbreviations or highly ambiguous
phrases that can refer to several different entities. Therefore, we believe that the
problem of integrating knowledge sources with NER models should be explored.
In this work, we focus on named entity recognition for Polish language. We show
how such model can be integrated with Wikipedia and how can we improve its
performance by using an external knowledge base.

1.2 Contributions

Our contributions are the following: (1) We propose a named entity recognition
system for Polish that combines deep learning architecture with knowledge-based
feature extractors, achieving state-of-the art results for this task. (2) We propose
a method utilizing an entity linking model based on Wikipedia to improve the
accuracy of named entity recognition. Additionally, we release a tool for efficient
labeling of Wikipedia’s articles. (3) We make the source code of our method
available, along with pre-trained models for NER, pre-trained Polish Word2Vec
[16] embeddings and ELMo [21] embeddings, labeled data set of articles from
Polish Wikipedia and two lexicons.

2 Problem Description and System Architecture

In this section, we describe the problem of Named Entity Recognition for the Polish
language, following the guidelines of the National Corpus of Polish (NKJP) [25].
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We introduce the challenges that arise from this task. Then, we present the general
architecture of our system and show how it addresses those challenges. Finally, we
describe language resources and external modules used by the system.

2.1 Problem Description

The National Corpus of Polish (NKJP) is one of the largest text corpora of Polish
language. A part of the corpus, so called “one million subcorpus”, has been man-
ually annotated which allows to use it as a training set for many natural language
processing tasks.Amongothers, the subcorpus contains annotations of named enti-
ties from several entity categories, which in turn may be further divided into sub-
categories. Therefore, our task is to detect and classify any mention of a named
entity in text, assigning the correct category and subcategory if applicable. NKJP
identifies the following set of categories: persName (names of real and fictional peo-
ple), orgName (organization names), geogName (names of geographical and man
made structures), placeName (geopolitical names), date, time.

Although the structure of the National Corpus of Polish in the context of
named entity recognition requires a few task specific tweaks, our model can still
be easily adapted to other sequence labeling tasks, in particular to named entity
recognition in other languages. We decided to resolve task specific issues with
simple solutions that would not require to change the core model architecture.
Here, we provide a brief explanations of those problems and our solutions:

Nested labels - NKJP defines main categories and subcategories for named
entities. Out of six main categories, two contain subcategories. For placeName,
every instance of a named entity can be assigned exactly one of its subcate-
gories. For persName, each word in a named entity can possibly have different
subcategory, or no subcategory at all. Our solution to this problem was to train
two models: one for predicting main categories and another for predicting sub-
categories. The architecture of both models is identical, except the model for
subcategories takes another one-hot feature vector as an input which is the out-
put label of its parent model (the main category label). In this work, we describe
the main model only since we use exactly the same training procedure and the
same hyperparameters for the subcategory model.

Overlapping entities - Given an example named entity of “Johns Hopkins
Hospital in Baltimore”, it may be labeled as geogName or orgName depending
on the sentence context. However, fragments of this entity can also be labeled as
persName (“Johns Hopkins”) and placeName-settlement (“Baltimore”). There is
a number of similar cases in the NKJP data set, where fragments of named entity
are named entities themselves. That makes this task a multi-label classification
problem where most samples are assigned a single label and small number of edge
cases have two labels. To avoid transforming our model to multi-label classifier,
we decided to move smaller overlapping entities to subcategory model i.e. we
train the subcategory model as they were subcategories of the longer entity. It
doesn’t solve all cases - some cannot be properly labeled with this approach -
but the model is able to learn most of them.
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2.2 System Architecture

Figure 1 shows a general architecture of our system. The system consists of four
modules: an entity linking model based on Wikipedia (described in Sect. 3), a
feature extractors module (which integrates the aforementioned entity linker and
a number of lexicons) and two deep learning models. Each word or word n-gram
in an input sentence is first preprocessed by feature extractors that assign addi-
tional labels to it. The extractors used by our system are described in the next
subsection. The enriched sequence of words is then used as an input to the neural
models. An architecture of such model is shown in Fig. 2. Our model is similar to
other recent deep learning NER architectures [10,11,13,29]. First, a vectorized
representation of word is constructed by concatenating an output of pre-trained
word embedding, a trainable character level encoder and a set of one-hot vectors
from feature extraction module. Next, a hidden word representation is computed
by a number of bidirectional LSTM layers. Finally, this representation is sent to a
CRF output layer, which is responsible for predicting a sequence of labels Y that
maximizes the probability P (Y |X), where X is the sequence of word vectors.
Two such models are utilised by our system, resulting in two output sequences:
Ymain for main categories and Ysub for subcategories of named entities. In order
to correctly resolve multi word entities, we use BIO (beginning-inside-outside)
tagging scheme as the output format of Ymain and Ysub sequences.

Main category 
model 

Subcategory 
model 

Feature 
extractors 

Entity linking 
model 

Wikipedia

Bob likes New York 

New York = location
Bob = person name

Lexicons

Ymain Ysub

Fig. 1. High level architecture of our named entity recognition system. Entity linking
and feature extractor modules are responsible for enriching input with information
from lexicons and Wikipedia. Input sequences are then sent to two neural models,
predicting main categories and subcategories of named entities. A sequence of predicted
main entity classes Ymain is used as an input to subcategory model which outputs a
sequence of entity subclasses Ysub.

2.3 Feature Extractors

To support the detection of named entities, our system uses a number of addi-
tional feature extractors. Some of the features described below use static lan-
guage resources, other are based on heuristic rules. The Wikipedia module
deserves additional attention since it employs an external standalone service
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based on the Wikipedia-Miner project [18], using the Polish Wikipedia dump
as a data source. Here, we present a short descriptions of all extractors, more
information on the process of integrating our system with Wikipedia can be
found in the Sect. 3. Although the implementation of those feature extractors
can vary in complexity, the purpose of each module is to assign a label to a word
in the input sequence. Such label is then encoded as a one-hot vector and the
vector is concatenated to produce the final word representation, consisting of
the word embedding, character-based word representation and all the one-hot
vectors provided by the feature modules. The full list of one-hot features used
by our system includes:

...

Bob

Word
Embedding

Character
based encoder

One-hot
feature

One-hot
feature

...

Character
embedding

B o b

Word representation

...

Bob

...

likes

...

New 

Recurrent layers

CRF inference layer

person name place nameother

...

York 

place name

Fig. 2. An architecture of our neural named entity recognition model. The model
takes word sequence as an input, in this example “Bob likes New York”. For each word
in the sequence, a vectorized word representation is built. Figure on the left shows
the structure of the module responsible for building word representations. Different
components of the resulting vector are represented with different colors - red for word
embedding, yellow for character encoder, blue for one-hot feature modules. On the
right, complete architecture is shown, featuring recurrent layers and CRF inference
layer. (Color figure online)

Capitalization Feature - Following other works on Named Entity Recognition
[10,28], we add a capitalization feature providing information about the casing
of the input.

PoliMorf - PoliMorf [31] is an open-source Polish morphological dictionary
containing over 7 million word forms assigned to over 200 word categories. In
addition to the word categories, each entry in the dictionary contains a word
lemma, part-of-speech tag and optional supplementary tags describing the word.

PersonNames (lexicon of Polish, English and foreign names) - The lexi-
con contains about 346 thousand first and last names crawled from various Inter-
net sources. Each name in the dictionary is labeled either as a Polish, English
or foreign (other). Additional label indicates if a name is also a common word
in Polish or English.
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GPNE (Gazetteer for Polish Named Entities) - The gazetteer has been
created for the task of Named Entity Recognition in Polish and over the years
it has been used by several NER systems i.e. the SProUT platform [22,23] or
NERF [30]. It includes forenames and surnames, geographical names, institution
names, country names and their derivatives and parts of temporal expressions
among others.

NELexicon2 - This resource is a lexicon of named entities, created and main-
tained in Wroclaw University of Technology [15]. Most of the entries have been
extracted automatically from several sources such as Wikipedia infoboxes or
Wiktionary. It contains more than 2.3 million names.

Wikipedia (Entity Linking Module) - While other features are based on
static resources, this module is a contextual classifier which performs the task
of entity linking i.e. recognizing and disambiguating mentions of entities from
Wikipedia in text. After the linking phase, each found entity is assigned a label
and the label is used as an input to the system.

Supplementary Lexicon (Extras) - This lexicon has been prepared by us
specifically for PolEval Named Entity Recognition task. Our intention was to
create an additional resource containing classes of words that were not covered
by other dictionaries but were essential for a successful NER system. More specif-
ically, the dictionary consists mostly of the names of settlements, geographical
regions, countries and continents. Besides that, it also contains common abbrevi-
ations of institutions’ names. This resource was created in a semi-automatic way,
by first extracting the words and their forms from SJP.PL1 - a free, community
driven dictionary of Polish - and then manually filtering out mismatched words.

3 Wikipedia Integration

One of the distinctive features of our system is the use the Wikipedia as a sup-
plementary resource that helps to detect named entities, improving the accuracy
of the model. Unlike lexicons and other static resources, modules based on evolv-
ing knowledge-bases such as Wikipedia can be automatically updated which is
particularly important for named entity recognition systems that need to stay
up to date in order to prevent the degradation of their performance over time.
Our approach to utilizing Wikipedia involved labeling the articles with tags cor-
responding to named entity categories. We then used an entity linking method
from the Wikipedia Miner [18] toolkit, which we modified slightly to make it suit-
able for named entity recognition. The linked entities were assigned labels from
our data set and the labels were used as an input to the deep learning model.
In order to prepare the labeled set, we developed WikiMapper - an open source
GUI application for tagging Wikipedia’s pages2. In this section, we describe the
principles of operation of the aforementioned tool, the process of creating the

1 https://sjp.pl.
2 https://github.com/sdadas/wiki-mapper.

https://sjp.pl
https://github.com/sdadas/wiki-mapper
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data set and our method of improving named entity recognition by the use of
an additional entity linking model.

3.1 Data Set Preparation

The process of manually labeling data sets with millions of samples is usually
costly and time-consuming. In some cases, however, it is possible to exploit the
structure of data in order to make it more efficient. With regards to Wikipedia,
we can take advantage of the fact that the structure is hierarchical i.e. each article
is assigned at least one category and each category except the main categories
has at least one parent category. When labeling the data, we rarely can benefit
from moving down to the level of individual articles, we typically want to assign
a label to all articles in a category. Depending on the task, this category can be
more specific or general. On the basis of these assumptions, we have developed
WikiMapper tool, with the objective of accelerating the workflow of manually
tagging Wikipedia. It allows to quickly search articles and categories by title and
efficiently traverse the category tree. We can use it to tag an individual article,
a category or a set of pages matching specific search criteria. When a label is
assigned to a category, it is automatically propagated to its child categories
and articles. Since it’s legal for an article or category to have multiple parents,
every node in a graph can possibly have many inherited labels. In such cases,
label conflicts are resolved in the following way: (1) For every path leading from
unlabelled node to all of its labelled parent nodes, select the label connected
with the shortest path. (2) When there are multiple paths of the same shortest
length, select the most frequently occurring label among those paths. In the case
of a tie, select the label arbitrarily. Using the WikiMapper tool, we managed to
label over 90% of 1.1 million articles in Polish Wikipedia in 5 h.

3.2 Entity Linking Feature Module

Entity linking is the task of detecting and disambiguating named entities defined
in a knowledge base (e.g. Wikipedia, BabelNet, DBPedia3). Its objective is to
create a mapping between mentions of named entities in text and their references
in the knowledge base. This is closely related to the task of named entity recogni-
tion that can be seen as creating a mapping between instances of named entities
and a set of pre-defined labels. Therefore it is possible to utilize entity linking
model as a NER model by assigning a set of named entity labels to objects in
the knowledge base. Such standalone methods have been proposed before [24],
our approach employs the knowledge-based model as a part of a deep learning
named entity recognition system. The process works as follows. First, the entity
linking model finds references to entities in text. Next, a label assigned to such
reference - coming from a data set described earlier - is used to tag this instance
of named entity. Labels are then transformed to a one-hot vectors and passed as
an input to the neural model.

3 https://www.wikipedia.org, https://babelnet.org, https://wiki.dbpedia.org.

https://www.wikipedia.org
https://babelnet.org
https://wiki.dbpedia.org
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To explain the entity linking method itself, we need to summarize the method-
ology of the Wikipedia Miner [18] framework. Two important definitions that we
will use in this section is the concept and the label. The concept is an entity exist-
ing in the knowledge-base i.e. an article in Wikipedia. The label is a fragment of
text that might be referring to a concept. Not all labels are unambiguous, some
are used to describe different concepts depending on the context in which they
appear. Wikipedia Miner collects several statistics from the dump of Wikipedia,
one of them is a set of labels linking to each of the concepts with their frequencies.
Additionally, the framework computes prior link probability p(l) for every label l
which is the ratio of the number of times the label is used as a link between concepts
to a total number of occurrences of this label in text corpus.

The fundamental measure on which the entity linking method is based is
the relatedness. It reflects how closely two concepts are related and is based on
Normalized Google Distance [5]:

rel(a, b) = 1 − log(max(|A|, |B|)) − log(|A ∩ B|)
log(|W |) − log(min(|A|, |B|)) (1)

Where rel(a, b) it the relatedness between concepts a and b, |A| is the number
of articles linking to a, |B| is the number of articles linking to b, |A ∩ B| is the
number of articles linking to both a and b, |W | is the number of all articles.

Entity linking in Wikipedia Miner [18] works in the context of a single text
document. First, all candidate labels are found in the text. Labels with prior
probability p(l) lower than a specified threshold are discarded. From the remain-
ing labels a set of possible concepts is determined. Next, a decision tree classifier
called disambiguator is used to score every label-concept pair (l, c) found in the
text. The model takes as an input three statistics related to the (l, c) pair and
outputs a single value from 0 to 1 representing the disambiguation probability
i.e. the probability that the label l is referring to the concept c. Originally, the
method filtered concepts based on disambiguator outputs, preserving only the
highest scoring concepts. In order to make the process more suited for named
entity recognition, we modified the concept selection method. First, we apply
heuristic rules that discard most likely irrelevant concepts and labels (single
character labels, numeric labels, labels consisting of lowercase common words
only, labels with person names but not referring to a concept tagged as per-
sName). Then, for each ambiguous label, we score its concepts based on the
average of disambiguator output and relatedness of the concept to all unam-
biguous concepts in the document. Finally, the highest scoring concept for the
label is selected.

4 System Evaluation

In this section, we evaluate our named entity recognition system on the data from
Poleval 2018 competition. PolEval is an evaluation series for natural language
processing in Polish inspired by SemEval4. PolEval 2018, which was held from
4 https://en.wikipedia.org/wiki/SemEval.

https://en.wikipedia.org/wiki/SemEval
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June to August, included an evaluation of named entity recognition tools. A new
annotated data set has been prepared specifically for this task in accordance to
the guidelines of NKJP. In this competition, the original NKJP set has been
used for training while the new data set for evaluation of the models.

Table 1. Evaluation of our model on the data from PolEval 2018 NER task. We
compare for variations of our model with three best models from this competition. The
final score for this task is based on the combination of exact match and overlap F1
scores (Final score = 0.8 * Overlap score + 0.2 * Exact match score). For computing
our scores, we used the official evaluation script provided by the organizers.

Model Final score Improvement Exact score Overlap score

Liner2 [15] 81.0 77.8 81.8

PolDeepNer [14] 85.1 82.2 85.9

Per group LSTM-CRF
with Contextual String
Embeddings [3]

86.6 82.6 87.7

Without external resources

Our model (Word2Vec) 84.6 –2.0/–12.9% 80.2 85.7

Our model (ELMo) 87.9 1.3/9.7% 84.5 88.8

With Wikipedia and lexicons

Our model (Word2Vec) 87.3 0.7/5.2% 82.9 88.4

Our model (ELMo) 89.6 3.0/22.4% 86.2 90.5

Training and Evaluation Procedure. Our model was trained on the annotated
one million subcorpus of NKJP. The publicly available version of the subcorpus
is already tokenized and includes additional metadata such as lemmas or part-of-
speech tags. On the other hand, the PolEval data set has been published in a raw
text form. For this reason, it was required to tokenize and lemmatize the data
before it could be used for model evaluation. For sentence splitting and tokeniza-
tion, we used the tokenizer from LanguageTool [17]. For lemmatization, a simple
frequency-based lemmatizer was used, selecting the most frequently occurring
form in the corpus from the list of word forms suggested by Morfologik5. Each
of our models was trained for 10 epochs using NADAM optimization algorithm
[7] with the learning rate of 0.002, β1 of 0.9, β2 of 0.999 and batch size of 32.
We used 10-fold cross-validation procedure on the NKJP data set in order to
select optimal hyperparameters for our model. Our final architecture used in the
evaluation stage included three LSTM layers with 100 hidden units and a CRF
inference layer. Variational dropout [8] with the probability of 0.25 has been
applied before each recurrent layer. A character level representation based on
CharCNN was selected for the final model.

5 https://github.com/morfologik/morfologik-stemming.

https://github.com/morfologik/morfologik-stemming
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In order to highlight the elements of our model that had the greatest impact
on the performance in named entity recognition, we present four variations of
the model. The best performing model utilizes contextualized ELMo embeddings
by Peters et al. [21] trained on a large corpus of Polish and includes external
features from Wikipedia and lexicons. As a baseline, we decided to evaluate
the same architecture trained with static Word2Vec embeddings. Additionally,
those two approaches were trained as standalone neural models, without using
any external resources.

Discussion. We compare the performance of our system with three best submis-
sions from PolEval 2018 in Table 1, reporting an absolute and relative improve-
ment over the winning solution. The competing approaches are the following:

– Per group LSTM-CRF with Contextual String Embeddings [3] - The
winning solution proposed an approach similar to Akbik et al. [1], utilizing
contextual embeddings based on shallow pre-trained language model in com-
bination with GloVe word embeddings. To address the problem of overlapping
named entities, they trained a few separate NER models, each dedicated for
detecting only a subset of NKJP labels.

– PolDeepNer [14] - An ensemble of three different deep learning models.
– Liner2 [15] - A CRF based NER system actively developed since 2013.

The evaluation results show that the contextual word embeddings and
knowledge-based features both significantly increase the performance of the
model. Of our four models, only the basic version with Word2Vec and no external
resources does not improve the score over the winning approach from PolEval.
It’s interesting to compare our standalone ELMo model with Borchmann et al.
[3] since both utilize recently introduced contextual embeddings. Named entity
recognition models with Flair [1] and ELMo [21] have already been compared
for English. Contrary to English results, ELMo seems to perform better than
Flair for Polish. This can be due to the fact that ELMo, with more layers and
more parameters, is better suited for complex and challenging languages such as
Polish. We can also observe that knowledge-based features have a bigger impact
on the model with static embeddings. For Word2Vec, there is a 2.7% absolute
improvement in the score, while the improvement for ELMo is 1.7%. However,
this is understandable, since the benefits of contextual information and exter-
nal knowledge are overlapping. Compared with our baseline model, ELMo and
language resources combined increase the score of our model by as much as 5%,
from 84.6 to 89.6. Compared with the best solution from PolEval, our model
improves the score by 3%, reducing the error rate by 22.4%.

5 Conclusions

In this paper, we presented a neural architecture for named entity recognition
and demonstrated how to improve its performance by using an entity linking
model with a knowledge base such as Wikipedia. We have shown how to exploit
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the structure of Wikipedia to efficiently create labeled data sets for supervised
natural language tasks. The evaluation of our system on data from PolEval
2018 shows that it can produce state-of-the-art performance for named entity
recognition tasks in Polish. An improvement over previous approaches is the
effect of combining knowledge-based features, contextual word embeddings and
optimal hyperparameter selection. Integrating entity linking methods into NER
systems is a promising direction that can be pursued to further improve the
accuracy of such systems, especially using modern entity linking approaches
involving deep learning methods such as graph embeddings that can be easily
incorporated into other neural architectures.
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25. Przepiórkowski, A., Banko, M., Górski, R.L., Lewandowska-Tomaszczyk, B.:
National Corpus of Polish. Polish Scientific Publishers PWN, Warsaw (2012)

26. Radziszewski, A.: A tiered CRF tagger for Polish. Intelligent Tools for Building a
Scientific Information Platform, vol. 467, pp. 215–230. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-35647-6 16

27. Rei, M.: Semi-supervised multitask learning for sequence labeling. arXiv preprint
arXiv:1704.07156 (2017)

28. Reimers, N., Gurevych, I.: Optimal hyperparameters for deep LSTM-networks for
sequence labeling tasks. arXiv preprint arXiv:1707.06799 (2017)
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Abstract. Randomized algorithms for learning feedforward neural net-
works are increasingly used in practice. They offer very speed training
because the only parameters that are learned are the output weights.
Parameters of hidden neurons are generated randomly once and need
not to be adjusted. The key issue in randomized learning algorithms is
to generate parameters in a right way to ensure good approximation and
generalization properties of the network. Recently the method of gener-
ating hidden nodes parameters was proposed [1], which ensures better
adjustment of the random parameters to the target function and bet-
ter distribution of neurons in the input space, when comparing to the
previous approaches. In this work the new method is tested in terms
of sensitivity to the number of neurons, noise in data and data deficit.
Experiments shows better results for the new method in comparison to
the existing approach of generating random parameters of the network.

Keywords: Randomized learning algorithms ·
Neural networks with random hidden nodes ·
Feedforward neural networks

1 Introduction

In conventional learning of neural networks (NNs) all parameters, weights and
biases, are required freely adjustable. They are tuned properly during a learning
process which usually employs some form of gradient descent method which is
known to be time consuming, sensitive to initial values of parameters and con-
verging to local minima. For complex classification or regression problems the
training is complicated and inefficient. In recent years randomized learning algo-
rithms for NNs are developed by many researchers. The original idea of building
NNs with random weights can be found in [2] and [3]. In these approaches the
weights and biases of hidden nodes are assigned with random values and need not
to be adjusted during the learning process. Thus, the resulting optimization task
solved by NN becomes convex and can be formulated as a linear least-squares

Supported by Grant 2017/27/B/ST6/01804 from the National Science Centre, Poland.

c© Springer Nature Switzerland AG 2019
L. Rutkowski et al. (Eds.): ICAISC 2019, LNAI 11508, pp. 51–61, 2019.
https://doi.org/10.1007/978-3-030-20912-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20912-4_5&domain=pdf
http://orcid.org/0000-0002-2285-0327
https://doi.org/10.1007/978-3-030-20912-4_5


52 G. Dudek

problem [4]. This results in a thousandfold increase in the learning speed over the
classical gradient descent-based learning. Many simulation studies reported in
the literature show high performance of the randomized neural networks (RNNs)
which is compared to fully adaptable ones.

Parameters of the RNN hidden neurons are randomly selected from some
intervals according to any continuous sampling distribution and do not change.
However, how to select these intervals remains an open question. This issue is
considered to be one of the most important research gaps in the field of ran-
domized NN learning [5]. In applications of RNNs reported in literature the
ranges for random parameters are selected without scientific justification and
could not ensure the universal approximation property. Usually these intervals
are assigned as [−1, 1], regardless of the data distribution, complexity of the tar-
get function and type of an activation function. Some authors note the influence
of these intervals on the model performance and suggest to optimize them in
a more appropriate range for a specified application [6,7]. For example in [8]
the weights are chosen from a normal distribution with zero mean and some
specified variance that can be adjusted to obtain input-to-node values that do
not saturate the sigmoids. Then, the biases are computed to center each sigmoid
at one of the training points. In [9] authors combine unsupervised placement of
network nodes according to the input data density with subsequent supervised
or reinforcement learning values of the linear parameters of the network. In [10]
a supervisory mechanism of assigning random weights and biases is proposed
for the model generated incrementally by stochastic configuration algorithms.
The random parameters are generated adaptively selecting the scope for them,
ensuring the universal approximation property of the network.

In this work a new method of generating random NN parameters proposed
recently in [1] is investigated. The method generates weights and biases sepa-
rately depending on the data scope and complexity, and activation function type.
It ensures an adjustment of the random parameters to the target function and
better distribution of neurons in the input space when comparing to the previous
approaches with fixed intervals for random parameters. We test the new method
in terms of sensitivity to the number of neurons, noise in data and training data
deficit.

The rest of this paper is structured as follows. Section 2 introduces random-
ized learning algorithms in two versions: a classical one with fixed intervals for
random parameters and in the new one proposed in [1]. Section 3 reports experi-
mental results concerning sensitivity analysis for both versions of the randomized
learning. Conclusions are given in Sect. 4.

2 Randomized Learning Algorithms

In this work feedforward neural networks (FNNs) with a single hidden layer are
considered. The network has n inputs, one output and m hidden nodes with
activation functions h(x). The training set is Φ = {(xl, yl)|xl ∈ R

n, yl ∈ R, l =
1, 2, ..., N}.
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In the first step of learning the parameters of each hidden node are gener-
ated by random: weights ai = [ai,1, ai,2, . . . , ai,n]T and biases bi, i = 1, 2, . . . ,m,
according to any continuous sampling distribution. Usually ai,j ∼ U(amin, amax)
and bi ∼ U(bmin, bmax).

In the second step the output matrix for the hidden layer is calculated:

H =

⎡
⎢⎣
h(x1)

...
h(xN )

⎤
⎥⎦ =

⎡
⎢⎣

h1(x1) . . . hm(x1)
...

...
...

h1(xN ) . . . hm(xN )

⎤
⎥⎦ (1)

where hi(x) is an activation function of the i-th node, which is nonlinear piece-
wise continuous function. In this work a sigmoid activation function is used:

hi(x) =
1

1 + exp
(− (

aTi x + bi
)) (2)

The i-th column of H is the i-th hidden node output vector with
respect to inputs x1,x2, . . . ,xN . Note that hidden nodes map the data
from n-dimensional input space to m-dimensional feature space, and h(x) =
[h1(x), h2(x), . . . , hm(x)] is a nonlinear feature mapping. Because the parame-
ters ai and bi are fixed, the output matrix H is calculated only once and remains
unchanged.

The output weights connecting hidden nodes with output node can be
obtained by solving the following linear equation system:

Hβ = Y (3)

where β = [β1, β2, . . . , βm]T is a vector of output weights and Y =
[y1, y2, . . . , yN ]T is a vector of target outputs.

A least mean squares solution of (3) can be expressed by β = H+Y, where
H+ is the Moore-Penrose generalized inverse of matrix H.

The network expresses a linear combination of the activation functions hi(x)
of the form:

ϕ(x) =
m∑
i=1

βihi(x) = h(x)β (4)

It is worth mentioning that the prototype of NN with randomization was
Random Vector Functional Link (RVFL) network proposed by Pao and Takefji
[3]. This solution has also direct links from the input layer to the output one. In
experimental part of this work we use RVFL as a comparative model.

In most of the works on randomized learning algorithms the intervals for
random parameters of hidden nodes are assigned as fixed regardless of the data
distribution and activation function type. Typically amin = bmin = −1 and
amax = bmax = 1. In [1] it was demonstrated that the intervals of the random
weights and biases are extremely important due to approximation properties of
the network. When they are set as [−1, 1] the neurons operate on the saturation
fragments of activation functions and accurate fitting to the strongly nonlinear
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function can be impossible. The method proposed in [1] distributes neurons
across the input space and adjusts the activation function slopes to the target
function steepness. According to this approach the weights of the i-th hidden
node are calculated as follows:

ai,k = ζk
Σi
n∑

j=1

ζj

(5)

where ζ1, ζ2, . . . , ζn ∼ U(−1, 1) are i.i.d. numbers and Σi is the sum of weights:
Σi = ai,1 + ai,2 + ... + ai,n, which is randomly selected from the interval:

|Σi| ∈
[
ln

(
1 − r

r

)
, s · ln

(
1 − r

r

)]
(6)

Two parameters in (6), r ∈ (0, 0.5) and s > 1, control the steepness of activation
functions. Specifically, they determine two boundary sigmoids between which
the activation functions are randomly generated.

Having weights ai,k, the bias for the i-th activation function is determined in
such a way that the inflection point of the sigmoid is set at some point x∗ ran-
domly generated inside the input space. When the input vectors x are normalized
so that they belong to the n-dimensional unit hypercube H = [0, 1]n ⊂ R

n, the
point x∗ is selected from H, thus x∗,1, x∗,2, . . . , x∗,n ∼ U(0, 1). The bias for the
i-th activation function is calculated from:

bi = −aTi x∗ (7)

From (7) we can see that the bias of the i-th hidden node is strictly dependent
on the weights of this node. When generating random parameters of the hidden
nodes, the weights and biases should be considered separately, because these
parameters have different meaning. Thus generating them both from the same
interval, usually [−1, 1], is incorrect. More detailed discussion on this topic and
derivations of the above equations can be found in [1].

In the next section we compare the new method of generating random param-
eters with the method based on the fixed intervals of [−1, 1] including RVFL
where additional direct connections between input and output layers are intro-
duced.

3 Simulation Study

This section reports some simulation results over the regression problem includ-
ing a two-variable function approximation task. A target function is defined as
follows:

g(x) = sin (20 · exp (x1)) · x2
1 + sin (20 · exp (x2)) · x2

2 (8)

where x1, x2 ∈ [0, 1].
This function is shown in Fig. 1. Note that a variation of function (8) is the

lowest around the corner [0, 0] and gradually increases towards the corner [1, 1].
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The training set Φ contains 5000 points (xl, yl). The components of xl, xl,1 and
xl,2, are independently uniformly randomly distributed on [0, 1] and yl are dis-
torted by adding the uniform noise distributed in [−0.2, 0.2]. The testing set of
the size 100000 points is distributed uniformly in the input space and is not dis-
turbed by noise. It expresses the true target function, which is spanned between
−1.64 and 1.78.

Fig. 1. The target function and training points.

We test three randomized approaches for FNN learning described in the
previous section:

– RNN1: FNN with random parameters generated according to (5) and (7),
– RNN2: FNN with random parameters generated from the uniform distribu-

tion over [−1, 1],
– RNN3: RVFL network with random parameters generated as in RNN2 from

[−1, 1].

In all cases the sigmoidal activation function is used in the hidden nodes.
As a measure of accuracy in the comparative studies we use root mean squares
error (RMSE). For each experiment 100 independent trials are performed. The
r and s parameters for RNN1 were adopted from [1] as 0.1 and 5, respectively.
With such values good results were obtained for function (8) approximation.

In the first experiment the impact of the number of hidden nodes on the
approximation accuracy of the NNs is investigated. The number of hidden nodes
is changed from 100 to 2000 with step of 100. Figure 2 shows the RMSE distri-
butions using box-and-whisker plots for the investigated randomized learning
methods. As we can see from this figure, the training error for RNN1 con-
verges to the value of around 0.10. The test error for RNN1 has a minimum
(RMSE = 0.0645) for 600 nodes. Adding hidden nodes over 600 increases both
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RMSE and its variance. This exhibits an overtraining: too many steep nodes fit
into noisy data points. RMSE for RNN2 and RNN3, where random parameters
are chosen from [−1, 1], is incomparably greater than for RNN1. It is due to
using saturated parts of activation functions to compose strongly nonlinear tar-
get function. Adding new neurons does not improve the results. The pattern of
the training error distribution for different numbers of nodes is very similar to
the pattern of the test error distribution. In RNN2 and RNN3 cases, networks
are not prone to overfitting with an increase in the number of neurons. They
are strongly underfitted. This is exemplified in Fig. 3 (upper charts), where the
fitted surfaces for 2000 nodes are shown. For comparison, bottom charts show
the fitting surfaces constructed by RNN1 with 500 (good fitting) and 2000 (over-
fitting) nodes. In Table 1 the errors are shown for the optimal number of hidden
nodes. Note that RMSE for test data are above six times lower for RNN1 than
for RNN2 and RNN3.

Table 1. Errors for optimal number of neurons.

Approach #neurons RMSEtrn RMSEtst

RNN1 600 0.1119 ± 0.0012 0.0645 ± 0.0393

RNN2 2000 0.4307 ± 0.0001 0.4196 ± 0.0001

RNN3 2000 0.4304 ± 0.0001 0.4193 ± 0.0001

In the second experiment we test how the results are sensitive to the noise
disturbing data. The training data are generated from (8) and are distorted by
adding the uniform noise distributed in [−c, c]. The noise boundary c changes
from 0 to 1 with step of 0.1. It means that the noise level defined as the ratio
of the noise range to the target function range (which is 3.42) is from 0 to
about 58%. For each noise level 100 independent trials are performed for each
randomized NN. The number of hidden nodes was set to 500. Results in Fig. 4
are shown. The training and test errors for RNN1 gradually increase with the
noise level. The increase is faster for the training error. This is because the test
points expressing the true target function are not disturbed by noise, i.e. they
are the same for each noise level in training points. The relationship between the
percentage increase in the training error and the percentage noise level can be
estimated by the linear regression: ΔRMSE% = 32.38c% − 35.70. For test data
this equation is of the form: ΔRMSE% = 5.43c% − 81.77. In the case of RNN2
and RNN3, where the flat parts of the activation functions are mostly used by
neurons, the fitted surfaces are similar to each other for different noise level
in the training data. The training error increases with the noise level because
the training points move away from the fitted surface. In the same time, the
test error stays at the same level because neither test points nor fitted surfaces
change with the noise. But due to modeling using saturated parts of neurons the
test error in RNN2 and RNN3 is much bigger than in the case of RNN1.
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Fig. 2. Impact of the hidden neurons number on the error.

Table 2. Errors for the noise level c = 1

Approach RMSEtrn RMSEtst

RNN1 0.5570 ± 0.0011 0.2222 ± 0.0747

RNN2 0.6985 ± 0.0011 0.4290 ± 0.0021

RNN3 0.6983 ± 0.0003 0.4282 ± 0.0003

In Table 2 the errors are shown for the noise level c = 1 corresponding to
the maximum considered disruption of data at level of 58%. In this case the test
RMSE for RNN1 increased to 0.2222 from 0.0572 for data without noise. For
RNN2 and RNN3 the test RMSE at the maximum noise level was about twice
higher than for RNN1.
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Fig. 3. The surfaces fitted to the training points.

In the third experiment we investigate the influence of the number of training
points on accuracy of the randomized NNs. Setting the number of hidden nodes
as 500 we change the number of training points from 500 to 5000 with the step
of 500. Figure 5 shows the results. For a smaller number of training points the
lower training errors are observed. Our 500 steep neurons in RNN1 are able to
fit better into a small number of points. But this small set of training points
does not reflect sufficiently the target function complexity. Deficit in training
points and flexible learning model lead to overfitting (see Fig. 6). This is a cause
of bigger test errors for smaller number of training points. Bigger training sets
lead to improvement in accuracy on the test set. For RNN2 and RNN3 the fitted
surface is not able to fit accurately to the training points (see Fig. 6), and the
training error only slightly improves with the number of training points. Due to
a poor fitting of the model to the training points, the test error is less sensitive
to the training points number when compared to RNN1 case. But in the RNN2
and RNN3 cases the error level is unacceptable high.
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Fig. 4. Impact of the noise level on the error.

Fig. 5. Impact of the training points number on the error.
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Fig. 6. Fitted surfaces for 500 training points.

4 Conclusion

The way of generating random parameters of the randomized neural networks
is extremely important. Typically the random weights and biases are chosen
from the fixed interval of [−1, 1]. In such case, the activation functions of hid-
den nodes, which are used for construction the surface fitting data, are usually
incorrectly distributed in the input space having their saturated parts in it. Thus
they cannot approximate a highly nonlinear target function with required accu-
racy. This was confirmed in the experimental part of the work. Adding more flat
neurons to the network does not improve significantly the results. A randomized
network with flat neurons seems to be resistant to noise in the training data and
to training data deficit. But this cannot be taken seriously because it results
from a weak approximation capacity for complex functions. In contrast to the
typical approach of generating random parameters from the fixed interval, the
method where these parameters are generated in such a way that the slopes of
the activation functions are matched to the steepness of the target function and
the neurons are distributed across the input space according to the data arrange-
ment, brings more accurate results. The performance of the network depends on
the parameters controlling the slope of the activation functions (r and s) and
the number of hidden nodes. Too many steep hidden nodes leads to overfitting
which deteriorate generalization properties of the network. So the slope of neu-
rons as well as the neuron number should be adjusted to the target function
taking into account the noise level. When data includes high level of noise, the
training points move away from the target function and therefore its features are
invisible for the network. Also training data deficit makes the target function
blurry. In this case the error between rare training points increases, especially
when the activation functions are too steep. The solution to these problems is
the local fitting of neurons to the target function reflecting its local features.
This will be the subject of the future research.
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Abstract. Many problems require a notion of distance between a set of
points in a metric space, e.g., clustering data points in an N -dimensional
space, object retrieval in pattern recognition, and image segmentation.
However, these applications often require that the distances must be a
metric, meaning that they must satisfy a set of conditions, with triangle
inequality being the focus of this paper. Given an N × N dissimilarity
matrix with triangle inequality violations, the metric nearness problem
requires to find a closest distance matrix, which satisfies the triangle
inequality condition. This paper introduces a new deep learning app-
roach for approximating a nearest matrix with more efficient runtime
complexity than existing algorithms. We have experimented with several
deep learning architectures, and our experimental results demonstrate
that deep neural networks can learn to construct a close-distance matrix
efficiently by removing most of the triangular inequality violations.

Keywords: Deep learning · Convolutional neural networks ·
Metric nearness problem · Matrix analysis

1 Introduction

Many applications in computer vision, image processing and machine learning
are based on computing the distance between a pair of data points in a high
dimensional space using a distance function. However, due to measurement errors
and noise in the data, the triangle inequality property of the distance function
is usually violated. Formally, in a distance function or metric d on a set X, the
following conditions are satisfied for all x, y, z ∈ X:

1. d(x, y) ≥ 0
2. d(x, y) = 0 ⇔ x = y
3. d(x, y) = d(y, x)
4. d(x, z) ≤ d(x, y) + d(y, z)

The fourth condition is the aforementioned triangle inequality, which states
that the distance between any two elements in a set must always be less than or
equal to the distance reached through another intermediary element in the set.
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Fig. 1. Human similarity judgment do not obey triangle inequality.

Since many applications and algorithms only work with metric data, it is
important to eliminate triangular inequality violations by changing the distances
between data points as small as possible. In [3] the author used a triangle-
fixing algorithm from [10] to remove the triangular inequality violations and
obtained a significant improvement in computation time. However, the triangle-
fixing algorithm takes O(n3) with n as a size of matrix, therefore finding a faster
solution for removing violations will benefit certain applications.

Apart from the noise and measurement errors in real data, the very nature
of a problem itself can result in distances disobeying triangle inequality. As an
example for this, human judgment of similarity between shapes can be considered
[2]. As shown in Fig. 1, while the distance in terms of similarity between the
centaur to the person and the horse is small, the distance is large between the
person and the horse. By representing the data points and a distance function
in this way, it can be seen that these functions are not metric. To describe the
problem more formally, we adopt the formulation from [10], where the authors
define the metric nearness problem and present its deterministic solution. Firstly,
a dissimilarity matrix is defined to be a symmetric, non-negative matrix with
zero diagonal, whereas a distance matrix is a dissimilarity matrix whose entries
satisfy the triangle inequalities. Given a dissimilarity matrix D as input, the
problem is to find a distance matrix M such that:

M ∈ arg min
X

||X − D || (1)

Although there exist algorithms which accomplish this task, such as the one
proposed in [10], in this paper we examine how deep learning can be used to
remove triangle inequality violations by minimally modifying the input distance
matrix.

It is therefore of theoretical and practical importance to determine whether
deep neural networks can learn to eliminate violations of triangle inequalities,
while maintaining a minimum distance between input and output matrices. Our
main goal in this paper is summarized in Fig. 2, where an input matrix with
triangle inequality violations shown in red is provided to the proposed model,
producing an output matrix with little or no triangle inequality violations. With
the proposed approach, our main contributions are:



64 M. Gabidolla et al.

• presenting the first work that utilizes deep learning for the metric nearness
problem,

• approximating the solution to the metric nearness problem with deep neural
networks and comparing it to the deterministic solution described in [10],

• presenting a more efficient solution in terms of runtime complexity to the
metric nearness problem than the existing algorithms.

Fig. 2. Proposed deep learning approach

We have experimented our approach extensively with several deep learning
architectures and different parameters. Overall, our results show that with ade-
quate training, deep neural networks can learn to remove most of the triangle
inequality violations while by maintaining a close distance to the input matrix.
Our proposed approach runs in O(n2) as opposed to O(n3) of the triangle fixing
algorithm in [10], where n is the number of data points in the distance matrix.

After a brief introduction of related work in Sect. 2, we describe our method-
ology including the dataset, technology, and models used in the proposed frame-
work in Sect. 3. We present our results in Sect. 4 and discussion in Sect. 5. Finally,
we conclude the paper in Sect. 6.

2 Related Work

A pioneering work in this area is done by Sra, Dhillon, and Tropp [10]. Their
paper introduces a deterministic triangle-fixing algorithm for the metric nearness
problem. The authors propose algorithms for l2, l1, l∞, and lp norms, which show
much faster performance over the standard solution using CPLEX - proprietary
optimization software. The triangle-fixing algorithm achieves performance that
is up to 30 times faster than CPLEX. The authors of [10] also show that by
only allowing decreasing changes to an input dissimilarity matrix, we obtain an
instance of an all-pairs shortest path (APSP) problem.

Solomonik et al. [9] provide a distributed memory algorithm for the APSP
problem. Their aim is to utilize the performance of parallel processing by a
careful focus on the efficiency of inter-process communication. The algorithm
is based on the divide-and-conquer approach, which according to the authors,
provide a high level of temporal locality, thus allowing for a more efficient cache
use. The focus on parallel computing might be viewed similar to the way deep
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learning networks work on GPUs. While the precise formulation of the metric
nearness problem requires the minimization of the distance between input and
output matrices (according to some norm), Gilbert and Jain [5] propose a slightly
different formulation of the problem, whose objective is to modify as few as pos-
sible distances so that most of the entries in the original metric would remain
unchanged. According to the authors, the main motivation for this reformulation
is that in many of the practical applications most of the distances satisfy trian-
gle inequalities, with only few of the entries disobeying it. Thus, metric nearness
solutions could unnecessarily perturb many of the distances. The authors refer
to this as a sparse metric repair problem, and with some modifications to exist-
ing algorithms, they propose different methods to solve different cases of this
problem. Although there are many other different variations of the problem, in
this paper we focus on the original formulation given in [10].

As far as the applications of the metric nearness problem are concerned,
Demirci [3] applies it to a problem in computer vision area, namely shape match-
ing. Shape matching calculates a similarity of a pair of shapes based on some
closeness definition. The author argues that while existing algorithms match
shapes using a metric distance, according to psychological studies, human judg-
ment is not metric. To find a shape similarity between different shapes, the
author proposes to first apply a triangle-fixing algorithm described in [10], and
then use an existing algorithm for shape matching. The approach shows lower
accuracy, but it has much faster computation time.

One particular study that shows the importance of fixing triangular inequali-
ties is done by Baraty et al. [1], where they consider the impact of these inequality
violations on Partition Around Medoids clustering algorithms. The authors per-
form experiments to test the accuracy of the medoid based clustering algorithm
on the randomly generated dissimilarity matrices with triangular inequality vio-
lations. The results of the experiment illustrate that the incoherence degree of
the algorithm increases as the number and extent of triangular inequality vio-
lations grows. Also, by removing these violations using a rectification process,
they show that the performance of the algorithm improves.

Another example of adverse effect of triangle inequality violations is shown in
[4], where the authors show how this affects the solution to the Vehicle Routing
Problem (VRP). VRP is a classic problem of allocating a set of vehicles to a set
of customers, with constraints on vehicles and some map topology. The authors
consider both frequency and severity of triangle inequality violations, violating
a distance matrix by a factor of 2, 3, 4, 5 and with 10%, 20%, 30%, 40%, 50%
of violations. Particular algorithms for solving VRPs tested in that study are
Simulated Annealing and Ant Colony Optimization. As the authors present, the
solution quality is substantially degraded with an increased number of violations,
though computation time is not affected.

3 Methodology

Our main approach to the Metric Nearness Problem is to train various neural net-
work architectures end-to-end with input distance matrices containing triangle



66 M. Gabidolla et al.

inequality violations and target distance matrices without violations produced
by the triangle fixing algorithm from [10].

3.1 Dataset and Technology

Training deep neural networks requires large amounts of data, so the first task
is to generate enough input-output matrices. For this purpose, we created large
amounts of distance matrices of sizes 8 × 8 and 32 × 32. In general, to produce
a dissimilarity matrix of size N × N , we randomly scatter N points in a 2D
coordinate plane with coordinates ranging from −100 to 100 (random uniformly
distributed). Then, the distances between each pair of points are calculated,
which results in a distance matrix. By randomly perturbing the values in the
matrix, we artificially produce triangular inequality violations. Finally, using the
software from [10], the closest matrix in �2 norm without violations is generated.
The summary of the dataset is presented in Table 1. By following normalization
practices used in computer vision tasks, a zero-mean and variance-one normal-
ization technique is used.

Table 1. Dataset summary

Matrix size Dataset size Mean Standard deviation Average violations

8 × 8 80000 98.83 59.59 4.4

32 × 32 81213 101.24 52.06 11.9

All the code in this study is written using the PyTorch framework, which
handles the backpropagation automatically with an autograd feature. The hard-
ware used for network training and testing is a Tesla K20c GPU with 5 GB of
memory and 3.5 TFLOPS performance for single-precision.

3.2 Evaluation

There are two main evaluation criteria for the performance of deep learning on
this task. The first is the number of triangle inequality violations in the output
matrix, which is expected to be zero, or at least, less than those in the input
matrix. The second evaluation criteria is the distance in l2 norm between output
matrices and target matrices generated by the triangle fixing algorithm. This cri-
teria is used to keep the output distance matrix as close as possible to the input.
By using mean-squared error loss during training phase of neural networks, the
second criteria can be explicitly incorporated into the network. In this case,
however, the first criteria is only implicitly considered, as the triangle inequality
violations are not taken into account in the calculation of mean-squared error.
For this reason, in addition to the standard mean-squared error loss, we define
our own loss function, which attempts to capture triangular inequality viola-
tions. To calculate this loss, we first find triplets of entries violating the triangle
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inequality. Then, the same procedure for calculating mean squared error is done,
but with violating entries error being multiplied by some factor α greater than 1.
For α, we experimented with 1.5 and 2.0 values. By doing this, violating entries
contribute more to the loss, thereby encouraging the network to learn fixing
the triangle inequality violations. However, searching for violations takes O(n3)
time, which makes the training much slower. For this reason, a limited number
of experiments are performed with our own defined loss.

3.3 Models

For almost all of the models, 60000 matrices were used for training, while valida-
tion set consisted of 10000 matrices, and the remaining 10000 matrices used for
testing. During each training phase, several measurements are collected. First,
we keep track of the training loss, which shows how the loss function changes
during training. Second, we record how the number of violations of the triangle
inequality property changes from random batches in each training epoch. At the
end of each epoch, the models are tested against validation data and the losses
and changes in triangular inequality violations are recorded.

In general, all the models used can be divided into three broad categories:
the models used for image classification tasks, convolutional autoencoders and
a stack of convolutional layers.

Image Classification Models: AlexNet’s architecture [7] is chosen as a first
attempt to be trained and tested for 32 × 32 matrices. Slight modifications are
made for filter sizes and max pooling layers to fit the data properly. The output
size of the AlexNet is changed from 1000 to 1024, so that it will match the size
of the flattened matrix. Mean squared error (MSE) is chosen as a loss function.

Following AlexNet, deeper models are also experimented. One of these is a
class of VGG models [8]. In particular, we trained VGG-16 and VGG-19 vari-
ations. Similar type of modifications done in AlexNet are performed for VGG
models. The next model is one of the best performing models in image classifica-
tion tasks, namely ResNet architectures [6]. We used ResNet-50 implementation
in our experiments.

Autoencoders: The second group of models that we experimented is the con-
volutional autoencoders. In particular, we chose an architecture used for image
denoising as a basis for our autoencoder models. The structure of the model is rel-
atively straightforward. Firstly, several convolutional layers are stacked together
to encode the input. Then, corresponding convolutional layers are used to decode
and produce the output of the same size as input (Fig. 3). By varying the depth
and filter sizes of this basic model, we trained and tested several architectures.

Stack of Convolutional Layers: Apart from existing popular architectures,
we also constructed our own model as a stack of convolutional layers with increas-
ing filter size followed by the corresponding convolutional layers with decreasing
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Fig. 3. Autoencoder architecture

filter size, similar to the encoder-decoder architecture (Fig. 4). Starting from a
filter size of 32, the number of feature maps grows until 512, by doubling every
layer. From then, it decreases to the input layer size of 1, by halving at each
consecutive layer.

4 Results

Learning rate plays an important role for the performance of the models. In
our experiments, we observe that setting it to a high value yields very erratic
behaviour, whereas lower values does not produce adequate learning. We, thus,
use an adaptive learning rate by fine-tuning it to lower values during training.

4.1 Image Classification Models

According to our experiments with 32 × 32 matrices, the learning loss in AlexNet
decreases to a certain extent, but the loss is still significant. On the other hand, it
produces output matrices with zero triangle inequality violations. After inspect-
ing the individual entries in the output matrix, we observe that zero-triangle
inequality violations occur because of a low learning rate, i.e., the model does
not learn to construct a significant output because the loss is very high. When
you set a higher learning rate and decrease it adaptively, the results of the val-
idation data indicate that the AlexNet architecture does not eliminate triangle
inequalities.

Fig. 4. Stack of convolutional layers
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Similar situation also occurs with 8 × 8 matrices with mean-squared error
and custom loss. As can be seen from Fig. 5, we can observe that regardless of
the number of epochs, the number of violations of the inequality of the triangles
remains almost constant, although the violations fall below three on average.

Fig. 5. Triangle inequality violations of AlexNet during validation with 8 × 8 matrices
and MSE loss. The vertical axis label (TIV) indicates the number of triangle inequality
violations.

ResNet and VGG both display quite similar performances to AlexNet, with
a number of triangle inequality violations not decreasing but lower than the
average of violations in the original matrices.

4.2 Autoencoders

The learning process is very slow for 32 × 32 matrices in autoencoders, although
the loss of validation is slowly decreasing. For this reason, we mainly focus on
8 × 8 matrices.

For the 8 × 8 matrices used in autoencoders, we use our custom loss in
experiments. Figure 6a illustrates the loss of validation for this encoder-decoder
architecture and Fig. 6b shows how the number of violations of the triangle
inequality changes. Both figures show a positive trend for the 1000 epochs and,
leaving the model train even further, we could achieve even better results. At
the last epoch, on average, the number of triangle inequality violations decreased
from 4 to 2 and the loss between the corresponding entries reached 4%.

4.3 Stack of Convolutions

Our custom model with convolution stacks has almost the same performance
as the autoencoder, but the validation loss has been reduced to a lower value.
With more than 1000 epochs, the model has learned to eliminate about 50%
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(a) Triangle inequality violations (b) Loss function

Fig. 6. Validation results of autoencoder, 8 × 8 matrices, MSE loss

of triangle inequality violations (Fig. 7a). The individual entries in the output
distance matrix produced by the model are close to the corresponding entries of
the input matrix, as shown in Fig. 7b. This model currently works better than
the other architectures.

(a) Triangle inequality violations (b) Loss function

Fig. 7. Validation results of stack of convolutions, 8 × 8 matrices, MSE loss.

5 Discussion

Since in the image classification models, convolutional layers are used for fea-
ture extraction and fully connected layers are utilized for classification, these
layers are not suitable for the metric nearness problem. On the other hand, the
idea behind autoencoder architectures fits the metric nearness problem much
better, due to the fact that their inputs are mapped to the same sized out-
puts with some modifications. For example, autoencoders are used effectively to
remove Gaussian noise in images. Thus, by treating triangular inequality viola-
tions as noise, autoencoder architectures can be extended to reduce the number
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of such violations. In the stack of convolutional layers, by transforming inputs
into some high dimensional space, the model learns to eliminate violations of
triangle inequalities better than image classification models and autoencoders.
Overall, our models have performed well over more than 1000 epochs, suggest-
ing that an increase in the number of epochs and the size of the data set could
further improve the results.

One of the advantages of the proposed model over existing deterministic
algorithms is its better computational complexity of running time. For all the
architectures tested, and in particular for the convolution stack, the runtime
complexity is O(n2), with a constant factor. Whereas, the runtime complexity
of all known deterministic algorithms are O(n3). In particular, the pseudocode of
the triangle correction algorithm proposed in [10] checks the existence of triangle
inequality violations at each iteration, which requires O(n3). The parallel nature
of the current implementation of deep neural networks adds another advantage
to the proposed models, while the derivation and implementation of parallel
algorithms to the metric nearness problem is not an easy task.

6 Conclusion

In this paper, we presented a novel deep learning approach to the metric near-
ness problem. We have experimented with several deep learning architectures
and obtained promising results. The autoencoder architecture and the stack of
convolutional layers can approximate the solution to the metric nearness prob-
lem and produce close output matrices with most of the triangle inequality
violations removed. Moreover, the proposed deep learning models has a lower
runtime complexity when compared to the triangle-fixing algorithm in [10].

For future work, we plan to use our approach in some of the applications
that require metric distance matrices, such as efficient partial image retrieval
using vantage objects. Although our current results do not produce outputs with
zero-triangle inequality violations, some applications tolerate a small number of
such violations. The use of our framework in these applications is also part of
our future research plan. At the same time, we aim to improve our models so
that they can learn to eliminate all violations of triangle inequality. Our current
results show that it is possible to further refine our networks for this purpose.
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Abstract. The current trend in the Oil & Gas industry is the use of
more complex and detailed reservoir models, seeking better refinement
and uncertainty reduction. Alas, this comes with a great increase in
computational time, encumbering the optimization process. With the
growing adoption rate for smart wells in oil field development projects,
these optimizations are indispensable as to justify the investment on the
technology and maximize financial return, by finding the optimal valve
control schedule. The present paper seeks to establish a new methodol-
ogy for creation of smart well data by means of a deep generative model,
capable of modeling complex data structures. This generation of data is
advantageous to the industry as it can then be used for various other
applications. Other benefits besides the reduction of optimization time
include the use in data augmentation, where the network is used to diver-
sify existing data as to improve lacking datasets, and data privacy, as the
generated data, while next to real, can be shared without the original,
protected model. A case study was done in an industry-recognized bench-
mark model, and the results completely support the use of the proposed
methodology, as it was able to achieve all expected objectives.

Keywords: Convolutional neural networks ·
Generative Adversarial Networks · Smart wells

1 Introduction

The use of smart completions steadily grows with each passing year. Since its
inception, in the 1990’s, operators progressively realize its advantages and adopt
it as part of their projects.

This technology allows for the control of individual zones for each well in
a reservoir, and can be optimized for increasing the net present value of the
project. Alas, these optimizations require a painstakingly great number of simu-
lations, which each one being computationally intensive. This is a challenge for
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all optimization algorithms, and has the effect of difficult optimizations in state
of the art and complex models, which are, nowadays, common.

This paper proposes the use of deep generative models for the generation
of production curves and valve control alternatives, in order to reduce simula-
tion time. These are systems capable of extracting high level representations
to generate new samples which follow the same probabilistic distribution func-
tion of a given training dataset [10]. Within all the deep generative models, this
work focuses on Generative Adversarial Networks (GANs) [11] and implements
a modified version of the Boundary-Seeking [13] and Deep Convolutional [18]
Generative Adversarial Networks.

This methodology allows for data augmentation, where the generator aims
to be accurate enough to improve datasets for other applications and routines,
without the need for excessive simulation.

A big concern in the Oil & Gas industry is data confidentiality, mainly in
relation to reservoir models. The present application also aims to open barriers
in relation to the sharing of data, as the results generated by the model, while
not real and subject to secrecy protocols, represent a realistic enough model for
other methodologies.

A section aims to describe the smart well technology and benefits, with the
next one for a literature review in similar applications. The methodology devel-
oped in the paper is then described, followed by a case study, with the objective
of applying the methodology in a real world problem. A final section draws
conclusions from the obtained results and suggests future work.

2 Smart Wells

Well drilling is one of the crucial areas in the world of petroleum engineering,
as efficient and safe wells are paramount to the development of any field. The
process can be roughly broken down to two steps, drilling and completion.

While the first one is the act of drilling the formation and connecting the
reservoir to the surface, the second is responsible for preparing the well, in a safe
manner, for its use along the field production span [19].

The technology of smart completions has been developed as a means to
increase profitability, being one of the most significant recent breakthroughs
in the field [9]. Not only can it improve existing viable projects, it is able to
induce viability in currently non-economic projects.

The smart well usually consists of the following elements [14]:

– Flow control devices, able to restrict or shut production;
– Feedthrough isolation packers, to isolate individual zones while allowing con-

trol, communication and power cables;
– Control, communication and power cables, as to transmit power and data

through the well;
– Downhole sensors, for the real-time monitoring of multiple parameters, such

as flow, temperature and pressure, among others.
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Fig. 1. Example of smart completion, with two flow control valves.
Reproduced from Abreu et al. [2]

An example of smart well can be seen in Fig. 1.
Various work exists in the optimization of smart well control, such as a

methodology for the evaluation of flexibility under uncertainty and the opti-
mization of flow control strategies [2], the optimization of production using direct
search methods [6] and a paper which aims to determine the optimal performance
of smart wells via gradient-based optimization techniques [22], among several
others. The common denominator among all these is the paramount use of the
simulator for all objective function calculations, being the biggest bottleneck for
further applications and refinements.

3 Reservoir Simulation

With the objective of optimizing reservoir development projects prior to exe-
cution, simulation software allows the user to input model characteristics and
project parameters, outputting production curves and various other results.

The present work focuses on changing only the input of valve controls, which
means restricting or allowing production for each controlled zone. This trans-
lates to setting the parameter in the [0, 1] interval, where 1 means the zone is
completely open for production, and 0, that it is shut.

This is usually regulated by specialists, who control the wells aiming for
the maximization of oil and gas productions, and the minimization of water
production, or the maximization of project net present value.
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4 Literature Review

The present application diverges from the common use of Generative Adversarial
Networks (GANs) [11] in that the generated and evaluated media are not images,
but numerical data.

Boundary-Seeking GANs [13], from which the present model inherits the
loss function, aim for the ability of training on discrete data. The paper has an
application in continuous data, for which it states that the modification improves
stability.

Deep Convolutional GANs [18] aim to improve the application of convolu-
tional neural networks (CNNs) in the GAN context. The paper proposes con-
straints to the architecture, to improve training and unsupervised learning. The
present work takes inspiration from this novel layer configuration.

There are applications in continuous non-image data, such as the use of the
network for generation of music [15]. The paper uses recurrent networks as layers
in the discriminator, and finds acceptable results. Another paper also generates
musical data via GANs, but with CNNs making up the layers of the generator
and discriminator [21].

For time-series examples, medical data was generated with the use of recur-
rent and recurrent conditional GANs [7], electroencephalographic brain signals
were generated via the use of CNNs as layers in the GANs [12] and there is work
in time-series laboratory data [20]. All of the papers found good results.

As applications in the Oil & Gas industry, there is the generation of pore and
reservoir-scale models [16], and work focusing on geophysics [17] and geology [5].
While all applications found acceptable results in their respective fields, no appli-
cations could be found on smart wells, which makes the present proposal a novel
one.

5 Generative Adversarial Networks

Generative Adversarial Networks are stochastic deep generative networks built
by a combination of two networks. A generator network is trained to build new
samples, which come from the same distribution function of the training dataset.
The discriminator network is the model responsible for evaluating the samples
generated by the other network, based on the training dataset. This general
structure is shown in Fig. 2. Both the generator and discriminator networks can
be constructed from different layer configurations, such as fully connected, con-
volutional, recurrent and others. The training process is a competition between
these two networks, where the generator tries to create new “fake” data to be rec-
ognized as “real”. Meanwhile, the discriminator is trained to distinguish between
“real” and “fake” data.

6 Methodology

The present methodology consists in a routine that harnesses the power of GANs
to generate realistic production strategies and curves.
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N (0, 1)

Fig. 2. Structure of the Generative Adversarial Network.

The first step is the definition of a reservoir model, followed by the specifi-
cation of its smart completions. The model then needs to be simulated, through
reservoir simulation software, with diverse enough scenarios, as to build an initial
dataset.

The GAN is then constructed, trained and the generator is used for creating
a new dataset. This data is then evaluated, and the previous step is repeated
several times in order to optimize the parameters and architecture of the net-
works.

A routine was developed as a means to evaluate the results after training,
besides visual inspection. It consists in generating a number of scenarios and
simulating the reservoir model with the generated valve controls. The oil and
water production results given as outputs of the simulator are then compared
to the ones given by the generator, via the Root Mean Square Error, as seen in
(1), and the Normalized Root Mean Square Error, as seen in (2), metrics. While
the former gives an idea on the magnitude of the error, in terms of the units in
question, the latter is non-dimensional, useful for comparing different datasets.

RMSE =

√
√
√
√

1
n

n∑

j=1

(yj − ŷj)2 (1)

NRMSE =
RMSE

ymax − ymin
(2)

Where y are the values given by the simulator, ŷ are the values given by the
generator of the GAN and n is the amount of data in question.

This results in a generator model capable of replicating the behavior of the
reservoir, in a fraction of the time spent by the simulator.
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7 Case Study

The PUNQ-S3 model [8] was used for the present application, with some adapta-
tions, such as removal of well testing and shut-in periods, as well as the inclusion
of smart completions on two wells, allowing for the control of a total of six zones.
The porosity map for the final model can be seen in Fig. 3.

The model is a benchmark in the industry, based on a reservoir engineering
study on a real field and used for various optimization and history matching
problems. It has 11 production wells and no injection ones, on a 19 × 28 × 5
grid. Its production period is of 17 years.

Fig. 3. Porosity map of the adapted PUNQ-S3 model.

7.1 Dataset

The first step before focusing on the GAN was the construction of a robust
enough dataset. The IMEX simulator [4] was used for the simulation of 1000
scenarios, dictated by random valve controls, applied in random time steps. This
led to a total of 203000 rows of data, with 203 time steps per scenario. Table 1
shows the structure of the dataset, where the first six variable names correspond
to the name of the wells, as seen in Fig. 3.

The data was normalized to the [0, 1] interval before being fed to the network.

7.2 Model Construction

The GAN model was built with the Keras framework [3], with a TensorFlow [1]
backend. The generator and discriminator configurations were adapted from the
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Table 1. Structure of the dataset.

Variable Possible variable
interval

Minimum value Maximum value

PRO1, layer 3 [0, 1] 0 1

PRO1, layer 4 [0, 1] 0 1

PRO1, layer 5 [0, 1] 0 1

PRO12, layer 3 [0, 1] 0 1

PRO12, layer 4 [0, 1] 0 1

PRO12, layer 5 [0, 1] 0 1

Oil production (m3/day) R≥0 4.57 · 102 2.00 · 103
Water production (m3/day) R≥0 2.50 · 10−5 2.03 · 103

ones proposed in [18], in order to work with time-series data in lieu of images.
These can be seen in Figs. 4 and 5.

Two models were built and tested: a deep convolutional generative adver-
sarial network (DCGAN) and a boundary-seeking deep convolutional generative
adversarial network (B-DCGAN).

The convolutional layers were chosen based on experiments that indicated
it added a smoothness to the generated data, which made it more similar to
the real curves. The loss function was inherited from the proposed in [13], for
continuous data1.

Fig. 4. Generator model architecture.

1 Implementation based on https://wiseodd.github.io/techblog/2017/03/07/
boundary-seeking-gan/.

https://wiseodd.github.io/techblog/2017/03/07/boundary-seeking-gan/
https://wiseodd.github.io/techblog/2017/03/07/boundary-seeking-gan/
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Fig. 5. Discriminator model architecture.

8 Training and Results

Table 2 contains the results obtained after training via the previously described
routine, for different configurations and 128 generated scenarios. The column
“Average Time per Epoch I” was measured when training in an Intel R© CoreTM

i5 750 CPU, while the column “Average Time per Epoch II” was measured when
training in the Intel R© AI DevCloud platform, with an Intel R© Xeon R© Gold 6128
CPU, containing the Intel R© optimization for TensorFlow.

Table 2. Results obtained via the developed routine.

Network Epochs Average Time
per Epoch I

Average Time
per Epoch II

RMSE
oil

NRMSE
oil

RMSE
water

NRMSE
water

DCGAN 10000 6.71 2.44 83.26 6.66% 96.40 4.78%

DCGAN 20000 100.29 8.02% 109.88 5.45%

DCGAN 30000 106.11 8.49% 107.95 5.35%

B-DCGAN 10000 6.75 2.48 93.20 7.45% 140.37 6.96%

B-DCGAN 20000 59.15 4.73% 91.90 4.56%

B-DCGAN 30000 55.97 4.48% 84.76 4.20%

Based on these metrics, the B-DCGAN trained on 30000 epochs was chosen
as the final model.

Figure 6 contains a boxplot of the NRMSE of each scenario, for both oil and
water productions. The box extends from the lower to the upper quartile values
of the data, and the whiskers extend to the 2nd and 98th percentiles. The circles
represent outliers, and the middle line, the median.

As this plot illustrates, not only is the total NRMSE low, the distribution
of the NRMSEs has predominantly low values, with a few high outliers that are
still acceptable values.
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Figure 7 contains boxplots comparing the distribution between the simulated
and generated data. It was built in a similar fashion to the previous one, with
the difference that the whiskers extend to the maximum and minimum values of
the data. It shows that the GAN was able to correctly learn the distribution of
the original data, maintaining approximate maximum and minimum values, as
well as medians and quartiles.

Fig. 6. Boxplot of the NRMSE.

Fig. 7. Boxplots of the simulated and generated oil and water production data.

Figures 8 and 9 show examples of curves generated by the final model, com-
pared to the ones simulated with the same valve controls.

Figure 10 shows a comparison between the valve control data of the origi-
nal dataset, and the one given by the generator model of the B-DCGAN. The
whiskers extend to the maximum and minimum of the data, and the dotted line
represents the mean. These results show that the model was able to replicate the
distribution of original valve control data, while increasing diversity, as seen by
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Fig. 8. Example of a comparison between oil production curves.

Fig. 9. Example of a comparison between water production curves.

Fig. 10. Boxplots of the original and generated valve data.
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the shift in the median. This means that the generated strategies have applied
control earlier than the original dataset, and is useful as it increases data variety,
for future dataset building.

While the simulation of a scenario takes 5.261 s, the generation of one takes
0.008. These results mean that, after initial training, the model is able to build
a whole dataset in a negligible amount of time.

9 Conclusions

The present application of GANs was not only successful, but novel, paving the
way for future intersections between the methodology and smart well technology,
benefiting the industry.

The network was able to generate realistic-looking production curves, with
good evaluation metrics. Therefore, the methodology can now be coupled to
other applications, such as reservoir simulator substitution, where another spe-
cialized network can be trained on a dataset augmented by the GAN, reducing
dataset-building time and enabling various simulation-intensive optimizations.
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Abstract. A wide range of regulations is established to protect citizens
health from the noxious consequences of aerosols, e.g. particulate matter
(PM10). To ensure a public information and the compliance to given
regulations, a resilient environmental sensor network is necessary. This
paper presents a machine learning approach which utilizes low-cost plat-
forms to build a resilient sensor network. In particular, malfunctions are
compensated by learning virtual models of various particulate matter
sensors. Such virtualized sensors are already utilized in the field of pro-
prioceptive robotics [1] and are comparable to a digital twins definition.
Several experiments show the proposed method yields PM10 estimates
and forecasts similar to high-performance sensors.

Keywords: Environmental monitoring · Virtual sensor ·
Machine learning · Volunteered geographic information

1 Introduction

Environmental monitoring takes an essential role for many stakeholders like scien-
tists, policy makers as well as the public. Although many data sets are expensive
to gather and hard to analyze, the advantages outweigh the possible success in
question. Longterm measurements help to reveal changes in slowly shifting ecosys-
tems [2]. A development as slow as mentioned has been recorded by German gov-
ernmental authorities regarding air quality. The collected data1 implies that the
particulate matter (PM10) concentration in overall Germany has been reduced
by about 38% over the course of twenty years between 1995 and 2015. The avail-
ability of this data is based on regulations of the European Union (2008/50/EG).
The aim of those regulations is to protect citizens health threatened by
consequences when being exposed to noxious high PM10 concentrations [3].
However, many cities still face the violation of PM10 and nitric oxide limits.

1 www.umweltbundesamt.de/daten/luft/luftschadstoff-emissionen-in-deutschland.
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Fig. 1. Different PM10 concentrations measured on the 19/12/2018. Left: An average
day measurement acquired from the federal environment agency. Right: A snapshot of
the Luftdaten Info citizen science project acquired at 2:00 PM.

In those cases, authorities have a limited action scope and must even consider the
introduction of driving bans in heavily frequented areas. Additionally, measure-
ment stations are placed at potential high risk areas like cities and inhabited traf-
fic hubs, leaving citizens of certain areas in the dark about their individual PM10
exposure. This circumstance is visualized in the left part of Fig. 1 as it shows frag-
mentary nature of the German PM10 monitoring network2. On the other hand, a
more finely grained measurement network is not an option either. Accurate PM10
sensors using the gravimetric measurement method are usually expensive, main-
tenance heavy and consequently not appropriate for rural areas.

To counter this development, scientists have been proposing the term cit-
izen science [4]. They claim that the involvement of non-expert people using
broadly available commodity sensors can help to complete monitoring networks.
Technologically, this development has been supported by the rise of the internet
of things (IoT). The IoT has been the foundation of reflecting physical things
into the digital world [7]. Using IoT technology, there are already established
projects for citizen science driven aerosol measurements [5,8]. The right part of
Fig. 1 shows a similar map of Germany, displaying the current PM10 exposure3

measured using citizen science data [6]. Comparing both figures gives rise to
the assumption that the citizen science driven solutions are more fine grained
and broader applicable. However, citizen science data sources like [6] are still
discarded entirely by authorities, many scientists and regulators. Due to their
low-cost nature, many IoT sensors are prone to the production of non-consistent
data as well as full data loss [9,10]. To tackle those shortcomings, the here

2 www.umweltbundesamt.de/daten/luftbelastung/aktuelle-luftdaten.
3 www.maps.luftdaten.info.

www.umweltbundesamt.de/daten/luftbelastung/aktuelle-luftdaten
www.maps.luftdaten.info
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presented approach tries to increase the robustness against data loss and erro-
neous measurements by using machine learning techniques [11].

This paper describes a supervised machine learning approach inspired by
similar use in robotics. Robotics are a domain were a multitude of data is pro-
duced and evaluated in real time. Moreover, robustness is an inevitable feature
of systems and algorithms used. We aim to transfer our gained knowledge in the
field of robotics to increase robustness and compensation capabilities also for the
PM10 monitoring domain.

2 Approach

The goal of the presented approach is to build a robust low-cost sensor net-
work for the accurate environmental monitoring and forecasting of PM10 con-
centrations. For this, the proposed approach makes use of supervised machine
learning techniques where training data is acquired from multiple low-cost sen-
sor platforms. In more detail, each platform consists of a Raspberry Pi which
is equipped with several low-cost Nova SDS0114 PM10 sensors. To the best
of the authors knowledge this is the cheapest available sensor platform for mea-
suring PM10 concentrations. These sensors are less accurate and more prone to
error than actual high-performance devices. In particular, the high-performance
Dr. Födisch FDS155, of which one device is already a hundred times more
expensive than the low-cost platform, is utilized for evaluation purposes. In the
following, each step of the presented machine learning approach is explained in
more detail.

2.1 Data Acquisition

In this paper, low-cost sensor networks are used for monitoring and forecast-
ing of PM10 measurements. These networks consist of n platforms where each
one is equipped with m sensor devices. Here, the usage of multiple sensors
(m >= 2) increases the network’s robustness against environmental influences
and device specific malfunctions. The corresponding low-cost sensor readings
sl = (sl1, . . . , s

l
n·m) are recorded and used as training data

Dlow =

⎡
⎢⎣
sl1
...
slt

⎤
⎥⎦ , (1)

where t describes the number of equidistant samples in time. The recording rate
and number of samples depend on the particular application and the required
accuracy.

4 www.watterott.com/de/Nova-SDS011-Feinstaub-Sensor.
5 www.foedisch.de/staubmesstechnik/feinstaub.

www.watterott.com/de/Nova-SDS011-Feinstaub-Sensor
www.foedisch.de/staubmesstechnik/feinstaub
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In addition to the low-cost sensor data Dlow, k additional high-performance
sensors can be recorded simultaneously

Dhigh =

⎡
⎢⎣
sh1 · · · sh1,k

...
. . .

...
sht · · · sht,k

⎤
⎥⎦ . (2)

This allows comparing the quality of the utilized supervised machine learning
approach with an expensive but more accurate state of the art device. Following
this basic idea, an experimental data set is introduced and evaluated in Sect. 3.

2.2 Model Learning

The presented approach is inspired by behavior-specific proprioception models
(BSPMs) [1], a machine learning approach from the field of robotics. One BSPM
mode is the so called virtual sensor [12] which replaces a sensor device by employ-
ing artificial neural networks. The basic idea is to find a mapping between the
robot’s available sensors and the expensive sensor devices by applying a machine
learning algorithm.

However, in the context of this paper virtual sensors are utilized to compen-
sate malfunctions therefore increasing robustness and forecasting capabilities of
the overall network (see Sect. 3.2). Additionally, the usage of Dlow for the predic-
tion of Dhigh is evaluated in Sect. 3.3 and further discussed in Sect. 4. Various
artificial neural network architectures are feasible for this. Due to long-term
correlations within the data, this paper focuses on recurrent network architec-
tures called nonlinear autoregressive network with exogenous inputs (NARX)
[13] which was empirically proven to perform better than feed-forward networks
and other recurrent architectures. In particular, NARX use actual and previous
samples as input neurons to predict the particular output. Furthermore, cur-
rent predictions are used to increase the quality of future predictions. This is
achieved by implementing a loop closure where the actual prediction is directly
fed back into the input (autoregressive). Hence, the network is trained by the
deviation in the temporal evolution of its predictions. This allows to protect
predictions from sudden changes. Broadly speaking, a NARX network smoothly
compensates anomaly data points which makes it more robust against noise.

The NARX architecture is configured with two hidden-layers each containing
five sigmoidal neurons. The input applies a time window of five measurements
observing a four dimensional input while predicting a one dimensional output.
An additional forecasting of outputs is then achieved by shifting the particular
output data to the actual input data. For example, currently measured inputs
are used to predict an output which lies in the future of the recorded time series.

3 Experiments

Different experiments have been conducted to validate the robustness and fore-
casting capabilities of the proposed virtual sensor method. For this, a data set
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Fig. 2. The PM10 concentration measured by the low-cost sensor network. Left: The
raw sensor measurements suffer from temporal and permanent malfunctions which can
affect a particular sensor and even a complete sensor platform. Right: Partial malfunc-
tions are compensated by learning a particular virtual sensor from the still functioning
sensor devices. As a result, the environmental sensor networks keeps functional.

was acquired from the environmental sensor network mentioned in Sect. 2. In
particular, the network consists of three low-cost platforms each equipped with
two PM10 sensors (SDS011). These platforms are located in Leipzig (Germany)
and cover an area of about 10000 m2. Figure 2 left shows the error-prone raw
measurements of the PM10 sensors which was stored once per minute for a
period of about 30 days. In consequence, the overall data Dlow contains 43200
six dimensional samples of the three differently located low-cost platforms. This
recording is used for training, testing and validation purposes in the following
experiments.

In more detail, the compensation capabilities of the low-cost sensor network
are evaluated first. Next, the robustness of the forecasting approach is shown
for various temporal delays. Finally, the high-performance sensor (FDS15) is
virtualized by learning a model from the acquired data.

3.1 Compensation Capabilities

The error susceptibility of such low-cost sensor networks is a common problem
(see Sect. 1). In this paper, a machine learning approach is applied to solve this
drawback. The recurrent neural network architecture (NARX, see Sect. 2.2) is
used to compensate various malfunctions.

For training purposes, only data which contains a fully functional sensor net-
work is applicable. Hence, a subset of data within between minute 3000 and
8000 is selected from the overall data. This subset D̂low is further split into 50%
training, 25% testing and 25% validation data. This is a common trade-off which
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Fig. 3. The first low-cost sensor is predicted from inputs of sensors three to six within
between forecast delays of 0 to 360 min. Here, a NARX network is trained 50 times for
each delay where only the best result is visualized. The accuracy decreases for increasing
delays but remains sufficient to implement an adequate early warning system.

usually decreases the probability of overfitting and increases the reliability of the
results. The remaining training data is then used to learn six different NARX
networks where learning is stopped when overfitting is detected or after reaching
a maximum of 100 epochs. For example, the sensor denoted by ID one is used
as output while ID three to six are used as input. The sensor denoted by ID
two is explicitly excluded since both sensors are equipped to the same platform
and therefore are probably affected by the same source of noise. The resulting
approximations achieve a mean square error (MSE) of less than 0.5µg/m3 for
each sensor. This accuracy is sufficient for the proposed application but can be
enhanced by increasing the network’s complexity and the corresponding compu-
tational effort spend for learning.

However, each sensor is approximated by sensor readings located at other
platforms. During malfunctions, the learned virtual counterparts are used to
compensate erroneous and even completely missing sensor readings. Figure 2
right shows the results of the corresponding neural networks. The malfunctioning
hardware is replaced by the corresponding virtual sensor so the environmental
sensor network keeps functioning. In the following, the forecasting capabilities
of the utilized NARX architecture are evaluated.

3.2 Forecasting Robustness

Another goal is to predict a critical increase of PM10 concentrations. For this, the
mentioned subset D̂low is used to forecast sensor one’s measurements within 0
to 360 min. To achieve comparable results, this learning procedure is repeated 50
times with only the network the lowest MSE being stored. This is necessary since
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Fig. 4. The high-performance sensor output is predicted from inputs of six low-cost
sensors where the forecast delay is between 0 to 360min. In this experiment, a NARX
network has been trained 50 times for each delay with only the best result visualized.
The MSE is substantially higher as for forecasting a low-cost sensor. This is due to
the different hardware and measurement range of both sensor devices. However, the
quality of the virtualized FDS15 is adequate to replace the expensive sensor in settings
where forecasting is not required.

each learning procedure begins at a random start initialization and therefore
always achieves slightly different results.

Figure 3 presents the corresponding decrease of accuracy when increasing the
temporal forecast. As is observable, even a six hour forecast results in a MSE of
about 3µg/m3. One possible explanation for the forecasting procedure’s robust-
ness is that the NARX network uses temporal patterns which occur due to
recurring traffic volume. However, in the context of PM10 limits, which usually
lie between 20µg/m3 to 50µg/m3, this is sufficient to detect tendencies and
implement an adequate early warning system. In the following, this forecast-
ing procedure is applied to learn a high-performance sensor from the low-cost
sensors.

3.3 Learning a Virtual Sensor

In contrast to the previous experiments, this section focuses on learning a vir-
tual high-performance sensor from low-cost sensor inputs. The acquired data set
Dlow is extended by sensor readings of a seventh sensor Dhigh which contains
the measurements of a simultaneously recorded FDS15. The idea is to learn the
NARX network with inputs from the six dimensional low-cost measurements
D̂low to the output of this high-performance sensor D̂high. This allows replacing
the expensive hardware with a network of low-cost platforms during runtime.
The sensors hardware and consequently its measurements are completely differ-
ent from the low-cost devices. Hence, the prediction accuracy is also substantially
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worse. This is proven by performing the same forecasting experiment as in the
previous section. Figure 4 shows that even for a direct estimation of the actual
value (without forecast) the MSE is already close to 2µg/m3. Similarly to the
previous results the accuracy systematically decreases with increasing forecast
delays. Hence, the FDS15 can be replaced by its virtualized counterpart in set-
tings where forecasting is not compulsorily required. Also increasing the number
of neurons or layers does not particularly enhance the forecasting capabilities
of the NARX network. Still, the following conclusions highlight future possi-
ble direction which are promising to further increase the quality of the utilized
virtual sensor approach.

4 Conclusion

In this paper, we presented a machine learning approach which provides a
resilient monitoring of PM10 concentrations. Instead of using a single expensive
device, data from multiple low-cost PM10 sensors is gathered to learn a NARX
network. The corresponding virtual sensor generates PM10 approximation and
consequently can be used to replace measurements of the physical device dur-
ing malfunctions. In addition, the low-cost characteristic of the sensor platforms
allows the usage of this approach in citizen science applications.

The conducted experiments further highlighted that the forecasting accuracy
subsequently decreases with increasing temporal delays. For the proposed appli-
cations, for example tendency detection, the achieved results are sufficient but
can not compete with the quality of a high-performance device. There are sev-
eral possibilities to further increase estimation and forecasting capabilities of the
presented approach. For instance, more data can be acquired using even more
platforms as well as the application of further heterogeneous environmental mea-
surements, e.g. temperature, wind and humidity. Regarding machine learning,
state-of-the-art deep learning techniques can be applied. For instance, long-term
correlations can be detected more accurately by utilizing a long short-term mem-
ory (LSTM) [14]. Such LSTMs are proven to compete better in various appli-
cations than classical neural network architectures [15] but are computational
much more expensive.

Regarding the data acquisition process, future work must advance the mea-
suring process as well as the corresponding infrastructure. An appliance of citizen
science will ensure better data availability due to the usage of a mobile, more
user friendly version. More precisely, we plan to attach sensors to consistently
used physical mobile objects (like rear lights in bicycles or tram coaches). Such
a more complex system with many non-experts would be concerned with more
requirements regarding resilience, robustness and usability. At the moment, the
sensor systems are only stationary expert systems. On the other hand, such a
system would not only need to include sensor measurements but the monitoring
of the sensor’s context. Therefore, we would expand our data ingestion infras-
tructure as well as alter our analysis tool chain to be more flexible and scaleable.

Finally, given our promising results and the success of other citizen science
projects as outlined in Fig. 1, one near future step could be the appliance of
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our work to other data sets, e.g. Luftdaten.info [6]. Utilizing our approach could
improve the resilience of more established sensor networks.
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Abstract. Profit Sharing using Convolutional Neural Network (PS-
CNN) has been proposed as a method of deep reinforcement learning. In
the previous work, experiments have been conducted using Atari 2600’s
Asterix in the Profit Sharing using Convolutional Neural Networks, and
it is known that a better score can be obtained than Deep Q-Network.
However, experiments have not been conducted on games other than
Asterix, and sufficient consideration has not been made. In this paper,
we report on the results of studying learning ability for some Atari 2600’
games in Profit Sharing using Convolution Neural Network. By compar-
ing the results with the results in Deep Q-Network, we confirmed that
this method can acquire higher score than the Deep Q-Network in some
games. The common feature of these games is that the number of actions
and the number of states are relatively large.

Keywords: Convolutional Neural Network · Profit Sharing

1 Introduction

In recent years, as a method which shows better performance than the conven-
tional methods in the field of image/speech recognition, the deep learning has
been drawing attention. Deep learning is learning in hierarchical neural networks
which have many layers, and the Convolutional Neural Network (CNN) [1] is one
of the typical models.

On the other hand, various studies on reinforcement learning are being con-
ducted as learning methods to acquire appropriate policies through interaction
with the environment [2]. In reinforcement learning, learning can proceed by
repeating trial and error even in an unknown environment by appropriately set-
ting rewards.

The combination of deep learning and reinforcement learning is called Deep
Reinforcement Learning. Most of these methods are based on the Q Learning [4],
and as one of these methods, the Deep Q-Network [5] which is based on the convolu-
tional neural network and the Q Learning is proposed. In the Deep Q-Network, the
game screen is used as observation, and when observation is given as an input to the
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convolutional neural network, the action value in Q Learning for each action is out-
put. This method can realize learning that acquires a score equal to or higher than
that of a human in plural games. As a deep reinforcement learning using a method
other than Q Learning, we have proposed a Deep Q-Network using reward distri-
bution [6] and a Profit Sharing using Convolutional Neural Network(PS-CNN) [7].
The Deep Q-Network using reward distribution learns to not take wrong actions,
by distributing negative rewards in the same way as Profit Sharing [3]. Although
this method can perform learning with the same degree of precision and speed as
Deep Q-Network, it shows that the score that can be finally obtained is same level
as Deep Q-Network. In the Profit Sharing using Convolutional Neural Network,
the error function based on the update equation for the value function in the Profit
Sharing is used instead of the error function based on the updating equation for the
value function in the Q Learning in the Deep Q-Network. In the previous work [7],
experiments have been conducted using Atari 2600’s Asterix in the Profit Sharing
using Convolutional Neural Networks, and it is known that a better score can be
obtained than Deep Q-Network. However, experiments have not been conducted
on games other than Asterix, and sufficient consideration has not been made.

In this paper, we report on the results of studying learning ability for some
Atari 2600’ games in Profit Sharing using Convolution Neural Network.

2 Profit Sharing Using Convolutional Neural Network

Here, the Profit Sharing using Convolutional Neural Network (PS-CNN) [7]
which is examined in this paper is explained.

2.1 Outline

In the PS-CNN, action value in Profit Sharing is learned by convolutional neu-
ral network. This is a method that learns the value function of Profit Sharing
instead of the value function of Q Learning used in the Deep Q-Network [5].
By changing to an error function based on the value function of Profit Sharing
which can acquire probabilistic policy in a shorter time, the proposed method
is able to learn in a shorter time than the conventional Deep Q-Network. How-
ever, in the Profit Sharing, since temporally continuous data is meaningful in
episodes, experience replay used in the Deep Q-Network is not used in the pro-
posed method. The Q Learning uses fixed target Q-Network because the value
of other rules is also used when updating the value of the rule. In contrast, the
Profit Sharing uses the value of the rule included in the episode in updating the
connection weights. Therefore, the proposed method does not use fixed target
Q-Network.

2.2 Structure

The structure of the convolutional neural network used in the PS-CNN is shown
in Fig. 1. As seen in Fig. 1, the PS-CNN is a model based on the convolutional
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Fig. 1. Structure of PS-CNN.

neural network, consisting of three convolution layers and two fully connected
layers as similar as the conventional Deep Q-Network. The play screen of the
game (observation) is input to the convolutional neural network, and the action
value for each action corresponding to the observation is outputted. For the
first to fourth layers, rectified linear function is used as an output function.
The number of neurons in the last finally connected layer which is the output
layer is the same as the number of actions that can be taken in the problem
to be handled. Since the problem learned by the PS-CNN can be regarded as a
regression problem to learn the relationship between each observation and the
action value of each action in the observation, the output function of the output
layer is an identity mapping function.

2.3 Learning

In the PS-CNN, the convolutional neural network learns to output the value of
each action corresponding to the play screen of the game (observation) which is
given as input. Here, the action value is updated based on the Profit Sharing.
So, the error function E is given by

E =
1
2

(rτF (τ) − q(oτ , aτ ))2 (1)

where r is reward, q(oτ , aτ ) is the value of taking action aτ at observation oτ .
F (τ) is the reinforcement function at the time τ and is given by

F (τ) =
1

(|CA| + 1)W−τ
(2)

where CA is the set of actions that an agent can take at the observation, |CA|
is the number of actions that an agent can take, W is the length of an episode.

The action is selected based using the ε-greedy as similar as the conventional
Deep Q-Network. When the game screen oτ is given to the PS-CNN, the value
of all actions in observation oτ is output in the output layer. Based on the
output action value, action is determined by the ε-greedy method. In the ε-greedy
method, one action is selected randomly with the probability ε (0 ≤ ε ≤ 1), the
action whose value is highest with the probability of 1 − ε.
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The probability to select the action a in observation oτ , P (oτ , a) is given by

P (oτ , a) =

⎧
⎪⎪⎨

⎪⎪⎩

(1 − ε) +
ε

|CA|

(

if a = argmax
a′∈CA

q(oτ , a′)

)

ε

|CA| (otherwise)
(3)

where, |CA| is the number of action types that the agent can take, which is the
same as the number of neurons in the output layer of the PS-CNN.

The selected action aτ is executed, and the state transits to the next state
o tau+1. Also, by taking the action aτ , the reward rτ is given based on the score,
game state and so on.

3 Computer Experiment Results

To demonstrate the effectiveness of the PS-CNN, computer experiments were
conducted on some games of Atari 2600. The results are shown below.

3.1 Task

Beam Rider (Fig. 2(a)), Centipede (Fig. 2(b)) and Chopper Command (Fig. 2(c))
are shooting games. In Beam Rider and Centipede, the actions of the agent are
four kinds of movement; moving to left and right, not moving and shooting. In
Chopper Command, the actions of the agent are six kinds of movement; moving
to up, down, left and right, not moving and shooting.

Fishinf Derby (Fig. 2(d)) is a fishing game. In this game, the actions of the
agent are five kinds of movement; moving to up, down, left and right, and not
moving.

(a) Beam Rider (b) Centipede (c) Chopper
Command

(d) Fishing
Derby

Fig. 2. Trained games.
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3.2 Experimental Conditions

Table 1 shows the conditions for the convolutional neural network used in the
PS-CNN and the conventional Deep Q-Network. The game screen used in this
research is an RGB image of 400 × 500. In the experiment, the RGB image is
grayscaled, reduced to 84× 84 pixels, and an image grouped for 4 frames is used
as input.

Table 2 shows other conditions related to learning. An action is selected by
ε-greedy. At the start of learning, ε is set to 1 so that actions are randomly
selected. After that, ε is decreased until it becomes 1/106 every action (one
step). The agent gradually emphasizes the action value and selects an action.

In the PS-CNN, since Profit Sharing is used, as the length of the episode
becomes longer, the value of the denominator on the right side of Eq. (2) becomes
too large and the reward can not be distributed sufficiently. Therefore, only five
steps before acquisition of the score are regarded as episodes.

Table 1. Experimental conditions (1).

Filter size Stride Output size Output function

Input – – 84× 84× 4 –

Convolution Layer 1 8× 8 4 20× 20× 32 ReLU

Convolution Layer 2 4× 4 2 9× 9× 64 ReLU

Convolution Layer 3 3× 3 1 7× 7× 64 ReLU

Full-Connected Layer 1 – – 512 ReLU

Full-Connected Layer 2 – – 5 (The number of actions) Identity function

Table 2. Experimental conditions (2)

The number of learning steps 1.0 × 107

Initial value of ε εini 1

Decrease amount of ε εr 1/106

Minimum of ε εmin 0.1

ε in evaluation episodes ε′ 0.05

Size of replay memory Dmax 106

Size of mini batch M 32

Discount rate γ 0.99

Update interval of target network Tupdate 104



Study of Learning Ability in Profit Sharing Using CNN 99

(a) Beam Rider

(b) Centipede

(c) Chopper Command

(d) Fishing Derby

Fig. 3. Transition of obtained scores.
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3.3 Transition of Obtained Scores

Here, some games of atari 2600 (Beam Rider, Centipede, Chopper Command,
Fishing Derby) are learned by the PS-CNN, and we compared the transition of
the score with the conventional Deep Q-Network.

Figure 3(a)–(d) show the transitions of obtained scores in each method. These
figures are the average of scores every 50 thousand times.

These four games are problems which are considered to be difficult to learn
on the conventional Deep Q-Network.

As shown in Fig. 3(a), in the learning of Beam Rider in the PS-CNN, the
acquisition score starts to rise from around 1.6 million steps. Then, for around
3 million steps, it is confirmed that the acquired score of the PS-CNN is 100 or
more higher than the Deep Q-Learning and that learning is done properly.

As shown in Fig. 3(b), in the learning of Centipede in the PS-CNN, the
score increased sharply as the number of steps increased, and scored about 1800
points around 7 million steps. On the other hand, in the learning of the Deep
Q-Network, the acquired scores are nearly flat, with the acquired score scored
roughly 100 points.

As shown in Fig. 3(c), even in the learning of Chopper Command in the
PS-CNN, the score does not grow from zero step that started randomly, and
it can not be said that learning is properly performed. However, in the Deep
Q-Learning, the acquired score is clearly reduced, and it was confirmed that the
PS-CNN can acquire a higher score compared with it.

As shown in Fig. 3(d), in the learning of the Fishing Derby in the PS-CNN,
it is confirmed that the acquired scores are rising from 2 million steps and finally
exceed the acquired score of the Deep Q-Network.

The common feature of these games is that the number of actions and the
number of states are relatively large.

4 Conclusions

In this paper, we investigated the learning ability of the Profit Sharing using
Convolutional Neural Network (PS-CNN). In this method, action value in Profit
Sharing is learned by convolutional neural network. This is a method that learns
the value function of Profit Sharing instead of the value function of Q Learning
used in the Deep Q-Network. By changing to an error function based on the value
function of Profit Sharing which can acquire probabilistic policy in a shorter time,
the proposed method is able to learn in a shorter time than the conventional
Deep Q-Network.

Computer experiments were carried out on some games of Atari 2600, and the
PS-CNN was compared with the conventional Deep Q-Network. As a result, we
confirmed that the PS-CNN can acquire higher scores than the Deep Q-Network
in some games.
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Abstract. Active vibration suppression is a well explored area when
it comes to simple problems, however as the problem complexity grows
to a time variant system, the amount of researched solutions drops by
a large margin, which is further increased with the added requirement
of very limited knowledge about the controlled system. These condi-
tions make the problem significantly more complicated, often rendering
classic approaches suboptimal or unusable, requiring a more intelligent
approach - such as utilizing soft computing. This work proposes a Arti-
ficial Neural Network (ANN) Model Predictive Control (MPC) scheme,
inspired by horizon techniques which are used for MPC. The proposed
approach aims to solve the problem of active vibration control of an
unknown and largely unobservable time variant system, while attempt-
ing to keep the controller fast by introducing several methods of reducing
the amount of calculations inside the control loop - which with proper
tuning have no negative impact on the controller’s performance. The
proposed approach outperforms the multi-input Proportional-Derivative
(PD) controller preoptimized using a genetic algorithm.

Keywords: Neural network · Adaptive control · Unknown system ·
System identification · Vibration suppression

1 Introduction

1.1 Vibration Suppression

Vibrations have always been a problem for both structures and machines. They
hamper the usability of the object by reducing user comfort, negatively impact-
ing precision of machines, causing quicker wear or even putting people in direct
danger. While taking them into account during design phase of the object is
often enough, in some cases they need to be further reduced or eliminated alto-
gether. In consequence, the necessity of reducing or eliminating vibrations [12]
inevitably led to the development of vibration suppression technologies [9].
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There is a multitude of ways to address vibration suppression, the most com-
mon ones being stiffening, isolation and damping. In addition, some semi-active
(or semi-passive) methods have also been developed - e.g. magnetorheological
(MR) fluid damper, with adjustable viscosity of oil [14]. However, this type of
a solution is still inherently passive, in opposition to active vibration cancelling,
in which an actuator is effectively adding energy into the system to counteract
the vibrations, due to which an inadequately controlled active suppression may
destabilize the system - but a well controlled one offers higher performance than
passive suppression [11].

It is hardly a new approach [4,7], but it is heavily limited in its applications
due to several factors, amongst them unknown and changing system dynamics,
which in many cases are also complex - e.g. a bridge with constantly shifting mass
distribution and multiple excitation points as cars drive through it. Naturally,
controlling a system with close to no knowledge of it is a non-trivial task.

1.2 Soft-Computing-Based Adaptive Control Systems

There are two major approaches to design of control algorithms for time-varying
systems: robust approach in which the algorithm should work reasonably well
under all circumstances possible and adaptive approach in which the control algo-
rithm is able to adjust itself to the changing behavior of the object. In general
a robust approach provides lower efficiency and is possible to use when changes
in the system are relatively small [16]. For that reason, when either the system
changes significantly or the precise control is required, adaptive algorithms are
preferred. A schematic view of the adaptive control can be seen in Fig. 1: a reg-
ular control system with the addition of adaptation loop that gauges the system
performance and adjusts it if necessary [5]. In cases when there is little to no
knowledge regarding the system dynamics, a soft-computing approaches can be
used to adapt to system changes on-the-fly. While there are numerous advances
in utilizing soft computing in many engineering branches for control - includ-
ing model identification [3] and vibration suppression [9] - the field is far from
saturated as these solutions often concern a very limited area of applications,
leaving many topics unexplored, or even untouched. Few examples of Artificial-
neural-network-based applications of vibration reduction include manipulators
[17], buildings [13], beams [15] or spacecrafts [6] but in most of these examples
the system is either partially known, assumed to be stationary or is subjected
to other artificial constraints that limit the possibility of applying particular
control scheme to other cases. In particular, lack of classic solutions to adaptive
vibration control did not trigger development of efficient soft-computing ones,
even though these methods are naturally suited for such problems.

1.3 Contribution and Organization of the Article

The article introduces a novel adaptive control algorithm based on the Artificial
Neural Network. The work uses an approach known as a Neural Net Model
Predictive Control (MPC) scheme, inspired by horizon techniques which are used
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for MPC. The method is designed to work for systems with unknown dynamics
with large variability of system parameters. Several ways of computational time
reduction were proposed as well.

The article is organized as follows: Sect. 1 provides a brief introduction to the
subject; Sect. 2 introduces the adaptive control algorithm, Sect. 3 describes the
problem in which the algorithm is to be applied, Sect. 4 provides the results of
the numerical experiment, finally, Sect. 5 summarizes and concludes the article.

Fig. 1. Basic schematic of an adaptive controller consisting of distinct control and
adaptation loops

2 The Method

2.1 Problem Assumptions

While the algorithm wasn’t designed for one specific problem, some assumptions
regarding the system and available knowledge about it had to be made - as
these factors can severely limit viable approaches, and in consequence render
some types of algorithm unfeasible. The assumptions for the controlled system
are as follows:

– the system is a Multi-Degree-of-Freedom (MDOF) system with at least
3 degrees of freedom

– no knowledge of the system parameters or degrees of freedom is available
– only two points are observable - the object of suppression, and the point of

application of the actuator
– these two points are separate, no information about their relation is available
– the system is subject to an unknown external excitation that causes vibra-

tions, applied at a third point
– the system may change over time

2.2 Algorithm Design

The control problem at hand is a complex one, owing it’s difficulty to three
major factors:
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1. The system is completely unknown
2. The system is changing over time
3. The actuator force is not applied directly on the suppression target

In consequence the algorithm design process was centered around addressing
each of these issues.

The resulting control algorithm is a variation of neural net based model
predictive control - a control approach that makes use of the model of the system
to simulate the system response over a set time horizon, and then provide a
control signal which best realizes the control goal over this horizon. In other
words: the algorithm predicts damped system response for variety of possible
inputs and then selects the input which minimizes the response over selected
time period. In order to do that the algorithm needs to learn the system so the
prediction of responses to particular inputs would be possible.

The usage of such a controller is normally split into 2 phases - model iden-
tification, where the neural net is trained using data from the system to reflect
its behaviour, and then predictive control, where at each timestep the optimizer
- neural net loop - simulates the possible future outcomes and returns optimal
control signal.

This type of controller solves issues 1 and 3, as identifying the system via
neural network requires no prior knowledge of the system, and giving the net
proper information on outputs (such as state of both suppressed and actuated
objects) should lead to accurate modelling of the transmission path between
these 2 points. Issue no. 2 is then solved by the addition of adaptation loop
within which the neural net is periodically retrained.

2.3 Algorithm Schematic

The proposed algorithm is composed of 2 major elements - controller and adap-
tation control - as seen in Fig. 2 - the former of which provides the input values
for the controlled system, while the latter handles the controller’s adaptation
as well as online-learning capabilities. The schematic does not include reference
signal since for vibration control it is simply a static 0 - however if this algorithm
was to be applied to a problem where supplying reference signal is necessary, it
would be passed into the selection algorithm block inside the controller.

2.4 Controller

The controller itself is built around a neural net, which aims to be a representa-
tion of the controlled system. The control algorithm is based on a streamlined
predictive control, bearing similarities to fixed and receding horizon optimiza-
tions [1]. In both of these, several time steps for the systems output are estimated
sequentially, and a control strategy is picked to best realize control goal over this
horizon - the difference between these two is in applying this strategy. For fixed
horizon, the strategy is realized for however many time-steps the horizon was
set for, while in receding horizon only the first time step input is used. If the
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Fig. 2. Schematic of the proposed predictive control algorithm depicting the Controller,
responsible for supplying Plant loop with proper control inputs, as well as Adaptation
Control which harvests data from Plant loop in order to perform parameter updates on
Controller’s neural network core. For suppression task the reference signal is static 0

model used for predicting future states was a perfect reflection of the physi-
cal model, both of these methods would result in the same control signal, with
receding horizon controller requiring more calculations (as they are necessary in
each step). However since the identified models are generally not perfect, the
extra calculations pay off in higher confidence of the predictions, minimizing the
effect of error stacking in recurrent predictions.

The proposed algorithm goes in a different direction to avoid error stack-
ing, as well as reduce the necessary calculations. Instead of performing series of
recurrent predictions, the neural net predicts the outcomes for a single timestep,
and the optimal input for this timestep is then used as control signal, as seen in
Fig. 3.

To further improve performance, a naive approach of control signal persis-
tence (CSP) is proposed - the control signal value which was deemed optimal for
the single timestep persists for multiple ones, eliminating the need to recalculate
it at every step. The rationale behind this approach is that for a sufficiently
small persistence window the state of the controlled system does not undergo a
significant change. Logically, if the system state does not change in a big way,
neither does the optimal control signal. The calculation amount reduction is
given by Eq. 1.

1 − 1
window size

(1)
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Fig. 3. Schematic of the inner workings of the neural Controller, which predicts out-
comes of pre-defined available input forces, and proceeds to select the optimal outcome.

An alternative to CSP was also explored, where instead of predicting 1 step
ahead, and setting the control signal for x steps, a single (non-iterative) pre-
diction would be made for x steps ahead, to answer the question of finding the
optimal static control signal for these x steps. However this approach was dis-
carded since the controllers simply failed to reach satisfying level of suppression.
The assumed reason behind this is that predicting x steps ahead is a consider-
ably more difficult problem to model and - if possible at all - would require much
larger neural nets, and in consequence much more training time and slower oper-
ation. This stands in opposition to the reason behind implementing such method
in the first place - which is to speed the controller up.

In addition to that, the controller is also constrained in what control signals
it can use - a quantized vector of possible inputs is specified to avoid free (and
time consuming) iterative exploration of options.

A single cycle for the controller is as follows:

1. The controller receives current state of the system.
2. Current state + quantized input vector is fed into the neural net.
3. The net returns predicted system states for each of the proposed inputs, at

the end of control time window.
4. The selection algorithm picks the control signal for the time window based

on the estimated states.
5. The static (over the duration of the control time window) control signal is

passed to the model.

While the computational weight of the control algorithm is lower than horizon-
based model predictive control methods, it does require selection of CSP window
length, as well as the quantized input vector. Selection of the latter is straight-
forward, as the actuator output range is generally limited, picking several values
from this range is a simple precision vs speed tradeoff. While reducing the con-
tinuous range of inputs to a discrete list may seem like a bad idea at first glance,
the importance of having a continuous range needs to be reconsidered - e.g. in
many cases the difference between applying the force of 0.6N, and 0.603N is
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very likely to be negligible. Needless to say, if the controlled system is a highly
sensitive, the input vector quantization should reflect that.

As for the CSP window length selection, it is dependent on both the con-
trolled system as well as the actuator used, with window size increasing con-
troller speed and theoretically decreasing its effectiveness due to its approxima-
tion implications:

1. the window needs to be small enough to still reflect relatively small time
steps, not making large leaps and omitting crucial parts of the signal - e.g.,
if the oscillation frequency is 50 Hz, then picking a window of size 0.05 s will
render the controller useless.

2. the window needs to be small enough to fit controller speed requirements.
3. lastly, the window needs to be long enough to allow for actuator reaction.

2.5 Adaptation Control

To deploy the controller, firstly the net is trained on some measured data, prefer-
ably one previously controlled with a different method, so that some effects of
the input to the system are known. The controller is then operational - however
depending on the quality of data provided for initial training, as well as changes
that happen within the model - the control may very well be suboptimal, which
is why another module is necessary. The adaptation control module of the pro-
posed algorithm is not only devoted to the adaptation of the controller in case of
change in the model, but is also responsible for its online learning capabilities.

After each control step it receives the data about it - what inputs were
used, and what effects they had. These are then retained in the system’s simple
“memory” model with a set fixed size, where old entries are replaced with new
ones. Periodically, the neural net will undergo a brief re-training process, fitting
the neural net to the data stored in its memory, essentially “forgetting” how the
model acted in past, and reinforcing knowledge on how it is behaving currently.
This process leads to general self-improvement of the model during its operation,
including adaptation.

2.6 PD Controller

PD-based controllers are often used in vibration suppression tasks [8,10]. Here,
a simple multi-input PD control scheme was included [2] as a reference point
for an ANN-based algorithm. The PD method operates based on a following
equation:

F (t) =
∑

P1, i ∗ yi(t) + P2i ∗ (yi(t − 1) − yi(t)) (2)

where Pi and P2,i refer to adjustable parameters, i refer to the observable mass
under investigation, yi(t) is a displacement of i-th mass at time t while yi(t−1) is
a displacement of i-th mass in time t−1. P1,i thus refer to adjustable proportional
parameters of a controller while P2,i refer to adjustable derivative parameters
of a controller. Depending on the parameters’ values, the controller can either
be treated as a robust or adaptive one. In this scenario it is pre-trained for a
particular system state and then compared with adaptive ANN solution.



Adaptive Vibration Suppression of an Unknown System 109

3 Problem Definition and Simulation Setup

While the system’s parameter change over time is not of concern, the system on
which the tests are to be carried out should comply with the other 2 main issues
of the control problem that the controller was designed for - the knowledge of the
system should be severely limited, and the system itself ought to be a complex
MDOF one, with separate points for external disturbance, active component
actuation and suppression target. The problem is an extension of the 3-degree-
of-freedom unknown system for which the evolutionary-optimized PD controller
was proposed before [2]. The resulting system can be seen in Fig. 4.

Fig. 4. Schematic of the 9-DOF mechanical system used for suppression simulations

The simulations themselves had following parameters:

– Total time - 15 s
– Simulation timestep - 0.001 s
– External disturbance of a 0.005 s long impulse starting at 0.1 s with the mag-

nitude of 100N applied to m1

– Suppression target set - m3

– Actively actuated mass - m5

The controller was tested in a volatile environment, with random changes
to each parameter at every simulation cycle, leaving no time to properly adapt.
The system’s parameters were selected in following way:

– All masses were initialized at 5 kg, changed by a random number (uniform
distribution) between −1 and 1 at every simulation cycle. Masses were kept
within 0.1–10 boundaries).

– All damping ratios were initialized at 2.5, changed by a random number (uni-
form distribution) between −0.2 and 0.2 at every simulation cycle. Damping
ratios were kept within 0.01–5 boundaries).

– Spring constants linearily decayed by 20% over the simulation length.
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The NN predictive control was initialized with pre-trained net based on PD
control of a time-invariant version of this system, reducing the magnitude of
weight changes necessary properly fit the constantly changing system during the
first few simulation cycles as the net starts at a point where it is familiar with
the dynamics of the system in broad sense. The predictive control performance is
compared to static multi-input PD control tuned with the use of a simple genetic
algorithm: the system state at the beginning of simulation was copied for the
genetic algorithm so the adjustable parameters of the PD algorithm were set
to optimum for particular state of the system. Although this step would not be
possible in practical scenario (usually there is no possibility to freeze the system
so the PD controller would be able to learn it properly), this step was performed
to provide a worst-case-scenario for the ANN-based algorithm to compete with.

4 Results

Since the changes in the system were quite significant, it comes as no surprise
that the static multi-input PD controller destabilized the system on multiple
occasions. Results of the simulation are plotted in Fig. 5. Logarithmic scale is
used so the results of all the three algorithms could be compared in one plot.
It is worth noting that simulation starts with a PD approach being compara-
ble with the NN-based one. That is because of the pre-optimization performed
before the experiment. As the experiment progressed, the PD control started
to obtain significantly worse results - often destabilizing the system. The fact
that all the three solutions seem to be correlated is due to the fact, that the
parameters of the system contribute significantly to the vibration suppression.
In some configurations (e.g. - higher damping ratios) the algorithms have “less
work to do” - therefore they are compared against each other and against the
uncontrolled system behavior instead of absolute RMS values.

Various metrics allowing for comparison of all the three solutions are given
in Table 1. The superiority of the proposed approach over the pre-optimized
multi-input PD one is well pronounced in all the metrics used.

Table 1. Results of the experiment averaged for the whole simulation.

Metric No control Multi-input PD Predictive NN

Total RMS worse than uncontrolled [%] n/a 36.25 0.65

RMS relative to the uncontrolled [Fraction] n/a 5.58 0.81

Destabilized system [%] 0 31.90 0.05

Average RMS [m] 0.0286 0.2366 0.0227
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Fig. 5. Total RMS results of the adaptability test. Logarithmic scale was used for y
axis for the purpose of better readability.

5 Conclusions

The results of the test bring several important takeaways:

– The proposed algorithm can very quickly fit to an unknown model which is
constantly changing.

– The proposed algorithm struggles to achieve a very good performance - at
multiple points its control results were worse than those of the multiple-input
PD controller.

– While generally not providing optimal control per se, the algorithm was very
capable at making adaptations that didn’t result in the controller amplifying
the systems vibrations, with only 0.65% of the cycles ending up in that state,
as opposed to the fixed controller, for which this happened in 36.25% of the
cases.

– Even though the stability analysis was not performed in this case, obtained
results clearly show the proposed approach is generally stable, and safe enough
for practical applications.
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Abstract. Radial basis function (RBF) neural networks represent
established machine learning tool with various interesting applications
to nonlinear regression modeling. However, their performance may be
substantially influenced by outlying measurements (outliers). Promising
modifications of RBF network training have been available for the clas-
sification of data contaminated by outliers, but there remains a gap of
robust training of RBF networks in the regression context. A novel robust
approach based on backward subsample selection (i.e. instance selection)
is proposed and presented in this paper, which searches sequentially for
the most reliable subset of observations and finally performs outlier dele-
tion. The novel approach is investigated in numerical experiments and
is also applied to robustify a multilayer perceptron. The results on data
containing outliers reveal the improved performance compared to con-
ventional approaches.

Keywords: Machine learning · Outliers · Robustness ·
Subset selection · Anomaly detection

1 Introduction

Regression modeling, i.e. estimating (smoothing, fitting) and predicting a contin-
uous response variable based on a set of features plays a crucial role in the analysis
of real data in a tremendous variety of applications. Recently, there is an increasing
trend in applying nonlinear estimation tools without assuming a specific shape of
the regression function [6].This is true also for numerousmachine learningmethods
allowing to predict a future development of the response [2]. In this paper, radial
basis function (RBF) neural networks are considered, which represent an impor-
tant class of feedforward artificial neural networks. These have been successfully
used in an enormous number of applications [11].

Each analysis of a real dataset requires a careful detection of outlying mea-
surements (outliers, anomalies) [12]. This is true also for RBF networks, which
implicitly assume the observed data not to be contaminated by outliers [3,23]. So
far, most available applications of RBF networks to real data have not paid suf-
ficient attention to the presence and influence of outliers. Therefore, it is highly
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desirable to consider alternative robust approaches to RBF networks training,
which represents the interest of the current paper. Here, the most common form
of RBF networks is recalled in Sect. 2, together with a review of some avail-
able robust approaches to their training. A novel idea for their robust training
is described in Sect. 3. The performance of the classical and novel approaches
to training RBF networks as well as to multilayer perceptrons is presented on
artificial and real datasets in Sect. 4, revealing the strengths of the novel robust
approach. Finally, Sect. 5 concludes the paper.

2 Radial Basis Function Neural Networks

This section recalls RBF networks, discusses their non-robustness under the
presence of outliers in the data, and proceeds to an overview of available robust
methods for their training. We consider the regression task to model a continu-
ous response Y1, . . . , Yn by means of p features (independent variables, regressors,
inputs) with p ≥ 1 available for n observations (measurements, instances), where
the values for the i-th observation (i = 1, . . . , n) are denoted as Xi1, . . . , Xip. The
architecture of the most common RBF network may be described as a hierarchi-
cal structure with an input layer containing p inputs, a single hidden layer with
N RBF units (neurons), and a linear output layer. The user chooses N together
with a radially symmetric function ρ. The selection of these hyperparameters
must reflect specific properties of the particular data.

The model for the RBF network (see e.g. [11]) has the form

f(x) =
N∑

j=1

ajρ(||x − cj ||) (1)

for a given value of the features x ∈ Rp, where ||.|| denotes the Euclidean norm,
c1, . . . , cN ∈ Rp are center vectors and a1, . . . , aN ∈ R parameters denoted as
weights. It is necessary to estimate these parameters in a learning procedure,
which is a nonlinear optimization task to minimize a certain criterion over these
parameters and over other possible parameters corresponding to ρ.

Most commonly (although not always), the quadratic loss

min
n∑

i=1

(Yi − f(Xi))2 = min
n∑

i=1

⎛

⎝Yi −
N∑

j=1

ajρ(||Xi − cj ||)
⎞

⎠
2

, (2)

is minimized over c1, . . . , cN ∈ Rp, a1, . . . , aN ∈ R and over other possible
parameters corresponding to ρ. If estimated values of parameters a1, . . . , aN

and c1, . . . , cN are denoted as â1, . . . , âN and ĉ1, . . . , ĉN , respectively, the RBF
network as a function of a variable x can be expressed as

f(x) =
N∑

j=1

âjρ(||x − ĉj ||) =
N∑

j=1

âjK(x, cj), x ∈ Rp. (3)



Robust Training of Radial Basis Function Neural Networks 115

The notation using a suitably chosen kernel K reveals the relationship to
other kernel-based machine learning tools. It is most common to choose ρ as the
Gaussian kernel (Gaussian density), replacing (3) by

f(x) =
N∑

j=1

âj exp

{
−||x − ĉj ||2

2σ̂2
j

}
, x ∈ Rp, (4)

where not only â1, . . . , âN and ĉ1, . . . , ĉN but also σ̂2
1 , . . . , σ̂

2
N (i.e. variability

parameters or bandwidth of individual Gaussian kernels) must be estimated from
the given data; these are obtained by an optimization procedure, which requires
to provide an initial solution, i.e. starting point for the parameters. Known the-
oretical properties of RBF networks include their ability to approximate smooth
functions, particularly the universal approximation property [16].

There are numerous available computational tools for training of RBF net-
works [19], while the backpropagation algorithm is the most common choice. It
is however vulnerable to outliers, as it is known from the context of multilayer
perceptrons [22]. Other algorithms for RBF networks are influenced by outliers
as well and the vulnerability remains also for larger values of N . The reasons for
incorrect interpolation of conventional RBF networks under the presence of out-
liers include minimizing the sum of squares residuals and choosing the Gaussian
kernel (4).

2.1 Available Robust Approaches to Training of RBF Networks

Because there seem to be much less robust tools available for RBF networks
compared to multilayer perceptrons, this paper is primarily focused on robust
training for RBF networks. So far, a few robust alternatives to RBF networks
training have been already presented. These are however mostly devoted to the
classification task; see ([15], pp. 54) for discussion. Robust approaches to RBF
networks for classification are based on two main distinct ideas, namely replacing
the sum of squared residuals by a more robust loss function, and detecting out-
liers (atypical/anomalous instances) by exploiting tools of robust and nonpara-
metric statistics [4,12]; the latter approach allows training of the RBF network
only over the non-outlying data points, or to assign small weights to outliers (in
an implicit way).

In the classification task, the robust activation function may consider various
robust versions of the Mahalanobis distance as used in [3]. Robust training based
on outlier detection exploiting the local outlier factor of multivariate data was
proposed by [18]. Another outlier detection was proposed by [7], who evaluated
a simple outlyingness measure based on the cumulative distribution function;
there, anomalous measurements are found in an iterative procedure evaluating
confidence coefficients (i.e. percentages for each class in the classification task).

In the regression task, there have been only a few approaches robustifying the
activation function. Compositions of sigmoidal activation functions were consid-
ered in [17] to robustify the performance for a rather specific task to estimate
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a response which is almost constant over relatively large intervals. A highly
robust regression estimator, namely the least trimmed absolute value estima-
tor, was recommended as the optimization criterion for RBF networks in [21].
If subtractive clustering (SC) is used for an automatic recommendation of the
center vectors, a robustified loss function may be subsequently used [23]; still,
the popular SC approach remains vulnerable to outliers and consecutive steps
of the training cannot improve this. A recent approach to outlier detection for
regression RBF networks was developed in [15], which is denoted as generalized
edited nearest neighbor (ENN) algorithm, and was also combined with robust
versions of the activation function.

3 A Robust Training of RBF Networks Based
on Backward Instance Selection

Our novel approach to robust training of RBF networks can be described as
a backward subsample selection process, i.e. outlier detection together with their
deletion, while the final estimate considers only the selected subset of observa-
tions. This is inspired by the forward search (cf. [10]), which can be described as
a promising (but not sufficiently appreciated) alternative approach to statistical
data analysis. It sequentially adds the most reliable (i.e. least outlying) obser-
vations to a subset, while the outlier detection is performed afterwards based
on the whole sequence of variance estimates across such subsets [1]. The for-
ward search is comprehensible and powerful and its theoretical properties have
been recently derived [5]. However, the forward selection is not suitable for RBF
networks because of the nonlinearity of the task.

We propose a backward procedure for selecting individual observations, for-
mally described in Algorithm 1. The approach is based on a gradual (sequential)
adding observations to a selected subset. It divides the data points to

(i) a smaller set of outliers,
(ii) a larger set of all the remaining instances,

where the latter are interpreted as the good (consistent) data points.
While Algorithm 1 is self-explaining, we will now interpret its key steps and

also its notation. Let �x� denote the integer part of x ∈ R. In the course of
the algorithm, sets Sn−1, . . . , S�n/2� of indicators are sequentially constructed,
which contain zeros or ones only. Zeros correspond to observations of type (i),
which are subsequently ignored, and the RBF network is repeatedly computed
only for observations of type (ii). A corresponding sequence rn−1, . . . , r�n/2� is
constructed, which contains the absolute residuals of the most outlying obser-
vations. In addition, we always return a single least outlying outlier back to the
set of reliable data (i.e. for k < n − 2); this allows to improve the optimiza-
tion procedure and is suitable because of potential masking of outliers (cf. the
description of possible complications with outlier detection in multivariate data
in [2]). The final outlier detection within Algorithm 1 can be performed either
(a) automatically, or (b) subjectively by a visual inspection of figures for various
subsets. These two approaches will be now explicated.
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Algorithm 1. RRBF: robust training of RBF networks based on backward
instance selection
Input: Response Y1, . . . , Yn, features Xi1, . . . , Xip for i = 1, . . . , n
Input: Hyperparameters selected by the user: number of units N , radially symmetric

function ρ
Input: Series of quantiles c(�n/2�), . . . , c(n)
Output: Fitted RRBF network

Sn := (1, 1, . . . , 1)T ∈ Rn

for k = n − 1 downto �n/2� do
Sk = (Sk

1 , . . . , Sk
n)

T := Sk+1

for t = 1 to n do
if Sk

t = 1 then
S∗ = (S∗

1 , . . . , S∗
n)

T := Sk

S∗
t := 0

Fit the RBF network for such X1, . . . , Xn, which have the indicator in S∗

equal to 1
Ŷt := fitted value of the t-th observation

end if
end for
u := argmax |Yt − Ŷt| over those indexes t = 1, . . . , n, for which Sk

t = 1
Sk
u := 0

rk := |Yu − Ŷu|
if k < (n − 1) then

for m = 1 to n do
if Sk

m = 0 then
S∗ = (S∗

1 , . . . , S∗
n)

T := Sk

S∗
m := 1

Fit the RBF network for such X1, . . . , Xn, which have the indicator in S∗

equal to 1
Ŷm := fitted value of the m-th observation

end if
end for
v := argmin |Ym − Ŷm| over those indexes m = 1, . . . , n, for which Sk

m = 0
if u �= v then

Sk
v := 1

end if
end if

end for
z := �n/2�
while rz < c(z) do

z := z + 1
end while
Fit the RBF network for such X1, . . . , Xn, which have the indicator in Sz equal to 1
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(a) If the automatic approach is used, which is described in the final part of
Algorithm 1, the resulting method is denoted as a robust RBF (RRBF)
network. For a particular t in Algorithm 1, i.e. if considering the step
from St towards St−1, we use a threshold derived under the assumption
of normally distributed errors for the already selected t − 1 observations.
While the assumption of normality of errors may be limiting, it has been
described as a successful strategy also in data-driven nonparametric regres-
sion approaches of [6].
The threshold denoted as c(t) for each t is defined as the 99th per-
centile of the distribution of the random variable max{Z1, . . . , Zt−1}, where
Z1, . . . , Zt−1 are independent random variables following normal distribu-
tion N(0, σ2). We must approximate c(t) by simulations, while estimating the
nuisance parameter σ2 by means of the median absolute deviation (MAD)
[12] computed from residuals of the RBF network across all observations.

(b) A subjective approach may replace the final outlier detection of Algorithm 1
by a visual inspection of the non-decreasing sequence r�n/2�, . . . , rn. The plot
of this sequence reveals a dramatic change of trend as soon as outliers come
into play. When the set of selected data points starts to include outliers (for
a sufficiently large t), then values of rt start to rise up enormously. The first
such change point in the sequence corresponds to the true contamination
level. This approach is inspired by the subjective search for the trimming
constant for robust regression of [13].

The computational complexity of the proposed approach is rather high due
to the repeated evaluation of the RBF network over subsets of data. Denoting
the complexity of the RBF network by O(RBF), the proposed approach has
the order of complexity equal to n2O(RBF), which prohibits its use for large
datasets.

4 Numerical Applications

In order to illustrate the vulnerability of a traditional RBF network to outliers
and the performance of the novel approach RRBF, we present numerical exper-
iments both on simulated and real data sets. Because Algorithm 1 can be used
also for robust fitting of multilayer perceptrons (MLP), we use such an approach
(denoted as RMLP) as well. The computations were performed using R software
package [20] together with packages RSNNS and neuralnet. Particularly, RBF
networks are trained by a backpropagation algorithm, namely a gradient descent
method for optimization of all parameters (including variances σ2

1 , . . . , σ
2
N ).

4.1 A Simulated Dataset

We use an artificial dataset with n = 100 measurements visualized in Fig. 1,
obtained as a sine function contaminated by noise. The horizontal axis is the
only feature. We choose the Gaussian kernel for the model and N = 10 RBF
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units for the hidden layer. Such an RBF network seems to be very suitable for
fitting the nonlinear trend in the particular dataset. The RSNNS package allows
a nice graphical presentation of the RBF network model and yields directly the
estimates of all parameters together with fitted values of the response.

Fig. 1. Raw data of Sect. 4.1 together with trend estimated by a (standard) RBF
network with 10 RBF units and Gaussian function ρ.

Figure 1 shows the raw data as well as the trend estimated by the RBF
network specified above. Figures 2 and 3 show the RBF and RRBF networks for
two different (rather simple) contaminations of the data, respectively.

– Contamination A: A set of 5 observations was replaced by independent ran-
dom values generated from a normal distribution N(0, 1/3).

– Contamination B: Each fifth observation was replaced by the exact value 3.5.

Figure 2 reveals the effect of outliers on the conventional RBF network. The
estimation by the RBF network is clearly deteriorated by outliers in both images
of Fig. 2.

Values of prediction error evaluated in a leave-one-out cross-validation are
presented in Table 1 for two nonlinear regression methods. The error is evaluated
as either the standard mean squared error (MSE), i.e. over all observations, or its
robust counterpart denoted as the trimmed mean squares error (TMSE). Using
α = 3/4 and h = �(1 − α)n�, these are defined as

MSE =
1
n

n∑

i=1

r2i and TMSE(α) =
1
h

h∑

i=1

r2(i), (5)

where ri = Yi − Ŷi are prediction errors, Ŷi denotes the fitted value of the i-
th observation for i = 1, . . . , n, and squared prediction errors are arranged as
r2(1) ≤ · · · ≤ r2(n).
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Table 1. Results for the simulated data of Sect. 4.1. Error measures (MSE and
TMSE(3/4)) evaluated for the RBF and RRBF networks.

Neural network Raw data Contam. A Contam. B

MSE TMSE MSE TMSE MSE TMSE

RBF 0.111 0.042 0.541 0.057 1.422 0.351

RRBF 0.111 0.042 0.634 0.045 1.769 0.082

Fig. 2. Two contaminated versions of the dataset of Sect. 4.1 with trend estimated by
a (standard) RBF network with 10 RBF units and Gaussian function ρ.

For raw data, the RBF and RRBF networks yield the same results. For con-
taminated data, MSE is smaller for RBF compared to RRBF networks, as the
RBF network minimizes exactly the value of MSE. TMSE is for contaminated
data smaller for RRBF networks than for RBF, and at the same time remains
only slightly changed compared to TMSE for raw data. On the other hand, MSE
for contaminated data is much increased compared to MSE for raw data. On the
whole, MSE turns out not to be a suitable error measure, as it is heavily influ-
enced by outliers, while TMSE is able to express that the RRBF networks per-
form a good fit over the good (non-contaminated) data. In addition, the results
of the rigorously derived approach (a) correspond to the intuitive approach (b).

4.2 Real Datasets

We also use two real datasets, which are both larger compared to the simple setup
of Sect. 4.1. Both are publicly available datasets coming from the repository [8],
where they are recommended for regression modeling.

(I) The Auto MPG dataset. The response, i.e. consumption of each car in
miles per gallon (MPG), explained by four continuous features, namely
displacement, horsepower, weight, and acceleration. As we omitted missing
values (i.e. observations with index 33, 127, 331, 337, 355, and 375), we
work with n = 392 and p = 4.
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Fig. 3. Two contaminated versions of the dataset of Sect. 4.1 with trend estimated by
the RRBF network with 10 RBF units and Gaussian function ρ.

(II) The Boston Housing dataset. As we consider only continuous features (omit-
ting features 4, 7, and 9 from the original dataset) and there are no missing
values, we work with n = 506 and p = 11, while the response represents the
per capita crime rate by town.

Because the robust approach of Sect. 3 is directly applicable also to multilayer
perceptrons, we illustrate its performance also on them. We also use a simple
outlier detection approach by means of Z-scores; we may refer to e.g. [9], where a
Z-score algorithm was used to determine anomalies. The method further denoted
as RBF-Z will be used in the following way. Let us say that the RBF network
has been trained over all available observations. We will consider the observation
Xi (for i = 1, . . . , n) to be outlying if and only if

0.6745 · |ui − ũ|
MAD(u1, . . . , un)

≥ 2.5, (6)

where u1, . . . , un are residuals corresponding to the RBF network, ũ is the
median over u1, . . . , un, and MAD(u1, . . . , un) denotes the median absolute devi-
ation of the residuals. Then, the method RBF-Z fits an RBF network to all the
non-outlying measurements. Here, 0.6745 is a consistency factor ensuring con-
sistency of MAD under normally distributed errors [12] and the threshold 2.5
is a standard choice in analogous rules of outlier detection (see e.g. [14]). In
the same spirit, MLP-Z denotes outlier detection by Z-scores if the multilayer
perceptron is used for the regression task.

For the Auto MPG dataset, we use an RBF network with N = 40. A multi-
layer perceptron with 2 hidden layers is used, which contain 16 and 8 neurons,
respectively. A sigmoid activation function is considered in every hidden layer
and a linear output layer is used. For the Boston Housing dataset, we use an RBF
network with N = 50. An analogous multilayer perceptron as for the Auto MPG
dataset is used. The results for the networks with such selected architectures are
presented in Table 2.
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In both datasets, MSE is smaller for RBF compared to RRBF networks. How-
ever, we consider TMSE more meaningful compared to the non-robust MSE. The
novel robust approaches RRBF and RMLP are substantially better compared
to conventional RBF and MLP in terms of TMSE. Without the ambition to
compare the performance of RBF networks with that of multilayer perceptrons,
it is clear that classical RBF and MLP suffer from outliers. This is a problem
especially in the Boston Housing dataset, which suffers from a larger percent-
age of very severe outliers. The approach based on Z-scores brings only a slight
improvement, so its results stay behind those of the novel approach. This corre-
sponds to the criticism of Z-scores in [18]. On the whole, the results verify the
meaningfulness of the novel backward instance selection.

Table 2. Results for real datasets of Sect. 4.2. Error measures (MSE and TMSE(3/4))
evaluated for the RBF and RRBF networks.

Neural network Dataset

Auto MPG Boston housing

MSE TMSE MSE TMSE

RBF 46.9 17.2 52.7 4.4

RRBF 51.0 13.3 59.7 3.9

RBF-Z 49.1 16.6 56.5 4.3

MLP 60.8 28.9 57.9 5.3

RMLP 72.8 15.0 65.1 4.3

MLP-Z 68.2 23.6 63.4 5.0

5 Conclusions

RBF networks represent an established tool for nonlinear regression tasks, i.e. for
fitting a continuous response in dependence on a set of features, with various
real applications. However, their interpolation may be influenced by outliers.
Therefore, we propose an alternative training procedure, which can be described
as a backward subsample selection inspired by [1,5]. To the best of our knowl-
edge, this procedure is original in the context of machine learning and represents
thus one of the few approaches for robust training of RBF networks for regres-
sion. The new learning method sequentially orders the observations according to
their outlyingness and then performs outlier detection. Contrary to our sequen-
tial process, we perceive standard training of neural networks as a mere “snap-
shot” analyzing (only) all observations at once. The presented forward search
philosophy is conceptually simple and comprehensible.

The new approach may be recommended for additive outliers, including
severe individual as well as clustered ones, and also for smoothing peaks and/or
outlier detection in (possibly high-frequency) data. It is also suitable for time
series of positive values, where the outliers are asymmetrically distributed and
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typically above the trend rather than being symmetrically distributed above and
below the majority of the data; such data are common in financial econometrics.
If the data are non-contaminated, the approach has the tendency not to detect
any outliers (small false positive rate). The approach is flexible and can be used
also for other machine learning methods.

Numerical examples of Sect. 4 reveal the efficiency for a non-contaminated
illustrative dataset. At the same time, the robustness of the novel approach is
documented in contaminated datasets.

Disadvantages and limitations of the novel approach include its computa-
tional complexity (while other available robust approaches for RBF networks are
computationally tedious as well). General limitation of RBF networks (includ-
ing numerical instability or unsuitability for data with a constant trend in a
certain interval [17]), nonlinear regression (boundary problems if a change of
trend appears near the endpoints of the compact support), or backward search,
particularly due to the automated process of subset selection, are valid for the
novel approach as well. The novel approach is not suitable if the data locally
contain more than 50% of outliers, which is, however, true for any available non-
linear regression approach. It is also clear that removing outlying values (e.g. in
case of relevant peaks) is meaningful only in some (but not all) applications.

As future research, we intend to compare various criteria for outlier detec-
tion, to exploit other computational tools than the gradient descent optimization
algorithm, to reduce the computational complexity, or to perform more intensive
numerical experiments with the robust approach to RBF networks.

Acknowledgements. We thank Barbora Peštová for technical assistance and six
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Abstract. One of the roles of website administrators is the activity
registration of WWW sites and users using the services. Along with the
development of data analysis algorithms, there are new possibilities of
using registered actions of many users in logs. In this paper, we present
a way to detect anomalies in URL logs using sequential pattern mining
algorithms. We analyse the registered URL request sequences of the pub-
lic institution website in order to identify unwanted bots. By detecting
and comparing sequences, we can classify the activity into a normal and
malicious one.

Keywords: URL logs · Sequential data mining · Computer networks

1 Introduction

Efficient computer network intrusion detection and user profiling are substan-
tial for providing computer system security. Recently, the development of deep
learning allowed to efficiently analyse big computer network data [2,8]. It is also
possible to use tree-based classifiers [4,5] to classify network users [9]. There are
also works on using fuzzy logic [13,15] to cybersecurity [7,12]. Many researchers
dealt with the analysis of data contained in logs. One of the known methods is
the use of sequential pattern mining to analyse user trends in order to select an
appropriate commercial offer. Through this procedure, we can influence users’
decisions in order to sell their own products. In the case of large websites,
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data analysis is a very difficult and time-consuming task for the administra-
tor. Therefore, in most cases, the analysis of data in logs only occurs when there
are clear signs of anomalies on the site. In our research, we analyse data from
HTTP request logs (URLs). Initially, we assume that users navigate websites
in a predictable way. We base this assumption on how persons use websites
when searching for information. The interests of a given user are usually strictly
defined, so the transitions between websites is done according to their interests.
We compare found sequences by plain vector comparison. It is possible to use
various algorithms for fast vector comparison used often in computer vision [14].

This article is based on data collected from a WAN network infrastructure,
which is used by residents of four districts in Poland, as well as network users who
are employees of the local government offices and their organizational units, e.g.
schools, hospitals, etc. Internet access to the analysed network is done with the
help of two CISCO ASR edge routers that route packets using RIP version 2. A
cluster of PaloAlto devices working in an active-active mode takes care of the net-
work security. The network is routed by the Open Shortest Path First (OSPF)
algorithm with virtual routing and forwarding (VRF). In each of the four districts,
there is one CISCO core switch.

The remainder of the paper is as follows. Section 1 introduces the subject
of this paper. Section 2 describes network data preparation for sequential pat-
tern mining. Section 3 presents the experiments with finding sequences by three
sequential pattern mining algorithms.

2 Data Preprocessing

Data from the computer network logs had to be prepared to the machine learning
needs. The first step was to detect what addresses the user requested. While
preparing the webpage to display, the client’s web browser sends many requests
to the server, which are registered in the logs. Example requests are presented
in Listing 1.1

Listing 1.1. Example HTTP requests.

2018−07−16 07 : 06 : 09 10 . 210 . 50 . 107 GET
/bundles /modernizr v=wBEWDufH 8Md−Pbioxomt90vm6tJN2
Pyy9u9zHtWsPo1 80 − 10 . 1 0 . 2 4 . 1 24 Moz i l l a /
5.0+(Windows+NT+6.3;+Win64;+x64)+AppleWebKit/537.36+
(KHTML,+ l i k e+Gecko)+Chrome/67.0 .3396 .99+ Sa f a r i /537 .36
http : //www. xxxxxxxxxx . eu/ 200 0 0 0
2018−07−16 07 : 06 : 09 10 . 210 . 50 . 107 GET
/Content/ boots t rap . min . c s s − 80 − 10 . 1 0 . 2 4 . 1 24 Moz i l l a /
5.0+(Windows+NT+6.3;+Win64;+x64)+AppleWebKit/537.36+
(KHTML,+ l i k e+Gecko)+Chrome/67.0 .3396 .99+ Sa f a r i /537 .36
http : //www. xxxxxxxxxx . eu/ 200 0 0 33
2018−07−16 07 : 06 : 09 10 . 210 . 50 . 107 GET
/Content/VariantRed . c s s − 80 − 10 . 1 0 . 2 4 . 1 24 Moz i l l a /
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5.0+(Windows+NT+6.3;+Win64;+x64)+AppleWebKit/537.36+
(KHTML,+ l i k e+Gecko)+Chrome/67.0 .3396 .99+ Sa f a r i /537 .36
http : //www. xxxxxxxxxx . eu/ 200 0 0 0
2018−07−16 07 : 06 : 09 10 . 210 . 50 . 107 GET
/ Sc r i p t s / respond . min . j s − 80 − 10 . 1 0 . 2 4 . 1 24 Moz i l l a /
5.0+(Windows+NT+6.3;+Win64;+x64)+AppleWebKit/537.36+
(KHTML,+ l i k e+Gecko)+Chrome/67.0 .3396 .99+ Sa f a r i /537 .36
http : //www. xxxxxxxxxx . eu/ 200 0 0 15
2018−07−16 07 : 06 : 09 10 . 210 . 50 . 107 GET
/Content/ Images/ IconContrast . png − 80 − 10 . 1 0 . 2 4 . 1 24
Moz i l l a /
5.0+(Windows+NT+6.3;+Win64;+x64)+AppleWebKit/537.36+
(KHTML,+ l i k e+Gecko)+Chrome/67.0 .3396 .99+ Sa f a r i /537 .36
http : //www. xxxxxxxxxx . eu/ 200 0 0 31
2018−07−16 07 : 06 : 09 10 . 210 . 50 . 107 GET
/Content/FR. png − 80 − 10 . 1 0 . 2 4 . 1 24 Moz i l l a /
5.0+(Windows+NT
+6.3;+Win64;+x64)+AppleWebKit /537.36+(KHTML,+ l i k e+Gecko )
+Chrome/67.0 .3396 .99+ Sa f a r i /537 .36
http : //www. xxxxxxxxxx . eu/ 200 0 0 31

We are interested only in entries regarding specific websites. Therefore, we
reject all entries concerning scripts, images, CSS styles etc. We have prepared the
data similarly to the case of [16]. Then, we group the addresses into a sequence.
By this term, we mean the sequence of URLs, i.e. the set of addresses that have
been registered for one user of the site at a given time. In our case, we identify
users using only IP addresses. During the preliminary analysis of the data, we
concluded that the session for one user ends if we have not registered any activity
in more than 1 h [18]. In the case of the dataset on which we worked, it did not
happen that any of the users visited the site exactly every hour. Therefore, this
division should not be a key value during the tests and during the change of this
value to 2, 3 and 4 h we obtained identical results. Next, we need to create a
dictionary with URLs. We counted that the users in the network requested 681
unique addresses in the considered period. Each address was assigned a unique
number. In the presented solution, we examined only sessions consisting of at
least 6 addresses. All sessions recorded with fewer addresses have been omitted.
We assumed to investigate only the behaviour of users or robots who spend
more time on a website. Then, we separated all the sessions that we considered
to be unwanted in our website, the ones we want to eliminate in the future.
We obtained from the Internet the most popular IP addresses of bots, and then
we checked which addresses refer to logs in the file “robot.txt”. If an address
wanted to download data excluded in “robot.txt”, we considered it an intruder.
These sequences accounted for approximately 15% of the total traffic recorded.
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The final step was to separate test and training data. The test data contained
20% of all sessions recorded at the latest. As a result, we obtained three files:

– training data containing desired user behaviour,
– data with unwanted sequences,
– test data.

Below we present an example of a file with saved sequences:

0 1 3 4 5 6 7 8 9 10 -2
18 19 20 0 3 21 22 23 24 -2
0 3 41 9 31 36 66 12 11 67 -2
0 3 38 95 35 66 96 36 41 -2
0 119 140 141 142 143 144 145 146 -2

In this case, -2 is the sequence separator.

3 Experiments

The experiment consisted in finding characteristic sequences for users. Sequence
detection in URLs is a very difficult task, there are many methods to identify
the sequence of addresses [11]. Repetition of exactly the same sequence in visited
websites by users is a very rare phenomenon [6]. Our experiment was not intended
to prove that the existing sequential pattern mining algorithms can be used for
our task. We used Sequential Pattern Mining algorithms implemented in SPMF
[3] to detect sequences, BIDE+ [17], PrefixSpan [10] and SPADE [19]. The above
algorithms are designed to search only the exact schemes that the users navigated
web pages. On their basis, we know that if a user visited pages A, B then he will
probably visit page C. The algorithms implemented in SPMF return elements
consisting of at least one character. For our applications, it would not be easy
to use a sequence consisting of too few characters. If we consider that only one
url creates a sequence, then the bot only uses the address immediately will be
misidentified. In our experiment, we assumed that the sequence should consist of
at least three URL addresses. The sequences obtained were from three addresses
up to 5 addresses long. The created sequences form the knowledge base of user
behaviour. On its basis, we will assess whether the registered logs belong to the
user or the bot. In our case, we do not consider the order of the elements in the
sequence, because we assume that the user who is guided by a particular subject
does not have to navigate the pages in the same order. The problem is the
appropriate programming of the sequence comparison mechanism. The BIDE+,
SPADE, PrefixSpan algorithms do not check the order of the elements, nor
do they consider whether other elements are woven into the sequence. In other
words, if we have two sequences ABCD and ADC, then the common sequence for
them is ACD. We must also take this dependence into account when comparing
a sequence to a sequence. In the case of our data set, the sessions did not contain
a large number of addresses; therefore we did not consider splitting the session
into smaller windows, as in the case of DNA analysis [1]. We divided the results
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Table 1. Percentage of correctly recognized users and bots with time of each SPM
algorithm

SPM
Algorithm

Correctly
recognized users

Correctly
recognized bots

Time [ms]

BIDE+ 86.6% 86% 61

PrefixSpan 82.3% 86% 14

SPADE 87.1% 82% 40

into two groups with the recognition of intruders and identification of whether
the traffic is appropriate (Table 1).

For each algorithm, we assigned the same minimum support 4% of all
sequences in the training sequence. The critical element is the working time
of algorithms. In our case, the PrefixSpan algorithm worked best, for which the
time was 14 ms. However, it did not find certain sequences specific to users.

4 Conclusion

The presented approach is a novel approach to computer security. We detected
sequences of requested web pages by sequential pattern mining algorithms. We
used three SPM algorithms, namely BIDE+, Prefixspan and SPADE. We com-
pared the algorithms in terms of accuracy and speed. After finding sequences,
we compared sequences by vector similarity. The presented method can detect
in nearly real-time security breaches in HTTP traffic.
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Adam Krzyżak1(B) and Marian Partyka2,3

1 Department of Computer Science and Software Engineering, Concordia University,
1455 de Maisonneuve Blvd. West, Montreal H3G 1M8, Canada

krzyzak@cs.concordia.ca
2 Department of Electrical Engineering, Westpomeranian University of Technology,

70-313 Szczecin, Poland
3 Department of Knowledge Engineering, Faculty of Production Engineering

and Logistics, Opole University of Technology, ul. Ozimska 75, 45-370 Opole, Poland
m.partyka@po.opole.pl

Abstract. In the paper we study convergence of the RBF networks
with so-called regular radial kernels. The parameters of the network are
learned by the empirical risk minimization. Mean square convergence
of L2 error is investigated using the machine learning tools such as VC
dimension and covering numbers. RBF network estimates are applied in
nonlinear function learning and classification.
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1 Introduction

In artificial neural network literature several types of feed-forward neural networks
are commonly considered. They include: multilayer perceptrons (MLP), radial
basis function (RBF) networks, normalized radial basis function (NRBF) net-
works and deep networks. These neural network models have been applied in dif-
ferent problems including interpolation, classification, data smoothing and regres-
sion. Convergence analysis of MLP can be found among others in, Cybenko [9],
White [50], Hornik et al. [24], Barron [2], Anthony and Bartlett [1], Devroye
et al. [11], Györfi et al. [21], Ripley [42], Haykin [23], Hastie et al. [22]. Deep net-
works have been discussed in Bengio et al. [17] and their convergence was recently
investigated in Kohler and Krzyżak [26] and Bauer and Kohler [3] (the latter two
are one of the first papers to analyze convergence of deep multilayer networks).
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They have been applied in numerous papers, e.g., in [5]. RBF networks have been
considered in, e.g., Moody and Darken [37], Park and Sandberg [39,40], Girosi and
Anzellotti [15], Girosi et al. [16], Xu et al. [52], Krzyżak et al. [29], Krzyżak and
Linder [30], Krzyżak and Niemann [31], Györfi et al. [21], Krzyżak and Schäfer [35]
and Krzyżak and Partyka [32].

In this paper we consider the radial basis function (RBF) networks with one
hidden layer of at most k nodes with a fixed kernel φ : R+ → R:

fk(x) =
k∑

i=1

wiφ (||x − ci||Ai
) (1)

where
‖x − ci‖2Ai

= [x − ci]T Ai[x − ci]

which are class of functions satisfying the following conditions:

(i) radial basis function condition: φ : R+
0 → R+ is a left-continuous, mono-

tone decreasing function, the so-called kernel.
(ii) centre condition: c1, ..., ck ∈ Rd are the so-called centre vectors with
‖ci‖ ≤ R for all i = 1, ..., k.
(iii) receptive field condition: A1, ..., Ak are symmetric, positive definite,
real d × d-matrices each of which satisfies the eigenvalue inequalities � ≤
λmin(Ai) ≤ λmax(Ai) ≤ L. Here, λmin(Ai) and λmax(Ai) are the minimal
and the maximal eigenvalue of Ai, respectively. Ai specifies the receptive field
about the centre ci.
(iv) weight condition: w1, ..., wk ∈ R are the weights satisfying

∑k
i=1 |wi| ≤ b

for all i = 1, ..., k.

Throughout the paper we use the convention 0/0 = 0. Common choices for the
kernel satisfying (i) are:

– Window type kernels. These are kernels for which some δ > 0 exists such
that φ(t) �∈ (0, δ) for all t ∈ R+

0 . The classical naive kernel φ(t) = 1[0,1](t) is
a member of this class.

– Non-window type kernels with bounded support. These comprise all
kernels with support of the form [0, s] which are right-continuous in s. For
example, for φ(t) = max{1 − t, 0}, φ(xT x) is the Epanechnikov kernel.

– Regular radial kernels. These kernels are nonnegative, monotonically
decreasing, left continuous,

∫
Rd φ(||x||)dx �= 0, and

∫
Rd φ(||x||)dx < ∞, where

|| · || is the Euclidean norm on Rd. Regular kernels include naive kernels,
Epanechnikov kernels, exponential kernels and the Gaussian kernels. Note
that the regular kernels are bounded.

Let us denote the parameter vector (w0, . . . , wk, c1, . . . , ck, A1, . . . , Ak) by θ.
It is assumed that the kernel is fixed, while network parameters wi, ci, Ai, i =
1, . . . , k are learned from the data. The most popular choices of radial function
φ are:
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– φ(x) = e−x2
(Gaussian kernel)

– φ(x) = e−x (exponential kernel)
– φ(x) = (1 − x2)+ (truncated parabolic or Epanechnikov kernel)
– φ(x) = 1√

x2+c2
(inverse multiquadratic)

All these kernels are nonincreasing. In the literature on approximation by means
of radial basis functions the following monotonically increasing kernels were con-
sidered

– φ(x) =
√

x2 + c2 (multiquadratic)
– φ(x) = x2n log x (thin plate spline)

They play important role in interpolation and approximation with radial func-
tions [16], but are not considered in the present paper.

Standard RBF networks have been introduced by Broomhead and Lowe [8]
and Moody and Darken [37]. Their approximation error was studied by Park
and Sandberg [39,40]. These result have been generalized by Krzyżak, Linder
and Lugosi [29], who also showed weak and strong universal consistency of RBF
networks for a large class of radial kernels in the least squares estimation prob-
lem and classification. The rate of approximation of RBF networks was investi-
gated by Girosi and Anzellotti [15]. The rates of convergence of RBF networks
trained by complexity regularization have been investigated in regression esti-
mation problem by Krzyżak and Linder [30].

Normalized RBF networks are generalizations of standard RBF networks and
are defined by

fk(x) =
∑k

i=1 wiφ (||x − ci||Ai
)

∑k
i=1 φ (||x − ci||Ai

)
. (2)

Normalized RBF networks (2) have been originally investigated by Moody and
Darken [37] and Specht [45]. Further results were obtained by Shorten and
Murray-Smith [44]. Normalized RBF networks (NRBF) are related to the clas-
sical nonparametric kernel regression estimate also called the Nadaraya-Watson
estimate (3):

rn(x) =

∑n
i=1 YiK(x−Xi

hn
)

∑n
i=1 K(x−Xi

hn
)

(3)

where K : Rd → R is a kernel and hn is a smoothing sequence (bandwidth) of
positive real numbers. The estimate has been introduced by Nadaraya [38] and
Watson [49] and studied by Devroye and Wagner [14], Krzyżak [27], Krzyżak
and Pawlak [34] and Györfi et al. [21]. Its recursive versions were investigated in
[20,21]. Other nonparametric regression estimation techniques include nearest-
neighbor estimate [10,12,21], partitioning estimate [4,21], orthogonal series esti-
mate [19,21], tree estimate [7,22] and Breiman random forest [6,25,43].

In the analysis of the NRBF nets (2) presented in [52] and in [32,33] the
authors analyzed convergence of the normalized RBF by exploiting the relation-
ship between their mean integrated square error (MISE) and MISE of the kernel
regression estimate, however these results were valid only on the training data,
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i.e., no generalization was shown. Generalization ability of NRBF networks and
their convergence was investigated in [35].

This paper investigates generalization ability and weak convergence of the
RBF network (1) with parameters trained by the empirical risk minimization
with applications in nonlinear function learning and classification. In this paper
we will use specialized tools from computational learning theory such as VC
dimension and covering numbers to analyze generalization ability of RBF net-
works with so-called regular kernels. The paper is organized as follows. In Sect. 2
the algorithm for nonlinear function learning is presented. In Sect. 3 the RBF
network classifier is discussed. In Sect. 4 convergence properties of the learning
algorithms are investigated and conclusions are provided in Sect. 5.

2 Nonlinear Function Learning

Let (X,Y ), (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be independent, identically dis-
tributed, Rd × R–valued random variables with EY 2 < ∞, and let m(x) =
E(Y |X = x) be the corresponding nonlinear regression function. Let μ be the
distribution of X. It is well-known that regression function R minimizes L2 error:

E|m(X) − Y |2 = min
f :Rd→R

E|f(X) − Y |2.

Our aim is to estimate m from the i.i.d. observations of random vector (X,Y )

Dn = {(X1, Y1), . . . , (Xn, Yn)}
using RBF network (1). We train the network using so-called empirical risk
minimization by choosing its parameters that minimize the empirical L2 risk

1
n

n∑

j=1

|f(Xj) − Yj |2 (4)

on the training data Dn, that is we choose RBF network mn in the class

Fn = {fk = fθ : θ ∈ Θn} =

{
k∑

i=1

wiφ (||x − ci||Ai
) :

kn∑

i=0

|wi| ≤ bn

}
(5)

where
Θn = {θ = (w1, . . . , wkn

, c1, . . . , ckn
, A1, . . . , Akn

)} .

so that

1
n

n∑

j=1

|mn(Xj) − Yj |2 = min
f∈Fn

1
n

n∑

j=1

|fθ(Xj) − Yj |2. (6)

We measure the performance of the RBF network estimates by the squared error

E
[|mn(X) − m(X)|2] = E

[∫
|mn(x) − m(x)|2μ(dx)

]
.
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This approach has been investigated among others by Zeger and Lugosi [36] and
by Györfi et al. [21].

Initial analysis of convergence of mn was carried out in [29] using Vapnik-
Chervonenkis dimension concept introduced by Vapnik and Chervonenkis [46,47]
and covering numbers which are basic tools of computational learning theory
(CLT) and of machine learning. They were applied in nonparametric regression
learning by many researchers (for in-depth survey of the main results in CLT and
their applications in nonparametric regression refer to [21]). In this paper we use
machine learning tools of CLT to analyze generalization ability and convergence
of the RBF networks with regular kernels. In our analysis we are motivated by
the results of presented in [21,29].

3 RBF Classification Rules

Let (Y,X) be a pair of random variables taking values in the set {1, ...,M},
whose elements are called classes, and in Rd, respectively. The problem is to
classify X, i.e. to decide on Y . Let us define a posteriori class probabilities

pi(x) = P{Y = i|X = x}, i = 1, · · · ,M, x ∈ Rd.

The Bayes classification rule

Ψ∗(X) = i if pi(X) > pj(X), j < i, and pi(X) > pj(X), j > i

minimizes the probability of error. The Bayes risk L∗ is defined by

P{Ψ∗(X) �= Y } = inf
Ψ :Rd→{1,...,M}

P{Ψ(X) �= Y }.

The local Bayes risk is equal to P{Ψ∗(X) �= Y | X = x}. Observe that pi(x) =
E{I{Y =i} | X = x} may be viewed as a regression function of the indicator of
the event {Y = i}. Given the learning sequence Vn = {(Y1,X1), ..., (Yn,Xn)} of
independent observations of the pair (Y,X), we may learn pi(x) using RBF nets
mimicking (6), i.e.,

1
n

n∑

j=1

|p̂in(Xj) − I{Yj=i}|2 = min
f∈Fn

1
n

n∑

j=1

|fY (Xj) − I{Yj=i}|2. (7)

We propose plug-in RBF classifier with parameters learned by (7) resulting
in the classification rule Ψn which classifies every x ∈ Rd to any class maximizing
p̂in(x). The global performance of Ψn is measured by Ln = P{Ψn(X) �= θ | Vn}
and the local performance by Ln(x) = P{Ψn(x) �= θ | Vn}. A rule is said to
be weakly, strongly, or completely Bayes risk consistent (BRC) if Ln → L∗,
in probability, almost surely, or completely, respectively, as n → ∞, see, e.g.,
Wolverton and Wagner [51] and Greblicki [18].

In the next section we discuss convergence of the RBF regression estimate
mn as well as plug-in classification rule induced by it.
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4 Convergence

In this section we present convergence results for the RBF learning function
learning and classification algorithms.

4.1 Convergence Results

We have the following convergence results for the RBF network mn and classi-
fication rule Ψn with regular radial kernels.

Theorem 1. Let |Y | ≤ L < ∞ a.s.. Consider a family Fn of RBF networks
defined by (5), with kn ≥ 1, and let K be a regular radial kernel. If

kn, bn → ∞
and

knb4n log(knb2n)/n → 0

as n → ∞, then the RBF network mn minimizing the empirical L2 risk over
Fn = {fθ : θ ∈ Θn} is consistent, i.e.,

E
[|mn(X) − m(X)|2] → 0 as n → ∞ (8)

and consequently

E
[|Ln(X) − L∗(X)|2] → 0 as n → ∞ (9)

for all distributions of (X,Y ) with |Y | ≤ L < ∞.
Theorem 1 provides conditions for mean square convergence of the RBF

regression estimates mn and classifiers Ψn for all distributions of the data with
bounded Y . The latter condition is naturally satisfied in classification.

4.2 Outlines of Proofs

We will first introduce basic tools from CLT required in the analysis of conver-
gence of algorithms mn and Ψn discussed in this paper, see [21].

We will start with the definition of the ε − cover and the covering numbers.

Definition 1. Let ε > 0 and let G be a set of functions Rd → R. Every finite
collection of functions g1, . . . , gN : Rd → R with the property that for every
g ∈ G there is a j = j(g) ∈ {1, . . . , N} such that

‖g − gj‖∞ := sup
z

|g(z) − gj(z)| < ε

is called an ε-cover of G with respect to ‖ · ‖∞.

Definition 2. Let ε > 0 and let G be a set of functions Rd → R. Let
N (ε,G, ‖ · ‖∞) be the size of the smallest ε-cover of G w.r.t. ‖ · ‖∞. Take
N (ε,G, ‖ · ‖∞) = ∞ if no finite ε-cover exists. Then N (ε,G, ‖ · ‖∞) is called
an ε-covering number of G w.r.t. ‖ · ‖∞ and will be abbreviated to N∞(ε,G).
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Next we define the VC dimension. We begin with the shatter coefficient.

Definition 3. Let A be a class of subsets of Rd and let n ∈ N .
(a) For z1, . . . , zn ∈ Rd define

s (A, {z1, . . . , zn}) = |{A ∩ {z1, . . . , zn} : A ∈ A}| ,
that is, s(A, {z1, . . . , zn}) is the number of different subsets of {z1, . . . , zn} of the
form A ∩ {z1, . . . , zn}, A ∈ A.
(b) Let G be a subset of Rd of size n. One says that A shatters G if s(A, G) =
2n, i.e., if each subset of G can be represented in the form A∩G for some A ∈ A.
(c) The nth shatter coefficient of A is

S(A, n) = max
{z1,...,zn}⊆Rd

s (A, {z1, . . . , zn}) .

That is, the shatter coefficient is the maximal number of different subsets of n
points that can be picked out by sets from A.

We can now define the VC dimension.

Definition 4. Let A be a class of subsets of Rd with A �= ∅. The VC dimen-
sion (or Vapnik–Chervonenkis dimension) VA of A is defined by

VA = sup {n ∈ N : S(A, n) = 2n} ,

i.e., the VC dimension VA is the largest integer n such that there exists a set of
n points in Rd which can be shattered by A.

Convergence of mn also implies convergence of Ψn thanks to plug-in scheme and
therefore we will only discuss convergence of mn. To show convergence of (8) it
is sufficient to show for bounded Y that

inf
f∈Fn

∫
|f(x) − m(x)|2μ(dx) → 0 (n → ∞) (10)

and

E

{
sup

f∈Fn

∣∣∣∣∣
1
n

n∑

i=1

|f(Xi) − Yi|2 − E{|f(X) − Y |2}
∣∣∣∣∣

}
→ 0 (n → ∞). (11)

Approximation error consistency (10) follows from the Lemma 1 below (stated
without proof), which implies that

⋃∞
k=1 Fk is dense in L2(μ) for any probability

measure μ on Rd and for RBF networks with regular radial kernels [29]. It is
sufficient to restrict the class RBF nets to a subset of the family Fn of RBF
networks by constraining the receptive field matrices Ai to be diagonal with the
equal elements, i.e., Ai = h−2

i I. Consequently Fn becomes

fθ(x) =
k∑

i=1

wiK

(∥∥∥∥
x − ci

hi

∥∥∥∥
2
)

+ w0, (12)

where θ = (w0, . . . , wk, c1, . . . , ck, h1, . . . , hk) is the vector of parameters,
w0, . . . , wk ∈ R, h1, . . . , hk ∈ R, and c1, . . . , ck ∈ Rd.
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Lemma 1. Assume that K is a regular radial kernel. Let μ be an arbitrary
probability measure on Rd. Then the RBF networks given by (12) are dense in
L2(μ). In particular, if m ∈ L2(μ), then, for any ε > 0, there exist parameters
θ = (w0, . . . , wk, c1, . . . , ck, h1, . . . , hk) such that

∫

Rd

|fθ(x) − m(x)|2μ(dx) < ε. (13)

In the next lemma we consider convergence of estimation error (11).

Lemma 2. Assume |Y | ≤ L < ∞ a.s. Consider a family of RBF networks
defined by (5), with k = kn ≥ 1. Assume that K is a regular radial kernel. If

kn, bn → ∞
and

knb4n log(knb2n)/n → 0

as n → ∞, then

E

{
sup

f∈Fn

∣∣∣∣∣
1
n

n∑

i=1

|f(Xi) − Yi|2 − E{|f(X) − Y |2}
∣∣∣∣∣

}
→ 0 (n → ∞)

for all distributions of (X,Y ) with Y bounded.

Outline of Proof. Let K be bounded by k∗. Define the family of functions

Hn = {h : Rd+1 → R : h(x, y) = (f(x) − TLy)2

((x, y) ∈ Rd+1) for some f ∈ Fn}, (14)

where TL is the usual truncation operator. Thus each member of Hn maps Rd+1

into R. Hence

sup
f∈Fn

∣∣∣∣∣∣
1
n

n∑

j=1

|f(Xj) − Yj |2 − E|f(X) − Y |2
∣∣∣∣∣∣

= sup
h∈Hn

∣∣∣∣∣
1
n

n∑

i=1

h(Xi, Yi) − Eh(X,Y )

∣∣∣∣∣ ,

and for all h ∈ Hn we have |h(x, y)| ≤ 4b2nk∗2 for all (x, y) ∈ Rd × R. Using
Pollard’s inequality [41] we obtain

P

⎧
⎨

⎩ sup
f∈Fn

∣∣∣∣∣∣
1
n

n∑

j=1

|f(Xj) − Yj |2 − E|f(X) − Y |2
∣∣∣∣∣∣
> ε

⎫
⎬

⎭

= P

{
sup

h∈Hn

∣∣∣∣∣
1
n

n∑

i=1

h(Xi, Yi) − Eh(X,Y )

∣∣∣∣∣ > ε

}

≤ 8E {N1(ε/8,Hn, Zn
1 )} e−nε2/128(4k∗2b2n)

2
. (15)
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In the remainder of the proof we obtain an upper bound on the L1 covering
number N1(ε/8,Hn, zn

1 ), which will be independent of zn
1 . First we relate covering

numbers of class H to the covering numbers of class F . One can show, for n large
enough,

N1

( ε

8
,Hn, zn

1

)
≤ N1

(
ε

32k∗bn
,Fn, xn

1

)
.

Next we relate the covering numbers of the class of functions in Fn to covering
numbers of the class

G = {K (‖x − c‖A) : c ∈ Rd}.

One can show

N1

(
ε

32k∗bn
,Fn, xn

1

)

≤
(

128k∗2b2n(kn + 1)
ε

)k+1 (
N1

(
ε

64k∗b2n(kn + 1)
,G, xn

1

))k

. (16)

We can bound N1(ε/(64k∗b2n(kn +1)),G, xn
1 ) by relating covering numbers of

G to the VC dimension of graph sets of functions in G.
Since K is left continuous and monotone decreasing we have

K

(√
[x − c]T A[x − c]

)
≥ t if and only if [x − c]T A[x − c] ≤ ϕ2(t),

where ϕ(t) = max{y : K(y) ≥ t}. Equivalently, (x, t) must satisfy

xT Ax − xT (Ac + AT c) + cT Ac − ϕ2(t) ≤ 0.

Consider now the set of real functions on Rd+1 defined for any (x, s) ∈ Rd × R
by

gA,α,β,γ(x, s) = xT Ax + xT α + γ + βs,

where A ranges over all (d × d)-matrices, and α ∈ Rd, β, γ ∈ R are arbitrary. The
collection {gA,α,β,γ} is a (d2 + d + 2)-dimensional vector space of functions. Thus
the class of sets of the form {(x, s) : gA,α,β,γ(x, s) ≤ 0} has VC dimension at most
d2 + d + 2 or VG+ ≤ d2 + d + 2, where G+ is the class of all subgraphs of functions
in G. Using the results of van de Geer [48] we obtain for n large enough

N1

(
ε

32k∗bn
,Fn, xn

1

)
≤

(
C1b2nkn

ε

)C2kn

.

Putting all the results together we finally obtain for some constants C1, C2 the
following bound:

P

⎧
⎨

⎩ sup
f∈Fn

∣∣∣∣∣∣
1
n

n∑

j=1

|f(Xj) − Yj |2 − E|f(X) − Y |2
∣∣∣∣∣∣
> ε

⎫
⎬

⎭

≤ 8 exp
(

− n

(bn)4
[ε2/C3 − C2knb4n

n
log

C1b
2
nkn

ε
]
)

,

where C1, C2, and C3 are appropriate constants depending on k∗ and d. The
proof is complete.
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to Music Composition Based on MIDI
Datasets and Graphical Representation
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Abstract. In this paper we have presented a method for composing and
generating short musical phrases using a deep convolutional generative
adversarial network (DCGAN). We have used a dataset of classical and
jazz music MIDI recordings in order to train the network. Our approach
introduces translating the MIDI data into graphical images in a piano
roll format suitable for the DCGAN, using the RGB channels as addi-
tional information carriers for improved performance. We show that the
network has learned to generate images that are indistinguishable from
the input data and, when translated back to MIDI and played back,
include several musically interesting rhythmic and harmonic structures.
The results of the conducted experiments are described and discussed,
with conclusions for further work and a short comparison with selected
existing solutions.

Keywords: AI · Artificial intelligence · Neural networks · GAN ·
Music · MIDI

1 Introduction

Music is a vital part of our lives - it’s a deeply human phenomenon that has
emerged in some form in every civilization throughout history. Music as we know
and perceive it today has started developing in the late XVIII century, but its
beginnings reach out as far as to 3000 BC [6]. Music is constantly evolving and
one hand, we may consider its evolution only in terms of the skills and science
behind the brilliance of master instrumentalists, composers, singers, producers
and songwriters. However, the second obvious factor of the evolution of music is
deeply rooted in technological progress - from instruments such as synthesizers,
through digital audio workstations (DAW) up to CPU-consuming algorithms
that emulate vintage devices or help us build microtuning systems. The evolution
of music is also closely related to achievements such as the magnetic tape, the
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compact disc and improvements in amplification systems, just to name a few
examples.

Using artificial intelligence for generating music is interesting both in scien-
tific and artistic terms: due to the abstract character and overall complexity of
music, it is a very challenging information type for AI solutions. It also expands
our overall knowledge of how we perceive music and allows us to investigate the
details of our creative process. As an undiscovered and highly experimental form
of composition, it may be used to greatly stimulate the artist’s creativity and
offer new, unconventional forms of expression.

Besides of purely artistic applications, the need of such solutions is clearly
visible with the development of such environments like Google Magenta [9] and
attempts on music classification [1] and generation [3,7], as well as with the
expansion of the content creation market in modern media.

We propose to generate music using a graphic representation. We have cre-
ated a dataset of images by transforming a quantized MIDI recordings dataset
consisting of a classical music part and a jazz music part. The images were used
for training the neural network to generate similar ones, which after decoding
back to MIDI could be listened back to. Our expectation was therefore to train a
network to generate samples capturing the overall character, as well as a certain
level of harmonic and rhythmic content that could be found in the training data.

2 Datasets

2.1 Our Approach to Data Representation

MIDI files follow a protocol in which subsequent lines represent key and control
actions. It is stored in a binary form and can be converted into a text format [11].
Although MIDI data can be used in the text format, we propose to use a latent
graphical representation for the data. Our approach is to use an enhanced piano
roll graphic format [12]. Piano roll represents both the time structure of music
(rhythm), as well as the harmonic and melodic structure (pitches) in a compre-
hensible format. Our data processsing consists of:

– redundant information (comments etc.) is removed from the MIDI text,
– the dynamics of the samples are all set to maximum,
– all the samples are quantized to 30 ms (16th note in 120BPM tempo),
– redundant long pauses are removed.

The MIDI data is then compressed to 64× 64 images as shown on Fig. 1.
The scale of the piano has been reduced to 64 keys from the actual 88 by

scaling the far notes by an octave, as the loss of information from these notes does
not introduce particular modifications in the overall character of the samples.

The rhythm structure is also compressed by using the RGB channels as addi-
tional information carriers: each of the notes is coded using all of the subpixels
of the bitmap, therefore stretching the timeline three times. Rhythm values are
represented by lighting up the subpixels: this allows to represent 20 s of music
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Fig. 1. Example MIDI files coded as R, G, B images, used for training the network.

with each of the R, G, B, C, M, Y, K and W colored images, which is a sample
length better than in most available solutions.

In some of the used training files, we have encountered an error as a result
of incorrectly closed sustain pedal1 events. The images containing this error had
long white lines followed by an abrupt stop, as shown in Fig. 2. We have decided
not to remove these images, but rather to automatically shut the sustain pedal
after 3 s (a time long enough for most of the actual situations where a piano
player would use the pedal in the considered music examples). This additional
processing stage also improved the rhythmic clarity of some of the data, while
not introducing significant changes to the overall musical character of the data.

Fig. 2. Example of the error found in some data.

2.2 Qualities of Selected Datasets

Due to a general lack of usable data in the piano roll format, we have decided to
transform the MAESTRO MIDI dataset [5] into piano roll images. MAESTRO
1 While the sustain pedal is pressed, the notes of the piano sustain after keys are

released by the pianist.
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consists of 172 h of virtuoso solo piano classical music in MIDI and WAV format.
The files were collected from recordings of different piano players from a piano
competition in Minneapolis, USA. We have also used an over 20 h MIDI dataset
of jazz pianist Doug McKenzie’s recordings [2]. Table 1 shows a brief comparison
of the qualities and quantities of the datasets.

Table 1. Features of the samples in the used data sets.

Feature MAESTRO MIDI
(classical music)

Doug McKenzie dataset
(jazz piano)

Number of samples 25k images (ca. 172 h) 2,9k images (ca. 20 h)

Overall level of musical
technical difficulty

High High

Overall rhythmic
structure

Presence of many
non-repetive phrases with
fluent tempo changes
typical for classical music

Varying, improvised rhythmic
structures, presence of triplet
phrasing in a swing context

Harmonic structure Ordered, often very
typical for the rules of
classical music

Rich, includes more complex
harmonies typical for jazz
music (some of which are
improvised and some are
well-known, typical jazz
chord progressions)

Dynamic structure Full range of dynamic
(from very soft to very
loud)

Full range of dynamic

Instruments Solo piano Mostly solo piano, some files
with double bass and drums

3 Method and Summary of Our Approach

We have used a DCGAN implementation using PyTorch with the model struc-
ture as described in [4]. All experiments were performed using a Nvidia GPU
with CUDA architecture. DCGAN contains two concurring convolutional net-
works: the generator, which is trying to create fake images similar to real ones,
to fool the discriminator, which has to distinguish the training images from the
generated images, as shown on Fig. 3. Both of them have a CNN [13] structure to
analyze and extract features from 2D matrices - the generator and discriminator
may be seen as where deep learning occurs.

All experiments were conducted used the training images that we have cre-
ated from our MIDI datasets (as described in Table 1).

Upon performing qualitative experiments with the environment proposed
above, we have also decided to perform additional experiments with an expanded
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Real Data

Fake 
image

DISCRIMINATOR

GENERATOR

True

Latent 
Random 
Variable

Sample 
image

False

Fig. 3. Structure of the DCGAN.

dynamic range. In our main experiment, we have used flat dynamics set at the
maximum value - the full dynamic range experiment was conducted in order to
investigate how the dynamic spectrum affects the training process.

4 Results

4.1 MAESTRO Dataset

In first experiment we have used generated images with binary dynamic range
(on or off) generated from MAESTRO database. We have trained the network
for 50 000 iterations, also trying whether an additional 20 000 iterations would
improve the results.

Figure 4 shows the flat dynamic results. At first glance we can’t distinguish
real images from the fake ones, as the included structures are very similar.
Figure 5 shows single sample result images both without and with full dynamics.
Figure 6 shows the loss functions for the two experiments.

Upon translation back to MIDI and listening through the generated material,
we have found the presence of the following musical composition elements:

– major and minor chords;
– typical voicings and classical music cadenza resolutions;
– 4th chords;
– pronounced bass lines and arpeggios;
– V-I chord progressions (dominant to tonic chord - one of the most important

chord progressions in music theory) or a tonic chord at the end of a phrase;

The generated music had mostly a quite chaotic rhythmic structure, but that
is due to the dynamic quantization and training using virtuoso performances,
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Fig. 4. Real images (left) and fake images (right) generated upon learning with the
MAESTRO dataset.

Fig. 5. Example result images with flat (left) and full (right) dynamic with the MAE-
STRO set.

often including very fast and difficult pieces. Some of the samples have a much
more pronounced and deliberate rhythmic structure, with clear phrases built out
of eight and sixteenth notes.

Unfortunately, no significant improvement was introduced in the results after
running 20 000 additional iterations, as much of the chaotic character remained
unchanged. The harmonic elements were also similar to the previous experiment.
The generator’s cost is oscillating around a certain value, while the discriminator
almost perfectly recognizes false images from real ones, as its loss function is close
to 0.

As we can see in Fig. 7, in the full dynamic experiment the discriminator cost
went up and generator cost fell down to zero ofter 25 000 iterations, which means
that the discriminator couldn’t tell any difference between fake and real images.
As suspected, the results were more chaotic both rhythmically and harmonically.
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Fig. 6. Loss function for (a) MAESTRO dataset (b) MAESTRO dataset with addi-
tional iterations.

Fig. 7. Cost function in the full dynamic experiment.
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4.2 Doug McKenzie MIDI Dataset

In this experiment we have tried to receive similar results as in first one, but using
a jazz music database. A 10 times smaller database allowed us to perform 120
000 iterations in approximately the same time as previous experiments. Figure 8
shows that after 100 000 iterations the generator cost went up, and discriminator
cost fell down to zero - we can observe a learning reversal. In Fig. 9 we can observe
difference between images generated before and after the drastic generator const
increase.

Fig. 8. Loss function with smaller database.

Fig. 9. Sample results obtained before (left) and after (right) learning reversal.

The results after the reversal were obviously a dense cluster of notes lacking
major musical sense, but listening back to the results of iterations directly pre-
ceding the learning reversal we have observed satisfying results, including the
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presence of complex altered chords typical for jazz and blues music and phrases
finished by these chords in addition to the classical music elements mentioned
above that can also be found in jazz music.

4.3 Result Summary

Generated images in most cases were indistinguishable at first glance for a human
(and in the experiment with full dynamic range even to discriminator). We are
able to generate 20 s phrases with 64× 64 images and 40 s phrases if dropping
the piano keyboard reduction (but also largely increasing the training time).
Training with virtuoso piano music resulted in syncopated and chaotic rhythm on
many samples, but also long harmonic phrases and chord progressions including
major, minor and 4th chords. Melodic and bass lines showed up several times
and so did arpeggios and even cadenzas with typical resolutions (like V-I and
II-V-I). Advanced jazz chords were also observed. The generated music does
not generally contain repeating phrases and loops (structural staples in many
genres like pop), but the phrases that we have generated are long and contain
many concentrated, cohesive, usable musical ideas. The ideas often span an even
number of bars, thus providing a great source of short loops for the composer to
choose from.

Existing solutions for a similar problem of generating music (such as Magenta,
DeepJazz [8] or Amper Music [10]) create music phrases that are much simpler
and shorter, with just basic harmony and certain pre-defined or overfitted solu-
tions. Most of them have a regular rhythm that is less chaotic than in our
approach, but music generated by our DCGAN contains advanced progression
with resolutions which is our main advantage over other similar projects. Other
approaches (based on genetic algorithms, Markov models etc.) often have a much
narrower scope of operation and focus closely on certain aspects of the generated
music (creating short melodies, operating within certain scales or keys, matching
a melody to given harmony etc.), while the harmonic richness of phrases gener-
ated in our approach serves as a mean of enhancing and inspiring the composer’s
creativity.

5 Conclusions and Further Work

In this paper we have proposed a method for composing short musical phrases
using a deep convolutional generative-adversarial network and a graphic repre-
sentation of MIDI input data. The samples generated by our solution are longer
and have a richer harmonic structure when compared to results generated by
many of the existing solutions. We have selected a set of musical qualitative
features (harmony, rhythmic structure etc.) that our network has learned to
reproduce. We have also performed additional experiments in order to deter-
mine parameters allowing for overall improvement of the quality of the generated
samples.
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The obtained results allow us to conclude that a GAN and a graphical piano
roll data representation for, however unorthodox, is a good choice for further
experiments with generating music. In our nearest work we would like to focus on
generating long, cohesive musical ideas and genre-specific harmonic and rhythmic
content.
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Abstract. In this paper, we introduce a novel unsupervised deep learn-
ing (DL) method for multi-focus image fusion. Existing multi-focus image
fusion (MFIF) methods based on DL treat MFIF as a classification prob-
lem with a massive amount of reference images to train networks. Instead,
we proposed an end-to-end unsupervised DL model to fuse multi-focus
color images without reference ground truth images. As compared to con-
ventional CNN our proposed model only consists of convolutional layers
to achieve a promising performance. In our proposed network, all layers
in the feature extraction networks are connected to each other in a feed-
forward way and aim to extract more useful common low-level features
from multi-focus image pair. Instead of using conventional loss functions
our model utilizes image structure similarity (SSIM) to calculate loss in
the reconstruction process. Our proposed model can process variable size
images during testing and validation. Experimental results on various
test images validate that our proposed method achieves state-of-the-art
performance in both subjective and objective evaluation metrics.

Keywords: Multi-focus image fusion · Convolutional neural network ·
Unsupervised learning · Structure similarity

1 Introduction

Image fusion integrates information of two or more images into a single one
with more information and better visual perception. In static image fusion, we
assume source images to be aligned and have no difference of depth or viewpoint
of the scenes. It is very challenging for photographers to capture an image with
all objects clearly focused. Because of the limited depth of focus in the optical
lenses of cameras, it becomes difficult to capture an appropriate image which
contains all portion of the site with various depth-of-field (DOF). Hence, some
c© Springer Nature Switzerland AG 2019
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areas of the image become blurred. Fusion of different DOF images with different
focus levels of the same scene into one all-in-focus image is called Multi-Focus
Image Fusion (MFIF) [18]. The fused image contains more information for visual
perception and highly desirable in various image processing and computer vision
tasks such as edge detection and segmentation.

In recent years Deep Learning (DL) has got much attention and gained
many advancements in computer vision tasks, for instance classification [10],
object recognition [7], segmentation [16], image super-resolution [4] and so on.
Recently, in image fusion field some DL-based image fusion approaches have been
introduced for digital photography [5,14,20], multi-modality imaging [13,15,27]
and remote sensing imaging applications [2,17,26]. Among most of them, for
Multi-focus Fusion Convolutional Neural Network (CNN) is used to fuse images.
CNN-based methods divide input images into small patches and focus measure
is learned for each small patch and fed them to the network. Mostly CNN-based
models for MFIF are considered as a classification task. Recently Liu et al. [14]
presented a CNN-based method to fuse multi-focus image pairs. Their method
learns a classifier to classify between focused and defocused images to get focus
maps, binary segmented map, and final decision map. Then in the last step,
the image is fused by the pixel-wise weighted-average approach. Following Liu
et al. [14], Tang et al. [20] introduced an improved method called pixel CNN
for classification of focused and the defocused pixel in images. Du et al. [5]
presented DL-based method for MFIF which uses multi-scale input and their
network architecture follows the same model as used in [14]. DL-based models
which make use of supervised learning require a massive amount of training data
with labels. Authors [5,14,20] simulate blur on image patches by using popu-
lar image classification datasets to create training samples. However, a common
limitation of supervised learning methods is the unavailability of labelled images
for image fusion. Furthermore, these methods only utilize the result calculated
by the last layers which tend to lose useful information obtained by the mid-
dle layers. Recently Prabhakar et al. [19] proposed a DL-based unsupervised
architecture for multi-exposure fusion. Although their method achieves better
performance for exposure fusion but their architecture is very simple and only
performs better for multi-exposure images.

To address these issues, we proposed an unsupervised deep learning architec-
ture for fusing multi-focus images. Our network consists of three subnetworks;
Feature extraction, fusion and reconstruction networks. Feature extraction net-
work is designed to extract features of each input image. All these features
obtained by feature extraction networks are fused in the fusion process. Finally,
fused image is reconstructed by the reconstruction network. The whole network is
trained end-to-end by utilizing structural similarity as no-reference image quality
loss function. To the best of our knowledge, this is the first end-to-end unsuper-
vised method for fusing color multi-focus image pairs.

The remainder of this paper is organized in three sections. In Sect. 2, we
present the proposed network in detail. In Sect. 3, we discuss details of experi-
ments. Section 4 concludes the paper.
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Fig. 1. Schematic diagram of the proposed unsupervised CNN model.

2 Proposed Method

In this section proposed dense multi-focus fusion network is explained in detail.
Detailed schematic diagram of the proposed method is illustrated in Fig. 1. From
the figure it can be seen that our proposed convolutional network consists of three
sub-networks: the feature extraction network, fusion layer and reconstruction
network. First, a pair of RGB input images of any size to be fused are fed
to feature extraction network separately to output feature maps, then in the
second component, the feature maps of input images will merge together to
form fused feature maps. Finally, in the last step fused feature maps will go
through reconstruction subnetwork to output the final fused image.

2.1 Network Design

We proposed an unsupervised deep learning model to fuse multi-focus images.
The network architecture is illustrated in Fig. 2.

Feature Extraction Network. The network is designed for color images with
three channels. Pair of source images from the multi-focus pair, I1 and I2 of size
h × w × 3 are the inputs to feature extraction networks. Each network consists
of a stack of four convolutional layers followed by a bias and rectification layers
without any pooling. Images are convolved with 3× 3 filters and ReLU activation
before passing through the network. We did not use pooling in our network
because pooling eliminates some essential image details which are useful later for
image reconstruction. All convolutional layers are connected to each other with
direct connections among two layers [9]. Both feature extraction networks have
tied weights, advantages of tied weights is to reduces the chances of overfitting
of the model and preserve as much features as possible. The network is trained
in such a way that both feature extraction networks will learn the same features
for source images.
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Fig. 2. The detailed network architecture of the proposed method.

Fusion. The feature maps obtained by feature extraction networks are com-
bined in the fusion layer and fused by concatenation into fused feature maps.
Suppose fm

1 and fm
2 represents the feature maps obtained by feature extraction

network from input images I1 and I2 respectively, where m = {1, 2, . . . n}, n = 64
represents number of feature maps. Fm denotes the fused feature maps. Concate-
nation can be formulated by Eq. (1).

Fm = concat(fm
1 (x, y), fm

2 (x, y)) (1)

Reconstruction Network. The aim of this network is to reconstruct desire
fused image precisely without losing any details. As illustrated in Fig. 1 it takes
concatenated feature maps as input and consists of five convolutional layers out
of which first four includes ReLU activation functions. The final output of the
RGB fused all-in-focus image is produced by the last convolutional layer with
sigmoid activation function.

2.2 Implementation Details

In our proposed method all convolutional layers have 3 × 3 filters with ReLU
activations except for the last layer of reconstruction network where sigmoid is
applied. Before applying convolution operation, the parameters of convolutional
layers are initialized randomly. We pad zeros around boundaries which helps
to preserves the size of feature maps identical to the source images. The final
convolutional layer of reconstruction network has 3 output channels because
of RGB fused output image. For network training, we use open source image
dataset MS COCO [12] as a training dataset, which contains more than 80,000
RGB images. All images are resized to 200 × 200 for training, the learning rate
is set to 10−3.

2.3 Loss Function

For multi-focus image fusion all-in-focus reference images are not available there-
fore, it is essential to choose proper loss function for the network. Two straight-
forward and common image quality metrics used widely in many applications
are the mean square error and the peak signal-to-noise ratio. These metrics are
generally used to compute loss between input and reference images. However,
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they do not match with the human visual perception because the signal error
is not same to the degradation of visual quality in the human visual system
(HVS). So instead, we use structure similarity [21], a popular image quality
measure to compute the difference between images. The image structure simi-
larity (SSIM) aims to extract structural information of different sliding windows
to the corresponding position of the image being compared. The window moves
across the image pixel by pixel and SSIM is calculated within the local window.
SSIM separates highly structured independent parameters such as luminance,
contrast, and structure. We aim to generate a fused image which is same as
desired all-in-focus image. Let r = {ri|i = 1, 2, 3, . . . , n} be the reference image
and t = {ti|i = 1, 2, 3, . . . , n} be the test image and SSIM [21] can be defined as

SSIM(r, t|a) =
(2ārāt + C1) (2σarat

+ C2)
(ā2

r + ā2
t + C1) (σ2

ar
+ σ2

at
C2)

, (2)

where C1 and C2 are small constants, ar is a sliding window in reference image
r, ār is the mean of ar, σ2

ar
and σarat

are the variance and covariance of ar and
at respectively. Value of SSIM(r, t|a) ∈ [−1, 1] will be between –1 and 1 and
represents the similarity between ar and at. As this value approach towards 1
the more similarity exists between images and 1 state that ar and at are same
in structure. To compute SSIM in local window of the image, from Eq. (3) we
calculate first SSIM(r1, t̂|a) and SSIM(r2, t̂|a). In our method the constants
C1 and C2 are set to 0.0001 and 0.0009 respectively. Sliding window size is set as
11 × 11, it moves pixel by pixel in an image from top-left to bottom-right. SSIM
loss function [25] on an image patch p can be defined as

LSSIM (p) =
1
n

∑
p̂∈p

1 − SSIM (p̂) , (3)

where n represents the total number of sliding windows, due to convolutional
nature of network the above equation can be written as

LSSIM (p) = 1 − SSIM (p̄) , (4)

where p̄ is the center pixel of patch p and the loss is back propagated to train
the network. Pixel loss is calculated by

Lp̄ = ||G − I||2, (5)

where G is desired generated all-in-focus image and I is input image. The final
Loss is calculated by the combination of structural similarity loss Eq. (5) and
pixel loss Eq. (6) given by

L = LSSIM (p) + Lp̄ (6)

3 Experimental Results

To validate the efficiency of the proposed model, in this section we demon-
strate the comparison on the visual results of our proposed method with some
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state-of-art multi-focus image fusion (MFIF) methods on benchmark datasets.
We select five state-of-the-art MFIF methods to compare with our proposed
method. These methods include guided filtering (GF) [11], dense SIFT (DSIFT)
[23], boundary finding (BF) [24], convolutional neural network (CNN) [14] and
pixel convolutional neural network (p-CNN) [20]. We perform experiments on
20 pair of multi-focus images from an open source available dataset “Lytro” [1].
Objective evaluation in image fusion plays a significant part and it is a difficult
task since the ideal fused image is not available. Several quantitative evalua-
tion metrics have been proposed for evaluating MFIF performance. However,
there is no ideal standard which can fully summarize the best one. We evalu-
ate our results using four metrics which includes normalized mutual information
QMI [8], image structural similarity QIS [22], human perception QHP [3] and
visual information fidelity QV IF [6]. QMI measures about the amount of mutual
information between source and fused images, QIS is structural similarity-based
metric which measure the structural information of source images preservation
level. QHP is image quality metric based on human perception that make use
of major features in HVS model and QV IF measures about visual information
fidelity. For all metrics the higher the values the better fusion result.

Fig. 3. The “Model Girl” source image pairs and its fused output images obtained
from various state-of-the-art fusion methods and our proposed method.

3.1 Comparison with Other Methods

For better analysis and effectiveness, we compare the performances of various
MFIF methods to validate our proposed method. For this, mainly we provide
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Fig. 4. “Baby” source image pairs with their fused results obtained from various fusion
methods.

Fig. 5. “Painted Egg” source image pairs with their fused results obtained from various
fusion methods.

three examples here to exhibit the difference among selected MFIF methods.
Figure 3 illustrates the fusion results of the “Model girl” images by other methods
and proposed method as well. Figure 3(a) and (b) are the source images, whereas,
subfigures (c)–(g) are the output fused images from methods GF, DSIFT, BF,
CNN, p-CNN and our proposed method respectively. It is clear that our proposed
method has no obvious artifacts in the final results, whereas, fused images from
other methods contain some sort of artifacts around edges. Figure 4 compares
the result of our proposed method on “Baby” image set. Figure 4(a) and (b) are
the source images and the rest of subfigures are the fused results from the other
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methods mentioned above. From the figure it can be noticed that fused result
by our proposed model is the best among others. In the last example, detailed
results of “Painted Egg” fused images are shown in Fig. 5. Results clearly shows
that other models contain blur artifacts around edges and the result obtained
by our proposed method is free from such artifacts. To verify more effectiveness
our proposed methods some more fused results are displayed in Fig. 6.

The average scores obtained by our method and compared with other dif-
ferent fusion methods for the fusion of “Model girl”, “child” and “painted egg”
image sets are listed in Table 1. Highest values are shown in bold to validate the
efficiency of our proposed model. Results shows that our method achieves better
performance in most cases by using four evaluation metrics.

Table 1. The objective assessment of various fusion methods for the fusion of three
pairs of validation mutli-focus source images.

Methods QMI QIS QHP QV IF

GF 1.1474 0.9143 0.7613 0.9467

DSIFT 1.1687 0.9291 0.7637 0.9513

BF 1.1715 0.9472 0.7685 0.9576

CNN 1.1748 0.9653 0.7829 0.9598

p-CNN 1.1739 0.9661 0.7857 0.9587

Proposed 1.1724 0.9694 0.7869 0.9598

Fig. 6. Some more fused images results obtained by our proposed method.

3.2 Application to Multi-exposure Fusion

Here we will examine the possibility of using our proposed method to other
applications of image fusion such as multi-exposure fusion (MEF). When a pho-
tograph is captured by a camera which contains shades or tinted regions, it
becomes challenging to fix the suitable exposure. In different lighting conditions
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Fig. 7. Fusion result of images with different exposure using proposed method

sometimes, the image becomes too bright or too dark. Fusion of different expo-
sure images into a single one with suitable exposure is known as multi-exposure
fusion. To exploit the generalizability of CNN, without fine tuning the network
we use it to fuse multi-exposure images. Figure 7 shows that our proposed model
successfully fuse images with variable exposure. This indicates that our proposed
CNN model is generic and could be applied in MEF.

4 Conclusion

In this paper, we introduced an end-to-end unsupervised model for fusing multi-
focus images. The network learns to predict the fused image from an input pair
of different focus images. Model directly predicts the fused image using an unsu-
pervised deep learning model which uses the structural similarity (SSIM), no
reference image quality metric to compute network training loss. The proposed
model first extracts common low-level features from a pair of source images.
Then extracted features from both images are fused together to generate a rep-
resentation or feature map. Finally, this fused representation is passed through
reconstruction network to obtain an all-in-focus fused image. We train our model
on an open source dataset image and perform extensive experiments as well as
quantitative and qualitative evaluations to validate the efficiency of our proposed
method. Our proposed CNN model could be used in other digital photography
applications of image fusion such as multi-exposure fusion. In the future, we aim
to make our model more robust and generic which can fuse over two images.
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Abstract. This paper describes a method of pixel-level segmentation
applied to parasite detection. Parasite diseases in most cases are detected
by microscopic samples examination or by ELISA blood tests. The micro-
scopic methods are less invasive and often used in veterinary, but they
need more time to prepare and visually evaluate samples. Diagnosti-
cians search the entire sample to find parasite eggs and to classify their
species. Depending on the species of the diagnosed animal, the samples
can contain various types of pollution, e.g. fragments of plants. Most of
the objects in the sample by their transparency look similar, and some of
parasites eggs might be unintentionally omitted. The presented method
based on fully convolutional network allows processing the entire space
of the sample and assigning a class to each pixel of the image. Our model
was trained to classify parasite eggs and distinguish them from adjacent
or overlapped pollution.

Keywords: CNN · FCN · Spatial segmentation ·
Microscopic sample segmentation

1 Introduction

Methods based on machine learning become quite common in image processing
applications. They can more and more accurately interpret images. Initially, the
methods were focused on the classification of entire images [7]. The next stage
were methods that were able to recognise, localise and mark by bounding box
objects in the image content [3,15]. Along with object detection some meth-
ods were proposed for image segmentation (class semantic segmentation) [9,12]
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that later evolved into object segmentation (class instance segmentation) [4,14].
Now, these methods evolved to panoptic segmentation [6] that is a combination
of semantic segmentation and an additional object segmentation to assign the
appropriate class to each pixel of the image.

Most of these general purpose models are trained on large data sets such as
COCO [8] or ImageNet [16] and can become a framework to build another model
to resolve a specific problem [1,2,5,13]. This approach reduces the time needed
to train the entire new model from scratch. In microscopic image analysis, the
most popular application of segmentation methods in medicine is biopsy analysis
in cancer diagnosis.

The rest of this paper is organized as follows. Section 2 describes some prob-
lems arising during parasite microscopic samples analysis. Section 3 presents the
way of creating dataset, convolutional neural network used in the paper and data
augmentation. The results of experiments are shown in Sect. 4.

2 Problem Description

Many existing datasets for microscopy parasite diagnosis are made of ideal sam-
ples of egg objects, centred, not covered and not adjoined to other objects. These
samples are easily searchable by the image content, and it is easy to train a clas-
sifier on them. In a real sample, objects can be covered by any kind of pollution
that are remains of undigested food. This objects had a variety of shapes and
internal pattern structures. In most cases, more polluted samples are taken from
herbivorous species. The internal pattern of most of this additional content is
similar to parasite eggs, and we only distinguish it by looking from a further
perspective, searching for characteristic shapes. The internal pattern of parasite
eggs can also be different depending on an embryo development (Fig. 1) that is
influenced by the state of a parasitological disease, and it changes with the time
between a sample taken from a patient to the preparation before microscopic
analysis. A most stable unchanging feature of eggs is their shell and shape that
is characteristic for many parasites and allows to classify them properly.

Fig. 1. Examples of eggs of the same species in a different state of embryo development.

The samples can also contain eggs of different than internal parasite species
such as insects what may be confusing. They usually have a larger dimension,
so the precise information of the magnification rate is also important.
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Another but the less significant problem is sample backlight and white bal-
ance. High transparency of samples makes them highly influenced by a backlight
of the microscope. Acquisition of the same sample on different microscopes pro-
vides images in a different colour, contrast and brightness that may affect the
classifier and in our solution we take this into consideration during classifier
training. The examined samples in microscopic magnification are a consider-
able space to search. Diagnosticians improve the analysis by dynamic changing
the magnification to localise objects faster, but increasing the contamination in
the sample makes this process harder. Some parasite eggs may be unrecognised;
especially in the case when a disease is still undeveloped, and the presence of eggs
is rare. Earlier we tackled the problem of detecting parasite eggs by hand-made
descriptors [10,11].

3 Method Description

Our goal in the presented solution is to train a neural network to efficiently
detect and classify parasite egg species especially when they are overlapped or
appear together with other objects. To solve the problem, we consider using
Fully Convolutional Network (FCN) [9] to pixel-level image classification. The
most attention is given to the preparation of the appropriate dataset and to
developing a method of the model training.

3.1 Parasite Dataset

To create a robust classifier, at first we create data sets that include many
aspects of real microscopic samples. Our training set has seven classes with four
classes (Fig. 2) of parasite species: whipworms, visceral worm, pinworm, hook-
worm and three classes of other content: background, air bubble and pollution.
We add additional classes for better isolation between parasites and content. In
our assumption, the estimator will learn to recognise the differences between pat-
terns more accurately, and we reduce the problem of segmentation expanded on
different adjacent objects. Our dataset contains 465 images with labelled masks
describing segmentation. Segmentation masks cover the entire image and assign
a single class for each pixel of the image. Classes are encoded in the masks by
colour starting from the default black class segment that is assigned to the back-
ground and fill the entire free space of the image. Class segmentation masks are
handcrafted by a human that colourised objects by appropriate colour assigned
to the class. Each of the parasite eggs was marked with some surplus (Fig. 3) to
better preserve the information of egg shells and to speed up the dataset prepa-
ration. Additional minor objects such as bubbles and pollution were selectively
marked only for contrast learning.

3.2 Fully Convolutional Network Model

Our FCN model uses four blocks of pooling and convolution layers imported from
the VGG16 model that transform the input to a multidimensional feature map
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Fig. 2. Parasite eggs images, respectively: visceral worm, hookworm, whipworms and
pinworm.

Fig. 3. Training dataset sample. The first column is the training image, the second is
a pixel labelled segmentation mask, and the last is the intersection between the image
and the mask.

representation and then use three blocks of upsampling and convolution layers
to construct segmentation masks (Fig. 4). Encoding layers are a fragment of
VGG16 [17] model structure but without the pre-trained weights of the original
model. The presented model does not have a fully connected layer that might
mix spatial information from the entire image space. The fully convolutional
network more effectively preserve local feature information from the input to
the output of the model. It is especially important in a segmentation application
where pixel classification is performed taking into account its neighbourhood.

3.3 Data Augmentation

The fact that our dataset is small caused that the direct use for training resulted
in overfitting the model. Thus, we add the augmentation process to generate
additional bath samples for training. We used Keras fit generator that provides
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Fig. 4. Fully convolutional network model used in the paper.

sets of randomly changed images from the original dataset. In our solution, we
need to generate sets of images that will gradually cover the entire model input
by trained classes. For this purpose, our generator performs random transla-
tion, rotation, and flip on the dataset images. We do not add noise. Instead, we
have images with different microscope focus setting. The generator also does not
perform any image scaling, as that is unnecessary because microscopic samples
are always examined in a constant perspective with similar magnification. This
process provides randomly distributed classes on the model input, effectively
augmenting the training dataset and preventing overfitting.

4 Experimental Results

For the experimental purposes, we implemented our model in Python language
with the Keras library using TensorFlows 1.3 endpoint. We performed exper-
iments on a single Nvidia GTX 1080 GPU that significantly accelerated the
learning process compared to earlier CPU tests.

In the beginning, we trained the model without the dataset augmentation
described in Sect. 3.3. We divided the set of 465 samples image into batches of
10 samples and set 50 epochs to learn. After the training, the model indicated
that is overfitted. It was particularly evident by predicted shapes of masks that
irregularly marked the contours of the objects in a similar way as it is in the
training segmentation images (Fig. 5).

To overcome this problem, we add fit generator that on-demand generates
randomly changed training subset. The generator provides a unique batch of
training data for each epoch during classifier learning. With this dataset augmen-
tation, we trained the model for 200 epochs. Finally, the trained model obtained
better results in segmentation that were close to parasites shells (Fig. 7). The
obtained results became more precise than the ground truth parasite egg seg-
mentation, and this fact decreased the IOU metrics to about 0.5 of predicted
segmentation. Our model properly detects any of the learned species of parasites



Microscopic Sample Segmentation by Fully Convolutional Network 169

Fig. 5. Segmentation masks and the intersection with the input image. The second
column presents ground truth segmentation from the training set, the second column
shows segmentation before augmentation, and the fourth column presents the final
segmentation and classification results.

Fig. 6. Classification and segmentation results in comparison to the ground truth seg-
mentation masks. In each example, the upper images present the ground truth masks
with intersection image. The lower images present resulting predicted mask.

eggs (Fig. 6). In the case of close adjoined objects, the method might deform pre-
dicted segmentation but in our evaluation, it always properly marked the species.
In the case of other classes like air bubble or pollution, some of these objects
are classified as the background because in the training set most of them are
labelled by default to the background class (black).
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Fig. 7. Experimental results. Examples of the computed segmentation masks from the
test dataset.

5 Conclusion

We presented a fully convolutional neural network for parasite microscopic sam-
ple segmentation and classification. In conclusion to experiments, the FCN model
is an effective tool to microscopic sample segmentation. Comparing to mod-
els that contain fully connected layers, the presented FCN fits properly to the
mutual spatial distribution of the pattern. This is especially important in the
case of microscopic image prediction where pattern fragments are very simi-
lar and transparent. Only combining nearby local pattern of the image allows
classifying the object correctly.
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Abstract. In this paper, a model of spiking neural networks is studied.
Such networks are commonly called as the third generation of artificial
neural networks. The main difference between them and previous gener-
ation networks is that they are based on spiking neurons. This approach
leads us to the need of using specific ways of coding inputs and out-
puts as well as original methods of learning. The paper considers eval-
uation of such a network with a Fashion-MNIST dataset that contains
labeled images. The results of this experiment and its conclusion are also
described in the paper.

1 Introduction

Neural networks are widely used in the modern world (e.g. [9,11,13]). Most of
them are based on the second generation model of a neuron that uses various
activation functions. Spiking neural networks represent a class of artificial neural
networks where neurons communicate by so-called trains of spikes. This is very
similar to the behavior of real biological neurons so that it can be applied to
an unlimited class of problems (eg. [1,5]). Because of the simplicity of neuron
models used, such networks can be very simple introduced into modern low-
energy hardware like for example Loihi from Intel [4]. Spiking neural networks
can be applied to solve many problems that traditional neural networks solve
and also others, what can be found in [14]. One of such problem could be a
classification of images from a Fashion-MNIST dataset that is considered in a
further part of this paper.

2 Spiking Neuron Models

Spiking neurons, similarly to biological neurons, communicate by generating and
propagating pulses called spikes. Generally, all spiking neuron models share a
few properties [15]:
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– processing information from many inputs and producing a single spiking out-
put signal,

– a probability of generating a spike depends on excitatory and inhibitory
inputs,

– reaching a certain state of at least one dynamic variable leads to generate of
one or more spikes

2.1 Izhikevich Neuron Model

The basic mathematical model that can be used in spiking neural networks was
introduced by Izhikevich [10]:

v′ = 0.04v2 + 5v + 140 − u + I

u′ = a(bv − u)

and after-spike resetting:

if v ≥ 30mV , then

{
v ← c

u ← u + d

Here v is a neural membrane potential and u represents membrane recovery
variable. When the membrane potential reaches +30 mV, variables are reset.
Variable I represents currents injected by synapses. This model can reproduce
a pattern of spikes recorded from rat’s motor cortex. It needs to be noticed
that this model needs only 13 flops per neuron update and that makes it very
computation efficient [2].

2.2 Leaky Integrate Fire Neuron Model (LIF)

This kind of spiking neuron is very popular among researchers. Its dynamics is
described by the following formula:

C
du

dt
(t) = − 1

R
u(t) + (i0(t) +

∑
wjij(t))

Here u(t) is neural membrane potential, C is a membrane capacitance, R is an
input resistance, i0(t) is an external current driving the neural state, ij(t) is the
input current from j-th synaptic input and wj represents a strength of the j-th
synapse. The behavior of such neuron model is shown on the figure (Fig. 1) [15].

3 Methods of Encoding

One of the differences between a spiking neural network and a typical neural
network is a type of input that is provided to neurons. There are no numerical
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Fig. 1. Visualization of LIF neuron state while stimulating by input spikes.

data but spikes. Therefore, we have to provide methods that encode numerical
data into spikes in input and the same to interpret the output. There is a dis-
cussion between two main approaches to the problem of coding: rate coding and
temporal coding. It is being considered for example in [16]. The first is based on
the frequency of spikes incoming to a neuron. It characterizes tolerant to distur-
bances but low information density. The second one – temporal coding – enables
a higher level of information density. Simon Thorpe proved that human needs
only 150 ms to recognize animals in photographs. The conclusion was that the
first method could not be applied to the brain, so the first spikes contain most of
the information [17]. However, both methods are used by researchers depending
on the problem that they solve. In this paper, we use three methods of encoding
(Single spike coding, Bernoulli distributed coding and Poisson distributed cod-
ing). Single spike encoding means that a time of occurrence of single input spike
depends on an intensity of the input. If the input intensity is higher, a spike
occurs earlier. This method comes from temporal coding. The next method used
in this paper also is a temporal method and makes a dependency between an
intensity of the input and probability of spike occurrence based on Bernoulli
distribution. The last method is the typical rate coding method. Poisson dis-
tributed encoding combines the intensity of the input and frequency of spikes
over time.

4 Methods of Learning

Without learning algorithms, we cannot make use of any neural network. In such
algorithms, we modify the weights of connections between neurons. A similar sit-
uation exists in spiking neural networks. There are unsupervised and supervised
methods that are widely described in [6]. From the first group, we can use Long
Term Depression, Long Term Potentiation and Spike-Timing Dependent Plas-
ticity. In the case of supervised method researchers consider Spike-Based Super-
vised Hebbian Learning and methods based on gradient evaluation like in [8].
Kasiński and Ponulak in [12] proposed another supervised method called ReSuMe
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that was proved to be highly accurate in producing desired spike sequences in
response to a given input spike train. In this paper, we make extensive use of
the back-propagation algorithm in connection with gradient evaluation.

5 Experiments and Observations

5.1 Network Architecture

The network was made of the 784-node input layer and the 10-node output
layer. Connections between nodes were all-to-all (Fig. 2). Training of the network
was conducted by using an approximated stochastic gradient descent algorithm.
Predictions were calculated based on the activity of the output layer nodes.
During learning, every neuron from the output layer has been connected with one
class from a chosen dataset. The input layer was based on real-input nodes that
provided spike trains into the next layer. These spike trains were encoded using
single-spike encoding, Bernoulli distributed encoding and Poisson distributed
encoding. Time of spike occurrence or distribution of spikes was dependent on
the intensity of real values. An output layer was constructed either of (depending
on a phase of experiments) Leaky Integrate and Fire or Izhikevich neurons.

5.2 Fashion-MNIST Dataset

In our research, we have used the Fashion-MNIST dataset which is considered
to be a replacement for an MNIST dataset [19]. This dataset was introduced in
2017 by Zalando’s researchers. In order to create a set of data that would be
more challenging for neural network models than conventional MNIST and had
its advantages. It contains 70 000 unique gray-scale images in the size of 28× 28
pixels (Fig. 3). Images are labeled into 10 groups: t-shirt, trouser, pullover, dress,
coat, sandals, shirt, sneaker, bag, ankle boots. The training dataset contains 6
000 examples from each class. The testing dataset is built from 10 000 randomly
selected examples. Results obtained by authors of this dataset showed that typ-
ical SGD classifier (similar to classifier used in this paper) achieves about 81%
of classification accuracy. Best results were achieved by Support Vector Machine
and Gradient Boosting Classifier – 88–89% of test accuracy.

5.3 Learning Process and Results

Experiments, that we conducted, were performed by using a novel spiking neural
networks environment BindsNET [7]. Although its development is at a very early
stage, it is very powerful. This library is based on the PyTorch library and adds
features known from third-generation neural networks. One of its most helpful
advantages is flexibility and user-friendly interface. These features allowed us
to test a few different configurations without making everything from scratch.
Figures (Figs. 4, 5 and 6) show examples of a learning process. On the first
image, we can see spikes that are propagated into an output layer. The second
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Fig. 2. Architecture of spiking neural network being considered.

image presents spikes going from the output layer. The last image shows a weight
matrix in the network. The network was evaluated for each of the 500 samples
from the data set. Our goal was to investigate, how different parameters have an
impact on the accuracy of the network. We tried to use different types of neuron
models (LIF model and Izhikevich model) and input encoding types (single spike
coding, Bernoulli distributed coding and Poisson distributed coding). We were
also curious about what will change a different count of time steps of simula-
tion. In the beginning, we used 15 time steps. Then we changed it into 45 time
steps. The last test consisted of 100 time steps for every sample. For every case,
we checked also a time of evaluation of the network by the testing dataset. A
simulation was conducted on a computer with an Intel Core i5-8300H CPU @
2.30 GHz with 16 GB RAM (Table 1).

Results of our survey for different simulation parameters, are presented in
tables (Table 2, 3 and 4).

Our experiment confirmed that the LIF neuron model is generally faster
in computation. However, there is no big difference in the accuracy percentage
between both neuron models. From the encoding point of view, the Single encod-
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Fig. 3. Examples from a Fashion-MNIST dataset.

Table 1. Parameters of neuron models used in the observations

Izhikevich LIF

Spike threshold voltage 45 mV -52 mV

Resting membrane voltage -65 mV -65 mV

Refractory period of the neuron n/a 5 time steps

Lower bound of the voltage None None

Percent of excitatory (vs. inhibitory) neurons in the layer 100% n/a

Fig. 4. Input spikes train sample.
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Fig. 5. Output spikes train sample.

Fig. 6. Weights in the network.

Table 2. Results of simulation for Izhikevich neuron model

Type of encoding Time steps of
simulation

Samples between
evaluation

Percentage of
test accuracy

Test time [s]

Single 15 500 77,65 60

Bernoulli 15 500 81,46 60

Poisson 15 500 77,06 77

Single 45 500 77,65 168

Bernoulli 45 500 82,26 174

Poisson 45 500 81,48 220
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Table 3. Results of simulation for LIF neuron model

Type of encoding Time steps of
simulation

Samples between
evaluation

Percentage of
test accuracy

Test time [s]

Single 15 500 77,18 51

Bernoulli 15 500 81,59 51

Poisson 15 500 77,21 63

Single 45 500 77,18 140

Bernoulli 45 500 82,47 151

Poisson 45 500 81,36 191

Table 4. Simulation for LIF neuron model with 100 time steps of the simulation

Type of encoding Time steps of
simulation

Samples between
evaluation

Percentage of
test accuracy

Test time [s]

Bernoulli 100 500 82,21 357

Poisson 100 500 81,48 447

ing had the worst results while Bernoulli encoding was the most efficient. An inter-
esting feature that was observed was a little correlation between time steps and
accuracy score. Results of the experiment were also similar to results from [10] for
an SGD classifier.

6 Conclusions

This work described a concept of spiking neural networks and their properties.
Such networks use spiking neurons and various methods of encoding input data
into spike trains. A few methods of learning were also shortly described and
examined. A simple network model was proposed and evaluated by the Fashion-
MNIST dataset. The BindsNET library seemed to be very helpful in cases of
implementation and evaluation of spiking neural networks. Results of learning of
the network demonstrated that connection of LIF neuron model and Bernoulli
distributed spike trains with a simple back-propagation algorithm allows obtain-
ing results of accuracy about 82%; however, this result is not sufficient. Therefore
further research on optimization of the learning process is needed as well as work
on parallel implementation (as in [3]) of such neural networks into hardware like
FPGA devices or into a memristive architecture (e.g. [18]).
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National Information Processing Institute, Warsaw, Poland
{mperelkiewicz,rposwiata}@opi.org.pl

Abstract. The main purpose of this work is to explore the use of
Attention-based Recurrent Neural Networks for text language identifi-
cation. The most common, statistical language identification approaches
are effective but need a long text to perform well. To address this prob-
lem, we propose the neural model based on the Long Short-Term Memory
Neural Network augmented with the Attention Mechanism. The eval-
uation of the proposed method incorporates tests on texts written in
disparate styles and tests on the Twitter posts corpus which comprises
short and noisy texts. As a baseline, we apply a widely used statistical
method based on a frequency of occurrences of n-grams. Additionally,
we investigate the impact of an Attention Mechanism in the proposed
method by comparing the results with the outcome of the model without
an Attention Mechanism. As a result, the proposed model outperforms
the baseline and achieves 97,98% accuracy on the test corpus covering 36
languages and keeps the accuracy also for the Twitter corpus achieving
91,6% accuracy.

1 Introduction

A text language identification problem (language ID) refers to the process of
determining language based on a text structure under a given classification sys-
tem. Language ID is often found as the first step in commonly used applications
like text translators, web search engines, or Twitter (used in data stream tagging
with appropriate language), affecting further outcomes significantly.

The main purpose of this study is to investigate the predictive performance
of an Attention-based Recurrent Neural Network (ARNN) in comparison with
a standard Recurrent Neural Network (RNN) and a statistical, n-gram-based
approach, in a language identification problem. The use of a Bidirectional Long
Short-Term Memory Neural Network (BiLSTM) model augmented with an
Attention Mechanism is motivated by employing this approach successfully in
other NLP tasks, such as text classification [5], language translation [12], and
relation classification [15]. LSTM neural networks are capable of handling long-
term dependencies in a sequential type of data. Such a type of neural networks
is designed to avoid long-term dependency problems, like vanishing gradient [7].
c© Springer Nature Switzerland AG 2019
L. Rutkowski et al. (Eds.): ICAISC 2019, LNAI 11508, pp. 181–190, 2019.
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Thus, this model is suitable for working with sequential text data to extract
relations occurred in data.

The most problematic issues for text language identification systems are
working with short texts, texts with unconventional spelling and written in an
informal style, with grammatical and syntax errors and closely related language
pairs. We show that the proposed method performs well for this kind of trouble-
some texts, even with learning only on readily available, well-formatted corpora.

The remainder of the paper is structured as follows. In Sect. 2, we review
related work about language identification. Section 3 presents the proposed
Attention-based BiLSTM model in detail. In Sect. 4, we describe datasets used
to train and validate the model and present the results of the proposed method
and two baseline methods. Finally, conclusions are included in Sect. 5.

2 Previous Work

In the past, many different methods have been used to address the problem
of text language identification. Cavnar and Trenkle [2] employed a statistical,
character-based n-gram model built upon the most frequent 1 to 5-grams in a
text. Variants on this approach incorporate Bayesian models (for example CLD21

- the language identification tool created by Google in 2013), dot products of
word frequency vectors [4], different measures of document similarity and the
distance between n-gram profiles [1,14]. Other statistical approaches applied in
language identification base on Markov models [11], kernels methods in SVMs
[10]. Grefenstette [6] used a word and a part of speech (POS) correlation to
determine if two text samples were written in the same or different languages.
These methods are widely used in many NLP programming libraries, like Cybozu
Labs Language-Detection library2, Optimize Language Detection3 for Java and
langid.py4 for Python. The main drawback of these statistical methods is a low
efficiency in working with short texts. Other disadvantages of these language
identification approaches are a high impact of foreign words occurred in the
analysed text and tendency to predict errors when working with noisy text.
Statistical methods based on n-grams ignore long-term relationships between
characters occurring in a text.

One of the first uses of Neural Networks to address the language identification
problem was presented by Chang and Lin [3]. This approach, employing a RNN
and skipgram word embedding, outperformed the top results for English-Spanish
and English-Nepal language pairs identification competition in the EMNLP 2014
Language Identification in Code-Switched Data5. Other approach based on a
neural architecture [8] exploits the model build of two main components. The
first is a Convolutional Neural Network (CNN) to delimit a whitespace word’s

1 https://github.com/CLD2Owners/cld2.
2 https://github.com/chbrown/language-detection.
3 https://github.com/optimaize/language-detector.
4 https://github.com/saffsd/langid.py.
5 http://emnlp2014.org/.

https://github.com/CLD2Owners/cld2
https://github.com/chbrown/language-detection
https://github.com/optimaize/language-detector
https://github.com/saffsd/langid.py
http://emnlp2014.org/
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Unicode character sequence. The second is a BiLSTM recurrent neural network
that maps a sequence of word vectors to a language label. Kocmi and Bojar
[9] used BiLSTM Recurrent Neural Network to operate on a window of 200
Unicode characters of the input text. This model outperformed statistical models
for language identification based on a short text. These neural approaches can
be predictive mistake-prone for unseen text structures or text containing foreign
words. Adding an Attention Mechanism to the RNN model is a potential solution
to these problems.

3 Proposed Method

We adapt the BiLSTM recurrent neural architecture proposed by [9] with some
changes. Firstly, the model we propose is built upon the 2-layer BiLSTM Neural
Network instead of the 1-layer Bidirectional Gated Recurrent Units (GRUs)
model. Secondly, we add the soft Attention Mechanism on top of the BiLSTM
layers.

As input, the model takes a vector of a Unicode’s character sequence6. We use
one-hot embedding for character sequences, so if C is the set of unique characters
in a dataset, then we let the size of the character embedding be d = |C|. For given
input sequence, the embedded input vector A is defined as A = [x0, x1, ..., xT ],
where T is the sentence length. Each vector element xt represents one Unicode
character in the input sentence. The responsibility of the 2-layer BiLSTM Neural
Network is to learn a sequential relationship between characters for each of
given languages by optimising the weights in a hidden layer ht at time step t.
The hidden layer ht is calculated based on the current input layer xt and the
previous state of the hidden layer ht−1, according to the definition:

ht = tanh(Wxt + V ht−1 + b1), (1)

where W,V are the weight vectors connected to the input vector and the pre-
vious hidden state vector respectively, and b1 is the bias vector. The output is
calculated according to the formula:

yt = f(Uht + b2), (2)

where U is the matrix of weights connected to the hidden state vector, b2 is the
bias vector, and f is an activation function.

In case of a bidirectional LSTMs network (BiLSTM), not only the previous
hidden state ht−1 is taken into account during calculating the hidden state ht,
but also the next hidden state ht+1 which is calculated by reading the input also
from the end by the bidirectional layer. The BiLSTM model contains two hidden
states,

−→
ht and

−→
ht , for each neural cell. Therefore, we extend previous calculations

as follows: −→
ht = tanh(

−→
Wxt +

−→
V ht−1 +

−→
b1) (3)

−→
ht = tanh(

−→
Wxt +

−→
V ht+1 +

−→
b1) (4)

6 The input vector we use contains 100 characters.
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yt = f(
−→
U

−→
ht +

−→
U

−→
ht + b2), (5)

where the left and the right arrows indicate the reading direction of the input
vector A. The output is calculated on the basis of the weighted sum of the

−→
ht

and
−→

ht hidden states and
−→
U is the matrix of weights connected to the hidden

state vector
−→
ht and

←−
U is the matrix of weights connected to the hidden state

vector
−→

ht .
After the deep BiLSTM neural model processing, the attention mechanism

is responsible for deciding which characters and relations in the given sentence
context indicate the output language to a greater or lesser extent.

Let H be a matrix consisting of output vectors Y = [y1, y2, ..., yT ] that the
BiLSTM layer produced, where T is the sentence length. For given vector Y , an
attention-based model computes a context vector ct as the weighted mean of the
state sequence Y as follows [13]:

ct =
T∑

j=1

αtjyj (6)

where αtj is a weight computed at each time step t for each state yj . Then, the
context vectors are used to compute a new state sequence s, where st depends on
st−1, ct and the model’s output at t − 1. The weightings αtj are then computed
as follows [13]:

etj = a(st−1, yj), αtj =
exp(etj)∑k=T

k=1 exp(etk)
, (7)

where a is a learned function, which can be thought of as computing a scalar
importance value for given yj and the previous state st−1.

As the output, we use a dense neural layer with the softmax activation func-
tion. The output is the vector of probabilities over all languages classes. Let
R = [r0, r1, ..., rt] be the output vector, where T = |R| and

∑i=T
i=0 ri = 1. As

a result, we choose the language with the highest probability. The model is
depicted in the Fig. 1.

4 Experimental Studies

4.1 Datasets

Text is characterised by many features, including the formality of used vocabu-
lary, grammatical and stylistic correctness, grammatical structures, length, and
so on. Building a suitable, multilingual text corpus which covers many text
types is the crucial step in a learning and evaluating process. For this purpose,
we focused on finding multilingual and diverse text corpora. The data set we
used to learn and evaluate the model comprises 6 text corpora:

1. Subtitles — the collection of translated movie subtitles,
2. Wikipedia — the collection of articles from Wikipedia,
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Fig. 1. The illustration of the proposed model

3. Web pages — the set of sentences crawled from randomly selected web pages,
4. News — the set of sentences crawled from news websites, like bbc.com,

cnn.com.
5. EuroParl — the parallel corpus extracted from the European Parliament

website,
6. Tatoeba — the set of simple sentences, created by foreign language learners.

All described corpora were mixed, keeping only languages they have in com-
mon and for which at least 400,000 sentences have been collected, taking a
maximum of 100,000 sentences from each corpus. It results in the data set com-
posed of text written in 36 languages as follows: Tatar, Maltese, Norwegian,
Marathi, Hindi, Vietnamese, Croatian, Hindi, Icelandic, Czech, Arabic, Lat-
vian, Esperanto, Macedonian, Slovenian, Ukrainian, Estonian, Slovak, Roma-
nian, Lithuanian, Turkish, Bulgarian, Modern Greek, Swedish, Danish, Russian,
Dutch, Finnish, Polish, German, English, Spanish, French, Hungarian, Italian
and Portuguese. All remaining languages were rejected because of too small
number of sentences in their corpus. For the final dataset, we randomly chose
200,000 sentences for each language mentioned above what results in the text
corpus comprising 7,200,000 sentences in 36 languages. For testing and valida-
tion purposes 30% of data were selected and remaining 70% of the corpus served
as the training set.

http://bbc.com
http://cnn.com
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Additionally, we consider the Twitter dataset for testing. The Twitter test
set contains 46,715 randomly selected posts and covers 14 of 36 languages chosen
to learn our model. The exact structure of this set is presented in Table 1.

Table 1. The structure of the Twitter test set

Language Count Language Count Language Count

Modern Greek 48 Swedish 73 Polish 129

Dutch 232 German 241 Italian 426

Turkish 873 French 1221 Russian 1245

Arabic 2790 Portuguese 3643 Hindi 3876

Spanish 7665 English 24253

The text corpus was preprocessed before learning and validating. The pre-
processing process included: removing punctuation, removing non Unicode char-
acters, merging many whitespaces as one, converting text to lowercase.

4.2 Experimental Setup

The model was trained using early stopping based on the validation set. To
reduce the learning time and avoid settling the learning algorithm on an error
minimum, we use ADAM optimization algorithm with batch size equal to 64.
As a loss function, we use cross-entropy. The best accuracy result (97,99%) for
the validation set was attained after the eleventh learning epoch. The model
achieved 97,98%7 accuracy on the test set. Dropout regularization of 0.2 was
used after each BiLSTM cell. Experiments included sentences between 5 and
100 characters long. Already for sentences consisting of 5 characters, accuracy
reached about 73% and exceeded 95% for the sentences containing at least 14
characters.

We used Keras neural network library with the Tensorflow backend and uti-
lized two Tesla P100 graphic cards to learn the model. The learning phase lasted
about 70 hours.

4.3 Results

In addition to the described model, we used two other models for testing on
the Twitter data set: a statistical, Naive Bayes model based on the frequency
of occurrences of a n-gram model8 and a 2-layer BiLSTM model without an
Attention layer (the structure and the learning process were the same as in the
7 Different cell sizes were used during experimentation, including 50, 150, 200, 500

dimensional hidden layers, one and two BiLSTM layers. The best results were
achieved for 2 layers, each for 200 neurons.

8 https://github.com/chbrown/language-detection.

https://github.com/chbrown/language-detection
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Table 2. Accuracy measure for the baselines and the proposed model

Model Accuracy

n-gram model 74.64%

BiLSTM without Attention 89.69%

BiLSTM with Attention 91.60%

case of the proposed model). Table 2 shows accuracy achieved by these models.
The best result, 91.60%, achieves the BiLSTM model with Attention Mechanism.
The difference between the neural models and the statistical model is significant
(about 15% and 17%) but the difference among the neural models is less than
2%. The detailed results are depicted in the Fig. 2a.

Figure 2b outlines the n-gram, the BiLSTM without Attention and the pro-
posed BiLSTM with Attention models evaluation on the Twitter test set. The
gap between accuracy scored for short text for the neural networks and the sta-
tistical approaches is substantial. For posts consisting at least 24 characters, the
neural models achieve about 90% accuracy and keep accuracy between the 90%
and 98% for longer posts, whereas the model with Attention Mechanism attains
slightly better accuracy for almost all sentence lengths. The statistical model
achieves values between 80% and 94% for posts longer than 38 characters.

A more thorough analysis shows that classification mistakes occur more often
in the case of the languages pair belonging to the same language family. The most
common misclassified pair of languages is Spanish and Portuguese (164 of 7665
posts in Spanish were classified as Portuguese and vice versa 66 of 3643 posts in
Portuguese were classified as Spanish). For Spanish, the second most common
wrong language prediction is Italian (58 of 7665 posts in Spanish were classified
as Italian). For Hindi, the most common misclassified language is Turkish (31 of
3876 posts in Hindi were classified as Turkish).

Except for similarity of languages pair, common reasons for classification
mistakes were:

1. short posts or posts build upon proper nouns only, like oh ok, detroit, ha ok,
lady gaga, katy perry, nicki minaj, iiiiiiiiiiidc rihanna, which occur in many
languages

2. posts containing many words written in non formal way, like retweetonly-
ifyouwantnewfollowers, adorooooo oooooooo, qqqqquuuuuuuuuuueeeeeee nooo-
joooodaaaaaa mdkcmskck, prettttyyyyyyy huuurrrrrrrtssssss, can u rt this gt
please is my dream thanks, puedes dar rt al enlace por favor es mi sue
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Fig. 2. (a) Accuracy in terms of a sentence length for the test set (b) Accuracy in
terms of a length of sentence for the Twitter test set

5 Conclusion

We have presented the 2-layer BiLSTM neural network with the Attention Mech-
anism. The network was applied to language identification and achieved 91.60%
accuracy on the Twitter posts corpus. The neural model performed better (17%
better accuracy) than the statistical baseline model based on a frequency of
occurrence of n-grams. The proposed model performs well for short and noisy
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text and keeps the high performance for longer text. The Attention Mechanism
boosts the accuracy of language identification for the examined case.

An improvement over statistical approaches is the effect of basing the infer-
ence not on the number of occurrences of the particular letters or n-grams, but
on the relations occurring between the letters in a sentence. It turns out that
Recurrent Neural Networks are able to learn such characteristic relationships
and correctly predict the language of text for short texts. Such relationships are
characterized by greater predictive ability than the number of occurrences of
specific letters or n-grams for short texts, as demonstrated by our research.

At this point, we think that further improvement can be achieved by increas-
ing the diversity of a training text corpus and adding more advanced embedding
layer, like a Convolutional layer, which could be well suited to extend a character
embedding with a n-grams embedding.
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Abstract. Convolutional Neural Networks are extensively used in com-
puter vision applications. Many convolutional models became famous
after being widely adopted in a variety of computer vision tasks because o
their high accuracy and great generality. Trough Transfer Learning, pre-
trained versions of these models can be applied to a large number of dif-
ferent tasks and datasets without the need to train an entire large convo-
lutional model. We aim at finding methods to prune convolutional filters
from these pre-trained models in order to make inference more efficient
for the new task. To achieve this we propose a genetic algorithms based
method for pruning convolutional filters of pre-trained models applied
to a different dataset than the one they were trained for. After trans-
ferring knowledge from an already trained model to a new task, genetic
algorithms are used to find good solutions to the filter pruning problem
through natural selection. We then evaluate the results of the proposed
methods and compare with state-of-the-art pruning strategies for convo-
lutional neural networks. Obtained experimental results show that the
method is able to maintain network accuracy while producing networks
with a significant reduction in Floating Point Operations (FLOPs).

Keywords: Transfer learning · Filter pruning ·
Convolutional Neural Networks

1 Introduction

Transfer Learning aims to transfer knowledge from a source to a target domain or
from a source to a target task [17]. In image recognition, transfer learning is typi-
cally applied to overcome a deficit of training data, to help with different data dis-
tributions such as lighting or background variations or to speed up model deploy-
ment as training is the most time-consuming task of building a CNN model [16].
It has been successfully applied to many tasks including image classification,
scene classification, and object localization.

Some recent work has been done in applying transfer learning in a variety of
tasks. In [23], the authors applied the AlexNet model pre-trained on ImageNet
to the caltech-101 [5] and caltech-256 [6] datasets, training only the last layer.
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Results are currently one of the highest accuracies for both datasets. Trans-
fer learning have also been successfully applied in [12] where the author use
pre-trained AlexNet [10], VGG [20] and GoogLeNet [21] models to the task of
semantic segmentation of images, improving state-of-the-art results on the PAS-
CAL VOC [4] dataset.

One observed trend in state of the art Convolutional Neural Networks (CNN)
models is that they tend to be increasingly larger and deeper, as larger and
in deeper models results in better accuracy. But this comes with a cost, as
these large models are very memory and computationally consuming. This makes
training of these models harder as special hardware is needed such as huge
amounts of memory, high-performing Graphical Processing Units (GPU) or large
scale distributed clusters [3]. The inference costs on these models also make their
use prohibitive for some use cases, especially on limited hardware.

Authors in [19] show that although the capacity of a neural network to absorb
information is limited by its number of parameters, not all parameters contribute
in the same manner to the final network accuracy. We go further to show that
for more limited applications, unused parameters can be removed while keeping
the overall network accuracy.

In this work, we investigate how to prune convolutional layers from trans-
ferred weights in order to have just the necessary image feature representations
for the target task, maintaining accuracy and reducing memory footprint and
computation time. Although CNN models have a variety of different layers types
and computations, inference run time is extensively dominated by the convolu-
tional layers because of the computational complexity of the convolution oper-
ation [14]. Thus, pruning of the convolutional layers has a big effect on model
run time as a whole.

Our approach to this problem is divided into three steps. First, we transfer
the knowledge from the source to the target task. Then, evolutionary methods
are used to find pruning candidates through random selection and evolution.
This is done is a data-driven way, in order to find a set of weights that best suits
the target task. Finally, when pruning candidates are chosen the unnecessary
parts of the network are removed and the whole model is fine-tuned.

The remainder of this paper is organized as follows. In Sect. 2, a summary of
related works is presented. Section 3 describes the proposed method. The results
of the experiments are presented and compared in Sect. 4. Finally, conclusions
are given in Sect. 5.

2 Related Work

Pruning methods for convolutional layers in CNNs can work at several granulari-
ties. In [1], authors use particle filtering to find pruning candidates. This method
creates random filters of particles to simulate several connections combinations.
The trained network is used as an observation function and the classification
error rate for each particle is calculated. Several iterations of particle filters are
applied to each layer of the network and the connections that have the lowest
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effect on the classification error rate are pruned. This method drops weights at
an intra-kernel level, that is, some less important values inside the convolution
kernel are replaced by zero, introducing sparsity to the kernel. Another method
for intra-kernel pruning is proposed by Han et al. [7]. The method consists of
training a network with a strong L2 regularization to force less relevant con-
nections to have small values. Then, all values below a defined threshold are
pruned.

Both of the previous methods are very effective for network compression.
However, this compression does not directly translate to faster inference. As
intra-kernel level pruning is performed, it introduces sparsity to network con-
nections. Modern hardware exploits regularities in the computation for high
throughput, making sparse networks need specially designed software to handle
the sparsity. Even with sparse libraries, cache misses and memory access issues
of sparse networks make the practical acceleration very limited [22].

Many works address this problem by performing a filter level pruning of
CNNs, as no sparsity is added to the network connectivity. A convolutional layer
is composed of 3D filters Fi ∈ R

n×k×k, where n is the number of input feature
maps and i is the ith filter in the convolutional layer. Each filter Fi outputs one
feature map and is composed of n 2D kernels of height and width k. In filter
level pruning, an entire filter is removed and all kernels of the next layer that
maps the removed filter are removed as well, dropping weights but keeping the
convolutional layer structure as is.

The work of Li et al. [11] proposed a method to prune convolutional filters
based on the absolute sum of the filter weights. The authors argue that filters
with small values tend to produce feature maps with weak activations compared
to other filters in that layer. The method calculates the sum each layer at a time,
dropping the filters and moving to the next layer. When all layers are pruned
the network is fine-tuned. In experiments using the VGG-16 model trained for
the CIFAR-10 [9] dataset authors report a 34.2% drop in FLOPs. While this
method provides a great speed up in model inference while maintaining model
accuracy, it doesn’t address the transfer of pruned weights to a new domain. As
the training step is usually the most time consuming part in building a neural
network, pruning of pre-trained models would result in a faster way to deploy
high accuracy efficient models.

In [13], authors use statistics about layer i+1 to guide pruning of layer i. If a
feature map c in the input of layer i+1 produces little effect on the output of this
layer then the filter that produces this feature map c in layer i can be removed.
A measure of the correlation between layer i + 1 input and output is calculated
given a validation dataset and the feature maps that contributes less to layer
i + 1 are pruned from layer i. Experiments show a 59% drop in Floating Point
Operations (FLOPs) for the VGG-16 model trained on ImageNet. Given the
data-driven nature of the method, it could easily be applied to transfer learning
models. However, because pruning is done one layer at a time, it may fall in
pitfalls common to greedy strategies as filters already pruned in earlier layers
may affect pruning in later layers.
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To overcome the deficiencies pointed in the methods above we propose a
method that is both data-driven and global. In real-world scenarios tasks are
usually domain specific, thus, characteristics from the target dataset may help
further optimize the network which data-driven approaches can exploit. On top
of that, global pruning approach do not suffer from per layer sensitivity which
may help find better solutions. To achieve this we propose a evolutionary method
to prune filters from transfer learning models. In our research, we couldn’t find
related works applying filter pruning to transfer learning models using evolu-
tionary methods.

3 Proposed Method

The proposed method for pruning convolutional filters consists of the following
three steps: (1) Given a pre-trained network, train until convergence on the new
target task; (2) Find pruning candidates and remove the selected filters; (3)
Fine-tune the whole network.

In CNN models, transfer learning is carried by using a network trained on a
base dataset for a base task and then transfer those learned features to a new
network to be trained on a target dataset and task. This is done by copying
the first n layers of the base network to the first n layers of the target network.
The remaining layers in the target network are then trained with the target
dataset for the target task. Although copied layers are usually fine-tuned for
better accuracy in transfer learning, we find it to be irrelevant in this step as
most of the weights will be further pruned.

Filter pruning can be seen as a combinatorial optimization problem, as it
consists of finding the minimum subset of kernel filters that maximize network
accuracy. Most filter pruning methods use greedy strategies guided by heuris-
tics [11,13,14]. Although greedy strategies can find good solutions, they are
most often sub-optimal. A well-known strategy for finding decent solutions to
combinatorial optimization problems is based on genetic algorithms. The meta-
heuristic search based on probabilistic selection and mutation operations of
genetic algorithms would be able to reach solutions that greedy strategies would
not be able to reach due to the limitation of greedy choices.

The proposed genetic algorithm to find pruning candidates works by ran-
domly initializing a population of P individuals at first. Each individual is rep-
resented by an array L, and each element Li of this array represents a flag of
whether the ith filter (filters are all put together by the order of the layers they
appear in) of the model is active or have been dropped. Once the first popula-
tion is initialized each individual drops the filters represented in L and trains
the model for a few epochs, evaluating the network accuracy after training.
After the initial population has been initialized T tournaments take place. In
each tournament, two individuals are chosen at random and their fitness is com-
pared. The winning individual is kept as is and the losing individual is randomly
mutated and needs to be trained again. The mutation operation is implemented
by assigning a random value to M filters in the individual. The number M of
filters mutated is chosen at random by a uniform distribution.
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The optimization process has to take into account both model accuracy and
pruning rate, which characterizes a multi-objective optimization problem. A sim-
ple and well-known approach to solve multi-objective optimization problems with
genetic algorithms is to provide a weighted sum of each objective function as a
fitness value so that the problem can be converted to a single objective function
with a scalar value [8]. As both model accuracy and pruning rate are equally
important to the filter pruning optimization problem we assign the same weights
for both. Thus, the fitness of the individual becomes a simple mean of model
accuracy and filter drop rate.

Since the genetic algorithm will try to optimize the solution with the highest
fitness value, some over pruned individuals may appear in the final population
since a too high drop rate can push the mean up. To choose between the pop-
ulation of pruning candidates a limit δ from the original model accuracy is set.
The individual with the highest drop rate whose accuracy is within this defined
limit is finally chosen.

When the less important filters are chosen the model is pruned. After pruning
the filters, the performance degradation should be compensated by retraining
the network. Fine-tuning is a necessary step to recover the generalization ability
damaged by filter pruning. So, as a final step, we need to fine-tune the whole
model until the original accuracy is reached.

4 Experimental Results

We empirically study the performance of the proposed method in this section.
The AlexNet and VGG-16 models are used to evaluate the method. Both models
are pre-trained on the ILSCVR [18] dataset and their weights are transferred and
pruned for the Caltech-256 and Flower-102 [15] datasets.

During the experiments, we measure the reduction in computation by FLOPs,
which is a common practice for filter pruning as it directly relates to a reduction
in processing time and it’s platform agnostic. Although removing a filter from a
convolutional layer will reduce the overall inference time, the number of FLOPs
reduced from inference time depends on the particular implementation of con-
volution operator. Therefore, throughout the rest of this paper, to compute the
number of FLOPs, we assume convolution is implemented as a sliding window
and that the nonlinearity function is computed for free. In this way, to compute
the number of FLOPs in a convolutional layer we have:

F = 2HW (CinK2 + 1)Cout (1)

where H, W and Cin are height, width and number of channels of the input
feature map, K is the kernel width and height, Cout is the number of output
channels, and F is the number of FLOPs. For the fully-connected layers FLOPs
computation is calculated as follows:

F = (2I − 1)O (2)

Where I is the number of input features and O is the number of output features.
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To evaluate the method we use the Caltech-256 and Flower-102 datasets.
Both datasets are used as benchmarks for evaluation on various image object
classification methods [2,10,14,20]. Due to the limited number of training exam-
ples, training large models on both datasets usually depends on transfer learning
to achieve acceptable results.

The Caltech-256 dataset is composed of 256 object categories containing a
total of 30607 images. The domain of categories is varied, including categories
from many application domains such as plants, animals or transportation. Each
category contains a minimum of 80 examples and may vary to a maximum of
800. Because of the high disparity in the number of examples for each category,
authors in [6] propose randomly selecting N from each category for evaluation
on the dataset. Common choices of Ntrain are 20, 25, 30 or 40 for the training
split and Ntest is usually set to 25 for the test split.

The Flower-102 dataset is a more domain-specific dataset composed only of
flowers commonly occurring in the United Kingdom. The dataset is composed of
a total of 9818 images divided into 102 categories. Each category contains from
40 to 250 image examples. One peculiarity of the dataset is that its default test
split is quite larger than the train split. The dataset is divided into 1020 images
for the train and validation splits, being 10 of each category, and 6129 for the
test set.

4.1 Setup

To evaluate the pruning method we use two models trained on the ILSCVR
dataset and apply them to two different tasks, the Caltech-256 and Flower-
102 datasets. We begin this section by explaining a bit more about how the
experiments were set up at each step.

In the first step of our method, the network needs to be trained for the target
dataset. In this step we copy the weights learned from ILSCVR dataset for both
models and train only the last layer of the model, leaving the other weights
frozen. The model is trained using Stochastic Gradient Descent (SGD) with a
learning rate of 10−3. Training stops when the accuracy of the model evaluated
on the validation set does not improve for over 10 epochs or if training reaches
a maximum of 60 epochs.

For the second step, we prune both networks on each dataset using the pro-
posed evolutionary method. A population of 10 individuals is initiated and each
individual is trained for 10 epochs after pruning to evaluate its accuracy using
SGD with 10−3 learning rate. After the population is initialized 40 tournaments
are run. For each individual mutated, a mutation rate between 20% and 50% is
chosen at random and the correspondent number of flags are randomly replaced.
When the tournaments are finished the individual with the highest drop rate
whose validation accuracy is at most 2% below original accuracy is chosen.

In the third step, networks are pruned and need to be fine-tuned. For our
tests all network layers were fine-tuned using SGD with a 10−4 learning rate.
Training stops if validation accuracy does not improve for 10 epochs or if training
reaches a maximum of 40 epochs.



Filter Pruning for Efficient Transfer Learning in CNNs 197

Due to the small number of training examples in the datasets, a dropout rate
of 40% on the fully-connected layers is used during training in all stages of the
method.

4.2 Results

We report the results obtained from tests with AlexNet and VGG-16 models
using our pruning method. For each test, we present the original number of
filters and the number of filters left after pruning for each layer of the model. As
with the number of filters, we also present their computation cost measured in
FLOPs.

In Table 1 we see the results for pruning the AlexNet model on Flower-102
dataset. The accuracy rate of the model before pruning was of 70.02% with the
test set. Evolutionary pruning was able to prune 43.02% of the FLOPs during
model inference time. The final accuracy of the pruned network was 71.18%.
Even when pruned the model outperforms the original model due to fine-tuning
with a smaller learning rate. This smaller learning rate during the final step of
pruning enables the model to finely adjust its weights in order to repair damaged
connections caused by the pruning.

Table 1. Pruning results for AlexNet with Flower-102.

Layer Original After pruning

Filters FLOPs Filters FLOPs

conv1 96 3.60 × 109 54 2.03 × 109

conv2 256 8.96 × 108 149 5.22 × 108

conv3 384 2.99 × 108 226 1.76 × 108

conv4 384 4.49 × 108 208 2.43 × 108

conv5 256 2.99 × 108 147 1.72 × 108

fc6 4096 7.55 × 107 0 7.55 × 107

fc7 4096 3.36 × 107 0 3.36 × 107

fc8 102 8.35 × 105 0 8.35 × 105

Total 1376 5.65 × 109 784 3.25 × 109

Results for the pruning of AlexNet model on Caltech-256 are shown in
Table 2. Accuracy rate before pruning the model was of 67.87%. The pruning
method was able to prune 34.14% of network FLOPs on inference time. After
pruning of filters the achieved accuracy rate was of 66.31%. While in this task
the original model accuracy could not be achieved, the drop in accuracy is only
marginal if the amount of weights pruned is taken into consideration.
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Fig. 1. Performance of original and pruned models on each dataset in GFLOPs (one
billion FLOPs).

Table 2. Pruning results for AlexNet with Caltech-256.

Layer Original After pruning

Filters FLOPs Filters FLOPs

conv1 96 3.60 × 109 43 1.61 × 109

conv2 256 8.96 × 108 113 3.96 × 108

conv3 384 2.99 × 108 174 1.36 × 108

conv4 384 4.49 × 108 190 2.22 × 108

conv5 256 2.99 × 108 62 1.34 × 108

fc6 0 7.55 × 107 0 7.55 × 107

fc7 0 3.36 × 107 0 3.36 × 107

fc8 0 8.35 × 105 0 8.35 × 107

Total 1376 5.65 × 109 635 2.61 × 109

In Table 3 we present the test results for pruning the VGG-16 model on
Flower-102 dataset. The accuracy rate achieved before pruning was of 70.04%.
While pruning the model we were able to remove 64.4% of FLOPs from inference
time. The final accuracy rate after pruning was of 75.86%.

Finally, in Table 4 the results for the pruning of the VGG-16 model for the
Caltech-256 dataset are presented. The initial accuracy rate for the model on the
Caltech-256 was of 76.98%, while after pruning we achieved an accuracy rate of
77.06%, maintaining network accuracy even after pruning. The method was able
to prune away 39.9% of FLOPs from VGG-16 inference time. In Fig. 1 we can visu-
alize the number of FLOPs from original and pruned networks on each dataset.

Results presented in this section show a high pruning rate, comparable with
many of the related work on filter pruning. In [11], authors report a 34.2%
pruning rate for the VGG-16 model on CIFAR-10. Even though the Caltech-
265 and Flower-102 datasets have far more object classes than the CIFAR-10,



Filter Pruning for Efficient Transfer Learning in CNNs 199

Table 3. Pruning results for VGG-16 with Flower-102.

Layer Original After pruning

Filters FLOPs Filters FLOPs

conv1 64 1.8 × 108 23 6.46 × 107

conv2 64 3.71 × 109 22 1.27 × 109

conv3 128 1.85 × 109 46 6.66 × 108

conv4 128 3.7 × 109 58 1.39 × 109

conv5 256 1.85 × 109 87 6.29 × 108

conv6 256 3.7 × 109 107 1.55 × 109

conv7 256 3.7 × 109 70 1.01 × 109

conv8 512 1.85 × 109 195 7.05 × 108

conv9 512 3.7 × 109 178 1.29 × 109

conv10 512 3.7 × 109 166 1.20 × 109

conv11 512 9.25 × 108 177 3.20 × 108

conv12 512 9.25 × 108 192 2.47 × 108

conv13 512 9.25 × 108 182 3.29 × 108

fc14 0 2.06 × 108 0 2.06 × 108

fc15 0 3.36 × 107 0 3.36 × 107

fc16 0 8.35 × 105 0 8.35 × 105

Total 4224 3.1 × 1010 1493 1.1 × 1010

our tests still showed a higher pruning rate, with the exception of Caltech-256
on Alexnet which is slightly above. When comparing with the results obtained
in [13], which was able to achieve a pruning rate of 59% with the VGG-16 on
ImageNet, with our result on the VGG-16 model with Flower-102, of 64.4%
pruning rate, could indicate that a more specific domain is able to achieve a
higher pruning rate.

Although one of the models had a marginal drop accuracy rate, the overall
results can show that, while pruning the network, the proposed method is still
able to maintain network accuracy at a reasonable level.

The perceived difference in pruning rates for the VGG-16 model on the
Caltech-256 and Flower-102 datasets also indicates that the method is able to
achieve higher pruning rates for datasets with a more specific domain, as the
Flower-102 has fewer classes and more closely related characteristics. While this
observation holds untrue for the AlexNet case, this could be explained by the
fewer number of filters on the final layers, which are more prone to identify
higher levels of abstraction.
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Table 4. Pruning results for VGG-16 with Caltech-256.

Layer Original After pruning

Filters FLOPs Filters FLOPs

conv1 64 1.8 × 108 35 9.83 × 107

conv2 64 3.71 × 109 36 2.08 × 109

conv3 128 1.85 × 109 76 1.1 × 109

conv4 128 3.7 × 109 80 2.31 × 109

conv5 256 1.85 × 109 160 1.16 × 109

conv6 256 3.7 × 109 147 2.13 × 109

conv7 256 3.7 × 109 160 2.31 × 109

conv8 512 1.85 × 109 303 1.1 × 109

conv9 512 3.7 × 109 304 2.2 × 109

conv10 512 3.7 × 109 311 2.25 × 109

conv11 512 9.25 × 108 306 5.53 × 108

conv12 512 9.25 × 108 292 5.28 × 108

conv13 512 9.25 × 108 305 5.51 × 108

fc14 0 2.06 × 108 0 2.06 × 108

fc15 0 3.36 × 107 0 3.36 × 107

fc16 0 8.35 × 105 0 8.35 × 105

Total 4224 3.1 × 1010 2515 1.86 × 1010

5 Conclusion

This paper presents an evolutionary method for pruning filters in convolutional
neural networks in order to enable fast deploy of efficient convolutional models.
Our method works in three steps. At first, a model trained on a large dataset is
chosen and its weights are transferred and trained to a new target task. Then
we use genetic algorithms to chose pruning candidates for the final network. The
genetic algorithm works by randomly selecting individuals for tournaments where
the losing individual is randomly mutated. The final step consists of pruning the
filters deemed unnecessary by the genetic algorithm and fine-tuning the network
repair accuracy rate. The advantage of this approach to other pruning methods
is the use of genetic algorithms to prune weights in the network level, avoiding
pitfalls commonly encountered with greedy approaches that prune one layer at
a time. As pruning is done in a data-driven way, the method is able to use
the target task characteristics to efficiently guide pruning to every task. Thus,
enabling its use with transfer learning.

Experimental results show that the method provides a pruning rate compara-
ble with state-of-the-art pruning strategies while maintaining network accuracy.
It enables convolutional models which are more efficient for a given dataset
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with none or very small loss in the overall accuracy rate. These features make
the method promising for fast deployment of convolutional models on resource-
limited devices.

Acknowledgments. This work was partially supported under grant no.
5850.0105377.17.9 by Petrobras S.A.

References

1. Anwar, S., Hwang, K., Sung, W.: Structured pruning of deep convolutional neural
networks. ArXiv e-prints, December 2015

2. Chai, Y., Lempitsky, V., Zisserman, A.: BiCoS: a bi-level co-segmentation method
for image classification. In: IEEE International Conference on Computer Vision,
pp. 2579–2586. IEEE (2011)

3. Dean, J., et al.: Large scale distributed deep networks. In: Advances in Neural
Information Processing Systems, pp. 1223–1231 (2012)

4. Everingham, M., Eslami, S.M.A., Van Gool, L., Williams, C.K.I., Winn, J., Zisser-
man, A.: The pascal visual object classes challenge: a retrospective. Int. J. Comput.
Vis. 111(1), 98–136 (2015)

5. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few
training examples: an incremental bayesian approach tested on 101 object cate-
gories. Comput. Vis. Image Underst. 106(1), 59–70 (2007)

6. Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset (2007)
7. Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for

efficient neural network. In: Advances in Neural Information Processing Systems,
pp. 1135–1143 (2015)

8. Konak, A., Coit, D.W., Smith, A.E.: Multi-objective optimization using genetic
algorithms: a tutorial. Reliab. Eng. Syst. Saf. 91(9), 992–1007 (2006)

9. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images.
Technical report, Citeseer (2009)

10. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

11. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning filters for efficient
convnets. arXiv preprint arXiv:1608.08710 (2016)

12. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 3431–3440 (2015)

13. Luo, J.H., Wu, J., Lin, W.: ThiNet: a filter level pruning method for deep neural
network compression. arXiv preprint arXiv:1707.06342 (2017)

14. Molchanov, P., Tyree, S., Karras, T., Aila, T., Kautz, J.: Pruning convolutional
neural networks for resource efficient transfer learning. CoRR abs/1611.06440
(2016), http://arxiv.org/abs/1611.06440

15. Nilsback, M.E., Zisserman, A.: Automated flower classification over a large number
of classes. In: 2008 Sixth Indian Conference on Computer Vision, Graphics & Image
Processing, ICVGIP 2008, pp. 722–729. IEEE (2008)

16. Oquab, M., Bottou, L., Laptev, I., Sivic, J.: Learning and transferring mid-level
image representations using convolutional neural networks. In: 2014 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pp. 1717–1724. IEEE
(2014)

http://arxiv.org/abs/1608.08710
http://arxiv.org/abs/1707.06342
http://arxiv.org/abs/1611.06440


202 C. Reinhold and M. Roisenberg

17. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng.
22(10), 1345–1359 (2010)

18. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J.
Comput. Vis. 115(3), 211–252 (2015)

19. Shazeer, N., et al.: Outrageously large neural networks: the sparsely-gated mixture-
of-experts layer. arXiv preprint arXiv:1701.06538 (2017)

20. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

21. Szegedy, C., et al.: Going deeper with convolutions. In: CVPR (2015)
22. Wen, W., Wu, C., Wang, Y., Chen, Y., Li, H.: Learning structured sparsity in

deep neural networks. In: Advances in Neural Information Processing Systems, pp.
2074–2082 (2016)

23. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks.
In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS,
vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10590-1 53

http://arxiv.org/abs/1701.06538
http://arxiv.org/abs/1409.1556
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-319-10590-1_53


Regularized Learning of Neural Network
with Application to Sparse PCA

Jan Rodziewicz-Bielewicz, Jacek Klimaszewski(B), and Marcin Korzeń
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Abstract. The paper presents an implementation of the regularized
two-layer neural network and its application to finding sparse compo-
nents. The main part of the paper concerns the learning of the sparse
regularized neural network and its use as auto-encoder. A process of
learning of the neural network with non-convex optimization criterion is
reduced to convex optimization with constraints in an extended domain.
This approach is compared with the dictionary learning procedure. The
experimental part presents the comparison of our implementation and
the SparsePCA procedure from the Scikit-learn package on different data
sets. As a quality of the solution during experiments we take into account:
the time of learning, sparsity, and quality of reconstruction. The experi-
ments show that our approach can be competitive when a higher sparsity
is needed, and in the case of a large number of attributes relative to the
number of instances.

Keywords: Neural network · Sparsity · �1 penalty · Sparse PCA ·
Auto-encoder

1 Introduction and Motivation

Principal Component Analysis (PCA) is a well-known technique of the dimen-
sionality reduction of the data. The common PCA technique is not free of some
disadvantages. For example, minimization of a variance of components is depen-
dent on outliers [3]. In the standard approach most of variables have an influence
on each principal component and its direct interpretation is difficult.

Opposite to this approach are sparse procedures that produce components
which depend only on a small subset of input variables. The sparsity can be
attractive from many points of view. Especially using the sparse representation
of components one can save the memory space and decrease the time of computa-
tion. In the case of special types of signals with a certain structure of dependence
like images, sounds or chemometric data, such an approach provides solutions
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that have often natural meaning. As the solution, one can obtain separate regions
in data, e.g. the mouth and eyes in the case of face images.

The sparsity is typically understood as the number of zero coefficients in the
solution or as the relative number of zero coefficients in relation to the size of
data. The sparsity of the solution is ensured by adding the �1-norm penalty term
on coefficients to the common fitting criterion [4,13]. There are many different
techniques to ensure a sparsity of components, including use Kullback-Leiber
divergence as penalty term [10] or semi-definite programming [3]. Dictionary
learning is another popular technique that is for example used in the sklearn
package [5,9].

2 Proposed Solution

A special case approach to produce sparse components is to use the two-layer
neural network (as in Fig. 1) and use it as an auto-encoder—the structure that
is fitted to reproduce the input patterns on the output [1,10].

2.1 Neural Network with Sparse Weights

We consider a supervised learning task with the following notations: n is the
number of observations and d is the number of attributes, Xd×n = {x1, . . . ,xn}
is an input part of the dataset and Yd×n = {y1, . . . ,yn} is the output. Let
consider the positive part function:

(ai)+ = max(ai, 0) =

{
ai, for ai > 0
0, otherwise

,

the negative part function: (ai)− = (−ai)+, and similarly for the vec-
tor a = [a1, . . . , ad], we use notation: a+ = [(a1)+, . . . , (ad)+] and a− =
[(a1)−, . . . , (ad)−]. We have a = a+ − a−, and note that both negative and
positive parts are non-negative.

We consider a two-layer neural network with p hidden units, as shown in the
Fig. 1. The hidden layer output is given by:

ṽ(x) = σ(W1 · x + b1), (1)

and the network output is given by:

ỹ(x) = σ(W2 · V + b2) = σ(W2 · σ(W1 · x + b1) + b2), (2)

where σ(·) is the activation function, and W1
p×d, b1

p×1, W2
d×p and b2

d×1 are
weights and biases for the first and the second layer respectively.
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Fig. 1. Two-layer neural network.

Learning Procedure. The goal of fitting the network is to find minimum:

arg min
W1,b1,W2,b2

1
2n

n∑
i=1

‖σ
(
W2σ

(
W1xi + b1

)
+ b2

)−yi‖22+α·(‖W1‖1 + ‖W2‖1
)
,

(3)
where α is a regularization parameter. Due to non-differentiability of the �1-
norm ‖ · ‖1, we reformulate (3) into the equivalent bound-constrained smooth
optimization problem, using the identity |x| ≡ x+ − x− for x+, x− � 0:

arg min
W1

+,W1
−,b1,W2

+,W2
−,b2

1
2n

n∑
i=1

‖σ
(
W2

∗ · σ
(
W1

∗xi + b1
)

+ b2
) − yi‖22+

+ α · (
1TW1

+1 + 1TW1
−1 + 1TW2

+1 + 1TW2
−1

)
,

W1
+ � 0,W1

− � 0,W2
+ � 0,W2

− � 0,

(4)

where W1
∗ = W1

+−W1
−, W2

∗ = W2
+−W2

−. Operator ‘�’ is applied element-wise.
To solve (4), L-BFGS-B [14] procedure may be used. A similar approach was
considered e.g. in [8,12] in the case of learning �1-penalized logistic regression.

The network can be fitted at once, or we can use the following expand proce-
dure. Starting from one hidden unit (p = 1) the neural network is trained, then
we expand the current solution by adding another unit—this operation inserts
a new row in the matrix W1

+ and a new column in the matrix W2
+, and a new

element in the vector b1. The same happens to matrices W1
− and W2

−. New
values are chosen randomly. After insertion, the training procedure is repeated.



206 J. Rodziewicz-Bielewicz et al.

Initial neural network weights can be set randomly. However, a more advanta-
geous way is to initialize W1 with the transformation matrix taken from the
ordinary PCA procedure, W2 as transpose matrix, and b1 = 0, b2 = 0.

The presented solution is a general approach that can be used to fitting
general sparse neural networks. To use such a network as auto-encoder we set σ
as identity (a linear activation function), and take the input part of data as the
target. The k-th row of W1 can be interpreted as the k-th principal component,
and W2 is the matrix of inverse transformation to dimension d.

2.2 Sklearn SparsePCA

The presented solution is compared with the SparsePCA procedure from
scikit-learn. In this procedure, a dictionary learning approach [5,9] is used,
and it solves the following optimization problem:

(U∗,V∗) = arg min
U,V

1
2
‖X − VU‖22 + α‖V‖1

subject to ‖Uk‖2 = 1 for all 0 ≤ k < pcomponents

(5)

Looking at (3) we have ‖X−W2W1X‖22, with W2 corresponding to V and
W1X corresponding to U. In the auto-encoder both weight matrices are sparse
and a more natural is use W1 as the transformation matrix and W2 as inverse
transformation.

3 Experiments

All experiments were conducted in the Python/sklearn environment. In
experiments we compare two methods: (1) SparsePCA, from Python’s
package scikit-learn [11] and (2) our regularized two-layer neural network
(neural network) with linear activation function, implemented in C++.

Data sets Following data sets were compared (details are shown in Table 1):

– Gasoline dataset—this dataset is taken from the R package pls [6] and con-
tains 60 near-infrared spectra signals for gasoline sample, described by 401
attributes, corresponding to wavelengths from 900 nm to 1700 nm.

– MNIST—MNIST dataset [7] is a large dataset of handwritten digits, that
contains 60 000 training and 10 000 testing images on matrices 28×28, which
results in 784 attributes.

– The Olivetti faces—this dataset [2] from scikit-learn package [11] contains a
set of 400 face images - 10 different images per each distinct subject. Images
are on matrices 64 × 64, which results in 4096 attributes. Images were taken
at different times, varying the lighting, facial expressions and facial details
(presence of glasses).
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Table 1. Information about data sets.

Data set Samples Features Range of attributes

Gasoline 60 401 [-0.084, 1.33]

MNIST 60000 784 [0, 255]

Olivetti faces 400 4096 [0, 1]

For all models, the separate test set was used. For MNIST the testing set
is provided. Remaining datasets were not split into the learning and test-
ing part, therefore the learning and testing part was chosen randomly using
train test split function in a proportion 1:1. The number of iterations and
tolerance for learning algorithms was set arbitrarily as 1000 for iterations and a
tolerance 10−3.

We also set biases b1 and b2 in the neural network to zeros, therefore the
data is not centered by features medians, like in the SparsePCA.

In the experiment, we compared the time of computations and quality of algo-
rithms for different regularization parameter α. In this experiment, the number
of fitted components was set to 50 for faces and MNIST, and 10 for gasoline.
Both solutions are fitted in the same conditions in the one-thread model. The
only parallel part was the n-fold cross-validation with one thread per fold. The
experiments were performed on the machine with Xeon E5-2699 v4 2.20 GHz
CPU and 128GB RAM. The following fitting-testing procedure was used:

for trial_num in [1, ..., number_of_trials]:
x_train, x_test = train_test_split(X, test_size=0.5)
for model in [SparsePCA, neural_network]:

for alpha in list_of_alphas:
model.fit(x_train)
mse_train[trial_num] = score(model, x_train)
mse_test[trial_num] = score(model, x_test)

score_train = mean(mse_train)
score_test = mean(mse_test)

Two compared solutions use a bit different optimization criteria and it results
in a bit different meaning of the regularization parameter α. In order to provide
comparable and similar conditions of the experiment, we present the quality
measures with respect to the sparsity of solutions. This means that two models
with the same sparsity were compared in time computations and the quality
of reconstruction. As the measure of quality, a standard mean squared error of
reconstruction (mse) is used. Sparsity means an average number of zero coeffi-
cients per component.
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Table 2. A detailed comparison of our approach (neural network) with sklearn pro-
cedure SparsePCA and ordinary PCA procedure. Sparsity means an average number
of zero coeficients per component.

D
a
ta Neural network Sklearn SparsePCA PCA

α MSE
train

MSE
test

Time Sparsity α MSE
train

MSE
test

Time Sparsity MSE
train

MSE
test

Time

G
a
so

li
n
e

1.4e–5 4.4e–6 7.3e–6 0.073 0.09 2.3e–4 1.2e–6 1.1e–5 10.57 65.65 0.016 0.016 0.064

2.7e–5 4.5e–6 7.3e–6 0.071 0.62 5.2e–4 1.3e–6 1.2e–5 11.08 86.63

5.2e–5 7.4e–6 1.2e–5 0.469 115.1 0.001 1.6e–6 1.3e–5 7.915 121.3

1.0e–4 1.7e–5 2.4e–5 1.205 339.7 0.003 2.4e–6 1.4e–5 8.058 174.5

1.9e–4 2.3e–5 3.0e–5 1.268 374.8 0.006 4.6e–6 2.1e–5 7.459 225.9

O
li
v
e
tt
i
fa
c
e
s

1.0e–4 2.0e–3 3.8e–3 392.6 564.8 0.014 2.0e–3 3.9e–3 163.5 344.0 6.4e–
3

8.2e–
3

2.118

3.7e–4 2.0e–3 3.9e–3 281.5 2212 0.032 2.3e–3 3.8e–3 2699 1332

7.2e–4 2.1e–3 4.0e–3 268.3 2927 0.072 2.8e–3 3.9e–3 1542 2190

1.4e–3 2.3e–3 4.1e–3 248.4 3371 0.164 3.3e–3 4.2e–3 485.4 2817

2.7e–3 2.9e–3 4.4e–3 228.9 3375 0.373 4.3e–3 5.2e–3 180.5 3347

M
N
IS

T

0.019 766.1 770.9 2969 204.4 5.179 766.1 771.0 46.83 191.2 778.9 783.7 0.864

2.683 766.3 771.0 1271 362.5 13.89 766.3 771.1 46.08 230.7

19.31 769.2 773.7 1264 521.9 100.0 775.7 780.3 85.00 351.9

138.9 825.9 829.5 1268 746.1 268.3 831.7 835.2 755.6 616.8

372.8 901.9 904.4 1250 770.7 1931 1118 1119 127.7 762.6

A detailed comparison of our approach (neural network) with sklearn pro-
cedure SparsePCA and an ordinary PCA procedure are presented in Table 2.
In Fig. 2 times of computations, quality of reconstruction and the regularization
parameter α relative to given sparsity are presented.

As one can see in Fig. 2, despite the fact that SparsePCA is quite faster for
larger sparsity, the proposed solution (neural network) holds on the accuracy
of reconstruction for a larger sparsity on both train and test set.

The comparison of components on the faces dataset are shown in Fig. 7.
Different colors mean negative and positive coefficients, and white is exact zero.
Additionally, for comparison, we present results for ordinary PCA procedure and
covariance matrices for components. Orthogonality of components for ordinary
PCA is theoretically guaranteed. Looking at covariance matrices we see that
components found by the neural network are nearly orthogonal, more than
those found by the SparsePCA. Similar results for MNIST and gasoline are
presented in Figs. 3 and 8.

The quality of reconstruction of images is shown in Figs. 5 and 6 (50 com-
ponents), and reconstruction for the spectra data gasoline (10 components) is
shown in Fig. 4. As one can see even for a such number of components the qual-
ity is quite good. For very similar sparsity our approach gives a better quality
of reconstruction in contrast to the SparsePCA. For faces, one can observe a
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bit clearer details like glasses or moustaches. For gasoline with the same sparsity
(about 80% i.e. 320 zero coefficients) quality of our neural network approach
is much better. For datasets gasoline and faces, where there were relatively few
samples the quality of reconstruction of both sparse methods is much better then
for the common PCA procedure.

Fig. 2. The comparison of our neural network approach with the
SparsePCA/sklearn procedure. The Sparsity means an average number of zero
coefficients per component, α (alpha) is the regularization parameter.
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Fig. 3. The comparison of 10 components on gasoline dataset. Blue colors are compo-
nents and red colors are vectors used to the reconstruction (output layer weights W2).
Below for comparison we present results of the ordinary PCA procedure. In the bottom
right there are presented covariance matrices for components and histograms of mod-
els’ coefficients. Sparsity: neural network (93.47%),sklearn/SparsePCA (56.33%),
PCA (0%).

Fig. 4. The quality of reconstruction on the gasoline dataset for neural network,
SparsePCAand ordinary PCA respectively. Original signals are dashed, reconstruc-
tions are a solid lines.
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Fig. 5. The quality of reconstruction on the MNIST dataset. In the first row there are
original images and below there is reconstruction using neural network, SparsePCA
and ordinary PCA respectively.

Fig. 6. The quality of reconstruction on the faces dataset. In the first row there are
original images and below there is reconstruction using neural network, SparsePCA
and ordinary PCA respectively.
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Fig. 7. The comparison of 16 components (of all 50) on faces dataset. Red colors
are negative, blue are positive and white is exact zero. Bottom left: the results of
the ordinary PCA procedure, and in bottom right: covariance matrices for compo-
nents and histograms of models coefficients are presented. Sparsity: neural network
(82.39%),sklearn/SparsePCA (81.71%), PCA(0%).

4 Summary

In the paper, the procedure for learning sparse neural networks was presented.
Such structure can be adopted as auto-encoder and effectively used to learning
sparse components. In experimental part comparison with SparsePCA procedure
from scikit-learn was presented. As one can observe our solution is time attrac-
tive at least for certain areas of sparsity especially for data with a small number
of samples relative to the number of attributes. For a larger number of examples
SparsePCA procedure is a bit faster. However, our solution holds on accuracy
in the wider scope of sparsity, also for larger sparsity (when our solution is a bit
slower). The quality of reconstruction in both sparse procedures is quite similar
and it is better than those obtained by the ordinary PCA procedure. However,
using our approach we could get a better sparsity with the same accuracy than
in SparsePCA. Orthogonality of components is also better for our approach than
in the SparsePCA procedure.
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Fig. 8. The comparison of 16 components on the MNIST dataset. Red colors are nega-
tive, blue are positive and white is exact zero. Below for comparison we present results
of the ordinary PCA procedure, and in the bottom right there are presented covari-
ance matrices for components.neural network (98.3% of 0 coefficients) approach with
sklearn procedure SparsePCA (97.27% of 0 coefficients).

References

1. Bourlard, H., Kamp, Y.: Auto-association by multilayer perceptrons and singular
value decomposition. Biol. Cybern. 59(4), 291–294 (1988)

2. AT&T Laboratories Cambridge. The database of faces (1994)
3. d’Aspremont, A., Ghaoui, L.E., Jordan, M., Lanckriet, G.: A direct formulation

for sparse PCA using semidefinite programming. CoRR, cs.CE/0406021, July 2004
4. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. SSS.

Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7
5. Jenatton, R., Obozinski, G., Bach, F.: Structured Sparse Principal Component

Analysis (2009)
6. Kalivas, J.H.: Two data sets of near infrared spectra. Chemometr. Intell. Lab. Syst.

37, 255–259 (1997)
7. LeCun, Y., Cortes, C.: MNIST Handwritten Digit Database (2010)
8. Lin, C.-J., Weng, R.C., Sathiya Keerthi, S.: Trust region Newton method for logis-

tic regression. J. Mach. Learn. Res. 9, 627–650 (2008)

https://doi.org/10.1007/978-0-387-84858-7


214 J. Rodziewicz-Bielewicz et al.

9. Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online dictionary learning for sparse
coding. In: Proceedings of the 26th Annual International Conference on Machine
Learning, ICML 2009, pp. 689–696. ACM, New York (2009)

10. Ng, A.: CS294A Lecture Notes: Sparse Autoencoder (2019)
11. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn.

Res. 12, 2825–2830 (2011)
12. Shalev-Shwartz, S., Tewari, A.: Stochastic methods for �1-regularized loss mini-

mization. J. Mach. Learn. Res. 12, 1865–1892 (2011)
13. Williams, P.M.: Bayesian regularization and pruning using a Laplace prior. Neural

Comput. 7, 117–143 (1995)
14. Zhu, C., Byrd, R.H., Peihuang, L., Nocedal, J.: Algorithm 778: L-BFGS-B: Fortran

subroutines for large-scale bound-constrained optimization. ACM Trans. Math.
Softw. 23(4), 550–560 (1997)



Trimmed Robust Loss Function
for Training Deep Neural Networks

with Label Noise

Andrzej Rusiecki(B)

Department of Computer Engineering, Wroclaw University of Science
and Technology, Wybrzeże Wyspiańskiego 27, Wroc�law, Poland
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Abstract. Deep neural networks obtain nowadays outstanding results
on many vision, speech recognition and natural language processing-
related tasks. Such deep structures need to be trained on very large
datasets, what makes annotating the data for supervised learning, par-
ticularly difficult and time-consuming task. In the supervised datasets
label noise may occur, which makes the whole training process less reli-
able. In this paper we present a novel robust loss function based on cate-
gorical cross-entropy. We demonstrate its robustness for several amounts
of noisy labels, on popular MNIST and CIFAR-10 datasets.

Keywords: Neural networks · Deep learning · Robust learning ·
Label noise · Categorical cross-entropy

1 Introduction

In many sophisticated machine learning tasks such as computer vision, speech
recognition, or natural language processing, deep neural networks have demon-
strated impressive results, very often outperforming existing, state-of-the-art
results [2]. By training deep networks on large supervised datasets, deep learning
algorithms are able to establish models that can potentially represent high-level
abstractions [3,22]. One of the reasons for deep learning popularity and success
is clearly the fact that nowadays many well-annotated large data collections are
publicly available [25].

Similarly to shallow multilayer feedforward neural networks, deep structures
are usually considered as reliable and easy-to-use tools. However, in such data-
driven approaches, quality of models strongly depends on the quality of their
training data [1,14]. To train deeper networks, usually very large annotated
datasets are required, which makes the process of preparing training data expen-
sive and relatively time-consuming. Moreover, annotating data by many different
human annotators, search engines, or data mining algorithms analyzing social
media websites, is followed by rather obvious side effect, namely: label noise. In
this paper, we describe in details a new approach introduced in [21], combin-
ing well-known cross-entropy loss with an idea of trimmed robust estimators, to
obtain robust learning in the presence of label noise.
c© Springer Nature Switzerland AG 2019
L. Rutkowski et al. (Eds.): ICAISC 2019, LNAI 11508, pp. 215–222, 2019.
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2 Robust Learning and Label Noise

Learning from noisy data has been studied previously in two main fields. The
first one is learning in the presence of outliers, defined as observations distant
from the bulk of the data. Such data points can be results of long-tailed noise,
but also of measurement errors, or human mistakes. The quantity of outliers
may range from 1% up to even 10% [9]. Typically, the problem of outlying data
has been investigated for regression-like tasks, where dependent variables are
continuous. However, in the case of corrupted input patterns (leverage points)
one may consider classification problems as well.

The latter field of study is learning from noisy labels for classification tasks. In
this domain also two basic current exists: cleaning data by removing or correcting
noisy patterns, and robust learning from noisy data.

2.1 Dealing with Outliers

Multilayer neural networks minimizing mean squared error (MSE) loss, typical
for regression tasks, try to match training patterns as close as possible, incor-
porating into their model also potential outlying data points. This is why many
robust learning algorithms have been proposed [1,4,6,14,19,20]. The basic idea
of such approaches is to replace MSE by another loss function, so they are often
based on robust error measures. Hence, the robustness to outliers is achieved
by reducing the impact of large training residuals, potentially caused by gross
errors or outliers. Good review of such methods can be found in [11].

Another group of approaches are instance selection algorithms. They can be
applied also to classification problems. These algorithms fall into two categories:
compression methods and noise filters. Compression methods such as the CNN
(Condensed Nearest Neighbor) algorithm [28] are designed to remove instances
too similar to its neighbors. An example of noise filter is the ENN (Edited Nearest
Neighbor) algorithm [28]. This method removes instances that are too different
from the rest of the data. A large survey of instance selection algorithms for
classification tasks appeared in [23].

2.2 Learning from Noisy Labels

Noisy labels are not identical with outliers, however there exist many similarities
in dealing with such problems. In the case of training neural networks in the
presence of label noise, the methods also can be divided into two groups.

There are many, recently proposed, approaches in the literature that aim to
learn directly from noisy labels [8,10,15,18,26]. The authors usually focus on
designing robust learning algorithms or even try to use large, weakly-labeled
data collections, slightly modifying training process in hope that the resulting
model can be acceptably accurate. In the second group of approaches, efforts
are directed to clean data by removing or correcting erroneous labels. In some
models the label noise is considered as conditionally independent from the input
[16,24], while the others propose image-conditional models [27,29].
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Approaches using modified or corrected losses were presented in [7] and [17].
In this paper we describe and evolve a new loss function based on categorical
cross-entropy, robust to label noise [21].

3 New Robust Loss Function

To introduce a new robust loss function, we start with derivation of Least
Trimmed Absolute Value (LTA) criterion proposed in our previous work [20].
Such modified error function was experimentally proved to be an effective tool
to make the whole training algorithm more robust to outlying data points.

3.1 LTA Error Criterion

Based on the Least Trimmed Absolute value estimator, a new error criterion was
proposed in [20], as a training loss robust to outliers and leverage points. We
assume that the training set consists of N pairs:
{(x1, t1), (x2, t2), . . . , (xN , tN )}, where xi ∈ Rγ denotes the γ-dimensional ith
input vector, ti ∈ RC the corresponding C-dimensional network target, and
yi ∈ RC its output. Robust LTA error criterion can be defined as:

ELTA =
h∑

i=1

(|r|)i:N , (1)

where (|r|)1:N ≤ · · · ≤ (|r|)N :N are ordered absolute network output residuals
written as:

ri =
C∑

c=1

|(yic − tic)|. (2)

As one may notice, the error function given by Eq. (1) excludes from the train-
ing process patterns causing largest errors in a given epoch. If the estimated
amount of outliers in the training data is known, then scaling factor h can be set
empirically. Otherwise it can be is estimated based on the median of all absolute
deviations from the median (MAD):

MAD (ri) = 1.483 median|ri − median(ri)|, (3)

and the trimming parameter can be fixed or calculated as [20]:

h = ‖{ri : |ri| < 3 ∗ MAD(|ri|), i = 1 . . . N}‖. (4)

3.2 Categorical Cross-Entropy

As one may notice, the LTA loss (like MSE) doesn’t seem to be a proper choice
for classification problems. As a matter of fact, neural networks cab be trained
on classification taks with these error measures but their expected performance
is poorer than in case of using binary or categorical cross-entropy loss.
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Categorical cross-entropy loss (CCE) can be technically written as:

ECC = − 1
N

N∑

i=1

C∑

c=1

(pic log(yic)), (5)

where pic is a binary indicator function that detects whether the ith training
pattern belongs to cth category. In other terms, one may interpret pic (target) as
true, and yic (output) as predicted probability distribution for ith observation
belonging to cth class.

3.3 Trimmed Categorical Cross-Entropy

In order to combine the advantages of using CCE loss and robustness to outlying
data points obtained by the LTA error, we decided to propose new function to
be minimized during network training [21]. Trimmed categorical cross-entropy
loss is then defined as:

ETCC = − 1
h

h∑

i=1

qi:N , (6)

where q1:N ≤ · · · ≤ qN :N are ordered losses for each observation:

qi =
C∑

c=1

(pic log(yic)). (7)

The trimming parameter h can be set a priori based on the expected amount of
label noise.

4 Experimental Results

To test the novel approach, we decided to use two well-known classification
datasets, namely MNIST [13] and CIFAR-10 [12]. The performance of two vari-
ants of trimmed CCE was compared to results obtained by two other popular
training losses, used to train deep neural networks in the presence of label noise.
Similar preliminary results, obtained for networks trained without dropout reg-
ularization we presented in [21]. In this paper, however, we analyse the case of
training with regularization, which should make the whole method less sensitive
to label noise.

4.1 Testing Methodology

In our simulations we used deep convolutional neural networks (CNN) imple-
mented with Python 3.6 in TesorFlow environment under Ubuntu 16.04. To
speed up network training all the simulations were run on GTX 1080Ti GPU.
We followed network architectures provided in [7] for both datasets. The details
of hidden layers architectures were gathered in Table 1. However, top accuracies
obtained in our experiments are slightly different from those described in [7],
probably due to algorithm hyperparameters.
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Table 1. Network architectures and dataset characteristic

Dataset Deep architecture

MNIST (Input 28 × 28,
10 classes, 60k/10k
training/test)

Convolution → max pooling (dropout 0.25) → fully
connected 1024 neurons (dropout 0.25) → fully
connected 1024 neurons (dropout 0.5)

CIFAR-10 (Input 32 × 32 × 3,
10 classes, 50k/10k
training/test)

2 Convolutional layers → max pooling (dropout 0.2)
→ 2 Convolutional layers → max pooling (dropout
0.2) → fully connected 512 neurons (dropout 0.5)

Label Noise. To simulate label noise we applied so-called uniform noise model.
In this case, for each training pattern, its label is correct with probability 1 − μ
and with probability μ it is uniformly sampled within the set of all available
incorrect labels. To simulate different levels of noise we varied μ from μ = 0
up to μ = 0.6, which is equivalent to about 60% of incorrect labels in the
training data.

Training Algorithm. Deep neural nets were trained with Adam algorithm
that is shown to be robust against noisy gradients [5]. The training parameters
were set to: learning rate lr = 0.001, β1 = 0.9 and β2 = 0.999, and the networks
were trained for 250 epochs. We examined trimmed CCE with two values of
trimming constant: h = 0.9 and h = 0.7. Test accuracies were averaged over
6 runs of simulations (one training took approximately 25 min on 1080Ti GPU).

Fig. 1. Averaged test accuracy for several levels of label noise for MNIST dataset: cce
-CCE, trimmed7cce - trimmed CCE with h = 0.7, trimmed9cce - trimmed CCE with
h = 0.9, and MSE - MSE.
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Fig. 2. Averaged test accuracy for several levels of label noise for CIFAR-10 dataset:
cce -CCE, trimmed7cce - trimmed CCE with h = 0.7, trimmed9cce - trimmed CCE
with h = 0.9, and MSE - MSE.

4.2 Simulation Results

In the Figs. 1 and 2 averaged results of training deep neural networks on datasets
with several levels of contamination in training labels are presented. The per-
formance of novel trimmed CCE is compared to standard CCE and MSE. As
one may notice, for MNIST dataset, both CCE and MSE loss functions act
in a similar way: the accuracy is almost the same for clean training data and
becomes poorer with increasing label noise. Surprisingly, for higher noise, the
MSE method obtained better results. Trimmed versions of CCE do not achieve
the highest accuracies for clean data labels but their performance is definitely
better when larger noise level occurs.

For Cifar-10 dataset the results are slightly different. First of all, the MSE
method cannot obtain good accuracy even for clean training dataset. CCE and
trimmed versions of CCE presented much better performance: for low contam-
ination level, standard CCE and trimmed CCE with h = 0.9 obtain the best
results, while trimmed version with h = 0.7 outperforms all the other methods
when probability of noise exceeds 30%. It is worth noticing that such effects
are probably caused by naive approach in setting trimming parameter. Making
h dependent on median or average error (as in Eq. 4) could result with much
better efficiency for clean data.
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5 Conclusions

In this paper we presented a novel approach to training deep neural networks in
the presence of label noise. As simulation experiments revealed, our new trimmed
CCE loss, resulted in increased performance for contaminated training data
labels. The trimmed CCE outperforms other algorithms especially for higher
amounts of incorrect labels. The preliminary results obtained for the robust
trimmed CCE loss are very promising, so the efforts should be now directed at
verifying its behavior for more datasets and network architectures. Also design-
ing an algorithm to calculate the trimming parameter automatically (e.g. making
it a function of current errors) could help in improving its performance for clean
datasets.
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Abstract. In this paper, we present several approaches to configuration
of deep convolutional neural networks for image classification. A common
problem when creating deep structures is their proper designing and
configuration. This paper shows the learning of the baseline model for
image classification and its variations with different structures based on
the baseline model. Each of them has different configurations related to
downsampling, pooling and filters dilatation. The paper is intended as
a guideline for proper designing of deep structures based on experiences
resulting from the modifications of deep models configurations.

Keywords: Convolutional neural network · Deep structure ·
Deep learning · Downsampling · Pooling · Filter dilatation

1 Introduction

When designing a deep structure intended to classify objects in an image, we
usually have a lot of questions. There are several factors that must be taken
while selecting a proper structure. How many layers should our model have?
How to configure the entire structure? Which parameters to set during learning?
Often, structures are designed in an experimental way. Of course, some of the
indicators suggest when we have a problem with overfitting of the model to the
training set [14] or with the vanishing gradient [16]. At the moment when we
notice such a problem, depending on the situation, we are able to modify our
model or learning parameters to prevent this kind of situations. Unfortunately,
all modifications that we make in our structure are performed experimentally,
based on very general information about a given problem.

A very popular approach to structure design is the use one of many existing
models (see e.g. Fig. 1). In many articles, it can be seen that for solving a given
problem, researchers reach for models that have already confirmed their effec-
tiveness while solving other issues [5,8,9,12,22,24]. In order to use the existing
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model for our research, it should work effectively on an issue of a similar com-
plexity to our problem. However, we usually have only a few possibilities due
to the limited number of verified structures. A problem arises when our issue is
completely different from the most popular ones, which makes it impossible to
find an existing model. Such a situation usually happens during the implemen-
tation of business projects, where most projects are unique in their field.

Fig. 1. An example of Deep Convolutional Neural Network (DCNN).

At the moment when our issue is very unique and we can not find the struc-
ture which is appropriate for us, then we have to design our own or modify
an already existing one [23]. A very popular solution is to modify the existing
structure to resolve our problem. This approach is called transfer learning. The
problem then is choosing the right model and its modification. To select the
most suitable structure, first we need to examine the complexity of our problem
and choose a model that solves a problem similar to our (usually model is larger
and solves more complex problems). The next step is the appropriate modifica-
tion of this structure. Of course, some modifications cause the phenomenon of
overfitting or vanishing gradient, which we have to resolve by the appropriate
changing parameters of configurations.

Despite all these propositions, it sometimes turns out that such an approach
is not enough. In this situation, we have only one solution, which is to create
from scratch our own structure dedicated to aimed goals [15]. In this case, the
task is very difficult. To create a perfect model for our problem, we must have
a big experience in configuring deep structures from the very beginning. We
need to know each configuration of parameters perfectly and understand how
it affects the operation of our structure. Unfortunately, despite the extensive
experience and many hours spent on various configuration variations, we often
do not achieve satisfactory results. Of course, in the literature, we can find many
different approaches to designing deep structures see e.g. [2,3,6,21]. However,
this problem is very common, and deep neural networks are used for many
different projects and we do not always find perfect configurations. Many of
these applications require the design of our own model and each case has the
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problem of proper parameter configuration. Unfortunately, before our skills in
designing structures will be high enough, we need to gain the right knowledge
by practicing many modifications to understand how the changes affected the
structure performance.

Motivated by this fact, in this paper we describe the basic structure for
image classification, modifications of its configurations and explain how it influ-
enced the processing inside the model. Obviously, the experience in designing
deep structures is very valuable. For example, a good approach is designing a
basic structure for classifying images and in the next step changing configuration
parameters and analyzing how they affect the performance and efficiency. It is
also good to pay attention not only to the depth but also to the dimensions of the
propagated signal, which also can change during the experiments, e.g. a number
of channels, changing stride configurations, changing pooling parameters. The
number of such modifications is very large, so a proper guideline would decrease
the search area to find the best configuration model.

The rest of this paper is organized as follows. Section 2 presents the dataset
and architectures used for simulations. Section 3 describes commonly used meth-
ods of designing the structures and techniques of deep learning. Section 4 presents
the experimental results with several changes in the configuration of the base
structure, and the conclusions are drawn in Sect. 5.

2 Dataset and Architectures

2.1 Tiny ImageNet Dataset

The results presented in this article show the effectiveness of the images classi-
fication contained in the Tiny ImageNet database [11]. This dataset contains
100,000 training images divided into 200 categories (each class includes 500
images), 10,000 validation images and 10,000 test images. The size of each image
in the database is 64 × 64 RGB pixels (see Fig. 2). This database is a fragment
of scaled images from the ImageNet database [19].

Fig. 2. Sample images from the Tiny ImageNet database. (Color figure online)
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2.2 Pre-processing

The original set of images (size 64 × 64 pixels) is expanded using one of the
simple data augmentation techniques, which consist of image rotation. Each
image from the training base is rotated by an angle of 30◦ to the left and to
the right, thanks to which the original data set is tripled. In addition, for each
of the original images, the horizontal and mirror transformation of the image
has been done. These operations allow for a better generalization of the learning
process. They also broaden the range of feature values of the classified objects,
thanks to which the knowledge contained in the structure is much larger. The
augmentation methods allow us to significantly reduce the vulnerability of our
model to overfitting. Each pixel of images given at the input of structures shown
in this article is normalized to [−1, 1]. It is also worth noting that the images
were reduced by 4 pixels on each side because usually on the edge of the pictures
there are not very important features. In this way, images with a size of 56 × 56
pixels are inputted to the neural network.

2.3 Baseline Architecture

The base structure (see Table 1) has been designed in such a way that it suc-
cessfully copes with the problem of classification of the Tiny ImageNet, taking
into account the short training time. The configuration of this structure has
also been selected in such a way that it can be easily modified for simulation
purposes. The base structure was created on the foundation of two cascades of
convolutional layers. Each of the cascades consists of two layers of convolutions,
followed by max pooling. The classifier in the model has three layers of fully
connected neurons, each of which is supported in the training process by regu-
larizing with the help of the Dropout method with the dropout rate = 0.5. In
the basic structure, ELU type activation functions have been used, which largely
eliminate the defects of ReLU type functions.

2.4 Modifications of the Baseline Architecture

In order to present the differences between various baseline model configura-
tions, the modifications contain changes for pooling, downsampling and filters
dilatation (see Table 1). By analyzing the learning process and the effectiveness
presented during the simulation, we can verify how each of the changes affects
its operation and the model performance.

3 Methods

3.1 Objective Function

To achieve good classification results, our model is learned by the classic stochas-
tic gradient descent (SGD) method [4], although as an alternative approach var-
ious evolutionary techniques can be applied [1,7]. As a function of the cost,
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Table 1. The configuration of the baseline model comparative to 5 models with mod-
ified configurations.

Configuration Baseline A B C D E

Layer Conv Conv Conv Conv Conv Conv

Channels 64 64 64 64 64 64

Kernel 5 × 5 5 × 5 5 × 5 5 × 5 5 × 5 5 ×5

Reg L2 (scale) 0.001 0.001 0.001 0.001 0.001 0.01

Stride 2 × 2 2 × 2 2 × 2 2 × 2 1 × 1 1 × 1

Activation ELU ELU ELU ELU ELU ELU

Zero padding

Layer Conv Conv Conv Conv Conv Conv

Channels 64 64 64 64 64 64

Kernel 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3

Reg L2 (scale) 0.001 0.001 0.001 0.001 0.001 0.01

Stride 1 × 1 1 × 1 1 × 1 1 × 1 1 × 1 1 × 1

Dilation 1 × 1 1 × 1 2 × 2 2 × 2 1 × 1 1 × 1

Activation ELU ELU ELU ELU ELU ELU

Zero padding

Layer Pool Pool Pool Pool Pool Pool

Type Max Avg Max Avg Max Max

Size 2 × 2 2 × 2 2 × 2 2 × 2 2 × 2 2 × 2

Stride 2 × 2 2 × 2 2 × 2 2 × 2 2 × 2 2 × 2

Layer Conv Conv Conv Conv Conv Conv

Channels 64 64 64 64 64 64

Kernel 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3

Reg L2 (scale) 0.001 0.001 0.001 0.001 0.001 0.01

Stride 1 × 1 1 × 1 1 × 1 1 × 1 1 × 1 1 × 1

Dilation 1 × 1 1 × 1 2 × 2 2 × 2 1 × 1 1 × 1

Activation ELU ELU ELU ELU ELU ELU

Zero padding

Layer Conv Conv Conv Conv Conv Conv

Channels 64 64 64 64 64 64

Kernel 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3

Reg L2 (scale) 0.001 0.001 0.001 0.001 0.001 0.01

Stride 1 × 1 1 × 1 1 × 1 1 × 1 1 × 1 1 × 1

Dilation 1 × 1 1 × 1 2 × 2 2 × 2 1 × 1 1 × 1

Activation ELU ELU ELU ELU ELU ELU

Zero padding
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Table 1. (continued)

Configuration Baseline A B C D E

Layer Pool Pool Pool Pool Pool Pool

Type Max Avg Max Avg Max Max

Size 2 × 2 2 × 2 2 × 2 2 × 2 2 × 2 2 × 2

Stride 2 × 2 2 × 2 2 × 2 2 × 2 2 × 2 2 × 2

Layer FC FC FC FC FC FC

Neurons 1024 1024 1024 1024 1024 1024

Reg L2 (scale) 0.001 0.001 0.001 0.001 0.001 0.01

Activation ELU ELU ELU ELU ELU ELU

Layer Dropout Dropout Dropout Dropout Dropout Dropout

Dropout rate 0.5 0.5 0.5 0.5 0.5 0.5

Layer FC FC FC FC FC FC

Neurons 1024 1024 1024 1024 1024 1024

Reg L2 (scale) 0.001 0.001 0.001 0.001 0.001 0.01

Activation ELU ELU ELU ELU ELU ELU

Layer Dropout Dropout Dropout Dropout Dropout Dropout

Dropout rate 0.5 0.5 0.5 0.5 0.5 0.5

Layer FC FC FC FC FC FC

Neurons 200 200 200 200 200 200

Reg L2 (scale) 0.001 0.001 0.001 0.001 0.001 0.01

Activation Softmax Softmax Softmax Softmax Softmax Softmax

we used the Cross-Entropy calculated from the Softmax activation. The L2
regularization was also used during learning, which significantly improves the
generalization of the entire model [18].

3.2 Weight Initialization

A very important aspect of the basic initialization of the model is the correct
selection of the weights. The weights in the deep neural network are usually
chosen in a random way. It turns out that this is not the best approach because
the weights randomly selected are not proportional to the strength of their cor-
rections determined based on the backpropagation algorithm. In many cases,
the weights values are disproportionately matched with the gradient values.
In order for weights to be randomly selected in a manner proportional to the
gradient, a good method is to initialize them using the Xavier method [10].
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We chose Xavier initialization based on the normal distribution with the stan-
dard deviation calculated according to the following formula:

[H]σ =
√

2

√
2

ninputs + noutputs
(1)

The weights are randomly selected from the normal Gaussian distribution
with the center at point 0. The Gaussian distribution parameters are selected in
relation to the number of inputs (ninputs) and outputs (noutputs) of neurons in
individual layers.

3.3 Optimization Algorithm

An additional element supporting the learning of our models is the use of the
momentum optimizer in the learning process. It was proposed by Nesterov [17].
By using this method, the model learns to generalize the problem much better.
Network learning using the Nesterov algorithm is almost always faster than the
standard version of the algorithm that uses the momentum element. The main
feature of the algorithm is to measure the gradient of the cost function not in
the local position, but slightly forward in the direction of the momentum. The
Nesterov algorithm significantly limits oscillations during learning, which are
caused by the addition of the momentum element. Thanks to this, the model
achieves convergence faster.

3.4 Network Regularization

In order to prevent overfitting of structures to training samples, in this article
we use the dropout method [20]. This method consists of randomly switching off
individual neurons, based on the probability set as the layer configuration param-
eter. Excluding individual neurons, the network learns to solve the problem of
classification and reduces the risk of overfitting of the model to the training set.
We must remember that the probability for the dropout layer cannot be very
high, because it can cause a large loss of relevant information, leading to the
problems with learning of our structure.

The second element of the structure regularization is the batch normalization
method [13]. This method effectively eliminates the vanishing gradient by nor-
malizing the signal flowing between specific layers of the model. The vanishing
gradient appears when there is an excessive loss of error in the back propagation
of the signal. The batch normalization layer scales the signal processed in the
structure, accelerating the learning significantly.

3.5 Learning Configuration

At the input of the neural network, images with dimensions of 56 × 56, are
given. This is the result of performing a clipping operation on original 64 × 64
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images. Each of the structures mentioned in this article is trained through 30
epochs using the SGD algorithm. The size of the minibatch is 256. The training
of the structures runs with a constant learning coefficient = 0.01, along with
the momentum element = 0.9 and the Nesterov optimization. The process of
learning layers of fully connected neurons is supported by the regularization, by
applying the dropout method with the parameter of abandonment = 0.5. Each
of the layers with weights was initiated using the Xavier method. It is worth
noting that weights were initiated with the same random seed size. This means
that each of the structures has an identical set of weights before learning. We
also used the L2 regularization with scale = 0.001. This significantly prevents
overtraining the network. At the output of each of the structures, the Softmax
function was used. The cost function is the cross entropy.

4 Experimental Results

To present the differences between the baseline model and other models with
modified configuration, we depicted the learning charts for all structures listed
in Table 1. Two charts were generated for each model, showing the decrease
of the error and effectiveness in relation to 30 learning epochs. The error was
measured by MAE. The decrease of the loss function value is determined for the
training and validation sets. The value of the cost function consists of the sum
of costs resulting from the use of cross entropy and the cost calculated based on
the L2 regularization. In the case of performance charts, they show the accuracy
in individual epochs in relation to the training TOP-1 results and validation set
for TOP-1 and TOP-5 results.

The analysis of the training and validation parameters on the charts from
individual structures allows gaining a lot of interesting information about mod-
ifications introduced in the models. The first chart shows the baseline model
learning process and we can see that the structure in this configuration reaches
the accuracy on validation set equal to 39.42% for TOP-1 and 65.72% for TOP-5
(see Fig. 3). In the chart for the baseline model, it is worth to notice that during
learning the error and accuracy for the training set increase significantly after
several epochs in relation to the validation set. This indicates the overfitting
problem. Charts generated for subsequent models present:

– Model A - By changing the type of pooling from MAX to AVG, the over-
fitting problem still occurs, but the error is slightly smaller. This proves a
better generalization of the entire model (see Fig. 4).

– Model B - Including dilatation for filters in convolutional layers, it is worth
to notice that the changes are very similar to the results achieved for model A.
Changing the type of pooling or filter dilation setting, only reduces the error
during the training of our structure (see Fig. 5).

– Model C - The modification of this model is a combination of changes con-
tained in model A and B. This model improves the generalization of the
classification of the entire validation set which represents almost the highest
efficiency contained in Table 3 (see Fig. 6).
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– Model D - In model D, the stride in the convolutional layers was changed
to (1, 1). It turns out that this modification increases strengthens overfitting,
which can be seen already after a few training epochs (see Fig. 7). Turning
off downsampling in convolutional layer increases the number of connections
between the second pooling layer and the first fully connected layer from 7 ×
7 × 64 × 1024 to 14 × 14 × 64 × 1024 inputs.

– Model E - The configuration of model E is essentially the same as in the
case of model D. However, in this modification of the structure D, we increase
the scale factor for the L2 regularization from 0.001 to 0.01, which reduces
overfitting (see Fig. 8), but significantly lengthens the process of the structure
learning.

(a) Training and validation loss (b) Training and validation accuracy

Fig. 3. Baseline model (downsampling, MAX-pooling, lack of dilations in convolutional
layers)

(a) Training and validation loss (b) Training and validation accuracy

Fig. 4. Model A (downsampling, AVG-pooling, lack of dilations in convolutional layers)

Despite the fact that the modification of the structure E configuration largely
reduced the problem of overfitting, its effectiveness significantly decreased. We
can assume that the vanishing gradient or the low learning rate may be the
reason. The possible problem may be caused by a too high factor of L2 regular-
ization. Model configuration E is a very good fundament for further examinations
to increase the effectiveness of the learning process.
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(a) Training and validation loss (b) Training and validation accuracy

Fig. 5. Model B (downsampling, MAX-pooling, 2 × 2 dilations in three convolutional
layers)

(a) Training and validation loss (b) Training and validation accuracy

Fig. 6. Model C (downsampling, AVG-pooling, 2 × 2 dilations in three convolutional
layers)

(a) Training and validation loss (b) Training and validation accuracy

Fig. 7. Model D (without downsampling, MAX-pooling, 2 × 2 dilations in three con-
volutional layers, L2 regularization scale = 0.001)
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(a) Training and validation loss (b) Training and validation accuracy

Fig. 8. Model E (the same as D but L2 regularization scale = 0.01)

When analyzing Table 2 we can check how the modifications of configurations
affect the decrease of the error and the learning time depending on the number
of particular epochs. The average training time of one epoch reflects the time in
seconds. “Best epoch number” indicates the number of the epoch at which Top-1
validation accuracy was the highest. Top-1 accuracy measured on the training
set was shown in the last row.

Table 2. Information about the best epoch at which Top-1 accuracy on the validation
data was the highest, the average training time of one epoch in seconds and TOP-1
accuracy on training data.

Model Baseline A B C D E

Average training time 237.09 219.074 256.36 261.67 379.36 378.08

Best epoch number 23 29 29 28 7 24

TOP-1 accuracy (best epoch) 0.606 0.600 0.592 0.584 0.466 0.276

Table 3 shows the results for each of the analyzed structures. We can check
how the modifications of the baseline model parameters affect its performance.

Table 3. The accuracy and other performance metrics on the validation set: the base-
line model comparative to 5 models with modified configurations.

Model Baseline A B C D E

TOP-1 accuracy 0.394 0.387 0.390 0.389 0.344 0.255

TOP-5 accuracy 0.657 0.653 0.644 0.650 0.609 0.504

Precision 0.399 0.393 0.391 0.392 0.346 0.255

Recall 0.394 0.387 0.390 0.389 0.344 0.258

F1 score 0.386 0.379 0.381 0.380 0.329 0.236
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5 Conclusions

The simulations presented in this article show the learning process in relation
to different configurations of the individual structures. The main goal of our
work was to learn the differences that result from individual changes and how
they affect the process of deep learning. By gaining practical experience through
modifying various structures, we learn how to design them better for our own
use. There are different learning techniques in the field of deep neural networks
as well as various ways of the configuration of structures. In order to obtain sat-
isfying results we have to understand the changes caused by modifying structure
parameters. Thanks to the presented simulations, we learn how changes in indi-
vidual configuration parameters affect the operation of various deep structures.
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under Grant 2017/27/B/ST6/02852.

References

1. Abdelbari, H., Shafi, K.: Learning structures of conceptual models from observed
dynamics using evolutionary echo state networks. J. Artif. Intell. Soft Comput.
Res. 8(2), 133–154 (2018). https://doi.org/10.1515/jaiscr-2018-0010

2. Barnes, Z., Cipollone, F., Romero, T.: Techniques for image classification on tiny-
imagenet

3. Bologna, G., Hayashi, Y.: Characterization of symbolic rules embedded in deep
DIMLP networks: a challenge to transparency of deep learning. J. Artif. Intell.
Soft Comput. Res. 7(4), 265–286 (2017)

4. Bottou, L.: Large-scale machine learning with stochastic gradient descent. In:
Lechevallier, Y., Saporta, G. (eds.) Proceedings of COMPSTAT’2010, pp. 177–
186. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-7908-2604-3 16

5. Chan, T.H., Jia, K., Gao, S., Lu, J., Zeng, Z., Ma, Y.: PCANet: a simple deep
learning baseline for image classification? IEEE Trans. Image Process. 24(12),
5017–5032 (2015)

6. Chang, O., Constante, P., Gordon, A., Singana, M.: A novel deep neural network
that uses space-time features for tracking and recognizing a moving object. J. Artif.
Intell. Soft Comput. Res. 7(2), 125–136 (2017)

7. Dawar, D., Ludwig, S.A.: Effect of strategy adaptation on differential evolution in
presence and absence of parameter adaptation: an investigation. J. Artif. Intell.
Soft Comput. Res. 8(3), 211–235 (2018). https://doi.org/10.1515/jaiscr-2018-0014

8. Deng, F., Pu, S., Chen, X., Shi, Y., Yuan, T., Pu, S.: Hyperspectral image classi-
fication with capsule network using limited training samples. Sensors 18(9), 3153
(2018)

9. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference
on Computer Vision, pp. 1440–1448 (2015)

10. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, pp. 249–256 (2010)

11. Hansen, L.: Tiny imagenet challenge submission. CS 231N (2015)

https://doi.org/10.1515/jaiscr-2018-0010
https://doi.org/10.1007/978-3-7908-2604-3_16
https://doi.org/10.1515/jaiscr-2018-0014


On Proper Designing of Deep Structures for Image Classification 235

12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

13. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

15. Marmanis, D., Datcu, M., Esch, T., Stilla, U.: Deep learning earth observation
classification using imagenet pretrained networks. IEEE Geosci. Remote Sens. Lett.
13(1), 105–109 (2016)

16. Mou, L., Ghamisi, P., Zhu, X.X.: Deep recurrent neural networks for hyperspectral
image classification. IEEE Trans. Geosci. Remote Sens. 55(7), 3639–3655 (2017)

17. Nesterov, Y.: A method for unconstrained convex minimization problem with the
rate of convergence o (1/k2). In: Doklady AN USSR, vol. 269, pp. 543–547 (1983)

18. Ng, A.Y.: Feature selection, l 1 vs. l 2 regularization, and rotational invariance. In:
Proceedings of the Twenty-First International Conference on Machine Learning,
p. 78. ACM (2004)

19. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J.
Comput. Vision (IJCV) 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-
015-0816-y

20. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

21. Villmann, T., Bohnsack, A., Kaden, M.: Can learning vector quantization be an
alternative to SVM and deep learning? - Recent trends and advanced variants of
learning vector quantization for classification learning. J. Artif. Intell. Soft Comput.
Res. 7(1), 65–81 (2017). https://doi.org/10.1515/jaiscr-2017-0005

22. Wang, F., et al.: Residual attention network for image classification. In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
3156–3164 (2017)

23. Yu, H.: Deep convolutional neural networks for tiny imagenet classification
24. Zhang, C., et al.: A hybrid MLP-CNN classifier for very fine resolution remotely

sensed image classification. ISPRS J. Photogramm. Remote Sens. 140, 133–144
(2018)

http://arxiv.org/abs/1502.03167
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1515/jaiscr-2017-0005


Constructive Cascade Learning Algorithm
for Fully Connected Networks

Xing Wu1, Pawel Rozycki2(B), Janusz Kolbusz2, and Bogdan M. Wilamowski1

1 Auburn University, Auburn, AL 36849-5201, USA
xzw0015@tigermail.auburn.edu, wilambm@auburn.edu

2 University of Information Technology and Management in Rzeszow,
Sucharskiego 2, 35-225 Rzeszow, Poland
{prozycki,jkolbusz}@wsiz.rzeszow.pl

http://wsiz.rzeszow.pl

Abstract. The Fully Connected Cascade Networks (FCCN) were orig-
inally proposed along with the Cascade Correlation (CasCor) learning
algorithm that having three main advantages over the Multilayer Per-
ceptron (MLP): the structure of the network could be determined dynam-
ically; they were more powerful for complex feature representation; the
training was efficient by optimizing newly added neuron only in every
stage. However, at the same time, they were criticized that the freezing
strategy usually resulted in an overlarge network with the architecture
much deeper than necessary. To overcome the disadvantage, in this paper,
a new hybrid constructive learning (HCL) algorithm is proposed to build
a FCCN as compact as possible. The proposed HCL algorithm is com-
pared with the CasCor algorithm and some other algorithms on several
popular regression benchmarks.

Keywords: Fully Connected Cascade Networks (FCCN) ·
Hybrid Constructive Learning (HCL) algorithm ·
Particle Swarm Optimization (PSO) ·
Levenberg Marquardt (LM) algorithm · Least Square (LS) method

1 Introduction

The Feedforward Neural Networks (FNN) are widely investigated in the machine
learning community, like classification, regression, etc. The first step of FNN
learning is to determine the connection topology of the model. There are two
main types of the FNN topology: Multilayer Perceptron (MLP) and Fully Con-
nected Cascade Networks (FCCN). Then based on the selected topology as a
priori, structure learning is performed to search both the best size of the net-
work and the optimal set of the parameters (the weights).
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The MLP is the oldest and most popularly used topology of FNN. The neu-
rons are arranged layer by layer. The outputs of each layer are fed into the adja-
cent next layer as inputs. With a long history, a lot of learning algorithms for the
MLP had been proposed, like error backpropagation (EBP) [1], quickprop [2],
Rprop [3], Levenberg-Marquardt (LM) algorithm [4], Broyden-Fletcher-Golfarb-
Shanno (BFGS) algorithm [5], etc. However, most of these learning algorithms
only focused on the parameters tuning of a fixed-size network. The other impor-
tant task of the structure learning, to determine the best network size, still
remains to be difficult. The trial and error approach had been used to determine
the network size. However, since the MLP has too many possible structures that
one has to determined how many layers (the depth) and how many neurons in
each layer (the width), many trials are needed, which leads to a lot of training
time. There were also some constructive and pruning algorithms for the struc-
ture learning of the MLP. However, most of the them only focused on the Single
Layer Feedforward Neural networks (SLFN), the simplest MLP with only one
hidden layer [6,9,16,17].

The FCCN topology was originally proposed by Fahlman and Lebiere in 1990
together with the Cascade Correlation (CasCor) algorithm [10]. The FCCN with
the CasCor learning algorithm is summarized with the following advantages over
the MLP topology:

1. Each hidden layer of the FCCN has only one neuron. Instead of searching for
the optimal depth and width of the network as the MLP, one only needs to
care the number of neurons. The CasCor algorithm is quite straightforward
to construct the FCCN incrementally.

2. Each hidden neuron of the FCCN receives connections from all the inputs and
all the previously installed hidden neurons, which makes it more powerful to
represent high order nonlinear features.

3. The CasCor algorithm trains each neuron only once and then freezes their
incoming parameters. This strategy improves the training efficiency dramat-
ically.

Because of these advantages, the FCCN are widely used in different application
fields [7,8]. However, at the same time, the freezing strategy of the CasCor algo-
rithmwas criticized to be hardly to achieve a compact solution [11]. In consequence,
the result FCCN is usually much deeper than required, which makes it easy to over-
fit the data and also leads to some extra time for signal propagation [12].

In order to achieve a more compact FCCN and improve the generalization,
many other learning algorithms were proposed for the FCCN construction. These
algorithms can generally be classified into two main categories. The first is based
on the CasCor algorithm and kept the freezing strategy [13,14]. The other,
dropped the freezing strategy and searched the optimal structure in an exhaus-
tive way [15]. Each time after adding the new neuron, all the parameters are
fully tuned. With the fully tuning strategy, a much more compact FCCN can
be achieved. For example, it was shown that the two-spiral problem could be
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solved by a FCCN with 7 neurons by tuning all the parameters using the NBN
algorithm [24] while the CasCor algorithm needed the FCCN with at least 12
hidden neurons [10].

In this paper, we proposed a new Hybrid Constructive Learning (HCL) algo-
rithm, which belongs to the second category. In every stage adding a new neuron,
the initial parameters of the new neuron are searched with the Particle Swarm
Optimization (PSO) by maximizing the total error reduction [16]. Then starting
from the combination of the previous training results and the initialized parame-
ters of the new neuron, a hybrid algorithm [17] based on the LM algorithm and the
LS method is used to tune all the parameters iteratively. Though the fully tuning
strategy slows down the training process, since the FCCN is searched in an exhaus-
tive way, the training efficiency can still benefit from the compact structure.

2 The Cascade Neural Networks and the Learning
Algorithms

In this section, the basic computation of the FCCN and some common notations
will be given. In this paper, we mainly investigate the structure learning of the
FCCN for function approximation problems. For simplicity, we only consider a
single function to be mapped from the multi-dimensional inputs. For the problem
with multiple outputs, one can split it into several independent single output
approximation problems.

Assume the training data set is given as {(xp, yp)|xp ∈ RD, yp ∈ R, p =
1, 2, ..., P}, in which there are P training patterns with D-dimension input and
scalar output, (xp, yp) denotes the pth input and output. Once given the training
data set, structure learning is performed to seek the optimal network size and
parameters set to minimize the approximation error on the training data, where
the sum squared error (SSE) is popularly used.

SSE = ‖y − ỹ‖2 = (y − ỹ)T (y − ỹ) (1)

in which, y are the desired outputs for the training data, ỹ are the actual outputs
of the model. Nevertheless, the goal of the learning is to generalize well on the
unseen data.

Different from the traditional MLP, the FCCN architecture has the forward
connections between every two nodes. Each hidden neuron is a single layer and
receives signals from all the inputs and the pre-existing neurons, as shown in
Fig. 1. While, in general, each hidden neuron can have different activation func-
tion [10], in this paper, we only consider the sigmoid activation function for all
the hidden neurons.

Assume the input weights wk = [wk0, wk1, ..., wkD, ..., wk(D+k−1)]T ∈ RD+k

where wki is the weight connecting the ith node to the kth hidden neuron. Here,
the “node” is a generalized node, including the bias (i = 0), all the inputs
(i = 1, ...,D) and all the hidden neurons (i = D + 1, ...,D + k − 1). The output
of this hidden neuron for the pth pattern is given by, hp,k = 1

1+exp(−netp,k)
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Fig. 1. FCCN architecture

in which, the net value netp,k = inp,kwk, is the weighted summation of all
the incoming signals. inp,k = [1,xp, hp,1, ..., hp,k−1] are all the incoming signals
of the kth neuron. Denote the net values of the kth hidden neuron for all the
training patterns as vector netk = [net1,k, ..., netP,k]T , their outputs as vector
hk = [h1,k, ..., hP,k]T .

For a FCCN with k hidden neurons,signal matrix Hk = [1,X,h1, ...,hk] ∈
RP×(D+k+1) can be defined, where 1 is a vector with all 1s representing the bias,
X is the input matrix. As new hidden neuron is added during the construction,
the signal matrix is expanding with extra column at the same time. While usually
the sigmoid function is used as the output neuron for the classification problems,
we simply use a linear summator for a better approximation to the analog output
values, as shown in Fig. 1. Denote the weights of the output neuron are θk ∈
RD+k+1, then the outputs of the FCCN for the training set are computed as,
ỹ = Hkθk.

2.1 Popular Learning Algorithms

The first proposed algorithm for FCCN architecture was CasCor [10]. The only
parameter is the number of hidden neurons, which is much simpler compared
to the depth and width of the MLP. Benefit from this, the CasCor algorithm
starts with a FCCN with no hidden neurons and constructs it by simply adding
neurons one by one. Each time adding the new neuron, the CasCor algorithm
has two steps: Input training and Output training. In the Input training step,
several candidates of the hidden parameters of the new neuron are randomly gen-
erated. Each candidate is independently optimized by gradient ascent methods
or quickprop [2] to maximize the covariance between the outputs of this candi-
date neuron and the residual errors of the previous FCCN. The candidate with
the maximum trained covariance is appended to the FCCN. Then in the Output
training step, all the output weights are tuned to minimize the SSE in (1). For
the architecture we investigated in this paper, since all the output weights are
linear related, one can do the Output training with the LS method as shown
below,

θ̂ = (HTH)−1HTy (2)

While the CasCor algorithm worked well on many classification problems,
like the two-spiral problem and the parity-N problem [10], it was argued that
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the covariance measurement for each hidden neuron’s selection tended to make
it saturate, which was not suitable for smooth regression problems [18]. For this
reason, a second version of learning algorithm from the original author had been
investigated in several literatures [13], namely Cascade2, which optimized the
input weights and output weight of each candidate neuron by minimizing the
error between the weighted outputs of this neuron and the previous FCCN’s
residual error during the Input training step. Recently, Huang et al. [14] used
the error reduction contribution defined in Orthogonal Least Square (OLS) as
the selection criterion and proposed an OLSCN algorithm, which improved the
learning performance a lot.

Benefit from the freezing strategy, all the above learning algorithms worked
efficiently. However, at the same time, it is likely to produce a FCCN with
more hidden neurons than required, which could easily overfit the data set.
To overcome this problem, Treadgold and Gedeon dropped the freezing strategy
and proposed a Casper algorithm, which employed a Simulated Annealing Rprop
(SARPROP) algorithm [23] to tune all the parameters in each stage [15]. Their
experiments demonstrated that the fully tuning strategy could achieve a better
generalization performance with much less hidden neurons. However, while the
first order Rprop algorithm was used, it cost much training time. The second-
order LM algorithm had been investigated for the fixed size FCCN learning
[19,20], which worked more efficiently. However, the optimal network size had
to be searched by a trial and error approach.

3 The Hybrid Constructive Learning Algorithm

In this section, we will introduce the proposed HCL algorithm in details. Like
other constructive algorithms, the HCL starts with a minimal FCCN with no
hidden neurons and adds the hidden neurons one by one. Each time adding the
new hidden neuron, the learning is also divided into two steps: Initialization and
Fully tuning.

3.1 Initialization

After the previous training stage, if the results are not satisfied, the learning
could easily escape from the previous local minima by introducing a new hidden
neuron. In the HCL algorithm, all the training results of the previous FCCN are
reused as the starting points for the Fully tuning step. The Initialization mainly
focused on newly added neuron.

Different from the covariance measurement of the CasCor algorithm, which
was argued to force the neuron to saturate, the HCL initialize the parameters of
the new neuron with the reformulated OLS criterion [16]. Consider the FCCN
with k hidden neurons, whose signal matrix is Hk, the residual errors after
previous Fully tuning are ek = y − ỹ. Now adding a new neuron which outputs
are hk+1. Do a temporary regression with the current FCCN to the target hk+1,
denote the optimal coefficients and residual errors are θt and et,

θt = (HT
k Hk)−1HT

k hk+1 (3)
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et = hk+1 − Hkθt (4)

then, the error reduction contribution of this new neuron to the entire FCCN
will be [16],

[err]k+1 =
(hT

k+1ek)2

hT
k+1et

(5)

This objective function represents the SSE reduction after adding the new neuron
while keeping the output weights always to be LS optimal. One needs to search
the optimal parameters of the new neuron to maximize the objective function in
(5). As shown in [16], the objective function shown in (5) is a complex multimodal
function. Huang et al. [14] proposed a modified Newton’s method to optimize a
similar function. Since the local search capability of the Newton’s method, several
candidates were required to find the global maxima. Same as [16], the proposed
HCL use the PSO to seek the optimal initialization of the new neuron. Proposed
PSO algorithm is based on technique developed by Kennedy and Eberhart [21]
and is described in details in [16].

3.2 Fully Tuning

After the new neuron is well initialized, it is appended to the previous FCCN
directly. Then all the parameters of the new FCCN are further tuned starting
from their current values. In the HCL algorithm, a second-order hybrid algorithm
based on the LM algorithm and the LS method is used for this optimization task.
The hybrid algorithm was previously proposed for the SLFN construction [17]
and we extend it here for the FCCN learning.

The basic idea of presented algorithm is to combine the conventional LM
algorithm and the LS method. The parameters of the FCCN are divided into
two groups: nonlinear parameters (input weights of each hidden neuron); linear
parameters (output weights). By converting the linear parameters into depen-
dent variables of the nonlinear parameters with the LS method, one can only
optimize those nonlinear parameters with the LM algorithm.

The only difference between the SLFN and the FCCN is the calculation of
the Jn and the Q. Compared with the SLFN, it is more complex to calculate the
Jacobian matrix for the FCCN, since every neuron collects the backpropagated
signals from all the following neurons. Assume current FCCN has k hidden
neurons, then there are r = (D + 1) + (D + 2) + ... + (D + k) = kD + k(k+1)

2
nonlinear parameters. So the nonlinear Jacobian matrix Jn has r columns,

Jn = [
∂ỹ

∂w10
, ...,

∂ỹ
∂w1D

, ..., ...,
∂ỹ

∂wk0
, ...,

∂ỹ
∂wk(D+k−1)

] (6)

The sparse matrix Q ∈ R(k+D+1)×r becomes a blockwise lower triangular matrix
with the first D + 1 rows to be all zeros.

The backpropagation process according to the differential chain rule is quite
complex in the FCCN case. Wilamowski and Yu provided an efficient forward-
only method by using dynamic programming (DP) [20]. In this paper, we used
this technique to calculate the matrix Jn and Q.
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Table 1. Vector version of the δ table

neuron # 1 2 3 · · · k o

1 ∂h1
∂net1

2 ∂h2
∂net1

∂h2
∂net2

3 ∂h3
∂net1

∂h3
∂net2

∂h3
∂net3

...
...

...
...

. . .

k ∂hk
∂net1

∂hk
∂net2

∂hk
∂net3

· · · ∂hk
∂netk

o ∂ỹ
∂net1

∂ỹ
∂net2

∂ỹ
∂net3

· · · ∂ỹ
∂netk

1

* All the partial derivatives are pointwise

The forward-only method removed the backpropagation process and created
a lower triangular δ table to store every desired values through the forward
computation. Here, we created a vector version of the δ table to store all desired
values for calculating Jn and Q, as shown in Table 1. The neuron number is
from 1 to k in the order of installation. “o” represents the linear output neuron.
The vector in the cell (i, j) is the derivative of the ith neuron’s output over the
jth neuron’s net value for all the training patterns, denote as δi,j (The partial
derivatives shown in the table are all pointwise).

δi,j =
∂hi

∂netj
= [

∂h1,i

∂net1,j
,

∂h2,i

∂net2,j
, ...,

∂hP,i

∂netP,j
]T (7)

The values on the diagonal are directly the slopes of each single neuron. The
other values are computed according to all the above values in the same column.

δi,j = δi,i ◦
i−1∑

m=j

δm,jwm→i (8)

where wm→i is the weight connecting the mth neuron to the ith neuron, ◦ rep-
resents pointwise product of two vectors.

After going through the forward computation, with the vectors stored in the
δ table, one can calculate the Q matrix with the first k rows and compute the
Jn matrix with the last row. For example, with the vector ∂hi

∂netj
(k ≥ i ≥ j ≥ 1),

one can calculate the corresponding differential term in matrix Q as,

∂hi

∂wjm
=

∂hi

∂netj
◦ H(:,m) m = 0, 1, ...,D + j − 1 (9)

in which, H(:,m) is the mth column of the signal matrix H. Also given the
vector ∂ỹ

∂neti
in the last row, one can calculate the corresponding column in the

nonlinear Jacobian matrix Jn as,

∂ỹ
∂wim

=
∂ỹ

∂neti
◦ H(:,m) m = 0, 1, ...,D + i − 1 (10)
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In fact, while using the conventional LM algorithm as in [20], only the last
row of the δ table is finally used and the rest values are dropped, like most DP
problems. However, the hybrid algorithm used all the values in the table, which
may be more suitable to employ the forward-only method.

Same as [17], we introduce a regularizer λ to the hybrid algorithm, which
constrains the search of the output weights in a trust region. The LS solution of
the output weights becomes (11) instead of (2).

θ = (HTH + λI)−1HTy (11)

This regularization avoids the risk of ill conditioning, it also tends to generate a
model with a better generalization. The result update formula after adding the
regularization is shown in (12).

ΔWv = (JT
nJn − JT

nH(HTH + λI)−1HTJn + QT (HTH + λI)−1Q + μI)−1JT
ne

(12)
The Fully tuning step will proceed until reaching the maximum iteration T

set by the user or being detected to entrap into the local minima, as described
as following,

|SSE(t) − SSE(t − N)
SSE(t)

| < η (13)

in which, SSE(t),SSE(t − N) are the approximation error at the tth and the
(t − N)th iteration. N is the iteration latency. η is the decreasing threshold.
Both N and η are preset by the user. When the local minima is detected, the
further training is not necessary and we can stop and proceed to the Initialization
of the next neuron.

With the Initialization and Fully tuning, the HCL constructs the FCCN in
an exhaustive way. The construction process should terminate when one of the
following conditions is satisfied,

1. After the Fully tuning step, the SSE arrives the desired value ε set by the
user.

2. The number of hidden neurons arrives the maximum number K set by the
user.

3. The construction saturates, that the construction couldn’t obtain much
decrease on the SSE by adding more neurons. The saturation is detected
as following,

|SSEk−L − SSEk

SSEk−L
| < σ (14)

in which, SSEk−L,SSEk are the SSE after the Fully tuning step while adding
the (k−L)th and the kth hidden neuron. L and σ are the stopping parameters
set by the user.
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(a) function 1 (b) function 2 (c) function 3

Fig. 2. Averaged testing FVU comparison while approximating 2D functions

4 Experiment

In this section, the proposed HCL algorithm is used for the FCCN construction
on three classic 2D function approximation benchmarks [6,22]. The results are
compared with other learning algorithms described in Sect. 2.1: CasCor algo-
rithm [10], cascade2 algorithm [13], OLSCN algorithm [14], Casper algorithm
[15]. Since the convergence rate of different algorithms while adding hidden neu-
rons is different, in the experiments, we only used the stopping criterion (2)
mentioned in previous section to evaluate the performance of each algorithm.

All the three functions are ranged in [0, 1]2. The description of the used
functions are shown as below,

1. Simple interaction function:
f (1)(x1, x2) = 10.391((x1 − 0.4)(x2 − 0.6) + 0.36)

2. Radial function:
f (2)(x1, x2) = 24.234(r2(0.75 − r2))
in which, r2 = (x1 − 0.5)2 + (x2 − 0.5)2

3. Harmonic function:
f (3)(x1, x2) = 42.659(0.1 + x̃1(0.05 + x̃4

1 − 10x̃2
1x̃

2
2 + 5x̃4

2))
in which, x̃1 = x1 − 0.5 and x̃2 = x2 − 0.5.

The setup for training data and testing data are the same for all the three
functions. The training data set has 225 patterns, which are generated randomly
by the uniform distribution U [0, 1]2. All the training data are added indepen-
dently and identically distributed (i.i.d.) Gaussian noise with mean zero and
standard deviation 0.25. The testing data set consists of 100 × 100 patterns
generated from a regularly spaced grid in the range [0, 1]2.

In this experiment, all the algorithms constructed the FCCN by adding hid-
den neurons from 0 to 20 while the other stopping criteria were not used. For the
CasCor and Cascade2, quickprop was used to search the optimal input weights
of each new hidden neuron while the maximum iteration was set as 100. In each
stage, 8 candidates were trained independently to search the global optimal solu-
tion. For the OLSCN algorithm, in which a modified Newton’s method was used to
train each new neuron’s input weights, the maximum iteration was set as 20. The
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(a) function 1 (b) function 2 (c) function 3

Fig. 3. Averaged training time comparison while approximating 2D functions

number of candidates was also set as 8. For the Casper algorithm, the SARPROP
algorithm [23] was used to tune all the parameters in each stage. All the parameter
settings were the same as in [15]. The maximum iteration was set as 1000 and the
fully training stopped while the root means squared error (RMSE) decreased less
than 1% in 200 continuous iterations. For the proposed HCL algorithm, in the Ini-
tialization step, the maximum iteration and the population size of the PSO were
both set as 20; In the Fully tuning step, the maximum iteration were set as 200 and
the parameters in (13) were set as N = 70, η = 0.01. The regularizer in (11) (12)
was set as λ = 0.001. All the parameter settings were the same while approximat-
ing all the three functions.

The generalization performance of each algorithm is evaluated by the fraction
of variance unexplained (FVU)[22] on the testing data, which is actually propor-
tional to the SSE defined in (1),

FVU =
(y − ỹ)T (y − ỹ)
∑P

p=1(yp − ȳ)2
(15)

in which, y = [y1, y2, ..., yP ]T ∈ RP are the desired outputs for the testing
patterns. ỹ are the actual outputs with the trained FCCN. ȳ is the average
value of the desired outputs for all the testing patterns.

ȳ =
1
P

P∑

p=1

yp (16)

Since all the algorithms started from randomly initialized parameters, the
construction with each algorithm was repeated 20 times. The averaged test-
ing FVU and training time of each algorithm while approximating the three
functions were shown in Figs. 4 and 5. From the testing FVU comparison, one
can observe that the Casper algorithm and the proposed HCL algorithm could
always achieved better generalization than the CasCor and Cascade2 algorithms.
Though the OLSCN converged fast, it tended to overfit the data as the number of
hidden neuron increased. The HCL algorithm performed similar to the Casper
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algorithm. However, benefit from the efficient second-order hybrid algorithm
while fully tuning all the parameters, which required much fewer iterations to
converge, the HCL saved much training time compared to the Casper algorithm.

5 Conclusion

In this paper, the FCCN topology is investigated for regression learning prob-
lems. Compared to the popular MLP topology, the FCCN has bridge connec-
tions, which could achieve more complex representations to the data set; And
the structure parameter is only the number of hidden neurons, which is much
simpler to perform construction. However, most structure learning algorithms of
the FCCN used the freezing strategy, which usually obtain a FCCN much deeper
than required. In order to solve this problem, we propose a Hybrid Constructive
Learning (HCL) algorithm. The HCL starts from a minimal FCCN and adds the
hidden neurons one by one. There are two steps in each stage of adding a new
neuron: Initialization and Fully tuning. In the Initialization step, PSO is used
to search the optimal starting point for the parameters of the new neuron. Then
in the Fully tuning step, starting from a combination of the previous training
results and the initialized new neuron, the entire FCCN is tuned by a second-
order hybrid algorithm based on the LM algorithm and the LS method. The
experiments shown that the HCL algorithm could construct a compact FCCN
with good generalization ability.
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Abstract. In traditional generative modeling, good data representation
is very often a base for a good machine learning model. It can be linked
to good representations encoding more explanatory factors that are hid-
den in the original data. With the invention of Generative Adversarial
Networks (GANs), a subclass of generative models that are able to learn
representations in an unsupervised and semi-supervised fashion, we are
now able to adversarially learn good mappings from a simple prior dis-
tribution to a target data distribution. This paper presents an overview
of recent developments in GANs with a focus on learning latent space
representations.

Keywords: Machine learning · Generative Adversarial Networks ·
Representation learning · Overview

1 Introduction

Generative Adversarial Networks (GANs) [19] are a class of generative models
that can transform vectors of generated noise into synthetic samples resembling
data gathered in the training set. GANs have been successfully applied to image
generation [6,25,38], semi-supervised learning [36,47,54], domain adaptation [12,
26,50,51], generation controlled by attention [49] and compression [2]. Currently,
together with variational autoencoders (VAEs) [8,17,27,32,45,48], GANs are
one of the most popular and researched topic in generative modelling [14,18,28].
However, correct evaluation of the GANs has been proven to be particularly
difficult due to no consistent metric and inability to compute the generator
probability of arbitrary samples [31]. In this work, we provide an overview of
existing GAN models, starting from the basic architectures and finishing with
the complex approaches focused on particular generative tasks.

2 Generative Adversarial Networks

Generative Adversarial Models (GANs) [19] in the last years have become a
frequent choice for a task of approximating data distribution.
c© Springer Nature Switzerland AG 2019
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The basic concept of the model is taken from the game theory and assumes
two competing networks, a discriminator D and a generator G.

The role of the discriminator D is to distinguish between true samples taken
from data and fake samples generated by generator G. While the network D con-
tinually improves on differentiating, the generator network G learns to produce
better and better samples.

In practical applications, the problem is solved by updating the parameters
of discriminator and generator in alternating steps. Formally, the problem can
be defined as a following min-max game:

min
G

max
D

V (G,D) = Ex∼px
[log D(x)] + Ez∼pz

[log(1 − D(G(z)))] (1)

In early steps of learning procedures G might generate poor samples. In such
scenario, D is expected to recognise majority of samples generated by G, what
might lead to log(1 − D(G(z))) saturation. Thus, when 1 − D(G(z)) converges
to 0 it cause generator gradient to vanish. To overcome this issue, it is advised
to instead maximize D(G(z)), what motivates equation:

max
G

max
D

V (G,D) = Ex∼px
[log D(x)] + Ez∼pz

[log(D(G(z)))] (2)

Despite the unquestionable potential, GANs have had few limitations, such
as being unstable to train and difficult to scale. In recent years, convolutional
neural networks (CNNs) have proved to be a very powerful tool for image pro-
cessing. State of the art CNNs architectures consists of dozens of hidden lay-
ers, but such deep architectures did not work well with GANs. In [38] authors
proposed a set of good practices for Deep Convolutional GANs training. It is
advised to: avoid fully connected layers in deeper architectures, use batch nor-
malization in generator and discriminator networks, replace pooling layers with
strided convolutions for discriminator and with fractional-strided convolutions
for a generator. As activation function, ReLU should be used in a generator for
almost all layers except last one, where tanh(·) is proposed. In discriminator, on
the other hand, LeakyReLU is worth considering. Described recommendations
by no means should be treated as fixed rules, but instead might be a good start-
ing point. Further enhancements were proposed and evaluated in [41]. To avoid
generator network mode collapse, instead of optimizing expected value with a
focus on discriminator’s output, authors optimize it on discriminator’s interme-
diate layer representing hidden features. By using a feature layer, a generator
is believed to generate data with respect to the distribution of real data more
accurately.

In vanilla GAN, a discriminator is being trained on each example indepen-
dently. The second idea is to allow discriminator to look at multiple examples, in
order to let a generator create more diverse examples. Feature vector f(xi) ∈ R

A

of an input xi is multiplied by transformation tensor T ∈ R
A×B×C aggregating

weights for similarity learning, which results in is matrix Mi ∈ R
B×C . Every

row in Mi is then compared to corresponding rows in other matrices Mj by
calculating the distance based on L1 norm. This operation creates n vectors
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oi(xi) ∈ R
B , which are afterwards concatenated with input f(xi) and fed to

next discriminator layer. The concept is called minibatch discrimination.

3 Conditional Generation

So far, no information about class or label has been regarded. The only distinc-
tion made was related to distribution the data came from. Not all problems shall
be resolved by one-to-one mapping, for some of them (e.g., tagging images with
keywords) more natural way is to create a one-to-many mapping. GANs can be
extended by conditioning both networks G and D on some auxiliary information
y [34]:

max
G

max
D

V (G,D) = Ex∼px
[log D(x|y)] + Ez∼pz

[log(D(G(z|y)))] (3)

In comparison to Conditional GAN, in AC-GAN [37] discriminator does not
utilize information about the class directly. Apart from the noise z ∼ pz every
sample has knowledge about the class c ∼ pc. For image X let us denote S as a
source (data or generated distribution) and C as a class label. The discriminator
output is a modeled probability not only of P (S|X) (like in vanilla GAN) but
also of P (C|X).

D is trained to optimize LC + LS (as presented in Eqs. 4 and 5) and G
is trained to optimize LC − LS . AC-GAN is capable of splitting dataset by
classes and training G and D accordingly to subsets, as well as performing semi-
supervised learning by ignoring loss component from class labels.

LS = Ex∼px
[log D(x)] + Ez∼pz

[log(D(G(z)))] (4)

LC = Ex,c∼px,c
[log D(c|x)] + Ez,c∼pz,c

[log(D(G(c|z)))] (5)

The improvement in numerical measures does not always go along with the
improvement in human perception. The statement is particularly applicable in
the case of image generation. Superresolution GAN [29] is designed to upscale low
resolution (LR) images to high-resolution (HR) by a scale factor of 4, with the
utmost care for details. Authors introduce deep ResNet adapted to GAN concept
and then propose using novel loss function to increase image fidelity. To create
a training set, a Gaussian filter is applied to every high-resolution image IHR,
and then the image is downsampled to low-resolution image ILR. Generator
network G is trained as a supervised deep Residual Network to estimate for
given LR image an HR one. The proposed perceptual loss is defined on the
activation layer of pretrained VGG19 network [43]. Final results are evaluated
with a peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM)
as well as mean opinion score (MOS) - to quantify results with the help of human
raters. Even though PSNR and SSIM scores are lower in every (out of three)
conducted experiments, obtained MOS scores are respectively 6.2%, 24.8%, and
55.5% higher, what proves that mentioned numerical metrics are not sufficient
to evaluate generated images.
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Conditional GANs are providing additional information (class, domain-
specific image) to the generator and obtain the particular type of generated
images. Moreover, there are approaches, like InfoGAN [11], that aims at discov-
ering some important latent components that have an influence on a generated
image in purely unsupervised mode. Practically, it means that among space z
in the generator we can distinguish some key features that have a significant
influence on particular characteristics of generated objects, like shape, rotation
or category. This goal is achieved by incorporating into adversarial training an
additional term, that aims in increasing the mutual information between par-
ticular features delivered on the input of the discriminator and the generated
image. After training the model, we are capable of controlling the generative
process (shape, color rotation of the generated objects) by manipulating of the
latent factors that were used to increase the mutual information.

4 Image to Image Translation

GAN-based models are successively applied to image-to-image translation tasks.
For this particular problem, we aim at transferring some properties of the images
from so-called target domain X to some target domain Y characterized by some
particular features. Image-to-image translation models can be applied to transfer
a segmented image to real good-looking scenery, can be utilized to transfer street
views to the maps or used to create real images from hand-drawn sketches.

We can distinguish two approaches to the problem in terms of data avail-
ability used for training. In the first group we assume that models are trained
using pairwise data, what practically means that we have access to the pairs
of images, D = {xn, yn}, from the two domains, X and Y, where xn ∈ X and
yn ∈ Y. For the second group of approaches, we have only the access to unpaired
sets of images from the domains, X = {xn} and Y = {yn}.

One of the most promising generative models that utilizes pairwise data
for image-to-image translation is Pix2Pix [24]. The main idea of this approach
is based on conditional GAN model [34] where additional conditioning unit is
included on the input of the generator to sample more specific objects. For this
particular case generator (G) takes the example xn from domain X and tries to
generate the corresponding image from domain Y. The discriminator is trained
to distinguish between synthetic samples generated from that domain Y and the
corresponding samples from the domain X used for conditioning in generative
part of training. To keep the consistency between generated and true examples
in a target domain Y, we utilize L1 reconstruction loss to force generated G(xn)
and corresponding true samples yn to be close in data space.

Pix2Pix model operates on paired data from the domains. Here we present
the architecture of CycleGAN [52] that operates on unpaired images from the
domains. The structure of that model is composed of four neural networks: two
domain-specific discriminators, DX , and DY , and two generative networks, G
that generates objects from domain X to domain Y, and F , that transfers objects
from Y to X . The role of the discriminator DY is to distinguish between true
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database samples from domain Y and those generated by model G. The role
of the generator G is to create images indistinguishable by DY . The analogical
adversarial training is performed between discriminator DX and generator F in
the X domain. To obtain the cycle consistency between generated images from
various domains two additional L1 reconstruction losses are incorporated into
the training framework. The first lost is minimizing the distance between image
x and corresponding reconstruction F (G(x)). The second loss aim at minimizing
distance in Y domain, between G(F (y)) and y.

5 Feature Extraction via Learning Hidden Representation

In their original form, Generative Adversarial Networks (GANs) [19] provide
only a framework to generate data based on latent feature vector. A natural
question comes to mind: “how can we obtain the latent representation that may
be used to generate specified images?” If there is a way to produce a mapping
from latent distribution to data distribution, there should be a way to perform
an ‘inverse’ operation. That would allow GANs to be used in an unsupervised
manner to learn rich distributions about arbitrary data. However, the original
model does not have a way to do that mapping.

For this purpose Bidirectional GANs (BiGANs) [15]/Adversarially Learned
Inference (ALI) [16] were created. In addition to the existing Generator G the
BiGAN model proposes a novelty that comes from equipping the architecture
with the Encoder E, which maps the data distribution x to its latent represen-
tation z. Thus the Discriminator D in BiGAN now has to discriminate not only
in the data space (x vs G(z) but also in the feature space (E(x) vs z).

The optimization problem is now minG,E maxD V (D,E,G), where training
objective V (G,D,E) is given as:

V (G,D,E) = Ex∼px
[Ez∼pE(·|x)[log D(x, z)]]+Ez∼pz

[Ex∼pG(·|z)[log(1−D(x, z))]]
(6)

The objective is optimized in a similar way to the original GAN approach, but
with a key difference: there is no more ‘real’ and ‘generated’ data, as the Encoder
E and Generator G now works together to fool the Discriminator D. However,
the Encoder E and the Generator G do not see each other outputs. Their gra-
dients come purely from the Discriminator decisions. However, as authors [15]
point out, that in order to fool the Discriminator, the Encoder and the Generator
must learn to invert each other.

Metric learning is a task of learning the function of a distance between two
given objects. It’s objective is to model such mapping from data distribution
p(x) to latent distribution p(z) that for two objects x1, x2 ∼ p(x), the metric
returns small values for similar objects and high values for dissimilar ones. It is
used in situations, where defining explicit distance function is impossible, due
to a low amount, high-dimensionality or complexity of the data.

One of the first machine learning models that performed distance calculation
used a type of neural networks, also called Siamese Networks [7] or its variants
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[13,21]. Siamese Network operated on the pair of the images and had training
objective that favored small distances for objects belonging to the same group
and large distance when they belong to different groups. Due to the lack of
providing the context for image pair, the representations learned by the network
give poor results, when used to other tasks, such as classification.

A solution to this problem was provided in Triplet Networks [23]. The authors
propose a simple method to add context to presented images by providing as
an input to the networks three objects denoted as x, x+ and x−, where x and
x+ were labeled as belonging to the same class while x and x− were labeled as
different classes. Now, denoting the features inferred from the model T from the
object x as T (x), the learning objective can be formulated as

L(d+, d−) = ‖(d+, d− − 1)‖2
2, (7)

with d+ and d− defined as

d± =
exp(‖T (x) − T (x±)‖2)

exp(‖T (x) − T (x+)‖2) + exp(‖T (x) − T (x−)‖2)
(8)

Authors use the model to solve the task of approximating data similarity [10].
For this purpose, the data already comes in the form of triplets that describe
semantic closeness of samples in the dataset. Also, by giving the context, the
triplet network can accurately compose a metric that is able to infer represen-
tation to be used in classification and retrieval tasks.

In [36,41] authors present an approach to train GANs in a semi-supervised
manner due to a strong ability presented by GANs to capture descriptive features
[15,38]. Inspired by that, [54] proposes an alternative method for a triplet metric
training, called Triplet GAN, based on adapting GANs to perform not only
feature extraction but also metric learning.

The main idea behind this approach is to repurpose the discriminator D from
classification to a distance learning task, which results in good feature represen-
tations during the unsupervised, generative part and supervised, discriminative
part of the training process.

To incorporate triplet training into GAN framework, authors propose a modi-
fied version of a loss function for a model, specified in Eq. 9, with L(d+, d−) given
as in Eq. 7.

L = −V (D,G) − Exq,x+,x−∼pdata(xq,x+,x−)[log (L(d+, d−)] (9)

This approach allows improving results in metric learning tasks by allowing to
use not only a labeled part of the dataset but by also learn general information
about the structure of the data with unsupervised learning on an unlabeled
portion of the dataset.

However, learning metric on the discriminative module of the GAN comes
with limitations, of which the main one is an inability to perform sampling from
the generated representation. Models presented in [15,16] present an extension
to the GAN framework, by adding a module, that performs inference on a given



254 M. Zamorski et al.

data to a latent space representation. A natural question arises: are GANs able
to perform latent space embedding that is both regularized by its ability to
reconstruct the input and by metric learning approach?

Based on previously presented BiGAN [15,16] model the authors in [47]
address this issue with a presentation of Triplet BiGAN. It combines approaches
of BiGAN and Triplet Network [23] with a joint training objective for Encoder E
that is trained with both BiGAN and triplet loss. This allows the model to not
only learn features from data, but also regularize them with two constraints: the
hidden layer encoding tend to be normally distributed (to match the distribution
passed to Generator G), and embedding of close samples are close to each other
in latent space. Representation learned by the Encoder E can be further used
in tasks such as retrieval and classification. Triplet BiGAN model is trained in
a semi-supervised manner, although it needs as little as 16 labeled samples per
class.

Other works worth mentioning are (a) on training efficient binary feature
representation - Binary GAN (BGAN) [44], Binary Regularization Entropy GAN
(BRE-GAN) [9], Binary GAN (BinGAN) [53], (b) on domain adaptation ARDA
[42], (c) on learning representation for 3D pointclouds - 3-D GAN [46], l-WGAN
[1] and Point Cloud GAN [30].

6 Regularized Learning of the Discriminator

In the original paper [19] the authors proposed training objective for GANs
expressed as a min-max game (Eq. 1). It has been shown, that this approach
resulted in highly unstable training [19] and authors recommended using an
alternative objective instead (Eq. 2). However, even with the modified version,
the Generator training often led to vanishing gradients once some of the gener-
ated samples were good enough to fool the Discriminator every time, resulting in
mode collapse of the Generator. It may be caused by the improper definition of
training objective [3,5,33], where the Generator is rewarded for creating samples
indistinguishable from the ones in the training set and not for trying to match
the whole distribution of the data.

In [3] authors propose a new framework for training GANs called Wasserstein
GAN. The main improvement over the original framework comes from apply-
ing different loss function for the Generator called Wasserstein or Earth-mover
distance (Eq. 10).

EMD(Pr, Pθ) = inf
γ∈Π

E(x,y)∼γ‖x − y‖, (10)

where γ is a joined probability distribution between the one modeled by the
Generator (Pθ) and the real data distribution Pr and Π is the set of all such
distributions. The Discriminator’s (in context of Wasserstein GAN called as the
Critic) role in this scenario is to output a scalar of how real the generated image
is, rather than a probability. In practice, the sigmoid activation usually put at
the end of the Discriminator (Critic) model is in this scenario omitted.
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As the version of the loss presented in Eq. 10 is intractable and thus, impos-
sible to use in this scenario, another formulation, using Kantorovich-Rubinstein
duality [3,40] is used, as specified in Eq. 11.

W(Pr, Pθ) = sup
‖f‖L≤1

Ex∼Pr
[f(x)] − Ex∼Pθ

[f(x)], (11)

In order for this approach to be effective the function that the Generator
G optimizes, must be the n-Lipschitz function [22], for n = 1, i.e. fulfill the
constraint given by the Eq. 12.

|G(x1) − G(x2)|
|x1 − x2| ≤ 1, (12)

To satisfy this constraint, the authors of [3] suggest clipping weights of the
Generator model to the range [−c, c] with the suggested value of the hyperparam-
eter c = 0.01. However, this method often results in weights distributed near the
border values of the range. In [20] authors present a new method for satisfying
Lipschitz condition, called gradientpenalty. This method, instead of applying
clipping, penalizes the model if the Discriminator (Critic) gradient norm moves
away from its target norm value 1.

The Wasserstein GAN framework assumes one iteration update for the Gen-
erator weights for five updates of the Critic weights as a way to maintain the
stability of the training procedure, but the ratio can be application-specific [4].
The Boundary Equilibrium GAN [5] method introduces a procedure to balance
the training by the way of maintaining the equilibrium E[L[(G(z))] = γE[L(x)].
It is achieved by the additional parameter k that scales the losses of the Gener-
ator LG and the Discriminator LD as shown in the Eq. 13.

LD = L(x) − ktL(G(zD)) (13)

LG = L(G(zG))

kt+1 = kt + λk(γL(x) − L(G(zG))),

where k is a proportion between the Generator and the Discriminator loss at
iteration t (with k0 = 0), λk is the proportional gain for k.

Other approaches regularizing training procedure of GAN worth mentioning
are Least Squares GANs [33] (applying least squares difference between dis-
criminator loss and the expected outcome), Spectral Normalization GANs [35]
(constraining spectral norm of each layer’s weights) and Regularized GANs [39]
(adding noise as a regularizer).

7 Conclusion

In this work, we present recent developments in Generative Adversarial Networks
research. We explore several selected fields of current research, focusing on the
most important milestones, notably in the fields of semi-supervised learning,
unsupervised style translation, and representation learning.
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Abstract. Visual analysis of maps, charts and plans plays an important
role in decision-making on the basis of spatial data. One of the difficulties
in applying visual analysis is the redundancy of the cartographic data
flow that occurs when the user interacts with the geographic information
system (GIS). The redundancy reduces the dynamics of dialog worsens
the perception of visualized data and negatively affects the quality of
decision making. This paper considers the problem of cartographic visu-
alization control, the purpose of which is to construct the most useful
images for decision making. The fuzzy representation of visual analysis
experience by images is analyzed. The image includes the center and the
region of its permissible transformations. The comparison of images is
modeled as the classification of situations of the relative locations of the
centers, the region of permissible transformations of each image and the
region of their intersection. The concept of fuzzy utility function of the
cartographic image is introduced. The problem of choosing useful fuzzy
images of cartographic images is considered. The logic of decision making
is described in the fact of comparison of fuzzy images. The method for
specifying the space topology of the utility estimation is proposed. This
method allows carrying out the transfer of experience in estimating the
utility of images. The invariant of transfer of experience is investigated.
Principles of transformation of images of precedents are formulated.

Keywords: Fuzzy control · Cartographic visualization ·
Fuzzy utility function · Decision making

1 Introduction

Visual analysis of cartographic expression traditionally is an efficient mean for
problem solving that requires spatial data for their implementation.Maps, schemes
and plans, that store geoinformation systems (GIS), are familiar in many applied
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areas. In these area specialists solve informal tasks in conditions of uncertainty.The
modern network of GIS is considered as big data systems [1,2], continuously accu-
mulating information about the outside world. The value of the accumulated data
is implemented by its use for decision making, therefore GIS should be equipped
with an interactive visualizationmechanism thatwill provide the user-analystwith
intelligent support in the construction of the analysis area. The selected geodata
should be the most useful for searching and making decisions. The difficulty of con-
structing this mechanism is available for uncertainty which directly affects the def-
inition and understanding of the utility of visualization. In this paper, we propose
a method for controlling cartographic visualization, using fuzzy representation of
the utility function of cartographic image.

2 The Overview of Known Solutions

Cartographic visualization is the basis of modern methods of visualization of
spatial data in GIS [3]. The specificity of cartographic visualization is determined
by the use of cartographic projections and standards for displaying map objects,
as well as a special dialogue with the user that concentrates on the properties of
maps and cartographic objects. Each visualization operation allows only manual
configuration, which creates obvious difficulties in achievement of the required
dialogue speed. The optimization task of the dialogue is not considered.

The problem of semantic content of not redundant data of analysis’ workspace
that forms holistic view of an object or situation, is traditionally solved by the
repeated use of maps created by expert-cartographers [3]. It is noted in [4] that
such maps are essential patterns of knowledge that are used to solve similar
tasks. Researches are focused on building families of instances of the workspace
in the given context. In the researches of this area, little attention is paid to the
use of knowledge for the dynamic formation of workspaces.

Researches of user’s interaction with GIS have been carried out in geoinfor-
matics for many years [5]. The subject of research is the perception of carto-
graphic images, which is limited by the speed of image construction and their
complexity. In earlier works visualization problems were considered with hard
limit of the speed and visualization system’s memory capacity; the modern
research concentrates on flow control of information on the network [6] and
extraction of knowledge from the visual data. Control of the utility of visual
representation of objects based on an assessment of their perception by the user
in these works is not considered.

The separate area of research focus of visualization of geospatial data is the
semantic classification of observable objects. In [7], for example, the real-time
classification problem was investigated, granulation of data was set, representa-
tion point-of-interest was proposed, data-driven and theory-informed approach
were proposed for the interactive analysis of the state of a modern city. This
area of research does not affect the control of the dialogue, while paying the
greatest attention to subjective interpretation of cartographic data in conditions
of uncertainty.
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The possibility of a holistic provision of cartographic information through
impact on all human senses is investigated by cybercartography [8]. The research
of authors concentrates mainly on the integration of geospatial data and models
of representing heterogeneous knowledge in cartographic form. Dialogue methods
in the process of using maps containing inaccurate and not completely defined
objects remain less investigated.

The problems of visualization are affected by the research of analytical sys-
tems for big data. In particular, the subject of research is the behavior of the
user-analyst in the process of image manipulation. An example is the work [9],
in which the effect of the implementation of the functions of image manipu-
lation ZOOM IN, ZOOM OUT, PANNED on the efficiency of the analysis of
user-generated content was experimentally investigated. In these researches, user
behavior is described in a deterministic manner, i.e. with the use of simplifica-
tions that worsen the quality of the results.

The interactive visual analysis is the subject of intensive research in psychol-
ogy. The example is the work [10] that analyzes the role of visual analysis in the
modern sense of “digital creativity” in the analysis of big data. The authors, in
particular, note the importance of constructing the mental image of the prob-
lem on the basis of the cyclic return from viewing images to understanding the
statement of the problem. The search for technical realization of the process of
purposeful formation of the mental image is the continuation of these researches.

The approach to cartographic visualization based on the special representa-
tion of the structure of the workspace of analysis and the use of knowledge to
construct informative cartographic images are developed in works [11,12]. The
proposed model can be developed for the case of fuzzy description of the utility
function, which will improve the quality of visualization.

Finally, we can conclude that the currently known approaches to visualization
of cartographic data do not consider it as an integral process of constructing and
modifying the workspace of analysis in the user’s session with GIS. Intellectual
support for the utility maximization function of the studied workspace remains
less studied. The subjectivity and uncertainty in assessment of the content of
the workspace make it necessary to search for new models for representing the
utility function of cartographic images.

3 Fuzzy Image Model of the Utility Function

To solve applied problem, the analyst constructs the workspace w. Denote I(w) as
the utility function of the workspace w. From our point of view, the utility func-
tion is determined by the level of professional perception of the cartographic image
of the workspace. Perception is an integral property that affects the quality of
the mental image of the analyst’s mind. The perception in the process of inter-
active visual analysis perception plays a crucial role, it is consistent with mod-
ern ideas about the impact of visualization on creativity [10]. Therefore, we will
assume that the argument of the utility function is the number of graphic objects
N = |w|. It increases worsens perception due to physiological limitations of vision,
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but the same effect is observed when it is reduced due to loss of meaningful image.
A full perception corresponds to the number of image elements that is subjectively
defined by the user as some “best” value |wsiml| < N∗ < |wcomplex|. Here the value
|wsiml| is the number of objects in the non-informative by subjective sensation of
the user of the working area, the value |wcomplex| is the number of objects that are
“very complicated” image. The fact that the parameter N = |w| is available for
measurement makes its use in the visualization quality control loop attractive.

Let’s consider function Ĩ(N) that is given by the form of a fuzzy set:

Ĩ = {< μĨ(n, i), (n, i) > |(n, i) ∈ N × I},

N ∈ [0, Nmax], I ∈ [0, 1], μĨ : N × I → [0, 1].

Here, the value is the number of cartographic objects so that this number is
as much as it is possible to percept. For a wide range of users, the evaluation of
utility is unreliable. However, the presentation of images utility of the studied
made by a professional group of specialists is quite stable and sufficiently coordi-
nated. The membership function μĨ of any pair (nk, ik) adequately characterizes
the expert’s confidence in the utility ik of the image consisting of objects nk.

A comparison of utility Ĩ(L) and Ĩ(R) of two cartographic images with the
number of objects L and R is the comparison of two values of membership
function of inequalities:

μI(L)>I(R) = min
In(L),Im(R)∈Ĩ,In(L)>Im(R)

max{μĨ < L, In(L) >,μĨ < R, Im(R) >},

and

μI(L)≤I(R) = min
In(L),Im(R)∈Ĩ,In(L)≤Im(R)

max{μĨ < L, In(L) >,μĨ < R, Im(R) >},

Therefore, the logical conclusion about the utility ratio is determined by the
truth of one of the rules:

μI(L)>I(R) > μI(L)≤I(R) =⇒ I(L) > I(R),
μI(L)>I(R) ≤ μI(L)≤I(R) =⇒ I(R) > I(L).

(1)

The main difficulty of practical application of such a model is that the func-
tion Ĩ is partially defined and multivalued. The reason is the laboriousness of
constructing its complete description. Typically, there are a limited number of
precedents for Ĩ values that have been obtained empirically. Therefore, it is nec-
essary to search the way to use incomplete knowledge about this function. A
possible option is to use a image representation of the utility function.

Using a continuous membership function μĨ for discrete pairs (nk, ik) we can
apply an image description of knowledge. The image includes two components:

1. the concrete value that was observed experimentally. We call it “the center
of the image”;

2. the region of permissible transformations of the center, which do not change
the meaning of the observed phenomenon.
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An image that has the utility of Ii and consists of Ni objects generates an image:

J =< c,H(c) >, c =< ni, ii >,H(c) ⊆ N × I,

where area H(c) is given by a figure in the coordinate system (N, I).
This area displays the deep analytical knowledge of the expert. The shape

and dimensions of the domain are an invariant meaning, which is embedded in
the concept of utility of a particular seen and studied image. Graphical image
simulates the natural process of thinking by creative human [13]. Figure 1 shows
an example of the image description that was formed when studying an image
with the number of elements Ni = 100 whose utility was estimated as Ii =
0.7. Expressive graphics in this case allowed to display the in-depth knowledge
of the expert by an asymmetric display of the area of the permissible image
transformation.

A fuzzy image is called object:

J̃ = {< μJ̃(H(c)),H(c) > |H(c) ⊆ N × I}, μJ̃ : H(c) → [0, 1]. (2)

Figure 2 shows the image from the previous example as a fuzzy view. This
representation is an important way to indicate the connection between the center
of the image and its permissible transformations with the remaining points in
space. The membership function μJ̃ reflects the expert’s confidence that an image
with a number of elements nm has utility ii despite the fact that < nm, ii > /∈
H(c), c =< nn, ii >,nm �= nn.

Fig. 1. Example of image description Fig. 2. Example of representing an
image with the membership function

Representation (2) provides the way to model imaginative thinking through
pattern matching [13]. The matching mechanism is realized as a classification
of the variants of the relative location for the elements of the images to be
compared. This takes into account:

1. the size of the intersection between the regions of permissible transformations;
2. positioning of the image centers relative to the intersection area;
3. positioning of the image centers relative to each other’s transformation areas.
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For example, let’s consider classification rules when two classes K1 and K2 are
used. A class K1 is regarded as a class of similar images, and the class K2

is considered as a class of images that are far from each other. Suppose that
the images are considered close if their areas of permissible transformations
have common transformations and the centers of the images are in this area.
Substantially this means that the permissible (inessential in the considered sense)
transformations of one precedent of experience lead to another precedent. Since
image centers are experimental data, it can be concluded that the existence of
general transformations has been confirmed practically. It serves as a basis for
concluding that the images are similar. Then the rule of assigning two matched
images J̃1 and J̃2 to the class K1 can be written in the form:

min
x>0,x∈H1(c1)∩H2(c2)

{μJ̃1
(x), μJ̃2

(x), μJ̃1
(c2), μJ̃2

(c1)} > μK1 ,

where μK1 is the minimum level of belonging to the class K1.
The inclusion of at least one center in the region of general transformations

indicates a non-commutative transformation of one center into another, which
can also be considered meaningfully as the proximity of the images. The classi-
fication rule for this case is as follows:

min
x>0,x∈H1(c1)∩H2(c2)

{μJ̃1
(x), μJ̃2

(x), μJ̃2
(c1)} > μK1 ,

All situations belong to the class K2 if they do not satisfy the assignment rule to
the class K1. The image representation makes it possible to display the subjec-
tivity of the evaluation of utility by introducing more classes and classification
rules. The membership function makes it possible to control the reliability of
the comparison of images in a larger part of the space of emergent situations
(in comparison with a non-fuzzy representation of images). This increases the
reliability of decision-making.

The task of comparing the utility of two images using an imaginative repre-
sentation is solved as follows:
1. precedents images of utility assessment are introduced into the knowledge

base of GIS;
2. an image is constructed in the form of a rectangular region for a given value

L. The center of the image is a straight line N = L. The width of the range
of permissible transformations is given by the value ΔL that is determined
in the context of image analysis;

3. the constructed image is compared with known images of precedents. In this
case, the utility is evaluated by some value which is set by default. Otherwise,
the fuzzy value Ĩ(L) is fixed;

4. paragraphs 2 and 3 are satisfied for the value R. The fuzzy value Ĩ(R) is fixed;
5. the decision about the image utility is made based on the truth of the rules (1).

Analyzing the described procedure, we state the following: by reusing the prece-
dents of experience in the form of images, the pattern matching mechanism
does not allow to make a decision in the absence of experience in the analyzed
area. To solve this problem, the described mechanism should be extended to the
possibility of transferring experience.
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4 Transformation of Experience

The difficulty of transforming the experience of estimating a certain parameter
in other conditions is caused by the appearance of a semantic mismatch between
the original and transformed precedents. The notion of “semantic mismatch”
means the loss or distortion of the important relationships between the precedent
situation and the objects of the space in which the transformation is performed.
To solve the problem of transferring experience, we define the topology of space
and the transformation invariant. The displaying of the situation into a given
region of space is formally described by expression:

< c̄, h1(c̄), ..., hM (c̄) >= FTR(< c, h1(c), h2(c), ..., hM (c) >),

which is interpreted as follows: a new situation c̄, which is modelled on the basis
of the known precedent of the situation c, is equivalent to it if it allows the same
transformations hi(c̄) �= ∅, i = 1,M as the initial situation.

Let’s consider the way the area topology of utility estimates is constructed.
The analysis of the structure of cartographic images and the construction proce-
dure allows us to distinguish three areas R1, R2, and R3. The location of these
areas is schematically shown in Fig. 3.

Fig. 3. Structure of the value area of the utility function

The area R1 ⊂ N × I includes such low utility estimates that can’t be met in
practice, even if the complexity of the image is close to the value N∗. The area
is bounded by a curve IR1(N) on the interval [N (1)

R1
, N

(2)
R2

], and the value N∗ ∈
[N (1)

R1
, N

(2)
R2

]. For all real images, the following inequality holds: I(N) > IR1(N).
The expert indicates a border IR1(N). The boundary of the area should pass

through the points:

– IR1(N
∗) �= 0, which corresponds to the minimum possible utility of a well-

perceived cartographic image;
– IR1(N

(1)
R1

) ≈ 0, which is useless because of the small number of cartographic
objects in the image;
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– IR1(N
(2)
R1

) ≈ 0, which corresponds to a useless cartographic image that is not
adequately perceived due to the large number of objects.

The area R2 ⊂ N × I includes unattainable utility estimates caused by the low
information content of simple images. The region is bounded by curves IR2(N)
and I(N) = 1 on the interval [N (1)

R2
, N

(2)
R2

], N
(1)
R2

< N∗. The utility of images

with the number of objects N ∈ [N (1)
R2

, N
(2)
R2

] can’t be estimated higher than it
is determined by the boundary R2: I(N) < IR2(N).

The boundary IR2(N) is also set by the expert. The boundary of area R2

should cover the points:

– I(0) = 0;
– IR2(N

(1)
R2

) ≈ 0, which corresponds to useless simple images from a small
number of objects;

– IR2(N
(2)
R2

) ≈ 1, which corresponds to the most useful images that can’t be

obtained when N < N
(2)
R2

.

The area R3 ⊂ N × I includes unattainable in reality high utility scores due
to the deterioration of the perception of complex images. The area is bounded
by curves IR3(N) and I(N) = 1 on the interval [N (1)

R3
, N

(2)
R3

], N
(1)
R3

< N∗. The
boundary of the area determines the maximum possible value of utility that can
be reached by images consisting of N ∈ [N (1)

R3
, N

(2)
R3

] objects: I(N) < IR3(N).
The boundary is indicated by the expert and reflects his knowledge about

uselessness for the analysis of complex images. The boundary of the area R3

covers the points:

– IR2(N
(1)
R3

) ≈ 1, that corresponds to useful images that can’t be built from

objects N > N
(1)
R3

because of the difficulty of their perception;

– IR3(N
(2)
R3

) ≈ 0, which is useless because of the complexity of the image.

As an invariant of the position of the images (D) selected pair of numbers D =
< d1, d2 >, where d1 is a distance from the center of the image to the nearest
point of the boundary of the area R2 if N < N∗, or the area R3 if N > N∗; d2 is
the distance from the image center to the nearest point of the boundary of the
area R1. The choice is made due to the following:

1. the value D unambiguously characterizes the class of images, the change in the
number of elements and the level of utility of which is limited and determined
by their position in the assessment space;

2. remoteness from the areas boundaries R1, R2, R3 reflects the intuitive rep-
resentation of the expert about how far the indicated utility level is far from
the limit values;

3. images with the same possibilities for modification of complexity and the
same levels of utility can be considered equivalent.
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The boundary of permissible changes in the image includes points whose position
must correspond to the invariant as well. The transformation of the domain of
permissible changes is realized by the points of its boundary.

We describe the procedure for transferring experience in case of fuzzy repre-
sentation of the boundaries of regions and distances between them:

1. the expert forms areas R1, R2, and R3 with fuzzy boundaries ĨR1(N), ĨR2(N),
ĨR3(N), in the assessment space;

2. the expert represents existing precedent of experience as an image with a
center c =< nc, ic > and an area of permissible transformations with a
boundary H̃(c);

3. the point < nk, ik > of transfer of the use case image is determined;
4. the fuzzy value of D̃k =< d̃

(k)
1 , d̃

(k)
2 > invariant is estimated, which includes

fuzzy distances to the areas R1, R2, and R3;
5. the fuzzy value of D̃c =< d̃

(c)
1 , d̃

(c)
2 > invariant is defined for the image center

of precedent;
6. equality D̃c = D̃k is estimated at a given level of membership;
7. if the fuzzy invariants coincide, then the domain of admissible transforma-

tions is constructed with a fuzzy boundary for < Nk, Ik >. Otherwise it is
considered that the transformation of the source image of the precedent into
a given point is impossible.

5 Experimental Study of Visualization Method

The effectiveness of the visualization method was evaluated by the reaction of
corporate GIS users. To achieve this, a software layout of the visualization system
was developed. It was proposed to a group of users to evaluate the quality of the
dialogue with GIS. The layout was developed in the AutoCad Map environment
in AutoLisp. The training of the intelligent visualization system was carried out
on the information base of the corporate GIS, which includes about 106 objects.
The volume of external data sources from cameras and sensors of technological
systems is estimated as 2 TBites.

The corporate GIS users solved the following tasks:

– accounting the material resources and planning the territorial development
of the enterprise. The subject of the analysis is the territorial location of
equipment, internal layout of premises, the cost of reconstruction of buildings
and structures;

– maintenance of enterprise engineering networks. Here, spatial distributions
of terrestrial and underground communications are analyzed; decisions are
taken on outages in emergency situations;

– the enterprise safety. The purpose of the analysis is both the impact of natural
and man-made factors on the production process, and the analysis of hazards
arising from the work of staff;

– implementing the logistics of the enterprise. The subject of the analysis is
the relocation and storage of raw materials and products on the enterprise
territory, planning of logistics operations;
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– managing the supply and distribution of energy within the enterprise. This
analysis is necessary for the distribution of energy consumption quotas, mak-
ing decisions about the redistribution of energy flows in case of emergency.

Five contexts, “Administration”, “Security department”, “Department of
Energy Supply”, “Engineering Communication”, and “Logistics Department”
were formed in accordance with the described modes of using GIS. A knowledge
base was created to manage visualization for each context. As the practice of
applying the layout has shown, the average value of the number of objects of the
working area N∗ set by users when configuring the system ranges from several
tens to hundreds of copies.

The work area redundancy level indicator (k) was estimated by the ratio of
the number of objects in the source area (a) to the number of objects in the area
after optimization (b): k = a

b .
An experiment was conducted for the contexts mentioned above. Table 1

shows the data set of context “Administration”, which were obtained program-
matically by redundancy factor (k) values and expert utility estimates (R). Eval-
uations of usefulness were obtained by polling users.

Average values of the indicators were calculated based on the experimental
data set. Table 2 shows the names of the contexts and the average values of the
redundancy reduction coefficients for each context.

We analyzed the received data and claimed that the visualization control
subsystem reduced redundancy in all contexts. The difference in values k indi-
cates the different quality of knowledge embedded in the experimental model of
the system. We also show the integral mean values of the utility evaluation of
the system for decision-making (R), which were obtained by the users survey.

Table 1. Redundancy reduction coefficients and values of the utility evaluation for
context “Administration”.

User1 User2 User3 User4

k R k R k R k R

2.1 6 1.2 4 2.4 8 2.0 5

1.5 6 1.0 4 1.5 4 2.0 6

2.5 7 2.8 6 2.3 9 2.0 6

1.9 6 2.1 7 1.7 4 1.0 2

2.0 7 4.0 7 2.4 8 1.0 5

1.8 5 1.2 4 2.4 8 2.5 8

1.6 6 2.5 7 1.5 4 1.4 3

2.3 8 1.3 5 1.5 3 1.0 3

1.8 6 2.5 7 2.1 6 1.0 4

1.8 6 2.5 7 1.5 4 2.0 6
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We compared the utility estimates from Table 2 and the degree of reduction in
redundancy. A statistically significant relationship was found between the reduc-
tion in redundancy and the increase in the evaluation of the quality of the deci-
sions made. The correlation coefficient is 0.357. Thus, the result of the experiment
indicates the feasibility of applying the proposed method of visualization.

Table 2. Average values of the redundancy reduction coefficients and integral mean
values of the utility evaluation.

Context k R

Administration 1.9 6

Security Department 2.1 8

Department of Energy Supply 3.3 7

Engineering Communications Department 4 9

Logistics Department 10 8

6 Conclusion

Geoinformation systems are the main application area of the proposed method
of visualization management. The main effect of the proposed method is the
improvement of the quality of decision-making by providing the user-analyst
with not excessive and complete cartographic images. The effect is achieved by
the use of knowledge. The fuzzy model of figurative representation and the use
of experience that were suggested in this work allowed performing an important
point that is the estimation of utility of images. The procedure for transferring
the experience of solving problems based on topology was built. Further studies
are planned in the direction of automatic adaptation of GIS to changes in the
cartographic database. The real world is changing, so new classes of relationships
and objects are added to the GIS database. Therefore, the work of the visual-
ization system will lose its effectiveness without the knowledge that corresponds
to the new cartographic entities. It seems, that machine learning methods may
solve the problem as well. That is a promising direction for our future research.
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Abstract. We define and find a most specific generalization of a fuzzy
set of topics assigned to leaves of the rooted tree of a taxonomy. This
generalization lifts the set to a “head subject” in the higher ranks of
the taxonomy, that is supposed to “tightly” cover the query set, possi-
bly bringing in some errors, both “gaps” and “offshoots”. The method
globally minimizes a penalty combining head subjects and gaps and off-
shoots. We apply this to extract research tendencies from a collection
of about 18000 research papers published in Springer journals on data
science. We consider a taxonomy of Data Science based on the Associa-
tion for Computing Machinery Classification of Computing System 2012
(ACM-CCS). We find fuzzy clusters of leaf topics over the text collection
and use thematic clusters’ head subjects to make some comments on the
tendencies of research.

Keywords: Recurrence · Generalization · Fuzzy cluster ·
Spectral clustering · Annotated Suffix Tree

1 Introduction

The issue of automation of structurization and interpretation of digital text
collections is of ever-growing importance because of both practical needs and
theoretical necessity. This paper concerns an aspect of this, the issue of general-
ization as a unique feature of human cognitive abilities. The existing approaches
to computational analysis of structure of text collections usually involve no gen-
eralization as a specific aim. The most popular tools for structuring text collec-
tions are cluster analysis and topic modelling. Both involve features of the same
level of granularity as individual words or short phrases in the texts, thus no
generalization as an explicitly stated goal.

Nevertheless, the hierarchical nature of the universe of meanings is reflected
in the flow of publications on text analysis. We can distinguish between at least
three directions at which the matter of generalization is addressed. First of all,
one should mention activities related to developing taxonomies, especially those
c© Springer Nature Switzerland AG 2019
L. Rutkowski et al. (Eds.): ICAISC 2019, LNAI 11508, pp. 273–286, 2019.
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involving hyponymic/hypernymic relations (see, for example, [15,18], and refer-
ences therein). A recent paper [16] should be mentioned here too, as that devoted
to supplementing a taxonomy with newly emerging research topics.

Another direction is part of conventional activities in text summarization.
Usually, summaries are created using a rather mechanistic approach of sen-
tence extraction. There is, however, also an approach for building summaries as
abstractions of texts by combining some templates such as subject-verb-object
(SVO) triplets (see, for example, [8]).

Yet one more field of activities is what can be referred to as operational gener-
alization. In this direction, the authors use generalized case descriptions involving
taxonomic relations between generalized states and their parts to achieve a tan-
gible goal such as improving characteristics of text retrieval (see, for example,
[12] and [17].)

This paper falls in neither of these approaches, as we do not attempt to
change any taxonomy. We rather try to use a taxonomy for straightforwardly
implementing the idea of generalization. According to the Merriam-Webster dic-
tionary, the term “generalization” refers to deriving a general conception from
particulars. We assume that a most straightforward medium for such a deriva-
tion, a taxonomy of the field, is given to us. The situation of our concern is a
case at which we are to generalize a fuzzy set of taxonomy leaves representing
the essence of some empirically observed phenomenon. The most popular Com-
puter Science taxonomy is manually developed by the world-wide Association
for Computing Machinery, a most representative body in the domain; the latest
release of the taxonomy has been published in 2012 as the ACM Computing
Classification System (ACM-CCS) [1]. We take its part related to Data Science,
as presented in a slightly modified form by adding a few leaves in [11]. We add
a few more leaves to better reflect the research papers being analyzed [4].

The rest of the paper is organized accordingly. Section 2 presents a mathemat-
ical formalization of the generalization problem as of parsimoniously lifting of a
given query fuzzy leaf set to higher ranks of the taxonomy and provides a recur-
sive algorithm leading to a globally optimal solution to the problem. Section 3
describes an application of this approach to deriving tendencies in development
of the data science, that can be discerned from a set of about 18000 research
papers published by the Springer Publishers in 17 journals related to data sci-
ence for the past 20 years. Its subsections describe our approach to finding and
generalizing fuzzy clusters of research topics. The results are followed by our
comments on the tendencies in the development of the corresponding parts of
Data Science drawn from the lifting results. Section 3.6 concludes the paper.

2 Parsimoniously Lifting a Fuzzy Thematic Cluster
in a Taxonomy: Model and Method

Mathematically, a taxonomy is a rooted tree whose nodes are annotated by
taxonomy topics. We consider the following problem. Given a fuzzy set S of
taxonomy leaves, find a node t(S) of higher rank in the taxonomy, that covers
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the set S as tight as possible. Such a “lifting” problem is a mathematical expli-
cation of the human facility for generalization, that is, “the process of forming
a conceptual form” of a phenomenon represented, in this case, by a fuzzy leaf
subset.

The problem is not as simple as it may seem to be. Consider, for the sake
of simplicity, a hard set S shown with five black leaf boxes on a fragment of a
tree in Fig. 1. Figure 2 illustrates the situation at which the set of black boxes is
lifted to the root, which is shown by blackening the root box, and its offspring,
too. If we accept that set S may be generalized by the root, this would lead to
a number, four, white boxes to be covered by the root and, thus, in this way,
falling in the same concept as S even as they do not belong in S. Such a situation
will be referred to as a gap. Lifting with gaps should be penalized. Altogether,
the number of conceptual elements introduced to generalize S here is 1 head
subject, that is, the root to which we have assigned S, and the 4 gaps occurred
just because of the topology of the tree, which imposes this penalty. Another
lifting decision is illustrated in Fig. 3: here the set is lifted just to the root of
the left branch of the tree. We can see that the number of gaps has drastically
decreased, to just 1. However, another oddity emerged: a black box on the right,
belonging to S but not covered by the root of the left branch at which the set S
is mapped. This type of error will be referred to as an offshoot. At this lifting,
three new items emerge: one head subject, one offshoot, and one gap. This is
less than the number of items emerged at lifting the set to the root (one head
subject and four gaps, that is, five), which makes it more preferable. Of course,
this conclusion holds only if the relative weight of an offshoot is less than the
total relative weight of three gaps.

Fig. 1. A crisp query set, shown by black boxes, to be conceptualized in the taxonomy.

We are interested to see whether a fuzzy set S can be generalized by a
node t from higher ranks of the taxonomy, so that S can be thought of as falling
within the framework covered by the node t. The goal of finding an interpretable
pigeon-hole for S within the taxonomy can be formalized as that of finding one
or more “head subjects” t to cover S with the minimum number of all the
elements introduced at the generalization: head subjects, gaps, and offshoots.
This goal realizes the principle of Maximum Parsimony (MP) in describing the
phenomenon in question.

Consider a rooted tree T representing a hierarchical taxonomy so that its
nodes are annotated with key phrases signifying various concepts. We denote
the set of its leaves by I. The relationship between nodes in the hierarchy is
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Fig. 2. Generalization of the query set from Fig. 1 by mapping it to the root, with the
price of four gaps emerged at the lift.

Fig. 3. Generalization of the query set from Fig. 1 by mapping it to the root of the left
branch, with the price of one gap and one offshoot emerged at this lift.

conventionally expressed using genealogical terms: each node t ∈ T is said to be
the parent of the nodes immediately descending from t in T , its children. We use
χ(t) to denote the set of children of t. Each interior node t ∈ T −I is assumed to
correspond to a concept that generalizes the topics corresponding to the leaves
I(t) descending from t, viz. the leaves of the subtree T (t) rooted at t, which is
conventionally referred to as the leaf cluster of t.

A fuzzy set on I is a mapping u of I to the non-negative real numbers that
assigns a membership value, or support, u(i) ≥ 0 to each i ∈ I. We refer to
the set Su ⊂ I, where Su = {i ∈ I : u(i) > 0}, as the base of u. In general, no
other assumptions are made about the function u, other than, for convenience,
commonly limiting it to not exceed unity. Conventional, or crisp, sets correspond
to binary membership functions u such that u(i) = 1 if i ∈ Su and u(i) = 0
otherwise.

Given a fuzzy query set u defined on the leaves I of the tree T , one can
consider u to be a (possibly noisy) projection of a higher rank concept, u’s
“head subject”, onto the corresponding leaf cluster. Under this assumption, there
should exist a head subject node h among the interior nodes of the tree T such
that its leaf cluster I(h) more or less coincides (up to small errors) with Su. This
head subject is the generalization of u to be found. The two types of possible
errors associated with the head subject if it does not cover the base precisely, are
false positives and false negatives, referred to in this paper, as gaps and offshoots,
respectively, are illustrated in Figs. 2 and 3. Altogether, the total number of head
subjects, gaps, and offshoots has to be as small as possible.
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A node t ∈ T is referred to as u-irrelevant if its leaf-cluster I(t) is disjoint
from the base Su. Consider a candidate node h in T and its meaning relative
to fuzzy set u. An h-gap is a node g of T (h), other than h, at which a loss of
the meaning has occurred, that is, g is a maximal u-irrelevant node in the sense
that its parent is not u-irrelevant. Conversely, establishing a node h as a head
subject can be considered as a gain of the meaning of u at the node. The set of
all h-gaps will be denoted by G(h). Obviously, if a node is u-irrelevant, all of its
descendants are also u-irrelevant.

A gap is less significant if its parent’s membership value is smaller. Therefore,
a measure v(g) of “gap importance” should also be defined, to be reflected in the
penalty function. We suggest defining the gap importance as v(g) = u(par(g)),
where par(g) is the parent of g. An alternative definition would be to scale these
values by dividing them by the number of children of par(g). However, we note
that the algorithm ParGenFS below works for any definition of gap importance.
Also, we define a summary gap importance: V (t) =

∑
g∈G(t) v(g).

An h-offshoot is a leaf i ∈ Su which is not covered by h, i.e., i /∈ I(h). The
set of all h-offshoots is Su − I(h). Given a fuzzy topic set u over I, a set of nodes
H will be referred to as a u-cover if: (a) H covers Su, that is, Su ⊆ ⋃

h∈H I(h),
and (b) the nodes in H are unrelated, i.e. I(h) ∩ I(h′) = ∅ for all h, h′ ∈ H such
that h �= h′. The interior nodes of H will be referred to as head subjects and the
leaf nodes as offshoots, so the set of offshoots in H is H ∩ I. The set of gaps in
H is the union of G(h) over all head subjects h ∈ H − I.

We define the penalty function p(H) for a u-cover H as:

p(H) =
∑

h∈H−I

u(h) +
∑

h∈H−I

∑

g∈G(h)

λv(g) +
∑

h∈H∩I

γu(h). (1)

The problem we address is to find a u-cover H that globally minimizes the
penalty p(H). Such a u-cover will be the parsimonious generalization of the query
set u.

Before applying an algorithm to minimize the total penalty, one needs to
execute a preliminary transformation of the tree by pruning it from all the non-
maximal u-irrelevant nodes, i.e. descendants of gaps. Simultaneously, the sets
of gaps G(t) and the internal summary gap importance V (t) =

∑
g∈G(t) v(g) in

Eq. (1) can be computed for each interior node t. We note that the elements
of Su are in the leaf set of the pruned tree, and the other leaves of the pruned
tree are precisely the gaps. After this, our lifting algorithm ParGenFS applies.
For each node t, the algorithm ParGenFS computes two sets, H(t) and L(t),
containing those nodes in T (t) at which respectively gains and losses of head
subjects occur (including offshoots). The associated penalty is computed as p(t)
described below.

An assumption of the algorithm is that no gain can happen after a loss.
Therefore, H(t) and L(t) are defined assuming that the head subject has not
been gained (nor therefore lost) at any of t’s ancestors. The algorithm ParGenFS
recursively computes H(t), L(t) and p(t) from the corresponding values for the
child nodes in χ(t).
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Specifically, for each leaf node that is not in Su, we set both L(·) and H(·)
to be empty and the penalty to be zero. For each leaf node that is in Su, L(·) is
set to be empty, whereas H(·), to contain just the leaf node, and the penalty is
defined as its membership value multiplied by the offshoot penalty weight γ. To
compute L(t) and H(t) for any interior node t, we analyze two possible cases:
(a) when the head subject has been gained at t and (b) when the head subject
has not been gained at t.

In case (a), the sets H(·) and L(·) at its children are not needed. In this case,
H(t), L(t) and p(t) are defined by:

H(t) = {t}; L(t) = G(t); p(t) = u(t) + λV (t). (2)

In case (b), the sets H(t) and L(t) are just the unions of those of its children,
and p(t) is the sum of their penalties:

H(t) =
⋃

w∈χ(t)

H(w); L(t) =
⋃

w∈χ(t)

L(w); p(t) =
∑

w∈χ(t)

p(w). (3)

To obtain a parsimonious lift, whichever case gives the smaller value of p(t)
is chosen.

When both cases give the same values for p(t), we may choose, say, (a). The
output of the algorithm consists of the values at the root, namely, H – the set of
head subjects and offshoots, L – the set of gaps, and p – the associated penalty.

We have proven that the algorithm ParGenFS leads to an optimal lifting
indeed [4].

3 Structuring and Generalizing a Collection of Research
Papers

Here are main steps of our approach:

– preparing a scholarly text collection;
– preparing a taxonomy of the domain under consideration;
– developing a matrix of relevance values between taxonomy leaf topics and

research publications from the collection;
– finding fuzzy clusters according to the structure of relevance values;
– lifting the clusters over the taxonomy to conceptualize them via generalization;
– making conclusions from the generalizations.

Each of the items is covered in a separate subsection further on.

3.1 Scholarly Text Collection

Because of a generous offer from the Springer Publisher, we were able to down-
load a collection of 17685 research papers together with their abstracts published
in 17 journals related to Data Science, in our opinion, for 20 years from 1998–
2017. We take the abstracts to these papers as a representative collection.
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3.2 DST Taxonomy

Taxonomy is a form of knowledge engineering which is getting more and more
popular. Most known are taxonomies within the bioinformatics Genome Ontol-
ogy project (GO) [5], health and medicine SNOMED CT project [7] and the like.
Mathematically, a taxonomy is a rooted tree, a hierarchy, whose all nodes are
labeled by main concepts of a domain. The hierarchy corresponds to a relation
of inclusion: the fact that node A is the parent of B means that B is part, or a
special case, of A.

The subdomain of our choice is Data Science, comprising such areas as
machine learning, data mining, data analysis, etc. We take that part of the
ACM-CCS 2012 taxonomy, which is related to Data Science, and add a few
leaves related to more recent Data Science developments. A major extract from
the taxonomy of Data Science is published in [11]. The higher ranks of the tax-
onomy are presented in Table 1 and its full version in [4].

Table 1. ACM Computing Classification System (ACM-CCS) 2012 higher rank sub-
jects related to Data Science.

Subject index Subject name

1. Theory of computation

1.1. Theory and algorithms for application domains

2. Mathematics of computing

2.1. Probability and statistics

3. Information systems

3.1. Data management systems

3.2. Information systems applications

3.3. World Wide Web

3.4. Information retrieval

4. Human-centered computing

4.1. Visualization

5. Computing methodologies

5.1. Artificial intelligence

5.2. Machine learning

3.3 Evaluation of Relevance Between Texts and Key Phrases

Most popular and well established approaches to scoring keyphrase-to-document
relevance include the so-called vector-space approach [14] and probabilistic text
model approach [2]. These, however, rely on individual words and text pre-
processing. We utilize a method [3,13], which requires no manual work.
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An Annotated Suffix Tree (AST) is a weighted rooted tree used for storing
text fragments and their frequencies. To build an AST for a text string, all
suffixes from this string are extracted. A k-suffix of a string x = x1x2 . . . xN of
length N is a continuous end fragment xk = xN−k+1xN−k+2 . . . xN . For example,
a 3-suffix of string INFORMATION is substring ION , and a 5-suffix, ATION .
Each AST node is assigned a symbol and the so-called annotation (frequency of
the substring corresponding to the path from the root to the node including the
symbol at the node). The root node of AST has no symbol or annotation. An
algorithm for building an AST for any given string x = x1x2 . . . xN is described
below.

1. Initialize an AST to consist of a single node, the root: T .
2. Find all the suffixes of the given string: {xk = xN−k+1xN−k+2 . . . xN |k =

1, 2, . . . , N}.
3. For each suffix xk find its maximal overlap, that is, a path from the root in

T coinciding with its beginning fragment xkmax . At each node of the path for
xkmax add 1 to the annotation. If the length of the overlap xkmax is less than
k, the path is extended by adding new nodes corresponding to symbols from
the remaining part of this suffix. Annotations of all the new nodes are set to
be 1.

To accelerate the working of the method, one should use efficient versions of
algorithms utilising suffix trees and suffix arrays (see, for example, [6]).

Having an AST T built, we can score the string-to-document relevance over
the AST. To do this, we follow [10] by computing the conditional probability of
node u in T :

p(u) =
f(u)

f(parent(u))
. (4)

For all the immediate offspring of the root (R), formula has the following
form:

p(u) =
f(u)

∑

v∈T :parent(v)=R

f(v)
, (5)

where f(u) is the frequency annotation of the node u. Using the formula above,
one can calculate the probability of node u relative to all its siblings. For each
suffix xk of string x the relevance score s(xk, T ) is defined as:

s(xk, T ) =
1

kmax

kmax∑

i=1

p(xk
i ). (6)

The AST relevance score of string x and text T is defined as the mean of all
the suffix scores:

S(x, T ) =
1
N

N∑

k=1

s(xk, T ). (7)
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In practical computations, we split any document into a set of strings (usually
consisting of 2–3 consecutive words), create an empty AST for the document and
add these strings in the AST in sequence, by using the algorithm above.

To lessen the effects of frequently occurring general terms, the scoring func-
tion is modified by five-fold decreasing the weight of stop-words. The list of stop-
words includes: “learning, analysis, data, method” and a few postfixes: “s/es, ing,
tion”. After an AST for a document has been built, the time complexity of cal-
culating the string-to-document relevance score is O(m2) where m is the length
of the query string. This does not depend on the document length, in contrast
to the popular Levenshtein-distance based approaches.

3.4 Defining and Computing Fuzzy Clusters of Taxonomy Topics

Clusters of topics should reflect co-occurrence of topics: the greater the number
of texts to which both topics t and t′ are relevant, the greater the interrelation
between t and t′, the greater the chance for topics t and t′ to fall in the same
cluster. We have tried several popular clustering algorithms. Unfortunately, no
satisfactory results have been found. Therefore, we present here results obtained
with the FADDIS algorithm from [10] developed specifically for finding thematic
clusters. This algorithm implements assumptions that are relevant to the task:

LN Laplacian Normalization: Similarity data transformation modeling – to an
extent – heat distribution and, in this way, making the cluster structure
sharper.

AA Additivity: Thematic clusters behind the texts are additive so that similarity
values are sums of contributions by different hidden themes.

AN Non-Completeness: Clusters do not necessarily cover all the key phrases
available as the text collection under consideration may be irrelevant to
some of them.

Co-relevance Topic-to-Topic Similarity Score. Given a keyphrase-to-
document matrix R of relevance scores, it is converted to a keyphrase-to-
keyphrase similarity matrix A or scoring the “co-relevance” of keyphrases accord-
ing to the text collection structure. The similarity score att′ between topics t
and t′ can be computed as the inner product of vectors of scores rt = (rtv) and
rt′ = (rt′v) where v = 1, 2, . . . , V = 17685. The inner product is moderated by a
natural weighting factor assigned to texts in the collection. The weight of text
v is defined as the ratio of the number of topics nv relevant to it and nmax, the
maximum nv over all v = 1, 2, ..., V. A topic is considered relevant to v if its
relevance score is greater than 0.2 (a threshold found experimentally, see [3]).

Additive Fuzzy Spectral Clustering. Let us denote the total set of leaf
topics by T and assume that a fuzzy cluster over T is represented by a fuzzy
membership vector u = (ut), t ∈ T , such that 0 ≤ ut ≤ 1 for all t ∈ T , and
an intensity μ > 0, a scale coefficient to relate the membership scores to the
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similarity scores. For T being a set of research topics and u = (ut), t ∈ T , a
membership values vector representing the a semantic substructure of a corpus
of research papers under consideration, the product (μut)(μut′) = μ2utut′ can
be considered as the contribution by the research direction represented by the
cluster under consideration to the total similarity score att′ between topics t
and t′. The additive fuzzy clustering model in [10] states that the entries in the
topic-to-topic similarity matrix A can be considered as resulting from additive
contributions of K fuzzy clusters, up to small errors to be minimized:

att′ =
K∑

k=1

μ2
kuktukt′ + ett′ , (8)

where uk = (ukt) is the membership vector of cluster k, and μk its intensity.
These assumptions require that clusters are extracted according to an additive
model. A method developed in [10], FADDIS, finds clusters in (8) one-by-one,
which accords with the assumptions above. Paper [10] provides some theoretical
and experimental computation results to demonstrate that FADDIS is compet-
itive over other fuzzy clustering approaches.

To make the hidden cluster structure in similarity data sharper, we apply
the so-called Laplacian normalization [9].

FADDIS Thematic Clusters. After computing the 317 × 317 topic-to-topic
co-relevance matrix, converting in to a topic-to-topic Lapin transformed similar-
ity matrix, and applying FADDIS clustering, we sequentially obtained 6 clusters,
of which three clusters seem especially homogeneous. We denote them using let-
ters L, for ‘Learning’; R, for ‘Retrieval’; and C, for ‘Clustering’. These clusters
are presented in Table 2.

Table 2. Clusters L, R, C: topics with largest membership values.

Cluster L Cluster R Cluster C

u(t) Topic u(t) Topic u(t) Topic

0.300 Rule learning 0.211 Query representation 0.327 Biclustering

0.282 Batch learning 0.207 Image representations 0.286 Fuzzy clustering

0.276 Learning to rank 0.194 Shape representations 0.248 Consensus clustering

0.217 Query learning 0.194 Tensor representation 0.220 Conceptual clustering

0.216 Apprenticeship
learning

0.191 Fuzzy representation 0.192 Spectral clustering

0.213 Models of learning 0.187 Data provenance 0.187 Massive data clustering

0.203 Adversarial
learning

0.173 Equational models 0.159 Graph based conceptual
clustering
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Fig. 4. Lifting results for Cluster L: Learning. Gaps are numbered, see Table 3.

3.5 Results of Lifting Clusters L, R, and C Within DST

All obtained clusters are lifted in the DST taxonomy using ParGenFS algorithm
with the gap penalty λ = 0.1 and off-shoot penalty γ = 0.9.

The results of lifting Cluster L are shown in Fig. 4. The cluster has received
three head subjects: machine learning, machine learning theory, and learning to
rank. These represent the structure of the general concept “Learning” according

Table 3. Gaps at the lifting of Cluster L

Number Topics

1 Ranking, supervised learning by classification, structured outputs

2 Sequential decision making in practice, inverse reinforcement learning in
practice

3 Statistical relational learning

4 Sequential decision making, inverse reinforcement learning

5 Unsupervised learning

6 Learning from demonstrations, kernel approach

7 Classification and regression trees, kernel methods, neural networks,
learning in probabilistic graphical models, learning linear models,
factorization methods, markov decision processes, stochastic games,
learning latent representations, multiresolution, support vector machines

8 Sample complexity and generalization bounds, Boolean function learning,
kernel methods, boosting, bayesian analysis, inductive inference,
structured prediction, markov decision processes, regret bounds

9 Machine learning algorithms
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to our text collection. The list of gaps obtained is less instructive, reflecting
probably a relatively modest coverage of the domain by the publications in the
collection (see in Table 3).

Similar comments can be made with respect to results of lifting of Cluster
R: Retrieval. The obtained head subjects: Information Systems and Computer
Vision show the structure of “Retrieval” in the set of publications under consid-
erations. Lifting of Cluster C leads to much fragmentary results. There are 16
(!) head subjects here: clustering, graph based conceptual clustering, trajectory
clustering, clustering and classification, unsupervised learning and clustering,
spectral methods, document filtering, language models, music retrieval, collab-
orative search, database views, stream management, database recovery, mapre-
duce languages, logic and databases, language resources. As one can see, the
core clustering subjects are supplemented by methods and environments in the
cluster – this shows that the ever increasing role of clustering activities perhaps
should be better reflected in the taxonomy.

3.6 Making Conclusions

We can see that the topic clusters found with the text collection do highlight
areas of soon-to-be developments. Three clusters under consideration closely
relate, in respect, to the following processes:

– theoretical and methodical research in learning, as well as merging the subject
of learning to rank within the mainstream;

– representation of various types of data for information retrieval, and merging
that with visual data and their semantics; and

– various types of clustering in different branches of the taxonomy related to
various applications and instruments.

In particular, one can see from the “Learning” head subjects (see Fig. 4 and
comments to it) that main work here still concentrates on theory and method
rather than applications. A good news is that the field of learning, formerly
focused mostly on tasks of learning subsets and partitions, is expanding currently
towards learning of ranks and rankings. Of course, there remain many sub-areas
to be covered: these can be seen in and around the list of gaps in Table 3.

Moving to the lifting results for the information retrieval cluster R, we can
clearly see the tendencies of the contemporary stage of the process. Rather than
relating the term “information” to texts only, as it was in the previous stages of
the process of digitalization, visuals are becoming parts of the concept of infor-
mation. There is a catch, however. Unlike the multilevel granularity of meanings
in texts, developed during millennia of the process of communication via lan-
guages in the humankind, there is no comparable hierarchy of meanings for
images. One may only guess that the elements of the R cluster related to seg-
mentation of images and videos, as well as those related to data management
systems, are those that are going to be put in the base of a future multilevel
system of meanings for images and videos.
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Regarding the “clustering” cluster C with its 16 (!) head subjects, one may
conclude that, perhaps, a time moment has come or is to come real soon, when
the subject of clustering must be raised to a higher level in the taxonomy to
embrace all these “heads”. At the beginning of the Data Science era, a few
decades ago, clustering was usually considered a more-or-less auxiliary part of
machine learning, the unsupervised learning. Perhaps, soon we are going to see a
new taxonomy of Data Science, in which clustering is not just an auxiliary instru-
ment but rather a model of empirical classification, a big part of the knowledge
engineering. When discussing the role of classification as a knowledge engineering
phenomenon, one encounters three conventional aspects of classification:

– structuring the phenomena;
– relating different aspects of phenomena to each other;
– shaping and keeping knowledge of phenomena.

Each of them can make a separate direction of research in knowledge engineering.
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Abstract. In this paper, we propose the expression of a 2-additive Cho-
quet integral of bi-capacities by using a bipolar Möbius transform based
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1 Introduction

The Choquet integral has been widely applied as an aggregation operator in mul-
tiple criteria decision making problems. Recently, the concept of bi-capacity has
been proposed by Grabisch and Labreuche [11] as a generalization of capacity [6]
(fuzzy measure [3,4,14,15] or non-additive measure [8]), who consider the case
where scores are expressed on a bipolar scale, i.e. having a central neutral level,
usually 0. The bipolar Choquet integral with respect to bi-capacities has been
introduced by Grabisch and Labreuche [12] as a generalization of the Choquet
integral. Other remarkable works on bi-capacities include the one of Fujimoto
and Murofushi [9], who defined the Möbius transform of bi-capacities under the
name of bipolar Möbius transform.

In [1,2], a new framework for studying the bipolar Choquet integral has
been proposed by introducing a concept of ternary-element sets. This framework
allows a simple way to prove new results on bi-capacity and bipolar Choquet inte-
gral as it was done for capacity. In this paper, we introduce the bipolar Möbius
transform based on ternary-element sets. Then, we propose the expression of a
2-additive Choquet integral of bi-capacities based on the idea of ternary-element
sets. This expression is equivalent of the expressions which are defined by Gra-
bisch and Labreuche [12], and defined by Mayag et al. [13].

The organization of the paper is as follows. The next section recalls the basic
concepts of bi-capacities based on the idea of ternary-element sets. Section 3
presents the bipolar Möbius transform based on ter-element sets. In Sects. 4 and
5, we first introduce the k-additivity of bi-capacities based on ter-element sets,
then we propose the expression of a 2-additive Choquet integral of bi-capacities.
The paper finishes with some conclusions.
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2 Bi-capacities

In this section, we begin by recalling basic concepts of bi-capacities based on
ter-element sets (for more details, see [1,2]).

2.1 Bi-capacities Based on Ter-Element Sets

In multi-criteria decision making problem, we shall represent the criterion i as
i+ whenever i is positively important, as i− whenever i is negatively important,
and as i∅ whenever i is neutral, and we call this element a ternary-element (or
simply ter-element). A ter-element set A is the set of the form A := {τ1, . . . , τn}
where τi = i+, i−, or i∅ ∀ i = 1, . . . , n. Hence, we consider the set of all possible
combinations of ter-elements of n criteria given by

T := {{τ1, · · · , τn} | τi ∈ {i+, i−, i∅}, ∀ i = 1, · · · , n},

which corresponds to Q in the notation of classical bi-capacities [11].
The order relation � between ter-element sets on T is given by the following

definition.

Definition 1. Suppose A and B are ter-element sets of T . Then, A �
B iff ∀ i = 1, . . . , n,

“if i+ ∈ A implies i+ ∈ B”, and “if i∅ ∈ A implies i+ or i∅ ∈ B”. (1)

Using the concept of ter-element sets, we define an equivalent definition of
bi-capacity as follows.

Definition 2. A set function ν : T → [−1, 1], is called bi-capacity if it satisfies
the following conditions:

(1) ν(X+) = ν({1+, · · · , n+}) = 1, ν(X∅) = ν({1∅, · · · , n∅}) = 0, and ν(X−) =
ν({1−, · · · , n−}) = −1,

(2) ∀ A,B ∈ T , A � B implies ν(A) ≤ ν(B).

A bi-capacity is also said to be additive if the following relation holds:

∀ A ∈ T , ν(A) =
∑

i+∈A

ν(i+) +
∑

i−∈A

ν(i−). (2)

2.2 The Order Relation ⊆ on T

Bi-capacity is set function defined on the structure of the underlying partially
ordered set [7]. We can introduce an order on the structure T different from
the order (�) described in Definition 1. Thus, we adopt the following definition
of an order (⊆) on the structure T which is equivalent to Bilbao order on bi-
cooperative game [5].
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Definition 3. Suppose A and B are ter-element sets of T . Then, A ⊆
B iff ∀ i = 1, . . . , n,

“if i+ ∈ A implies i+ ∈ B” and “if i− ∈ A implies i− ∈ B”. (3)

In this order:

• the number of positively important elements i+ of the ter-element set A ∈ T ,

denoted by a+, is defined as a+ =
n∑

i=1

χA(i+), where,

χA(i+) =
{

1 if i+ ∈ A,
0 if i+ /∈ A.

• the number of negatively important elements i− of the ter-element set A ∈ T ,

denoted by a−, is defined as a− =
n∑

i=1

χA(i−), where,

χA(i−) =
{

1 if i− ∈ A,
0 if i− /∈ A.

• the cardinality of the ter-element set A ∈ T is

a = |A| = a+ + a−. (4)

• Unanimity games can be generalized to bi-unanimity games for this order as
the following form: for all A ∈ T ,

uA(B) =
{

1 iff B ⊇ A,
0 iff otherwise. (5)

3 The Bipolar Möbius Transforms

The Möbius transform is an important concept for capacities since the Möbius
transform represents the coordinates of capacities in the basis of unanimity
game. Moreover, the Choquet integral has a very simple expression when the
Möbius transform is used. In [11], Grabisch M. and Labreuche Ch. have been
defined the Möbius transform for bi-capacity. Another equivalent representation
of bi-capacity has been proposed, by Fujimoto and Murofushi [9] who called the
bipolar Möbius transform. In this section, we define the equivalent expression of
bipolar Möbius transform for bi-capacity.

We define the bipolar Möbius transform for bi-capacities based on ternary-
element sets of the order relation ⊆ on T as follows.

Definition 4. To any bi-capacity ν on T , another function bν : T −→ R can
be associated by

ν(A) =
∑

B⊆A

bν(B), ∀A ∈ T . (6)
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The function bν is called the bipolar Möbius transform of ν, and is given by the
following proposition.

Proposition 1. Let ν : T −→ R be a bi-capacity and bν : T −→ R the bipolar
Möbius transform of ν. Then,

bν(A) =
∑

B⊆A

(−1)a−b ν(B), ∀A ∈ T . (7)

Proof: From Definition 4, we have ν(B) =
∑

C⊆B

bν(C), ∀B ∈ T . Then,

∑

B⊆A

(−1)a−b ν(B) = (−1)a
∑

B⊆A

(−1)b (
∑

C⊆B

bν(C))

where, the order ⊆ is defined by Eq. (3), and the cardinality of the ter-element
sets is defined by Eq. (4).

= (−1)a
∑

C⊆A

bν(C)(
∑

B,C⊆B⊆A

(−1)b)

= (−1)a
∑

C=A

bν(C)(
∑

B,C⊆B⊆A

(−1)b) + (−1)a
∑

C⊂A

bν(C)(
∑

B,C⊆B⊆A

(−1)b)

= (−1)a bν(A) (−1)a + (−1)a
∑

C⊂A

bν(C) (0)

= bν(A).

�

4 k-Additivity of Bi-capacities Based on Ter-Element
Sets

Möbius representation it has relation with the concept of k-additivity. The funda-
mental notion of k-additivity proposed by Grabisch and Labreuche [11] enables
to reduce the number of bi-capacity coefficients. Also, Fujimoto et al. [10] have
proposed the characterization of k-additivity of bi-capacities by using the bipolar
Möbius transform. In this section, we define k-additivity of bi-capacities based
on ter-element sets.

Definition 5. Let k ∈ {1, . . . , n−1}, a bi-capacity based on ter-element set ν is
said to be k-additive if it’s bipolar Möbius transform bν(A) = 0 whenever a > k,
and there exists some A ∈ T , such that a = k and bν(A) 	= 0.

By a similar argument as in [13], we propose the following properties of a 2-
additive bi-capacity based on ter-element set ν and its bipolar Möbius transform
bν .
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Property 1. Let ν be a 2-additive bi-capacity and bν its bipolar Möbius trans-
form. For all i, j ∈ {1, · · · , n}, i 	= j, and any A ∈ T we have:

ν(A) =
∑

i+∈A

bν({i+}) +
∑

j−∈A

bν({j−}) +
∑

i+∈A

j−∈A

bν({i+, j−})

+
∑

{i+,j+}⊆A

bν({i+, j+}) +
∑

{i−,j−}⊆A

bν({i−, j−}). (8)

Proof: From Definition 4, we have ν(A) =
∑

B⊆A bν(B), ∀A ∈ T . Since, ν is
2-additive. Therefore, the Eq. (8) can be proofed by using the relation between
ν and bν . �

Property 2. The necessary and sufficient conditions to get a 2-additive bi-
capacity generated by (8) are: for any A ∈ T and k+ ∈ A,

bν({k+}) +
∑

j−∈A

bν({k+, j−}) +
∑

i+∈A\k+

bν({i+, k+}) ≥ 0. (9)

bν({k−}) +
∑

j+∈A

bν({k−, j+}) +
∑

i−∈A\k−
bν({i−, k−}) ≤ 0. (10)

Proof: The proof is based on the expression of ν(A) given in (8) and on these
equivalent monotonicity properties (which are easy to check): ∀A ∈ T and
∀A ⊆ A′,

(i) ν(A) ≤ ν(A′) iff ν(A\k+) ≤ ν(A) ∀k+ ∈ A,
(ii) ν(A′) ≤ ν(A) iff ν(A) ≤ ν(A\k−) ∀k− ∈ A.

�
Property 3. For any A ∈ T and k+ ∈ A, such that a > 2, the inequalities (9)
and (10) can be rewritten in terms of bi-capacity ν as follows

∑

j−∈A

ν({k
+

, j
−}) +

∑

i+∈A\k+

ν({i
+}) ≥ (a − 2)ν({k

+}) +
∑

j−∈A

ν({j
−}) +

∑

i+∈A\k+

ν({i
+}). (11)

∑

j+∈A

ν({k
−

, j
+}) +

∑

i−∈A\k−
ν({i

−}) ≤ (a − 2)ν({k
−}) +

∑

j+∈A

ν({j
+}) +

∑

i−∈A\k−
ν({i

−}). (12)

Proof: The inequalities (11) and (12) are obtained by using the relation (6)
between ν and bν in the inequalities (9) and (10), respectively. �

Thus, the properties 1, 2, and 3 show that the computation of a 2-additive
bi-capacity ν can be done by knowing only the values of ν on the elements
{i+}, {i−}, {i+, j−}, {i+, j+}, {i−, j−} for all i, j ∈ {1, · · · , n}, i 	= j such that
the inequalities (11) and (12), which correspond to the 2-additive monotonicity
of a bi-capacity, are satisfied.
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5 The 2-Additive Choquet Integral of Bi-capacities

Suppose that to each alternative in a multicriteria decision making problem is
described by a real input vector x = (x1, . . . , xi, . . . , xn), xi ∈ R with i ∈
{1, . . . , n}. Hereafter, we consider a ter-element set X∗ := {τ1, . . . , τn} with
τi = i+ if xi > 0, τi = i− if xi < 0, and τi = i∅ if xi = 0; ∀ i = 1, . . . , n. The
bipolar Choquet integral of x in term of bi-capacity ν is given by the following
definition.

Definition 6. Let ν : T → [−1, 1], be a bi-capacity. Then, the bipolar Choquet
integral of x with respect to ν is given by

Chν(x) =
n∑

i=1

[|xπ(i)| − |xπ(i+1)|] ν({Aπ(τi)}), (13)

where τi ∈ {i+, i−, i∅}, Aπ(τi) = {π(τ1), · · · , π(τi), π((i + 1)∅), π((i + 2)∅), · · · }
is ter-element set ⊆ X∗, and π is a permutation on x so that |xπ(1)| ≥ · · · ≥
|xπ(n)| with the convention xπ(n+1) := 0.

An equivalent expression for the Eq. (13) is

Chν(x) =
n∑

i=1

|xπ(i)|[ν({Aπ(τi)}) − ν({Aπ(τ(i−1))})] (14)

with the same notation above and ν({A0}) := 0.

Proposition 2 [2]. Let ν : T → [−1, 1], be a bi-capacity. Then, the bipolar
Choquet integral of x with respect to ν is given by

Chν(x) =
n∑

i=1

[|xπ(i)| − |xπ(i−1)|] ν({Aπ(τi)}), (15)

or as

Chν(x) =
n∑

i=1

|xπ(i)|[ν({Aπ(τi)}) − ν({Aπ(τ(i+1))})] (16)

where τi ∈ {i+, i−, i∅}, Aπ(τi) = {· · · , π((i − 2)∅), π((i − 1)∅), π(τi), · · · , π(τn)}
is ter-element set ⊆ X∗, and π is a permutation on x so that |xπ(1)| ≤ · · · ≤
|xπ(n)| with the convention xπ(0) := 0 and ν({An+1}) := 0.

The following numerical example illustrates the bipolar Choquet integral
based on the ter-element sets.

Example 1: For n = 3, let us consider x = (4, 6,−3). Then, X∗ = {1+, 2+, 3−}.
Applying the bipolar Choquet integral with respect to bi-capacity based on the ter-
element sets (Formula (10)) we obtain Chν(4, 6,−3) = (6 − 4) ν({2+, 1∅, 3∅})+
(4 − 3) ν({2+, 1+, 3∅}) + (3 − 0)ν({2+, 1+, 3−}) = 2 ν({2+, 1∅, 3∅})+
ν({2+, 1+, 3∅}) + 3 ν({2+, 1+, 3−}).
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The expression of bipolar Choquet integral in terms of the bipolar Möbius
transform was suggested by Fujimoto and Murofushi [9]. In this section, we
propose bipolar Choquet integral in terms of the bipolar Möbius transform based
on the ter-element sets of real input x.

Similarly to the bipolar Choquet integral based on the ter-element sets, we
also consider a ter-element set X∗ := {τ1, . . . , τn} with τi = i+ if xi > 0, τi = i−

if xi < 0, and τi = i∅ if xi = 0; ∀ i = 1, . . . , n. Each input value of xi is
expressed by

x+
i = xi if xi > 0,

x+
i = 0 if xi ≤ 0;

and
x−

i = −xi if xi < 0,
x−

i = 0 if xi ≥ 0.

Thus, the following proposition gives alternative expression of bipolar Cho-
quet integral in terms of the bipolar Möbius transform.

Proposition 3. Let ν : T → R, be a bi-capacity. Then, bipolar Choquet integral
of x with respect to ν can be represents as

Cν(x) =
∑

A⊆X∗
bν(A)

∧

τi∈A

|xi|, τi ∈ {i+, i−}, i = 1, . . . , n.

=
∑

A∈T
bν(A) (

∧

i+∈A

x+
i ∧

∧

i−∈A

x−
i ), i = 1, . . . , n. (17)

Proof: Using the equivalent expression of bipolar Choquet integral based on
ter-element set (Proposition 2, Formula (16)), we have

Chν(x) =
n∑

i=1

|xπ(i)|[ν({Aπ(τi)}) − ν({Aπ(τ(i+1))})]

Then, we take the bi-unanimity game uA (Formula (5)) for any A ∈ T , and
denote by j the leftmost index in the ordered sequence {π(i), τi ∈ A}, we get

CuA
(x) =

∑

τi ∈ A

|xi| [uA({B(τi)}) − uA({B(τi+1)})]

= |xj |

=
∧

τi∈A

|xi|

Hence by linearity of the integral with respect to the bi-capacities and decom-
position of any ν in the basis of bi-unanimity game, we obtain

Cν(x) =
∑

A⊆X∗
bν(A)

∧

τi∈A

|xi|

Note that, the order ⊆ is defined by Eq. (3). Thus

=
∑

A∈T
bν(A) (

∧

i+∈A

x+
i ∧

∧

i−∈A

x−
i ), i = 1, . . . , n.
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�

Therefore, for all i, j ∈ {1, · · · , n}, i 	= j, and any A ∈ T , the Choquet
integral of x with respect to a 2-additive bi-capacity ν is given by:

Cν(x) =
n∑

i=1

bν({i
+}) x

+
i +

n∑

i=1

bν({i
−}) x

−
i +

n∑

i,j=1

bν({i
+

, j
−}) (x

+
i ∧ x

−
j )

+
∑

{i+,j+}⊆X∗
bν({i

+
, j

+}) (x
+
i ∧ x

+
j ) +

∑

{i−,j−}⊆X∗
bν({i

−
, j

−}) (x
−
i ∧ x

−
j ). (18)

We illustrate the expression of bipolar Choquet integral in terms of the bipo-
lar Möbius transform by the following numerical example.

Example 2 [Example 1 continued]: We apply the expression of bipolar Choquet
integral in terms of the bipolar Möbius transform (Eq. (17)) for x = (4, 6,−3)
we have,
Cν(4, 6,−3) = 4 bν({1+, 2φ, 3φ}) + 6 bν({1φ, 2+, 3φ}) + 3 bν({1φ, 2φ, 3−}) +
4 bν({1+, 2+, 3φ})+3 bν({1+, 2φ, 3−})+3 bν({1φ, 2+, 3−})+3 bν({1+, 2+, 3−}).
From Eq. (7), we get

= 2 ν({1φ, 2+, 3φ}) + ν({1+, 2+, 3φ}) + 3 ν({1+, 2+, 3−}).

6 Conclusions

The definition of bi-capacity based on ter-element set satisfies properties simi-
lar to the classical definition of bi-capacity [11]. According to this definition and
introducing and other order relation equivalent to Bilbao order on bi-cooperative
game [5], the expression of a 2-additive Choquet integral of bi-capacity is appro-
priately proposed. The proposed result is consistent as a generalization of the
expression of a 2-additive Choquet integral for capacity.
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Abstract. Uninorms play a prominent role both in the theory and
applications of Aggregations, Fuzzy Theory, and of Mathematical Fuzzy
Logic. In this paper the class of group-like uninorms is introduced. First,
two variants of a construction method – called partial-lexicographic
product – will be recalled; it constructs a large subclass of group-like
FLe-algebras. Then two specific ways of applying the partial-
lexicographic product construction to construct uninorms will be pre-
sented. The first one constructs starting from R and modifying it in
some way by Z’s, what we call basic group-like uninorms, whereas with
the second one may extend group-like uninorms by using Z and a basic
uninorm to obtain further group-like uninorms. All group-like uninorms
obtained this way have finitely many idempotents. On the other hand,
we assert that the only way to construct group-like uninorms which have
finitely many idempotents is to apply this extension (by a basic group-
like uninorm) consecutively, starting from a basic group-like uninorm.
In this way a complete characterization for group-like uninorms which
possess finitely many idempotents is given. The obtained uninorm class
can be candidate for the aggregation operation of several applications.
The paper is illustrated with several 3D plots.

Keywords: Uninorm · Construction · Characterization

1 Introduction

Aggregation operations are crucial in numerous pure and applied fields of math-
ematics. Fuzzy Theory is another large field, involving both pure mathematics
and impressive range of applications. Mathematical fuzzy logics have been intro-
duced in [10], and the topic is a rapidly growing field ever since. In all these fields
(and the list in far from being exhaustive) a crucial role is played by t-norms,
t-conorms, and uninorms [13].

A uninorm U (as introduced in [20]) is a function of type [0, 1]×[0, 1] → [0, 1],
that is, binary operations over the closed real unit interval [0, 1], such that the
following axioms are satisfied.
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– U(x, y) = U(y, x) (Symmetry)
– if y ≤ z then U(x, y) ≤ U(x, z) (Monotonicity)
– U(U(x, y), z) = U(x,U(y, z)) (Associativity)
– there exists t ∈]0, 1[ such that U(x, t) = x (Unit Element)

Establishing the structure theory of uninorms seems to be quite difficult. Several
authors have characterized particular subclasses of them, see e.g., [2–5,7,11,14,
15,18,19]. Not only uninorms are interesting for a structural description purpose,
but also different generalizations of them play a central role in many studies, see
[1,6] for example.

Group-like uninorms play a similar role among uninorms then the
�Lukasiewicz t-norm, or in general the class of IMTL-algebras do in the class of
t-norms. In this paper we shall characterize a new subclass of uninorms, namely,
the class of group-like uninorms which have finitely many idempotent elements.

To this end, first a few notions follow here:
Residuation is a crucial property in Mathematical Fuzzy Logics, and in Sub-

structural Logics, in general [8,16]. A uninorm is residuated if there exists a
function IU of type [0, 1] × [0, 1] → [0, 1], that is, a binary operation on [0, 1],
such that the following is satisfied: U(x, y) ≤ z if and only if IU (x, z) ≥ y. Fre-
quently one uses the infix notation for a uninorms, too, and writes x ∗◦ y in stead
of U(x, y), and x →∗◦ y instead of IT (x, y).

A generalization of residuated t-norms and uninorms is the notion of
FLe-algebras. This generalization is done by replacing [0, 1] by an arbitrary lat-
tice, possibly without top and bottom elements: An FLe-algebra1 is a structure
(X,∧,∨, ∗◦,→∗◦, t, f) such that (X,∧,∨) is a lattice, (X,≤, ∗◦, t) is a commutative,
residuated2 monoid, and f is an arbitrary constant. One defines x′ = x→∗◦ f and
calls an FLe-algebra involutive if (x′)′ = x holds. Call an FLe-algebra group-like
or odd if it is involutive and t = f . For a group-like FLe-algebra X, let gr(X) be
the set of invertible elements of X. It turns out that there is a subalgebra of X
on gr(X), denote it by Xgr and call it the group part of X.

Speaking in algebraic terms, t-norms and uninorms are the monoidal oper-
ations of commutative totally ordered monoids over [0, 1]. Likewise, residuated
t-norms and uninorms are just the monoidal operations of FLe-algebras over
[0, 1]. According to the terminology above, the class of involutive t-norms con-
stitutes the �Lukasiewicz t-norm, and all IMTL-algebras on [0, 1], in general. Also
according to the terminology above, we call a uninorm group-like if it is resid-
uated, involutive, and t = f holds, where x′ = x →∗◦ t. For group-like uninorms
(and also for bounded group-like FLe-algebras, in general) we know more about

1 Other terminologies for FLe-algebras are: pointed commutative residuated lattices
or pointed commutative residuated lattice-ordered monoids.

2 That is, there exists a binary operation →∗◦ such that x ∗◦ y ≤ z if and only if
x→∗◦ z ≥ y; this equivalence is called residuation condition or adjointness condition,
(∗◦,→∗◦) is called an adjoint pair. Equivalently, for any x, z, the set {v | x∗◦v ≤ z} has
its greatest element, and x→∗◦z is defined as this element: x→∗◦z := max{v | x∗◦v ≤ z}.
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their behaviour in the boundary, as it holds true that

U(x, y) =

⎧
⎨

⎩

∈]0, 1[ if x, y ∈]0, 1[
0 if min(x, y) = 0
1 if x, y > 0 and max(x, y) = 1

.

Therefore, values of a group-like uninorm U in the open unit square ]0, 1[2 fully
determine U . As a consequence, one can view a group-like uninorm U as a
binary operation on ]0, 1[. Because of these observations, throughout the paper
we shall use the term group-like uninorm is a slightly different manner: Instead
of requiring the underlying universe to be [0, 1], we only require that the under-
lying universe is order isomorphic to the open unit interval ]0, 1[. This way, for
example the usual addition of real numbers, that is letting V (x, y) = x + y,
becomes a group-like uninorm in our terminology. This is witnessed by any
order-isomorphism from ]0, 1[ to R, take for instance ϕ(x) = tan(πx− π

2 ). Using
ϕ, any group-like uninorm (on R, for example) can be carried over to [0, 1] by
letting, in our example,

U(x, y) =

⎧
⎨

⎩

ϕ−1(V (ϕ(x), ϕ(y))) if x, y ∈]0, 1[
0 if min(x, y) = 0
1 if x, y 
= 0 and max(x, y) = 1

.

As said above, group-like FLe-chains are involutive FLe-chains satisfying the
condition that the unit of the monoidal operation coincides with the constant
that defines the order-reversing involution ′; in notation t = f . Since for any invo-
lutive FLe-chain t′ = f holds, one extremal situation is the integral case, that
is, when t is the top element of the universe and hence f is its bottom one, and
the other extremal situation is the group-like case when the two constants coin-
cide. Prominent examples of group-like FLe-algebras are lattice-ordered abelian
groups and odd Sugihara algebras, the latter constitute an algebraic semantics
of a logic at the intersection of relevance logic and fuzzy logic [9]. These two
examples are extremal in the sense that lattice-ordered abelian groups have a
single idempotent element, namely the unit element, whereas all elements of any
odd Sugihara algebra are idempotent. In order to narrow the gap between the
two extremal classes mentioned above, in [12] a deeper knowledge have been
gained about the class of group-like FLe-chains, including a Hahn-type embed-
ding theorem and a representation theorem by means of totally-ordered abelian
groups and a there-introduced construction, called partial-lexicographic prod-
uct. Although not cited here in its explicit form, the representation theorem has
a crucial role in showing the main result of this paper.

First, we adopt the partial-lexicographic product construction (Definition 2)
to the setting of group-like uninorms by introducing two specific ways of applying
it; the construction of basic group-like uninorms in Definition 3 and an extension
method by a group-like uninorm in (2). With these one can construct group-like
uninorms which have finitely many idempotent elements. Our main result asserts
that the only way to construct such uninorms is to apply these: Starting from
a group-like uninorm and extending it consecutively by group-like uninorms
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Fig. 1. Visualization: The only odd Sugihara algebra over ]0, 1[.

(Theorem 2). In this way a complete characterization for group-like uninorms
which possess finitely many idempotents is given, similar to the well-known
characterization of continuous t-norms [17].

In this paper we shall describe the necessary theory behind this result, and
shall also present several examples by means of plots, see Figs. 1, 2 and 3 for
some examples.

2 Partial Lex-Products, Basic Group-Like Uninorms, and
Structural Description

Let us start with a few notations and definitions.

Definition 1. For a chain (a linearly ordered set) (X,≤) and for x ∈ X define
the predecessor x↓ of x to be the maximal element of the set of elements which
are smaller than x, if it exists, define x↓ = x otherwise. Define the successor x↑
of x dually. We say for Z ⊆ X that Z is discretely embedded into X if for x ∈ Z
it holds true that x /∈ {x↑, x↓} ⊆ Z. If H is subalgebra of an odd FLe-algebra X,
and H is discretely embedded into X then we denote it by H ≤d X. We denote
by R and Z the odd FLe-chain of the reals and the integers, respectively.

Crucial for our purposes will be the so-called partial lexicographic product con-
struction. Denote the lexicographic product by

←×.

Definition 2 [12]. Let X = (X,∧X ,∨X , ∗,→∗, tX , fX) be an odd FLe-algebra
and Y = (Y,∧Y ,∨Y , �,→�, tY , fY ) be an involutive FLe-algebra, with residual
complement ′∗ and ′� , respectively.

A. Add a new element � to Y as a top element and annihilator (for �), then add
a new element ⊥ to Y ∪ {�} as a bottom element and annihilator. Extend
′� by ⊥′� = � and �′� = ⊥. Let V ≤ Xgr. Let

XV

←←× Y = (V × (Y ∪ {�,⊥})) ∪ ((X \ V ) × {⊥}) ,
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and let XV

←←× Y, the type I partial lexicographic product of X,V and Y be
given by

XV

←←× Y =
(
XV

←←× Y,≤, ∗◦,→∗◦, (tX , tY ), (fX , fY )
)

,

where ≤ is the restriction of the lexicographical order of ≤X and ≤Y ∪{
,⊥}
to XV

←←× Y , ∗◦ is defined coordinatewise, and the operation →∗◦ is given by
(x1, y1) →∗◦ (x2, y2) = ((x1, y1) ∗◦ (x2, y2)′)′, where

(x, y)′ =

{
(x′∗ ,⊥) if x 
∈ V

(x′∗ , y′� ) if x ∈ V
.

B. Assume that Xgr is discretely embedded into X. Add a new element � to
Y as a top element and annihilator. Let

X
←↼× Y = (X × {�}) ∪ (Xgr × Y )

and let X
←↼× Y, the type II partial lexicographic product of X and Y be given

by
X

←↼× Y =
(
X

←↼× Y,≤, ∗◦,→∗◦, (tX , tY ), (fX , fY )
)

,

where ≤ is the restriction of the lexicographical order of ≤X and ≤Y ∪{
}
to X

←↼× Y , ∗◦ is defined coordinatewise, and the operation →∗◦ is given by
(x1, y1)→∗◦(x2, y2) = ((x1, y1) ∗◦ (x2, y2)′)′, where ′ is defined coordinatewise3

by

(x, y)′ =

⎧
⎪⎨

⎪⎩

(x′∗ ,�) if x 
∈ Xgr and y = �
((x′∗ )↓,�) if x ∈ Xgr and y = �
(x′∗ , y′� ) if x ∈ Xgr and y ∈ Y

. (1)

Theorem 1 [12]. Adapt the notation of Definition 2. XV

←←× Y and X
←↼× Y are

involutive FLe-algebras with the same rank4 as that of Y. In particular, if Y is
odd then so are XV

←←× Y and X
←↼× Y.

Definition 3 (Basic group-like uninorms). Let U0 = R and for n ∈ N let
Un+1 = Z

←↼× Un. The operation
←↼× can be proved to be associative, so it can

equivalently be written without brackets as

Un = Z
←↼× . . .

←↼× Z
︸ ︷︷ ︸

n

←↼× R.

3 Note that intuitively it would make up for a coordinatewise definition, too, in the

second line of (1) to define it as (x′∗ ,⊥). But ⊥ is not amongst the set of possible

second coordinates. However, since Xgr is discretely embedded into X, if (x′∗ ,⊥)

would be an element of the algebra then it would be equal to ((x′∗ )↓,�).
4 The rank of an involutive FLe-algebra is positive if t > f , negative if t < f , and 0 if
t = f .
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Fig. 2. Visualization: Two basic group-like uninorms, U0 = R and U1 = Z
←↼× R shrank

into ]0, 1[. One can describe U1 as infinitely many U0 components. Immagine U2 in the
same way: as infinitely many U1 components, etc.

Having defined all necessary notions, we are ready to state the main theorem:
a representation theorem for those group-like uninorms which has finitely many
idempotent elements, by means of basic group-like uninorms and an extension
method. Alternatively, one may view Theorem 2 as a representation theorem
for those group-like uninorms which has finitely many idempotent elements, by
means of Z and R and the type I and type II partial-lexicographic product
constructions (see Figs. 2 and 3 for some examples).

Fig. 3. Visualization: An example for the first type extension, RZ

←←× R shrank into ]0, 1[
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Theorem 2 (Representation by basic group-like uninorms). If U is a
group-like uninorm, which has finitely many (m ∈ N, m ≥ 1) idempotents in
its negative cone5 then there exists a sequence k ∈ N

{1,...,m} such that U � Um,
where for i ∈ {1, . . . , m},

Ui =

{
Uk1 if i = 1
Ui−1Hi−1

←←× Uki
if 2 ≤ i ≤ m

, (2)

where for 2 < i ≤ m, Hi−1 is a countable subgroup of (Ui−1)gr.
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Abstract. In this paper we investigate the generalized hypothetical syl-
logism (GHS). We present few versions of the well known GHS equation.
We focus our attention on R-implications and give some results concern-
ing left-continuous t-norms. We show some solutions of GHS equations
based on the compositional rule of inference and Bandler-Kohout sub-
product. Also we sketch the idea of new possible functional equations
coming from the GHS.
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1 Introduction

Fuzzy inference schemas (FIS) play a key role in approximate reasoning (AR)
based on fuzzy sets. Here we are focused on IF-THEN fuzzy rules of the form

IF x is A, THEN y is B,

where the antecedent fuzzy set A ∈ F(X) and the consequent fuzzy set B ∈
F(Y ) represent some properties (in our paper F(X) denotes all fuzzy sets on
the universe X). Then for a given fuzzy observation x is A′, a corresponding
output fuzzy set B′ ∈ F(Y ), which means that y is B′, is deduced using some
inference mechanism.

In general we can consider a system of IF-THEN fuzzy rules of the form

IF x is Ai, THEN y is Bi, i ∈ {1, . . . , n}, (1)

for fuzzy sets Ai ∈ F(X), Bi ∈ F(Y ) and some n ∈ IN. Usually such IF-THEN
fuzzy rules can be represented as a fuzzy relation R. The most often applied
representations of R are the following (cf. [15]):
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1. Ř(x, y) = maxi∈{1,...n} C(Ai(x), Bi(y)), where C is a fuzzy conjunction, mostly
a t-norm (this approach was introduced by Mamdani and Assilian [12]).

2. R̂(x, y) = mini∈{1,...n} I(Ai(x), Bi(y)) where I is a fuzzy implication (stan-
dard conditional approach).

We will concentrate our attention on the case when n = 1. In general the
inferred output y is B′ is obtained as a composition of A′ and R as follows
(see [15])

B′ = A′@R,

where @ is a fuzzy relational composition that involves several fuzzy logic oper-
ations. Moreover, we can consider different types of composition @. One of the
most important and widely used is the compositional rule of inference (CRI),
which was introduced by Zadeh [16]. It can written in the following way

B′ = A′ ◦ R. (2)

We understand it as: “from the fact that ‘x is A′’ we can infer ‘y is B′”’ because
of the composition of A′ and R. In details, Eq. (2) can be written as

B′(y) = sup
x∈X

C(A′(x), R(x, y)), y ∈ Y,

where C is again a t-norm (or some other operation which generalizes classical
conjunction).

Another well known composition @ is the Bandler-Kohout subproduct [3,13].
This one can be seen as follows

B′ = A′ � R, (3)

which can be extended to the form

B′(y) = inf
x∈X

I(A′(x), R(x, y)), y ∈ Y,

where I is a fuzzy implication. We only want to point out that it was shown by
Štěpnička and Jayaram [15] that BK-subproduct satisfies the same important
properties as the CRI does and it is as effective as CRI. Hence it can be used in
FIS.

Having chosen fuzzy relation R and the composition @ we define a fuzzy
function. Its domain is the family of all fuzzy sets on the universe X, i.e. F(X).
Namely, f@

R : F(X) → F(Y ) given by f@
R (A) = A@R, A ∈ F(X) (see [15]). For

the correctness and ability of application of FIS it is crucial to take fuzzy relation
R which allows to obtain some meaningful results. Here we require the property
of interpolativity. A fuzzy function f@

R has this property, if f@
R (Ai) = Bi (for a

given fuzzy rule like in a system (1)). This property is equivalent to the following
scheme of Modus Ponens:

IF x is Ai, THEN y is Bi

IF x is Ai

y is Bi
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In this paper we investigate the following scheme known as a generalized
hypothetical syllogism (GHS):

RULE: IF x is A, THEN z is B
RULE: IF z is B, THEN y is C
CONCLUSION: IF x is A, THEN y is C

(4)

where fuzzy sets A ∈ F(X), B ∈ F(Y ), C ∈ F(Z) represent some properties.
These conditional statements are usually used when AR is involved. In this
paper we are focused on one functional equation connected with (GHS). Using
introduced notation it can be written as follows

R3(x, y) = R1(x, z)@R2(z, y), (5)

where R1, R2 and R3 are fuzzy relations defined on X × Z, Z × Y and X × Y ,
respectively. Equation (5) corresponds to the scheme (4). In the next sections we
will discuss some particular versions of this equation for different compositions
@. Firstly, it Sect. 2 we recall some basic definitions and facts regarding fuzzy
connectives including R-implications. This family of fuzzy implications provides
a good example to show the solutions of GHS equations. Section 3 contains main
results. Finally some ideas for future work are given.

2 Preliminaries

We assume that the reader is familiar with the classical results concerning basic
fuzzy connectives, but to make this work more self-contained, we place some of
them here.

Definition 2.1 ([5]). A function C : [0, 1]2 → [0, 1] is called a fuzzy conjunction
if it satisfies the following conditions:

(C1) is non-decreasing with respect to both variables,
(C2) C(0, 0) = C(0, 1) = C(1, 0) = 0, C(1, 1) = 1.

Another important fuzzy connective is a semicopula.

Definition 2.2 ([4]). A function S : [0, 1]2 → [0, 1] is called a semicopula, if it
satisfies the following conditions:

(S1) S(x, 1) = S(1, x) = x, x ∈ [0, 1],
(S2) S is non-decreasing with respect to both variables.

Definition 2.3 (see [6,9]). A function T : [0, 1]2 → [0, 1] is called a trian-
gular norm (t-norm in short), if it satisfies the following conditions, for all
x, y, z ∈ [0, 1],

(T1) T (x, y) = T (y, x),
(T2) T (x, T (y, z)) = T (T (x, y), z),



Different Forms of Generalized Hypothetical Syllogism 307

(T3) T is non-decreasing with respect to both variables,
(T4) T (x, 1) = x.

Now, we recall the definition and some important properties of fuzzy impli-
cations.

Definition 2.4 (see [1,6]). A function I : [0, 1]2 → [0, 1] is called a fuzzy
implication, if it satisfies the following conditions:

(I1) I is non-increasing with respect to the first variable,
(I2) I is non-decreasing with respect to the second variable,
(I3) I(0, 0) = I(1, 1) = 1 and I(1, 0) = 0.

Definition 2.5 (see [1]). We say that a fuzzy implication I satisfies

(i) the identity principle, if

I(x, x) = 1, x ∈ [0, 1], (IP)

(ii) the left neutrality property, if

I(1, y) = y, y ∈ [0, 1], (NP)

(iii) the ordering property, if

x ≤ y ⇐⇒ I(x, y) = 1, x, y ∈ [0, 1]. (OP)

As we mentioned in Introduction we want to present some results for one
particular family of fuzzy implications.

Definition 2.6 ([1, Definition 2.5.1]). A function I : [0, 1]2 → [0, 1] is called
an R-implication if there exists a t-norm T such that

I(x, y) = sup{t ∈ [0, 1] | T (x, t) ≤ y}, x, y ∈ [0, 1]. (6)

If I is generated from a t-norm T , then it will be denoted by IT .

Note that it is possible to generate an R-implication from just a fuzzy con-
junction with specific properties (see [11]). Moreover, we will use the following
useful characterization of some subclass of all R-implications.

Theorem 2.7 ([1, Proposition 2.5.2]). Let T be a t-norm. Then the following
statements are equivalent:

1. T is left-continuous.
2. A pair (T, IT ) satisfies a residual principle

T (x, z) ≤ y ⇐⇒ IT (x, y) ≥ z, x, y, z ∈ [0, 1], (RP)

3. The supremum in (6) is the maximum, i.e.,

IT (x, y) = max{t ∈ [0, 1] | T (x, t) ≤ y}, x, y ∈ [0, 1].
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3 Types of Generalized Hypothetical Syllogism Equations

The first type of GHS equation which we investigate is the one come from (2)
when R = R̂. If we substitute fuzzy sets by unit intervals, we obtain the following
equation.

sup
z∈[0,1]

(T (I(x, z), I(z, y))) = I(x, y), x, y ∈ [0, 1]. (CRI-GHS)

This equation is the most known when GHS is discussed. It appeared in [10],
later in [14]. It was also the main topic of the paper [2]. Let us recall the most
important result from that paper. The main question posed there was the fol-
lowing.

Let T be a t-norm. Does always a pair (T, IT ) satisfy (CRI-GHS)?

The answer is No (see [2, Example 4.7]). It turned out it is true only for left-
continuous t-norms (cf. [8] and [2, Corollary 4.11]). Also the following important
result has been obtained earlier.

Theorem 3.1 ([2, Theorem 4.12]). Let T ∗ be a t-norm and T be a left-
continuous t-norm. Then the following statements are equivalent:

(i) The pair (T ∗, IT ) satisfies (CRI-GHS).
(ii) T ∗ ≤ T .

The next question is the following.

Is satisfying (CRI-GHS) by a pair (T, IT ) equivalent to the left-continuity
of T?

The answer is Yes. We show this fact in the next result.

Theorem 3.2. Let T be a t-norm. Then the following statements are equivalent:

(i) T is left-continuous.
(ii) (T, IT ) satisfies (CRI-GHS).

Proof. By Theorem 3.1 it is enough to show (ii) ⇒ (i). Let T be a t-norm.
Suppose that the pair (T, IT ) satisfies (CRI-GHS) but T is not left-continuous.
From Theorem 2.7 it means (T, IT ) does not satisfy (RP). Also note that the
following implication (which is a part of (RP)) is true for any t-norm T ∗ and all
x, y, z ∈ [0, 1],

T ∗(x, z) ≤ y ⇒ IT∗(x, y) ≥ z,

because for fixed x, y, z ∈ [0, 1], if z ∈ {t ∈ [0, 1] | T ∗(x, t) ≤ y}, then z ≤ sup{t ∈
[0, 1] | T ∗(x, t) ≤ y} = IT∗(x, y). Hence, if T is not left-continuous, then there
exist x0, y0, z0 ∈ [0, 1] such that IT (x0, y0) ≥ z0 and T (x0, z0) > y0. Therefore
using (CRI-GHS) we have

y0 < T (x0, z0) ≤ T (x0, IT (x0, y0)) = T (IT (1, x0), IT (x0, y0))
≤ sup

t∈[0,1]

T (IT (1, t), IT (t, y)) = IT (1, y) = y;

a contradiction. 	
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Furthermore, another question is interesting.

Is left-continuity sufficient condition for a fuzzy conjunction C to a pair
(C, IC) satisfy (CRI-GHS)?

It seems no (based on the proof of the previous theorem and [8, Theorem 6]).
However, we know that such pair (C, IC) might satisfy (RP) (see [11]).

The next equation comes from BK-subproduct and R = Ř in Eq. (3). In this
case, we obtain the GHS equation of the form

inf
z∈[0,1]

I1(C(x, z), C(z, y)) = I2(x, y), x, y ∈ [0, 1], (BK-GHS)

where I1, I2 are fuzzy implications and C is a semicopula. Here, if these func-
tions will be a solution of (BK-GHS), we will say that the triplet (C, I1, I2)
satisfies (BK-GHS).

Firstly, observe some general facts.

Remark 3.3. Let C be a semicopula, I1 be a fuzzy implication and I2 : [0, 1]2 →
[0, 1] be any function. Next, let (C, I1, I2) satisfy (BK-GHS). Then the following
statements are equivalent:

(i) I2 is a fuzzy implication.
(ii) I1 satisfies (IP).

Moreover, note that with very less assumptions regarding C, I1 and I2 we
have the following result.

Proposition 3.4. Let C, I1, I2 : [0, 1] → [0, 1], C have a neutral element 1 and
let I2(1, 1) = 1. If (C, I1, I2) satisfies (BK-GHS), then I1 satisfies (IP).

Proof. It is enough to notice that if (C, I1, I2) satisfies (BK-GHS), then

1 = I2(1, 1) = inf
z∈[0,1]

I1(C(1, z), C(z, 1)) = inf
z∈[0,1]

I1(z, z).

Hence 1 = I1(z, z) for all z ∈ [0, 1]. 	

For the further investigations we will need the following fact where, in con-

trast to assumptions given in [7], the left-continuity of T is not necessary.

Theorem 3.5 (cf. [7, cf. Proposition 1.5]). If T is a t-norm, then

IT (x, y) ≤ IT (T (x, z), T (z, y)), x, y, z ∈ [0, 1].

Proof. Let us take x, y, z, t ∈ [0, 1]. If T (x, t) ≤ y, then from commutativity and
associativity of T we obtain

T (T (x, z), t) = T (T (z, x), t) = T (z, T (x, t)) ≤ T (z, y).

Hence

{t ∈ [0, 1] | T (x, t) ≤ y} ⊂ {t ∈ [0, 1] | T (T (x, z), t) ≤ T (z, y)},

sup{t ∈ [0, 1] | T (x, t) ≤ y} ≤ sup{t ∈ [0, 1] | T (T (x, z), t) ≤ T (z, y)},

and using (6) we obtain IT (x, y) ≤ IT (T (x, z), T (z, y)). 	
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Also, we will use this simple fact.

Lemma 3.6. Let F,G : [0, 1]2 → [0, 1]. Then for any x, y, z ∈ [0, 1] we have

F (x, y) ≤ F (G(x, z), G(z, y)) ⇐⇒ F (x, y) ≤ inf
t∈[0,1]

F (G(x, t), G(t, y)).

Proof. Let us show the proof of (⇒) (the opposite one is clear). Assume that for
any x, y, z ∈ [0, 1] we have F (x, y) ≤ F (G(x, z), G(z, y)) and suppose there exist
x0, y0 ∈ [0, 1] such that F (x0, y0) > inft∈[0,1] F (G(x0, t), G(t, y0)). However then
there must exist z0 ∈ [0, 1] such that F (x0, y0) > F (G(x0, z0), G(z0, y0)) which
is a contradiction with the assumptions. 	


Now we can present the following result.

Theorem 3.7. Let F,G : [0, 1]2 → [0, 1], G be a semicopula and let (F,G) sat-
isfy the inequality

F (x, y) ≤ F (G(x, z), G(z, y)).

Then (G,F, F ) satisfies (BK-GHS).

Proof. From Lemma 3.6 we know that it is enough to show the following inequal-
ity

I2(x, y) ≥ inf
z∈[0,1]

I1(C(x, z), C(z, y)), x, y ∈ [0, 1].

We obtain

inf
z∈[0,1]

F (G(x, z), G(z, y)) ≤ F (G(x, 1), G(1, y)) = F (x, y),

for all x, y ∈ [0, 1]. Therefore (G,F, F ) satisfies (BK-GHS). 	

Now, we can easily formulate the following corollary using Theorem 3.7 and

Lemma 3.6.

Corollary 3.8. If T is a t-norm, then the triplet (T, IT , IT ) satisfies (BK-GHS).

In the family of all fuzzy implications we can consider the partial order
induced from the unit interval [0, 1].

Corollary 3.9. Let T be a t-norm and I1 be a fuzzy implication. If the triplet
(T, I1, IT ) satisfies (BK-GHS), then I1 ≥ IT .

Proof. If (T, I1, IT ) satisfies (BK-GHS), then for arbitrary x, y ∈ [0, 1] we have

IT (x, y) = inf
z∈[0,1]

I1(T (x, z), T (z, y)) ≤ I1(T (x, 1), T (1, y)) = I1(x, y).

	

The inverse implication is not true as we show below.
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Example 3.10. Let us take the �Lukasiewicz t-norm

TLK(x, y) = max{0, x + y − 1}, x, y ∈ [0, 1].

Of course

ITLK
(x, y) = ILK(x, y) = min{1, 1 − x + y}, x, y ∈ [0, 1],

is the �Lukasiewicz implication. Next, let I1 be the Weber implication given by

I1(x, y) = IWB(x, y) =

{
1, x < 1,

y, x = 1,
x, y ∈ [0, 1].

Of course ILK ≤ IWB. We show that the triplet (TLK, IWB, ILK) does not
satisfy (BK-GHS). Indeed, let us take x = 1

2 and y = 1
3 . For any z ∈ [0, 1] we

have TLK( 12 , z) < 1, thus from the definition of IWB we obtain

inf
z∈[0,1]

IWB

(
TLK

(
1
2
, z

)
, TLK

(
z,

1
3

))
= 1,

but ILK(x, y) = ILK

(
1
2 , 1

3

)
= 5

6 . Therefore the triplet (TLK, IWB, ILK) does not
satisfy (BK-GHS).

Now, we could think if it is possible to consider other different GHS equations.
Namely, for two given types of this equation we could replace Ř and R̂. Hence,
we would obtain such equations

I(x, y) = sup
z∈[0,1]

C(C(x, z), C(z, y)), x, y ∈ [0, 1],

I2(x, y) = inf
z∈[0,1]

I1(I2(x, z), I2(z, y)), x, y ∈ [0, 1], (7)

where I, I1, I2 are fuzzy implications and C is a semicopula. It is easy to see
these equations do not have any solutions. Indeed, for example suppose there
exist fuzzy implications I1, I2 satisfying (7). Then we have

1 = I2(0, 0) = inf
z∈[0,1]

I1(I2(0, z), I2(z, 0)) = inf
z∈[0,1]

I1(1, I2(z, 0))

= I1(1, I2(1, 0)) = I1(1, 0) = 0,

Another interesting equations arise if we consider “mixed” versions of already
examined Eqs. (CRI-GHS) and (BK-GHS). Here, we would like to mention about
two types of such equations, namely

inf
z∈[0,1]

I1(C(x, z), I2(z, y)) = I3(x, y), x, y ∈ [0, 1], (8)

where I1, I2, I3 are fuzzy implications and C is a semicopula. In general we
can have here 3 different fuzzy implications. Hence, we will write (C, I1, I2, I3)
satisfies (8), if these functions will form its solution. In our future work we will
consider some particular cases for the above equation. One simple fact is the
following.
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Proposition 3.11. Let I1, I2 be fuzzy implications and C be a semicopula. If I2
satisfies (NP), then (C, I1, I2, I1) satisfies (8).

Proof. Firstly, note that for any x, y, z ∈ [0, 1] we have

I1(C(x, z), I2(z, y)) ≥ I1(C(x, 1), I2(z, y)) ≥ I1(C(x, 1), I2(1, y)).

Thus inft∈[0,1] I1(C(x, t), I2(t, y)) = I1(C(x, 1), I2(1, y)). If I2 satisfies (NP), then
I1(C(x, 1), I2(1, y)) = I1(x, y). 	


In the future we also investigate the following equation.

inf
z∈[0,1]

I1(I2(x, z), C(z, y)) = S(x, y), x, y ∈ [0, 1], (9)

where I1, I2 are fuzzy implications, C semicopula and S some aggregation func-
tion. Here it is also good to start working with R-implications because we can
find some solutions of (9) among them.

4 Conclusions

In this paper we have presented different approaches to the generalized hypothet-
ical syllogism. This leaded us to some new functional equations. Also we shown
some new results for the most known versions of GHS equations. We indicated
the family of R-implications as a rich of solutions of (CRI-GHS) and (BK-GHS)
equations. We outlined the idea of another versions of GHS equations.
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Abstract. Bayesian Networks (BN) are used for representing and infer-
ring over variables with aleatory uncertainty. Dynamic Bayesian Net-
works (DBN) extend this concept by introducing temporal dependencies
that catch dynamic behaviors from the domain variables. Effective and
efficient modeling through BN demands data discretization on categories.
However, these categories may have vagueness uncertainty, once are used
labels not defined by exact numerical thresholds. Fuzzy Theory provides
a framework for modeling vagueness uncertainty. Although hybrid theo-
ries to integrate Fuzzy Theory and BN inference process have been pro-
posed, there are still limitations on using fuzzy evidence on DBN. The
related works restrict the evidence modeling to the overlapping of only
two fuzzy membership functions. Thereby, this work proposes a method
for Dynamic Fuzzy-Bayesian inference over non-dichotomic variables. To
evaluate the proposal, the model is applied as a classifier on the Detec-
tion Occupancy Dataset and compared with other approaches. In the
experiments, the model obtained Accuracy 97% and Recall 92%.

Keywords: Dynamic Bayesian Network · Fuzzy Theory ·
Fuzzy-Bayesian inference

1 Introduction

Many computational problems require inference over incomplete or uncertain
sensory data. Probabilistic Models, as Bayesian Networks (BN), allow to repre-
sent and infer on variables with aleatory uncertainty, which derives from natural
variability of the physical world [6]. Using the knowledge extracted from obser-
vations, BN allows inferring, for example, the probability of heavy rain given
the information of a high thermometer temperature. Another problem using
sensory data is temporal pattern recognition [12]. When data has sequential
characteristic, as temporal series data or data generated from dynamic systems.
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BN can be extended to Dynamic Bayesian Networks (DBN) to introduce tem-
poral dependencies that catch dynamic behaviors from the domain variables.

Despite sensory measurements usually admit continuous values (e.g. real
numbers), there’s a practical limitation for applying BN, once most software
and algorithms do not allow continuous variables [16]. Thereby, effective and
efficient BN modeling demand data discretization on categories, frequently done
through of expert specifications.

However, the linguistic labels used by expert humans frequently have vague-
ness uncertainty, once they cannot be defined by exact numerical thresholds [10].
For example, the temperature can be classified in vague linguistic terms like
cold, warm and hot. Fuzzy Theory provides a framework for modeling vagueness
uncertainty. We divide the research works in Fuzzy-Dynamic Bayesian Networks
into three groups depending on the point where Fuzzy Theory is included: (i)
before (pre-processing), (ii) after (post-processing) and (iii) during the inference
of the DBN.

On the pre-processing stage, Fuzzy Theory is used for providing DBN param-
eters, like presented in [7,11,19]. On the other hand, researches using Fuzzy The-
ory on DBN post-processing apply Fuzzy Inference Systems over the probability
distribution from the DBN, as can be seen in [8,17].

When estimating conditional and posteriori probabilities, pre-processing and
post-processing approaches do not consider the vagueness present in the evidence
variables when they are defined by fuzzy states. Models integrating Fuzzy and
DBN during the inference process, i.e. by allowing fuzzy states in the evidence
variables are proposed with the objective of fullfill tasks like (i) prediction as
presented by Teixeira and Zaverucha [18] and by Zhang and Li [20]; (ii) filtering
as presented by Naderpour et al. [14] and Di Tomaso and Baldwin [6] and/or (iii)
most probable explanation as presented by Naderpour et al. [15] and Di Tomaso
and Baldwin [6]. However, these works limit the evidence modeling in fuzzy
partitioning with just two membership functions, i.e. dichotomic states1 and
there are cases where dichotomic modeling cannot express properly the semantic
relationships among concepts. Consider, for instance, the BN reasoning support
to children and adolescents metabolic risk diagnose, presented in [1], where the
terms overweight, obese, severe obese are quite related. A patient diagnosed as
overweight can be in an increasing process of becoming obese or even severe obese
and can be useful to the BN inference to have this relation properly represented.
In this case, having non-dichotomic modeling of the obese measurement can
bring this relation highlighted.

Brignoli et al. [1] present a BN model for inference on overlapping states. But
they do not consider temporal dependency among the network variables, like
data from temporal series or dynamic systems. In this paper, we extend Brig-
noli’s approach to dynamic domains by introducing a Fuzzy-Dynamic Bayesian
inference model for filtering task that considers non-dichotomic evidence.

The work is organized as follows: Sect. 2 presents the Fuzzy-Bayesian infer-
ence process proposed in [1]. Section 3 introduces Dynamic Bayesian Networks.

1 A dichotomic variable can be split only in two states.
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In Sect. 4 we present our proposal. Section 5 presents some preliminary exper-
iments performed using the proposed model and the results are presented and
discussed. Section 6 concludes the paper, bringing final considerations and future
works.

2 Fuzzy-Bayesian Inference

In order to incorporate fuzzy aspects into the inference process of Bayesian
models, it is necessary to adapt these models to deal with fuzzy evidence. In
[1] is presented a hybrid Fuzzy-Bayesian approach (Fuzzy-BN) that allows the
inclusion of non-dychotomic fuzzy variables into the Bayesian inference process.
In that work, the probability P over fuzzy evidence is defined by:

P(Hi|Ej) =
P (Hi)

∏m
j=1

∑u
k=1(Pxk

(Ej |Hi).μxk
(Ej))

∑n
l=1 P (Hl)

∏m
j=1

∑u
k=1(Pxk

(Ej |Hl).μxk
(Ej))

(1)

where n are the hypothesis states; m are the evidence; u are the evidence states;
Hi is the hypothesis array, with 1 ≤ i ≤ n; Ej is the evidence array, with
1 ≤ j ≤ m; Pxk

(Ej |Hi) is the conditional probability of the state xk of evidence
Ej given Hi, with 1 ≤ k ≤ u; P (Hi) is the probability a priori over Hi; and
μxk

(Ej) represents the membership degree of the state xk of the evidence Ej

with relation to the fuzzy membership function.
Therefore, P(Hi|Ej) is the conditional probability of Hi adapted by the

imprecision over the evidence variables Ej .

3 Dynamic Bayesian Networks and Filtering

DBN is a way to extend BN for modeling probability distributions over semi-
infinite collections of random variables [13]. In DBN, each time slice t can have
any amount of unobservable variables Xt and observable (or evidence) variables
Et. The notation adopted in this work uses Xa:b for representing the correspond-
ing set of variables from Xa to Xb, where a and b are natural numbers.

DBN model needs the definition of three probability distributions: (i) the
prior distribution of the unobservable variables at the initial time P (X0); (ii) the
transition model P (Xt|Xt−1); and (iii) the sensor model or observation model
P (Et|Xt)[12]. The transition model P (Xt|Xt−1) describes how the unobservable
variables Xt are affected by the states of the unobservable variables on the
previous time. The sensor model P (Et|Xt) defines how the evidence variables
(sensors) are affected by the real world state.

Assuming the world state is caused by a stationary process, transition and
sensor models are the same in any time t. Whether we assume that DBN
describes a first order Markov process, for any finite t, the joint distribution
over all variables is defined by [12]:

P (X0,X1, ...,Xt, E1, ..., Et) = P (X0)
t∏

i=1

P (Xi|Xi−1)P (Ei|Xi) (2)
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The main inference tasks in DBN are (i) filtering, that estimates P (Xt|e1:t); (ii)
prediction, that estimates P (Xt+k|e1:t), for some k > 0; (iii) smoothing, that
P (Xk|e1:t), for some 0 ≤ k < t; and (iv) the most probable explanation, that
estimates argmaxx1:tP (x1:t|e1:t) [12].

In this research, we explore filtering inference, in which an observation set is
used to estimated a posterior distributions over the current state. Considering
the First Order Markov hypothesis over observable and non-observable variables,
the estimation of P (Xt+1|e1:t+1) is defined by [13]:

P (Xt+1|e1:t+1) = αP (et+1|Xt+1)
∑

xt

P (Xt+1|Xt)P (xt|e1:t) (3)

where P (e1:t+1|Xt+1) can be directly obtained through the sensor model. In
the sum, P (Xt+1|Xt) is the transition model and P (xt|e1:t) is the current
state distribution. α is a normalizing constant to ensure that the inputs sum
of P (Xt+1|e1:t+1) results 1.

The recursive resolution of
∑

xt P (Xt+1|Xt)P (xt|e1:t) is called forward prop-
agation and projects the probability distribution of the states X from time t to
t + 1.

Next section we introduce our inference model considering filtering inference
in Dynamic Bayesian Networks and the Fuzzy-Bayesian model introduced in
Sect. 2.

4 Fuzzy-Dynamic Bayesian Inference

This work aims to propose filtering in DBN over observable variables whose
states are defined by fuzzy membership functions. In order to allow the multiple
state overlapping, the adopted strategy is based on the Fuzzy-BN from Brignoli
et al. [1].

Following, it will be presented the inference equation induction filtering over
fuzzy evidence. Resuming Eq. 3, that assumes the First Order Markov hypothe-
sis, we have:

P (xt+1
i |e1:t+1) = αP (et+1|xt+1

i )
n∑

l=1

P (xt+1
i |xt

l)P (xt
l |e1:t) (4)

where i represents the ith state from the unobservable variable and n is the total
amount of unobservable variable states. Taking the normalizing constant α as

1
P (e1:t+1) , we have:

P (xt+1
i |e1:t+1) =

P (et+1|xt+1
i )

∑n
l=1 P (xt+1

i |xt
l)P (xt

l |e1:t)
P (e1:t+1)

(5)

If the sample space Ωt+1 could be divided in a finite amount of n mutually
exclusive events xt+1

j , where
∑n

j=1 xt+1
j = Ωt+1 and if P (e1:t+1) > 0, then it is
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possible to define P (e1:t+1) as [9]:

P (e1:t+1) =
n∑

j=1

(P (et+1|xt+1
j )P (xt+1

j )) (6)

Considering that in DBN filtering the distribution of the states xj from t
to t + 1 is projected by the forward propagation

∑n
l=1 P (xt+1

i |xt
l)P (xt

l |e1:t) (see
Sect. 3), so we can define P (e1:t+1) as:

P (e1:t+1) =
n∑

j=1

(P (et+1|xt+1
j )

n∑

l=1

P (xt+1
i |xt

l)P (xt
l |e1:t)) (7)

Thus, using Eq. 7 in Eq. 5, the filtering inference can be described by:

P (xt+1
i |e1:t+1) =

P (et+1|xt+1
i )

∑n
l=1 P (xt+1

i |xt
l)P (xt

l |e1:t)∑n
j=1(P (et+1|xt+1

j )
∑n

l=1 P (xt+1
i |xt

l)P (xt
l |e1:t))

(8)

Considering the existence of k combined evidence, represented by e1:t+1
1 ,

..., e1:t+1
k denoted by E1:t+1 and assuming the evidence independence given xt+1

i ,
it is possible to apply the conditional independence property [3]. Thereby, the
filtering is defined as:

P (xt+1
i |E1:t+1) =

∑n
l=1 P (xt+1

i |xt
l)P (xt

l |E1:t)
∏k

m=1 P (et+1
m |xt+1

i )
∑n

j=1(
∑n

l=1 P (xt+1
i |xt

l)P (xt
l |E1:t)

∏k
m=1 P (et+1

m |xt+1
j ))

(9)

The proposed inference model considers the representation of Fuzzy-Dynamic
Bayesian Networks (Fuzzy-DBN) with k evidence variables (Et+1) and one unob-
servable variable (hypothesis xt+1). Each et+1

j can have multiple discrete or con-
tinuous states. Continuous states of et+1

j are classified through a fuzzy qualifier,
such that et+1

j sw is the evidence et+1
j observed on the fuzzy state sw. Lastly,

μsw(et+1
j ) represents the membership degree of et+1

j to the state sw.
Inspired in Brignoli et al. [1], we define the conditional possibility P̃ of et+1

j

given xt+1
i as:

P̃ (et+1
j |xt+1

i ) =
u∑

w=1

Psw(et+1
j |xt+1

i ).(μsw(et+1
j )) (10)

where u are the fuzzy states from the evidence variable et+1
j .

Using Eq. (10) for considering the fuzzy states sw from the variable et+1
j in

Eq. (9), we have the probability P of xt+1
i given the fuzzy evidence E1:t+1 defined

as:

P(xt+1
i |E1:t+1) =

∑n
l=1 P (xt+1

i |xt
l)P(xt

l |E1:t)
∏k

m=1 P̃ (et+1
m |xt+1

i )
∑n

j=1(
∑n

l=1 P (xt+1
j |xt

l)P(xt
l |E1:t)

∏k
m=1 P̃ (et+1

m |xt+1
j ))

(11)
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or, considering the right side of Eq. 10:

P(x
t+1
i |E1:t+1

) =

∑n
l=1 P (xt+1

i |xt
l)P(xt

l |E1:t)
∏k

m=1
∑u

w=1 Psw (et+1
i |xt+1)(µsw (et+1

j ))
∑n

j=1(
∑n

l=1 P (xt+1
j |xt

l)P(xt
l |E1:t)

∏k
m=1

∑u
w=1 Psw (et+1

j |xt+1)(µsw (et+1
j )))

(12)

Equation 12 defines the proposed mathematics formulation for supporting
filtering inference in Fuzzy-DBN with multiple evidence and multiple states.

5 Model Evaluation

In order to evaluate our proposal, we present a classification experiment with
fuzzy evidence with overlapping states using the Occupancy Detection dataset
[2] from the UCI Repository [5]. The dataset is composed by 20560 instances of
sequential and experimental data for binary classification for room occupancy.
The Data set has 21.23% of occupied class instances and the remaining in the
not occupied class. We used the following attributes as observable variables:
Temperature (in Celsius), Relative Humidity (in %), Light (in Lux) and CO2

(in ppm). The unobservable variable is Occupancy and assumes the values true
or false representing the occupied status of the room.

The fuzzy modeling was obtained from the observation of the interval and
distribution from each variable values. The fuzzy parameters were refined after
some preliminary tests. The observable variables was categorized in linguistic
concepts (low, medium, high) and modeled using Fuzzy Sets. Figure 1 shows
the fuzzy modeling used for each observable variable: (a) Light, (b) CO2, (c)
Humidity e (d) Temperature. The observable variables have overlapping states
and their membership values are not necessarily complementary. For example, a
measurement of 19, 5 ◦C has the membership degree equal to 0, 755 for the low
state, 0, 325 for the medium state and 0, 186 for the high.

Both the proposal and the compared works were implemented using the same
fuzzy modeling. In order to enable the network parameters learning, the observ-
able variables were pre-classified by the fuzzy modeling, where each observed
value was categorized in the class with the highest membership degree.

The data set was randomly divided into two subsets: 70% for training and
30% for evaluation. In order to obtain the priori distribution of the unobservable
variable at the initial time, the transition model and the sensor model, we applied
the Expectation Maximization Algorithm [4] on the training subset.

After these procedures, the proposal was applied to the evaluation subset.
First, the evidence values was fuzzified, such to obtain the membership of each
evidence etj to each state sw, that is: μsw(etj).

The proposal was used as a classifier, where the unobservable variable in the
current time with the biggest probability was considered the predicted class.
The network inputs are the observable evidence E1 to ET , where T denotes the
current time slice.
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Fig. 1. Fuzzy modeling for the observable variables

After the rule inference application, according to Eq. 12, the model produces
the probability of the unobservable variable xT

i for all 1 ≤ i ≤ n, with n rep-
resenting the variable states xT . As a classifier, the output is the state xT

i with
the highest probability value.

The fuzzy evidence modeling limitation in [6,14,15,18,20] prevents their use
on situations with non-dichotomic variables. Thereby, our proposal is compared
to the DBN filtering inference and with the Fuzzy-BN approach from Brignoli
et al. [1], as presented in the next section.

5.1 Result Analysis

For the experiments, we used four-time slices in the Fuzzy-DBN (our proposal).
Figure 2 presents the Fuzzy-DBN topology.

Fig. 2. Fuzzy-DBN topology with four-time slices

The Confusion Matrix summarizes the amount of correct and incorrect pre-
dictions by the Fuzzy-DBN (Table 1). The Fuzzy-DBN classification is compared
with DBN and Fuzzy-BN classification in Table 2.
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Table 1. Confusion matrix for the unobservable variable occupancy

True class

Yes No

Predicted class Yes 474 33

No 39 1896

In comparison with Fuzzy-BN, the proposed Fuzzy-DBN obtained an Accu-
racy improvement of 1, 369%. This means that, by adding time slices on the
Fuzzy-BN, the proposed inference increased the correct predictions in the clas-
sification. The Recall value shows an improvement of the correct classification
of samples as positive occupancy when the room is actually occupied. F1-score
suggests the improvement in Recall was more meaningful for the classification
quality than the decrease in Precision.

Table 2. Classification measurements for Fuzzy-BN, DBN and Fuzzy-DBN

Measurement Fuzzy-BN DBN Fuzzy-DBN

Accuracy 0,957412 0,967240 0,970516

Recall 0,849903 0,879159 0,923977

Inverse Recall 0,986003 0,994121 0,982893

Precision 0,941685 0,978558 0,934911

Inverse Precision 0,961091 0,964230 0,979845

F1-score 0,893443 0,926199 0,929412

The inclusion of fuzzy evidence on the DBN results in an Accuracy improve-
ment of 0, 339%. Fuzzy-DBN also obtained better results in Recall, Inverse Pre-
cision and F1-score. These metrics show that the proposal improves the network
ability to correctly classify the instances when the room is occupied. As a dis-
advantage, the decrease in precision shows a growth in the false positives cases.
Despite this, the F1-score suggests that the true positive increase overcome the
false positive in the Fuzzy-DBN classification.

Figure 3 presents the Receiver Operating Characteristic (ROC) Curve for the
positive classification of occupancy. Fuzzy-BN and Fuzzy-DBN obtained similar
results. However, the DBN ROC Curve shows that the False Positive Rate had a
faster increase according to the threshold variation, in comparison with another
two approaches.

Both the time slices inclusion in the Fuzzy-BN and the fuzzy evidence inclu-
sion in the DBN, provide improvements when using the Fuzzy-DBN, as can be
mainly observed in the obtained Accuracy and F1-score.
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Fig. 3. ROC Curve for DBN, Fuzzy-BN and Fuzzy-DBN for the positive classification
of occupancy

6 Conclusion

Existing approaches to infer in Dynamic Bayesian Networks over vagueness data
restrict the overlapping and modeling of evidence states to only two fuzzy states.
Thereby, in order to allow the overlapping of multiple states and to consider them
in the inference process, this work proposed a model for Dynamic Fuzzy-Bayesian
inference over non-dichotomic variables.

The proposed model is inspired by a fuzzy-BN model, where the membership
degree is used to define the conditional possibility of the fuzzy evidence. We
present a generic model, in the sense that it allows multiple evidence, multiple
fuzzy states, and multiple time slices.

The model was applied as a classifier on the Detection Occupancy Dataset,
where our proposal obtained Accuracy 97%, F1-score 92% and Recall 92%. The
compared Fuzzy-BN can be equivalent to our approach if and only if no time
slices are considered. Thus, Fuzzy-DBN shows better classification results when
adding time slices to the Bayesian inference. In another hand, the comparison
of the proposal with the DBN, suggests that the use of fuzzy evidence increase
the classification quality.

As future works, it is possible to extend the proposal for other inference
tasks, like prediction, most probable explanation and smoothing. Besides that,
it is important to investigate methods for optimizing the decision about how
much time slices could be considered, in order to achieve a better relationship
between computational cost and classification performance.
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Abstract. Uncertain gates in possibility theory correspond to noisy
gates in probability theory. They allow us to reduce the number of param-
eters which must be elicited to define conditional possibility tables in pos-
sibilistic networks. Usually the choice of the connector and its parameters
is made by experts but sometimes if there is an existing CPT or if data
are available, it can be interesting to perform an estimation of uncertain
connectors. This estimation allows us to better understand how infor-
mation is combined. Furthermore, it is possible to match one of three
sorts of behaviour (indulgent, compromise, severe) with the correspond-
ing information. This point is important for knowledge engineering. If
the data are available, the estimation can also be useful to verify if the
uncertain connector fits with the data, because expert knowledge is often
imprecise and uncertain. In this paper, we will show how to perform the
estimation of uncertain gates and we will illustrate our approach with
several examples of results in the domain of education.

Keywords: Uncertain gates · Possibility theory ·
Knowledge engineering · Estimation · Uncertainty

1 Introduction

The knowledge of a human expert is often imprecise and uncertain. Possibil-
ity theory, presented in [14], provides a solution to these drawbacks which take
into account the imprecision and the uncertainty of knowledge. If knowledge can
be modelled by a Directional Acyclic Graph, it is possible to use a possibilis-
tic network for the propagation of new information. Possibilistic networks [1,3]
in possibility theory are an analogy of Bayesian networks [11,12] in probability
theory. The main difficulty in possibilistic networks is to elicit Conditional Pos-
sibility Tables. The parameters to elicit grow exponentially with the number of
parents of the variable leading to a too large number of parameters to define.
One solution to this problem is to use a function of the parents of the variable for
the computation of the CPT. This solution is proposed by noisy gates in prob-
ability theory. Thus, the number of parameters is considerably reduced. Noisy
gates provide another advantage which is the modelling of noise. Moreover, in
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complex systems it is difficult to have a perfect model of knowledge. We often
forget variables which involve bad predictions of the models. The use of a special
variable, called leakage variable, to represent the unknown knowledge gives birth
to a second kind of model. In possibility theory, uncertain gates offer the same
advantages as noisy gates. Another benefit of uncertain gates is the possibility
to define connectors with behaviours indulgent, compromise or severe. So the
use of uncertain gates makes easier knowledge engineering.

There are many applications of possibilistic networks with CPTs. It is also
possible to have data in addition to expert knowledge. It can be interesting to
know which uncertain connector is the best to fit with the data. Moreover, if we
have already defined an uncertain gate based only on knowledge, it can be more
reassuring to compare the one estimated from the data and the one defined by
experts.

This paper deals with the estimation of uncertain gates from CPTs and from
data. In the first part, we will present possibility theory and in the second part
uncertain gates. Then we will focus on the estimation of uncertain gates. And
finally, we will propose an example of the estimation of uncertain gates in the
domain of educational indicators.

2 Possibility Theory

Uncertain gates are an analogy of noisy gates in possibility theory [14], which
allows us to model imprecise and uncertain knowledge by a possibility distribu-
tion. For example, if V is a variable and πV its possibility distribution defined
from the referential Ω to [0, 1], then we can say that if πV (v) = 0 then V = v is
not possible, if πV (v) = 1 then V = v is possible or fully plausible and finally if
πV (v) = α then V = v is plausible with the degree α. If we have a subset A of
Ω, then we can define the possibility measure Π and the necessity measure N
as in [6]. The possibility measure is a function defined from the set of all subsets
of Ω noted P (Ω) to [0, 1]:

∀A ∈ P (Ω),Π(A) = sup
x∈A

π(x). (1)

The necessity measure is a function from P (Ω) to [0, 1]:

∀A ∈ P (Ω), N(A) = 1 − Π(¬A) = inf
x/∈A

1 − π(x) (2)

The main property of possibility theory is:

∀A ∈ P (Ω),∀B ∈ P (V ),Π(A ∪ B) = max(Π(A),Π(B)). (3)

We can see in the above formula that possibility theory is not additive but
maxitive.
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3 Uncertain Gates

The possibilistic networks [1,2] can be defined by using the factoring property.
The factoring property is established from the joint possibility distribution Π(V )
for a DAG G = (V,A), where V is the set of variables and A the set of edges
between the variables. Π(V ) can be factorized as follows:

Π(V ) =
⊗

X∈V

Π(X/Pa(X)). (4)

With Pa the parents of the variable X and
⊗

the function minimum.
Noisy gates in probability theory are defined by using the Independence of

Causal Influence [4,8,16]. In fact, there is a set of causal variables X1, ...,Xn

which influence the result of an effect variable Y . To take into account uncer-
tainty, we can add variables Zi between each Xis. So we obtain the equation
Y = f(Z1, ..., Zn) where f is a deterministic function. Expert descriptions of
complex systems are often incomplete because the more the system is complex,
the less the link between the variables is easy to analyse. This problem leads
us to exclude the unknown knowledge of the model during the knowledge dis-
covering phase. The solution proposed by the authors in [4] is to use a leakage
variable Zl to model the unknown knowledge. So we can propose a new leaky
ICI model derived from the previous noisy model. The following figure presents
the leaky ICI model (Fig. 1):

Fig. 1. Leaky ICI model.

If there is no causal interaction in the effects of the variables Xi on the
variable Y , then we can perform a marginalization as follows:

P (y|x1, ..., xn) =
∑

z1,...,zn

P (y|z1, ..., zn) × P (z1, ..., zn|x1, ..., xn) (5)

P (y|x1, ..., xn) =
∑

z1,...,zn

P (y|z1, ..., zn) ×
n∏

i=1

P (zi|xi) (6)
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where P (y|z1, ..., zn) =

{
1 if y = f(z1, ..., zn)
0 else

(7)

As a result, we obtain the following formula in probability theory:

P (y|x1, ..., xn) =
∑

z1,...,zn:y=f(z1,...,zn)

n∏

i=1

P (zi|xi) (8)

In possibility theory, there is the following formula demonstrated by the
authors of [5]:

π(y|x1, ..., xn) = max
z1,...,zn:y=f(z1,...,zn)

⊗n
i=1π(zi|xi) (9)

The ⊗ is the minimum. The CPT is obtained by the calculation of the above
formula. For Boolean variables, the possibility table between the variables Xi

and Zi is the following (Table 1):

Table 1. Possibility table for Boolean variables.

π(Zi|Xi) xi ¬xi

zi 1 si

¬zi κi 1

In the previous table, the κ can be interpreted as the possibility that an
inhibitor exists if the cause is met. On the other hand, si can be seen as the
possibility that a substitute exists when the cause is not met.

If the modalities of a variable are ordered, we can encode the modality by an
intensity level as in [5]. For example, in our experimentation there are three levels
of intensity such as low, medium and high, and we will encode the modalities
with values 0 for low, 1 for medium and 2 for high. So we obtain (Table 2):

Table 2. Possibility table for multivalued variables.

π(Zi|Xi) xi = 2 xi = 1 xi = 0

zi = 2 1 s2,1
i s2,0

i

zi = 1 κ1,2
i 1 s1,0

i

zi = 0 κ0,2
i κ0,1

i 1
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If we consider as in [5] that a cause of weak intensity cannot produce a strong
effect, then all si = 0. In our application, these parameters are greater than 0.
So there are 6 parameters per variable. If we add a leakage variable Zl in the
previous model, we obtain the following equation:

π(y|x1, ..., xn) = max
z1,...,zn,zl:y=f(z1,...,zn,zl)

⊗n
i=1π(zi|xi) ⊗ π(zl) (10)

Several uncertain gates have already been presented by replacing the function
f by logical functions AND, OR or their generalizations MIN and MAX. The
authors of [5] have defined these operators. It is also possible to use a weighted
average function, or the operator OWA [13], as described in our previous study
[10]. For this experimentation we will use the connectors uncertain MIN, uncer-
tain MAX and uncertain weighted average (WAVG).

4 Estimation

In possibilistic networks, the number of parameters of the CPTs is growing
exponentially when the number of parents of a variable is growing. As a result,
the task of knowledge elicitation is more and more difficult. This leads to several
problems in knowledge engineering [15]. For example, if a variable has 10 parents
and each variable has 2 modalities, then we have 211 = 2048 parameters to elicit.
If the data are available, the solution can be to perform an estimation of the
CPT but often it is difficult to have the data to estimate all parameters. So one
solution can be to try to use uncertain gates to compute CPTs. With uncertain
gates, the number of parameters is greatly reduced. In fact, we have only to
define the parameters of uncertain gates. Another problem is knowing which
uncertain gates to use. Several uncertain gates exist among behaviours severe,
compromise or indulgent. If the CPT already exists, it can be helpful to replace
the CPT by an uncertain gate, but to do this, we have to perform an estimation
of the parameters and to select one connector among all which exist.

More generally, there are two cases to distinguish for the computation of
uncertain gates. The first one is the simple case where we would like to perform
an estimation of uncertain gates from an existing CPT. To do this, we have to
compare the CPT generated by an uncertain gate and an existing CPT. This
leads to an optimisation problem which consists in estimating the parameters of
the uncertain gate. In fact, we look for the closest CPT compared to a reference
CPT. If we have to compare CPTs, we need to use a measure of distance between
the CPTs. Several distances can be used [7] such as Euclidean, Skew divergence,
Kullback-Leibler Divergence, Cosine, L1,... So we present below some of these
distance measures for two conditional possibilities πi and πf of a variable Y
and ∂Y the domain of Y . If X1, ...,Xn are the parents of the variable Y and
∂X1 , ..., ∂Xn

the domains of these variables, we obtain (y, x1, ..., xn) an instanced
vector in the Cartesian product Δ = ∂Y × ∂X1 × ... × ∂Xn

. We propose the
following distances for the CPTs (Table 3):
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Table 3. Existing distance measures between the CPTs.

Distance Formula

Euclidean (E)
√ ∑

(y,x1,...,xn)∈Δ

(πi(y|x1, ..., xn) − πf (y|x1, ..., xn))2

KL Div. (KL)
∑

(y,x1,...,xn)∈Δ

πi(y|x1, ..., xn)(log πi(y|x1, ..., xn) − log πf (y|x1, ..., xn))

Skew Div. (SDα) KL(πi(y|x1, ..., xn), απi(y|x1, ..., xn) + (1 − α)πf (y|x1, ..., xn))

Cosine (C)

∑

(y,x1,...,xn)∈Δ

πi(y|x1,...,xn)πf (y|x1,...,xn)

√ ∑

(y,x1,...,xn)∈Δ

πi(y|x1,...,xn)2
∑

(y,x1,...,xn)∈Δ

πf (y|x1,...,xn)2

L1
∑

(y,x1,...,xn)∈Δ

∣∣πi(y|x1, ..., xn) − πf (y|x1, ..., xn)
∣∣

For our first experimentation we propose to use the Euclidean distance. We
will compare 4 estimation methods: gradient descent, simulated annealing, tabu
research, and genetic algorithm. If we consider the example of the gradient
descent, we have at first initialized all parameters of the uncertain gates to
a random value in [0, 1]. Then we generate the CPT and we calculate the ini-
tial distance. Next, we evaluate all neighbours of the parameters by adding and
subtracting a step. We consider only the smallest distance for the CPTs gen-
erated by the neighbours. Its parameters become our temporary solution. We
reiterate this until the distance is lower than a constant, or a maximum number
of iterations is reached. As an example, we present below the algorithm for the
estimation of the parameters of the Uncertain MIN with a gradient descent:

Algorithm 1. Estimation of the parameters of the uncertain MIN.
Input : Y a variable; X1, ..., Xn the n parents of Y ; π(Y |X1, ..., Xn) the initial CPT;

step a constant.
Output: The result is π(Zi|Xi).

1 begin
2 iteration ←− 0; error ←− +∞;CError ←− +∞
3 Initialize(π(Zi|Xi))
4 while iteration < max and error > ε do
5 π′(Zi|Xi) ←− π(Zi|Xi);CError ←− error
6 forall the π∗(Zi|Xi) ∈ GenerateNeighbour(π(Zi|Xi), step) do
7 π∗(Y |X1, ..., Xn) ←− UncertainMIN(Y, X1, ..., Xn, π∗(Zi|Xi))
8 if E(π∗(Y |X1, ..., Xn), π(Y |X1, ..., Xn)) < CError then
9 CError ←− E(π∗(Y |X1, ..., Xn), π(Y |X1, ..., Xn))

10 π′(Zi|Xi) ←− π∗(Zi|Xi)

11 if CError < error then
12 error ←− CError
13 π(Zi|Xi) ←− π′(Zi|Xi)
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The second case is the estimation of the CPT from data. If the data are
stored in a database β, then we propose to perform an estimation of the con-
ditional possibility tables before applying an estimation algorithm. To perform
the estimation of the conditional possibility tables, we used an adaptation of
the Maximum Likelihood to possibility theory. The formula of the conditional
possibility estimation is as follows:

π(Xi = xk|pa(Xi) = xj) =
αi,j,k

max
k

αi,j,k
(11)

Where αi,j,k is the number of record in β for which the variable Xi has the
value xk and its parents the configuration xj .

5 Experimentation

In this section, we propose to perform the estimation of several connectors from
an existing CPT in order to choose the best one. This choice allows us to better
understand how the variables are combined. This is also a solution to reduce the
disk space or the memory used by a CPT. For our experimentation we consider
the data of our previous study [9] performed to improve the monitoring of our
students by using the e-learning platform Moodle. The first example concerns
the CPT of the indicator of dropout, which is an educational indicator. The
following table has been elicited by experts (Table 4):

Table 4. CPT of the indicator of dropout.

Absence Low Medium High

No participation Low Medium High Low Medium High Low Medium High

Indicator of dropout Low 1.0 1.0 0.6 1.0 0.4 0.3 0.4 0.3 0.2

Medium 0.6 7.0 1.0 0.5 1.0 1.0 1.0 0.7 0.5

High 0.1 0.2 0.3 0.3 0.5 0.5 0.6 1.0 1.0

So the goal of our experimentation is to replace the above table by an uncer-
tain connector. We consider only three uncertain connectors: the uncertain MIN,
the uncertain MAX and the uncertain WAVG. We present below the minimal dis-
tance obtained during the parameter estimation by using the Gradient Descent
(GD), Simulated Annealing (SA), Tabu Research (TR) and Genetic Algorithm
(GA) (Table 5).
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Table 5. Final distance for the parameters estimation after 20000 iterations.

GD SA TR GA

Uncertain MIN 1.02 0.92 0.92 0.92

Uncertain MAX 1.37 1.28 1.48 1.27

Uncertain WAVG 0.70 0.33 0.32 0.43

In the following figure, we can see that the gradient descent is converging
rapidly to the results for all connectors. Nevertheless, the best estimation of the
parameters is performed by tabu research in Fig. 2c. In Fig. 2d we can see that
the connector uncertain WAVG is the one that fits the best with the target CPT.

(a) Uncertain MIN (b) Uncertain MAX

(c) Uncertain WAVG (d) Synthesis of the results

Fig. 2. Comparison of three parameter estimations for the uncertain gates.

Another problem is how to estimate uncertain gates from data. The quality of
the estimation depends on the data. We consider that we already have the DAG
of the possibilistic network. The first processing will be the estimation of the
conditional possibility table from the data. Then we can perform the estimation
of the parameters for several uncertain gates connectors before selecting the best
connector. This can be resumed in the following Fig. 3:
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Fig. 3. Selection of the best uncertain gates.

To illustrate this processing, we have performed the estimation from the data
of uncertain gates for the indicator of success. This indicator depends on the
participation and on the Moodle score in a quiz. We have obtained the following
results (Table 6):

Table 6. Final distance for the parameters estimation after 20000 iterations.

GD SA TR GA

Uncertain MIN 2.24 2.21 2.20 2.20

Uncertain MAX 1.75 1.56 1.58 1.57

Uncertain WAVG 1.24 1.14 1.12 1.09

The above data show that the connector uncertain WAVG is the best con-
nector for this indicator.

6 Conclusion

The estimation of the parameters of uncertain gates from an existing CPT allows
us to express knowledge with a more compact representation which highlights
the behaviour of the information combination. To do this we used an algorithm of
optimization which measures at each iteration the distance between the current
CPT and the target CPT in order to find the CPT which fits the best with the
target CPT. In the first example, we compared the estimation of the uncertain
gates parameters for the CPT of the educational indicator of dropout. To do
this we used several estimation methods for three uncertain connectors. As a
result, we proposed a solution to select the best connector: the one which fits
the best with the target CPT and for which the distance is the minimum. Then
we suggested a solution for the selection of the uncertain connector from the data
in case no CPT is available. We proposed the second example which illustrates
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this approach. This study is a basis for our next research which will consist
in converting an existing possibilistic network into a possibilistic network with
uncertain gates. This implies replacing all CPTs by uncertain gates. We would
like to better evaluate our manner of estimating uncertain gates parameters from
data. Finally, we need to better analyse the case where uncertain gates can be
estimated from an existing CPT given by an expert and estimated also from new
available data.
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Abstract. The article presents selected cases of application of fuzzy-
logic techniques in technological process control. It presents the possi-
bilities of supporting manufacturers of road machines for road drying
with innovative solutions in the field of artificial intelligence. It presents
an algorithmic approach to determine the quality (welfare) of the device,
taking into account important process parameters, processed with the use
of fuzzy-logic technique. The methodology for controlling the rotation of
the turbine engine in the initial phase of its start-up is presented, using
rules based on fuzzy logic. The results of the calculations are presented in
a graphical form, friendly to interpretation by users and machine manu-
facturer. The article discusses the technical aspects of the TORGOS road
machine control system, indicating the multifunctionality of the authors’
controller and its software.

Keywords: Soft computing · Fuzzy-logic · Industrial application

1 Introduction

In recent years there have been some failures in the industrial use of fuzzy logic.
Industrial fuzzy logic controllers have disappeared almost completely in the offers
of many global manufacturers. At the same time, however, there has been a very
dynamic growth of solutions based on various methods of artificial intelligence.
The authors of this paper have decided to use the fuzzy logic technique [6], as
one of the methods of artificial intelligence, in the specific process of controlling
turbine engine rotation in the initial stage of its start-up. Operating experience,
based on manual and intuitive fuel dosing in the machine, closely related to
various temperatures of air, fuel and turbine, inspired the development of dedi-
cated algorithms based on the fuzzy logic technique. Analysis of numerous bibli-
ographic sources confirmed the principle that fuzzy logic-based control or infer-
ence brought very good results in specific process/objects – where conventional
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algorithms did not give satisfactory results. The control problem presented here
belongs to such a class of issues in which the unconventional approach proved to
be effective. An additional, positive circumstance, which influenced the decision
on the method of solving the problem, was the possibility of free shaping the
software in the machine controller and sufficient computing power of the applied
microcontrollers. It should be emphasized that the so-called expert knowledge
about the desired behaviour of the turbine engine in various combinations of the
three (above-mentioned) temperatures was obtained from the users of TORGOS
machines. Another important prerequisite for the application of the fuzzy logic
technique was the automatic evaluation of the condition of the machine. On
the basis of the obtained data, the authors developed algorithms evaluating the
so-called welfare of the machine.

Recent research [4,5,7] shows that the fuzzy logic technique could be suc-
cessfully applied to the diagnostics and to build up fault tolerant systems. Fuzzy
logic was also used in other industrial applications [1,3,9,13,18].

For a convenient interpretation of the obtained results, 3D graphic forms
were used. The obtained results are essential for the manufacturer and users of
TORGOS machines.

2 Road Dryer

TORGOS 35 is an industrial road dryer (Fig. 1) for professional use. It is used
for drying wet road sections (e.g., motorways) on which horizontal markings are
to be applied. The machine does not have its own drive. The source of hot air is
a high-speed turbine engine powered by diesel oil. Due to the high temperature
of the blown out air, the machine should be in motion in order to not damage
the road surface. To start the turbine engine, a battery-powered DC motor is
enrolled as a starter. Other systems and components, such as a glow plug, valves
and pumps, are also powered from the battery. Both procedures, for starting
and stopping of the turbine engine are complicated, as well as the control during
the functional operation of the engine. That is why the engine’s operation is
controlled by a microcomputer driver equipped with a real-time operating sys-
tem. The machine controller implements advanced control algorithms (e.g., fuzzy
logic methodology), diagnostics (Fourier analysis), communication, geographical
location and others.

Torgos 35 is currently the most innovative road dryer, mass-produced in
Poland.

3 Control Hardware and Software

A proprietary controller fulfills two main functions. The first of these is to con-
trol the machine functions such as start, normal work and cooling. The second
function is gathering data regarding machine work in those states. For tech-
nical reasons the control system in the machine is divided into two, separate
parts equipped with independent microcontrollers (MAIN – master controller
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Fig. 1. Torgos 35 road drying machine [8].

module and HMI – operator interface module). The main controller module is
located close to the turbine, and the user interface driver is mounted at the top
of the machine, allowing easy operator access. The use of digital communication
between modules limits the number of cables needed to support all additional
modules. The human–machine interface part is responsible for communication
with a cloud–based server and with the user of the machine. The part called
MAIN controls directly high–current devices in the machine and runs control
loops. The general overview of the system can be seen in Fig. 3.

The data are gathered by the MAIN section and sent via the HMI part into
a cloud–based storage, see Fig. 2.

The array of data is quite large and consists of 20 variables. Additionally,
during the start-up process, an acoustic sample is acquired and its Fourier trans-
form is calculated. Thus, the control of the start-up process is based on fusion
of data from different sources.

The data are sent via GPRS to the cloud-based server. Additionally also
geolocation data are sent, the web-based application allows for viewing of those
data as well as management of machine maintenance and repair. Those functions
are outside of the scope of this paper.
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Control Safety

SKALT Comm

Keyboard

Comm GPRS

Display

MAIN HMI

Fig. 2. General overview of the control system.

MAIN HMI internet server

Fig. 3. Physical division of the control system.

4 The Use of Fuzzy Logic in Assessing the Machine State

The assessment of the machine’s mechanical state is crucial from the preventive
maintenance point of view. As described in the previous section, process data
are transferred to the web server.

Two main factors used in determining machine conditions are the highest
amplitude of the sound spectrum and power/resulting rpm ratio.

The amplitude factor is relatively obvious. When the condition of the machine
deteriorates1 it starts to makes a louder noise. The literature regarding the exact
frequency is well known see [17] and [16], but it requires exact knowledge of the
current rotational speed. The use of simple maxAi helps in cases when the
frequency varies somewhat.

In Fig. 5 we can see how inputs are fuzzified. Parametrization is self-
descripting in that case and can be seen in Fig. 6. The result is calculated in
a typical way by assigning weights to each fuzzy input and calculating weight-
center.

The result is displayed as an estimation of the machine state in the form of
a bar graph.

1 Mostly high-speed ball bearing.
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5 The Use of Fuzzy Logic in Control of the Machine

The measurement of external temperature is an important factor which greatly
influences the working of the road dryer both in its starting stage and during
normal operation. Based on gathered experience during operation of the TOR-
GOS machine in the winter season when the temperature is below 0 ◦C and in
autumn when the ambient temperature is positive, it can be concluded that this
temperature has a significant impact on the starting stage. This, in turn, requires
each machine parameter to be tuned accordingly. This process is relatively time
consuming and the obtained results are not always optimal. This situation can

Fig. 4. Example of the spectral diagram for the machine.

power/rpm

OK mid bad

maxAi

OK mid bad

Fig. 5. Fuzzification and defuzzification in case of machine state.
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Fig. 6. Self descriptive parameters for fuzzyfication and defuzzification.

Fig. 7. Pump coefficient for −20 [◦C]
fuel temperature

Fig. 8. Pump coefficient for −10 [◦C]
fuel temperature
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Fig. 9. Pump coefficient for 0 [◦C] fuel
temperature

Fig. 10. Pump coefficient for +10 [◦C]
fuel temperature

Fig. 11. Pump coefficient for +20 [◦C]
fuel temperature

Fig. 12. Pump coefficient for +30 [◦C]
fuel temperature

Fig. 13. Pump coefficient for +40 [◦C] fuel temperature

be improved by making the starting algorithm dependent on external temper-
ature by using the fuzzy logic controller. The fuzzy logic controller allows the
use of gathered expert know–how during machine tuning. This knowledge can be
introduced into an algorithm as a set of rules. Those rules have a direct influence
on the control quality (Fig. 4).

An important aspect is the direct external temperature measurement.
Because of the main controller PCB placement, in close proximity to the turbine,
the measurement cannot be conducted directly. The measurement of ambient
temperature is done by the HMI board which is not in close proximity to the
turbine. This removes the temperature disturbance from the turbine work. After
successful measurement the data is sent to the main controller PCB where it is
used in the proposed algorithm.
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In the proposed algorithm three different temperatures were included. Those
temperatures are: external (ambient) temperature, fuel temperature and internal
(turbine) temperature. The measured temperature values are fuzzyfied with a
function whose example was presented in the Fig. 14. Each temperature receives
a percentage share in each of three quality classes: “lo”, “average” and “high”.
In the next step, based on the resulting fuzzy set, outputs for all rules (Table 1)
are calculated. This stage is called inference. The last stage is called the defuzzy-
fication where numerical values (desired pump power coefficient) are calculated
instead of qualitative terms as in the fuzzyfication stage. This step was presented
in the Fig. 15.

Fuel Temperature

Turbine Temperature

Air Temperature

TFl TFh

TTl TTh

TAl TAh

Low Average High

Fig. 14. Fuzzy sets for fuel pump power regulation (fuzzyfication stage).

The presented algorithm will influence tuning process of the fuel pump based
on three temperatures which were mentioned before. The tuned fuel pomp effi-
ciency is particularly important during the starting stage. Because of the direct
dependency between external, internal and fuel temperature is difficult to cal-
culate. The use of fuzzy logic approach allows the use of expert knowledge and
use it directly in the control algorithm.

Table 1 of rules was implemented in the fuzzy controller. It contains a num-
ber of rules that describe the desired pump efficiency in certain temperature
conditions.

Fig. 15. Fuel pump power regulation (defuzzyfication stage).
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Rules in the form of Table 1 were implemented inside the fuzzy controller.
Using this information a set of figures was generated (Figs. 7, 8, 9, 10, 11, 12 and
13). The figures show a surface of fuel pump efficiency in certain temperature
conditions. Due to three dimensions the range of plots was presented where each
plot shows certain fuel temperature.

6 Summary

In this paper two applications of relatively basic fuzzy logic-based methods were
shown. One of them provides information for the owner of the machine and for

Table 1. Fuzzy rules for controlling pump efficiency

No. Fuel temperature Turbine temperature Air temperature Pump power

1 low low low high

2 low low average high

3 low low high high

4 low average low high

5 low average average high

6 low average high high

7 low high low average

8 low high average average

9 low high high average

10 average low low high

11 average low average average

12 average low high average

13 average average low average

14 average average average average

15 average average high average

16 average high low low

17 average high average low

18 average high high low

19 high low low average

20 high low average average

21 high low high average

22 high average low low

23 high average average low

24 high average high low

25 high high low low

26 high high average low

27 high high high low
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the company servicing them. The other is directly integrated into the control
system. The rather unusual method of multiplier for existing parameters is a
direct requirement coming from the customer, who intended to keep as much of
current the system as possible in order to simplify maintenance.

Overall it is difficult to estimate how the machine state estimation is used
by customers without a large survey.

On the other hand a fuzzy-based adaptation of parameters to the environ-
ment and previous machine state allowed for widening the market for road drying
machines to places with much harsher climates and this is deemed important by
the customer.

One may try to increase the performance of the control system by applying
the neuro-fuzzy approach (see [2,14,15]).

An alternative approach to diagnostics can be computer vision as in [12]. Also
other methods can be used, both classical [10] or neural-network based [11].
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Abstract. The manufacturing processes of the aircraft factory are analyzed to
improve the quality of management decisions. Production processes models
based on time series models are proposed. The applying of fuzzy smoothing of
time series is considered. A new technique for extracting fuzzy trends for
forecasting time series proposed. The use of type-2 fuzzy sets for making new
models of time series with the aim of improving the quality of the forecast
considered. An information system is being built to calculate the production
capacity using these models. The system implements the algorithms for the
calculation of production capacity based on a methodology approved in the
industry. The information extracted from the production processes is supposed
to be used as a component of the models. An experiment with checking the
quality of smoothing of time series is described. The experiment shows the
possibility and advantages of modeling time series using type-2 fuzzy sets.

Keywords: Time series � Type-2 fuzzy sets � Production capacity �
Aircraft factory

1 Introduction

The technological preparation of complex production at large enterprise requires the
analysis of production capacities. The aim is to increase the efficiency of the use of
material, technical and human resources [1]. The calculation of a production capacity
based on a methodology approved in the industry has many disadvantages, like not
enough precision because of averaging and troubles with adaptation to the concrete
factory. The proposed new models and algorithms allow you to adapt the methodology
to increase the efficiency of management at the expense of the increasing precision of
forecast of production processes.

The goal requires solving the next tasks:

• input data definition;
• the creation of models reflecting the state of production processes;
• development algorithms for calculation of production capacity.
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The solution of these tasks allows building a unified information environment for
technological support of production. The task is to balance the production capacity of
an aircraft factory. The current approach of management is based on using a common
methodology for a few factories approved in the industry. Methodology contains
algorithms and coefficients, accumulated from the statistic of production. The main
disadvantage of this approach is a strong discrepancy between the real production
indicators and the collected statistical data on the concrete factory [2].

Limitations of methodology application:

• the long extraction time of statistical coefficients from production indicators;
• the impossibility of dynamic adaptation of calculations into separate periods shorter

than the forecast horizon;
• the methodology does not provide for adaptation to a specific production.

By analyzing this methodology it was found out that the coefficients (staff time,
staff performance, equipment performance and depreciation of equipment) are aggre-
gated and averaged information from the indicators of production processes. These
processes are easily represented by discrete time series. Using a fuzzy approach allows
creating models with more options such as improving quality because of applying
knowledge about time series [5, 6, 15]. Also by analyzing production processes, it was
found that this discrete interval is the one month - the minimum forecast horizon, and
the time interval in which the indicators are unchanged.

2 Types of Extracted Time Series of Factory

The task is to extract changes in the values of production processes indicators. Time
series models are used for tracking these changes. The methodology for calculating the
balance of power capacity uses some coefficients, defined above. But these coefficients
not always must be given by an expert or a method. Each of them can be extracted in
the factory. As an example, staff time can be tracked for each factory unit; depreciation
of equipment can be calculated based on summarizing volumes of completed works.

By analysis factory data was extracted the following types of time series:

• staff work time fund (fluctuating time series);
• tool work time fund (fluctuating time series);
• performance ratio (growing time series);
• area usage (growing time series);
• depreciation of equipment (growing time series).

These types of time series may be different for different factory units. For all types
of processes can be identified as monthly indicator values. Very important to find the
following characteristics of time series: seasonality, local and global tendencies. The
proposition is to use several models for smoothing, extracting and forecasting ten-
dencies and values of the time series of production processes.
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3 Using F-Transform for Smoothing of Time Series

Using F-transform for smoothing of time series has advantages over other smoothing
methods, like exponential smoothing [10], because of possibilities to include knowl-
edge information about time series. Smoothed time series gives a better tendency
forecast. Generally, the F-transform of the function f : P ! R is a vector whose
components can be considered as weighted local mean values of f . This paper assumes
R is the set of real numbers, a; b½ � �R and P ¼ p1; . . .; plf g; n\ l, is a finite set of
points such that P� a; b½ �. Function f : P ! R defined on the set P is called discrete.

Below basic facts about the F-transform as they were presented in [3].
The first step in the definition of the F-transform of f is a selection of a fuzzy

partition of the interval a; b½ � by the finite number n� 3 of fuzzy sets A1; . . .;An.
According to the original definition, there are five axioms which characterize a fuzzy
partition: normality, locality, continuity, unimodality, and orthogonality (the Ruspini
condition) [3].

A fuzzy partition is called uniform if the fuzzy sets A2; . . .;An�1 are shifted copies
of the symmetrized A1. The membership functions A1; . . .;An in the fuzzy partition are
called basic functions. The basic function Ak covers a point pj if Ak pj

� �
[ 0:

Figure 1 shows a uniform fuzzy partition of an interval a; b½ � by fuzzy sets
A1; . . .;An; n� 3, with triangular membership functions. The formal expressions of
these functions are given below where h ¼ b�a

n�1 :

A1 xð Þ ¼ 1� x�a
h ; x2 a; x2½ �;

0; otherwise;

�

A1 xð Þ ¼
x�xkj j
h ; x2 xk�1; xkþ 1½ �;

0; otherwise;

�

Fig. 1. An example of a uniform fuzzy partition by triangular membership functions.
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A1 xð Þ ¼
x�xn
h ; x 2 xn�1; b½ �;

0; otherwise

�

In the subsequent text fix the interval a; b½ �, a finite set of points P� a; b½ � and
relaxed fuzzy partition A1; . . .;An of a; b½ �. Denote akj ¼ Ak pj

� �
and consider n� l

matrix A with elements akj. A is a partition matrix of P. Below, a matrix of a special
uniform partition is presented.

Assume that the points p1; . . .; pl 2 a; b½ � are equidistant so that a ¼ p1; b ¼ pl,
piþ 1 ¼ pi þ h; i ¼ 1; . . .; l� 1, and h[ 0 is a real number. Let A1; . . .;An be a uniform
partition a; b½ � such that each basic function Ak has a triangular shape and covers fixed
number of points, say N. Moreover, let nodes x0; x1; . . .; xn n; xnþ 1 be among the
points p1; . . .; pl so that x0 ¼ p1; xnþ 1 ¼ pl. If N is an odd number, say N ¼ 2r � 1,
then l ¼ nþ 1ð Þr � 1. In this particular case, the basic function Ak covers the points
p k�1ð Þrþ 1; . . .; p kþ 1ð Þr�1, so that

Ak p k�1ð Þrþ 1
� � ¼ 1

r ; . . .;Ak pkr�1ð Þ ¼ r�1
r ;Ak pkrð Þ ¼ 1;

Akðpkrþ 1 ¼ r�1
r ; . . .;Ak p kþ 1ð Þr�1

� � ¼ 1
r :

Thus, the partition matrix A has a fixed structure; it depends on one parameter r and
does not require the computation of Ak pj

� �
at each point pj.

4 Discrete F-Transform

Once the basic functions A1; . . .;An are selected, define (see [4]) the (direct) F-
transform of a discrete function f : P ! R as a vector F1; . . .;Fnð Þ where the k-th
component Fk is equal to

Fk ¼
Pl

j¼1 f pj
� �

� Ak pjð ÞPl
j¼1 Ak pjð Þ

; k ¼ 1; . . .; n: ð1Þ

In order to stress that the F-transform components F1; . . .;Fn depend on A1; . . .;An

the F-transform is taken with respect to A1; . . .;An.
Let us identify the function f : P ! R with the vector-column $f ¼ f1; . . .; flð ÞT of

its values on P so that fj ¼ f pj
� �

, $j ¼ 1; . . .; l. Moreover, let partition $A1; . . .;An be
represented by the matrix A. The vector ðF1; . . .;FnÞ is the F-transform of f determined
by A if

ðF1; . . .;FnÞ ¼ Afð Þ1
a1

; . . .;
Afð Þn
an

� �
ð2Þ

where Afð Þk is the k-th component of the product Af , ak ¼
Pl

j¼1 akj; k ¼ 1; . . .; n.
Expression (2) is a matrix form of the F-transform of f . It will be denoted by Fn fð Þ.
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Obviously, the computation on the basis of (2) is less complex than that one based on
(1). The reason is in the unified representation of the partition matrix A which does not
include a computation of each Ak at every point pj.

5 Forecasting Time Series Based on Fuzzy Trends

The fuzzy elementary trend modeling method [7, 8, 14] is used to predict numerical
values and fuzzy trends in the state of process indicators.

The forecast uses hypothesis testing:

• Hypothesis 1. The hypothesis of conservation of trend. The Forecast is constructed
on base the previous period. The formula for the predicted value

stþ 1 ¼ st þ sp;

where stþ 1 – forecast for the next period of time; st – real value at time t; sp – the
value of the trend over the previous period of time.

• Hypothesis 2. The hypothesis of stability of the trend. The moving average is used
to predict

stþ 1 ¼ st þGsp;

where Gsp – importance of a dominant fuzzy trend. Consider the trend of the
previously selected period. Select the predominant cluster of trends. The forecast for
the above formula is calculated. The trend is built. Optimistic forecast for some
number of occurrences of trends used. The highest average trend is selected.

• Hypothesis 3. Forecasting for a given period on the basis of fuzzy elementary
trends. Stages of the prediction algorithm for the period based on trends: the expert
sets the number of considered trends for the previous period. For example, for half a
year - a set of trends A. Either he sets the pattern set of trends. The presumed trend
following this set is known.

stn�m ; . . .; stn�1 ; stnf g

Search for a set of trends A in all other previous periods.

s0tn�l�k
; . . .; s0tn�l� k�1ð Þ ; s

0
tn�l

n o

If such a set of B is found in which the C trend is located after this found set B then
trend c is considered into account. The forecast equal to the trend C is constructed.

stþ 1 ¼ st þ s0tn�lþ 1
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If the set B, which would coincide with the set A, was not found then the search for
the set is repeated, but it is already not looking for its complete coincidence. Select new
pattern A is shorter into one trend. This is repeated until a suitable set of trends B [10].
To select the best hypothesis, an entropy time series is additionally introduced [11].

6 Definition of Type-2 Fuzzy Sets to Use in Time Series
Models

The tasks of time series modeling are solved by a large number of methods. These
methods have a different mathematical basis, are divided according to application
possibilities (that is, they may have particular applicability conditions depending on the
type of problem being solved and the nature of the time series), they may require
constant or temporary use of the analyst directly during the modeling process. An
important condition for the application of methods is the focus on obtaining short-term
forecasts. It follows from the recent features of the processes for which time series
models are applied.

The nature of fuzzy time series due to the use of expert estimates, the inherent
uncertainty of which belongs to the class of fuzziness. Unlike stochastic uncertainty,
fuzziness hinders or even excludes the use of statistical methods and models, but can be
used to make subject-oriented decisions based on approximate human reasoning. The
formalization of intellectual operations that simulate human fuzzy statements about the
state and behavior of complex phenomena, forms today an independent area of applied
research, called ‘‘fuzzy modeling’’ [3].

This direction includes a complex of problems, the methodology for solving which
is based on the theory of fuzzy sets, fuzzy logic, fuzzy models (systems) and granular
calculations.

In 1975, Lotfi Zadeh presented fuzzy sets of the second order (type-2) and fuzzy
sets of higher orders, to eliminate the disadvantages of type-1 fuzzy sets. These dis-
advantages can be attributed to the problem that membership functions are mapped to
exact real numbers. This is not a serious problem for many applications, but in cases
where it is known that these systems are uncertain.

The solution to the above problem can be the use of type-2 fuzzy sets, in which the
boundaries of the membership areas themselves are fuzzy [9].

It can be concluded that this function represents a fuzzy set of type-2, which is
three-dimensional, and the third dimension itself adds a new degree of freedom to
handle uncertainties. In [9] Mendel defines and differentiates two types of uncertainties,
random and linguistic. The first type is characteristic, for example, for the processing of
statistical signals, and the characteristic of linguistic uncertainties is contained in
systems with inaccuracies based on data determined, for example, through expert
statements.

To illustrate, note the main differences between type-1 fuzzy sets and type-2 fuzzy
sets. Let us turn to Fig. 2, which illustrates a simple triangular membership function.
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Figure 2(a) shows a clear assignment of the degree of membership. In this case, to
any value of x, there corresponds only one point value of the membership function. If
you use a fuzzy membership function of the second type, you can graphically generate
its designation as an area called the footprints of uncertainty (FOU). In contrast to the
use of the membership function with clear boundaries, the values of the membership
function of type-2 are themselves fuzzy functions.

This approach gave the advantage of approximating a fuzzy model to a verbal one.
People can have different estimates of the same uncertainty. Especially it concerns
estimated expressions. Therefore, it became necessary to exclude a unique comparison
of the obtained value of the degree of the membership function. Thus, when an expert
assigns membership degrees, the risk of error accumulation is reduced because of the
non-inclusion of points located near the boundaries of the function and under doubt.

7 Time Series Model Based on Type-2 Fuzzy Sets

Time series modeling based on type-2 fuzzy sets allows to build the model reflecting
the uncertainty of the choice of values of coefficients or values of indicators determined
by an expert. Choose an interval time series as the type of time series for the object of
modeling. For our subject area, previously selected time series of indicators are easily
represented by the proposed type of time series: most time series have a rare change in
values. Can mark stability of intervals. For interval time series, an algorithm for
constructing a model is described in [12].

The formal model of the time series:

TS ¼ tsif g; i2N;

where tsi ¼ ti;Bti½ � is an element of the time series at the moment of time ti and a value
in the form of a type-2 fuzzy set Bti: For the entire time series, the universe of type-2
fuzzy sets is defined as U ¼ B1; . . .;Blð Þ;Bi 2 U; l 2 N; l - the number of fuzzy sets in
the universe. A set Bti is a type-2 fuzzy set, therefore, a type-1 fuzzy set is assigned to it
as a value. For interval time series, a prerequisite for creating type-1 sets is a part

Fig. 2. The type of fuzzy sets of the 1st (a) and the 2nd (b) types.
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separated from the source series, limited, for example, by a time interval of 1 day,
1 month or 1 year. For the selected interval, a universe of type-1 fuzzy sets is defined.

The algorithm for constructing a model will be used the same as described in [12]
except for the moment of choice of intervals: they will be determined based not on the
time characteristic, but on the boundaries of the initially formed type-2 sets.

The form of fuzzy sets is proposed to use a triangular due to the small computa-
tional complexity when conducting experiments.

8 Algorithms Calculation Production Capacity
of Information System

The developed information system implements the next functions:

• performs the calculation of production capacities;
• reveals a deficit and forms recommendations for balancing capacities by

determining;
• the possibility of redistribution of the volumes of the same type of work;
• identifies the need to enter additional production areas and equipment;
• identifies the need for recruitment and redeployment of staff.

The basic input data is the production program. The list of products are given and
the scope of work for their creation, distributed by a period. the amount of work can be
redistributed between time periods based on current indicators of production processes,
their dynamics at the factory.

Three types of resources exist human, material and production area. For calculation
production capacity the following steps are required:

• Identify the units for which calculate production capacity.
• For each unit, calculate the current capacity for each of the three types of resources.
• For each unit define the free capacity for each of the three types of resources.

So, the next steps depend on the resource type. For human resources need to set the
following possibilities for calculation production capacity: transfer between units and
hiring new workers. Limiting factors are the skills of specific employees in the transfer
and the delayed start of the work of the employee in hiring.

Append calculation production capacity algorithm by next steps:

• If there are free human resources and a transfer of workers between factory units is
possible, then fulfill it.

• Otherwise, hire new workers.

These steps show the priority that used at the factory.
Material resources, such as equipment and machines, are difficult to transfer

between departments. If there are no available resources, then the only option is to
purchase new equipment.

The current implementation of the information system is based on average values of
indicators throughout the year. Proposed to use new models to analyze the time series
of indicators at more frequent intervals. To do this, an important role will be deter-
mined by the accumulated information in the enterprise information systems.
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9 Smoothing and Forecasting Time Series Algorithm

The operation of the algorithm is closely related to the nature of the time series.
Modeling using type*2 fuzzy sets was chosen based on the interval nature of the time
series. For other types of time series, smoothing and prediction are allowed, but no
experiments have been performed.

The work of the algorithm can be represented as a sequence of the following steps:

Step1. Determine the universe of observations.
Step 2. Determine the type and number of type 1 fuzzy sets for a time series.
Step 3. Averaging over time intervals. For the time series of the aircraft factory, this
interval equals one month. This value will represent the point of the time series for
fuzzification by type 1 fuzzy sets. For each of these intervals, parts of the original
time series are extracted.
Step 4. Fuzzify a time series of averaged points with type 1 fuzzy sets.
Step 5. Match each fuzzy value of type 1 to three fuzzy values of type 2: a fuzzy
minimum, maximum and average value of a segment of the time series.
Step 6. Establish relations for type 1 fuzzy sets.
Step 7. Calculate the prediction for type 1 fuzzy sets.
Step 8. Calculate the prediction for type 2 fuzzy sets.
Step 9. Evaluate errors.

For best results, the prediction step should include trend analysis [7, 8, 14].

10 Experiment

The experiment plan implies the construction of time series models and the assessment
of their quality. For experiments, time series have been generated.

The forecasting process at this stage will not be carried out; therefore, an internal
measure of the quality of the model will be assessed using the SMAPE criterion [13]:

SMAPE ¼ 100%
n

Xn
t¼1

Ft � Atj j
Atj j þ Ftj jð Þ=2

Consider the process of smoothing the coefficient. The original time series has 60
points. For comparison, the graph of Fig. 3 shows the smoothing of the time series by
the F-transform method [4].

For smoothing, a set of 15 type-2 fuzzy sets and 5 sets of type-1 was selected. As
can be seen from Fig. 4, 5 points of a smooth series were obtained. SMAPE score for
both types of smoothing:

• for F-transform - 2.01%,
• for type-2 fuzzy sets - 0.65%.
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Next smooth employee count time series, Fig. 4. For smoothing, a set of 15 type-2
fuzzy sets and 5 sets of type-1 was chosen. For the time series, 5 points of a smoothed
series were also obtained. SMAPE score for both types of smoothing:

• for F-transform - 47.54%,
• for type-2 fuzzy sets - 13.23%.

It was also a comparison of the internal measures of the quality of the model for
SMAPE with simple exponential smoothing. The estimates showed the best by 0.1%
smoothing quality by the method proposed using type-2 fuzzy sets.

Fig. 3. Smoothing the time series of the coefficient

Fig. 4. Smoothing the time series of employee count
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11 Conclusion

The analysis of existing algorithms, data and information systems has shown a strong
accumulation of errors in calculations of balance enterprise. It was shown the great
impact of operational monitoring of indicators.

These principles allow improving the quality of technological preparation of
complex industries. Proposed methods of prediction of time series improve the quality
of management decisions because of modeling processes in the information system.

Successfully applied an approach based on type-2 fuzzy sets, to create a model of a
time series of production processes. It should be noted that the approach based on
modeling interval time series gives a positive result. This moment is fixed as a result of
the smoothing procedure when the number of selected points and their values are as
close as possible to the stabilization intervals. Smoothing model based on type-2 fuzzy
sets shows better internal quality by SMAPE criterion.

The integration of soft computing techniques, i.e., the F-transform and fuzzy trend
and time series modeling, were applied to analyze and forecast time series. In this
contribution, is described as a new software system that was elaborated using the
proposed theory. Aside from the F-transform, the technology platform includes an
analysis of time series and their trends, which are characterized in terms of natural
language.

Further research areas are:

• extract the rule base from time series models;
• creation of a time series prediction mechanism based on type-2 fuzzy sets;
• development of a modeling system based on fuzzy time series models for calcu-

lation production capacity in the process preparation of production.
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Abstract. This paper presents an application of the Zero-Order Takagi-
Sugeno-Kang method to explainable recommender systems. The method
is based on the Wang-Mendel and the Nozaki-Ishibuchi-Tanaka tech-
niques for the generation of fuzzy rules, and it is best suited to pre-
dict users’ ratings. The model can be optimized using the Grey Wolf
Optimizer without affecting the interpretability. The performance of the
methods has been shown using the MovieLens 10M dataset.

Keywords: Explainable AI · Recommender systems ·
Wang-Mendel and Nozaki-Ishibuchi-Tanaka methods ·
Grey Wolf Optimizer · Interpretability

1 Introduction

In recent years, there have been many attempts to add explainability and trans-
parency to machine learning models [1,5]. However, not so many papers have
been published regarding explainability in recommender systems.

A recommender (or recommendation) system is any system that offers items
in a personalized way to a specific user or guides him to the product best suited to
his profile. There are three general types of recommender systems - collaborative
filtering, content-based and hybrid approach [2,13,19].

Collaborative filtering systems recommend items by identifying other users
with similar taste disregarding attributes of considered objects. Content-based
c© Springer Nature Switzerland AG 2019
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recommender systems analyze the attributes of considered objects, therefore
they do not need any information about other users’ preferences. Hybrid app-
roach combines many different recommendation methods. For the purpose of this
paper, we focus on content-based recommender systems. Collaborative filtering
uses similarity to other people and has two downsides. One is that it requires
many ratings from different users, otherwise, the algorithm would face so-called
cold-start problem. The other problem is that from the explainability perspec-
tive it is not enough to say that a recommender system recommends something
because other people like it too. With the content-based approach, the challenge
is to analyze items that user rated before, prepare the profile of preferences and
recommend new items based on this knowledge. The goal of our research is to
provide not only recommendations but also explanations. We believe that to
achieve truly explainable system it has to be interpretable and transparent [9].

As presented in previous work [17], it is possible to use rule-based [10,14] rec-
ommender systems to achieve explainability without losing too much accuracy.
Such a system is usually based on fuzzy logic [3,16]. As rules are by definition
interpretable by humans, they can be used to generate explanations. However, it
is not trivial to generate rules from examples, reduce them and optimize [15]. In
this paper, we propose a new method derived from Wang-Mendel and Nozaki-
Ishibuchi-Tanaka methods, combined with the Zero-Order Takagi-Sugeno-Kang
fuzzy system. It allows to deal with singleton outputs, which can be further
optimized using Wolf Grey Optimizer. All experiments use the MovieLens 10M
dataset.

Structure of the paper is as follows: Sect. 2 contains a description of rule
generation methods, Sect. 3 presents a proposed approach, Sect. 4 shows the
simulation results and the conclusions are drawn in Sect. 5.

2 Rule Generation Methods

In this section, the basic methods of generating fuzzy rules from data have been
presented.

2.1 Wang-Mendel Method

In the Wang-Mendel method fuzzy rules are created as follows:

Rj : IF x1 IS A1,inpj,1 AND ... AND
xn IS An,inpj,n

THEN y IS Boutj
, (1)

where Rj stands for j-th fuzzy rule, j is fuzzy rule index (j = 1, ...,M), M is
the number of fuzzy rules (initial number of fuzzy rules is equal to the number
of data set samples), xi stands for fuzzy system inputs (i = 1, ..., n), n is the
number of fuzzy system inputs, y is fuzzy system output, Ai,l stand for input
fuzzy sets where i indicates the index of system input and l indicates the index
of fuzzy set in i-th input (l = 1, ...,m), m is the number of fuzzy partitions,
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Bl stands for output fuzzy sets, and indexes inpj,i and outj indicates the fuzzy
sets from corresponding inputs and outputs, which are selected as follows:

μAi,inpj,i
(x̄j,i) = max

l=1,...,m

{
μAi,l

(x̄j,i)
}

, (2)

μBoutj
(ȳj) = max

l=1,...,m
{μBl

(ȳj)} , (3)

where x̄j,i stands for data set input values, ȳj stand for data set output values,
μA(·) and μB(·) are membership functions of corresponding fuzzy sets.

The initial fuzzy rule base in form of (1) is subject to reduction. For this
process for each j-th fuzzy rule an importance degree is calculated:

λj (x̄j , ȳj) = T
{

μBoutj
(ȳj) , μA1,inpj,1

(x̄j,1) , ..., μAn,inpj,n
(x̄j,n)

}
, (4)

where T stands for algebraic t-norm operator. The final rule base is obtained by
reducing conflicting rules (with equal values of inpj,i and different values of outj)
and identical rules (with equal values of inpj,i and outj). During the reduction,
only rules with the highest value of (4) are kept and thus the final rule base
contain K fuzzy rules (K ≤ M).

2.2 Nozaki-Ishibuchi-Tanaka Method

In the Nozaki-Ishibuchi-Tanaka method fuzzy rules also have form of (1). How-
ever, instead of calculating outj indexes by Eq. (3) for each fuzzy rule singletons
sj are calculated as follows:

sj =

M∑

j=1

τj (x̄j)
α · yj

M∑

j=1

τj (x̄j)
α

, (5)

where α > 0 is a parameter of the method (in this its value its selected as 1)
and the τj (x̄j) is the activation level of j-th fuzzy rule calculated as follows:

τj (x̄j) = T
{

μA1,inpj,1
(x̄j,1) , ..., μAn,inpj,n

(x̄j,n)
}

. (6)

The final rule base is obtained by reducing fuzzy rules with identical inputs
(with equal values of inpj,i and sk) after which K fuzzy rules remain (K ≤ M).
Finally, the outk indexes are selected as follows:

μBoutk
(sk) = max

l=1,...,m
{μBl

(sk)} . (7)

3 Proposed Method Description

The proposed method is based on the fuzzy rule generation methods with equally
(uniform) spaced partitions. Such an approach allows to obtain clear and read-
able fuzzy sets (see e.g. Fig. 1). The two methods are considered as a base meth-
ods: Wang-Mendel (WM) and Nozaki-Ishibuchi-Tanaka (NIT). On the basis of
WM and NIT methods, Mamdani fuzzy systems can be efficiently created.
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low medium high

Fig. 1. Example of equally spaced partitions

3.1 Zero-Order Takagi-Sugeno-Kang Fuzzy System

In this paper, we propose to use fuzzy system resulting from WM and NIT
methods in the form of Zero-Order Takagi-Sugeno-Kang (ZO-TSK) fuzzy system.
In such a system the output is calculated as follows:

y (x̄) =

K∑

k=1

vk · τk (x̄)

K∑

k=1

τk (x̄)
, (8)

vk are singleton positions (k = 1, ...,K), K stands for the number of fuzzy rules,
μk(·) stands for rule activation level calculated as in Eq. (6). The singletons are
numeric values as opposed to output fuzzy sets. Such an approach changes the
form of fuzzy rules to the following:

Rk : IF x1 IS A1,inpk,1 AND ... AND
xn IS An,inpk,n

THEN y = vk
. (9)

The use of numerical values in a fuzzy rule changes the way they can be
interpreted. However, the authors think that this is beneficial for a recommen-
dation systems in which the output value of the system is usually a numerical
value (e.g. movie rate).

In this paper, three ways to create a ZO-TSK system were used: WM-T
(where the singleton values are set as centers of output fuzzy sets of correspond-
ing rules from WM Mamdani type fuzzy system), NIT-T (where the singleton
values are set as centers of output fuzzy sets of corresponding rules from NIT
Mamdani type fuzzy system) and NIT-S (where the values of singletons as set
directly to sk values from NIT method) - see Fig. 2. Without any further opti-
mization, the WM-T system will behave identically to WM, and the NIT-T
system to NIT. In this paper, further modifications are considered, which is why
the names of these systems are distinguished.

3.2 System Optimization

The core of this paper is the assumption that singleton values can be optimized
without loss of the system interpretation. In order to get it, the ranges of sin-
gletons for each fuzzy rule are limited individually. The limitation results from
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low medium high

s1 s2 s3 s4y1 y2 y3

Fig. 2. Example of s values generated by NIT method that are used as singletons
values in NIT-S case and y values (centers of output fuzzy sets) used as singletons in
NIT-T case.

Fig. 3. Idea of the method proposed in this paper. It is worth noting that from one
output fuzzy set a different number of singletons can be created (equal to the number
of rules that are connected to a given set), double-sided arrows indicate the calculated
ranges < vk,min; vk,max > in which singletons can be optimized. The systems WM-T
and NIT-T are identical without further modifications of systems WM and NIT.

data set outputs of data set samples for which the highest activation level for a
specified fuzzy rule was achieved. The limitations are calculated as follows:

vk,min = min{
j∈{1,...,M}:μk(x̄z)= max

l=1,...,K
{μRl

(x̄j)}
} {ȳj} , (10)

vk,max = max{
j∈{1,...,M}:μk(x̄j)= max

l=1,...,K
{μRl

(x̄j)}
} {ȳj} . (11)

With this assumption, the ranges of values for each singleton are different
(vk,min and vk,max are calculated for each k-th fuzzy rule). In addition, narrowing
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the ranges to values resulting from the data should not cause loss of trust in the
system’s prediction.

The optimization of singleton values can be performed by any optimization
algorithm (see e.g. [4,18]). In this paper, a GWO is used to optimize WM-T,
NIT-T, and NIT-S systems and the optimized systems will be referred accord-
ingly as WM-T+S, NIT-T+S and NIT-S+S. The Grey Wolf Optimizer (GWO)
is a meta-heuristics inspired by leadership hierarchy and hunting procedure of
grey wolves in nature [11]. It has been successfully applied for solving various
optimization problems (see e.g. [8,12,20]). In this algorithm, the three best indi-
viduals (wolves) are called in sequence alpha (α), beta (β) and delta (δ). The
rest of the wolves are called omega (ω).

The modification (called hunting) of individuals parameters is performed only
for ω wolves. It is assumed that α, β and δ wolves have better knowledge about
the potential location of optimum (called prey). The hunting is performed as
follows:

Dα/β/δ =
∣
∣Cα/β/δ · Xα/β/δ − X

∣
∣ , (12)

X1/2/3 = Xα/β/δ − A1/2/3 · (
Dα/β/δ

)
, (13)

X (t + 1) =
1
3

(X1 + X2 + X3) , (14)

where X are individual parameters, Xα/β/δ are respectively parameters of best
wolves and Cα/β/δ and Aα/β/δ are calculated as follows:

A = 2 · a · r1 − a, (15)

C = 2 · r2, (16)

where r1 and r2 are random vectors in [0, 1] and component a linearly decreases
from 2 to 0 over the course of algorithm iterations. Such a procedure allows for a
smooth transition from exploration to exploitation and does not require setting
any real value parameters of the actual algorithm [6].

It is also worth adding that the other elements of the fuzzy system (e.g. fuzzy
sets) are not subject of optimization, which makes possible keeping the entire
fuzzy system and fuzzy sets in a clear form. The idea of the method proposed in
this paper is presented on Fig. 3. The proposed approach is new in the literature.

3.3 Data Set Preparation

The fuzzy systems used in this paper process the numeric parameters, however,
the recommendation systems often include inputs with nominal values. More-
over, multiple nominal values can be assigned to single item attribute. To process
such data, aggregation of nominal values was proposed in this paper. For each
user and each attribute of rated by user items a list of unique nominal values
is created. Then, the user preferences of each value are calculated as an aver-
age rate of the item that contains a particular value. Then, fuzzy system inputs
for nominal attributes are calculated as an average preference of all values that
occurs in a given attribute of an item (see Fig. 4).
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Examples from the database, for a user:
movie 1 - genre {action, comedy}, ..., user rate = 5.0
movie 2 - genre {drama, comedy}, ..., user rate = 4.0
movie 3 - genre {drama}, ..., user rate = 2.0
movie 4 - genre {action, drama}, ..., user rate = 3.0

Preference of attribute values for genre:
action - preference = (5.0 + 3.0) / 2 = 4.0
comedy - preference = (5.0 + 4.0) / 2 = 4.5
drama - preference = (4.0 + 2.0 + 3.0) / 3 = 3.0

Dataset prepared for the fuzzy system:
movie 1 - genre preference {4.25}, ..., user rate = 5.0
movie 2 - genre preference {3.75}, ..., user rate = 4.0
movie 3 - genre preference {3.00}, ..., user rate = 2.0
movie 4 - genre preference {3.50}, ..., user rate = 3.0

Fig. 4. Example of a dataset preparation for a user

It is worth to mention that the user’s rate of an item may result from prefer-
ences of various attributes, and therefore the values of specific system inputs will
not always be consistent with the rate of an item as is shown in Fig. 4. Moreover,
the proposed aggregation may result in the loss of some information (the user
may provide ratings based on attributes not included in the database and also
it is not possible to accurately detect the preferences of specific combinations
of values). Nevertheless, the proposed approach allows for the creation of fuzzy
rules detecting dependencies between preferences of attributes and also provides
very clear fuzzy rules (due to, among others, the low number of system inputs
created).

3.4 Summary of the Proposed Method

The proposed method: (a) can be based on fuzzy rules generation methods with
equally (uniform) spaced partitions, which allows obtaining clear and readable
fuzzy sets, (b) it is based on transforming fuzzy systems into Zero-Order Takagi-
Sugeno-Kang type, that are simple in interpretation, (c) it allows keeping trust
of system prediction optimizing only singleton values in limited ranges of values
calculated for each rule, (d) it uses recent and almost parameter-less optimization
algorithm, which allows getting good results, and (e) a data set preparation
method is used to create numeric inputs for the fuzzy system from nominal
values.

4 Simulations

In the simulations the following system were tested: WM-T, NIT-T, NIT-S, WM-
T+S, NIT-T+S, NIT-S+S. Moreover, a different numbers of fuzzy partitions
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Fig. 5. Diagram showing the proposed methods and process of performed simulations
for a single user.

were compared m = {3, 5}. A larger number of partitions would force to use
more linguistic variables (e.g. very very low) and thus significantly reduce the
transparency of fuzzy rules. In spite of this, only exemplary additional tests were
made to show the possibilities of the proposed approach with larger number of
partitions. The process of performed simulations for single user is presented in
Fig. 5.

The following parameters was set for all systems: triangular norms = alge-
braic, fuzzy sets = Gaussian type. The following parameters of GWO were set:
population size = 16, number of iterations = 100.

4.1 Data Set

For the simulations, a MovieLens 10m database is used [7], and three inputs are
prepared: genre preference (multiple nominal values), year (numeric values), key-
words preference (multiple nominal values). Moreover, a data sets were prepared
for first 100 users that rated more than 30 movies from the database.
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4.2 Results Verification

To verify the results for each simulation case 10-fold cross-validation was used.
This process applied to use different data set samples not only in learning and
testing phases but also using 90% of data samples (learning samples) for creating
fuzzy rule base using WM and NIT methods. Moreover, a different error mea-
sures were used: rmse (this measure was used to optimize the system), accuracy
(the predicted value was round to user rate and thus 10 different classes were
obtained), yesno (the output value was set to class 1 if prediction was lower than
average rate and to class 2 otherwise - such an approach is used e.g. in [17]). For
both accuracy and yesno typical classification accuracy were measured.

4.3 Simulation Results

The simulation results in details are presented in Table 1. An overview of rmse
depending on the amount of rated movies by users is presented in Table 2. The
fuzzy rules in simulations were created basing on data set samples, thus the
number of created fuzzy rules differ only for different users (for each user a
different data sets are created - see Sect. 3.3). The dependencies between the
number of fuzzy rules created for different groups of users are shown in average
in Fig. 6 and in details in Fig. 7. The optimization process is presented in Fig. 8.
Examples of the fuzzy system that allow to obtain best accuracy (NIT-S+S) are
shown in Table 3. Exemplary results of using a higher number of fuzzy partitions
are shown in Table 4.

Table 1. Simulation results in details, average stands for average results obtained for
all users, st. dev stands for standard deviation, lrn stands for learning samples, tst
stands for testing samples

m system rmse accuracy yesno

average st. dev. average st. dev. average st. dev.

lrn tst lrn tst lrn tst lrn tst lrn tst lrn tst

3 WM−T 0.368 0.424 0.057 0.182 55.38 50.89 7.03 10.76 94.78 93.12 3.31 8.49

NIT−T 0.317 0.376 0.028 0.160 59.29 54.53 4.95 10.45 96.19 94.61 2.37 7.10

NIT−S 0.350 0.438 0.018 0.167 53.92 45.74 4.66 10.21 96.54 93.23 1.39 8.25

WM−T+S 0.275 0.354 0.022 0.149 64.27 56.62 5.61 10.12 98.94 96.87 0.63 4.53

NIT−T+S 0.271 0.351 0.021 0.148 64.79 56.96 5.27 10.02 99.03 96.97 0.57 4.48

NIT−S+S 0.263 0.357 0.017 0.148 66.85 56.52 4.55 10.31 99.06 96.25 0.49 5.42

5 WM−T 0.206 0.327 0.016 0.151 79.53 65.23 3.96 9.55 98.68 96.93 0.60 4.54

NIT−T 0.202 0.323 0.014 0.153 80.55 66.22 3.55 9.56 98.91 97.11 0.47 4.45

NIT−S 0.174 0.321 0.011 0.157 84.92 66.14 2.40 9.38 99.42 96.94 0.26 4.60

WM−T+S 0.144 0.289 0.011 0.149 89.19 71.30 2.08 9.14 99.74 97.96 0.17 3.22

NIT−T+S 0.142 0.288 0.010 0.149 89.46 71.28 2.14 9.21 99.77 97.99 0.17 3.16

NIT−S+S 0.132 0.288 0.010 0.150 90.68 70.85 1.73 9.18 99.79 97.97 0.10 3.19
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Table 2. rmse results in details with the division of users by the number of rated
movies (o)

m system learning samples testing samples

o < 50 50 ≤
o <
100

100 ≤
o < 200

200 ≤
o <
400

o ≥ 400 o < 50 50 ≤
o <
100

100 ≤
o <
200

200 ≤
o <
400

o ≥ 400

3 WM-T 0.352 0.350 0.377 0.418 0.406 0.463 0.409 0.415 0.435 0.419

NIT-T 0.327 0.296 0.323 0.346 0.353 0.429 0.365 0.363 0.360 0.368

NIT-S 0.289 0.328 0.377 0.425 0.480 0.442 0.435 0.427 0.452 0.504

WM-T+S 0.266 0.253 0.294 0.303 0.330 0.402 0.347 0.344 0.323 0.352

NIT-T+S 0.260 0.250 0.290 0.300 0.324 0.398 0.345 0.340 0.320 0.349

NIT-S+S 0.230 0.240 0.289 0.310 0.345 0.394 0.354 0.344 0.337 0.370

5 WM-T 0.159 0.184 0.237 0.258 0.302 0.349 0.327 0.322 0.302 0.330

NIT-T 0.157 0.178 0.233 0.258 0.297 0.347 0.323 0.315 0.303 0.323

NIT-S 0.099 0.156 0.213 0.234 0.289 0.339 0.327 0.313 0.291 0.326

WM-T+S 0.092 0.126 0.178 0.193 0.225 0.321 0.294 0.279 0.251 0.267

NIT-T+S 0.092 0.124 0.175 0.188 0.219 0.322 0.292 0.277 0.251 0.260

NIT-S+S 0.070 0.114 0.168 0.186 0.222 0.317 0.295 0.277 0.252 0.266

Fig. 6. A number of fuzzy rules created with the division of users by the number of
rated movies (o)

Fig. 7. Correlation between a number of rated movies (o) and a number of fuzzy rules
created on prepared data sets, PCC stands for the Pearson Correlation Coefficient
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4.4 Simulation Conclusions

The optimization of singleton parameters in specified ranges allow obtaining
another increase in system accuracy (see WM-T+S, NIT-T+S, and NIT-S+S
systems in Table 1).

The best rmse, accuracy and yesno were obtained for NIT-S+S system,
where initial singleton positions resulted from the values sk calculated by NIT
method (see NIT-S+S system in Table 1).

The proposed solution allowed to achieve very high yesno recommendation
accuracy (at level of 98% for testing data samples) and high classification accu-
racy of predicting exact user rate of the movie (72%) - see Table 1. In the latter,
the increase in accuracy comparing to standard WM-T and NIT-T methods is
higher than 5% (see Table 1).

Fig. 8. Average rmse improvement during iterations of GWO
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Table 3. Example of fuzzy system for NIT-S+S obtained for user 127 that rated 192
movies for m = 3 (left part of table) m = 5 (right part of table).

The use of more partitions (m = 5) allowed to increase the accuracy of
the system in every case (see Table 1), thus the number of created fuzzy rules
increased (see Fig. 6).

The use of a higher number of partitions does not give a significant improve-
ment of testing rmse, accuracy and yesno, especially if m > 7 (see Table 4).
However, this results in more rules and the need to differentiate between more
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Table 4. Additional comparison of results for NIT-S+S system with a higher number
of fuzzy partitions.

m rmse accuracy yesno rules

average st. dev. average st. dev. average st. dev.

learn. test. learn. test. learn. test. learn. test. learn. test. learn. test.

3 0.263 0.357 0.017 0.148 66.85 56.52 4.55 10.31 99.06 96.25 0.49 5.42 10.87

5 0.132 0.288 0.010 0.150 90.68 70.85 1.73 9.18 99.79 97.97 0.10 3.19 21.78

7 0.081 0.273 0.009 0.168 95.54 74.05 0.91 8.73 99.88 97.43 0.03 4.03 29.14

9 0.051 0.270 0.006 0.178 97.98 75.72 0.43 8.11 99.92 97.18 0.02 4.45 35.20

11 0.039 0.273 0.005 0.188 98.62 75.68 0.34 8.26 99.97 97.13 0.01 4.41 38.79

13 0.029 0.272 0.005 0.191 98.96 76.36 0.27 7.80 99.98 97.23 0.01 4.34 41.86

linguistic labels of fuzzy sets, which significantly reduces the interpretability and
readability of the system.

The rmse error calculated for learning samples increases simultaneously with
the number of rated movies (see Table 2). This may be due to many factors:
ratings based on attributes not included in the inputs, contradictions included
in the user’s ratings, use of proposed data set preparation method, etc.

The rmse calculated for unknown data samples (testing samples) is optimal
in the case of 100–400 rated movies (in particular if m = 5 - see Table 2). This
shows that the optimal number of rated movies for which there is no loss of
information is contained in this range. Too many rated movies cause that the
system has a too weak structure and would require to increase m or use of
additional system inputs. Too few rated movies make it difficult to predict the
correct recommendation for testing samples (see Table 2).

The number of fuzzy rules increases logarithmically along with the number
of rated movies (see Fig. 6). The average number of fuzzy rules for m = 3 is
close to 12, such a number may allow interpretation of the operation of the
entire system. In the case of m = 5 average number of fuzzy rules is close to 28
and thus the interpretation of the operation of the entire system may be more
difficult, which does not exclude the possibility of the interpretation of specific
recommendations.

The correlation between the number of rated movies (o) and the number of
created fuzzy rules according to the Pearson Correlation Coefficient is moderate
in case of m = 3 and strong in case of m = 5 (see Fig. 7).

In simulation studies, the phenomenon of overfitting was not observed (see
Fig. 8). Moreover, learning rmse usually decreased to the same extent as testing
rmse (see Fig. 8).

It can be concluded that the exemplary fuzzy systems presented seem to be
clear and interpretable at the same time ensuring high accuracy of operation
(see Table 3).
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Sample interpretations that can be drawn from the fuzzy rules presented in
Table 3 are as follows: the user prefer older movies in some cases (see user rate
for k = 3 and k = 4), the genre preference is less important for the user than
keywords preference (see user rate for k = 1 and k = 5 vs k = 6), the keywords
preference does not affect the result linearly (see user rate for k = 5, k = 6 and
k = 7), etc.

Authors want to draw attention to the fact that interpreting results is much
harder in the case of m = 5. It is worth noting, that the interpretations do not
matter from the point of view of the explanation of specific recommendations
and are given here as an example. In the case of specific recommendations, the
user should only analyze these fuzzy rules that have influenced the result of the
recommendation. Such solutions will be considered and analyzed in future work.

5 Conclusions

The proposed approach allows achieving high accuracy with a reasonable number
of interpretable fuzzy rules. The use of ZO-TSK and optimization of singletons
has allowed a significant improvement in results.

Conducted experiments proved that applying the Grey Wolf Optimizer to
train the model gives better accuracy without losing interpretability of the sys-
tem. The Zero-Order Takagi-Sugeno-Kang fuzzy system can be effectively used
as a content-based recommender system that provides accurate results with
intepretability, transparency, and explainability.
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Abstract. The main aim of the work is an investigation of different aggregation
modes applications within the framework of weights uncertainty. There are
many aggregation modes using for decision making, which can be described
using not only real numbers. Some precise aggregation modes, under the con-
dition of uncertainty, requires operation of exponentiation with uncertainty
power and we proposed the easy and clarity method to its calculation. Therefore,
the specific aim of the work is the development of methods for modifying values
of fuzzy weights in order to be able to use any aggregation modes for decision-
making problems.

Keywords: Fuzzy weights � Weights uncertainty � Aggregation modes

1 Introduction

It is known that different variants of the aggregation of local criteria give rise to
different results. This situation follows from the fact that the validity of the stage of
formulation of a global criterion as an aggregation of local criteria is dominant. It is
obvious that the evaluation of the validity of the criteria is not essential in some
optimization processes and sometimes all local criteria have the same validity (weight)
for decision-makers. In addition, the weights definition by using real numbers some-
times is not possible.

For example, using the real numbers is rather difficult for the specification of
linguistic terms of local criteria validity. It follows from the paper [34] that if you
propose to a group of specialists to assess the well-known objects, linguistic terms
usually will be almost the same, because these people have studied using the same
textbooks, reading the same articles, and they work in the same field. However, if you
manage them to use numeric estimators for evaluating, it usually will be more difficult
and no consensus there will be [34] because the numeric results are associated with a
high personal responsibility, which each person tries to avoid. The problem lies in the
fact that, as has been proven by psychologists, the process of human thinking is based
on a verbal presentation of knowledge. Therefore, this fact is a cause of confusion with
the use of numeric ratings even in the case of experts who have long been working
together in specific fields.
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Hence, the more accurate is using the transformation of verbal terms to interval or
fuzzy values, applied to various types of aggregation modes. There are many aggre-
gation modes using for decision making, which can be described using not only real
numbers [2–9, 20, 21–23, 26, 27, 29], but the uncertainty of the weights is no less
important for consideration [27–30].

Fuzzy weight also may be used for issues related to time comparisons for com-
putationally intensive problems [3] or fuzzy neural networks [4] to assess, inter alia, the
critical non-linear factors.

The majority of the publications deal with additive aggregation mode which mode
has the form of the weighted sum, but this approach does not provoke controversy due
to the specific determination of the operation on fuzzy sets. The disadvantage of this
method is that the results obtained are not precise [12]. As shown in [12], the aggre-
gation based on the “principle of maximal pessimism” is much more precise. The main
problem associated with the use of a particular method of aggregation in terms of
uncertainty weights is the complexity of the exponentiation methods with fuzzy power
[new]. In [15] representation of fuzzy numbers by using the interval sum for creating a
final ranking in the framework of the TOPSIS method, is proposed. The use of this
method, together with a direct interval extension method [14], allows us to convert the
fuzzy power into an interval form and solves, thus, the problem of exponentiation with
fuzzy power.

The rest of the paper is set up as follows. In Sect. 2, we analyze the aggregation
modes and show a situation in which the aggregation of aggregation modes is nec-
essary. In Sect. 3 we present the aggregation modes under the condition of interval
weight uncertainty and propose the use of conventional methods of interval analysis.
Section 4 is devoted to the aggregation modes in the framework of fuzzy weight
uncertainty extended by the method proposed in Sect. 3. In Sect. 5 we show an
aggregation of aggregation modes based on synthesis methods of the fuzzy sets of type
2 and level 2 theory. In Sect. 6 we present an illustrative numerical example. Section 7
contains some concluding remarks.

2 Aggregation Modes

Let be given a continuous set of alternatives X with n equivalent local criteria presented
by the respective membership functions l1 xð Þ; . . .; ln xð Þ. In practice, most decision-
making problems require the introduction of relative coefficients for criteria weights.
So, we can use the following methods of aggregation:

(1) the aggregation based on the “principle of maximal pessimism” - D1,
(2) additive aggregation - D2,
(3) multiplicative aggregation - D3.
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Having regard to the weights wi i ¼ 1; . . .; nð Þ calculated on the basis of the pair
comparison matrix or given by an expert:

D1 ¼ min l1 Xð Þw1 ; . . .; ln Xð Þwnf g; ð1Þ

D2 ¼
Yn

i¼1
li Xð Þwi ; ð2Þ

D3 ¼
Xn

i¼1
liwi Xð Þ; ð3Þ

where X ¼ x1; x2; . . .; xnð Þ is the vector of quality parameters.
Of course, other methods of aggregation exist, but usually, in practice, we use the

mentioned before methods (1)–(3) and their combinations [12]. Many works (see [1,
10, 18, 19]) indicate the additive aggregation mode as best from local criteria. How-
ever, using this method not always get reliable results. It may be concluded from [12]
that using the strategy based on the D1 expression we obtain the best option for
alternatives assessment and optimizations tasks in the case of describing the criteria by
membership functions. As it was proved in [16], strategy optimization on the basis of
the minimum operation, i.e. the aggregation based on the “principle of maximal pes-
simism” in finding the best alternatives among the worst, is the approach which
guarantees reliable results in line with our intuition only.

In our situation, it means that the realization degree of the criteria in optimum point
shall be not less than one of the least important criterion. The appropriate solution to
the optimization task is Pareto-optimal. The main problem associated with the use of a
particular method of aggregation in terms of uncertainty weights is the lack of defi-
nition of the exponentiation with fuzzy power. In [15] representation of fuzzy numbers
by using the interval sum for creating a final ranking in the framework of the TOPSIS
method, is proposed. The use of this method, together with a direct interval extension
method [14], allows us to convert the fuzzy power into an interval form and solves,
thus, the problem of exponentiation with fuzzy power.

However, it should be noted that in many cases, the most justified aggregation
mode D1 (1) does not correspond to the experience and intuition of decision makers in
assessing alternatives and optimization [11]. Therefore, in the case of complex tasks
with a large number of local criteria and restrictions, after receiving the guaranteed
ratings based on D1 aggregations (1), it makes sense to apply some other additive and
multiplicative modes to build a global criterion. If the results obtained by all used
modes of aggregation are similar (at least, at the level of quality), it makes us conclude
that obtained results are adequate.

Therefore, in the next section, we consider the abovementioned modes of aggre-
gation under a condition of interval weight uncertainty.

3 Aggregation Modes Under Condition of Interval Weight
Uncertainty

In this section, we present and analyze the most often used aggregation modes of local
criteria under a condition of interval weight uncertainty.
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Let be given a continuous set of alternatives X with n equivalent local criteria
presented by the respective membership functions l1 xð Þ; l2 xð Þ; . . .; ln xð Þ and W ¼
wL
1 ;w

U
1

� �
; wL

2 ;w
U
2

� �
; . . .; wL

n ;w
U
n

� �� �
be the vector of local criteria weights.

It is easy to see that the expressions of D1;D2;D3 in the case of interval weight
uncertainty can be written as follows:

D0
1 ¼ min l1 Xð Þ wL

1 ;w
U
1½ �; . . .; ln Xð Þ wL

n ;w
U
n½ �n o

; ð4Þ

D0
2 ¼

Yn

i¼1
li Xð Þ wL

i ;w
U
i½ �; ð5Þ

D0
3 ¼

Xn

i¼1
wL
i ;w

U
i

� � � li Xð Þ: ð6Þ

In accordance with interval arithmetic we have:

x a;�a½ � ¼ min xw
L
; xw

U
n o

;max xw
L
; xw

U
n oh i

; ð7Þ

x � a; �a½ � ¼ min x � wL; x � wU
� �

;max x � wL; x � wU
� �� �

: ð8Þ

Indeed, if we substitute the last two formulas x a;�a½ �; and x � a; �a½ �
� �

to the previous

expressions D0
1;D

0
2;D

0
3

� 	
, we get:

D00
1 ¼ min min l1 Xð Þ wL

1 ;w
U
1½ �n o

;max l1 Xð Þ wL
1 ;w

U
1½ �n oh i

;

. . .; min ln Xð Þ wL
n ;w

U
n½ �n o

;max ln Xð Þ wL
n ;w

U
n½ �n oh io

;
ð9Þ

D00
2 ¼

Yn

i¼1
min li Xð ÞwL

i ; li Xð ÞwU
i

n o
;max li Xð ÞwL

i ; li Xð ÞwU
i

n oh i
; ð10Þ

D00
3 ¼

Xn

i¼1
min wL

i � li Xð Þ;wU
i � li Xð Þ� �

;max wL
i � li Xð Þ;wU

i � li Xð Þ� �� �
: ð11Þ

We can see that in D00
1 (9) we deal with the comparison of the interval value. For this

purpose, we use the method proposed in [12]. This method is based on interval sub-
traction and the determination of the measure to designate the largest or the smallest
range. Therefore, for intervals B ¼ b; �b½ � and A ¼ a; �a½ �, a value that allows us to
measure the distance between the intervals and to indicate is this interval is larger or
smaller, can be presented in the following form [12]:

DA�B ¼ 1
2

aL � bU
� 	þ aU � bL

� 	� 	
: ð12Þ
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4 Aggregation Modes in Framework of Fuzzy Weight
Uncertainty

Now we strictly formulate our problem. Let be given a continuous set of alternatives X
with n equivalent local criteria presented by the respective membership functions
l1 xð Þ; l2 xð Þ; . . .; ln xð Þ, and W ¼ wL

1 ;w
M
1 ;w

U
1

� �
; wL

2 ;w
M
2 ;w

U
2

� �
; . . .; wL

n ;w
M
n ;w

U
n

� �� �
, be

the vector of weights of local criteria, where wL
i ;w

M
i ;w

U
i

� �
is fuzzy weight of i-th local

criterion.
Thus we see that expressions of D1;D2;D3, in the case of fuzzy weight uncertainty,

can be rewritten as follows:

D000
1 ¼ min l1 Xð Þ wL

1 ;w
M
1 ;w

U
1½ �; . . .;ln Xð Þ wL

n ;w
M
n ;w

U
n½ �n o

; ð13Þ

D000
2 ¼

Yn

i¼1
li Xð Þ wL

i ;w
M
i ;w

U
i½ �; ð14Þ

D000
3 ¼

Xn

i¼1
wL
i ;w

M
i ;w

U
i

� � � li Xð Þ: ð15Þ

It is obvious that as far there is no problem with D3 calculation (see D000
3 ), in the case

of aggregation modes D1 (1) and D2 (2) we have a problem with exponentiation with
fuzzy power.

Now we present a representation of fuzzy values with use a-cut. To calculate the
fuzzy value D000

1 ;D
000
2 ;D

000
3 (13)–(15) we use a-cut representations of fuzzy values. This

allows us to avoid the restrictions related to the triangular form of fuzzy numbers. Of
course, if we deal with regular triangular or trapezoidal forms, MCDM problem can be
solved by using the highest and lowest a-cuts without loss of important information.
Let us recall the basic definitions of fuzzy arithmetic based on the a-cut representation
[15, 29, 33].

If eA is fuzzy value, then eA ¼ P
a aAa, where aAa is a-cut of fuzzy set A in

X composed of the elements of interval Aa ¼ x 2 X; lA � af g, which degrees of
membership to A must be not less than a.

It was proved in [17] that if A and B are fuzzy values, then all arithmetical oper-
ations on them can be presented as operations on the sets of crisp intervals corre-
sponding to their a-cuts: A� Bð Þa¼ Aa � Ba, where � 2 þ ;�; �; =f g.

Then, the procedure of exponentiation with fuzzy power we can define as follows:

xeA ¼ x
P

a
aAað Þ=a, where aAa is a fuzzy subset. Given that A is the interval value, the

expression (17) can be presented in the following form:

x
eA ¼ x

P
a
a ALa ;A

U
a½ �

a ¼ min x

P
a
a�ALa

a ; x

P
a
a�AUa

a

( )
;max x

P
a
a�ALa

a ; x

P
a
a�AUa

a

( )" #
: ð16Þ
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Therefore, in the case of fuzzy weight uncertainty, the aggregation modes D1;D2

and D3, with regard to the distinction on a-cut, can be written as follows:

D4
1 ¼ min l1 Xð Þ

P
a
a� wL

1a
;wU
1a½ �

a ; . . .; ln Xð Þ
P

a
a� wLna ;w

U
na½ �

a

( )
; ð17Þ

D4
2 ¼

Yn

i¼1
li Xð Þ

P
a
a� wL

ia
;wU
ia½ �

a ; ð18Þ

D4
3 ¼

Xn

i¼1

P
a a � wL

ia ;w
U
ia

h i
a

� li Xð Þ: ð19Þ

Indeed, the last expressions can be presented in the following form:

D4
1 ¼ min min dL1 ; d

U
1

� �
;max dL1 ; d

U
1

� �� �
; . . .; min dLn ; d

U
n

� �
;max dLn ; d

U
n

� �� �� �
; ð20Þ

where dLi ¼ li Xð Þ �
P

a
a�wL

ia
a ; dUi ¼ li Xð Þ �

P
a
a�wU

ia
a for i ¼ 1; . . .:; n:

D4
2 ¼

Yn

i¼1
min edLi ; edUin o

;max edLi ; edUin oh i
; ð21Þ

where edLi ¼ li Xð Þ
P

a
awL

ia
a ; edUi ¼ li Xð Þ

P
a
awU

ia
a for i ¼ 1; . . .:; n:

D4
3 ¼

Xn

i¼1
min

P
a aw

L
ia

a
� li Xð Þ;

P
a aw

U
ia

a
� li Xð Þ


 ��
;

max

P
a aw

L
ia

a
� li Xð Þ;

P
a aw

U
ia

a
� li Xð Þ


 �
:

ð22Þ

5 Aggregation of Aggregation Modes

It was shown in [12] that the main disadvantage of the additive aggregation is the
possibility of partial compensation of small values by large values of the other criteria.
It is possible even in situations when the most important local criterion is completely
false, but the aggregation mode D3 (3) delivers pretty good results. Therefore, in some
areas (ex. in modeling ecological processes [25]), the use of additive aggregation is
strongly prohibited.

If the results obtained using different methods of aggregation are similar, it indi-
cates the confirmation of their optimality. Otherwise, we must carry out a detailed
analysis of local criteria and their weights or apply an aggregation of aggregation
modes. This method was developed in [12, 24] and based on synthesis methods of the
fuzzy sets of type 2 and level 2 theory.
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Type 2 fuzzy sets were introduced by Zadeh in [31, 32] within the framework of
mathematical linguistic terms formalization. In essence, these sets are an extension of
the ordinary fuzzy sets (type 1) in the case when membership function is presented by
another fuzzy set.

Let A is a type 2 fuzzy set on X. Then, for every x 2 X a fuzzy set on Y and corre-
sponding membership function exist and can be presented in the following form [10]:

lA xð Þ ¼ fx yið Þ
yi


 �
; ð23Þ

for i = 1, …, n, where a fuzzy set on Y is characterized by membership function fxðyÞ.
Completion of the type 2 fuzzy set can be represented by the relation

lA xð Þ ¼ fx yið Þ
1� yi


 �
; ð24Þ

for i = 1, …, n.
If A and B are type 2 fuzzy sets and

lA xð Þ ¼ fx yið Þ
yi


 �
; lB xð Þ ¼ gx zj

� 	
zj


 �
; ð25Þ

where i = 1, …, n, j = 1, …, m, then membership function of set D ¼ A [ B takes the
following form:

lD xð Þ ¼ min fx yið Þ; gxðzjÞ
� 	
max yi; zj

� 	( )
; i ¼ 1; . . .; n; j ¼ 1; . . .;m; ð26Þ

Similarly, for intersection we have

C ¼ A \ Bwe have lC xð Þ ¼ min fx yið Þ; gxðzjÞ
� 	
min yi; zj

� 	( )
: ð27Þ

For simplicity, we don’t use the generalized presentation of operations on fuzzy
sets by the t-norm and s-norms. We shall describe briefly the level 2 fuzzy sets. If
elements x 2 X are fuzzy sets of different set Z, then, in discretization situation, level 2
fuzzy set A can be represented as follows [33]:

A ¼ lA xið Þ
xi


 �
; xi ¼

hi zj
� 	
zj


 �
; ð28Þ

A ¼ maxi½lA xið Þhi zj
� 	�

zj


 �
; ð29Þ

i = 1, …, n, j = 1, …, m,
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The last expression shows that the degree of membership zj to A can be presented
by the following expression

lA zj
� 	 ¼ maxi lA xið Þhi zj

� 	� �
i ¼ 1; . . .; n: ð30Þ

Aforementioned elements of the theory of type 2 and level 2 fuzzy sets are applied
to the generalizations of aggregation modes in order to obtain some kind of generalized
terms within the framework of a considered problem. It is worth noting that, in the
context of the proposed approach avoids the application of the minimum operation,
multiplication and sum witch aggregations of aggregation modes, because using them
leads inevitably to a sequence of unlimited aggregation problems.

Let we have K variants of aggregation modes and M selected local criteria, and let
l Dið Þ, i = 1, …, K, be a membership function represented the subjective opinions of
decision-makers with a degree of “closeness” of specific i-th aggregation mode to the
ideal (the best from all viewpoints Dideal aggregation that satisfies all conditions, even
not explicitly formulated at the verbal level).

It is worth noting that l Dið Þ may be presented by the experts in the linguistic form
and then l Dið Þ can be modified to the fuzzy sets form. Therefore, such idealized global

criterion can be expressed as a type 2 fuzzy set [12] Dideal ¼ l Dið Þ
Di , where Di is an

aggregation mode using in the special case, i.e. D1;D2;D3.
On the other hand, each Di can be represented as a fuzzy set based on an ordinary

set of considered alternatives. Then, we have:

Dj ¼ Di zj
� 	
zj


 �
; j ¼ 1; . . .;M; ð31Þ

where zj are alternatives and Di zj
� 	

is a degree of adequacy of an alternative zj to the
criterion of Di type.

The result of the substitution of the last two expression is the mathematical
structure which is a type 2 and level 2 fuzzy set [10]:

Dideal ¼
lideal zj

� 	
zj


 �
j ¼ 1; . . .;M; ð32Þ

where lideal zj
� 	 ¼ maxi l Dið Þ � Di zj

� 	� �
j ¼ 1; . . .;M. Of course, the best alternative zj

has the largest value of the function lideal zj
� 	

.

6 Numerical Examples

Suppose that the alternatives in decision-making problem are presented by objective
assessments, while the weight of local criteria is specified in subjective assessments by
linguistic terms “very high”, “high”, “medium high”, “medium”, “low”, “very low”
[26]. It was shown in [12] that linguistic terms are usually presented by triangular form
fuzzy numbers. Average results of experiments obtained during many analyses of the
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alternatives and the local criteria weights are presented in Tables 1 and 2. In order to
simplify the example, the values shown in Table 1 are normalized.

Then, using the approach described above and the TOPSIS method [5, 14, 15], we
obtain the rankings for D1;D2;D3 presented in Tables 3, 4 and 5, respectively.

Table 1. Normalized assessment of alternatives according to the four criteria.

C1 C2 C3 C4

A1 0.125 0.375 0.1667 0.3636
A2 0.25 0.5 0.5 0.4545
A3 0.625 0.125 0.3333 0.1818

Table 2. Experts assessments of criteria weights.

Criterion Numerical assessment Verbal term

C1 [0.1, 0.4, 0.9] MH
C2 [0.1, 0.3, 0.4] M
C3 [0.2, 0.25, 0.3] L
C4 [0.2, 0.6, 0.8] H

Table 3. The rating obtained by aggregation with “principle of max. pessimism”.

Numerical assessment Evaluation Rating

A1 [0.5656, 0.7236] 0.6446 2
A2 [0.6839, 0.8060] 0.7450 1
A3 [0.5701, 0.6634] 0.6167 3

Table 4. The rating obtained by multiplicative aggregation.

Numerical assessment Evaluation Rating

A1 [0.2719, 0.4083] 0.3401 3
A2 [0.4292, 0.5653] 0.4972 1
A3 [0.3076, 0.4219] 0.3647 2

Table 5. The rating obtained by additive aggregation.

Numerical assessment Evaluation Rating

A1 [0.1717, 0.2380] 0.2049 3
A2 [0.2673, 0.3669] 0.3171 1
A3 [0.1952, 0.2960] 0.2456 2
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It is easy to see that the assessment designated by aggregation based on the
“principle of maximal pessimism” slightly differ from two another modes, so aggre-
gation of aggregation modes is necessary in this case [12, 13].

Pair comparison matrix obtained as a result of the analysis of the accuracy of each
mode [12] is shown in Table 6.

The final result of an aggregation of aggregation modes is shown in Table 7. After
comparing the received values, we conclude that A2 is the best alternative.

The final rating is A3 \A1 \A2. As part of our approach based on aggregation of
aggregation modes, we get “compromise” ranking, which is similar to the ranking
obtained by aggregation based on “principle of maximal pessimism” (see Table 6).
Such effect we obtain thanks to setting large weights to aggregation mode based on the
“principle of maximal pessimism”.

7 Conclusion

A new approach to the solution of exponentiation with fuzzy power problem is pro-
posed. This method gives the ability to use much more aggregation modes under the
condition of fuzzy weight uncertainty in an easy way. In this work, we propose to use
other types of aggregation modes and show uses of their aggregation in the framework
of fuzzy weight uncertainty. The benefits of the proposed method are simplicity and
clarity. Using the aggregation of aggregation modes, we obtain “compromise” ranking,
which is similar to the ranking obtained by aggregation based on “the principle of
maximal pessimism”. Such effect we obtain thanks to setting large weights to aggre-
gation mode based on the “principle of maximal pessimism”, because of its precision.

Table 6. Pair comparison matrix for aggregation modes.

Aggregation mode D1 D2 D3

D1 1 3 9
D2

1
3

1 9

D3
1
9

1
9

1

Table 7. Rating obtained by aggregation of aggregation modes.

Alternatives Evaluation Rating

A1 0.4512 2
A2 0.5215 1
A3 0.4317 3
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Abstract. The fuzzy clustering algorithm for high-dimensional data is pro-
posed in this paper. An objective function which is insensitive to the “con-
centration of norms” phenomenon is also introduced. We recommend using a
weighted parameter in the objective function. The proposed fuzzy clustering
algorithm is compared with FCM in the experimental part. Dependence of the
clustering algorithm’s results on the weighted parameter changes has also been
investigated and tested.

Keywords: Fuzzy clustering � Distance metric � High-dimensional data �
Computational intelligence � Membership function

1 Introduction

Multidimensional data clustering is an essential part of modern Data Mining which
aims at finding in some sense homogeneous groups (clusters or classes) of observations
in analyzed data arrays [1–4]. A traditional approach designed for solving this problem
assumes that each vector of observations may be attributed only to a single class,
though there’s a more common case when any feature vector belongs simultaneously to
several clusters with some degree. Such a claim is a subject of the fuzzy clustering
analysis [5–14]. There’s an assumption that classes of homogeneous data cannot be
separated from each other, but they can overlap each other, i.e., each observation
belongs to clusters with some degree or membership. This membership degree varies in
an interval [0, 1].

Initial information for fuzzy clustering consists of a data sample which is formed of
N ðn� 1Þ-dimensional feature vectors (images) X ¼ fx1; x2; . . .; xk; . . .; xNg�Rn

where k ¼ 1; 2; . . .;N is a number of a particular observation from the data array.
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A result of clustering is a partition of X into m overlapping classes with some degree of
membership UqðkÞ of the k-th feature vector xk to the q-th cluster, q ¼ 1; 2; . . .;m.

Initial data are usually centered and preliminarily normalized concerning all
components so that all the observations belong to the hypercube ½�1; 1�n. Thus, the
initial data acquire a form of ~X ¼ f~x1;~x2; . . .;~xNg � Rn, ~xk ¼ ð~xk1;~xk2; . . .;~xknÞT ,
�1� xki � 1, 1\m\N, 1� q�m, 1� i� n, 1� k�N. In addition to that, it can be
noticed that this data transformation is not the only possible one. For instance, a
transformation ~xkk k2¼ 1 is used in self-organizing maps by Kohonen [15].

Although there are many fuzzy clustering algorithms, every method has its
advantages and drawbacks, all of them have the same undesired effect which has been
recently noticed by Klawonn [16]. This shortcoming which is typical for the most of
fuzzy clustering algorithms under high-dimensional conditions is that possibilities of
using fuzzy clustering techniques are somewhat limited due to the “concentration of
norms” phenomenon that makes membership degrees of observation be proportionally
distributed between all clusters. To overcome this effect, unique distance metrics may
be used which provide an opportunity of overlapping clusters’ division more effectively
in high-dimensional spaces.

Therefore, the task of developing a fuzzy clustering approach to processing high-
dimensional data is considered in this paper. To overcome the “concentration of
norms” effect, it is required to apply distances of a particular type. Some in-depth
analysis was performed for h value in order to find out how this parameter influences
the whole behavior of a clustering system in some real-world test cases.

Some theoretical aspects of fuzzy clustering procedures are covered in Sect. 2. In
Sect. 3, the introduced fuzzy clustering procedures are presented in details. Section 4
discusses the application of the developed methods to a set of test cases and the
analysis of their performance. In Sect. 5, the conclusion is drawn, and some further
research in this area is proposed.

2 Fuzzy Clustering Algorithms

Fuzzy clustering procedures based on objective functions are considered to be rather
strict from a mathematical point of view [17], and they can solve an optimization
problem under some a priori assumptions. Here, the probabilistic approach is the most
widely-used one, and it is based on minimization of the objective function

EðUqðkÞ;wqÞ ¼
XN
k¼1

Xm
q¼1

Ub
q ðkÞDð~xk;wqÞ ¼

XN
k¼1

Xm
q¼1

Ub
q ðkÞ ~xk � wq

�� ��2

¼
XN
k¼1

Xm
q¼1

Ub
q ðkÞ

Xn
i¼1

ð~xki � wqiÞ2
ð1Þ

under constraints
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Xm
q¼1

UqðkÞ ¼ 1; ð2Þ

0�
XN
k¼1

UqðkÞ�N ð3Þ

where UqðkÞ 2 ½0; 1� is a membership degree of a vector ~xk to the q-th class, wq is a
centroid (prototype) of the q-th cluster, b is a nonnegative fuzzification parameter (a
fuzzifier) that specifies overlapping borders between groups of points, k ¼ 1; 2; . . .;N.
An ðN � mÞ-matrix U ¼ fUqðkÞg (a fuzzy partition matrix) is obtained as a result of
clustering.

Introducing the Lagrange function

LðUqðkÞ;wq; qðkÞÞ ¼
XN
k¼1

Xm
q¼1

Ub
q ðkÞ ~xk � wq

�� ��2 þ XN
k¼1

qðkÞð
Xm
q¼1

UqðkÞ � 1Þ

(qðkÞ are indefinite Lagrange multipliers) and solving the Karush-Kuhn-Tucker
system of equations

@LðUqðkÞ;wq; qðkÞÞ
@UqðkÞ ¼ 0;

rwqLðUqðkÞ;wq; qðkÞÞ ¼~0;

@LðUqðkÞ;wq; qðkÞÞ
@qðkÞ ¼ 0;

8>>>>><
>>>>>:

the following solution is obtained

UqðkÞ ¼ ð ~xk�wqk k2Þ
1

1�bPm
l¼1

ð ~xk�wqk k2Þ
1

1�b

;

wq ¼
PN
k¼1

Ub
q ðkÞ~xk

PN
k¼1

Ub
q ðkÞ

8>>>>>>><
>>>>>>>:

ð4Þ

which coincides with the popular fuzzy C-means algorithm (FCM) if b ¼ 2 [18]

UqðkÞ ¼ ð ~xk�wqk k2Þ�1Pm
l¼1

ð ~xk�wqk k2Þ�1
;

wq ¼
PN
k¼1

U2
q ðkÞ~xk

PN
k¼1

U2
q ðkÞ

:

8>>>>>>><
>>>>>>>:

ð5Þ
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Fuzzy clustering algorithms of the type (4) are very popular because they differ
from each other in a kind of Dð~xk;wqÞ metrics used in the criterion (1): Minkowski,
Mahalanobis, etc. Under these circumstances, the influence of vectors’ dimensionality
under processing has not been considered as obtained results.

Using a particular type of the objective function for fuzzy clustering, it was offered
in [19], and it was studied in [16] concerning high-dimensional problems:

EðUqðkÞ;wqÞ ¼
XN
k¼1

Xm
q¼1

ðhU2
qðkÞþ ð1� hÞUqðkÞÞ ~xki � wqi

�� ��2 ð6Þ

and its corresponding Lagrange function

LðUqðkÞ;wq; qðkÞÞ ¼
XN
k¼1

Xm
q¼1

ðhU2
qðkÞþ ð1� hÞUqðkÞÞ ~xk � wq

�� ��2 þ XN
k¼1

qðkÞð
Xm
q¼1

UqðkÞ � 1Þ:

Solving the Karush-Kuhn-Tucker system of equations, it leads to

UqðkÞ ¼ � 1�h
2h þ 1þm1�h

2hPm
l¼1

~xk�wqk k2
~xk�wlk k2

;

wq ¼
PN
k¼1

ðhU2
q ðkÞþ ð1�hÞUqðkÞÞ~xk

PN
k¼1

ðhU2
q ðkÞþ ð1�hÞUqðkÞÞ

8>>>>>><
>>>>>>:

ð7Þ

that coincides with the conventional FCM (5) for h ¼ 1, and when h ! 0 it matches
the hard k-means clustering procedure (HKM). The algorithm (7) is the so-called fuzzy
C-means method with a polynomial fuzzifier (PFCM) [20]. In terms of properties, the
algorithm (6) is closer to a crisp clustering procedure for small h values that works
stable in high-dimensional problems.

There’s one more approach to fuzzy clustering high-dimensional data which was
proposed by Klawonn [21], and it has to do with weighting individual components ~xki
of an n-dimensional feature vector ~xk.

3 The Proposed Clustering Algorithms

The following expression is used as an objective function

EðUqðkÞ;wqÞ ¼
XN
k¼1

Xm
q¼1

Ub
q ðkÞ

Xn
i¼1

ctqið~xki � wqiÞ2 ¼
XN
k¼1

Xm
q¼1

Ub
q ðkÞDð~xk;wqÞ ð8Þ

with constraints
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Xm
q¼1

UqðkÞ ¼ 1 ð9Þ

and

Xn
i¼1

cqi ¼ 1 8q ¼ 1; 2; . . .;m ð10Þ

where cqi is a weight value of the i-th attribute in the q-th cluster, t[ 1 is similar to a
fuzzifier b.

Optimizing the objective function (8) under the constraints (9)–(10), it leads to the
following fuzzy clustering algorithm:

cqi ¼ 1

Pn
h¼1

PN
k¼1

Ub
q ðkÞð~xki�wqiÞ2

PN
k¼1

Ub
q ðkÞð~xkh�wqiÞ2

0
B@

1
CA

1
t�1
;

UqðkÞ ¼
ð
Pn
i¼1

ctqið~xki�wqiÞ2Þ
1

1�b

Pm
l¼1

ð
Pn
i¼1

ctlið~xki�wliÞ2Þ
1

1�b

;

wqi ¼
PN
k¼1

Ub
q ðkÞ~xki

PN
k¼1

Ub
q ðkÞ

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð11Þ

which is insensitive to the “concentration of norms” phenomenon [16].
The following expression is advised as an objective function for fuzzy clustering:

EðUqðkÞ;wqÞ ¼
XN
k¼1

Xm
q¼1

Ub
q ðkÞðh

Xn
i¼1

ð~xki � wqiÞÞ2 þð1� hÞ
Xn
i¼1

ctqið~xki � wqiÞ2Þ ¼

¼
XN
k¼1

Xm
q¼1

Ub
q ðkÞDKð~xk;wqÞ

ð12Þ

under the constraints (9)–(10).
To solve this problem, let’s consider the Lagrange function which takes the con-

straints (10) into account

LðUqðkÞ;wq; kq; cqiÞ ¼
XN
k¼1

Xm
q¼1

Ub
q ðkÞðh

Xn
i¼1

ð~xki � wqiÞ2þð1� hÞ
Xn
i¼1

ctqið~xki � wqiÞ2Þ þ
Xm
q¼1

kqð
Xn
i¼1

cqi � 1Þ

ð13Þ
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(kq are indefinite Lagrange multipliers) and its corresponding Karush-Kuhn-Tucker
system of equations:

@LðUqðkÞ;wq;kq;cqiÞ
@cqi

¼ PN
k¼1

Ub
q ðkÞð1� hÞtct�1

qi ð~xki � wqiÞ2 þ kq ¼ 0;

@LðUqðkÞ;wq;kq;cqiÞ
@kq

¼ Pn
i¼1

cqi � 1 ¼ 0:

8>>><
>>>:

ð14Þ

Carrying out the following chain of manipulations similar to Klawonn [21],

kq ¼ ð1� hÞtct�1
qi

XN
k¼1

Ub
q ðkÞð~xki � wqiÞ2;

cqi ¼
kq

ð1� hÞt PN
k¼1

Ub
q ðkÞð~xki � wqiÞ2

0
BBB@

1
CCCA

1
t�1

;

1 ¼
Xn
i¼1

kq

ð1� hÞt PN
k¼1

Ub
q ðkÞð~xki � wqiÞ2

0
BBB@

1
CCCA

1
t�1

¼ kq
ð1� hÞt

� � 1
t�1Xn

i¼1

1
PN
k¼1

Ub
q ðkÞð~xki � wqiÞ2

0
BBB@

1
CCCA

1
t�1

;

kq ¼ ð1� hÞt

Pn
k¼1

1PN
k¼1

Ub
q ðkÞð~xki�wqiÞ2

0
B@

1
CA

1
t�1

0
BB@

1
CCA

t�1 ;

the comparison is obtained:

cqi ¼
1

Pn
h¼1

PN
k¼1

Ub
q ðkÞð~xki�wqiÞ2

PN
k¼1

Ub
q ðkÞð~xkh�wqiÞ2

0
B@

1
CA

1
t�1

;

i.e., cqi does not depend on the h parameter in this case.
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Completing the system (14) with the third equation

@LðUqðkÞ;wq; kq; cqiÞ
@wqi

¼ 0 ¼ �2
XN
k¼1

Ub
q ðkÞðhð~xki � wqiÞþ ð1� hÞctqið~xki � wqiÞÞ;

it follows that

XN
k¼1

Ub
q ðkÞðh~xki þð1� hÞctqi~xkiÞ ¼

XN
k¼1

Ub
q ðkÞðhwqiðkÞþ ð1� hÞctqiwqiÞ

and

wqi ¼
PN
k¼1

Ub
q ðkÞ~xkiðhþð1� hÞctqiÞ

PN
k¼1

Ub
q ðkÞðhþð1� hÞctqiÞ

¼
PN
k¼1

Ub
q ðkÞ~xki

PN
k¼1

Ub
q ðkÞ

:

The weighting parameters cqi and the centroids wqi are found after optimization of
the Lagrange function (13).

In addition to the Lagrange function (13), let’s introduce the Lagrange function that
takes the constraints (9) from the function (12) in the form

LðUqðkÞ;wq; qðkÞÞ ¼
XN
k¼1

Xm
q¼1

Ub
q ðkÞDKð~xk;wqÞþ

XN
k¼1

qðkÞð
Xm
q¼1

UqðkÞ � 1Þ: ð15Þ

From the system of equations

@LðUqðkÞ;wq;qðkÞÞ
@UqðkÞ ¼ bUb�1

q ðkÞDKð~xk;wqÞþ qðkÞ ¼ 0;

@LðUqðkÞ;wq;qðkÞÞ
@qðkÞ ¼ Pm

q¼1
UqðkÞ ¼ 1

8><
>:

it follows that

UqðkÞ ¼ ðDKð~xk;wqÞÞ
1

1�b

Pm
l¼1

ðDKð~xk;wlÞÞ
1

1�b

:
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The final result of the optimization method (12) under the constraints (9), (10) is

cqi ¼ 1

Pn
h¼1

PN
k¼1

Ub
q ðkÞð~xki�wqiÞ2

PN
k¼1

Ub
q ðkÞð~xkh�wqiÞ2

0
B@

1
CA

1
t�1

;

UqðkÞ ¼
ðh
Pn
i¼1

ð~xki�wqiÞ2 þð1�hÞ
Pn
i¼1

ctqið~xki�wqiÞ2Þ
1

1�b

Pm
l¼1

ðh
Pn
i¼1

ð~xki�wliÞ2 þð1�hÞ
Pn
i¼1

ctlið~xki�wliÞ2Þ
1

1�b

;

wqi ¼
PN
k¼1

Ub
q ðkÞ~xki

PN
k¼1

Ub
q ðkÞ

:

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð16Þ

Considering b ¼ t ¼ 2, similarly to FCM, the optimization procedure which is
based on a metric of type DKð~xk;wqÞ can be obtained from (12):

cqi ¼
Pn
h¼1

PN
k¼1

U2
q ðkÞð~xki�wqiÞ2

PN
k¼1

U2
q ðkÞð~xkh�wqiÞ2

0
B@

1
CA

0
B@

1
CA

�1

;

UqðkÞ ¼
ðh
Pn
i¼1

ð~xki�wqiÞ2 þð1�hÞ
Pn
i¼1

c2qið~xki�wqiÞ2Þ�1

Pm
l¼1

ðh
Pn
i¼1

ð~xki�wliÞ2 þð1�hÞ
Pn
i¼1

c2lið~xki�wliÞ2Þ�1
;

wqi ¼
PN
k¼1

U2
q ðkÞ~xki

PN
k¼1

U2
q ðkÞ

:

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

4 Experimental Results

To find out how well the proposed approach performs in comparison with well-known
methods (with the conventional FCMnotably), we conducted an experiment with the help
of the R software. In this experimental research, an artificially generated data set was used
for the schematic description of the realm under research. In our opinion, this example
makes it possible to depict the algorithm’s functioning in the simplest case schematically.
The basic point of the practical part of the work had to do with discovering how and in
which way precisely the value h influences the general performance of the procedure.

The comparison results can be seen in Fig. 1. It can be seen from these results that
the proposed approach (Fig. 1a) correctly defined centers of two clusters in the initial
data set (a black circle and a square with a cross), some elements of the group 2 were
erroneously attributed to group 1 (a circle with a cross) during the FCM at a similar
generation stage of input data. However, given the fact that the experiments were not
conducted on the same data set, and data can’t be generated identical with absolute
certainty that the initial data don’t affect the obtained results in a given case.
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Fig. 1. Comparison results. The proposed method and FCM.

Fig. 2. Changing the h parameter.
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At the same time, we had to check how the h parameter’s changes affect the
obtained results. We carried out an experiment similar to the previous one where h was
changing in the range [0.1; 0.9] with a step size 0.1. The results are shown in Fig. 2.

It should be noted that the results become more relevant and erroneous cluster
centers (as in the cases when the h parameter is in the range [0.1; 0.3]) are barely
observed. Unfortunately, we can’t claim that unambiguous results have been received
because there’s some dependence on the initial data without reference to the parameter
changes.

5 Conclusion

The fuzzy clustering algorithm for high-dimensional data has been obtained. It is based
on a metric of a specific form which enables to take into consideration the impact of the
“concentration of norms” phenomenon. The proposed algorithm is a generalized ver-
sion of several fuzzy clustering procedures.

Acknowledgment. Oleksii K. Tyshchenko carried out his investigation within the project
TAČR TL01000351 provided by the National Agency of the Czech Republic.
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Abstract. Search-based Software Engineering applies meta-heuristics
to solve problems in the Software Engineering domain. However, to
configure a meta-heuristic can be tricky and may lead to suboptimal
results. We propose a hyper-heuristic (HH), GE-SPSP, to configure
the Speed-Constrained Particle Swarm Optimization (SMPSO) meta-
heuristic based on Grammatical Evolution (GE) to solve the Software
Project Scheduling Problem. A grammar describes several parameters
types and values to configure the SMPSO and the HH use it to return
the best configuration set found during the search. The results are com-
pared to conventional meta-heuristics and suggest that GE-SPSP can
achieve statistically equal or better results than to the compared meta-
heuristics.

Keywords: Search-based software engineering · Scheduling ·
Hyper-heuristic

1 Introduction

Software Engineering problems usually involve conflicting trade-off goals, such
as project costs and duration. These problems may have a large number of solu-
tions, and to explore the search space of all possible solutions is a complex task.
Search-based Software Engineering (SBSE) [9] is the field of study that applies
optimization algorithms to find optimal or near-optimal solutions to software
engineering problems. SBSE techniques have been applied in many software
engineering domains and [10] is a relevant survey about this area.

Related to the area, the Software Project Scheduling Problem (SPSP) [1] is a
management problem that aims to assign employees to tasks in order to minimize
project duration and costs. The scheduling task is an essential activity when
establishing project planning, as bad planning is pointed out to be responsible
for project failure [20].

Since SPSP optimizes two criteria, it can be modeled as a multi-
objective optimization problem. For this kind of problem, SBSE techniques,
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like meta-heuristics, can be applied in order to find feasible solutions.
Vega-Velázquez et al. [22] present a survey showing that SPSP is mostly
solved with multi-objective meta-heuristics based on Genetic Algorithm, Ant
Colony Optimization, and other variants of evolutionary algorithms. The Speed-
Constrained Multi-objective Swarm Particle Optimization (SMPSO) [18] is a
variant of the Particle Swarm Optimization (PSO) [12] that includes, among sev-
eral improvements, an external archive to store non-dominated solutions found
during the search process. The SMPSO meta-heuristic has good results in many
problems [5]. Despite that, we are not aware of any work that uses SMPSO for
SPSP solving.

Meta-heuristics, however, are sensitive to the configuration set that is defined
before its execution. The configuration set could change accordingly with the
problem or the instance of the problem, and thus the software engineering must
select the configuration set that maximizes the results. Nevertheless, most of the
configuration sets are defined through empirical tests, but this is an exhaustive
task since it consumes time for tests and computational resources.

In this direction, Hyper-heuristics (HH) [21] appears as a solution to this
drawback because they can select configuration sets for SPSP solving. HH is a
more general heuristics that can generate or select low-level heuristics based on
some objective functions. The decision procedure is made by learning and can
be categorized into two forms: online and offline. The former is done during the
search, while the latter is done first in a set with training instances and its result
is applied for real instances. Although SBSE is a promising field to apply HH,
few approaches are addressing this research direction [8].

This work proposes an offline HH named Grammatical Evolution Hyper-
Heuristic for the Software Project Scheduling Problem (GE-SPSP) for training
variants of SMPSO algorithm in order to solve the SPSP. Furthermore, this
paper presents an experimental set comparing the results achieved against the
results of the Nondominated Sorting Genetic Algorithm II (NSGA-II) [6], the
Nondominated Sorting Chemical Reaction Optimization (NCRO) [3] and the
standard SMPSO.

The HH used is based on the Grammatical Evolution (GE) [19] method.
This method uses a grammar to generate programs, in the context of Genetic
Programming (GP) [13]. In this work, the program is the SMPSO algorithm, and
the grammar defines the parameters to be used by the algorithm, like swarm size,
archive type, mutation operator, among others.

We propose nine experiments to validate the proposal. To that end, the
NSGA-II, the NCRO and the standard SMPSO meta-heuristics are used to con-
front their solutions with HH’s. The NSGA-II was chosen because it is one of the
most used meta-heuristics in the optimization literature and NCRO because in
previous work achieved better solutions than NSGA-II for the SPSP. The results
are evaluated considering the hypervolume (HV) metric [4], the Kruskal-Wallis
statistical test and the Bonferroni post-hoc method and suggest that the use of
hyper-heuristics is promising for generating good solutions for the SPSP.
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The remainder of this paper is as follows: Sect. 2 briefly presents related
works. Section 3 describes the hyper-heuristics and how they can generate
SMPSO instances to find solutions for the SPSP. Section 4 details the exper-
iments and its two phases (training and testing). Finally, Sect. 5 gives some final
considerations and directions for future research.

2 Related Work

Hyper-heuristics have been used in many fields of optimization [4]. Nevertheless,
in the context of SBSE, hyper-heuristics are addressed in a few works. Guizzo
et al. [7] propose an online hyper-heuristic to solve the Integration and Test Order
Problem. Their hyper-heuristic uses two different functions, the Choice Func-
tion (CF) and Multi-armed Bandit (MAB), to select the best low-level heuristic
throughout the evolutionary search. To perform the selection, the authors pro-
posed a new quality measure that takes into account the dominance concept and
the number of matings in the search.

As online search has a higher computational cost, Mariani et al. [16] propose
an offline hyper-heuristic to solve the same problem. This hyper-heuristic is based
on Grammatical Evolution and achieved better results than Guizzo et al. [7].

Basgalupp et al. [2] designed a hyper-heuristic to produce an effort prediction
tree and use instances from the real world. Their work concludes that hyper-
heuristics are capable of generating decision-trees that outperform the traditional
methods in the field of effort decisions.

Jia et al. [11] use an online hyper-heuristic to generate instances of Simulated
Annealing (SA) meta-heuristic in order to solve the Combinatorial Interactional
Testing (CIT). Whenever the set of tests changes, their hyper-heuristics learns
the changes and creates different SA instances. Their results showed that is
possible to outperform the existing results by using hyper-heuristics.

In order to obtain a good software modular structure, Kumari et al. [14]
propose a genetic algorithm based on hyper-heuristic that selects one heuristic
from a set of twelve low-level heuristics to solve the problem. The heuristics are
combinations of mutation, selection and crossover operators. Their outcomes
suggest that the hyper-heuristics can be used in order to achieve software with
high cohesion and low coupling.

Grammatical Evolution is also used in other fields of optimization. Sabar
et al. [21] show that, for Combinatorial Optimization Problems, GE outperforms
the traditional hyper-heuristics. In this work, we show that it is also possible to
achieve statistically equal or better solutions to the SPSP using hyper-heuristics
that generate SMPSO instances. The results suggest that SBSE is a field that
can be explored with the techniques found in the literature on hyper-heuristics.

3 Grammatical Evolution for SPSP Algorithm

Grammatical Evolution Hyper-Heuristic for the Software Project Scheduling
Problem, GE-SPSP, works by generating variants of the SMPSO meta-heuristic
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to solve the SPSP. We propose a grammar, in BNF’s form [17], that describes
parameters types and values of a configuration set for the SMPSO. To produce a
configuration set itself, the GE method decodes a given solution according to the
grammar. The HH works by applying the evolutionary operators to the solutions,
generating different configuration sets, and returning the best configuration set
found during the search.

3.1 Speed-Constrained Multi-objective Particle Swarm
Optimization

The SMPSO is a variant of the Multi-Objective Particle Swarm Optimization
(MOPSO) meta-heuristic, proposed in Nebro et al. [18], and it is inspired on
the social behavior of birds when searching for food in a group. In SMPSO,
each solution is called a particle and the entire population is called a swarm.
This characteristic forces the search to be influenced by the local best or the
global best. In order to assure the convergence of the algorithm, SMPSO uses a
velocity operator that moves each particle in the search space. However, once the
velocity may become too high and cause erratic movements, SMPSO introduces a
velocity restriction that prevents this event. An archive is used to maintain every
non-dominated solution found during the search. The archive is bound and it is
necessary to define the archive type and size. Also, SMPSO applies a mutation
procedure to avoid fast convergence. In the end, the algorithm returns a set
of non-dominated solutions. Thus, to configure SMPSO, four main parameters
must be configured: swarm size, mutation operator, archive size and type.

3.2 The Grammar

The proposed algorithm explores the different configurations of the parameters
discussed above. To do so, the combination of these parameters is written in
grammar in BNF’s form. Figure 1 presents the grammar of our problem. The first
production, denoted by < SMPSO >, defines the parameters to be explored by
the hyper-heuristic: swarm size, mutation operator, archive size and type.

Here, we consider swarm sizes of 50, 75, 100 and 125 as these are the most
used values in the literature. The mutation operators comprise the choice of
a mutation and its probability. We consider three kinds of mutations: polyno-
mial mutation (PM), uniform (UM) and simple random (SR). As mutation can
severely affect the evolutionary search, we gave the hyper-heuristic the capacity
to be wider whenever good results are found; hence we defined 11 choices of
probability, where N is the number of variables of the problem. The initializa-
tion rule defines whether the generated meta-heuristic will create a fully random
population or will follow a parallel diversified strategy.

An archive is defined as a set that stores the best non-dominated solutions
found during the search. In our grammar, its size can vary from 0, swarmSize,
1.5 ∗ swarmSize, and to 2 ∗ swarmSize. When the archive is full, new solutions
may replace bad ones based on an established criteria. In our proposal, we have
defined two strategies to maintain the solutions inside the archive: by ranking and



Solving the Software Project Scheduling Problem with Hyper-heuristics 403

by diversity. The ranking strategy uses information about the Pareto dominance
of a solution in relation to another one (Dominance Rank, Strength or Depth) or
by its fitness value. The diversity strategy establishes which solution is ordered
first while the latter by its contribution to diversity when compared to the others.
In case of a tie, the archive considers which one contributes more to a diversity
strategy by using the crowding distance (CD), k-th nearest neighbor (KNN),
adaptative grid (AG) or hypervolume contribution (HC).

Fig. 1. Grammar used in this work.

3.3 GE-SPSP Algorithm

The GE-SPSP template is shown in Algorithm 1. The GE is a Genetic Pro-
gramming (GP) variant procedure that uses the grammar in Fig. 1 to guide the
evolutionary search of the HH. This is done by mapping each individual X of
the HH into a fully configured SMPSO. In GE, the individual X is a chromo-
some, which is usually represented as an integer array. To reach a fully configured
SMPSO, GE keeps decoding the genes by selecting and transforming an abstract
value, i.e a rule, into a concrete value, a terminal. A terminal can be a parameter
value or a parameter type. Every individual belonging to S is then converted
to an SMPSO variant and solves the SPSP. The SPSP result is assigned to the
SMPSO instance according to some metric. These are the steps executed in lines
1 − 3 in Algorithm 1. Next, the HH selects the best individuals of S and apply
evolutionary steps (crossover, mutation, prune and duplication) in order to gen-
erate new individuals (descendants) from the previous individuals that will lead
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to new SMPSO configurations. The initial steps are repeated in lines 7 and 8,
and S is updated with the best individuals generated at each iteration until
reaching the stopping criterion. In the end, the HH returns the configuration set
that reached the best value according to the metric used.

4 Experiments

The experiments were divided into two parts. The first one is the training phase,
where we executed GE-SPSP nine times in order to get nine different SMPSO
configuration sets. Executing GE-SPSP more than once is necessary to cre-
ate a substantial sample for the statistical validation. Since our computational
resources are limited, we fixed nine executions as the maximum.

Algorithm 1. Template of the hyper-heuristic
Data: Grammar
Result: The best meta-heuristic found

1 Let S be the set of the initial population;
2 Map each individual X of S to a parameter set by using the grammar;
3 Evaluate each meta-heuristic configured according each X to the problem;
4 while Stopping Criteria not Achieved do
5 X = Select the Bests Individuals of S;
6 Apply operators in X, in the order: crossover, mutation, prune and

duplication;
7 Map each individual X of S to a parameter set;
8 Evaluate each meta-heuristic configured according each X to the problem;
9 Update S with individuals of X;

10 end

Next, in the testing phase, each one of the nine configuration sets executed
the SPSP thirty times, comparing the obtained results against each other to see
the best configuration set. To validate our hypothesis, we compare the achieved
results against the ones obtained by NCRO, NSGA-II and the standard SMPSO.
We use the Kruskal-Wallis test to assert if there is a statistical difference between
the results and the Bonferroni post-hoc test to see which groups differ. Before
the training, however, we defined the SPSP instance and the metric to evaluate
the meta-heuristics.

4.1 Algorithms and Parameters

The parameters for GE-SPSP were defined after empirical evaluations and are
presented in Table 1. We fixed the population size to 70 individuals and the
stopping criterion to 10, 000 evaluations. The other parameters were chosen to
respect the characteristics of the solution. Since the individuals of the GE-SPSP
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are represented as integer arrays, the mutation and crossover operators must be
able to work with such representations. The pruning and duplication operators
are responsible for the length of the individual, by decreasing or increasing the
array size, respectively. Finally, we selected the binary tournament operator for
the selecting phase.

The NCRO and NSGA-II are both bio-inspired meta-heuristics. NCRO simu-
lates the interactions and transformations of molecules inside a chemical reaction,
while NSGA-II mimics the genetic mechanism. They have the same algorithm
scheme with differences in the details. NCRO updates its population with four
different operations and does not have a selection operator; NSGA-II uses three
operators to modify the population, but both meta-heuristics use a nondomi-
nated sorting to maintain the best individuals during the search. In our exper-
iments, both algorithms have a population of 100 individuals and stop their
execution after 100, 000 evaluations. They also have the same parameters for
mutation and crossover: PM (p = 1/L) and simulated binary crossover (SBX),
respectively. For the selection operator, NSGA-II also uses the binary tourna-
ment operator. SMPSO also have a population size of 100 individuals, a stop
criterion of 250 evaluations and the CD archive with 100 individuals.

Table 1. Configuration set of GE-SPSP, NCRO and NSGA-II used in the experiments.

Parameter GE-SPSP NSGA-II SMPSO NCRO

Population 70 100 100 100

Stop criterion 10, 000 100, 000 250 100, 000

Mutation Integer, p = 0.01 PM, p = 1/L PM, p = 1/L PM, p = 1/L

Crossover Single point SBX, p = 0.9, λ = 20 − SBX, p = 0.9, λ = 20

Selection Binary tournament Binary tournament − −
Pruning p = 0.01, index = 10 − − −
Duplication p = 0.01 − − −
Kinect energy − − − 10, 000

Collision type − − − 0.5

Kinect energy loss − − − 0.2

Synthesis thres. − − − 0.0

Decomp. thres. − − − 0.0

Archive type/Size − − CD, 100 −

4.2 SPSP Instance

The SPSP instance represents one possible scenario in a software project. In
summary, an instance contains a set of employees and a set of tasks, as described
in [1]. Luna et al. [15] present several instances for SPSP. We select the one
having sixteen tasks and eight employees. This choice was influenced by our
computational resources, as the running time is influenced by the size of the set
of employees/tasks.
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4.3 Metrics

To assert the quality of the solutions generated by each multi-objective meta-
heuristic, we used the hypervolume quality indicator [4]. This metric considers
both convergence and diversity of the Pareto front (PF) returned by the algo-
rithm in relation to a reference point in the objective space. As the SPSP have
two objectives function within the interval [0, 1], our nadir point is (1, 1).

4.4 Training Phase

After running GE-SPSP nine times, nine different configuration sets were formed.
To return the best configuration set found during the search, GE-SPSP tested
10, 000 other configuration sets. The best configuration set of each execution is
presented in Table 2. By analyzing them, we can see that they do not have many
differences from each other; moreover, GE-SPSP converges at the end of each
execution. It might be that these combination sets and its variations can actually
be the best configurations for the SPSP. The differences are concentrated in the
swarm size, iterations, mutation, and initialization. The major difference between
the archive types is that all configuration sets from ALG 0 to ALG 7 use the
AG archive, while the CD archive is used in ALG 8.

Table 2. Configuration set generated at each execution of the training.

Instance Population Iterations Mutation Archive Initialization

ALG 0 125 200 PM, p = 0.1 AG, 125 Aleatory

ALG 1 125 200 SR, p = 0.5 AG, 150 Aleatory

ALG 2 100 250 PM, p = 0.05 AG, 120 Parallel diversified

ALG 3 100 250 UM, p = 0.1 AG, 120 Aleatory

ALG 4 125 200 PM, p = 0.7 AG, 150 Aleatory

ALG 5 125 200 PM, p = 0.1 AG, 150 Aleatory

ALG 6 100 250 PM, p = 0.1 AG, 100 Aleatory

ALG 7 125 200 PM, p = 0.01 AG, 120 Parallel diversified

ALG 8 100 250 PM, p = 1/L CD, 125 Aleatory

4.5 Testing Phase

In the testing phase, each meta-heuristic used in this work was independently
executed thirty times. We obtained one Pareto front for each execution for each
meta-heuristic. In the end, each meta-heuristic had its thirty fronts merged, and
the repeated points or the dominated ones were excluded. Therefore, a front of
a meta-heuristic is composed of the bests points found throughout the search
and it is called PFknow. The true Pareto front for the SPSP is not known.
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Due to legibility reasons, in Fig. 2 we present only the PFknow of ALG 8
and ALG 4, the best and worse SMPSO generated, respectively. In addition,
we also include the PFknow of NCRO, NSGA-II and the original SMPSO. The
PFknow is in the form of a Cartesian plane since the objectives are represented
in each axis. Since SPSP is a minimization problem, solutions that are closer to
the origin of the axes are classified as the best ones.

The PFknow of ALG 8 is the one with more diversification in its solutions,
in terms of the project cost. It achieves solutions with the project cost varying
between [1.59 × 106, 1.75 × 106]. On the other hand, ALG 4 could not generate
solutions with project cost less than 1.63×106. Its PFknow is composed of fewer
points than the others in the graphic. We can observe that ALG 8 is indeed
the best metaheuristic, in terms of the hypervolume. Such result is presented
in Table 3b, showing that ALG 8 achieved a HV value of 0.923, while the oth-
ers generated metaheuristics varied within the interval [0.65, 0.70]. The biggest
difference between the configuration sets is the archive type. ALG 8 uses the
Crowding Archive, that has the property of maintaining the divergence between
the solutions. This single difference enhances the performance, maximizing the
HV value.
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Fig. 2. PFknow generated by ALG 4, ALG 8, NCRO, NSGA-II and SMPSO.

4.6 Comparison Against Other Meta-Heuristics

When comparing with the other meta-heuristics, we observe that NCRO and
NSGA-II have more success on minimizing the project makespan. Considering
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Fig. 2, we can see that their performance was similar, and this is related to both
capability of convergence. The PFknow of NCRO does not have any solution
with makespan above 100, dominating almost all PFknow of ALG 4, for example.
Specifically to NCRO, our choice of configuration favored the mutation operator,
and thus this has implied in a better exploitation of the local space. Coello
et al. [5] details the reasons for the convergence of NSGA-II. Table 3b shows
that NCRO and NSGA-II achieved a HV of 0.885 and 0.817, respectively.

The SMPSO had a similar performance in relation to ALG 8, although did
not achieve the same spreadness. The former achieves a HV of 0.830 while the
last a HV of 0.923. By analyzing the PFknow of SMPSO and ALG 8, it is dif-
ficult to see differences within the region of project cost between the interval
[1.64 × 106; 1.74 × 106], but as the cost is minimized, ALG 8 shows more ability
to explore the search area. The differences between these two metaheuristics are
in the details. ALG 8 can handle better the mutation and thus can generate
solutions with lower costs. It also has a maximum archive capacity. The SMPSO
has a maximum of 100 solutions, while ALG 8 can store 125 solutions. The fact
that these two metaheuristics achieve the bests results in the experiments raises
the hypothesis that, at least using the proposed grammar in this work, the con-
figuration set of ALG 8 is the one that probably generates more nondominated
solutions.

Table 3. Average and Standard Deviation achieved by each algorithm in the experi-
ments.

(a)

Algorithm Average Standard Deviation

NCRO 0.885 0.02
NSGA-II 0.817 0.02
SMPSO 0.830 0.04
ALG 0 0.677 0.05
ALG 1 0.68 0.05
ALG 2 0.691 0.04

(b)

Algorithm Average Standard Deviation

ALG 3 0.680 0.05
ALG 4 0.650 0.05
ALG 5 0.661 0.05
ALG 6 0.704 0.04
ALG 7 0.684 0.54
ALG 8 0.923 0.02

Table 4. Bonferroni post-hoc test p-values results.

ALG 4 ALG 8 NCRO NSGA-II

ALG 8 < 2e− 16 − − −
NCRO < 2e− 16 7.7e− 06 − −
NSGA-II 2.1e− 14 < 2e− 16 < 2e− 16 −
SMPSO < 2e− 16 < 2e− 16 8.5e− 11 0.26

To validate our work, we perform the Kruskal-Wallis test. With a significance
level of 0.05, the test stated that there is a significant difference between the
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metaheuristics results. We also performed the Bonferroni post-hoc test (Table 4)
to assess if there are differences between the metaheuristics of Fig. 2. Indeed,
ALG 8 produced a statistical difference and better PFknow than the others meta-
heuristics.

There are some points to consider about GE-SPSP. It takes eight execu-
tions to generate a configuration set as ALG 8, that outperforms the results
from conventional meta-heuristics as NSGA-II and NCRO. Sometimes, GE-
SPSP produced bad configurations as ALG 4 and ALG 5 when compared in
the same scenario. In the real world, it could be the scenario where the software
engineer might urgently need a solution and the GE-SPSP would return a bad
configuration set. Another point to consider is the execution time. GE-SPSP
was implemented in Java programming language and required, on average, 20 h
of execution to give a result with a computer configured with 16 GB of DDR3
RAM and Intel Xeon Silver 4108 processor over an Ubuntu 16.08. This is a
drawback, as this time could not be available to the project manager. However,
we believe that this required time can be reduced with improvements in code
and design optimizations. Nevertheless, GE-SPSP is still a viable approach, once
that ALG 8 outperforms the results and even the worst solutions are not strictly
dominated by any other meta-heuŕıstic used in this experiments.

The SPSP execution time for a single run of NCRO, NSGA-II and SMPSO
required, on average, no more than one minute. Thus, to execute all 30 runs,
we had an average of 30 min per meta-heuristic. All meta-heuristics were also
implemented in Java programming language using the jMetal framework1.

5 Conclusions

This work investigated the SPSP problem by using a GE hyper-heuristic that
generates SMPSOs configuration sets that are applied to solve the SPSP. We
have compared these solutions with solutions of NCRO, NSGA-II, and the stan-
dard SMPSO heuristics. The results show that the hyper-heuristic can generate
configurations that it is statistically equal or better than the compared ones.

The results highlighted the impact that the configuration set can have on
the performance of the meta-heuristic. The SMPSOs variants generated by the
hyper-heuristic are similar in several aspects. However, the main differential of
the configuration that outperforms the existing results is the archive type. Hence,
these experiments suggest that archives play a central role in the final result and
thus, must be selected carefully.

As future work, we intend to improve the GE-SPSP in order to reduce the
execution time. We also intend to model GE-SPSP as a framework in order to
work with any kind of meta-heuristic, such as PAES or NSGA-II. We expect that
this approach would increase the variability of the results. An immediate future

1 jMetal is a Java-based framework for multi-objective optimization and it is available
in https://github.com/jMetal/jMetal.

https://github.com/jMetal/jMetal
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work is to investigate more SPSP instances in order to consolidate these pre-
liminary results. The grammar could also be expanded, adding more parameters
such as different type of archives to be searched.
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Abstract. This paper presents an improved effective particle swarm opti-
mization algorithm named SCPSO. In SCPSO, in order to overcome disad-
vantages connected with premature convergence, a new approach associated
with the social coefficient is included. Instead of random selected social coef-
ficients, the author has proposed dynamically changing coefficients affected by
experience of particles. The presented method was tested on a set of benchmark
functions and the results were compared with those obtained through MPSO-
TVAC, standard PSO (SPSO) and DPSO. The simulation results indicate that
SCPSO is an effective optimization method.

Keywords: Optimization � Particle swarm optimization �
Acceleration coefficient � Improved particle swarm optimization

1 Introduction

Particle swarm optimization (PSO) is a method modeled on the behavior of the swarm
of insects in their natural environment. It was developed by Kennedy and Eberhart in
1995 [1–3] and nowadays has been successfully applied in many areas of science and
engineering connected with optimization [4–10]. However, likewise other evolutionary
optimization methods, PSO can experience some problems related to the convergence
speed and escaping from a local optima [11]. Important parameters that affect the
effectiveness of PSO are acceleration coefficients called cognitive and social coeffi-
cients. The cognitive coefficient affects local search [12] whereas the social coefficient
maintains the right velocity and direction of global search. A fine tuning social coef-
ficient can help overcome disadvantages connected with premature convergence and
improve the efficiency of PSO.

Many various approaches at the right choice of coefficients have been studied.
Eberhart and Kenedy [13] recommended a fixed value of the acceleration coefficient. In
their opinion, both social and cognitive coefficients should be the same and equal to
2.0. Ozcan [14] and Clerc [15] in their research agreed that the coefficients should be
the same but proved they should rather be equal to 1.494 what results in faster con-
vergence. According to Venter and Sobieszczański [16], the algorithm performs better
when coefficients are different and propose to applied a small cognitive coefficient (c1 =
1.5) and a large social coefficient (c2 = 2.5). A different approach has been proposed by
Ratnaweera et al. [17]. The authors examined the efficiency of a self-organizing PSO
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with time-varying acceleration coefficients. They concluded that the PSO performance
can be greatly improved by using a simultaneously decreasing cognitive coefficient and
an increasing social coefficient. Hierarchical PSO with jumping time-varying acceler-
ation coefficients for real-world optimization was proposed by Ghasemi et al. [18]. The
particle swarm optimization with time varying acceleration coefficients were also
explored in [19–22]. A different approach based on the nonlinear acceleration coeffi-
cient affected by the algorithm performance was recommended by Borowska [23].
According to Mehmod et al. [24] algorithm PSO performs faster with fitness-based
acceleration coefficients. PSO based on self-adaptation acceleration coefficient strategy
was suggested by Guo and Chen [25]. A new model on social coefficient was presented
by Cai et al. [26]. In order not to lose some useful information inside the swarm, they
proposed to use the dispersed social coefficient with an information index about the
differences of particles. Additionally, to provide a diversity of the particles, a mutation
strategy was also introduced. A novel particle swarm concept based on the idea of two
types of agents in the swarm with adaptive acceleration coefficients were considered by
Ardizzon et al. [27].

This paper presents an improved effective particle swarm optimization algorithm
named SCPSO. In SCPSO, a new approach connected with the social coefficient is
proposed in order to better determine the velocity value and search direction of the
particles and, consequently, to improve the convergence speed as well as to find a
better solution. The presented method was tested on a set of benchmark functions and
the results were compared with those obtained through MPSO-TVAC with a time-
varying acceleration coefficient [17], the standard PSO (SPSO) and DPSO with the
dispersed strategy [26]. The simulation results indicate that SCPSO is an effective
optimization method.

2 The Standard PSO Method

In the PSO method, the optimization process is based on the behavior of the swarm of
individuals. In practice, a swarm represents a set of particles each of which is a point in
the coordinate system that possess a position represented by a vector Xi = (xi1, xi2, …,
xiD) and a velocity represented by a vector Vi = (vi1, vi2, …, viD). In the first step of the
algorithm, both the position and velocity of each particle are randomly generated. In
subsequent iterations, their positions and velocities in the search space are updated
according to the formula:

Vi ¼ wVi þ c1r1ðpbesti � XiÞþ c2r2ðgbest � XiÞ ð1Þ

Xi ¼ Xi þVi ð2Þ

where the inertia weight w controls the impact of previously found velocity of particle
on its current velocity. Factors c1 and c2 are cognitive and social acceleration coeffi-
cients, respectively. They decide how much the particles are influenced by their best
found positions (pbest) as well as by the best position found by the swarm (gbest). The
variables r1 and r2 are random real numbers selected between 0 and 1. In each iteration,
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the locations of the particles are evaluated based on the objective function. The
equation of the objective function depends on an optimization problem. Based on the
assessment, each particle keeps its knowledge about the best position that has found so
far and the highest quality particle is selected and recorded in the swarm. This
knowledge is updated in each step of the algorithm. In this way particles move in the
search space towards the optimum.

3 The SCPSO Strategy

The proposed SCPSO is a new variant of the PSO algorithm in which the new approach
connected with the social acceleration coefficient has been introduced. In the original
PSO, to find an optimal value, particles follow two best values: the best position found
by the particle itself and the best value achieved by the swarm. The direction and rate of
particle speed are affected by the acceleration coefficients, that are the real numbers, the
same in a whole swarm and randomly selected between 0 and 1. It implies that some
information connected with swarm behaviours can be lost or not taken into account.
Owing to this, a new approach for calculating the social coefficient has been intro-
duced. The value of this coefficient is not constant but is changing dynamically as a
function of the maximal and minimal fitness of the particles. It also depends on the
current and total numbers of iterations. In each iteration, a different social coefficient is
established. The equations describing this relationship are as follows:

c2 ¼ c2 þððfmin=fmaxÞk�1Þ=itermax ð3Þ

Vi ¼ wVi þ c1r1ðpbesti � XiÞþ c2r2ðgbest � XiÞ ð4Þ

where a parameter k determines the current number of iterations, fmin and fmax are the
values of maximal and minimal fitness in the current iteration, respectively, itermax
describes the maximal number of iterations. To secure the diversity of the particles and
help omit local optima, the mutation operator is applied. The proposed approach helps
maintain the right velocity values and search direction of the particles and improves the
convergence speed.

4 Simulation Results

The presented SCPSO method was tested on the benchmark functions described in
Table 1. The results of these tests were compared with the simulation results of the
dispersed particle swarm optimization (DPSO) [17], the standard PSO and the modified
version (MPSO-TVAC) with a time-varying accelerator coefficient [26].

For all tested functions, the applied population consisted of 100 particles with four
different dimension sizes D = 30, 50, 100 and 200, respectively. The inertia weight was
linearly decreasing from 0.9 to 0.4. All settings (the acceleration coefficients and their
values) regarding the MPSO-TVAC and DPSO were adopted from Ratnawera [17] and
Cai [26], respectively. For the modified MPSO-TVAC, c1 coefficient is decreasing
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from 2.5 to 0.5. The value of c2 coefficient is increasing from 0.5 to 2.5. In the DPSO
algorithm, c1 and cup coefficients are equal to 2.0 while the value of clow coefficient is
set to 1.0. Detailed settings of the parameter values of all tested methods were collected
in Table 2. The details of MPSO-TVAC and DPSO used for comparison can be found
in [17] and [26], respectively. For each case, the simulations were run 20 times. The
maximum number of iterations depends on the dimension and was equal to 1500 for 30
dimensions, 2500 for 50 dimensions, 5000 for 100 dimensions, and 10000 for 200
dimensions, respectively.

The exemplary results of the simulations are shown in Tables 3, 4, 5, 6 and 7. The
presented values have been averaged over 20 trials.

The results of the performed simulations show that the SCPSO algorithm with the
proposed approach achieves superior optimization performance over the remaining
tested algorithms. In almost all considered cases, the average function values found by
the SCPSO algorithm were lower than those achieved by the remaining tested methods.
The mean values of Rastrigin, Brown and Schwefel problems achieved by the SCPSO
are lower, despite higher (in most cases) standard deviations. For Ackley function, in
almost all cases (except the case with 30 dimension) the mean values achieved by
SCPSO were lower than those achieved by the other algorithms. The standard devia-
tions were also lower, which indicates greater stability of SCPSO. For 30 dimensions,
the outcomes found by SCPSO were a bit worse than the mean values found by MPSO-
TVAC but better than the results achieved by DPSO and SPSO.

Table 1. Optimization test functions

Function Formula Minimum Range of x

Sphere
f1 ¼

Pn

i¼1
x2i

0 (–100, 100)

Schwefel
f3 ¼

Pn

i¼1
�xisin

ffiffiffiffiffiffi
xij jp� � 420.9687 (–500, 500)

Ackley
f4 ¼ �20exp �0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

Pn

i¼1
x2i

s !

� exp 1
n

Pn

i¼1
cosð2pxiÞ

� �

þ 20þ e
0 (–32, 32)

Rastrigin
f5 ¼

Pn

i¼1
x2i � 10 cos 2pxið Þþ 10
� � 0 (–5.12, 5.12)

Brown
f6 ¼

Pn�1

i¼1
½ x2i
� �x2iþ 1 þ 1Þ þ x2iþ 1

� �x2i þ 1Þ� 0 (–1, 4)

Zakharov
f7 ¼ �P

n

i¼1
xi þ

Pn

i¼1

i
2 xi

� �2

þ Pn

i¼1

i
2 xi

� �4 0 (–10, 10)

Penalized
f8 ¼ p

n
10 sin2 px1ð Þþ� Xn�1

i¼1

xi � 1ð Þ2½1þ 10 sin2 pxiþ 1ð Þ�

þ xn � 1ð Þ2gþ
Xn

i¼1

u xi; 10; 100; 4ð Þ;

u z; a; k;mð Þ ¼
k z� að Þm; z[ a;

0; �a� z� a;

k �z� að Þm; z\� a:

8
><

>:

0 (–50, 50)
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The proposed approach extends the adaptive capability of the particles and
improves their search direction. The mutation strategy helps SCPSO maintain diversity
between particles in the search space and facilitates the avoidance of the overcome
premature convergence problem.

The increase in the number of particles (with the same dimension) resulted in faster
convergence of the algorithms and allowed to find better optimal values. In turn, the
decrease in the number of particles in the swarm caused the increase in dispersion of
the results, and deterioration of the results.

Table 2. Parameter values of algorithms.

Parameter SPSO MPSO-TVAC DPSO SCPSO

w 0.9-0.4 0.9-0.4 0.9-0.4 0.6-0.4
c1 2.0 2.5-0.5 2.0 1.7
c2 2.0 0.5-2.5 – Dynamically changing
cup – – 2.0 –

clow – – 1.0 –

r1 [0, 1] [0, 1] [0, 1] [0, 1]
r2 [0, 1] [0, 1] [0, 1] [0, 1]
D 30, 50, 100, 200 30, 50, 100, 200 30, 50, 100, 200 30, 50, 100, 200

Table 3. Performance of the MPSO-TVAC, DPSO, SPSO and SCWPSO algorithms for
Schwefel 2.26 function.

Dimension Algorithm Mean value Standard dev.

30 SPSO –6.72E+003 1.02E+003
MPSO-TVAC –6.62E+003 6.15E+002
DPSO –8.58E+003 4.63E+002
SCPSO –8.61E+003 4.55e+002

50 SPSO –1.01E+004 1.32E+003
MPSO-TVAC –9.77E+003 7.92E+002
DPSO –1.38E+004 7.35E+002
SCPSO –9.76E+005 7.43E+002

100 SPSO –1.81E+004 2.20E+003
MPSO-TVAC –1.79E+004 1.51E+003
DPSO –2.72E+004 1.19E+003
SCPSO –3.01E+004 1.32E+003

200 SPSO –3.13E+004 4.21E+003
MPSO-TVAC –4.02E+004 4.36E+003
DPSO –5.51E+004 1.99E+003
SCPSO –5.62E+004 2.47E+003
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Table 4. Performance of the MPSO-TVAC, DPSO, SPSO and SCPSO algorithms for
Rastrigin function.

Dimension Algorithm Mean value Standard dev.

30 SPSO 1.99E+001 5.17E+000
MPSO-TVAC 1.60E+001 4.06E+000
DPSO 6.40E+000 5.07E+000
SCPSO 6.08E+000 5.13E+000

50 SPSO 3.99E+001 7.93E+000
MPSO-TVAC 3.64E+001 6.52E+000
DPSO 1.53E+001 5.58E+000
SCPSO 1.37E+001 6.32E+000

100 SPSO 9.37E+001 9.96E+000
MPSO-TVAC 8.81E+001 9.12E+000
DPSO 4.14E+001 7.33E+000
SCPSO 4.20E+001 7.86E+000

200 SPSO 2.23E+002 1.74E+001
MPSO-TVAC 1.94E+002 3.08E+001
DPSO 9.98E+001 1.14E+001
SCPSO 9.96E+001 1.57E+001

Table 5. Performance of the MPSO-TVAC, DPSO, SPSO and SCPSO algorithms for
Ackley function.

Dimension Algorithm Mean value Standard dev.

30 SPSO 7.59E–006 1.04E–005
MPSO-TVAC 6.51E–014 8.53E–014
DPSO 4.78E–011 9.15E–011
SCPSO 4.25E–012 7.89E–012

50 SPSO 1.70E–004 1.28E–004
MPSO-TVAC 9.95E–005 1.73E–004
DPSO 1.58E–008 1.78E–008
SCPSO 1.18E–009 1.64E–008

100 SPSO 3.31E–001 5.01E–001
MPSO-TVAC 4.69E–001 1.91E–001
DPSO 3.68E–007 1.63E–007
SCPSO 3.27E–008 1.85E–007

200 SPSO 2.13E–000 2.19E–001
MPSO-TVAC 6.94E–001 4.08E–001
DPSO 9.49E–007 4.07E–007
SCPSO 9.22E–008 4.63E–007
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Table 6. Performance of the MPSO-TVAC, DPSO, SPSO and SCPSO algorithms for
Brown function.

Dimension Algorithm Mean value Standard dev.

30 SPSO 8.79E+010 2.96E+005
MPSO-TVAC 1.60E+001 4.06E+000
DPSO 6.40E+000 5.07E+000
SCPSO 6.08E+000 5.13E+000

50 SPSO 1.06E+004 1.03E+002
MPSO-TVAC 3.64E+001 6.52E+000
DPSO 1.53E+001 5.58E+000
SCPSO 1.37E+001 6.32E+000

100 SPSO 6.14E+007 2.48E+003
MPSO-TVAC 7.34E+005 9.12E+000
DPSO 4.51E+003 7.33E+000
SCPSO 4.23E+002 7.86E+000

200 SPSO 8.73E+012 1.74E+010
MPSO-TVAC 6.91E+010 3.26E+009
DPSO 5.34E+009 2.14E+007
SCPSO 4.89E+009 3.48E+007

Table 7. Performance of the MPSO-TVAC, DPSO, SPSO and SCPSO algorithms for
Zakharov function.

Dimension Algorithm Mean value Standard dev.

30 SPSO 5.42E+002 1.04E–005
MPSO-TVAC 5.03E–004 3.67E–003
DPSO 4.11E–005 3.45E–003
SCPSO 3.75E–005 3.09E–003

50 SPSO 1.53E+003 3.91E+001
MPSO-TVAC 7.32E–001 8.57E–002
DPSO 6.59E–002 7.88E–003
SCPSO 6.17E–002 5.69E–003

100 SPSO 7.48E+004 2.73E+002
MPSO-TVAC 6.65E+003 5.26E+002
DPSO 5.73E+002 3.84E+002
SCPSO 4.51E+002 2.77E+002

200 SPSO 7.19E+005 8.47E+003
MPSO-TVAC 6.84E+004 4.53E+002
DPSO 7.16E+003 5.02E+002
SCPSO 6.03E+003 4.54E+002
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5 Summary

In this paper, a novel version of particle swarm optimization algorithm called SCPSO
has been implemented. The changes are connected with social cooperation and
movement of the particles in the search space and has been introduced to improve the
convergence speed and to find a better quality solution. The influence of the introduced
changes on a swarm motion and performance of the SCPSO algorithm was studied on a
set of known benchmark functions.

The results of the described investigations were compared with those obtained
through MPSO-TVAC with time-varying accelerator coefficient, the standard PSO and
the dispersed particle swarm optimization (DPSO). The proposed strategy improved the
algorithm performance. The new algorithm was more effective over MPSO-TVAC,
SPSO and DPSO in almost all cases.
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Abstract. In this paper, a newly proposed setting of a diversity-based
adaptive mechanism of population size setting in differential evolution
(DE) is experimentally studied. Seven state-of-the-art adaptive DE vari-
ants and classic DE are used in the experiments where 22 real-world prob-
lems are solved. The obtained results are assessed by statistical tests. The
diversity-based approach often performs substantially better compared
with the original fixed population size setting or linearly decreasing pop-
ulation size. A newly proposed setting of the control parameter performs
at least the same or better than the original setting.

Keywords: Differential evolution · Population diversity ·
Acceptable interval · Experimental comparison · Real-world problems

1 Introduction

Differential evolution (DE) introduced by Storn and Price in [10] is an evolu-
tionary algorithm primarily proposed for real-parameter optimisation problems.
A population P is represented by a set of real parameters vectors (points) xi,
xi = (x1, . . . , xD), i = 1, . . . , N , where D is the dimension of the problem
to be solved and N is the population size. An initial population P is gener-
ated randomly, uniformly distributed in the boundary constrained search space
Ω =

∏D
j=1[aj , bj ], aj < bj . The objective function f(x) is defined in all x ∈ Ω

and the point x∗ fulfilling the condition f(x∗) ≤ f(x), ∀x ∈ Ω is the solution
of the global optimisation problem.

The population is developed by application of evolutionary operators as
mutation, crossover, and selection. A new trial point yi is created from a mutant
point vi generated by using a kind of a mutation strategy and from the current
point xi of the population by the application of the crossover. If f(yi) ≤ f(xi),
the better individual yi replaces the current vector in the successive generation.

The performance of the DE algorithm is strongly dependent on the control
parameters setting appropriate for the problem to be solved. The proper setting
is possible to be found by the trial-and-error method but this is time-consuming.
There are many adaptive variants of DE [3,5]. However, most of the proposed
c© Springer Nature Switzerland AG 2019
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adaptive DE variants modify the values of F and CR, change the DE strategy
but use a fixed population size. A fixed population size is also often used in real
applications. Only a few papers deal with the adaptation of the population size
in spite of the fact that the population size is also a very important parameter of
DE which influences the efficiency of the search. The latter DE with population
size adaptation is used in a very popular jSO algorithm [1].

In our recent experiments [8,9], a new mechanism for control of the popula-
tion size was applied in several well-known algorithms. The mechanism uses a
current diversity of the population, and our results show that the real diversity
level differs from the required one. This is the main reason for enhancing this
mechanism.

In this study, a recently proposed method of the population-size adaptation
is enhanced to increase its efficiency. The method is based on monitoring of
the population diversity in each generation and increasing or decreasing of the
population size to keep the population diversity near the value which is expected
desirable for convergence.

The rest of the paper is organised as follows. The known methods of
population-size adaptation and recently proposed diversity-control mechanism
are surveyed in Sect. 2. New ideas for better control of population diversity are
proposed in Sect. 2.1. Experimental settings and the results of experiments are
presented in Sects. 3 and 4, and Sect. 5 conclude the paper.

2 Mechanism Controlling Diversity of Population

Teo introduced a self-adaptive approach to change the size of the population
in DE [12]. The initial size is set to 10 × D, and it is self-adapted at the end
of each generation. There are distinguished two kinds of the proposed method
where both use a specific mutation strategy.

Brest et al. proposed a dynamic approach to adapt the population size in
DE [2]. The idea is based on the reduction of the population size in several
(pmax = 4) stages. It means that the overall search process is divided into
four parts, distinguished by pmax − 1 reductions. In each reduction, half of the
individuals are removed from the population and then N/2 individuals survive
for the next generations. A better individual with a smaller function value from
each pair ({xi,xi+1}, i = 1, 3, 5, . . . , N − 1) is selected to the next stage.

Probably the most well-known approach of population size control is applied
in L-SHADE variant [11]. Tanabe and Fukunaga proposed a simple and efficient
idea. At first, a very big population size is set to prefer the exploration phase.
During the search process, the population size is linearly reduced to achieve the
least value N = 4 at the end of the run. The population size is controlled by
removing the worst individual (evaluated by cost function). The efficiency of
L-SHADE algorithm was confirmed by the first position at CEC 2014 sympo-
sium. The same ‘L’ approach was also used in another DE variants typically
derived from L-SHADE algorithm.

A comprehensive review of the population size setting in the DE algorithm is
provided by Piotrowski in [7]. Several different approaches are compared on two
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sets of problems. As supposed, the lower D, the lower the population size, and
the higher D, the higher the population size performs better. Better results are
provided by DE when N is set in accordance to D (i.e. N = 3×D or N = 5×D).
The best results are often achieved when an adaptive approach of the population
size setting is applied.

In the aforementioned approaches, only the function value of individuals plays
the role of decision criteria. In our recently proposed mechanism, the population
diversity is used to adapt population size in DE [9]. The estimate of the diversity
is based on a root square of an average square of the distance of individuals from
the centroid of the population (1).

div =

√
√
√
√ 1

N

N∑

i=1

D∑

j=1

(xij − x̄j)2, (1)

where x̄j is the mean of jth coordinate of the points in the current generation
of population P , N is the current size of population,

x̄j =
1
N

N∑

i=1

xij . (2)

When the initial population is created, the diversity is measured and labelled
as divinit. Then, it is used as a reference value in the definition of relative measure
divr of the diversity in the current generation of population (3),

divr =
div

divinit
. (3)

Relative number of currently depleted function evaluations is defined by (4).

FESr =
FES

MaxFES
, (4)

where FES is the current number of function evaluations and MaxFES is the
number of function evaluations allowed for the search. The size of the population
is changed depending on the current relative diversity. It is suggested to keep the
relative diversity divr near its required value rdivr linearly decreasing from value
1 at the beginning of the search to value 0 from the last tenth of the search (see
the dashed line in Fig. 1). It means to change the population size only when the
current relative diversity is lower than acceptable interval (AI ), i.e. (1 − AI) ×
rdivr or larger than (1 +AI) × rdivr. This AI× 100% acceptable interval serves
to extend the area where the current relative diversity is acceptable compared
with the required one (see the black solid lines in Fig. 1). In the last tenth, the
zero value is strictly required.

The divr characteristic is computed after each generation. The value of
parameter AI was set to 0.1 in all previous experiments. The size of the pop-
ulation is increased by 1 and a random point from the search space is added
when the divr is lower than 0.9 × rdivr. The population size is decreased by 1
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and the worst point is excluded when the divr is larger than 1.1 × rdivr. There
are minimal and maximal values of the population size used in the approach,
Nmin and Nmax. The search process starts with Ninit. Nmin = 8, Nmax = 5×D,
and Ninit = 50 are suggested and also used in our experiments in this paper (as
in [9]).

2.1 Newly Proposed Idea for Diversity-Control Mechanism

A setting of AI value significantly changes the resulting area where the current
relative diversity is accepted (see solid red lines in Fig. 1) and where the current
population size remains without an update. An increase of the AI value promises
a decreasing frequency of the population size update because the current relative
diversity is accepted in the wider area between the solid red lines (Fig. 1). There
are a lot of possible settings of the AI parameter to experimentally verify our
hypothesis. For simplicity, we set this parameter to a relatively strongly different
value, AI = 0.5. The results of the substantially different AI values (i.e. 0.1
and 0.5) demonstrate the sensitivity of the mechanism on the AI setting. If the
results of two extreme AI settings are performing similarly, the values of AI from
(0.1, 0.5) are also performing similarly. The proposed 50% acceptable interval is
experimentally tested and statistically compared with the original 10% setting.

Fig. 1. Required relative diversity rdivr and the area of allowed relative diversity (Color
figure online)

3 Experimental Settings

Seven well-known adaptive DE variants (details are in survey [3]) and classi-
cal (canonical) DE are used to compare the efficiency of the previous and the
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new setting of the AI parameter. The most frequently used linear population
size reduction is also applied. All four versions of all eight algorithms (original,
linear reduction, and two diversity based variants) are applied to a set of 22
real-world problems from a competition in Special Session on Real-Parameter
Numerical optimisation CEC 2011 [4]. The functions in the benchmark differ in
the computational complexity and in the dimension of the search space which
varies from D = 1 to D = 240, the dimensionality of most problems exceeds
D = 20. The labels of the test problems are taken from [4]. The test functions
are described in [4] in detail, including the experimental settings required for the
competition. This experimental setting is also used in our experimental compar-
ison. For each algorithm and problem, 25 independent runs were carried out.
The run of the algorithm stops if the prescribed number of function evaluation
MaxFES = 150000 is reached. Partial results of the algorithms after reaching one
third and two-thirds of MaxFES were also recorded. The point in the terminal
population with the smallest function value is the solution of the problem found
in the run.

For better orientation in the following results, the original versions of algo-
rithms are abbreviated ‘ORI’, variants with a linear population-size reduction
are labelled ‘LIN’, the proposed mechanism with AI = 0.1 is denoted by ‘D01’
and the newly proposed settings AI = 0.5 is marked by ‘D05’.

The control parameters of the adaptive DE variants are set to the recom-
mended values. The population size of the original algorithms is set to the same
value N = 90. A setting of the linear population size reduction mechanism follows
the original description Ninit = 18×D and Nmin = 4. The control parameters of
the proposed diversity-based mechanism are set Nmin = 8, Nmax = 5 × D (for
low dimension at least 10), and Ninit = 50. The classic DE algorithm used in
this experiment employs strategy DE/rand/1/bin with F = 0.8 and CR = 0.5.

4 Results of Experiments

All 32 variants of DE algorithms are compared on 22 problems, and the results
are assessed by statistical methods. All selected statistical tests used in this
study are described in more detail in [6]. Due to the amount of the results, the
basic characteristics of the algorithms are not presented. At first, the Friedman
non-parametric test providing an overall insight into the comparison of the algo-
rithms’ performance. The test was carried out on medians of minimal function
values at three stages of the search, namely after FES = 50, 000, 100, 000, and
150, 000 (see Table 1). The algorithms in columns are ordered from the most effi-
cient to the worst performing, based on the mean rank values in the final stage
(FES = 150,000).

The first three positions are for three SHADE variants with updating popu-
lation size, where mean ranks of diversity-based versions are substantially lower
compared with the popular L-SHADE algorithm. The order of the population-
size mechanisms follows several scenarios. Variants of SHADE, EPSDE, and jDE
have the best ranks for the diversity-based mechanism with newly used AI = 0.5.
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Table 1. Mean ranks from the Friedman tests at three stages of the search.

FES/Alg SHAD05 SHAD01 LSHADE EPSD05 b6e6rl EPSD01 CoBiD01 SHADE

50,000 6.1 8.4 21.2 10.3 11 11.5 13.3 8.7

100,000 7.1 8.8 18.3 10.1 10.5 10.5 12.9 10.5

150,000 7.6 7.9 9.5 11.3 11.5 11.8 12.9 12.9

FES/Alg CoD01 CoD05 EPSDE jDED05 IDE jDED01 LEPSDE b6e6D05

50,000 13.3 13.7 11.8 15.8 13.6 13.9 22.7 11.6

100,000 13.2 13 13.1 13.2 13.8 12.8 21.4 14.4

150,000 13.7 13.9 15 15.3 15.5 15.8 15.8 16

FES/Alg CoBiD05 b6e6D01 LjDE IDED05 CoDE CoBiDE LCoBiDE Lb6e6rl

50,000 11.6 12.9 24 12.3 17 16.8 24.2 22.2

100,000 14.4 14 22.6 13.4 15.9 16.3 23.6 20.7

150,000 16 16.1 16.6 16.8 16.9 17 17.1 17.6

FES/Alg jDE IDED01 LCoDE DED01 DED05 LIDE LDE DE

50,000 14.8 14 26.4 24.2 24.3 21.7 28.7 26.3

100,000 16 15 25.8 23.5 24.7 22 28.8 27.5

150,000 18.1 18.6 21.8 23.9 24 25.6 27.1 28.3

In CoBiDE, CoDE, and DE the best results achieves the mechanism with orig-
inal AI = 0.1 (in abbreviations of new enhanced algorithms ‘DE’ or ‘rl’ part
is omitted to keep the table compact). The original b6e6rl and IDE are better
with a static population size, which is in this study set N = 100. Six DE variants
out of eight have better results for the diversity-based mechanism with either
setting of AI compared with the results of the linear-based mechanism or static
N value. Notice that this test evaluates algorithms on 22 different problems and
therefore some algorithms perform better in some types of problems. The results
of the last stage (FES = 150, 000) are compared statistically for all settings of
N and each DE algorithm separately to show the efficiency of four different
population size approaches (Fig. 2). Each line represents mean ranks from one
application of the Friedman test. The first column of the plot (denoted ‘none’)
represents mean ranks of the original DE variants. The performance of the origi-
nal DE algorithms compared with three population mechanisms are very varied.
The fixed population has the best results for IDE and b6e6rl variants, whereas
SHADE with N = 100 has the worst results. The biggest difference from four
N settings is observed in the classic DE, where the diversity-based mechanism
with AI = 0.1 outperformed other three approaches. The results of the diversity-
based mechanism with newly proposed AI = 0.5 are very similar in all eight DE
variants, which generally perform rather better except for the classic DE.

Previous results provide an overall insight into algorithms’ performance
regarding all 22 real-world problems. A comparison of four different population
settings in each DE variant and each problem is assessed by the Kruskal-Wallis
non-parametric one-way ANOVA test. In Table 3, there are collected symbols
for statistical significance. When the significance level is lower than 0.001, a
symbol ‘***’ is used; for the significance values lower than 0.01, a symbol ‘**’;
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Table 2. Significant wins of four population size mechanisms from the Wilcoxon rank-
sum tests for all problems and algorithms.

Algorithm ORI/LIN ORI/D01 ORI/D05 LIN/D01 LIN/D05 D01/D05

b6e6rl 10/4 11/4 11/5 5/10 6/10 4/8

CoBiDE 6/7 6/10 5/11 2/11 1/12 3/6

CoDE 8/4 6/10 3/10 0/16 0/15 0/4

DE 6/6 1/12 1/15 3/9 2/15 3/1

EPSDE 9/3 5/9 5/10 3/11 3/12 1/2

IDE 8/0 14/1 8/3 0/13 0/14 0/8

jDE 3/14 3/7 4/4 7/10 5/11 5/5

SHADE 1/12 2/15 2/13 5/4 3/6 1/3

Total (%) 29/28.4 27.3/38.6 22.2/40.3 14.2/47.7 11.4/54 9.7/21

and similarly for the significance under 0.05, a symbol ‘*’. A symbol ‘≈’ repre-
sents a situation when there is no significant difference between the population
size settings. We can observe that problems T03 and T08 are solved similarly
by all proposed mechanisms. These problems have dimension levels D = 1 and
D = 7, and all algorithms in the comparison in all runs achieved the same
function values. Nevertheless, the information from Table 3 does not provide
a deeper insight into the population mechanisms individually. Therefore, non-
parametric two-sample Wilcoxon rank-sum tests are applied to compare all four

Fig. 2. Mean ranks of all versions of algorithms in the last stage from the Friedman
tests.
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Table 3. Significance of four different population settings from the Kruskal-Wallis
tests.

Fun D b6e6rl CoBiDE CoDE DE EPSDE IDE jDE SHADE

T01 6 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ≈ ∗ ∗ ∗ ∗ ∗ ∗
T02 30 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
T03 1 ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈
T04 1 ∗ ∗ ∗ ∗ ∗ ∗ ≈ ≈ ≈ ≈ ∗ ∗ ∗ ≈
T05 30 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
T06 30 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
T07 20 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ≈ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
T08 7 ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈
T09 126 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
T10 12 ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ≈ ∗ ≈ ≈
T11.1 120 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
T11.2 240 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
T11.3 6 ∗ ∗ ∗ ∗ ∗ ∗ ≈ ∗ ∗ ∗ ≈ ≈ ≈ ∗ ∗ ∗
T11.4 13 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ≈ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗∗
T11.5 15 ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ≈ ∗ ∗ ∗
T11.6 40 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
T11.7 140 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
T11.8 96 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗
T11.9 96 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗
T11.10 96 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
T13 26 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗
T14 22 ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

population settings for each algorithm and problem. The numbers of problems
where the population mechanisms win significantly are illustrated in Table 2.
The rows represent the DE algorithms, and the columns are for possible pairs of
the population mechanisms. For example, ‘ORI/LIN’ denotes the number where
the fixed population size performs better compared with the number where the
linear decrease of N performs better. The remaining number of 22 problems
from each cell of this table represents the problems where both approaches per-
form similarly. The last row of Table 2 contains the percentage representation
of the total wins of the population size mechanism involving all DE variants.
The three first columns state the ratios of the counts of the fixed population
settings (‘ORI’) with three other adaptive mechanisms. We can observe that
regarding all DE variants there is no difference between a fixed population size
and its linear decrease. The reason is that fixed N performs better for b6e6rl,
CoDE, EPSDE, and IDE, and the linear mechanism performs better for jDE
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and SHADE vice versa. A comparison of the diversity-based mechanism (AI =
0.1) with fixed N shows the supremacy of the proposed method. Only b6e6rl
and IDE perform better with fixed N = 100 setting. A similar situation is for
the newly proposed value of AI = 0.5 where the ratio is even more substantial.
It is interesting that this setting increases the performance of the IDE variant
compared with the fixed N value.

More interesting results are obvious from a comparison between the pro-
posed diversity-based mechanism and the linear decrease of N . The proposed
approach outperforms the ‘LIN’ mechanism. The situation for the SHADE vari-
ant is slightly balanced for the original setting AI = 0.1, but the newly proposed
AI = 0.5 outperforms the ‘linear’ variant. The most interesting results are in the
last columns of this table where a comparison of two AI settings is represented.
It is clear that the newly proposed value AI = 0.5 performs similarly or better
compared with the original setting. The most similar results are achieved for the
jDE variant. The results of the CoDE and IDE variants show the increase of the
efficiency by using a higher AI value.

Fig. 3. Estimated time complexity of the population mechanisms.

Very important information about the efficiency of algorithms is provided by
the time complexity needed for solving the problems with various dimensionality,
i.e. T01, T02, and T11.2. Five independent runs for each algorithm on each of
these problems are performed and the mean time in seconds at a logarithmic
measure is depicted in Fig. 3. It is obvious that it is less time consuming to use a
fixed population size (column ‘none’). There is no substantial difference between
efficiency of proposed adaptive mechanisms. In the IDE and b6e6rl algorithms,
the linear approach performs faster than the diversity-based approach. The time
complexity of CoBiDE with the linear population size mechanism has higher
time demands than the diversity-based mechanism. The time complexity of the
SHADE algorithm is high with any adaptive population size approach.
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5 Conclusion

In this paper, a newly proposed setting of the control parameter of the diversity-
based adaptive mechanism of population size setting is experimentally studied. In
this study fixed population setting and well-known linear-decrease of population
size are also applied to assess the proposed approach. All four settings are applied
to seven state-of-the-art adaptive DE variants and classic DE in the experiments
where 22 real-world problems are solved. The obtained results are assessed by
statistical tests.

The results of the experiments show that the proposed diversity-based app-
roach often performs substantially better than the original fixed population size
setting. The proposed method outperforms even a well-known linear population
size reduction approach. Adaptive variants of b6e6rl and IDE perform better
with a fixed population size setting. Inefficient results of some adaptive DE
versions could be caused by their adaptive mechanisms controlling population
development. A more sophisticated change of some control parameters should
increase the final results even of these methods. Particularly worse results of
some linear population size adaptation DE variants are caused by a very big
population size in problems with higher dimensionality.

The time complexity of the proposed mechanism is not worse than of the
linear population size variant, which indicates that the diversity-based approach
is useful in a real application. The newly proposed setting of AI = 0.5 performs
at least the same or better than the original setting AI = 0.1.
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Abstract. Particle swarm optimization (PSO) has proved fast conver-
gence in many optimization problems but still has the main drawback -
falling in a local minimum. This paper presents a new Hybrid Particle
Swarm Optimization and Evolutionary algorithm (HPSO-E) to solve this
problem by introducing a new population of children particles obtained
by applying a mutation and crossover operators taken from the evolu-
tionary algorithm. In this way, we connect the best properties of the
algorithms: fast convergence of the PSO and ability to global search
introduced by the evolutionary algorithm. The novel hybrid algorithm
shows sufficient convergence for unimodal benchmark function and excel-
lent convergence for selected hard multimodal benchmark functions.

Keywords: Hybrid algorithm · Particle swarm optimization ·
Evolutionary algorithm

1 Introduction

Optimization is a fundamental challenge in many practical problems, especially
when constructing fuzzy systems [7,29,39,40], neuro-fuzzy systems [8,32], solv-
ing fuzzy nonlinear equations [36] or determining the parameters of the complex
systems [33–35,46–50]. Traditional algorithms have difficulty determining the
best global solution in the case of highly complex real-world problems (multi-
modal, high dimensional or containing noise). During the past decades, many
different nature-inspired methods have been proposed to solve problems, that are
too hard for traditional methods, e.g.: genetic algorithm [3,4,16,26], genetic pro-
gramming [1,26], evolutionary algorithm [1,9,16], evolutionary strategies [1,9],
differential evolution [10,19], directed evolution [31] and swarm intelligence
methods [2,5,6,15,20–22,45].

One example of such a method that allows obtaining outstanding results
is the Particle Swarm Optimization algorithm (PSO) [2,5,6,20,30,41,43].
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The PSO has been proposed by Kenedy and Eberhart [15] and is inspired by the
social behavior of animals like fish schooling or bird flocking. The PSO has the
following features: simplicity, stochastic movement, positive feedback and ability
to adapt to the changing environment and to obtain high-quality solutions in a
short time. However, PSO reveals some disadvantages - it may be easily trapped
in local optimum (often called premature convergence).

Despite the success of PSO in many practical applications, traditional PSO
still has room for improvements in updating velocity and ensuring a balance
between exploitation and exploration. From that reason, many studies have been
concentrated on further improving the performance of PSO. Those methods can
be classified into the following categories: inertial weight varying strategy [28,51],
parameter selection and convergence analysis [38,42], swarm topology structure
selection [22,23,27] and hybrid PSO combined with some evolutionary operators
taken from other nature-inspired algorithms [4,11–14,17,18,24,25].

In this paper, we propose a novel Hybrid Particle Swarm Optimization and
Evolutionary algorithm (HPSO-E). The algorithm is obtained by introducing
a new temporal swarm (which corresponds to a population in the evolution-
ary algorithm), that contains particles modified by the typical mutation and
crossover operators used in the evolutionary algorithms. Moreover, we propose
a new strategy of replacement of particles in the base swarm.

The rest of the paper has been organized as follows. In Sect. 2 we present
the base version of the PSO algorithm. We outlined our algorithm in Sect. 3.
Section 4 describes the simulations and obtained results. The last section contains
conclusions.

2 Particle Swarm Optimization Algorithm

The PSO algorithm is a simple method to solve optimization problems in the
form:

min
x∈RD

f(x) (1)

where f(x) is an optimized objective function and x is a solution of the problem.
In this algorithm the solution x = [x1, . . . , xD] is described as the particle i,
i = 1 . . . N , that also contains information about the best local solution pit =
[p1it, . . . , p

D
it ] found so far, and velocity vector vit = [v1

it, . . . , v
D
it ] in the iteration

t. Each particle of the swarm moves with the velocity vit throughout the solution
space in different directions using the best local solution pit found by the particle
so far and the best global solution gt = [g1t , . . . , g

D
t ] of the entire swarm. A new

velocity vi(t+1) and position xi(t+1) of each particle are computed according to
Eqs. (2) and (3):

vd
i(t+1) = vd

it · w + ψ1 · r1 · (pdit − xd
it) + ψ2 · r2 · (gt − xd

it) (2)

xd
i(t+1) = xd

it + vd
i(t+1). (3)

where w is an inertia weight specifying change value of the velocity between
iteration (t) and (t+1), (for w = 1, we can obtain the base algorithm introduced
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by Kennedy and Eberhart [15]), ψ1 and ψ2 are two acceleration coefficients that
scale the influence of the best local and global solutions, r1 and r2 are two
uniform random values within the range (0, 1].

The inertia weight w is used to balance between exploration and exploitation
of the search space. For values close to 1, particles move fast and perform the
process of exploration. For small values, for example, (w < 0.85), the velocity
decreases and particles perform the process of exploitation. The pseudocode of
the PSO algorithm is shown below.

Algorithm 1. Algorithm of particle swarm optimization (PSO)
Data: Population size N , acceleration constant ψ1, ψ2, inertia weight w
Result: The best solution gtmax

1 Initialization;
2 repeat
3 Evaluate each particles exit = fob(xit);
4 Update the best local solution pit;
5 Update the best global solution gt;
6 for i ← 1 to N do
7 Compute vi(t+1) according to equation (2);
8 Compute xi(t+1) according to equation (3);
9 t ← t + 1;

10 until Terminate condition has not been met ;

3 Hybrid Particle Swarm Optimization and Evolutionary
Algorithm (HPSO-E)

The PSO algorithm presented in the previous section was successfully used to
solve many optimization problems. However, it can be easily trapped in local
optima. From that reason, in this paper, we propose a novel Hybrid Particle
Swarm Optimization and Evolutionary algorithm (HPSO-E). This method com-
bines the GPSO and evolutionary algorithms by using mutation and crossover
operators for the best particles of the swarm. Moreover, a new strategy of replace-
ment of particles in the base swarm by particles modified by evolutionary oper-
ators is proposed. The details of the new HPSO-E method are presented in
Algorithm 2. Lines 1–4 of the Algorithm 2 correspond to typical initialization
phase of PSO algorithm. All particles are initially set according to the following
equations:

xi0 = xmin + (xmax − xmin) · r1, (4)
pi0 = xmin + (xmax − xmin) · r2, (5)
g0 = xmin + (xmax − xmin) · r3, (6)

where: i = 1, 2, . . . , N , N is particle number, r1, r2, r3 are the random uniform
vectors taking values in (0, 1)D. Next, the velocity and position of each particle
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is modificated in lines 6–8 according to standard PSO strategy described by
Eqs. (2) and (3). Later, the base swarm X is evaluated, and the best local position
pit is updated according to the following equation (lines 9–10):

(pit, epit) =
{

(xit, exit) if exit < epit
(pit, epit) otherwise.

(7)

Algorithm 2. Hybrid particle swarm optimization evolutionary algorithm
(HPSO-E)
Data: Population size N = |X|, acceleration constant ψ1, ψ2, inertia weight w,

evolutionary operators probability pe, crossover probability pc, number
of crossover positions nc, mutation probability pm, number of mutated
positions nm and turnament size T ;

Result: The best solution gtmax

1 Initialize the current position xit, the best local position pit and the global best
solution gt according to equations (4-6) respectively, t = 0;

2 Evaluate each particle exit = fob(xit), epit = fob(pit), xit ∈ Xt ;
3 Update the best local solution pit, pit ∈ Pt according to equation (7);
4 Update the best global solution gt according to equation (9);
5 repeat
6 for i ← 1 to N do
7 Compute vi(t+1) according to equation (2);
8 Compute xi(t+1) according to equation (3);

9 Evaluate each particle of the main population exit = fob(xit);
10 Update the best local solution pit according to equation (7);
11 Set the temporal swarm of offspring as empty set CHt = ∅;
12 for i ← 1 to N do
13 if (pe > r(0, 1)) then
14 if (pm > r(0, 1)) then
15 (chm, j) = Tournament(Pt, T );
16 Mutate(chm, nm);
17 Evaluate the particle echm = fob(chm);
18 Insert (chm, echm, j) into CHt;

19 if (pc > r(0, 1)) then
20 (chc1, j1) = Tournament(Pt, T );
21 (chc2, j2) = Tournament(Pt, T );
22 Crossover(chc1,chc2, nc);
23 Evaluate the particle echc1 = fob(chc1);
24 Evaluate the particle echc2 = fob(chc2);
25 Insert (chc1, echc1, j1) into CHt;
26 Insert (chc2, echc2, j2) into CHt;

27 Replacement strategy of pit according to equation (8);
28 Update the best global solution gt according to equation (9);
29 t ← t + 1;

30 until Terminate condition has not been met ;
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Lines 11–26 of Algorithm 2 describe the process of creation of temporal swarm
by applying evolutionary operators mutation and crossover. Evolutionary oper-
ators are applied N times with probability pe, where crossover and mutation are
used according to probabilities pc and pm respectively. The evolutionary oper-
ators are applied to particles determined by the tournament selection method,
where selection criterion is the best local solution pit of the particle. The muta-
tion operator Mutate(chm, nm) changes at most nm random mutation positions
in the solution vector chm. The crossover operator Crossover(chc1, chc2, nc)
exchanges information between two selected particles chc1 and chc2 from the
base swarm at most nc random positions.

Next, particles from base swarm X are replaced by better particles (in the
sense of fitness value) from the temporal swarm CHt according to the following
equation:

(xit, epit) =
{

(ch, fob(ch)) if (ch, fob(ch), j) ∈ CHt, j = i, fob(ch) < epit
(xit, epit) otherwise,

(8)

It should be noted that particles from the base swarm can be replaced only by
solutions derived from them, furthermore during this operation only the actual
position and the best local solution are changed (other data are stored in the
particle - a speed and direction of movement - remains unchanged). In this way,
genetic operators do not influence the range of exploitation of the PSO. The
proposed replacement strategy may direct the base swarm to the new promising
search regions (increasing speed and diversity of the swarm).

Finally, the best global solution gt is updated according to the following
equation:

(gt, egt) =
{

(pit, epit) if epit < egt
(gt, egt) otherwise.

(9)

4 Simulations

In order to confirm the usefulness of the proposed algorithm, a set of simula-
tions was performed for 10 benchmark functions [44] described in Table 1. The
obtained results have been compared with results of five other PSO algorithms:

– Traditional global PSO algorithms with inertia weight (GPSO) [37];
– Fully informed PSO whose velocity is calculated according to the information

from all of the neighbors (FIPSO-F) [27];
– Fully informed PSO with the USquare topology (FIPSO-S) [27];
– Comprehensive learning PSO (CLPSO) [23] employs a comprehensive learn-

ing strategy to optimize every dimension of the vector and exchanges the
information on the best solution between different particles;

– Particle swarm optimization using dynamic tournament topology (DT-PSO)
[44] where the neighborhood of each particle is reorganized using the tourna-
ment strategy.
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Table 1. Benchmark functions

Type Function Search range Best value

Unimodal functions F1(x) =
D∑

i=1
x2

i [−100, 100]D 0

F2(x) =
D∑

i=1

(∑i
j=1 xj

)2
[−100, 100]D 0

F3(x) =
D∑

i=1
ix4

i + random[0, 1) [−1.28, 1.28]D 0

F4(x) =
D∑

i=1
(�xi + 0.5�)2 [−100, 100]D 0

Multimodal functions F5(x) =
D−1∑

i=1

(
100

(
x2

i − xi+1

)
+ (xi − 1)2

)
[−2, 2]D 0

F6(x) = −20e

−0.2

√
√
√
√ 1

D

D∑

i=1
x2

i
− e

1
D

D∑

i=1
cos(2πxi)

+ 20 + e

[−32, 32]D 0

F7(x) =
D∑

i=1

x2
i

4000 −
D∏

i=1
cos(

xi√
i
) + 1 [−600, 600]D 0

F8(x) =
D∑

i=1

(
x2

i − 10 cos(2πxi) + 10
)

[−5, 5]D 0
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

F9(x) =
D∑

i=1

(
y2

i − 10 cos(2πyi) + 10
)

yi =

{
xi |xi| < 1

2
round(2xi)

2 |xi| ≥ 1
2

[−5, 5]D 0

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

F10(x) =
D−1∑

i=1

(
100(z2

i − zi+1)
2 + (zi − 1)2

)

+ 390

zi = xi − oi + 1

[−200, 200]D 390

The used parameters for each algorithm are presented in Table 2. Those
parameters were set on the values proposed by the authors of the corresponding
algorithms. The maximum fitness evaluation is set to nemax = D ∗ 10000, where
D is dimension number, D is set to 30. Simulations for each algorithm have been
independently run 30 times in order to reduce statistical variations.

Table 2. The parameters for all evaluated algorithms

Algorithm Functions Parameters Source

GPSO F1–F10 N : 26, w: 0.75, ψ1: 1.5, ψ2: 1.7 [37]

FIPSO-F F1–F10 N :26, χ: 0.7298, ψ: 4.1 [27]

FIPSO-S F1–F10 N :26, χ: 0.7298, ψ: 4.1 [27]

CLPSO F1–F10 N :40, w0: 0.9, w1: 0.4, c: 1.49445, m: 7, T : 2 [23]

DT-PSO F1–F10 N :64, w: 1, ψ: 4.1, K: 0.1, M : 6, P : 0.05 [44]

HPSO-E F1–F6 N :26, w: 0.68, ψ1: 1.5, ψ2: 1.75,

pe: 0.1, pc: 0, nc: 3, pm: 0.9, nm: 2, T : 9 -

HPSO-E F7–F10 N :26, w: 0.76, ψ1: 1.5, ψ2: 1.75,

pe: 0.5, pc: 0.3, nc: 3, pm: 0.9, nm: 2, T : 9 -
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Table 3. The results of the 30 experiments for different evaluated algorithms and
different benchmark functions (D = 30).

Function GPSO FIPSO-F FIPSO-S CLPSO DT-PSO HPSO-E

F1 Mean 4.28e−105 4.15e−001 1.06e+003 1.85e−030 1.24e−134 2.26e−147

Std 1.87e−104 1.21e+000 3.11e+002 1.41e−030 4.46e−134 8.52e−147

Best 1.15e−112 5.18e−008 6.40e+002 1.76e−031 1.46e−136 5.07e−161

Worst 1.03e−103 6.29e+000 1.77e+003 5.82e−030 2.52e−133 4.32e−146

F2 Mean 5.70e−010 4.52e+003 1.38e+005 7.25e+001 3.21e−006 6.38e−020

Std 1.05e−009 1.64e+003 3.28e+004 2.30e+001 3.23e−006 2.56e−019

Best 2.72e−011 2.02e+003 7.70e+004 2.69e+001 9.40e−008 3.35e−024

Worst 4.93e−009 7.97e+003 2.12e+005 1.23e+002 1.46e−005 1.39e−018

F3 Mean 3.24e−003 4.46e−002 4.41e+000 4.28e−003 9.12e−004 4.15e−003

Std 1.38e−003 2.17e−002 2.55e+000 1.15e−003 5.05e−004 2.35e−003

Best 1.28e−003 1.19e−002 1.45e+000 1.54e−003 2.89e−004 8.54e−004

Worst 5.90e−003 9.94e−002 1.23e+001 6.34e−003 2.54e−003 1.23e−002

F4 Mean 0.00e+000 4.90e+000 9.98e+002 0.00e+000 0.00e+000 0.00e+000

Std 0.00e+000 7.77e+000 2.48e+002 0.00e+000 0.00e+000 0.00e+000

Best 0.00e+000 0.00e+000 5.47e+002 0.00e+000 0.00e+000 0.00e+000

Worst 0.00e+000 3.70e+001 1.59e+003 0.00e+000 0.00e+000 0.00e+000

F5 Mean 1.33e+001 3.00e+001 1.10e+003 2.48e+001 1.42e+001 1.81e+000

Std 2.25e+000 9.54e+000 3.18e+002 1.19e+000 2.47e−001 1.48e+000

Best 7.27e+000 2.53e+001 6.06e+002 2.12e+001 1.36e+001 7.20e−003

Worst 1.89e+001 8.11e+001 2.13e+003 2.60e+001 1.46e+001 5.23e+000

F6 Mean 4.57e−001 6.91e−001 2.04e+001 8.14e−015 4.00e−015 8.52e−014

Std 6.70e−001 5.66e−001 4.10e−001 1.61e−015 0.00e+000 2.90e−013

Best 7.55e−015 1.92e−004 1.93e+001 7.55e−015 4.00e−015 7.55e−015

Worst 2.12e+000 2.16e+000 2.09e+001 1.47e−014 4.00e−015 1.63e−012

F7 Mean 2.16e−002 1.02e−001 9.08e+000 4.69e−015 2.47e−004 1.77e−002

Std 2.35e−002 1.00e−001 2.65e+000 2.37e−014 1.33e−003 2.18e−002

Best 0.00e+000 3.73e−003 5.14e+000 0.00e+000 0.00e+000 0.00e+000

Worst 1.05e−001 5.23e−001 1.65e+001 1.32e−013 7.40e−003 7.10e−002

F8 Mean 4.54e+001 2.41e+001 3.11e+002 8.62e−014 9.15e+000 0.00e+000

Std 9.62e+000 5.17e+000 1.75e+001 4.64e−013 2.62e+000 0.00e+000

Best 2.39e+001 1.30e+001 2.65e+002 0.00e+000 5.97e+000 0.00e+000

Worst 7.26e+001 3.28e+001 3.40e+002 2.58e−012 1.69e+001 0.00e+000

F9 Mean 2.39e+001 2.50e+001 3.07e+002 6.67e−002 1.12e+001 1.89e−015

Std 7.52e+000 5.99e+000 2.20e+001 2.49e−001 3.20e+000 1.02e−014

Best 1.09e+001 1.40e+001 2.55e+002 0.00e+000 4.99e+000 0.00e+000

Worst 3.88e+001 4.35e+001 3.41e+002 1.00e+000 2.00e+001 5.68e−014

F10 Mean 4.11e+002 6.88e+004 6.20e+011 3.84e+003 4.39e+002 4.11e+002

Std 3.43e+001 2.35e+005 5.13e+011 6.27e+003 8.25e+001 3.66e+001

Best 3.91e+002 6.16e+002 1.70e+011 7.57e+002 4.00e+002 3.90e+002

Worst 5.73e+002 1.29e+006 2.04e+012 3.61e+004 7.13e+002 5.68e+002
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Fig. 1. The average performance of the algorithms for four unimodal functions F1–F4,
and six multimodal functions F5–F10 obtained in 30 experiments (D = 30).
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Table 4. The ranking of the evaluated algorithms obtained from 30 experiments for
10 benchmark functions and 30 dimensions (the smallest value is the best).

Function GPSO FIPSO-F FIPSO-S CLPSO DT-PSO HPSO-E

F1 3 5 6 4 2 1

F2 2 5 6 4 3 1

F3 2 5 6 4 1 3

F4 1 2 3 1 1 1

F5 2 5 6 4 3 1

F6 4 5 6 2 1 3

F7 4 5 6 1 2 3

F8 5 4 6 2 3 1

F9 4 5 6 2 3 1

F10 1 5 6 4 3 2

Average rank 2.8 4.6 5.7 2.8 2.2 1.7

The obtained results for the GPSO, FIPSO-F, FIPSO-S, DT-PSO, CLPSO
algorithms, and the proposed HPSO-E algorithm are presented in Tables 3, 4, and
Fig. 1. Table 3 contains values of mean (Mean), standard deviation (Std), the best
(Best) and the worst (Worst) obtained results for each benchmark function. From
presented results, it can be seen that the proposed HPSO-E algorithm is better
than the other evaluated methods tested on F1, F2, F5 F8 and F9 benchmark func-
tions, where F5, F8, and F9 are hard multimodal problems for which the number
of local optima increases fast with the dimensions. For the benchmark function F6

the result is very close to the best one in this case of the CLPSO algorithm. In the
case of F10 multimodal hard benchmark function (shifting of the F5 function), the
HPSO-E algorithm obtains very similar results to the two other algorithms. The
significantly worse results were obtained only for F7 function; however, the hybrid
algorithm works better than the other three algorithms. In other cases, the pro-
posed approach gives similar results as the best from other evaluated algorithms.
The overall rank of theHPSO-Ealgorithm is presented inTable 4. Figure 1 presents
the average progress of the used algorithms. From these charts, it can be seen that
the proposed method achieved satisfactory results faster than other methods for
half of the considered problems.

5 Conclusions

In this paper, a new hybrid particle swarm optimization evolutionary algorithm
was presented. This method combined the classical GPSO method with the
evolutionary algorithm. It was obtained by introducing a new temporal swarm,
that contains particles modified by mutation and crossover operators. Moreover,
a new strategy of replacement of particles in the base swarm was proposed.
The simulations performed for 10 benchmark functions showed that our method
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allowed for achieving better results than other considered algorithms for half of
the problems, which proves the usefulness of the proposed method.
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Abstract. Currently, electromagnetic compatibility presents a severe
problem for electric and electronic devices; therefore, the demand for pro-
tection has rapidly increased in recent years. Unfortunately, the design
of a high-quality shield can involve different pitfalls, and it is impossible
to explore and test every possible solution. Many times, the model of
an existing structure form different scientific areas have been success-
fully redesigned using knowledge and techniques adopted from the field
of artificial intelligence. The soft computing based approach has been
verified here, and selected real case study is presented in this paper.

Keywords: Shielding effectiveness · Shielding enclosure · SHADE ·
HCLPSO · FA · CST Microwave Studio

1 Introduction

Electromagnetic compatibility has become a severe problem for electronic and
electric device design and implementation. The increase of electromagnetic inter-
ference has led to a rise in demand for electromagnetic shielding. The protection
quality is given by the shielding effectiveness, that is given as a ratio of a signal
received by antenna without a shield to a signal gained by a receiver with shield
cover [1]. The research paper [1] also defines the term called shielding enclosure,
which is a mechanical structure to protect the device against the electromagnetic
fields effects.
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This study aims at the finding of an optimal solution for shielding enclosure
which is suitable for security cameras. Cameras, and especially image sensors,
represent the devices with the highest level of sensitivity to electromagnetic
field [2]. Therefore, it is required to provide suitable protection which is crucial
for security services. The experiment pitfall is presented by a simple fact that the
box should have a dense grid for a quality electromagnetic shielding; however, at
the same time, the camera vision should be clear, and the grid should be sparse
and as transparent as possible.

The artificial intelligence based techniques were successfully used to redesign
several different structures or devices in various scientific or engineering fields [3];
for example, the design of an analog circuit [5], antennas [4] or wings for aero-
nautical purposes [6].

In this paper, three representatives of evolutionary computation techniques
have been used to find the optimal product design, since each algorithm exhibits
unique features and performance. The simulations of an evolved shielding enclo-
sures have been carried out, tested and evaluated thanks to CST Microwave
Studio simulation software [7].

This represents the clear motivation behind this paper, as we wanted to study
and show applicability and performance of evolutionary computation techniques
in this particular engineering case study.

The rest of the paper is structured as follows. Brief descriptions of used
evolutionary and swarm algorithms are given in Sect. 2. In Sect. 3, the experiment
is described in detail. The results and conclusion sections follow afterward.

2 Used Evolutionary Computation Techniques

The evolutionary computation techniques are steadily gaining popularity not
only among researches interested in the field of artificial intelligence but in other
scientific or engineering fields. Many times these algorithms proved their appli-
cability and effectivity. Whenever some problem cannot be solved using some
traditional methods of numerical optimization (complex multimodal problems
with many local optima) or time restrictions are not allowing to test sufficient
quantity of possible combination of parameters, the simple and natural choice
is to use any metaheuristic algorithm. However, due to a large amount of exist-
ing metaheuristic algorithms, it could be a challenging task to select the most
suitable algorithm for a specific problem. Often a researcher has to test several
algorithms to pick the most promising one or to use some benchmarks which
can help with the future choice.

In this paper, three different algorithms were selected either based on their
promising results on widely accepted benchmark set (SHADE) or because they
were previously used with promising results on similar tasks (HCLPSO and FA).
The brief description of each used algorithm is given in the next subsections.
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2.1 Success-History Based Adaptive Differential Evolution

The original Differential Evolution (DE) was created in 1995 by Storn and
Price [8]. Since then, DE has been actively studied and changed from the orig-
inal algorithm, to improve algorithm robustness. During the last few years, the
Success-History based Adaptive DE (SHADE) algorithm [9] has been one of
the most researched DE variants and, it or its improved versions [10,11] have
performed very well in CEC single objective optimization competitions [12–14].
Therefore it becomes a promising candidate for this shield enclosure design task.

The SHADE algorithm is initialized with a random population of individuals
that represent solutions of the optimization problem, additional memories for F
and CR values are initialized as well. The population size NP is set by the user.
In continuous optimization, each individual is composed of a vector x of length
D, which is a dimensionality (number of optimized attributes) of the problem,
where each vector component represents a value of the corresponding attribute,
and the individual also contains the objective function value f(x).

In the mutation step (1), individual x r1 is randomly selected from a popula-
tion and x r1 is randomly selected from the union of the current population and
the external archive of inferior solutions.

vi = xi + Fi (xpbest − xi) + Fi (xr1 − xr2) (1)

Where x pbest is randomly selected from the best NP × p individuals in
the current population. The p value is randomly generated for each muta-
tion by RNG with uniform distribution from the range [pmin, 0.2] [2], where
pmin = 2/NP. The scaling factor value Fi is given by (2).

Fi = C [MF,r, 0.1] (2)

Where MF,r is a randomly selected value (by index r) from MF memory and
C stands for Cauchy distribution. In the crossover step, mutated vector vi is
combined with the original vector xi, and they produce trial vector ui (3).

uj,i =
{

vj,i if U [0, 1] ≤ CRi or j = jrand
xj,i otherwise (3)

Where CRi is the used crossover rate value, and jrand is an index of an
attribute that has to be from the mutated vector vi (ensures generation of a
vector with at least one new component). The value CRi is generated from the
Gaussian distribution with a mean parameter value of MCR.r, which is randomly
selected from MCR memory and standard deviation value of 0.1.

The final selection step ensures that the optimization progress will lead to
better solutions because it allows only individuals of better or at least equal
objective function value to proceed into the next generation G+1 (4) where G
is the index of the current generation.

xi,G+1 =
{
ui,G if f (ui,G) ≤ f (xi,G)
xi,G otherwise (4)
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More detailed information on the historical memory updates MF and MCR,
as well as information on recommended values and description of the algorithm
together with pseudocode, is described in the original paper [9].

2.2 Heterogeneous Comprehensive Learning Particle Swarm
Optimization

The new and modern variant on classical Particle Swarm Optimization
(PSO) [15] algorithm was firstly introduced in 2015 by Lynn and Suganthan [16].
This particular algorithm was used for unit commitment in power system [17],
and it is still under active developed.
The main characteristic of this new algorithm, called Heterogeneous Compre-
hensive Learning Particle Swarm Optimization (HCLPSO), is that it contains
two subpopulations. The PSO instead typically consist of only one population.

The first subpopulation is enhanced for exploration and the second one is
enhanced for exploitation. Each subpopulation computes the velocity of a parti-
cle through the different formulas. The exploration-enhanced subpopulation uses
the formula (5).

vt+1
ij =w·vt

ij+c1·r1·
(
pBestfi(j)−xt

ij

)
(5)

On the other hand, the exploitation-enhanced subpopulation calculates par-
ticles velocity by (6).

vt+1
ij =w·vt

ij+c1·r1·
(
pBestfi(j)−xt

ij

)
+ c2 · r2 · (

gBestj−xt
ij

)
(6)

Where the t+1 stands for actual velocity and the t is previous value. The v ij

is then the velocity of i -th particle in j -th dimension. The w is for inertia weight,
and it can be a constant value, or it can change its value depending on the num-
ber of already computed iterations [18]. The c1 and c2 are the learning factors,
and r1 and r2 are pseudo-random numbers of unimodal distribution in the range
<0, 1>. The x ij is the position of an i -th particle for j -th dimension. All these
previously mentioned variables are also used in classical PSO. One exception is
the pBestfi(j), which is the example particle generated throughout comprehen-
sive learning (CL) strategy [19]. Where: fi(d) = [fi(1), fi(2), . . . , fi(D)] pointing
i -th particle to use its own pBest or the pBest of another particle in particular
dimension d. The D is then the dimension size of the solution search space. An
update of a particle position is then calculated by a classical PSO Eq. (7).

xt+1
ij = xt

ij + vt+1
ij (7)

Thank this learning strategy, each particle can learn from all other pBests of
both subpopulations. With the learning probability Pc (8), the particle generates
the example particle if for the m (refreshing gap) evaluations the particle’s pBest
is not improved. The NP is the number of particles in both subpopulations.

Pci = 0.05 + 0.45 · e
10(i−1)
NP−1 − 1
e10 − 1

(8)
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The Pc defines with which probability (from 0.05 to 0.5) the i -particle select
its own or other’s pBest for the corresponding dimension. If the particle should
not choose its pBest, two random particles are selected, and the particle with
better fitness value is chosen for the corresponding dimension.

2.3 Firefly Algorithm

The Firefly Algorithm (FA) is one of the typical representatives of swarm intel-
ligence (SI) group. It was developed and introduced to the world by Yang in
2008 [20,21]. The FA was also successfully used for many optimization prob-
lems. For example, the design of antenna [22], job scheduling [23] and solving
the traveling salesman problem [24].

The fundamental principle of this algorithm lies in simulating the mating
behavior of fireflies at night when fireflies emit light to attract a suitable partner.
The movement of one firefly towards another one is then defined by Eq. (9),
where xt+1

ik is a new position of firefly i for dimension k, xt
ik is the current

position of firefly i and xt
jk is a selected brighter firefly (with better objective

function value). α is a randomization parameter (α ε <0, 1>). The original FA
use the random value drawn from the uniform distribution. Finally, sign simply
provides random direction −1 or 1 to ensure that the firefly could travel in both
directions.

xt+1
ik = xt

ik + βi · (
xt
jk − xt

ik

)
+ α · sign (9)

The brightness Ii of a firefly is computed by the Eq. (10) where f(xi) is the
CF value of corresponding i -firefly, γ stands for the light absorption parameter
of a media in which fireflies are and m is another user-defined coefficient and it
should be set m ≥ 1. The variable rij is the Euclidean distance (11) between the
two compared fireflies (d stands for the current dimension size of the optimized
problem). The firefly x i could only fly (9) towards the xj firefly if Ij < Ii.

Ii =
f (xi)

1 + γrmij
(10)

rij =

√√√√ d∑
k=1

(xik − xjk)
2 (11)

βi =
β′
i

1 + γrmij
(12)

The attractiveness βi (12) is proportional to the brightness Ii as mentioned
in the rules above and, so these equations are quite similar to each other. The β′

i

is the initial attractiveness defined by the user, the γ is again the light absorption
parameter and the rij is once more the Euclidean distance.
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3 Experiment Design

The experiment used two distinct software. The first was Wolfram Mathemat-
ica [25] that secured execution of all used metaheuristic algorithms, and the sec-
ond one was CST Microwave Studio [7]. This simulation software has been used
for the modeling of a shielding enclosure with a front grid and shielding effective-
ness calculations. CST Studio involves particular macro which was used to model
creation and subsequent calculations. This macro was created by Mathematica
software which adjusted the dimensions of the optimization task (parameters),
depicted in Table 1. The values of these parameters were obtained by meta-
heuristic algorithm. Every time a running metaheuristic algorithm required the
evaluation of objective function for a particular parameter setting, the Mathe-
matica created a macro that was sent to CST Studio, which executed a specific
simulation. When this simulation was finished, the CST generated a data struc-
ture with results. These results contained the shielding effectiveness in dB for
several tested frequencies. The results were then averaged to get a single number
fs (i.e., shielding quality).

The parameters that were evolutionarily tuned were used to create a front-
mask grid of a shielding enclosure for cameras. The shape and size of gaps in the
mask have a direct effect on the shielding quality fs. The smaller the gaps, the
better the shielding should be. However, from the camera perspective, the large
the gaps are the better is the vision quality fv. Vision quality fv was computed
as a fraction between solid and empty (holes) space. These objective functions
are in contradictory. Therefore, the final objective function f(x ) for parameters
x was defined as (13).

f(x) =
w1

fs(x)
− w2 · fv(x) (13)

Where w1 and w2 are weights that help transfer this multi-objective problem
to single-objective. The values of these weights are strongly affecting the solution
quality and were initially set for this primary research study as w1 = 1 and w2 = 1.

Table 1. Optimization parameter definition and ranges.

Parameter name Description Allowed range

Pitch The length between the centers of gaps 〈2, 6〉 in R [mm]

Radius The radius of the inner circle of gaps 〈1.5, 4〉 in R [mm]

Edge A number of edges of designed gaps 〈3, 12〉 in N [−]

Angle1 The angle of gaps in odd rows 〈0, 359〉 in R [◦]
Angle2 Relative angle to Angle1 of even rows 〈0, 359〉 in R [◦]
Thickness The thickness of the front mask of the enclosure 〈1, 3〉 in R [mm]

The shielding effectiveness fs was measured in CST studio using simulations
and test probes. One tested probe was located inside of the enclosure and another
probe between model and wave plane which serves as a source of the electro-
magnetic waves. Probes detected the level of an electrical field which helped to
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calculate designed enclosure shielding effectiveness. The wave plane dimension
in x and y-axes were equal to the dimensions of the model in the same axes.
The example of a simulation setting with enclosure and gaps in front-mask can
be seen in Fig. 1.

4 Results

Because of the stochastic nature of used optimization algorithms, it was neces-
sary to perform many repeated evaluations of the objective function. However,
to finish one simulation (i.e., one objective function evaluation) in CST studio,
it took approx. 5–20 min. Therefore, it was impossible to test various settings of
used algorithms (the recommended settings by Authors of each respective algo-
rithm SHADE/HCLPSO/FA were used), and an only single run of each algo-
rithm was carried out. This is also a reason, as to why such a set of metaheuris-
tics algorithm has been selected. The general applicability of evolutionary tech-
niques has been verified (even though for single and extremely time demanding
execution) for state of the art competition winning classical evolutionary based
SHADE algorithm, effective modern swarm-based algorithm HCLPSO and sim-
pler FA mimicking randomized search over the objective function hyperplane.
Since only a single run was performed, to maximize the reliability of comparisons,
all three algorithms have used the same initialization (i.e., initial population).
A maximum number of function evaluations was set to MAXFES = 5,000, and
the population size was set to NP = 50. In Fig. 2, it can be seen the convergence
graphs of all three compared algorithms.

Fig. 1. Example of a designed shielding enclosure.

From the convergence plot, it can be observed that SHADE algorithm has the
fastest convergence speed. Also, it achieved the best results among the compared
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Fig. 2. Convergence graph for SHADE, HCLPSO, and FA in the task of shielding
effectiveness f(x) optimization.

algorithms. The second best performing algorithm is FA with slower convergence
speed. The worst results were achieved by HCLPSO algorithm. Table 2 contains
the final cost function value f(x) achieved by each algorithm accompanied by the
final values of optimized parameters.

Table 2. Final CF value and values optimized parameters for SHADE, HCLPSO, and
FA.

Algorithm CF Pitch Radius Edge Angle1 Angle2 Thickness

SHADE −194.87 4.83 1.52 4 129.30 0.08 2.70

FA −189.39 1.89 1.77 4 223.41 91.90 2.62

HCLPSO −110.06 2.34 1.93 4 312.63 178.75 2.67

The obtained model analysis revealed that the best shape for apertures is
square with pitches around 4.8 mm. Also, the distance between the boundary
points of the gaps is large, if their diameter is taken into account. Results showed
that the mutual gaps rotation does not significantly affect the resulting shielding
effectiveness of the model. The thickness of the shielding material is always at
approx. 2.6–2.7 mm.

Figures 3, 4 and 5 shows the shielding effectiveness calculated by CST stu-
dio for different probe positions over the tested frequencies and all three used
metaheuristic algorithms.
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Fig. 3. Shielding effectiveness in dB calculated for FA.

Fig. 4. Shielding effectiveness in dB calculated for HCLPSO.

Fig. 5. Shielding effectiveness in dB calculated for SHADE.
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5 Conclusion

This research paper is aimed at the investigation on the applicability and perfor-
mance of selected metaheuristic algorithms in the highly computational demand-
ing task of a finding optimal front-face shielding enclosure design to protect the
sensitive camera device against the electromagnetic fields effects.

In total, three modern state of the art evolutionary computation techniques
were used here. The best performing algorithm that achieved the best result
was SHADE algorithm. The process focused primarily on the shielding grid
dimension calculation, which is a crucial part of the shielding box design. The
objective was to find an optimal balance between shielding effectiveness and
camera visibility.

The results lend weight to the argument that the utilization of evolution-
ary computation techniques in this particular engineering design case study was
beneficial. Future research will aim at the development of an effective and par-
allel algorithm, better weights settings and obtaining more simulation results
although the simulation time is a significant drawback. Even though this partic-
ular optimization problem could be solved by some multi-objective optimization
algorithm, this initial study mainly serves as a guideline for future research and
to have some reference values of possible shielding effectiveness.
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Abstract. Population-based algorithms are used to solve optimization
problems. In order to improve their efficiency, new ways of processing
the population are investigated. One approach is to use many popula-
tions which operations are synchronized with each other. In this article,
we propose a new approach in which specified populations are processed
using different population algorithms. It has been tested for a known
practical problem of selecting the structure and parameters of the con-
troller.

Keywords: Population based algorithm · Multi-population ·
Controller · Structure selection · Parameters selection

1 Introduction

Meta-heuristics are a group of general-purpose algorithms that allows one to opti-
mize parameters of the problem under consideration (see e.g. [4,11,14]). Such
problems concern variety of issues, starting from simple function minimization
problems, through more complex problems where optimal parameters have to
be found, and finishing on problems where parameters of systems that can solve
them are seeking (e.g. parameters of fuzzy systems [10,29,33,41,42], neural net-
works [6,19,22,23], self-organizing maps [16,36], controllers [3], etc.). The latter
are particularly important because such systems can be used e.g. in modeling,
classification or control issues and thus it applies to multiple areas like business,
chemistry, economy, medicine, industrial, etc.

Most of the developed at the moment group of meta-heuristics algorithms
are population-based algorithms. These algorithms operate on a group (popu-
lation) of solutions (individuals) and process them with the purpose of solution
improvement in each algorithm’s step. Usually, each individual encodes a set
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of solution parameters, which quality can be evaluated using fitness function
defined adequately to the considered problem. The idea of processing popula-
tion of individuals usually lies on using a typical schema that can be found in
the literature (see e.g. mutation and crossover operators [9]).

Due to the fact that many population-based algorithms are being constantly
created (see Table 1) it is not easy to choose the best one for the specified prob-
lem. This is also related to the “No Free Lunch” (NFL) theorem in search and
optimization, that says that if an algorithm gains in performance on one class of
problems then is necessarily loses by its performance on the other problems [40].
The development of algorithms causes that more and more ideas from nature or
other areas are used as inspiration to processing populations (see Table 1). This
trend is currently being criticized because it creates doubts about the original-
ity of the papers [15]. Thus some editorial boards of magazines cease to accept
papers with unconvincing analogies [35].

Table 1. List of exemplary population-based algorithms that have been recently
described in the literature.

Algorithm Inspiration Year

Bison Behavior Optimization [21] Bison 2018

Butterfly Optimization Algorithm [2] Butterfly 2018

Mushroom Reproduction Optimization [5] Mushrooms 2018

Rhinoceros Search Algorithm [12] Rhinoceros 2018

Squirrel Search Algorithm [18] Squirrels 2018

Volleyball Premier League Algorithm [31] Volleyball 2018

Laying Chicken Algorithm [17] Chickens 2017

Grasshopper Optimisation Algorithm [34] Grasshoppers 2017

Spotted Hyena Optimizer [13] Hyenas 2017

Thermal Exchange Optimization [20] Thermal exchange 2017

Sonar Inspired Optimization [38] Sonar 2017

Killer Whale Algorithm [7] Killer whale 2017

In this paper, a different approach is proposed. A set of cooperating well-
known algorithms is used, rather than introducing a new population-based algo-
rithm that is inspired by some phenomena (e.g. from nature). Such groups of
algorithms are called multi-population based, and populations in them can share
or trade individuals depending on the adopted migration strategy. In the typical
multi-population based algorithms all the populations are processed by one par-
ticular type of algorithm [30]. This paper proposes a hybrid approach in which
different algorithms can be used. Furthermore, in simulations, a specific prob-
lem is considered that concerns the design of a control system. In the problem,
two types of parameters have to be found: binary one that defines the controller
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structure, and a real one that defines controller parameters. This causes that
the used algorithms should be modified because typical approaches allow only
for the processing of real parameters.

Structure of the paper is as follows: Sect. 2 contains a description of con-
trollers considered in the paper, Sect. 3 presents a description of hybrid multi-
population based algorithm proposed in the paper, Sect. 4 shows simulation
results, conclusions are drawn in Sect. 5.

Fig. 1. Controller structure considered in this paper: (a) general structure with F
feedback signals, (b) an example of structure with two feedback signals (fb1 and fb2).

Fig. 2. Considered control block (CB) structure described by formula (1).

2 Description of Considered Controller

Control is an important issue from the scientific and practical point of view.
In the literature controllers can be divided into: (a) based on linear terms P, I,
and D [8,37], (b) based on computational intelligence [24,26,28], and (c) hybrid
solutions that combines approaches from other groups [25,27]. In this paper the
controller based on linear terms is considered. It is shown in Fig. 1. In its struc-
ture each control block (CB) contains all the P, I, and D linear terms. Moreover,
to avoid redundancy, each of these terms can be excluded from operation by use
of an additional binary parameters (see Fig. 2): P str ∈ {0, 1}, Istr ∈ {0, 1}, and
Dstr ∈ {0, 1}. These parameters stand for activation of P, I, and D elements: val-
ues equal to 1 stand for active elements. Thanks to this approach, the selection
of the parameters of the linear terms and their corresponding binary parame-
ters allows to adjust the controller’s structure to a given simulation problem.
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Furthermore, this approach ensures that this process can be automated (e.g. by
using a population algorithm). The output of the CB is calculated as follows:

cb (t) = P str · P par · e (t) + Istr · Ipar ·
t∫

0

e (t) dt + Dstr · Dpar · de (t)
dt

. (1)

Using the proposed structure (see Figs. 1 and 2) causes that proper encod-
ing of the parameters has to be used. In this paper the following encoding is
proposed:

Xch =
{
Xpar

ch ,Xstr
ch

}
, (2)

where part Xpar
ch encodes the real parameters of the controller and part Xstr

ch

encodes binary parameters of the controller. The part Xpar
ch is defined as follows:

Xpar
ch =

{
P par
ch,1, I

par
ch,1,D

par
ch,1, . . .

P par
ch,M , Ipar

ch,M ,Dpar
ch,M

}
=

{
Xpar

ch,1, . . . , X
par
ch,Lpar

}
, (3)

where P par
ch,m, Ipar

ch,m,Dpar
ch,m stand for P, I, and D parameters of m-th CB (m =

1, . . . ,M) of the individual ch, M stands for number of CB blocks encoded in
the individual ch, Lpar = 3 · M stands for number of genes in part Xpar

ch . The
part Xstr

ch is defined as follows:

Xstr
ch =

{
P str
ch,1, I

str
ch,1,D

str
ch,1, . . .

P str
ch,M , Istr

ch,M ,Dstr
ch,M

}
=

{
Xstr

ch,1, . . . , X
str
ch,Lstr

}
, (4)

where Lstr = Lpar stands for number of genes in part Xstr
ch .

3 Description of Proposed Approach

In the proposed approach it is assumed that a set of different population-based
algorithms alg1, alg2, . . . , algA can cooperate and thus better results can be
achieved. The considered cooperation is based on migration between popula-
tions. For this purpose, every population selects individuals (e.g. by roulette

Fig. 3. The idea of the proposed approach, where: A stands for a number of algorithms
and G stands for a number of what iterations will be carried out. It is assumed that
each algorithm can be different and a different set of parameters can be assigned to it.
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wheel method) and transfers their copies to other populations. This step is per-
formed every G iterations of the algorithm (see Fig. 3). Because each population-
based algorithm is characterized by a certain set of parameters, and their correct
selection allows to adjust their operation not only to a given problem but also to
ensure an appropriate compromise between the exploration and exploitation of
parameters, it was assumed that each cooperating algorithm can have a separate
set of parameters assigned.

Because the controller structure used is defined by both real and binary
parameters, the majority of well-known population algorithms cannot be directly
used to optimize it. To overcome this, additional mechanisms (operators) must
be introduced to allow one to modify parameters of other types than the default.
Examples of modifications for selected algorithms are shown in Table 2 and as it
can be seen for grey wolf optimizer (GWO) algorithm an additional parameter
that defines chance for binary mutation has to be added. Moreover, for the
algorithm DE, a power of a CR is used due to the fact that CR have a usually
higher value than pm, which would result in a too chaotic modification of the
controller’s structure.

Table 2. Examples of hybridization of exemplary population-based algorithms that
allows one to optimize both the real and binary type of parameters (pm ∈ (0, 1) stands
for mutation probability [32], CR ∈ [0, 1] stands for crossover constant [32], and u(0, 1)
stands for random number from range ∈ [0, 1]).

Parameter Genetic Algorithm
(GA)

Differential
Evolution (DE)

Grey Wolf Optimizer
(GWO)

Real Crossover: default
Mutation: default

Crossover: default Hunting: default

Binary Crossover: default
Mutation: if
u(0, 1) < pm

x := (x + 1) %2

Mutation: if
u(0, 1) < CR2

x := (x + 1) %2

Hunting: if u(0, 1) < 0.2
x := (x + 1) %2

4 Simulations

In the simulations, a quarter car active suspension control problem was con-
sidered [1]. The parameters of active suspension model (see Fig. 4) are fol-
lowing: unsprung mass mu = 48.3 kg, sprung mass ms = 395.3 kg, tire stiff-
ness kt = 30010.0 N/m, sprung stiffness ks = 340000.0 N/m, sprung damping
ds = 1450.0 Ns/m. Meaning of the rest of the active suspension model parame-
ters is following: zr-road profile, zt-tire compression, zu-displacement of unsprung
mass, z-suspension travel, zs-displacement of sprung mass. Measured signals for
the controller are following: fb1 = z̈s, fb2 = z̈u (F = 2 and thus M = 4-see
Fig. 1b). In the simulations the following parameters were set: simulation time
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Fig. 4. Active suspension control system.

8 s, simulation time step T = 0.1 ms, interval between subsequent controller acti-
vations: 0.5 ms, G ∈ {∞, 10, 20} (with the assumptions G = ∞ no migrations
are made), A = 6, population size: 100, number of iterations: 200, and number
of repetitions: 50.

The main aim of the controller is to improve passenger comfort and car
handling. Controlled object was modelled as follows:

ẋ = Ax + Bu + f, (5)

where A is a state matrix in the form:

A =

⎡
⎢⎢⎣

0 1 0 0
− ks

ms
− ds

ms

ks

ms

ds

ms

0 0 0 1
ks

mu

ds

ms
−ks+kt

mu
− ds

ms

⎤
⎥⎥⎦ , (6)

x is a state vector (initial values of the state vector were set to zero) described
as follows:

x =
[
x1 x2 x3 x4

]T =
[
zs z̈s zu z̈u

]T
, (7)

B is an input matrix represented by the formula:

B =
[
0 1

ms
0 − 1

mu

]T
, (8)

u is an input vector from the controller and f is input vector from kinematic
extortion described by the following equation:

f =
[
0 0 0 − kt

mu

]T

· zr. (9)

Controlled object was discretized with formula (5) with time step T as follows:

x(i + 1) = Ad · x(i) + Bd · u(i) + fd, (10)
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where Ad = I + A · T , Bd = B · T , and fd = f · T . In order to model sensor
constrains, quantization resolution for the output signal u and feedback signals
(fb1, fb2) was set to 0.0001. In order to model actuator constrains, output signal
u of the controller was limited to the range [−1000,+1000] [39].

To evaluate the controller the functions presented in Table 3 were used. These
functions were aggregated into a single fitness function as follows:

ff (X) =
N∑

n=1

wn · an · ffn (X), (11)

where wn is a weight of fitness function component (n = 1, ..., N , N is a num-
ber of fitness function components), an is a normalization factor of the fitness
function component, and ffn (X) is the fitness function component defined in
Table 3.

Table 3. Components of fitness function (11) used for considered simulation problem
of quarter car active suspension control system, where: i = 1, . . . , Z is a sample index,
Z is the number of samples and it was defined as follows Z = T

Ts
, and ro are sorted by

time value, minima and maxima of the regulator output signal.

n Name wn an Component of the ff (X)

1 Passenger comfort 1.00 100 ff1 (X) =

(
1
Z ·

Z∑
i=1

z̈2
s,i

)0.5

2 Car handling 0.20 5000 ff2 (X) =

(
1
Z ·

Z∑
i=1

z2
t,i

)0.5

3 Suspension maximum travel 0.10 250 ff3 (X) = max
z=1,...,Z

{|zi|}

4 Suspension travel 0.10 100 ff4 (X) =

(
1
Z ·

Z∑
i=1

z2
i

)0.5

5 Complexity 0.10 1 ff5 (X) = 1
3M

M∑
m=1

(
P str

m + Istr
m + Dstr

m

)

6 Control force 0.20 0.0025 ff6 (X) =

(
1
Z ·

Z∑
i=1

u2
i

)0.5

7 Oscillations of controller 0.20 0.0005 ff7 (X) =
O−1∑
o=1

|ro − ro+1|

To verify the proposed method different combinations of populations were
tested (see Table 4). The controller’s operation was additionally checked on a
various road profile to verify if the controller can adapt to a different scenario
(see zr in Fig. 5). The detailed simulation results are presented in Table 5. An
example of obtained controller structure and its performance is shown in Table 6
and Fig. 5, respectively.
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Table 4. Algorithm variants tested in the simulations (a = 1, ..., A stands for popula-
tion index, ah stands for maximum value of a parameter in GWO algorithm).

Simulation Population used and population’ parameters

Case a = 1 a = 2 a = 3 a = 4 a = 5 a = 6

GA

GA

pc = 0.95

pm = 0.20

mr = 0.30

GA

pc = 0.90

pm = 0.22

mr = 0.25

GA

pc = 0.85

pm = 0.24

mr = 0.20

GA

pc = 0.80

pm = 0.26

mr = 0.15

GA

pc = 0.75

pm = 0.28

mr = 0.10

GA

pc = 0.70

pm = 0.30

mr = 0.05

DE

DE

F = 0.60

CR = 0.15

DE

F = 0.50

CR = 0.30

DE

F = 0.40

CR = 0.45

DE

F = 0.30

CR = 0.60

DE

F = 0.2

CR = 0.75

DE

F = 0.10

CR = 0.90

GWO
GWO

ah = 2.00

GWO

ah = 1.70

GWO

ah = 1.40

GWO

ah = 1.10

GWO

ah = 0.80

GWO

ah = 0.50

HYB

GA

pc = 0.95

pm = 0.20

mr = 0.30

GA

pc = 0.70

pm = 0.30

mr = 0.05

DE

F = 0.60

CR = 0.15

DE

F = 0.10

CR = 0.90

GWO

ah = 2.00

GWO

ah = 0.50

Table 5. Averaged simulation results (fitness function value).

Simulation case G = ∞ G = 10 G = 20

GA 1.16362 1.16411 1.16259

DE 1.20871 1.21744 1.22512

GWO 1.14659 1.14533 1.15392

HYB 1.14481 1.16472 1.14257

Table 6. Example of obtained controller (performance of such controller is shown in
Fig. 5a and c, m index correspond to CB block index shown in Fig. 1b).

m Kp Ti Td

1 22.93 Reduced Reduced

2 1851.01 Reduced Reduced

3 Reduced Reduced Reduced

4 Reduced 30230.94 44.52

The simulations conclusions are as follows: (a) Using frequent migrations
(G = 10) causes too fast convergence of the algorithm and usually worsen results
(see Table 5). (b) Migrations do not always improve algorithm performance (see
DE in Table 5). (c) The best results were achieved for the proposed solution
with a low migration rate (see HYB and G = 20 in Table 5). (d) The obtained
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Fig. 5. Examples of obtained controllers performance and comparison with passive
systems.

controller performs much better than passive system (see e.g. z and fb1 signals
in Fig. 5). (e) The obtained controller’s structure is simple with more than 50%
of elements reduced (see Table 6).
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5 Conclusions

In this article, a new approach to optimization using a multi-population based
algorithm was proposed. Its feature is that subpopulations can be processed
with different algorithms and synchronized accordingly. The set of algorithm
components can be freely modified and the algorithms may have different values
of their own parameters. In the simulations, the quarter car active suspension
control problem was considered. The proposed approach allowed us to: (a) find
the structure and parameters of the controller, (b) obtain better results in terms
of accuracy than in the case when the subpopulations were processed with the
same algorithm.
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14. Dziwiński, P., Bartczuk, �L., Przybyszewski, K.: A population based algorithm and
fuzzy decision trees for nonlinear modeling. In: Rutkowski, L., Scherer, R., Kory-
tkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2018.
LNCS (LNAI), vol. 10842, pp. 516–531. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-91262-2 46

15. Fister Jr, I., Mlakar, U., Brest, J., Fister, I.: A new population-based nature-
inspired algorithm every month: is the current era coming to the end. In: Pro-
ceedings of the 3rd Student Computer Science Research Conference, pp. 33–37.
University of Primorska Press (2016)

16. Galkowski, T., Starczewski, A., Fu, X.: Improvement of the multiple-view learning
based on the self-organizing maps. In: Rutkowski, L., Korytkowski, M., Scherer, R.,
Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS (LNAI),
vol. 9120, pp. 3–12. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
19369-4 1

17. Hosseini, E.: Laying chicken algorithm: a new meta-heuristic approach to solve
continuous programming problems. J. Appl. Comput. Math. 6(1) (2017). https://
doi.org/10.4172/2168-9679.1000344

18. Jain, M., Singh, V., Rani, A.: A novel nature-inspired algorithm for optimization:
squirrel search algorithm. Swarm Evol. Comput. (2018). https://doi.org/10.1016/
j.swevo.2018.02.013

19. Jin, X.B., Yang, N.X., Su, T.L., Kong, J.L.: Time-series main trend analysis by
adaptive dynamics model. In: 10th International Conference on Modelling, Identi-
fication and Control (ICMIC), pp. 1–5. IEEE (2018)

20. Kaveh, A., Dadras, A.: A novel meta-heuristic optimization algorithm: thermal
exchange optimization. Adv. Eng. Softw. 110, 69–84 (2017). https://doi.org/10.
1016/j.advengsoft.2017.03.014

21. Kazikova, A., Pluhacek, M., Senkerik, R., Viktorin, A.: Proposal of a new swarm
optimization method inspired in bison behavior. In: Matoušek, R. (ed.) MENDEL
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Abstract. During the runtime of many evolutionary algorithms, the
diversity of the population starts out high and then rapidly diminishes
as the algorithm converges. The diversity will directly influence the algo-
rithm’s ability to perform effective exploration of the problem space. In
most cases if exploration is required in the latter stages of the algorithm,
there may be insufficient diversity to allow for this. This paper proposes
an algorithm that will better maintain diversity throughout the runtime
of the algorithm which will in turn allow for better exploration during
the latter portion of the algorithm’s run.
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1 Introduction

When working with evolutionary algorithms, one of the key factors that must
be considered is the balance between exploration and exploitation [1]. If the
algorithm focuses on exploration, large portions of the search space will be eval-
uated without thoroughly checking specific areas. A focus on exploration will
thus be required to find the portions of the search space which contain good
candidate solutions. Conversely, if the algorithm focuses on exploitation, small
areas of the search space will be checked thoroughly. The required exploration
and exploitation will be dependant on the distribution of good solutions in the
search space. This distribution is often unknown prior to execution, which com-
plicates the task of achieving a good balance. If the algorithm’s exploration of
the search space is inadequate, it can converge on a sub-optimal solution. A lack
of sufficient exploitation can lead to the algorithm not converging at all. Ideally
an algorithm will initially focus on exploration to identify the promising areas of
the search space. The algorithm should then shift its focus over to exploitation
in order to thoroughly check the promising areas that were identified during the
initial portion of the algorithm.

With evolutionary algorithms modelled after the replication of DNA, a major
contributor towards exploration is the crossover (reproduction) operation. Dur-
ing the crossover operation the genes from parent solutions are combined to
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form child solutions. If the parents are dissimilar, the resulting child should dif-
fer from the contributing parents. These changes from parent to child will result
in substantial jumps within the search space thereby driving exploration.

Exploitation on the other hand, is mainly driven by the mutation operation.
If mutation is applied to a solution, a subset of the genes making up the solution
are altered. The changes that are made to individual genes are usually small.
This means that the resulting solution will be very similar to the solution pre-
mutation. These small changes will result in an exploration of the local solution
space. Depending on the configuration of the algorithm, it is possible for muta-
tion to contribute towards exploration and for crossover to promote exploitation.
It will however be less effective.

As mentioned above, crossover by dissimilar parents will produce children
that are dissimilar from the parents. However, when two similar parents repro-
duce, the child will be similar to the parents. This means that genetic diversity
is a requirement for effective exploration in an algorithm [1]. Most algorithms
achieve the required diversity through the generation of the initial population.
Solutions are distributed across the search space or pre-selected portions of the
search space.

As the population starts to converge on a single solution, the diversity of the
population will decrease which will in turn decrease the exploration of the algo-
rithm [2]. This is ideal to facilitate the transition from exploration to exploita-
tion.

When working with dynamic environments where the search space changes
during the execution of the algorithm, a single transition from exploration to
exploitation is not ideal. If substantial change occurs in the environment, another
stage of exploration will be required to adapt to the change. If the diversity of
the population has been diminished enough, the algorithm will not be able to
effectively adapt to the change.

The maintaining of genetic diversity is not only required for dynamic environ-
ments. There are other situations where this is the case, for example multimodal
and noisy optimisation problems. This paper will however focus on dynamic
environments.

This paper aims to develop a new evolutionary algorithm based on methyla-
tion driven epigenetics to better adapt to changes in the environment. First the
paper will cover some background information. Then the developed algorithm
will be explained. The testing procedure will then be covered. Finally the results
and the conclusion will be presented showing that the developed algorithm is
able to better adapt to changes in the environment.

2 Biological Gene Coding

In biology genes can be divided into coding and non-coding genes. Coding genes
will contribute towards the transcription process when RNA strands are created
from the DNA template. The RNA will then be translated to form proteins.
This means that non-coding genes will not affect the proteins that are created.
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The ratio between coding and non-coding gene can differ drastically between
different species.

The non-coding genes can in turn also be separated into two groups. The
first group, while not directly used in the transcription process, will still affect
it [4]. These genes will help to control which portion of the chromosome gets
used and which portions do not. The second group of non-coding genes will have
no impact on the transcription process. These genes will remain unused until
the non-coding portions of the chromosome changes. This can happen due to
mutation.

One mechanism that facilitates the determination of whether a particular
genetic region is considered as coding or non-coding is DNA methylation. Some
of the base pairs that make up the DNA strands allow the formation of methyl
groups on the DNA molecule [5]. If this happens the transcription of the gene is
suppressed. The gene will thus still form part of the DNA, but will not be used
when the protein is expressed. During reproduction the offspring DNA undergoes
encoding to set methylation. Methylation patterns will thus be inherited during
reproduction. One attribute that gets highlighted by the above-mentioned pro-
cess, is the separation between gene storage and gene expression. This separation
can have a substantial effect when DNA changes. Minor changes to DNA can
have a substantial effect on the eventual protein that gets expressed.

3 Current Techniques for Maintaining Exploration

3.1 Genetic Islands

One approach that has been used to try and maintain diversity in populations
is that of genetic islands. Genetic islands operate by having multiple population
evolve in isolation [6]. Each of the islands/populations will then independently
converge on a solution and lose diversity. It is however possible that different
populations may converge on different solutions. In this case there will be some
diversity between the populations. The diversity can then be introduced into the
individual populations by exchanging individuals between the populations.

There are some drawbacks to the genetic island technique. Firstly, it is pos-
sible that multiple of the populations can converge on the same point. It should
also be noted that with enough time and individual exchange, all the population
will eventually converge on a single point.

A second disadvantage is that the computational requirement for a genetic
island implementation is significantly higher than that for a standard genetic
algorithm. This is due to the population being duplicated multiple times and
the calculations having to be repeated for each population.

Lastly it is also a disadvantage that all the diversity that is maintained
through the multiple populations, are all relative to high fitness regions of the
current search space. Usually this will mean that even if the populations are
converging on different points, these points will be relatively close together.

One big advantage of genetic islands is that it is intrinsically parallelizable.
Each of the islands can be executed on their own separate computing nodes. To
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scale up an algorithm, more nodes can be added to support more islands. This
means that genetic islands are well suited to take advantage of cloud computing.

3.2 Gene Expression Programming

As mentioned above, in biological chromosomes there is a separation between
gene storage and gene expression. Although most evolutionary algorithms do not
exhibit this behavior, there are some that mimic this separation. One example
of this is Gene Expression Programming. Gene Expression Programming repre-
sents the chromosome as a sequential list of genes [3]. The chromosome is then
operated on using existing crossover and mutation techniques. When the fitness
of an individual is calculated, the chromosome is converted into a tree struc-
ture which is then passed to the fitness function for evaluation. The structure
of the produced tree can change dramatically even if just one of the genes is
updated. The conversion from chromosome to tree can also result in a portion
of the chromosome not affecting the resulting tree at all.

One disadvantage of gene expression programming is that it is limited to a
small subset of problems. The solutions produced must also be expressible as a
tree structure for gene expression programming to be usable.

3.3 Niching

Niching is a group of algorithms that try to maintain exploration and identify
multiple optima in the search space. This is done by dividing the population into
separate groups. Different groups are then able to identify different optima. An
example of a method that has been used to achieve this, is fitness sharing. Fitness
sharing works by taking solutions that are close to each other and sharing the
fitness value between them. This limits the number of solutions that can group
on a single point. Other groups will thus form on other optima in the search
space.

3.4 Restarting

One technique that has been developed to try and overcome premature con-
vergence is Restarting. This technique starts the evolution process, but then
proceeds to restart the process before it converges on a solution. This process is
repeated a number of times gathering information during each run. Finally all
the gathered information is used to perform one last targeted search.

4 Proposed Algorithm

The aim of the proposed algorithm is to try and increase the population diversity
during the lifetime of the algorithm over that of the standard genetic algorithm.
More specifically it will aim to improve the diversity during the latter portion
of the algorithm. The increased diversity should allow the algorithm to better
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adapt to changes in the environment by being able to switch the focus of the
algorithm back to exploration. To try and achieve this goal, gene methylation will
be added to the chromosome. Ideally the non-coding portion of the chromosome
will act as a reservoir of genetic material that can be accessed when diversity is
required.

Fig. 1. Proposed algorithm

The added methylation layer will also act to separate the storage and expres-
sion of genes. As mentioned above, this can influence the expressed result of
changes to genes. Small mutations can result in more significant changes in the
resulting solution. It can however also affect the results of more substantial
changes by dampening the effect when the genes are expressed.

A small change to the methylation information can result in the coding por-
tions of the solution changing. The newly coding genes should not have been
subject to the diminishing diversity and will thus serve as new genetic material.
The resulting solution will thus be dissimilar to the majority of the population
and thus diversity increases.

def g e t exp r e s s ed g ene s ( i nd i v i dua l ) :
expr e s s ed gene s = [ ]
for i=0 to len ( i nd i v i dua l . genes ) :
i f i n d i v i dua l . methylat ion [ i ] == f a l s e :
expr e s s ed gene s . append ( i nd i v i dua l . genes [ i ] )
return expre s s ed gene s

Algorithm 1. Expressing genes
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The proposed algorithm will build upon the standard genetic algorithm as illus-
trated in Fig. 1. The representation of the chromosome will be updated to facili-
tate DNA methylation. The chromosome will be extended to contain more genes
than the number that will be expressed and used by the fitness function. The
proposed algorithm will also update the chromosome by adding in an extra com-
ponent to track which of the genes are methylated and which are not.

Fig. 2. Chromosome representation

To achieve the above mentioned an array is added to the existing chromo-
some. The length of the added array will match that of the chromosome, with
each element in the newly added array corresponding to one of the genes in
the chromosome as shown in Fig. 2. The array will contain methylation infor-
mation indicating which of the genes are methylated and which not. The initial
methylation status of each gene is randomised with a bias towards expressing
the gene.

When evaluating the fitness of an individual, the genes will not serve directly
as the inputs for the fitness function. The specific genes that will be used will
first have to be selected and then used as the inputs for the fitness function. To
do the selection, the genes in the chromosome will be iterated over in order. For
each gene the methylation status will be evaluated and if the gene is methylated
it will be disregarded. The number of required genes will then be taken from the
resulting list of genes to serve as inputs for the fitness function. This process is
shown in Algorithm1 and Fig. 3.

Fig. 3. Expressing genes
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When crossover is applied to individuals, the methylation information will
accompany the corresponding genes when they are carried over to the offspring.
This will be achieved by copying the appropriate sections of the methylation
array to the offspring as demonstrated in Fig. 4.

Fig. 4. Performing crossover

The methylation information of an individual will undergo mutation along-
side the gene portion of the chromosome. The methylation information will
however have a lower mutation rate than the gene portion. If the methylation
information changes too rapidly, specific genes will not get the required time to
improve sufficiently.

The mutation of the methylation array will function by taking individual
values in the methylation array and inverting the methylation status of the
corresponding gene as illustrated in Fig. 5. This means that if mutation is applied

Fig. 5. Performing mutation
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to a non-methylated gene, it will become methylated or if a methylated gene is
acted upon it will become non-methylated.

5 Test Problem

To test the proposed algorithm a modified version of the Rastrigin function was
used. The Rastrigin function was chosen due to the variable dimensionality that
it provides. This allowed adjustment of the test function if the initial dimen-
sionality proved to be insufficient. Having insufficient dimensionality would have
meant that the portion of the chromosome that is not coding would end up being
small or that the non-coding portion of the chromosome is disproportionately
large.

f(x) = An +
n∑

i=1

[x2
i − A cos(2πxi)]

Where A = 10
and n = the dimensionality of x

(1)

The standard Rastrigin function, as shown in Eq. 1, optimizes on zero for each
of the dimensions. The similar value for each of the dimensions is not desirable
for the testing of the proposed algorithm. Each of the genes in the proposed
algorithm can possibly affect different dimensions as the expression of the genes
changes. If all the dimensions optimize on the same value, the effect of a specific
gene will remain the same regardless of how it is expressed. To avoid this problem
the Rastrigin function was transposed so that each of the dimensions would have
different optimal values.

For the testing ten dimensions will be used. When applying the standard
genetic algorithm to the problem, the chromosome will contain the 10 val-
ues being optimised. For the developed algorithm the chromosome has to be
extended as mentioned above. The length of the chromosome for this test will
be selected to double the number of required genes. This results in a chromosome
containing 20 values of which 10 will be expressed.

To evaluate the effectiveness of the proposed algorithm it will be compared to
the standard genetic algorithm. Both algorithms will be applied to the adapted
Rastrigin function mentioned above. Following a parameter study of the pro-
duced prototype, it was selected that each algorithm will be executed 200 times.
Each run will be measuring the best solution during each generations. These
values will then be averaged out to provide information on the rate at which the
specific algorithm converges on the optimal solution.

The developed algorithm and the standard genetic algorithm will also be
compared with regards to diversity in the population. The average diversity
for each algorithm will be measured during different points of the convergence
process. This comparison should show if the proposed algorithm is successful at
maintaining diversity in the population during the convergence process.

The diversity of a population will be measured as the average distance
between all the individuals in the population. The distance between two indi-
viduals in the standard genetic algorithm will be calculated as the Euclidean
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distance between the two individuals. It should be noted that other distance
measures could be used based on the specific problem.

The distance calculation used for the developed algorithm will consist of two
parts. The first part will be the same as the method used for the standard genetic
algorithm and will be used to calculate the distance of the coding portion of the
chromosome. The second portion will measure the distance that results due to
the non-coding part of the chromosome. For this portion of the chromosome,
the position of a specific gene is less relevant as it could eventually express in
a number of different ways depending on how the chromosome evolves. For this
reason, non-coding genes are not paired based on the position in the chromosome,
but rather on the smallest difference when calculating the Euclidean distance.
Finally, the two values are combined by averaging them to produce the distance
between the individuals.

The third portion of the testing process will attempt to validate the effective-
ness of increased diversity in a population. To test this, a dynamic environment
will be used. As before the transposed Rastrigin function will be used. To achieve
the dynamic environment, the transposition will be updated. When the change
occurs the current optimal found solution will not be accurate anymore and the
algorithm will have to adjust to try and find the new optima.

The developed algorithm and the standard genetic algorithm that will be
used for the testing, will be setup to match each other as close as possible.
Both algorithms will use populations containing 1000 individuals. For crossover
both algorithms use fitness proportionate selection. The mutation rate for the
standard genetic algorithm is set to 10%. The developed algorithm matches the
10% on the gene portion of the chromosome, but uses a separate mutation rate
for the methylation values for which 1% is used.

6 Results

Figure 6 shows the fitness of the best found solution during each generation.
As mentioned above multiple runs were executed and the result averaged out.
From the figure it can be seen that the proposed algorithm performed slightly
worse than the standard genetic algorithm. This is understandable as the devel-
oped algorithm has the added methylation layer that will affect performance.
Changes in the methylation of individuals can slow down convergence. This can
be minimised by limiting the mutation rate of the methylation information.

Figure 7 compares the diversity of the of the developed algorithm to that of
the standard genetic algorithm. Results show that the standard genetic algorithm
quickly loses genetic diversity as the population converges on a solution. The
developed algorithm also loses diversity during the duration of the algorithm,
but does so at a much slower rate. The developed algorithm is also able to
maintain a higher level of diversity once the diversity loss levels out.

Finally, Fig. 8 shows the convergence rate of the algorithms when change
occurs in the environment. The large spike in fitness indicates the point where
the change in the environment occurred. The developed algorithm is able to
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Fig. 6. Convergence rate of algorithm

recover from the change and converge on a new value, faster than the standard
genetic algorithm.

Fig. 7. Diversity of population

To test the statistical significance of the result, we will evaluate the num-
ber of generations it takes to re-optimise after the change in the environment
occurs. We considered the algorithm as re-optimised when the fitness moved
below 0,001. Using this method we calculated the mean number of generations for
both the standard genetic algorithm and the proposed algorithm to re-converge.
The mean number for the standard genetic algorithm was 140,96 while the devel-
oped algorithm did it in 99,435. The sample standard deviation for the developed
algorithm runs were 17,085.
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Fig. 8. Convergence after change in environment

To establish the statistical significance the null hypothesis will be that the
developed algorithm is not more efficient. The probability of the observed results
occurring if this is the case is then determined. If the probability is less than 0,01
then we will reject the null hypothesis and have established that the developed
algorithm is more efficient.

The z-value is determined as follows:

z =
x − μ

σ
=

140.96 − 99.435
17.085

= 2.43 (2)

Performing a lookup of the z-value using a z-table results in a probability of
0,00755 which is less than the specified 0,01.

The null hypothesis can then be rejected and it can be stated that the devel-
oped algorithm is more efficient when re-optimising after a change over the given
test function.

7 Conclusion

Based on the results produced by the tests, the developed algorithm is bet-
ter at maintaining diversity in the population when comparing it to the stan-
dard genetic algorithm. The developed algorithm was able to maintain diversity
slightly longer than the standard genetic algorithm and was able to maintain a
higher level of diversity after the population diversity stopped diminishing.

The results also indicated the developed algorithm can effectively make use of
the available diversity to adapt to changes in the search space. Figure 8 showed
that the developed algorithm outperformed the standard genetic algorithm when
exploration was required after the population became stagnant.

Lastly the tests showed that the above was achieved with only a slight
decrease in convergence effectiveness in a static environment.
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Based on the above points it can be concluded that the developed algorithm
did achieve the goals that where set out. It was able to maintain better diversity
than the standard genetic algorithm. It was also able to leverage the increased
diversity to improve convergence when changes occur in the environment.

7.1 Future Work

The addition of gene methylation in this paper has produced positive results. The
method of implementing these methylation patterns can however be expanded.
One option that will be explored is the use of a probabilistic data structure to
store methylation information. One option here will be the use of Bloom filters.
A possible advantage that can be gained from this, is that the imperfect storage
of a Bloom filter will better match the imperfect genetic process.

Another area that could be explored, is the simulation of gene-regulatory
networks when expressing the methylation information. This could potentially
allow the formation of gene groups that follow the same expression pattern. In
turn this could lead to genes that work well together to be stored together in the
non-coding portion of the chromosome. Ideally these genes could then become
expressed together when the coding portion of the chromosome changes.
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Abstract. Since the inception of evolutionary algorithms, the capabili-
ties of genetic algorithms is showcased by games. This paper proposes the
use of a genetic algorithm for the game, Tetris. An evolutionary approach
is used to design a Tetris bot. The proposed approach uses a novel set
of parameters to decide which move needs to be taken by the Tetris bot
for each falling Tetromino. These parameters represent the various genes
present in the chromosome. Each individual is being allowed to play the
game once. Once the entire population has played, the population under-
goes crossover and mutation. In this way, the parameters are evolved to
get a better bot. The most evolved bot as per the fitness is allowed to
simulate 200 rounds of Tetris during which its actions are recorded. Fur-
ther, Frequent Pattern Growth algorithm, a data mining technique, is
used to extract knowledge from the given stored actions. The extracted
knowledge is used for mining association rules and identifying strategies
used by the evolved bot to play the game.

Keywords: Tetris · Artificial Intelligence · Genetic algorithms ·
Data mining · Frequent pattern growth algorithm

1 Introduction

There are many games that pose an intellectual challenges. Such games include
Poker, Go, Chess etc. As a result, Artificial Intelligence (AI) algorithms are
being used for game playing, especially in the last few years. Tetris has also
attracted researchers attention. Tetris, a block-matching game, was designed
and programmed by a Russian game developer, Alexey Pajitnov. It consists of
geometric shapes called tetrominoes. Each of the tetrominoes consists of 4 blocks.
There are 7 types of tetrominoes representing the letters of the English alphabet:
I, J, L, O, S, T, Z. The game has a game board that has a grid of size 10×20 cells.
The objective of the game is to place the randomly falling pieces onto the game
board such that it does not cross the top margin of the board. Each row filled
c© Springer Nature Switzerland AG 2019
L. Rutkowski et al. (Eds.): ICAISC 2019, LNAI 11508, pp. 481–492, 2019.
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completely with tetrominoes is cleared, thus decreasing the height of the stack
by one. The falling tetromino can be moved left or right and rotated by 90◦. As
the game proceeds, the game levels up and the speed by which the pieces fall also
increases, thus making it difficult to place the tetrominoes at the right position.
Even though the game appears to be simple, developing a Tetris bot is a big
challenge. Since the game has a grid with 7 blocks; the game has 210×27 ≈ 1060

states [1]. As this state space is very large, a brute force approach cannot be used
and therefore there is a need to use certain optimization techniques to develop
the Tetris bot. This game can be played in both offline and online mode.

Demaine et al. [2] were able to prove that the offline version of the game
was NP–complete on the basis of the reduction between the 3–partition problem
and Tetris. According to Burgiel [3], it is impossible to win at Tetris in the
sense that one cannot play the game indefinitely. There are some sequences of
pieces that will cause a player to lose the game with probability one. Tetris
has been employed in testing machine learning (ML) algorithms. AI techniques
such as reinforcement learning and state space search have seen success in the
development of this game. Fehey [4] developed a Tetris bot by hand-tuning the
parameters involved in the evaluation function. The bot was able to clear lines
on 63 × 104 average. Bohm et al. [5] used genetic algorithms to allow ‘smart’
solutions to develop naturally. Szita et al. [6] used cross–entropy methods in
Tetris. The weights of the features introduced by [4] were optimized using this
algorithm and thus the game could clear 35 × 104 ± 86% lines.

Langenhoven et al. [7] with the help of Particle Swarm Optimization (PSO)
developed a feed-forward neural network that was used as an evaluation function.
Inputs to the network are the weights of the feature functions the value of the
state is the output. The bot could clear 15×104 lines on average. Lundgaard and
McKee [8], at the University of Oklahoma used deep learning and reinforcement
learning to develop an AI algorithm for Tetris. They used neural networks and Q-
learning, a reinforcement learning technique, to train their AI agents. The neural
network was used to define the state-action policy and the expected rewards.

Most of the authors [6,9] have worked on developing a bot that knows only
the current piece and not the subsequent piece. In the case of the ‘two-piece’
approach, the player would be able to play a better move for the current piece
by knowing the move of the next piece. The performance of height-based weigh-
ing functions was studied in [10] and the results were also compared with the
non-height-based weighing functions for holes. It used the ‘two-piece’ approach
to assist the player. Rollinson [11] used greedy-search and a depth-2 search com-
bined with a genetic algorithm and Nelder–Mead optimization to develop a bot.
The result was that the depth-2 search optimized with the Nelder–Mead algo-
rithm performed the best and could clear 4000–5000 lines/rows.

In this paper, a genetic algorithm followed by frequent pattern growth algo-
rithm (GAFP) is proposed. The GAFP uses features of both genetic algorithm
and frequent pattern growth to find the right game strategies to be used while
playing Tetris. The proposed algorithm is divided into two parts–the genetic
algorithm that is used to get an evolved AI that passes the fitness limit and the
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frequent pattern growth algorithm that is used to extract game strategies from
the evolved AI. The rest of the paper is divided into the following sections–Sect. 2
explains in detail the design of the GAFP algorithm; Sect. 3 discusses the GA
part of the algorithm. It elaborates on the all the sub-methods involved in it.
Section 4 describes about the frequent pattern algorithm briefly. Section 5 shows
an example explaining the GA part of the algorithm along with all the processes
involved by the bot in playing a move; Sect. 6 talks about the implementation,
outcomes and association rules obtained using the GAFP algorithm. Finally,
some concluding remarks are given in Sect. 7.

2 Design of the Proposed GAFP Algorithm

The proposed algorithm uses an evolutionary approach that is genetic algorithm
(GA) followed by frequent pattern growth algorithm (FP) (hence, named GAFP)
to evolve a player’s gameplay and adapt better to the falling tetrominoes. The
Tetris bot developed would be able to play the game with the goal of clearing
as many rows as possible. A fitness function has been used to select better
performing individuals and continuously evolve the bot with time. Due to time
constraints, an upper limit k has been set to the fitness function. The algorithm
will stop once we get a bot with a fitness value greater than the limit. The
evolved bot will then be made to play 200 rounds of Tetris during which, the
move (actions) it takes for each falling tetromino will be recorded. The symbols
used and attributes of an action have been mentioned in Table 3 and Sect. 6
respectively. Later, we will apply the FP algorithm on these stored actions of
the most evolved bot to extract the strategies used by the bot to play the game.

Table 1. Constant hyper-parameters for GAFP algorithm.

Hyper-parameter Value

Population size n 50

Mutation step Ms 0.2

Mutation rate Mr 0.1

Number of children per generation 25

Number of individuals removed per selection 25

Maximum confidence 85%

The role of GA part of the algorithm (Algorithm 2) is to evolve a Tetris
bot with the goal of clearing as many lines as possible and which meets the
upper limit set on the fitness function. And the role of FP part of the algorithm
is evaluating the most evolved bot and gets the techniques (rules) it uses to
play the game. Figure 1 and Table 1 shows the flowchart and constant hyper–
parameters for the GAFP algorithm.
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Fig. 1. Flowchart for GAFP algorithm

3 Genetic Algorithm Part of GAFP

Genetic algorithm involved in evolving the bot is carried out in a number of
steps. These steps are now explained.

3.1 Initialization

In this step, an initial population of n individuals is created. Each individual is
made up of certain parameters as mentioned in Table 2 that will determine its
gameplay. A random approach has been used to initiate the population. This
is done to ensure that the population does not have similar solutions and are
diverse. It has been experimentally observed that the random solutions are the
ones that makes the population better. On the other hand, heuristic initialization
only affects the initial fitness of the population. Moreover, the assumptions used
for deciding the heuristics could be incorrect too.

3.2 Evaluation

Each individual of a generation is then allowed to play the game once. In order
to play a move, a depth–1 search algorithm has been employed which performs
the search for the best move on the current tetromino as well as the next piece
by performing a look ahead. This will allow the bot to drop the pieces in the
best position while taking the next state into account. In the search algorithm,
the action was defined as the number of rotations and the horizontal translation
of the piece, assuming that the piece will be dropped from that point to get to
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Table 2. Parameters and their meaning.

Parameter Meaning

Aggregate height Sum of the height of each column

Holes Number of holes; a hole is an unfilled unit in the Tetris
board such that all the other units around it is filled

Complete line Number of complete lines in the board

Bumpiness Variation in the column heights; computed by summing up
the absolute differences between every adjacent columns

Relative height Height of the highest column minus lowest column

Weighted height Height of the highest column

Maximum hole height Highest row that contains at least one hole

the next state. For each tetromino, the bot takes two steps to decide the best
action:

– Try all moves: To generate all possible different actions that the bot can do
for the given piece and a board state.

– Evaluate: To calculate the rating of each possible action and perform the best
of them (Algorithm 1). The bot played the move that generated the highest
rating.

Each possible move of the generated piece was rated according to a function:

Rating of a move =
∑

(wi × pi) (1)

The individual loses if the tetromino crosses the top margin of the board. The
fitness of the individual sum of all the ratings of a move. This is then calculated
and stored.

Fitness function = α =
∑

(Rating of movei) (2)

3.3 Selection

In this step, the set of individuals that are fit for the crossover step of GA are
selected from the entire population. The top 50% of the population is selected
for crossover.

3.4 Crossover

Crossover, a convergence operation, is employed to pull the population towards
a local minimum/maximum New individuals are created in this crossover step.
This is done by firstly selecting two individuals randomly from the present pop-
ulation to create a new individual. The children will take up the parameter of
one of the two parents. This is done to combine traits to create an individual
that inherits the best traits from each of its parents. Crossover is done using the
crossover rate cr, which is the probability that two chromosomes will swap their
parameters.
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Table 3. Symbols and their meanings.

Symbol Definition

α Number of lines cleared by the ith

ai Fitness of be best bot of the jth generation

Cr Crossover rate

Mr Mutation rate

Ms Mutation step

pi ith parameter of the genome

x Number of parameters in the

w Weights employed in the game

wi ith weight of the game

n Number of individuals in a generation

k Fitness limit

3.5 Mutation

Changing the value of the parameter of the genome by a small amount randomly
carries out mutation of the individual. The mutation rate Mr is the probability
whether the parameter will change. The mutation step Ms, is used to put a limit
to how much the value can change. The rate of mutation is less than crossover
as the end goal is to bring the population to convergence. It affects the members
of the population by a small amount.

Algorithm 1. Pseudocode for Move Evaluation
1 Function Evaluate (B,I,Moves,moveTaken));

Input : B: N×X matrix representing individuals I: individual that needs to
be evaluated
Moves: List storing all possible moves
MoveTaken: List storing moves taken

Output: Individual fitness
2 while (game is not over) do
3 moves = tryMoves() moves = sort(moves) // sort moves by ratings
4 moveTaken = takeMove(moves)
5 individual.fitness = calculateFitness(moveTaken)

6 end

3.6 Repetion

The same procedure is now applied to the new generation of individuals. This
is carried out until the terminating step is reached. A limit k was kept on the
value of the fitness function. The individual stops when it reaches this limit.
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Algorithm 2. Pseudocode for GA part of the algorithm
1 Function Genetic (B,K,Cr, mr, ms);

Input : B: N×X matrix representing individuals I: individual that needs to
be evaluated
K: Fitness limit
mr: Mutation Rate
ms: Mutation Step
Cr: Crossover rate

Output: Most evolved bot
2 B = InitializeBot(B) while (k¡ai) do
3 B = evaluate(B) // All individuals play the game
4 B = sort(B) // Individuals sorted based on fitness
5 B = Remove(B) // Remove bottom 50% individuals
6 B = crossover(B,cr) // Crossover stage
7 B = mutate(B,mr, ms) //Mutation stage

8 end

4 Frequent Pattern Growth Algorithm Part of GAFP

FP growth algorithm is one of the fastest and most efficient algorithms for asso-
ciation rule mining. It is a rule-based ML technique for identifying the presence
of any relationship present between the variables in a database. It is based on
the construction of the FP tree. A predefined minimum support and minimum
confidence are used to implement the algorithm. High minimum support [12]
leads to the identification of fewer association rules while a high confidence level
ensures stronger association rules. If the lift ratio is greater, greater will be the
strength of the association rule. FP algorithm unlike Apriori requires only two
scans of the database. It works according to the divide-and-conquer strategy. In
general, associative rule mining can be divided into two parts:

– Find a variable or combination of variables that occur more than the pre-
defined minimum support.

– Generate association rules from those combinations keeping the minimum
confidence as the constraint.

The FP growth algorithm consists of two parts:

– Construction of the FP tree: The FP-tree is constructed in two scans of the
database. The database is first scanned to find the support of every item
present in the database. The items with support less than the minimum sup-
port is discarded. The items are then sorted based on their support values.
It reads the transaction one by one and constructs a path leading to the
formation of the FP–tree.

– FP tree growth: After the FP tree has constructed, the set of frequent patterns
are extracted using the tree.
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5 An Example Demonstrating the Working of GAFP
Algorithm

Let us consider an arbitrary individual with the feature values as given in Table 2.
Let the bot be at a stage as shown in Fig. 2 (Board 1). Figure 2 also shows the
state space Board 1.1, Board 1.2, Board 1.3, ..., Board 1.23, Board 1.24 repre-
senting the possible positions where the blocks can be placed. For each such
state of the Board, the bot will find the rating and move to the game state that
has the best rating. Table 4 shows the values for w (value of the bot parameters)
and p (games feature values). Using equation (1), the rating for the Board 1.1
and Board 1.24 move can be calculated as 7.25 and 7.26 respectively. Hence, the
bot moves to the board state 1.24.

Fig. 2. Search tree generated for a tetromino

6 Implementation and Results

Once the most evolved bot was generated after implementing the GA, the most
evolved bot goes through the game simulation where it is made to play 200
rounds of Tetris until it loses in each round. Its actions are recorded in a separate
database. An action is the placement of the block that depends on the rating of
the move. A total of 5025040 actions were stored. In order to implement the FP
algorithm, 4 attributes were considered for each action taken by the bot. These
attributes are:

– Type of tetromino T where t = {I, O, J, Z, L, S}
– Rotation r where r = {0, 1, 2, 3} where r = 0 means no rotation, r = 1 means

90–degree rotation and so on.
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Table 4. Value of game features and parameters for board 1.1 and board 1.24.

Parameter Wi p (Board 1.1) p (Board 1.24)

Holes −0.4545 0 0

Complete lines 0.9521 0 1

Weighted height −0.6732 5 4

Bumpiness 0.2121 15 9

Aggregate height 0.2132 32 32

Relative height 0.1231 5 3

Maximum height hole −0.1234 0 0

Fig. 3. Scatter plot for the all the generated rules

– N1: Used to describe the roughness of the place where the block will fall to
its right neighbour. Calculated as Xi+1 − Xi where Xi is the height of the
leftmost column S occupied by the block. If height(S) > 9, N1 = 0.

– N2: Used to describe the roughness of the place where the block will fall to
its right neighbour. Calculated as Xi+1 − Xi where Xi is the height of the
leftmost column S occupied by the block. If height(S) > 7, N2 = 0.

The performance of the GAFP algorithm can be seen in Fig. 3. The confidence
level was kept at 85%. The FP growth algorithm was able to find 71 rules.
Figure 3 shows the scatter plot for all the generated rules and Table 5 shows the
top 10 rules as per the lift ratio.

Any of the generated rules can be described as follows:
{Piece = L,N1 = 2, N2 = 1 or 2 or 3} ⇒ {R = 3}: If the incoming tetromino is
L shaped and there is a location with N1 = 2, N2 = {1, 2, 3} then to place the
tetromino at that location, the bot will rotate the tetromino thrice.

Table 6 summarizes results of other algorithms on Tetris gameplay compared
to our algorithm. As seen from the Table 6, GAFP was able to outperform many
other algorithms due to the strategies learnt due to FP algorithm. The comparison
shows that our method was able to outperform even the RL algorithms such as the
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Table 5. Top 8 rules along with their confidence and lift ratio.

Rule Confidence Lift ratio

{Piece = L, N1 = 2, N2 = 1 or 2 or 3} ⇒ {R = 3} 1 5.72

{Piece = L, N1 = 1, N2 = 2} ⇒ {R = 3} 0.875 5.15

{Piece = O, N1 = 0, N2 = 3} ⇒ {R = 0} 1 3.27

{Piece = O, N1 = 1, N2 = 1} ⇒ {R = 0} 1 3.22

{Piece = T, N1 = 1, R = 2} ⇒ {N2 = 1} 1 3.21

{Piece = S, N1 = 1, R = 0} ⇒ {N2 = 1} 1 3.15

{Piece = O, N1 = 0, N2 = 0} ⇒ {R = 0} 0.96 3.12

{Piece = S, N1 = 0, N2 = 1} ⇒ {R = 0} 0.96 3.05

Table 6. Performance of GAFP with other algorithms.

Algorithm Mean Score Reinforcement learning

Hand Coded 621167 No

GA [5] 581106 No

LP + Bootstrap [13] 4267 Yes

Policy Iteration [14] 3383 Yes

LPSI [16] <3000 Yes

RRL–KBR [15] ≈50 Yes

GAFP 831167 Yes

policy iteration method along with the hand-coded algorithm. Its not sensible to
compare the running times as there is a linear relation between running times and
score of the bot.

7 Conclusions

In this paper, GA is used to create a Tetris bot and FP algorithm is applied
to find strategies used by the most evolved bot to play Tetris. The novelty of
the paper is to analyse the strategy of the bot learnt during training with the
help of FP algorithm. Figure 4 shows performance of the genetic algorithm. This
bot exceeded the fitness limit of eliminating 150000 lines. The strategy consisted
of 4 attributes (i.e. N1, N2, rotation, piece). Although it is easy to manually
construct the rules that could decide the right position to place the current
tetromino, it should be pointed out that the proposed bot was not fed with such
rules separately. One of the advantages of using GA to train the bot was that One
of the key challenges of this paper was the time constraint since simulation of a
bot takes many hours. Making the bot play longer brings out better strategies.
Constructing good features was another tough task because one must try to
deduce what features allowed the AI to stay alive as long as possible.
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Fig. 4. Left: Graph showing the average lines cleared by individual per generation;
Right: Graph showing the lines cleared by best individual per generation
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Abstract. The paper presents the method of identifying the initial pool
of request-response pairs for Active Protocol Discoverer. This method is
suitable for the bottom-up form of protocol discovering, in which the
samples of requests are generated, and the high order form (e.g. gram-
mar) of protocol description is created on the basis of these samples.
The method is based on the evolutionary computation approach similar
to linear genetic programming, in which particular requests are treated
as individuals (programs) with different lengths.

Keywords: Protocol discovering · Evolutionary computation ·
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1 Introduction

The goal of the protocol discovering process is to find a form of protocol descrip-
tion using samples of conversations held by their participants. Automatic proto-
col discovering is particularly useful when formal protocol specification does not
exist, is incomplete or outdated.

As shown in [10], protocol discovering has numerous applications, which
include automated process discovery [6], inferring business protocols of web ser-
vices [8], discovering models of software processes [4], workflow mining in Enter-
prise Resource Planning, Customer Relationship Management software, Business
to Business applications [3], and discovering communication protocols used by
hardware devices. Other important applications of protocol discovering are con-
nected with detecting potential software and hardware vulnerabilities [5,17].

Another reason for the increasing demand for protocol discovering is the pop-
ularization of concepts of the Internet of Things, Wireless Sensor Networks and
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Pervasive Computing [12,14]. In such environments various devices which use
different protocols should cooperate together. Because of relatively fast changes
in protocols used by particular devices, a need exists for neighbouring devices
to automatically (or symptomatically) adapt to these changes [15].

Other demands for protocol discovering are connected with using legacy
devices or legacy software components (e.g. web services) for which protocol
specification is unavailable.

There are two main approaches to the process of discovering protocols:

– passive protocol discovering - in which a discoverer system only observes con-
versations between participants and does not generate any messages (neither
requests nor responses) [4,5,8]. Examples of this approach include Automatic
Protocol Reverse Engineering Tools [13], which requires network traces as
input [9]

– active protocol discovering [10] - where the discoverer takes active part in
conversations by generating requests to other participants of the conversation
and - on the basis of their responses - tries to discover the protocol

In active protocol discovering generating new requests by a discoverer is an
important part of the process. With no or limited knowledge about the protocol
under discovery - especially at the beginning of a discovery process - the simplest
and most typically used method is random brute force generation of requests.
However, even in this initial phase of the discovery process the techniques based
on evolutionary computation (EC), e.g. Linear Genetic Programming (LGP)
[7,11], can be used and, as shown below, can be more efficient than random
generation of requests.

2 The Proposed Approach

Similar to [10], in this study we will consider a bipartite protocol i.e. a protocol
of communication between two participants. One of them is the unknown system
(treated as the black box) whose protocol should be discovered, and the other
is the Active Protocol Discoverer. It is also assumed that each conversation
consists of consecutive pairs of request-response. All requests and responses will
be treated as byte strings, i.e. sequences of one or more bytes1.

The protocol discovery process can have two basic forms:

– top-down, in which the high order form of the protocol description (see below)
is created, and next individual requests are generated from this form of
description.

– bottom-up, in which first the requests (e.g. binary strings) are generated and
next, on their basis, the generalized form (high order) of the description is
created.

1 The text string is a special case of a byte string.
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It may be reasonable to combine these two forms of protocol discovery in
one process. For example, at the beginning of a discovery process, when little is
known about an unknown system, the bottom-up approach can be more efficient,
and later, when we already have some model (or models) of this system, we can
use the top-down approach to tune the model/s.

The protocol under consideration may be described in various (high order)
forms, for example, deterministic and non-deterministic finite state machines
(FSM), push-down automata, Petri nets, regular grammars, and context-free
grammars. The example of the top-down approach for active protocol discovering
based on Grammatical Evolution by Grammatical Evolution (GE)2 is presented
in paper [10].

This study proposes the method of generating requests for protocol discov-
ering in the bottom-up manner. The method described in the paper is based
on the evolutionary computation approach, specifically, on Linear Genetic Pro-
gramming (LGP). In this case, individuals (which represent the requests) are
treated as a linear sequence of symbols from an unknown language (protocol)
which should be discovered. The goal of the proposed method is to discover as
many various responses from the system with an unknown protocol (treated as
the black box) as possible. As mentioned above, it is useful in the initial phase
of protocol discovery of an unknown system. Request-response pairs found this
way can later be used to create generalized forms of protocol description (e.g.
context-free grammars), which, however, is out of scope of this paper.

3 The Process of Discovering Responses Using EC

The process of discovering responses is based on evolution of clusters of individ-
uals.

The cluster of individuals C is 2-tuple:

C = (r, P ) (1)

where:

– r - the response from the system with an unknown protocol
– P - population of individuals (requests)

Each cluster C is characterized by unique response r from the system with
an unknown protocol.

Two clusters Ci = (ri, Pi) and Cj = (rj , Pj) are not equal if:

Ci �= Cj ⇐⇒ ri �= rj (2)

On the basis of Linear Genetic Programming technique, the proposed process
of the initial discovery of responses from an unknown system is as follows:

1. The initial cluster of individuals is created. Each cluster has its own pop-
ulation of sentences (which represent the requests) and is characterized by
responses from the system with an unknown protocol. The response for the
initial cluster is set as empty (i.e. no response from the system with an
unknown protocol)
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2. The first generation of the population of sentences (binary strings with various
length) for the cluster from step 1 is randomly created. Each generated sen-
tence represents a request which will be sent to the system with an unknown
protocol (the passive participant of a conversation)

3. Generated requests are sent one by one to the system with an unknown pro-
tocol and the responses from the system are registered
(a) If the response is the same as the one which characterizes the current

cluster, fitness of an individual (request) is calculated and stored
(b) If the response is new (never seen before), the procedure of request-

response simplification is executed (see below). If the simplified response
is new, a new cluster with its own population of sentences is created. The
simplified request is added to this new population, and its fitness is calcu-
lated and stored in a new cluster. Each such cluster evolves independently
of other clusters

(c) If the response has been seen before, the request (and its fitness) is added
to the cluster characterized by this response

4. For each cluster, on the basis of fitness values, candidates (requests) for the
next generation are selected

5. The next generation of individuals is created (for each cluster separately),
using genetic operations, such as crossover and mutation

6. The process loops to step 3, and co-evolution of each cluster continues until
the stop condition occurs

3.1 The Procedure of Request-Response Simplification

When a new response (never seen before) from the system with an unknown
protocol is observed, the procedure aimed at limiting this potentially complex
response to a single one should be executed. Otherwise, the registered response
may be a concatenation of two (or more) successive responses. This is the case if
the generated request is treated by the system with an unknown protocol as two
(or more) separate requests one after another. The procedure (see Algorithm 1)
uses a bisection method for finding requests that will generate single responses.

In brief, this algorithm works as follows:

– the initial value of integer ‘step’ variable is set as the length of the initial
request string divided by 2

– the initial value of the final request is set as the initial request
– the temporary request is created as a substring of the initial request form

the first character to the character with the number denotes the difference
between the length of the request and ‘step’ variable.

– the temporary request is sent to the system
– if there is a response from the system, the final request is set as the temporary

request and the length of the temporary request is decreased by the value of
‘step’ variable.

– otherwise, the final request is not modified and the length of the temporary
request is increased by the value of ‘step’ variable.
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input : A request string request and a response string response,
output: A simplified response string finalResponse, a request string

for a simplified response finalRequest

requestStart ← 0;
requestEnd ← Len(request);
step ← Len(request) / 2;
tempRequestEnd ← requestEnd − step;
finalResponse ← response;

while step > 0 do
currentRequest ← Substring(request, requestStart,
tempRequestEnd);
// Send a request to the system and read its response

currentResponse ← GetResponseForRequest(currentRequest);
if Len(currentResponse) > 0 then

requestEnd ← tempRequestEnd;
finalResponse ← currentResponse;
tempRequestEnd ← tempRequestEnd − step;

else
tempRequestEnd ← tempRequestEnd + step;

end
step ← step / 2;

end
finalRequest ← Substring(request, requestStart, requestEnd);

Algorithm 1. The procedure of request-response simplification

– the new ‘step’ value is set as the current ‘step’ value divided by 2
– the while loop is repeated for as long as ‘step’ value is greater than 0
– the final request and the corresponding final response are the output of the

algorithm

3.2 The Fitness Function

In order to select individuals (byte strings that represent requests in the protocol)
which will be used to create the next generation, fitness values for each of them
are calculated. The fitness function has the form:

fitness(request) =

{
1

1+|request| , if the response comes from the current cluster

0, otherwise
(3)

where:

– |request| - the length of a request i.e. the number of bytes in a byte string

If the response to a request is different that the response characteristic for the
current cluster, the request obtains zero as the fitness value. Otherwise, fitness
is in inverse proportion to the length of the request (the shortest requests are
preferred - their fitness value is greater than that of the longest ones).
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3.3 Genetic Operators

The following genetic operators are used to create the next generations:

– crossover - operates on two individuals and is one-point, that is within each
of two individuals a random crossover point in the chromosome is selected
and particular sections of the chromosome for individuals are swapped

– mutation - operates on one individual and changes a randomly selected part
of its chromosome. It can assume two forms: whole byte mutation and single
bit mutation. In case of whole byte mutation, after a random selection of the
position of a byte in the chromosome, this byte is replaced by a randomly
selected value.

– duplication - operates on a single individual and creates an exact copy of a
selected individual

– random creation - randomly generates a new individual (a whole chromosome)

3.4 Selection

Individuals used in creating the next generation are selected on the basis of
their fitness values (by using genetics operations). The deterministic tournament
selection is used in this process i.e. k2 individuals are selected from a population
at random, then the best one (with the greatest fitness value) is selected as the
parent of the next generation of individuals, then a selected genetic operation is
used to create offspring. The process is repeated until the whole next generation
of the population is created.

4 Case Study

This sectionpresents sample results of the proposed approach topreliminaryproto-
col discovering. The case study is based on protocol discovering for Pan-Tilt-Zoom
teleconference cameras. Because the protocol used by these cameras is known (it
is VISCA protocol), the results obtained in the protocol discovering process can
be compared with the specification provided by their manufacturer. However, the
proposed approach is universal and can be applied in any bipartite protocol.

4.1 The Testing Environment

Video System Control Architecture (VISCA) protocol was the protocol to be
discovered in the study. VISCA is a control protocol designed by Sony, which is
used in many teleconference and surveillance Pan-Tilt-Zoom cameras. The tests
were executed independently on three different VISCA cameras:

– Sony EVI-D31
– Sony EVI-D70P
– Sony EVI-D100P

2 where k is tournament size.
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Because VISCA uses RS-232 protocol as Data Link Layer, the PTZ cameras
were linked to a computer with running Protocol Discoverer using RS-232 Ter-
minal Server. Such solution allows for simultaneous connection of a number of
cameras (in this test three) for which a protocol is being discovered.

4.2 The Parameters of the Evolutionary Process

The parameters of the process of preliminary protocol discovering used in the
tests are shown in Table 1.

Table 1. Evolution parameters used in the tests

Parameter Value

Population size for each request-response cluster 100

Tournament size 5

Crossover probability 55%

Mutation probability 15%

Duplication probability 15%

Random creation probability 15%

5 Results

The process of preliminary protocol discovering using LGP was run three times
for each VISCA camera and in total 15.000 individuals (requests to camera)
for each run were tested. Additionally, a test randomly generating 15.000 indi-
viduals (byte strings) was performed for each camera. The results of random
generation of requests were used as comparative values for assessing efficiency of
the proposed method of generating requests using LGP.

The number of unique responses identified using the proposed method for
generating requests for each camera is presented in Fig. 1.

As can be seen, the numbers of unique responses identified for Sony EVI-D31
and Sony EVI-D100P cameras are similar, while the number of requests for Sony
EVI-D70P camera is about 4 times lower. It might have been caused by the fact
that cameras EVI-D31 and EVI-D100P are primarily dedicated for teleconfer-
ences, while the EVI-D70P is dedicated for a wider range of applications (e.g.
distance learning, security systems, etc.) [16] and has to be more resistant to
unexpected requests in control protocol.

Figure 3 shows a histogram of lengths of identified unique responses obtained
using the proposed evolutionary approach. The distribution of the length of
responses is similar for all Sony EVI cameras. The number of identified unique
requests quickly decreases with an increase in the length of requests. This part
of distribution is similar to exponential decay.
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Fig. 1. The number of unique responses identified after testing a given number of
individuals (requests) using the proposed method for preliminary protocol discovering.

Figure 2 shows a number of unique responses found for each camera using
random generation of requests. In this approach, first, the length of the request
was randomly generated in the range between 1 and 100 with uniform distribu-
tion, and next the value of each byte in the request was randomly generated.

The histograms of the lengths of the responses obtained using random gen-
eration of requests are shown in Fig. 4.

As can be noticed, the proposed method based on the evolutionary approach
allows for finding a greater number of unique responses than the method which
generates individuals (requests) in a random way. For EVI-D31 camera the app-
roach using random generation of individuals found 431 unique responses, while
the proposed approach based on LGP found 666, 794, 733 unique responses in
runs 1, 2 and 3, respectively. For EVI-D70P camera random generation found
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Fig. 2. The number of unique responses identified after testing a given number of
individuals (requests) using the method of random generation of individuals

Fig. 3. The histograms of the lengths of the responses obtained using the proposed
method for preliminary protocol discovering
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Fig. 4. The histograms of the lengths of the responses obtained using random genera-
tion of individuals

69 unique responses, and the proposed approach - 264, 239, 215 respectively. In
case of EVI-D100P camera it was 410 unique responses in random generation,
and 678, 823, 742 in the proposed method.

Also in case of the maximum length of the responses found, the proposed
method based on the evolutionary approach worked better that the method
based on random generation of requests. For EVI-D31 camera the longest
response found by the method of random generation of individuals consisted of
11 bytes, while the response found by the evolutionary approach had 19 bytes.
For EVI-D70P camera it was 8 and 19, respectively, and for EVI-D100 camera
- 10 and 19, respectively.
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5.1 The Results of Request-Response Simplification

The example of request-response simplification while discovering a protocol for
Sony EVI-D31 camera is a reduction of the response from: [E9, FF, D3, FF,
F0, 53, 72, 36, FF, DF, 19, 05, 45, 40, FF, 83, FF, B7, 72, 39, 49, FF]3 to [E9,
FF], which is a reduction in the length of the response from 22 to 2 bytes. The
reduction of the request in this example was from 222 to 45 bytes. After applying
the procedure of request-response simplification, all identified responses end with
value FF, which is not unexpected, as it is VISCA packet terminator [1,2].
Additionally, only 34 responses from the total number of 1353 unique responses
contained more that one (in each case two) bytes with value FF. Such responses
were a concatenation of two VISCA response packets (each ended with FF value).
The most frequent response with two VISCA packets was: [E0, 60, 03, FF, E0,
E0, 52, FF], where the first packet [E0, 60, 03, FF] was error message ‘command
buffer full’, and the second packet [E0, 52, FF] was ‘Command completion’ for
socket 2 (see [2]).

6 Conclusions

The approach presented in this paper is dedicated for preliminary protocol dis-
covering by an Active Protocol Discoverer. This approach is suitable for the
bottom-up form of protocol discovering i.e. the form where sample requests are
generated first and then the high order form of the description of the protocol (for
example, grammar) is created on the basis of this sample. The proposed method
is based on the evolutionary approach, especially on Linear Genetic Program-
ming, in which programs (in this case requests) are represented by sequences
of instructions (bytes). These sequences of bytes (requests) are created using
genetics operators and may have different lengths. This approach is an alterna-
tive to generating sample requests in a totally random manner, which is typically
applied in the initial phase of protocol discovering where there is no knowledge
about the protocol under consideration. As the example of the initial phase of
discovering responses for VISCA protocol presented in this paper demonstrates,
this approach is more efficient than the approach based on random generation of
individuals. Two potential drawbacks of the proposed approach should be men-
tioned. One of them is a constant increase of the number of clusters of individuals
and, consequently, the number of individuals which must be evaluated in each
generation. If some clusters do not contribute to finding new request-response
pairs, thus to finding new clusters, their evolution may slow down the whole
process of finding new solutions (request-response pairs). Identifying such unus-
able clusters and optimizing searching process is a challenge which should be
addressed in further studies. The second drawback is connected with the proce-
dure of request-response simplification – the bisection approach was proposed to
limit this potentially complex response to a single one. The computational com-
plexity of this algorithm is O(log n), where n is the length of the request under

3 The presented values are given in the hexadecimal system.
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simplification. For long requests this computational complexity can be signifi-
cant. Limiting this complexity, by, for example, using some heuristic techniques
can be another challenge in further studies in this area.
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Abstract. This research represents a detailed insight into the modern and
popular hybridization of unconventional quasiperiodic/chaotic sequences and
evolutionary computation. It is aimed at the influence of different randomization
schemes on the population diversity, thus on the performance, of two selected
adaptive Differential Evolution (DE) variants. Experiments are focused on the
extensive investigation of totally ten different randomization schemes for the
selection of individuals in DE algorithm driven by the default pseudo-random
generator of Java environment and nine different two-dimensional discrete
chaotic systems, as the unconventional chaotic pseudo-random number gener-
ators. The population diversity is recorded for 15 test functions from the CEC
2015 benchmark set in 10D.

Keywords: Differential evolution � Complex dynamics � Deterministic chaos �
Population diversity � Chaotic map

1 Introduction

Together with this persistent development of metaheuristics algorithms, chaos with its
properties like ergodicity, stochasticity, self-similarity, and density of periodic orbits
became a very popular and modern tool for improving the performance of various
ECT’s. The metaheuristics algorithm of the interest here is Differential Evolution
(DE) [1], specifically its popular adaptive variants.

This research deals with the mutual intersection of the two computational intelli-
gence fields, which are the complex sequencing and dynamics given by the selected
chaotic systems, and evolutionary computation techniques (ECT’s). Since the key
operation in metaheuristic algorithms is the randomness, recent research in uncon-
ventional and chaotic approach for metaheuristics mostly uses straightforwardly peri-
odic sequences or various chaotic maps in the place of pseudo-random number
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generators (PRNG). The original chaos-based approach is tightly connected with the
importance of randomization within heuristics as compensation of a limited amount of
search moves. This idea has been carried out in several papers describing different
techniques to modify the randomization process [2]. Also, the influence of random-
ization operations to parameter adaptation was profoundly experimentally tested in [3].

The basic concept of embedding chaotic dynamics into the evolutionary/swarm
algorithms as chaotic pseudo-random number generator (CPRNG) is given in [4].
Firstly, the PSO algorithm with elements of chaos was introduced as CPSO [5],
followed by the initial testing of chaos embedded DE [6–8]. Original inertia weight
based PSO strategy driven by CPRNGs was also profoundly investigated [9]. Recently
the chaos driven heuristic concept has been utilized in many swarm-based algorithms
[10–12], as well as many applications with DE [13, 14].

The organization of this paper is the following: Firstly, the motivation for this
research is proposed. The next sections are focused on the description of the essentials
of used DE variants, the concept of embedding unconventional randomization
sequences into DE, the experiment background, and results discussions.

2 Motivation and Related Research

Even though the hybridization of ECT’s and unconventional randomization schemes
(mostly with chaos) is becoming very popular in recent years, many research questions
remain, as to why it works, why it may be beneficial to use the chaotic and other quasi-
random sequences for driving the selection, mutation, crossover or other processes in
particular heuristics.

This paper aims to help find the way to some answers through a detailed analysis of
population dynamics through population diversity.

Moreover, current research trends in metaheuristic algorithms are focused on
distance/diversity based approaches [15–17] monitoring exploration abilities of algo-
rithms either through a distance between individuals at the search space, or keeping
population diverse in critical beginning stages of the optimization process.

This research is a follow up for findings and conclusions from population diversity
analyses in chaos driven DE published in [18, 19]. The motivation and the originality
of the presented research can be summarized as follows:

• To present a comprehensive review of the adaptive DE driven by unconventional
randomization schemes, so that the readers can easily navigate between different
chaotic CPRNGs and different well known adaptive DE strategies, and to see the
direct comparisons of performances and deeper insight into population dynamics.

• Here, more detailed graphical analyses supporting statements in the conclusion
section are provided.

• Adaptive state of the art versions jDE and Success-History Based Adaptive Dif-
ferential Evolution (SHADE) are investigated here. All previously reported research
papers were mostly focused on the simplest strategies.
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• Thus this reported research can be beneficial for researchers focusing on the
important research related to exploration abilities of the metaheuristic algorithms
and avoiding premature convergence through the population diversity analyses.

3 Differential Evolution

This section describes the basics of adaptive jDE and SHADE variants. The original
DE [16] has four static control parameters – a number of generations G, population size
NP, scaling factor F and crossover rate CR. In the evolutionary process of DE, these
four parameters remain unchanged and depend on the initial user setting. The jDE and
SHADE algorithms, on the other hand, adapts the F and CR parameters during the
evolution. Moreover, SHADE is using more complex adaptive schemes and historical
archive for removed inferior solutions. The concept of essential operations in jDE and
SHADE algorithms is shown in following sections, for a detailed description of either
original DE refer to [1, 20], or for jDE see [21], and SHADE is detailed in [22].

3.1 The jDE Algorithm

In this research, we have used jDE and chaotic C_jDE with original DE “rand/1/bin”
(1) mutation strategy and binomial crossover (2). The generated ensemble of two
control parameters Fi and CRi is assigned to each i-th individual of the population and
survives with the solution if an individual is transferred to the new generation. The
initialization of values of F and CR is designed to be either fully random with uniform
distribution for each individual in the population or can be set according to the rec-
ommended values in the literature. If the newly generated solution is not successful,
i.e., the trial vector has worse fitness than the compared original active individual; the
new (possibly) reinitialized control parameters values disappear together with not
successful solution. The both aforementioned DE control parameters may be randomly
mutated with predefined probabilities s1 and s2. If the mutation condition happens, a
new random value of CR 2[0, 1] is generated, possibly also a new value of F which is
mutated in [Fl, Fu]. These new control parameters are after that stored in the new
population. Input parameters are typically set to Fl = 0.1, Fu = 0.9, s1 = 0.1, and
s2 = 0.1 as originally given in [21].

Mutation Strategies and Parent Selection
The parent indices (vectors) are selected either by standard PRNG with uniform dis-
tribution or by CPRNG in case of chaotic versions. Mutation strategy “rand/1/bin” uses
three random parent vectors with indexes r1, r2 and r3, where r1 = U[1, NP], r2 =
U[1, NP], r3 = U[1, NP] and r1 6¼ r2 6¼ r3. Mutated vector vi, G is obtained from three
different vectors xr1, xr2, xr3 from current generation G with the help of scaling factor
Fi as follows:

vi;G ¼ xr1;G þFi xr2;G � xr3;G
� � ð1Þ
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Crossover and Selection
The trial vector ui,G which is compared with original vector xi,G is completed by
crossover operation (2). CRi value in jDE algorithm is not static.

uj;i;G ¼ vj;i;G if U 0; 1½ � �CRi or j ¼ jrand
xj;i;G otherwise

�
ð2Þ

Where jrand is a randomly selected index of a feature, which has to be updated (jrand =
U[1, D]), D is the dimensionality of the problem. The vector which will be placed into
the next generation G + 1 is selected by elitism. When the objective function value of
the trial vector ui,G is better than that of the original vector xi,G, the trial vector will be
selected for the next population. Otherwise, the original will remain (3).

xi;Gþ 1 ¼ ui;G if f ui;G
� �� f xi;G

� �
xi;G otherwise

�
ð3Þ

3.2 Shade

The mutation strategy used in SHADE is “current-to-pbest/1/” and uses four parent
vectors – current i-th vector xi,G, vector xpbest,G randomly selected from the NP � p best
vectors (regarding objective function value) from current generation G. The p value is
randomly generated by uniform PRNG U[pmin, 0.2], where pmin = 2/NP. Third parent
vector xr1,G is randomly selected from the current generation and last parent vector xr2,G
is also randomly selected, but from the union of current generation G and external
archive A. Also, vectors xi,G, xr1,G and xr2,G has to differ, xi,G 6¼ xr1,G 6¼ xr2,G. The
mutated vector vi,G is generated by (4).

vi;G ¼ xi;G þFi xpbest;G � xi;G
� �þFi xr1;G � xr2;G

� � ð4Þ

The i-th scaling factor Fi is generated from a Cauchy distribution with the location
parameterMF,r. SHADE algorithm uses the very same crossover (2) and elitism schemes
(3) as canonical DE with the following differences. CR value is not static, CRi is
generated from a normal distribution with a mean parameter valueMCR,r And the elitism
process uses the historical archive. For the archive and historical memories updates,
details about the parameters MF,r and MCR,r due, to the limited space here, see [22].

4 Chaotic Systems for Pseudo-Random Generators

The general idea of CPRNG is to replace the default PRNG with the chaotic system.
Following nine well known and frequently studied discrete dissipative chaotic maps
were used as the CPRNGs for jDE and SHADE. Systems of the interest were: Arnold
Cat Map, Burgers Map, Delayed Logistic Map, Dissipative Standard Map, Henon
Map, Ikeda Map, Lozi Map (4), Sinai Map and Tinkerbell Map. With the typical
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settings and definitions as in [23], systems exhibit typical chaotic behavior. Please refer
to the (5) for the examples of maps definition (popular and widely studied Lozi map).
Also, Fig. 1 shows the short chaotic sequences for three selected maps. These plots
support the claims that due to the presence of self-similar chaotic sequences, the
heuristic is forced to neighborhood-based selection (or alternative neighborhood like
communication in swarms).

Xnþ 1 ¼ aXn � Y2
n

Ynþ 1 ¼ bYn þXnYn
ð5Þ

Once the start position of the chaotic system has been obtained (by default PRNG),
the system generates the next sequence using its current position. Used approach is
based on the following definition (6), where the rndreal represents the normalized
pseudo-random value from the typical range of 0–1, rndChaos is the current output
iteration of the chaotic map (selected x-axis), and maxval is the maximum value from
generated chaotic series. This approach is causing so-called folding of the attractor
around y-axis.

rndreal ¼ rndChaos
maxval

����
���� ð6Þ

5 Experiment Design and Results

The CEC 15 benchmark suite was selected [24]. The dimension D was set to 10, which
is close to real-life engineering problems. Every instance was repeated 51 times with
the maximum number of objective function evaluations set to 100 000 (10,000 � D).
The convergence and population diversity were recorded for all tested algorithm –

original jDE/SHADE and nine versions of C_jDE/C_SHADE with different CPRNGs.
All algorithms used the same set of control parameters: population size NP = 50, initial
settings F = 0.5, CR = 0.8 (only jDE), and H = 20 (only SHADE). Experiments were
performed in the environment of Java; original jDE and SHADE, therefore, have used

Fig. 1. Chaotic sequences normalized to the typical range of 0-1 for CPRNG, either with
significant sequencing and periodicity or with patterns of self-similarity; Delayed Logistic (left),
Lozi (center) and Tinkerbelt maps (right).
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the built-in Java linear congruential pseudorandom number generator representing
traditional pseudorandom number generator in comparisons.

The Population Diversity (PD) measure [25] is based on the sum of deviations (8)
of individual’s components from their corresponding means (7), where i is the popu-
lation member iterator and j is the vector component iterator.

xj ¼ 1
NP

XNP

i¼1
xij ð7Þ

PD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
NP

XNP

i¼1

XD

j¼1
xij � xj
� �2r

ð8Þ

Due to the limited space and due to the simple fact, that direct benchmarking-based
performance comparisons was not the main aim of this paper, the statistical compar-
isons in comprehensive tables containing mean, median, max/min results are not given
here. Instead, we are presenting the boxplots in Figs. 2 and 3, depicting the mean value
(middle line), 25–75% quantiles, upper and lower fences, outliers (black dot) and far

Fig. 2. Boxplots for jDE versions and all CEC15 functions in 10D, 51 runs; from upper left to
bottom right: f1 - f15.

Population Diversity Analysis in Adaptive Differential Evolution Variants 511



Fig. 3. Boxplots for SHADE versions and all CEC15 functions in 10D, 51 runs; from upper left
to bottom right: f1 - f15.

Fig. 4. Ranking of all algorithms (jDE – left, SHADE – right), based on the 51 runs and 15
functions of CEC2015 benchmark in 10D. The dashed line represents the Nemenyi Critical
Distance.
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Fig. 5. Heat maps for the average diversity, ten versions of jDE algorithm, all CEC15 functions
in 10D, 51 runs; from upper left to bottom right: f1 - f15. A logarithmic scale, the x-axis is
showing % of MaxFES.
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Fig. 6. Heat maps for the average diversity, ten versions of SHADE algorithm, all CEC15
functions in 10D, 51 runs; from upper left to bottom right: f1 - f15. A logarithmic scale, the x-axis
is showing % of MaxFES.
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outliers (grey dot). Further, a ranking of the algorithms, given in Fig. 4, was evaluated
based on the Friedman test with Nemenyi post hoc test. Figures 5 and 6 depict the
graphical comparisons (heat maps) of the population diversity provided for the first
1000 generations in logarithmic scale. It can be assumed that the start of the opti-
mization process is critically sensitive to keeping the population’s diversity as much as
possible to ensure space exploration. The results discussion is in the next section.

6 Conclusion

The primary aim of this original work is to provide a more in-depth insight into the
inner dynamics of indices selection in DE. The focus is to experimentally investigate
the influence of different types of unconventional non-random (chaotic) sequences to
the population diversity, and therefore, as well as to the performance of the popular
modern adaptive DE variants, which are jDE and SHADE.

The research of randomization issues and insights into the inner dynamic of
metaheuristic algorithms was many times addressed as essential and beneficial. The
results presented here support the approach for different randomization schemes (multi-
chaotic generators [26]) or ensemble systems, where we can profit from the
combined/selective population diversity (i.e., exploration/exploitation) tendencies,
sequencing-based either stronger or moderate progress towards the function extreme,
all given by the smart combination of multi-randomization schemes. The findings can
be summarized as:

• From the heat maps depicted in Figs. 5 and 6, we can clearly see the correlations
between rankings (Fig. 4) and boxplots (Figs. 2 and 3). Also, we can observe
several combinations of behavior for particular (clusters of) CPRNGs, that are
securing maintaining of higher population diversity for a longer time (Arnold, Lozi,
Sinai, Henon, and Dissipative maps), thus obtaining balanced results in comparison
with original version of DE variant. Specifically, Sinai map shows very interesting
characteristics in some instances, for example in the case of f3 the population
diversity is particularly restored and it increased during the algorithm run. This map
secured to keep the higher population diversity and exploration phase for a longer
period. This in return is beneficial for the result of the optimization.

• Mutual comparing of rankings and box plots also reveals an interesting phenomenon.
Although in most cases, there is no a significant difference between the performance
of the tested versions, according to the critical distance, in some instances, the
chaotic versions performed significantly worse. Such a worse performance was
repeatedly observed for three chaotic maps: Delayed logistic, Burgers, and Tinker-
bell. On the other hand, these maps usually secured robust progress towards function
extreme (local) followed by premature population stagnation phase, thus repeatedly
secured finding of minimum values (See boxplots in Figs. 2 and 3). Also from the
heat maps (Figs. 5 and 6), we can see the rapid decrease of the population diversity.
Overall, C_jDE and C_SHADE versions seem to be very effective in finding the min.
values of the objective function (Figs. 2 and 3).
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• The statistical performance comparisons (rankings) in Fig. 4 reveal the fact that
original full random strategy “Rand/1/” used in jDE seems to be the conservative
choice for the hybridization with unconventional randomization schemes.
The SHADE variant shows the possible conflict between the attraction to the
“pbest” solutions in the population and other indices selected based on the chaotic
series. The quasirandom/chaotic sequencing for indices selection may be sup-
pressed by the operations with external archive and the structure of “current-to-
pbest/1” strategy. Overall, the parameter adaptation is beneficial without any doubt
regarding the performance of the algorithms.

To finalize this detailed research, the graphical comparisons (heat maps), detailed
statistical insights (box plots) supported by rankings, can help other researchers in
developing more robust and effective metaheuristics. Since adaptive variants of DE have
been used here, we can clearly see, that not only the adaptive/learning/ensemble based
control parameters adjusting can be used for securing desired behavior and ideal ratio
between exploration/exploitation abilities, but also unconventional chaotic/quasiperiodic
sequencing have strong influence to the population diversity and may create the sub-
populations (or inner neighborhood selection schemes [27]), hence the metaheuristic can
benefit from the searching within those sub-populations and quasi-periodic exchanges of
information between individuals.
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Abstract. This paper presents the analysis of the difference in control
parameter adaptation between jSO and DISH algorithms. The DISH
algorithm uses a distance based parameter adaptation and therefore, is
based on the distance between successful offspring and its parent solution
rather than on the difference in their corresponding objective function
values. The DISH algorithm outperforms the jSO algorithm on the CEC
2015 benchmark set and the adaptation behavior on functions, where the
performance is significantly different, is analyzed and commented. The
findings from this paper might be used in the future design of jSO based
single-objective optimization algorithms.

Keywords: Differential Evolution · jSO · DISH · Control parameter ·
Scaling factor · Crossover rate

1 Introduction

The Differential Evolution (DE) is a heuristic algorithm initially designed for
single-objective numerical optimization. It was proposed in 1995 by Storn and
Price [1], and since then it has been a prospering field in the heuristic opti-
mization research. Recent variants of the DE have been quite successful in the
optimization competitions held within a Congress on Evolutionary Computation
(CEC) during the last couple of years. The common denominator of promising
DE based algorithms is an adaptive version of DE, which uses historical mem-
ories for storing successful control parameter values. This algorithm is called
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Success-History based Adaptive Differential Evolution (SHADE) and was pro-
posed by Tanabe and Fukunaga in 2013 [2]. Over the last few years, a handful of
improvements to the original SHADE have been introduced and currently, the
widely used variant is jSO from 2017 by Brest et al. [3].

In 2017, a simple innovation to the SHADEs’ historical memory update
scheme was proposed by Viktorin et al. [4]. This innovation suggested usage of
distance based parameter adaptation for scaling factor and crossover rate mem-
ories to improve algorithms exploration ability. Viktorin et al. later proposed
this novel historical memory update scheme for jSO as well and titled the result-
ing algorithm DISH – DIstance based parameter adaptation for Success-History
based Differential Evolution [5].

It is crucially important to understand how the control parameters evolve [6]
and how they are affected by the novel memory update scheme. Thus, this paper
provides an initial analysis of the control parameter evolution in the jSO and
DISH algorithms and provides commented results with suggestions for the future
use to improve the performance with the use of gained knowledge. The moti-
vation is to not only propose novel algorithms with experimentally better per-
formance, but to understand their inner workings, so the researchers would be
able to implement the algorithm on real-world optimization problems and adapt
the algorithm to the problem properties, thus improving its performance and
optimization quality.

The paper is structured as follows: Next section provides a description of the
DISH algorithm; Sect. 3 describes the experiment design; Sect. 4 provides results
along with a commentary, and the conclusion is in Sect. 5.

2 DISH

The DISH algorithm is a direct descendant of the 1995 DE [1]. The steady
progress in the DE field is apparent, and state-of-the-art DE-based algorithms
are considerably different from the original DE, but they still share the same
basic concept of a randomized first population of solutions, mutation, crossover
and elitist selection. However, these operators evolved over the years, and new
mechanisms were added into the algorithm. One of the most popular mecha-
nisms is an adaptation of the control parameters – population size NP, scaling
factor F and crossover rate CR. Adaptive DE algorithms are also among the
most successful ones during annual CEC competitions on single objective opti-
mization. DISH algorithm is no exception, and its evolution line can be described
as follows:

1. DE from 1995 by Storn and Price [1].
2. JADE from 2009 [7] – algorithm created by Zhang and Sanderson proposed

a novel mutation strategy – current-to-pbest/1 with an optional archive of
inferior solutions.

3. SHADE from 2013 by Tanabe and Fukunaga [2] – built on the JADE algo-
rithm with added memories for historically successful F and CR values and
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new adaptation mechanism for these parameters. This algorithm placed 3rd

in the CEC 2013 competition.
4. The linear decrease of population size was introduced into SHADE and cre-

ated L-SHADE algorithm [8], the winner of the CEC 2014 competition.
5. Improved L-SHADE algorithm titled iL-SHADE [9] was proposed for a CEC

2016 competition by Brest et al. This algorithm introduced changes to the
historical memory update system and the initialization of the historical mem-
ories. It also proposed a new mechanism for treating F and CR parameters
based on the ratio between current and maximum generation (phase of the
optimization). This algorithm placed 4th in the CEC 2016 competition.

6. Distance based parameter adaptation was proposed for SHADE based algo-
rithms by Viktorin et al. in 2017 [4]. This novel adaptation mechanism based
on the distance between solutions instead of on the difference between objec-
tive function value was presented on SHADE and L-SHADE algorithms and
shown its superiority over the original.

7. jSO algorithm was proposed by Brest et al. in 2017 [3]. The algorithm uses
a novel current-to-pbest-w/1 mutation strategy and slightly changes fixed
values for F and CR parameters. The jSO algorithm was 2nd in the CEC
2017 bound constrained competition.

8. DISH algorithm was introduced in 2018 by Viktorin et al. [5] and it incor-
porates the distance based parameter adaptation into the jSO algorithm to
improve its performance.

The following subsections provide the details of DISH algorithm mechanisms
followed by a pseudo-code.

2.1 Initialization

First of all, the initial population P , of solutions to the optimized problem, is
generated randomly. The size of the population is determined by the user via
NP init parameter (initial population size). Each individual solution x is a vector
of length D, which is a dimension of the problem and each vector component is
generated within its lower lo and upper up bounds by a uniform pseudo-random
number generator (1).

xj,i = U
[
loj , upj

]
for j = 1, . . . , D; i = 1, . . . , NP init (1)

Other parameters and variables that have to be set in the initialization phase
are:

1. Final population size – NP f .
2. Stopping criterion – a maximum number of objective function evaluations

MAXFES in the most common case (also in this study).
3. pmax and pmin parameters for mutation operator. pmax = 0.25 and pmin =

pmax/2 = 0.125
4. External archive A is initialized empty. A = Ø
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5. Historical memory size H. H = 5
6. Historical memories for scaling factor M F (2) and crossover rate MCR (3).
7. Update historical memory index k. k = 1.

MF,i = 0.5 for i = 1, . . . , H − 1, MF,H = 0.9 (2)

MCR,i = 0.8 for i = 1, . . . , H − 1, MCR,H = 0.9 (3)

The following steps – mutation, crossover and selection are repeated for each
individual solution in the generation G and these generations are repeated until
the stopping criterion is met.

2.2 Mutation

The mutation operator used in DISH is a jSOs’ current-to-pbest-w/1, which
combines a greedy approach in the first difference and the explorative factor in
the second difference (4).

vi = xi + Fw,i (xpBest − xi) + Fi (xr1 − xr2) (4)

The v i is the i -th mutated vector created from current solution vector x i,
one of the 100p% best solutions in the population x pBest where p is determined
by (5), a random solution from the population x r1 and random solution from
the union of the population and external archive x r2. It is also important to
note that all vectors are mutually different – x i �= x pBest �= x r1 �= x r2. The
differences are scaled by two scaling factor parameters, scaling factor Fi (6) and
weighted scaling factor Fw,i (8).

p = FESratio ∗ (pmax − pmin) + pmin (5)

Where FESratio stands for the ratio between the current number of objec-
tive function evaluations FES and the maximum number of objective function
evaluations MAXFES (FESratio = FES/MAXFES ). Therefore, parameter p
increases linearly with objective function evaluations.

Fi = C [MF,r, 0.1] (6)

The scaling factor value Fi is generated from Cauchy distribution with the
location parameter M F,r and scale parameter value of 0. The index r is randomly
generated from the range [1, H ]. If the generated value Fi is smaller or equal
to 0, it is generated again and if it is higher than 1, it is set to 1. Also, the
scaling factor Fi is influenced by the FESratio in order to truncate its value in
the exploration phase of the algorithm run (7).

Fi = 0.7, FESratio < 0.6 and Fi > 0.7 (7)

Fw,i =

⎧
⎨

⎩

0.7 ∗ Fi, FESratio < 0.2
0.8 ∗ Fi, FESratio < 0.4
1.2 ∗ Fi, otherwise

(8)

The weighted scaling factor Fw,i is based on the optimization phase given by
the FESratio.

The next step after the mutation is the crossover.
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2.3 Crossover

The crossover operator in DISH algorithm is binomial and is based on the
crossover rate value CRi generated from the normal distribution (9) with a mean
parameter value MCR,r selected from the crossover rate historical memory and
standard deviation value of 0.1.

CRi = N [MCR,r, 0.1] (9)

The CRi value is also bounded between 0 and 1 and whenever it is generated
outside these bounds, it is truncated to the nearest bound. The crossover rate
value is also a subject to the optimization phase given by FESratio (10).

CRi =

⎧
⎨

⎩

max(CRi, 0.7), FESratio < 0.25
max(CRi, 0.6), FESratio < 0.5

CRi, otherwise
(10)

And finally, the binomial crossover is depicted in (11).

uj,i =
{
vj,i if U [0, 1] ≤ CRi or j = jrand
xj,i otherwise (11)

Where u i is called a trial vector and jrand is an index of one component that
has to be taken from the mutated vector v i. The jrand index ensures that at
least one vector component of the original vector x i will be replaced. Thus in
the following selection step, the tested trial vector will provide new information.

2.4 Selection

In the selection step, a quality of the trial solution vector u i is compared to the
quality of the original solution vector x i. The quality is given by the objective
function value of these solutions. And since the selection operator is elitist, the
trial solution has to have at least equal objective function value as the original
solution in order to proceed into the next generation G+1 (12).

xi,G+1 =
{
ui,G if f (ui,G) ≤ f (xi,G)
xi,G otherwise (12)

Where f () depicts the objective function value and in this case, the objective
is the minimization of it.

The mutation, crossover and selection operators are repeated for each indi-
vidual solution in the population, and after the population is exhausted, the
algorithm proceeds to the next generation. But before processing each individ-
ual solution of the next generation, two essential mechanisms are incorporated
into the algorithm – linear decrease of the population size and the update of
historical memories. These two mechanisms are described in the following sub-
sections.
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2.5 Linear Decrease of the Population Size

The population size is decreased during the algorithm run in order to provide
more time for exploration in the later phase of optimization. Thus, the smaller
population of individual solutions will have more time to exploit promising areas
of the objective function landscape.

The mechanism used in the DISH algorithm is a simple linear decrease of
population size, which uses the information of current objective function eval-
uations to shrink the population of solutions. A new population size NPnew is
calculated as follows (13).

NPnew = round (NP init − FESratio ∗ (NP init − NP f )) (13)

The size of an external archive A is connected to the size of the population
and therefore, after decreasing the population size, the archive size is decreased as
well. Whereas when decreasing the population size, the worst individual solutions
are discarded from the population, in the archive, solutions to discard are selected
randomly.

2.6 Update of Historical Memory

Historical memories M F and MCR store historically successful values of scaling
factors F and crossover rates CR that were helpful in the production of better
trial individual solutions. Therefore, these memories have to be updated during
the optimization in order to store recently used values. After each generation,
one cell of both memories is updated and for that, the algorithm uses index
k to remember, which cell will be updated. The index is initialized to 1 and
therefore, after the first generation, the first memory cell will be updated. The
index is increased by one after each update and when it overflows the memory
size H, it starts from 1 again. There is one exception to the update, the last cell
of both memories is never updated and still contains values 0.9 for both control
parameters.

What will be stored in the k -th cell after the generation G is computed by
a weighted Lehmer mean (14) of corresponding generation control parameter
arrays SF and SCR. These arrays are filled during the generation by the values
of control parameters when the trial solution succeeds in the selection step.

meanWL (S) =
∑|S |

n=1 wn • S2
n

∑|S |
n=1 wn • Sn

(14)

The meanWL() stands for weighted Lehmer mean and the computation is
equal for both SF and SCR, therefore, there is no subscript for S in the equation.
The k -th memory cells of M F and MCR are then updated according to (15)
and (16).

MF,k =
{

meanWL (SF ) if SF �= ∅ and k �= H
MF,k otherwise (15)
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MCR,k =
{

meanWL (SCR) if SCR �= ∅ and k �= H
MCR,k otherwise (16)

The weights for the weighted Lehmer means (14) are in the case of DISH
algorithm computed as depicted in (17). This weighting was introduced as the
distance based parameter adaptation [4]. It is titled like that, because in the
original SHADE, L-SHADE, iL-SHADE and jSO algorithms, the weights were
based on the difference between objective function values of trial individual
solution u i and its corresponding original individual solution x i, whereas in
DISH, the weight is computed from the Euclidean distance between those two -
u i and x i.

wn =

√∑D
j=1 (un,j,G − xn,j,G)2

∑|SCR|
m=1

√∑D
j=1 (um,j,G − xm,j,G)2

(17)

This approach promotes exploitation and tries to avoid the premature con-
vergence of the algorithm into local optima.

Complete pseudo-code of the DISH algorithm is available in [5].

3 Experiment Setup

In this study, the CEC 2015 benchmark was used as a testbed. The CEC 2015
benchmark contains 15 test functions of various properties – unimodal, simple
multimodal, hybrid and composition functions. The DISH algorithm was com-
pared to its original version without distance based parameter adaptation – jSO.
According to the benchmark rules, both algorithms were run 51 times on each
of the problems in four different dimensionality settings – D = 10, 30, 50 and
100, and the stopping criterion was set to 10,000×D.

The settings of parameters were the same for both algorithms (jSO, DISH):

1. Initial population size NP init = 25*log(D)√D.
2. Final population size NP f = 4.
3. Historical memory size H = 5.
4. External archive size |A| = NP.

The scaling factor history M F and crossover rate history MCR contents
were recorded after each generation to provide a comparison in the behavior of
those memories without (jSO) and with distance based parameter adaptation
(DISH).

4 Results and Discussion

This section provides the results of both jSO and DISH algorithms on the
CEC2015 benchmark set. Since the distance based parameter adaptation used
in DISH is more suitable for higher dimensional problems [5], there were no
significant differences in the performance between jSO and DISH in the 10D
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experiment. Thus and due to limited space, the results are omitted from this
paper.

Table 1 provides summarized results of Wilcoxon rank–sum test (significance
level 5%) between the original jSO and DISH algorithms. The values reached in
all 51 independent runs were used as a test data.

The scaling factor history M F and crossover rate history MCR values are
reported for all cases, where there was a significant difference in performance
between jSO and DISH. Individual subfigures inside Figs. 1, 2 and 3 represent
the average value of each historical memory cell. The size of the memories H was
set to 5, thus each memory has 5 cells. The last cell is not updated and contains
a value of 0.9 for both, scaling factor memory and crossover rate memory. This
creates a straight line in each subfigure at level 0.9. The rest of the memory cells
(4 in this experiment) is initialized to 0.5 for scaling factor and 0.8 for crossover
rate. After each generation, a single memory cell is updated, and this repeats
for the whole optimization run. The reported subfigures show average content
of each memory cell over 51 independent runs – red for scaling factor memory
cells in jSO, blue for scaling factor memory cells in DISH, cyan for crossover rate
memory cells in jSO and magenta for crossover rate memory cells in DISH.

Table 1. Summarized results of the Wilcoxon rank–sum test comparing jSO and DISH
performance in varying dimensions.

Dimension jSO wins Draws DISH wins

10 0 15 0

30 0 12 3

50 0 8 7

100 2 7 6

Fig. 1. The evolution of historical memories values of M F (jSO – red, DISH – blue)
and MCR (jSO – cyan, DISH – magenta). CEC2015 30D, top left – f 6, top right – f 9
and bottom f 11. (Color figure online)

Results in Fig. 1 show that for functions 6 and 11, the crossover rate values
tend to be quite similar for both, jSO and DISH and there is a visible difference
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in the behavior of scaling factor memories. A complete opposite can be seen in
the behavior on function 9, where only crossover rate memory evolution differs
in later generations. While the difference in results is statistically significant, it
can be seen in Table 1, that the difference for functions 6 and 11 is of a higher
grade than in the case of function 9. Thus, it seems that the different behavior
of scaling factor memory in the case of distance based parameter adaptation
(DISH) helps to achieve better results on 30D problems.

Fig. 2. The evolution of historical memories values of M F (jSO – red, DISH – blue)
and MCR (jSO – cyan, DISH – magenta). CEC2015 50D, from top left – f 4, f 6, f 8,
f 10, f 11, f 12 and f 13. (Color figure online)

A very similar result to that in Fig. 1 is visible in Fig. 2, which depicts mem-
ories behavior on 50D functions. There, the behavior on functions with better
improvement (functions 4, 6, 8, 10 and 11) is mostly visibly different for scaling
factor memory, whereas the crossover rate memory behaves similarly.

Interesting results are visible in Fig. 3 (100D problems), where two subfigures
for functions 1 and 6 show very similar behavior of both memories, but the
scaling factor memory of jSO retains smaller values than the memory in DISH.
This leads to significantly better results of the jSO algorithm. On the other hand,
memory evolution on functions 4 and 11, where DISH provides better results,
shows that both crossover rate and scaling factor memory behavior varies for
both algorithms, where on function 11 the difference is more noticeable.

Another unexpected result of this analysis is that both memories might be
initialized too low. Higher values (e.g., 0.6 for scaling factor memory and 0.9
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Fig. 3. The evolution of historical memories values of M F (jSO – red, DISH – blue)
and MCR (jSO – cyan, DISH – magenta). CEC2015 100D, from top left – f 1, f 4, f 6,
f 9, f 11, f 12, f 14 and f 15. (Color figure online)

for crossover rate memory) might bring a speed up in the first phase of the
optimization, since there is a fast convergence towards these values in the first
few generations, and sometimes even to higher values (crossover rate – f 6 30D,
f 6, f 8 and f 10 in 50D, f 1 and f 6 in 100D). This will be studied in the future work
along with possibilities of updating the distance based parameter adaptation
scheme.

5 Conclusion

This paper provided an experimental analysis of the behavior of scaling factor
and crossover rate memories of jSO and DISH algorithms. Those algorithms
were compared on the basis of the CEC 2015 benchmark set, and it was shown
that the distance based parameter adaptation used in the DISH algorithm might
be useful for the improvement of the algorithms’ performance. This preliminary
study also showed that the scaling factor parameter has a higher impact on the
overall optimization result than the crossover rate value and that both of these
parameters might be initialized to more suitable values. This is also a suggestion
for the future direction of research in the area of jSO or DISH based single-
objective optimization algorithms along with more objective function value-free
parameter adaptation schemes (as is the distance based parameter adaptation),
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since the greedy approach leads only to premature convergence of the algorithm
(mainly in high dimensional decision spaces).
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Abstract. Solvers of nonlinear systems of equations are important in software
engineering. There are various methods which use gradient approach to find the
solution in accordance to gradient descent. This paper presents software testing
for proposed implementation of rapid gradient descent method. Results show
that implementation is able to solve problems better than classic approach. The
gradient path is smooth and faster converge to the final location.

Keywords: Nonlinear programming � Conjugate gradient method

1 Introduction

Optimization methods are important techniques both in applied mathematics and
computer science. There are various approaches to develop an optimization and after to
verify how it works. The gradient descent method, included conjugate gradient, is an
approximate method which uses an information about the function shape and its
steepness at the current position on the way to find minima proceeding in the direction
of the steepest descent. The general form of this method, however often fails to meet
requirements of certain analysis of model data, so it is necessary to do further pro-
cessing of the test data samples. There are various applications of gradient methods in
sensor systems [15], computer modeling [2, 3] and nuclear plant operation [12]. Also
software implementation and testing [2, 6, 10, 11, 13, 17, 18] for efficient data pro-
cessing [1, 7, 8, 14] is widely reported. In this article we propose rapid gradient descent
method to solve optimization problem and present efficient implementation. We
introduce a path-oriented testing by the use of automatic generation theory for testing
results of the design and implementation. Next sections discuss automatic generation,
relative knowledge and practical application of path-oriented white box testing.
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1.1 Background and Related Works

The issue of generation of testing data is one of the basic topics in software testing
field. Several approaches have proposed iterative relaxation method of linear predicate
function to figure out the issue and improve the method. Other software engineering
ideas employ object-oriented approach, UML design tools and C++ language to realize
prototype of automatic generation of testing data. Path-oriented testing data generation
(denoted as Q) is a basic and important issue in software testing field, the non-formal
description can be as follow.

Given a program P and a path W and letting P input space is D, for x 2 D, render
P with input x through path W. The essence of solving Q lies in establishing and
solving the restraint system.

One of the main difficulties of solving restraint system is the existing nonlinear
constraint. With regard to arbitrary P and W, Weyuker [16] have proved that there is no
effective algorithm to be able to generate input data which W passed by. Although
theoretical results are frustrating, the need of actual application stimulates the research,
furthermore, put forward the randomized method, the status method and heuristics to
solve Q. Static methods include the symbolic execution method and interval arithmetic
method, while dynamic methods include linear programming method. A linear predi-
cate function to figure out the Q chooses a group of inputs arbitrarily from D to
examine each branch predicate on W using program slicing ideas, and determines
predicate function to the dependence of the input variables through the static and
dynamic data flow analysis. Moreover, it can devise predicate pieces and dynamic
slices and build linear relations of predicate function on input variables. Further linear
equations system of incremental input variable can be established, in order to solve
each input variable increment to obtain a new set of inputs. The biggest advantage of
this method lies in the establishment of linear constraint system for each predicate
function with respect to the increment of the input variables on W. When W predicate
function is a linear function of the input variables, this iterative method will find the
Q solution or ensure that W is not feasible. Inversely, when the predicate function
contains the nonlinear function, this method may need to iterate repeatedly. The
method to construct predicate slices and input dependency sets are omitted. Addi-
tionally, the method can work out the linear relations of each predicate function with
respect to the input variables, then to establish a system of linear equations for input
variables and obtain a new set of inputs directly after solving. However both improved
method and original method are generating the same restraint system. Iterating the
following processes incrementally to develop software is usually adopted UML.
Software engineering and object-oriented approach to develop PTDG in accordance
with the above process is widely used [2–5, 12]. In order to further study properties and
ability to generate testing data of improved method, the paper bases on the original
method as a core algorithm. In Linux Red Hat operating system, we have developed
automatic testing data generating tool (Path wise Test Data Generator) for the C lan-
guage program path with C++ and migrated PTDG to Windows operating system
successfully. UML is adopted as the object-oriented standard modeling language by
Object Management Group, which supports the entire software development life cycle
(Fig. 1).
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1.2 Path-Oriented Automatic Testing

PTDG system structure is mainly made up of lexical analyzer, parser, constraint con-
structor, constraint solver, path condition checker, data files and user interface and so on.
PTDG applies lexical analysis and parse on user-specified program path to obtain the
type of input variables, and transform paths to constraints construct program and path
condition check program with the form of C language. Furthermore, after program is
compiled the constraints constructor and paths condition checker can be generated.
Constraints constructor based on the current program input, to produce the path linear
constraints system of each predicate function with regard to the input variables is
executed. Path condition checker is converted to linear equations system by constraint
solver to obtain the new input of the program. Then inputs are checked by path condition
checker. If the input meets the condition, the function ends checking, otherwise proceed
according to the user path predicate functions whether they are linear function of the
input variables, as well as the maximum number of iterations to decide whether to
continue iterative solving. Proposed constraint solving uses the method of [16], and
underlying solution tools on Linux and Windows are LAPACK++ and Matlab
respectively. Not only the user input program path, initial and other input parameters,
but also intermediate and final solution results in PTDG are stored into files. In addition
to using the Vc++ programming environment, due to the large number of mathematical
algorithms, Matlab software is needed. Taking the advantage of existing tools improves
the efficiency of testing data generation.

1.3 Conjugate Gradient Method

The Conjugate Gradient Method in mathematical theory is just for a single equation
solving, and requires the optimal solution, but cannot solve the problem of equations.
The gradient in unconstrained optimization problems is just the gradient in a function.
Clearly, the actual constraints are not necessarily only one. So here we choose multiple
gradients. The forward direction is a linear combination of all negative gradients that do
not meet the conditions. In other words, we can add a different coefficient before every

Fig. 1. Sample representation of the convergence to global solution along the direction of the
gradient descent into the constraint set.
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constraint gradient to get a new direction. That is a new attempt - fast gradient method.
A group of inequalities can be solved by using fast gradient descent method. The
improved algorithm is based on the maximum degree that does not meet the conditions
to calculate the step length. When the condition fiðxÞ\0 is satisfied, and get
f1 x0ð Þ ¼ 10; f2 x0ð Þ ¼ 2, we choose the larger, so the step size is 10 plus step because of
the unmet extent of f1ðxÞ\0 is higher than f2ðxÞ\0. The new method is based on the
principle of gradient descent to make the resulting solution enter into the area that
meets the conditions quickly and efficiently (that is the solution space). Currently, in
order to explain the principle, firstly we assume that the gradient is without constraint.
The case with a bit less dimension and variables will be discussed below. For example,
three constraints were considered according to the following situations.

• When all the three constraints are satisfied, it means that all the gradient descent
directions are positive, then the solving rate is the best, and you can follow the ideal
design and fast and efficiently drop to the solution space which satisfies the
condition.

• When all the three constraints cannot be satisfied, there are two approaches at this
time. One approach is to change constraints which means to individually adjust all
equations. The gradient direction which does not meet the requirements will be
converged to the solving space which meets the conditions by gradual iteration.
Another method is to add a negative sign to all equations which changes directions
of all constraint vectors. When the constraints are growing fast, the first method will
become very complicated and difficult to timely control. The second method is
relatively easy to implement and not easily affected by the rapid growth of con-
straints so we choose the latter [6, 9–12].

• When there are N constraints and one constraint is met, we can let it change and get
a good initial, and then find a way to try to decrease other constraints along a
positive changing gradient. For example: assume that there are three constraints
f1 xð Þ\0; f2ðxÞ\0; f3ðxÞ\0f g when only the initial value x0 ¼ ðt1; t2; t3Þ satisfies

the inequality condition f1ðxÞ\0, try to make other possible constraints fall along
the gradient of positive changes.

• When condition changes along a certain direction of no constraint gradient, task is
to find the right result, but not the optimal one. We choose three constraints as an
example, however it can be any number of constraints. For the condition of each
inequality, we choose the smaller value as much as possible, but not the minimum.
When f1ðxÞ\0 is satisfied and f2ðxÞ\0 is not satisfied, we try to make vector
direction of f2ðxÞ\0 change along the downward direction. We can take such as
lock step interval method to let the range of variation falls in line of the required
range.

• The core idea of the algorithm is that in order to meet the first positive change
vector, for the other vector that does not meet the requirements, we need to do
something to make the ultimate synthesis of all vector direction changes along the
direction of change required by the method of variable coefficients. Assume that
there are two factors a, b. The iteration gradient is determined by the gradient
descent direction of last time multiplied by factor a, and then plus the result of
current direction multiplied by the factor b. Because the direction plays main role,
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so a, b will not affect the size of the result, which is the coefficients irrelevance.
Factors that affect the outcome depends on the ratio between the coefficients. That is
to say the ratio of a, b is to determine the gradient descent direction. The values of
a and b can be from established formula in classic gradient algorithm. You can also
determine the values of a, b through the investigation of constraint satisfaction
degree.

2 Fast Gradient Descent Algorithm Based on Iterative
Theory

Gradient descent method (Conjugate Gradient Method) is an effective method for
solving unconstrained optimization problems. The main idea is to start from a certain
initial point xð0Þ, and compute the gradient of the objective function dðiÞ, make its
negative direction as the target direction, determine the appropriate steps sðiÞ, and
iterate using iterative formula x iþ 1ð Þ ¼ x ið Þ � s ið Þd ið Þ to get the best value. We are
using the improved method to get the feasible solutions of a nonlinear constrained set
g ið Þ x½ �; i ¼ 1; . . .; n. If the initial point x0 satisfies the constraint set, then it is the target
point what we are looking for, otherwise we can do the following iteration using x0 as
the initial point, s0 as a minimum step size, N as the maximum number of iterations.
The method works in accordance to steps:

(1) Determine iterative direction: calculate gradient matrix of constraints set.
According to the comparison of the improvement degree of each gradient vector
satisfied to constraint set establish current local optimum gradient (a combination
of the respective gradient vector), and combine the optimal gradient of the pre-
vious iteration to get the current optimal gradient d ið Þ.

(2) Determine the step by computing satisfaction of x ið Þ to a set of constraints, getting
the biggest dissatisfaction degree Max so step can be calculated by
s iþ 1ð Þ ¼ 0:5Maxþ s0.

(3) Do the iteration using x iþ 1ð Þ ¼ x ið Þ � s ið Þd ið Þ.
(4) When meet the constraint set or the number of iterations is bigger than N, exit the

iteration. If the latter, you might consider changing the minimum step value to do
reiteration.

In short, the gradient method is to except the gradient direction becomes the direction
of fastest declining rate. Its aim is to make every iteration step to be the fastest and the
most effective. Ultimately, the expected solutions efficiently and quickly dropped to the
solving space that meets the conditions.

Automatically generating the white-box test data is still a new field to study. The
main idea of fast gradient descent algorithm based on iterative theory is to calculate
each gradient of non-linear equations, reasonable gradient directions, choosing step
interval and finally let all gradients along the qualifying direction go into the set of
constraints efficiently. The final design of this algorithm is to adjust the step interval to
achieve a set of appropriate rules in order to meet the actual needs as close as possible
to the formal description of the actual system. The rules currently used are designed
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according to the dichotomy in mathematics. The advantages of this design is that it can
simultaneously meet two requirements: meet certain growth rate and maintain the
correct gradient direction. The future research will focus on developing some better
rules. These rules are based on premise of analog automatic reasoning. For example, if
the premise “gradient changes too fast, and step interval is not too low” is established,
then it suggests that we should reduce the step interval by a certain amount. Now we
adjust the step interval using dichotomy in mathematical along to change the gradient
direction.

The fast decline gradient theory will be used to generate white-box testing data. The
guiding ideology is converting continuous events into discrete events. When the dis-
crete particle size is sufficiently small, the discrete object can be infinitely close to the
proposed continuous objects. So we must consider using difference instead of differ-
ential, selecting step interval to trying to avoid the vector changes that tends to linear
reciprocating or does similar circular closed curve direction movement. But in the
actual implementation process, in order to consider the complexity of time and space,
and the achieved manipulation, we do not use the idea of optimization theory men-
tioned above. We can just find a feasible solution when used in reality. The following
algorithm design also follows this principle. The feasible solution can be reached
through selecting an effective initial value and reasonable step interval. This feasible
solution is processed with limited conditions and rules which can be further close to the
ideal optimal solution. We need to find a reasonable input and output, and then
according to the iterative approach design fast gradient descent algorithm.

Gradient descent stochastic approximation (incremental gradient descent) is mainly
composed of the following:

(1) Calculate gradient: rED x
*

h i

(2) Adjust weights: x*  lrED x
*

h i

(3) Error function: ED x
*

h i
¼ 0:5

P
d2D td � odð Þ2; Ed x

*
h i
¼ 0:5 td � odð Þ2

2.1 Reasoning Decision and Calculations

It’s easy to find that when the two values were quantified they may comply with several
rules. So how to choose the initial output value. For all in line rules, the easiest way is
choosing the gradient direction which have been calculated. The other gradient changes
along the right orientation. In this case, the optimal choice of step interval is essential
because the appropriate step interval can not only satisfy iterative speed and time and
space complexity but also enter constraints space earlier. We use dichotomy to
determine the step interval, while the main data structures of the program are recording
input values and the corresponding output value of step rule that can be adjusted. The
main code structure is as follows:

• Solve nonlinear function and determine whether it is smaller than 0, that is to say
whether the constraint condition is satisfied.

• Get the derivative, that is the gradient value to meet the right gradient direction
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• The main function of the algorithm based on the input value of the initial point, by
calling the gradient descent method and dynamics of rapid steps to quickly get basic
feasible solution as efficient as possible is defined as follows.

• Achieve iterative function. When the number of iterations is a limited time and an
initial value has been given, too small step may lead to failure, which is the small
step of growth cannot complete iteration in a limited number of times. So the
synthesis of gradient cannot go into the constraints set in right way.

Data type is float in algorithm temporarily. You can use double data type for a higher
accuracy in the cost of running speed. So the float data type in sample program can not
only meet the required speed but also satisfy accuracy requirements. In practical
applications, double data is used to meet the need to reduce errors. Figure 2 illustrates
successful and unsuccessful iterations. When the step size is very small, i.e. when the
number of iterations is not enough, program can get the required basic feasible solution
eventually increasing the number of iterations enough to reduce the negative effect of
too small step size to get the correct solution. Using Matlab, a three-dimensional
changes of three linear equations are illustrated in Fig. 2. Certain steps can eventually
make all the gradient directions meet the requirements - decline to the required feasible
solution. Since the step interval is a current difficulty in the method we use dichotomy
to do iterations. Figure 2 shows an intuitive 3-D renderings from the starting point of
departure, by a suitable step iterations, it eventually declines gradient in the right
direction, and finally arrive at a basic feasible solution and stops. In Fig. 3 and Fig. 4
we can see comparison between classic gradient descent method and proposed
improved steepest gradient descent. For both methods we solve the same set of non-
linear constraints from the start point (1,1,1).

Corresponding Matlab simulation results presented in Fig. 4 indicate that proposed
method is diverging faster to meet the requirements. Improved steepest gradient decline
to the convergence point smooth starting from the same demo point. The original
method does not do the improvements well. We can see that corrections are done but it
does not improve gradient, while in proposed method corrections are smaller however
each of the improves the gradient. For the defect of fast gradient descent method, this
chapter put forwards rapid gradient descent method. The proposed method has a higher

Fig. 2. Left form illustrates that appropriate step interval can be smooth along the direction of
the gradient descent into the constraint set: successful calculation. Middle form illustrates
improper step interval which may not be along the direction of the gradient descent into the
constraint set: failed calculation. Right form illustrates using Matlab a three-dimensional changes
of three linear equations.
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credibility. Through the simulation experiments was verified that the proposed method
can be more effective to get correct iteration result and meet the requirements to enter
the constraints set. However, it is still not perfect solution and further research will be
done.

3 Final Remarks

This paper introduces changes of step interval for fast gradient descent algorithm. The
method is oriented toward adjusting the initial start and step size in real-time processing
what can improve the speed of gradient descent. Presented results show that imple-
mented method works faster and give better results in comparison to classic approach.
For further research we plan to work on dynamic adjustment of step size for input
nonlinear equations.

Fig. 3. Left form illustrates that classic gradient descent method cannot solve given nonlinear
constrained system, while right form illustrates that proposed improved steepest gradient descent
can get the correct results after demo data iteration starting from the same start point on the same
step.

Fig. 4. Left chart demonstrates divergence for classic method, while the right chart demonstrate
proposed rapid gradient descent method in Matlab simulation demo.
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Abstract. Verification of a signature on the basis of its dynamics is an
important issue of biometrics. This kind signature is called the dynamic
signature. It can be represented, among others, by the set of features
determined on the basis of time characteristics: pen velocity, pen pres-
sure on the surface of a graphics tablet, etc. Values of the features can
change over time, individually for each signer. Our previous research was
related to the prediction of these changes to increase the effectiveness of
a signature verification process. This approach was effective. The main
purpose of this work is to compare the effectiveness of the methods for a
prediction of signature features changes using selected population-based
algorithms. They are used for learning of the fuzzy system used for pre-
diction. Tests of the proposed approach were performed using ATVS-SLT
DB database of the dynamic signatures.

Keywords: Dynamic signature verification · Global features ·
Prediction · Fuzzy system · Population-based methods

1 Introduction

Verification of a signature on the basis of its dynamics is an important issue
of biometrics. This kind signature is called the dynamic signature [16]. Dynam-
ics of a signing process can be described by the set of features determined on
the basis of time characteristics: pen velocity, pen pressure on the surface of a
graphics tablet, etc. [9,15,30]. There are many effective methods for the dynamic
signature verification. They select from the signature certain characteristics that
have a different interpretation [33,34]. Verification of the signature performed
by these methods consists in comparing the values of the signature features
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extracted from the test signature with the averaged values of the signature fea-
tures selected from the reference signatures, which are acquired and add to the
database in the training phase of the biometric system.

The effectiveness of the dynamic signature verification depends on the time
interval between the acquisition of the reference signatures by the user and acqui-
sition of the test signature. If this interval is too long, the way of signing can
evidently evolve, which usually reduces the effectiveness of the verification meth-
ods. This problem has been described in our previous works [35,36]. In those
works, we characterized the problem of the evolution of biometric features and
proposed an example method to eliminate the effects of its occurrence. That
method used a fuzzy system (see e.g. [2,6–8,22,24,26–29,37]) to predict changes
in the value of biometric features. It was learned using an exemplary population-
based algorithm. (μ + λ), [25]). In this work, we assumed that the effectiveness
of prediction significantly depends on the adopted method of learning. There-
fore, we used several selected population-based algorithms (see e.g. [10–13,31])
to optimize the fuzzy system used for prediction and compared the achieved
effectiveness.

It is worth noting that in the literature there are many methods for pre-
dicting time series [18,20,32]. However, not all of them can be effectively used
to verify the dynamic signature. A fuzzy system is well suited for this purpose
because it can have the same structure for all users (number of rules, inputs, and
outputs, etc.). Parameters of this system, different from each other for individual
users, can be saved in the database along with other parameters characterizing
the signatures [5]. We can also try to interpret fuzzy rules for information on
the dynamic signature change trend. This can be performed independently for
each user. Values of the system parameters can be selected, for example, by a
population-based algorithm.

Structure of the paper is as follows: Sect. 2 describes the proposed method for
prediction values of the dynamic signature global features, Sect. 3 characterizes
obtained simulation results and Sect. 4 contains conclusions.

2 Method for Prediction Values of the Dynamic
Signature Global Features

Remarks on the proposed method for prediction values of the dynamic signature
global features can be summarized as follows:

– It uses possibilities of a fuzzy system [5,17]. The system has been used to
predict changes that take place over time in the biometric features describing
the dynamic signature.

– It assumes that the structure of the fuzzy system for all users is the same.
Systems for individual users differ from each other by parameters which values
are the result of system learning. Population-based methods can be used
to perform the learning process. In simulations (see Sect. 3) we considered
the following methods: genetic algorithm (GA, [25]), imperialist competitive
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algorithm (ICA, [1]), golden ball algorithm (GB, [21]), differential evolution
algorithm (DE, [23]), and grey wolf optimizer algorithm (GWO, [19]). The
description of these algorithms can be found in the given literature.

– It allows us for prediction values of the dynamic signature global features of
the individual user. It takes into account the values of the features determined
during the previous training acquisition sessions of the signature (or sessions
during which the signature was verified positively) and stored in the database.

– It can work for any number of the dynamic signature global features. The
system used for prediction can process signals associated with any number of
previous training sessions (Fig. 1).

2.1 Preparation of Learning and Testing Data

The proposed method is based on the set of global features determined for sig-
natures created in subsequent training sessions which took place at certain time
intervals. We wrote about the necessity of normalizing the values of features
and their averaging in our previous work [36]. Averaged values of global features
are part of the learning and testing sequence, used in the training and testing
phase of the fuzzy system used for prediction. For example, the learning sequence
based on the values of features from the previous session has the following form
{xi,s=1,di,s=2}, {xi,s=2,di,s=3}, . . ., {xi,s=S−2,di,s=S−1}, where i is the index of
the user, s is the index of the session, S is the number of sessions, xi,s represents
input vectors of the values of the features, di,s = xi,s+1 represents reference
vectors of the values of the features. Data from the last session can be used
in testing phase, so the test set has the following form {xi,s=S−1,di,s=S−1}. It
should be noted, that the fuzzy system used for prediction can be systematically
trained using the data of signatures classified as genuine.

2.2 Training and Testing

Prediction can be implemented using MIMO neuro-fuzzy system of the
Mamdani-type [25]. Neuro-fuzzy systems combine the natural language descrip-
tion of fuzzy systems and the learning properties of neural networks (see e.g.
[3,4]). Its operation can be expressed in a symbolic way as follows: yi,s = fi (xi,s),
where fi (·) is a function representing system for the user i and yi,s = [yi,n=1,s,
yi,n=2,s, ..., yi,n=N,s], where n is the index of the global feature, represents a
vector of real answers of the system for input vector xi,s.

Improvement of the fuzzy system work for each user requires learning. It can
be performed using a population-based algorithm. The purpose of the algorithm
is to minimize differences between reference vectors (di,s) and output vectors
yi,s of the considered fuzzy system. Evaluation of the system operation in the
learning phase can be realized using standard RMSE error. Use of it makes sense
due to the normalization of features performed earlier. The error is expressed as
follows:
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RMSEi =
1
N

·
N∑

n=1

√√√√√
S−2∑
s=1

(di,n,s − yi,n,s)
2

S − 2
. (1)

The error of form (1) is used in the evolutionary learning phase in order to
evaluate individuals encoding parameters of the fuzzy system used for prediction.
The purpose of the learning algorithm is a minimization of the error. In order to
better show the accuracy of the system, we can also use a percentage measure
of accuracy defined as follows:

ACCi =

⎛

⎜⎜⎝1 −

N∑
n=1

S−2∑
s=1

|di,n,s − yi,n,s|
N · (S − 2)

⎞

⎟⎟⎠ · 100%. (2)

Formulas (1) and (2) are related to the learning phase, but analogous formulas
can be created for the testing phase. Details related to the fuzzy system and
aspects of its learning can be found in our previous papers [35,36].
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Fig. 1. The idea of prediction of the dynamic signature global features’ values.

3 Simulations

Details of the simulations can be summarized as follows:

– They were performed in authorial testing environment implemented in C#.
– They were performed using ATVS-SLT DB [14] dynamic signature database

which has the following structure: number of the users: I = 27, number of
sessions: S = 6, and number of signatures of the user created in the sessions
from 1 to 6: 4, 4, 4, 4, 15, and 15.

– Prediction was performed for 10 the best global features (N = 10) pointed
out in [14]. Indices of these features are as follows: 3, 7, 17, 38, 45, 58, 59, 72,
93, 97.
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– Prediction was performed using Mamdani-type fuzzy system character-
ized by the following parameters: number of rules: 3, number of inputs:
{10, 20, 30, 40}, number of outputs: 10, fuzzy sets type: Gaussian, and tri-
angular norms type: algebraic [25].

– For each user from the database learning of the fuzzy system is performed
independently. The following values of the parameters of the algorithms have
been adopted: number of steps (generations) of the algorithm: 200, number
of repetitions of the simulation for each user: 25 (results were averaged), the
number of individuals in the population: 100, crossing probability in GA: 0.8,
mutation probability in GA: 0.3, the method of selecting individuals in GA,
DE, and GB (also selection method of players that faces each other to score
a goal): roulette wheel method, mutation range in GA: 0.2, parameter CR in
DE: 0.5, parameter F in DE: 0.75, number of empires in ICA: 10, parameter
ε in ICA: 0.1, parameter β in ICA: 2.0, parameter γ in ICA: 0.15, number of
goal chances in GB: 20, number of teams in GB: 10, and number of matches
in the league competition in GB: number of teams·number of teams (each
team plays with each other).

– Moreover, in GB algorithm we assumed that each team gets a random train-
ing plan at the beginning. In this mutation range ∈ [0.01, 0.30], crossing
probability ∈ [0.50, 1.00], and mutation probability ∈ [0.05, 0.30].

Simulation results are presented in Tables 1 and 2 and in Figs. 2 and 3. Con-
clusions can be summarized as follows:
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Fig. 2. RMSE error of prediction of the dynamic signature features (1) obtained for
the considered population-based algorithms and the following number of inputs: (a) 10,
(b) 20, (c) 30, (d) 40.
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Fig. 3. Percentage error of prediction of the dynamic signature features (2) obtained
for the considered population-based algorithms and the following number of inputs:
(a) 10, (b) 20, (c) 30, (d) 40.

Table 1. Average RMSE error of prediction of the dynamic signature features (1)
obtained for the considered population-based algorithms and different number of
inputs.

Number of inputs Sequence ICA GB GA DE GWO

10 Learning 0.115 0.073 0.106 0.093 0.171

Testing 0.120 0.074 0.197 0.199 0.254

20 Learning 0.108 0.066 0.104 0.093 0.166

Testing 0.114 0.066 0.183 0.210 0.250

30 Learning 0.097 0.048 0.093 0.087 0.156

Testing 0.107 0.049 0.178 0.202 0.256

40 Learning 0.068 0.020 0.068 0.063 0.138

Testing 0.080 0.021 0.173 0.205 0.261

– The highest accuracy was obtained for the golden ball algorithm (column
GB, Tables 2 and 1). It was independent of the number of inputs (number of
sessions) of the fuzzy system.

– The lowest accuracy was obtained for the grey wolf algorithm (column GWO,
Tables 2 and 1). It was independent of the number of inputs (number of
sessions) of the fuzzy system. However, it should be noted that the results
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Table 2. Average percentage error of prediction of the dynamic signature features
(2) obtained for the considered population-based algorithms and different number of
inputs.

Number of inputs Sequence ICA GB GA DE GWO

10 Learning 90.9 94.5 91.5 92.9 86.3

Testing 90.4 94.4 83.5 83.4 78.8

20 Learning 91.4 95.0 91.7 92.8 86.6

Testing 90.9 94.9 84.7 82.4 79.2

30 Testing 91.3 96.2 85.3 83.2 78.6

Learning 92.2 96.2 92.4 93.1 87.4

40 Learning 94.6 98.4 94.5 95.1 88.9

Testing 93.6 98.3 85.6 82.5 78.2

obtained by this algorithm were clearly better than the results obtained using
the evolutionary strategy (μ + λ) [36].

– For each user, the accuracy of the prediction of features increases with the
increase in the number of features (number of sessions) given to the inputs
of the fuzzy system (Tables 2 and 1). It was independent of the used learning
algorithm.

4 Conclusions

In this article, we considered the problem of predicting changes in the value
of biometric features over time. In particular, we tested various algorithms for
learning a fuzzy system used to predict feature values. The simulations show that
the values of dynamic signature features can be predicted with high accuracy.
It results from the specificity of this problem, in which the dynamics of changes
in the value of features should not be large. Nevertheless, it can cause major
changes in the accuracy of the signature verification.

The choice of the learning algorithm had a great impact on the accuracy of
prediction. In our simulations, the best accuracy was obtained using the golden
ball algorithm. Other tested algorithms gave slightly worse results, although
acceptable.

In the future, we plan to develop and test the method for the dynamic sig-
nature verification, which takes into account the conclusions of the performed
simulations.
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12. Dziwiński, P., Bartczuk, �L., Tingwen, H.: A method for non-linear modelling based
on the capabilities of PSO and GA algorithms. In: Rutkowski, L., Korytkowski,
M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017.
LNCS (LNAI), vol. 10246, pp. 221–232. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-59060-8 21
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Abstract. Person identification based on touch screen gestures is a
well-known method of authentication in mobile devices. Usually it is
only checked if the user entered the correct pattern. Taking into account
other biometric data based on the speed and shape of finger movements
can provide higher security while the convenience of this authorisation
method is not impacted. In this work the application of Sequential Joint
Functional Principal Analysis (FPCA) as a dimensionality reduction
method for gesture data is explored. Performance of the classifier is mea-
sured using 5-fold stratified cross-validation on a set of gestures collected
from 12 people. The effects of sampling rate on classification performance
is also measured. It is shown that the Support Vector Machine classifier
reaches the accuracy of 79% using features obtained using the Sequential
Joint FPCA, compared to 70% in the case of Euclidean PCA.

Keywords: Touch screen gestures · Biometrics · Classification ·
Elastic shape analysis · Pattern recognition

1 Introduction

Identification of a person based on their physiological or behavioural charac-
teristics distinguishing them from other people is commonly referred to as bio-
metric identification [12]. Various unique features like face images, iris, finger-
prints or signature are used in such methods. Different applications have differ-
ent requirements for a method used for identification. For example, most touch
screen devices lack dedicated hardware for biometric identification. Augmenting
the common gesture-based identification with biometry would improve security
without impacting user convenience [21]. Other approaches to person recogni-
tion based on hand gestures include using sequences of images from a camera
(including a depth camera) [7,24] or data from a specialized glove [4,19].
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A very important part of data analysis is dimensionality reduction. Principal
Component Analysis (PCA) is one of the most popular dimensionality reduction
methods. Over the years, many variants were proposed, including Generalized
PCA [29], kernel PCA and Principal Geodesic Analysis [2,9].

In recent years the elastic metric [30] has been suggested for modelling func-
tional data. The method, partially inspired by increasingly popular data analysis
using Riemannian geometry [2,11,15,28], received a significant amount of atten-
tion [1,14,16,17,23,25,28,31]. Recently, a new family of PCA variants that takes
into account achievements in elastic shape analysis was proposed [6,22,26]. This
family includes, among other methods, Amplitude FPCA, Phase FPCA and
Sequential Joint FPCA [22,27], differing by the space in which principal com-
ponents are calculated.

In this work, the elastic FPCA is applied as a dimensionality reduction
method to the problem of person recognition based on a performance of a
hand gesture on a touch display. The k-nearest neighbour and Support Vector
Machine [8] algorithms are considered for classification in principal subspace. A
set of five gestures, twelve people and five gesture executions per person is used.
The evaluation is performed using stratified 5-fold cross-validation to prevent
overfitting [13].

2 Materials and Methods

2.1 Gesture Data Set

The touch screen gestures were gathered using mobile devices with touchscreens
(smartphones) [21]. People were performing a number of predefined types of
gestures by moving a finger along a path connecting rings that were arranged
in a rectangular pattern (see Fig. 1 in [20]). The task is to recognize a person
given a single performance of a gesture (a survey). Each person performed each
gesture a few times. This data is available for building a statistical model for this
classification task. In total, NG = 5 gestures performed NR = 5 times by each
one of NP = 12 people were analysed. The data acquisition process and pattern
design is detailed in a previous work [21]. Only continuous gestures (performed
without raising a finger from the screen) were considered because of continuity
assumption of the proposed model.

A survey can be described by a curve fP,G,R(t) : [0, 1] → R
2 where P ∈

{1, 2, . . . , NP } is the number of person, G ∈ {1, 2, . . . , NG} is the number of
gesture used for recognition and R ∈ {1, 2, . . . , NR} is the number of repetition.
The pressure data and total time of gesture execution were not taken into account
in this study.

2.2 Dimensionality Reduction and Classification

Three dimensionality reduction methods are considered in this study: classical
Euclidean PCA, Amplitude Functional PCA (A-FPCA) and Sequential Joint
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Functional PCA (SJ-FPCA). The A-FPCA approach relies on transforming
curves into the amplitude space. To do this, one has to introduce the Square
Root Velocity Function (SRVF) representation. For a function f : [0, 1] → R

2,
its SRVF representation is expressed as a function q : [0, 1] → R

2 such that
q(t) = F (ḟ(t)) where F (v) = v/

√‖v‖ if ‖v‖ > 0 and 0 otherwise. The first
order forward finite difference formula is used to approximate the derivative of
a curve.

The elastic metric has an ability to simultaneously consider bending and
stretching of given curves in a principled way. In general, it is defined as a
two-parameter family of Riemannian metrics on the manifold of curves. The
ratio of these two parameters describes the relative weight of curve bending
and stretching that should be performed to fit two given curves. However, the
SRVF representation approach is compatible only with a single ratio of this two
parameters.

Now, let F be the space of differentiable planar curves whose derivative
is different from zero almost everywhere. Also, let Γ̃I be the space of weakly
increasing absolutely continuous functions γ : [0, 1] → [0, 1] such that γ(0) = 0
and γ(1) = 1. This can be thought of as a special set of reparametrizations of the
unit interval. With function composition operation, Γ̃I becomes a monoid. An
action of Γ̃I on the space of SRVF representations of planar curves can be defined
as γ ·q = (q◦γ)

√
γ̇. The quotient space A = L2/Γ̃I , with its quotient geometry, is

called the space of amplitudes. A-FPCA is then performed in the space A×R
2 of

amplitudes and initial points of curves, f(0). First, mean amplitude and mean
initial values, together denoted μ, are computed for uniformly sampled input
functions. Next, all SRVF representations are aligned to μ. Finally, the classical
PCA is performed on resulting representations.

The SJ-FPCA works in a similar way, although the space A × R
2 × Γ̃I is

used, where reparametrizations aligning different curves to the mean curve are
also considered. Since the operation γ → √

γ̇ transforms reparametrizations to
the Hilbert sphere (functions from L2 with unit norm), the geometry of Γ̃I is
defined this way. The Principal Geodesic Analysis approach is used to handle
this geometry. For more details regarding A-FPCA and SJ-FPCA see [22].

Finally, the coefficients of a gesture in the principal subspace are used for clas-
sification. Two algorithms were considered: the k-nearest neighbour and Support
Vector Machine algorithms. The evaluation is performed using stratified 5-fold
cross-validation.

3 Results and Discussion

The Euclidean PCA and Sequential Joint FPCA were compared in a few ways.
First, Fig. 1 compares effects of different geometries of principal subspaces
described by Euclidean PCA and SJ-FPCA. As can be seen, even for moder-
ate values of coefficients in the principal subspace (most projections of surveys
have coefficients with larger magnitude), the curve generated using Euclidean
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Fig. 1. Comparison of Euclidean PCA (left) and SJ-FPCA (right) for executions of
a selected gesture by a single person. Dashed lines represent input gesture curves
and thick solid line is a sample from three-dimensional principal space for coefficients
[0.4, 0, 0] (Euclidean PCA) and [5.9,−3.7, 3.0] (SJ-FPCA).

PCA does not resemble input curves. On the other hand, in case of the SJ-
FPCA even selecting coefficients significantly larger than these from projections
of input curves one gets a similar curve.

Table 1. Fraction of explained variance by the first 3, 5, and 7 principal components.

Δt PCA variant Number of principal components

3 5 7

0.02 Euclidean PCA 58.6% 74.6% 83.8%

SJ-FPCA 38.8% 51.5% 60.5%

0.05 Euclidean PCA 59.4% 73.9% 83.4%

SJ-FPCA 48.2% 61.8% 71.1%

Table 1 compares fraction of variance in the data explained by a few first
principal directions for Euclidean PCA and SJ-FPCA. Table 2 compares the
dimension of the principal subspace for both PCA algorithms. Both fraction of
explained variance and subspace dimension are averaged across all gestures and
cross-validation folds. These results indicate that the Euclidean PCA explains
more variance than SJ-FPCA for the same dimension of principal subspace.

Finally, classification results are gathered in Table 3. Three classifiers were con-
sidered: k-nearest neighbour classifier (kNN), Support Vector Machine (SVM)
with linear kernel and SVM with polynomial kernel. Values given in this Table were
obtained for kNN with k = 1 and a Euclidean distance function. Linear and poly-
nomial SVM implement the C-Support Vector Classification (C-SVC) variant with
cost coefficient set to 0.5. Polynomial kernel has the form k(x, y) = 0.5x · y − 1.
A subset of other values of classifier parameters and sampling rates was considered
but no significant improvement was achieved.
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Table 2. Average dimension of the principal subspace for target explained variance
90% and 95%.

Δt PCA variant Target explained variance

90% 95%

0.02 Euclidean PCA 9.60 12.9

SJ-FPCA 22.3 29.2

0.05 Euclidean PCA 9.68 13.0

SJ-FPCA 15.6 20.8

Table 3. Classification accuracy in percent for considered classifiers, discretization
steps, PCA methods and principal subspace size. Dimensionality of principal subspace
(denoted D) is given either explicitly or as a target fraction of explained variance.

Δt 0.02 0.05

D 3 5 90% 95% 3 5 90% 95%

kNN Euclidean PCA 35.0 47.7 62.0 69.7 35.0 47.7 61.7 66.7

SJ-FPCA 33.7 49.7 66.0 65.3 21.3 32.7 48.3 50.0

No PCA 62.3 62.7

Linear SVM Euclidean PCA 35.0 46.7 66.7 69.7 37.7 48.0 66.7 69.3

SJ-FPCA 38.0 49.7 79.0 78.7 29.3 36.0 56.3 57.7

No PCA 52.3 52.7

Polynomial SVM Euclidean PCA 36.3 47.0 66.7 70.0 39.3 50.7 67.0 69.7

SJ-FPCA 38.3 48.3 76.7 78.0 29.7 35.3 49.7 53.0

No PCA 52.3 52.7

Sampling rate Δt = 0.02 results in a significantly higher accuracy in the SJ-
FPCA method than other tested sampling rate, in particular Δt = 0.05 displayed
in Table 3. On the other hand, selection of sampling rate has very little effect
on Euclidean PCA and classification without dimensionality reduction using
considered classifiers.

The results indicate that Sequential Joint FPCA dimensionality reduction
significantly improves classification accuracy and leads to a more natural geom-
etry of the principal subspace. The accuracy is satisfactory regarding a relatively
large number of people that were recognized (twelve people) and a very small
set of samples per person used in building the model (four gesture executions
per person).

The average time to build a SJ-FPCA model was equal to 4.6 s for 60 gestures
sampled with Δt = 0.02 and the average transformation time was equal to 3.1 ms.
For Δt = 0.05 these times are equal to, respectively, 550 ms and 660µs Results
were obtained on an Intel Core i7 processor using the LIBSVM library [5] and
custom software written in Julia [3].
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4 Conclusions

In this study the Sequential Joint FPCA dimensionality reduction method was
applied to the problem of person recognition based on touch screen gestures.
It was compared against the Euclidean PCA. The SJ-FPCA method enables
the Support Vector Machine to achieve relatively high accuracy (79%) consid-
ering very small training set and a large number of classes. The discretization
Δt = 0.02 was found to result in the highest accuracy for the SJ-FPCA method,
although it does not significantly affect other considered variants.

In future work we will consider using other dimensionality reduction methods
as well as feature selection algorithms [10,18]. We will also test other classifiers.
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Abstract. Over the years, social networks have become an impor-
tant vehicle for communication. Many users on YouTube use comments
to express opinions or critique a subject. The amount of comments,
for famous videos and channels, is huge, which poses the challenge of
analysing user opinions efficiently. This article proposes a sentiment anal-
ysis model of YouTube video comments, using a deep neural network. We
employed an embedding layer to represent input text as a tensor, then
we used a pair of convolutional layers to extract features and a fully con-
nected layer to make the classification. The output of the neural network
is the sentiment classification among negative, positive or neutral. Two
videos were chosen and their comments were classified by our model, by
an alternative statistical model and by humans. The human classification
was considered to be 100% accurate. The results showed that our model
achieves better accuracy than the statistical model, and the classification
accuracy is in the range 60%–84%.

Keywords: Deep learning · Sentiment analysis ·
Deep neural networks · Opinion mining · Convolutional neural networks

1 Introduction

YouTube has become a popular form of entertainment. The term “YouTuber”
is now considered a profession and many people create their videos to attract
audiences and achieve monetisation through views, reputation and subscriptions
on their respective channels [11].

Since YouTube is a reputation-driven platform, the income of a YouTube
channel is proportional to its reputation. Hence, youtubers are continuously
looking for ways to measure and increase their reputation, by adapting their
content to the channel audience. However, there are few ways to measure
reputation quantitatively.
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A simple way to analyse a video reputation is by the number of likes and
dislikes it has. If the number of likes is much greater than the number of dislikes,
then it is a good content, whereas the high number of dislikes compared to likes
usually means a poor content. Although the number of likes of a video gives
an overview of how successful the video is, it does not explain the underlying
reasons for its success or failure.

Another way to determine a video reputation is to analyse its comments to
understand how the viewers feel about the content. Before AI (artificial intel-
ligence) and machine learning methods, it was a handmade analysis, which is
barely able to review a few hundreds of comments per video. However, most
big YouTube channels feature 1,000+ comments per video and posts at least 5
videos per week. Therefore, the task of hand-reviewing video comments is quickly
becoming intractable and, as a consequence, machine reviewing is becoming a
must-have business strategic asset for big YouTubers.

The present paper approaches an area under automatic machine reviewing
of text known as sentiment analysis. In particular, we focus on the automatic
classification of video comments into sentiment categories for three domains:
(1) how the viewers feel about the video quality and the youtuber itself, (2) how
the viewers feel about how well the topic is covered by the video, (3) how the
viewers feel about how relevant the video is.

This kind of problem has been approached in the literature using machine
learning. In [12], the authors combine lexical analysis and machine learning to
classify sentiment polarity of Facebook messages, with 83% accuracy. In [7], the
authors do opinion mining of app store comments. The goal is to automatically
decide how the users feel about an app based on user reviews on the platform.
The authors employed natural language processing and topic modelling tech-
niques to extract both fine-grained and high-level features of each comment.
They achieved a 59% classification accuracy analysing 7 apps from Google App
Store and Apple Store user comments. In [19], the author did sentiment anal-
ysis of comments written in the Chinese language, using SVM (support vector
machines) and Word2Vec. They claim high performance, achieving over 90% of
accuracy in their dataset.

After the advent of deep neural networks, new studies in the field of opinion
mining are emerging. The work [17] presents a deep neural network model to
sentiment-analyse short texts. Moreover, [18] depicts a deep neural network for
opinion mining of twitter posts. They mixed an unsupervised neural language
model to determine word embeddings with a supervised deep neural network
to do the actual classification. They claimed to be ranked number 2 among
11 teams on the Twitter Sentiment Analysis campaign organised by Semeval-
2015 [4]. In [13], the authors do aspect mining of comments to determine what
the users are complaining about. They employed a 7-layer deep convolutional
neural network to tag each word in a sentence as an opinioned word or not.
They combine this result with a set of linguistic patterns to develop a sentiment
classifier. Their experiments applied the SemVal dataset [1] and another dataset
developed by Qiu et al. [14]. The authors claimed to achieve better accuracy
than state-of-the-art techniques.
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Most works within the specific field of YouTube sentiment analysis do not use
deep neural networks. The survey [6] reviews major contributions on sentiment
analysis of YouTube comments and shows that all works are based on shallow
neural networks, lexical analysis, clustering, Bayesian classifiers or other classical
data mining tools.

In this context, we propose to employ deep neural networks to classify
YouTube video comments written in Brazilian Portuguese language according
to their writer sentiments. We used two particular videos with a high amount of
comments from the channel “Joice Hasselmann”, who is a journalist that posts
about political facts of Brazil. This is the first work to merge sentiment analysis,
YouTube comments and deep neural network classifiers.

2 Methodology

We seek to solve the problem of analysing user comments about a YouTube video,
known beforehand, and classify them according to the following categories: (1)
how the viewers feel about the video quality and the youtuber itself, (2) how
the viewers feel about how well the topic is covered by the video, (3) how the
viewers feel about how relevant the video is.

Each classification is represented by three possibilities: neutral, positive and
negative.

We give a neutral classification to every comment that does not give an
intuition about the feelings of its writer. For example, if we are to classify video
quality and the user posts “I woke up too soon today”, then this comment is
assigned a neutral classification.

A positive classification is given to each comment that represents a com-
pliment that has a relationship to the category. For instance, the post “great
explanation about sports cars” is a positive comment when the category is cat-
egory 2 and the video topic is sports cars.

Finally, we assign a negative classification whenever the comment represents
a negative criticism about the video in the chosen classification domain.

Given a reference dataset of comments and corresponding classifications for
a specific category, our AI model learns how to extract opinion features from
the raw input text and then classify these features in a continuous scale within
the real range [−1;+1]. The lower the value, the more negative is a comment; the
higher the value, the more positive is a comment; 0 means a neutral comment.

Once our AI model learns from the reference dataset, we can use its inference
ability to classify new posts under the specific domain used to train the AI.
Therefore, for each chosen domain, there is a particular AI model instance.

Our AI model uses a combination of lexical analysis of the input text, auto-
matic dictionary extraction of relevant words, automatic feature learning and a
deep neural network. The following paragraphs explain each step of the classifi-
cation process.
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Fig. 1. Preprocessing scheme applied to original user comments.

The first step is a simple lexical preprocessing of the comment. It removes
emoticons and special characters like #, , $, %, &. Then it splits hashtags into
known words using a reference dictionary for the Portuguese language. Addi-
tionally, it removes words with no more than 1 letter, replaces unusual words
with more common synonyms, and then removes words that appear only once.

These preprocessing tasks are employed to normalise the informal text used
in YouTube posts before presenting them to the deep neural network. Since the
neural network model learns from the association between sequences of words
and the desired classification in the training dataset, unfrequent words or sym-
bols tend to be useless for the learning process. Therefore, the preprocessing
transform each original post into a normalised version of it, keeping the mean-
ing and emotion.

Although this work is focused on the Portuguese language, all these pre-
processing rules are applicable to the Spanish, English, French and German
languages. The Fig. 2 shows our preprocessing scheme (Fig. 1).

The next step is to build a dictionary of known words. This dictionary should
have words which meaning is learnable from our dataset. Therefore, unfrequent
words should not be a part of this set. Hence, we build an N -sized set of the N
more frequent words, where N is a positive integer parameter given beforehand.
This set is our dictionary of valid words. After that, we remove unknown words
(those that are not elements of the dictionary set) from the processed comments.
Now the comments have only the more frequent words, which improves the
learning capacity of the neural network, as discussed before.

At this point, we are able to convert our processed comments to a vector
representation of dimensionality M . The integer M is chosen such that each
comment is converted to an M -sized vector of integers with enough information
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for classification. Typically, M is the integer nearest to the average number of
words in the comments of the processed dataset plus a standard deviation of that
number. Thereafter, every word of each post is replaced by its numerical iden-
tification from our dictionary, and if the comment has less than M words, then
the remaining positions are replaced by 0. Hence, every comment is now repre-
sentable as an M -vector of integers, where 0 means no-word and any positive
integer represents a particular word of our dictionary.

Now, we employ a 6-layer deep neural network to extract features and classify
the input comment. The first layer is an embedding layer, useful for converting
the M-sized representation to a more compact one, by removing unnecessary
information. This layer is a deep learning version of the principal component
analysis, that converts the input space to a new space of vectors with less dimen-
sionality.

Next, a sequence of 2 convolution layers, of sizes 64 and 16, is used to extract
different levels of features. The convolution layers are chosen because they are
effective to extract features using much fewer neurons than traditional dense
layers. Each layer specialises on a particular (unknown) feature, hence the more
layers, the more features are extracted from the input vector. It is relevant to
note that, unlike usual statistical models for classification, the neural network
model does not require the input features, because it learns the features auto-
matically using the convolutional layers. This kind of technique is the base of
Artificial Intelligence: the machine model learns by example which features are
useful for the classification it should perform. For a more thorough discussion
on convolutional layers, please check [10].

After the convolutions, a dense layer of size 50 (50 neurons) is used to learn
the association between the feature space and the output categories. This is a
traditional non-linear classification layer. Finally, we add a dropout layer to avoid
overfitting and a single neuron output layer with tanh-activation, to guarantee
the output in the real range [−1;+1]. Then, one can use the real-valued output
to measure how close to each category the input comment is, and then pick as
the result the nearest of the 3 categories. The Fig. 2 depicts our deep neural
network model.

Neural network training seeks to find the synapses and biases values that
minimise the mean squared error of the classification of both the training set
and the validation set. More details are provided in the Results section of this
paper. The validation set is useful to avoid over-training the neural network,
which typically provides poor inference performance.

3 Case Studies and Results

We studied two videos from the YouTube channel “Joice Hasselman”:

1. #LulaNaCadeia: A ARRUAÇA DOS MORTADELAS E AS MANIFESTA-
ÇÕESDOPOVODIA24; [9] (in english:#LulaInJail:THESTREAMOFTHE
MORTADELLAS AND THE PEOPLE’S MANIFESTATIONS IN DAY 24)
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Fig. 2. Deep Neural Network Model

2. LULA ENTREGA PASSAPORTE; MPF SUGERE PRISÃO; FUGA ERA
ÓBVIA. #JornalDaJoice [8] (in english: LULA DELIVERIES HIS PASS-
PORT; MPF SUGGESTS PRISON; ESCAPE WAS OBVIOUS. #JoiceNews)

Each video has at least 1, 000 comments. For each video, we hand-selected
a high amount of user comments (at least 700) and manually classified them
among negative/neutral/positive, using the numerical representation −1/0/+1,
as described in the Methodology section. Each manual classification was con-
ducted three times, one for each category described in the Methodology section.

The manually created dataset was used for train, validation and test. From
the original dataset, we created a random partition using 70% of the data for
training, 20% for validation and 10% for testing. The training algorithm itera-
tively uses the training data to adapt the neural synapses to reduce the mean
squared error of predicting the classification of both the training data and the
validation data. It is a multiobjective minimisation problem that seeks to find
the synapses that minimise the mean squared error:

MSE =
1
N

N∑

i=1

(f(xi) − yi)2, (1)

where xi is the i-th input vector, yi is its target classification value, and N is
the number of examples in the training or validation set. To avoid overfitting,
at each epoch the MSE of the validation set is computed and the optimisation
halts whenever the validation MSE increases. Therefore, we halt the optimisation
when both the validation and training errors reach a minimum.

To measure the quality of the model, we use the trained network to infer the
categories of the posts in the test set. We measure the mean squared error of
classification of the comments in the test set and the total classification error.
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All the computer code of the proposed model was written in Python 3.6, using
Intel R© Python Distribution [2] and the Intel R© Optimization for TensorFlow
[3,5]. The software was run in high-end Intel R© Xeon Platinum 8160 machines,
awarded as a courtesy from Intel R© Corporation to PUC-Rio. We also ran the
proposed model on a Intel R© i7 4770 CPU using the original Google TensorFlow
distribution (not the Intel R© Optimised version).

To compare our technique with others, this section also presents the accuracy
of classification using a statistical Bayesian classifier, which employs a Gaussian
mixture distribution and outputs the probability of each of the three categories.
Then the category with the highest probability is selected as the result. The
training uses maximum likelihood estimation and the union of the training and
validation data. For more information about Bayesian classifiers, please check
[15,16].

The following tables display the results of the classification for each video
and each category.

Table 1. Category 1: how the viewers feel about the video quality and the youtuber
itself – using the proposed model. Note: GTF means Google TensorFlow, ITF means
IntelR© TensorFlow.

Training Validation Test

Accuracy (video 1) 97.05% 80% 84%

MSE (video 1) 0.0287 0.2159 -

Execution Time video 1 (GTF + i7 | ITF + Xeon) 132s | 69s - -

Accuracy (video 2) 98,18% 65% 73%

MSE (video 2) 0.0228 0.3753 -

Execution Time video 2 (GTF + i7 | ITF + Xeon) 118s | 55s - -

Table 2. Category 1: how the viewers feel about the video quality and the youtuber
itself – using the statistical model

Training Test

Accuracy (video 1) 91.17% 79.22%

Execution Time video 1 (Intel i7) 71s -

Accuracy (video 2) 83.66% 69.04%

Execution Time video 2 (Intel i7) 68s -

Overall, Tables 1, 2, 3, 4, 5 and 6 show that the proposed model is superior to
the statistical model in both accuracy and execution time (when considering the
Xeon machine). The performance improvement from Google TensorFlow running
on an i7 4770 CPU to Intel R© Optimized TensorFlow on a Xeon Platinum 8160
CPU is due to the high parallelism and vectorisation capacity of the Xeon CPU



568 A. A. L. Cunha et al.

Table 3. Category 2: how the viewers feel about how well the topic is covered by the
video – using the proposed model. Note: GTF means Google TensorFlow, ITF means
IntelR© TensorFlow.

Training Validation Test

Accuracy (video 1) 93.29% 68% 61%

MSE (video 1) 0.0581 0.3348 -

Execution Time video 1 (GTF + i7 | ITF + Xeon) 148s | 91s - -

Accuracy (video 2) 93.29% 68% 62%

MSE (video 2) 0.0168 0.3481 -

Execution Time video 2 (GTF + i7 | ITF + Xeon) 141s | 85s - -

Table 4. Category 2: how the viewers feel about how well the topic is covered by the
video – using the statistical model.

Training Test

Accuracy (video 1) 94.91% 60.07%

Execution Time video 1 (Intel i7) 81s -

Accuracy (video 2) 90.63% 61.66%

Execution Time video 2 (Intel i7) 79s -

Table 5. Category 3: how the viewers feel about how relevant the video is – using the
proposed model. Note: GTF means Google TensorFlow, ITF means IntelR© TensorFlow.

Training Validation Test

Accuracy (video 1) 96.73% 79% 72%

MSE (video 1) 0.0397 0.1621 -

Execution Time video 1 (Google
TF + i7 | Intel TF + Xeon)

112s | 63s - -

Accuracy (video 2) 98.05% 71% 64%

MSE (video 2) 0.0263 0.1950 -

Execution Time video 2 (GTF
+ i7 | ITF + Xeon)

123s | 70s - -

Table 6. Category 3: how the viewers feel about how relevant the video is – using
the statistical model.

Training Test

Accuracy (video 1) 78.33% 57.92%

Execution Time video 1 (Intel i7) 75s -

Accuracy (video 2) 93.86% 70.88%

Execution Time video 2 (Intel i7) 83s -
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and the very optimised Intel TensorFlow distribution. This is an advantage of
the deep neural network model over the statistical model: the higher the CPU
parallelism, the faster the neural network runs. Note that this is not true for the
statistical model, which uses a sequential algorithm.

The results show that category 1 features the best accuracy. Its test set
was 84% accurate, showing that the proposed model has a consistent predictive
capability. On the other hand, it is also seen that the worst result belongs to
category 2. We believe that this is because the content of most of the comments
does not expose how well the youtuber exposes the main topic of the video.
Hence, the neural network ends up having few examples to extract patterns that
allow predicting sentiments related to this category.

4 Conclusions

In this work, we proposed a model for opinion mining of YouTube comments
that is able to analyse user sentiments about the video. This model employs
a preprocessing heuristics based on lexical analysis and then uses deep neural
networks to predict user feelings from comments of any YouTube video. We con-
sidered 3 distinct categories and 2 videos, which had their comments manually
selected and manually classified.

In both videos, the proposed model showed a good ability to predict user
sentiments. We note that category 2 - in relation to content - is the most difficult
to predict and we believe that this is due to the fact that we have few comments
on our base so that the network is able to extract useful patterns. Moreover,
the proposed model performed better than an alternative statistical Bayesian
classifier based on Gaussian mixture distributions.

Hence, we conclude that our model has a good performance for predicting
sentiment categories of YouTube videos comments. To improve the result, we
suggest as future work to use a bigger dataset formed by the concatenation of
comments from several videos so that the neural network can learn better with
more vocabulary and better understand patterns of positivity or negativity. We
also suggest investing more in preprocessing of the text. It is desirable to apply
spelling and grammar correction, detection of spelling mistakes in proper names
and treatment of language addictions.
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Abstract. Through Metric learning techniques, a metric function is
learned, which shows how similar/dissimilar two samples are. From the
perspective of feature selection, metric learning can be represented as
a transform function mapping each sample into a new point in the
new feature space. Geometric Mean Metric Learning (GMML) is one
of promising methods which achieve good performance in terms of accu-
racy and time complexity. In this paper, we propose the use of GMML
algorithm in a neural network to perform Riemannian computing on the
SPD matrices which improves accuracy and reduces time complexity. We
also use the eigenvalue rectification layer as a non-linear activation func-
tion to enhance the non-linearity of our model. Experimental evaluations
on several benchmark data sets demonstrate that the proposed method
improves accuracy in comparison with the state-of-the-art approaches.

Keywords: Metric learning · Geometric metric learning ·
Artificial Neural Network

1 Introduction

Metric Learning is a kind of data transform method, which makes similar
instances closer and dissimilar ones farther. The transformed data is later used
in learning algorithms (e.g., classification, regression, etc.). Metric learning can
be interpreted as a feature learning [17] which maps data to a new space hoping
that in the new feature space, data would be better represented (e.g., Maha-
lanobis distance metric). Metric learning which learns the similarity/distance
metric from the annotated data is of significant practical importance, which can
be considered as a pre-process of variety tasks, e.g., classification, clustering, fea-
ture extraction, feature matching, etc., [7,13,18,25]. Moreover, metric learning
approaches can overcome the challenges of extreme classification [8].

Currently, best metric learning approaches make use of state-of-the-art Artifi-
cial Neural Networks (ANN), which produces the best embedding by minimizing
a loss function (which is usually related to the similarity/ distance of the points)
[20,21]. However, most of these techniques learn a Mahalanobis distance in the
c© Springer Nature Switzerland AG 2019
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Euclidean space, which can be interpreted as a linear mapping of the data. These
techniques have achieved an improvement in both modeling and the algorithm.

Most deep metric learning approaches learn a Euclidean metric in a mapped
space [2]. The mapped space is either a linear transform of the original space or
a non-linear one. Let x ∈ Rd be an instance in the origin space and φ(x) be the
corresponding instance in the mapped space, where φ(.) is either a linear function
represented by φ(x) = A×x or a non-linear function. The conventional Euclidean
distance ‖φ(x) − φ(y)‖ can be still used in the mapped space to estimate how dis-
similar two instances are [22,26]. More precisely, letting x,y denote two samples in
Rd space, we denote (x−y)M(x−y)T as the distance between those two samples
where M ∈ Rd×d is a Symmetric Positive Definite (SPD) matrix. The distance can
be interpreted as a Euclidean distance, ‖φ(x) − φ(y)‖, in the mapped space φ(.)
where φ(x) = M

1
2 x. Since the distance is positive, the matrix learned through the

metric learning ought to be an SPD matrix to confirm the positiveness of the dis-
tance. Some researchers make the learned matrix, symmetric-positive definite by
setting the negative eigenvalues to 0, which might lead to ambiguity. This ambigu-
ity can be prevented by making matrix space a Riemannian manifold.

In this paper, we revisit the structure of neural network and present a new
ANN architecture based on geometric learning algorithms. In our proposed
model, several metric learning layers are used. Each metric layer can be a new
representation of a metric learning algorithm having a closed-form optimization
on an SPD manifold. Through comprehensive experiments, we show the use of
SPD manifold improves the performance of a ANN by experimentally evaluation
on several benchmark datasets. Our main contribution is the use of geometric
learning algorithms as new mertic layers in a neural network. These new layers
include a Geometric Metric Mean Learning (GMML) as a transform function
followed by a ReEig layer [15] which transforms data into a new space.

The rest of this paper is organized as follows. An overview of related work is
briefly introduced in Sect. 2. We describe our proposed model in Sect. 3. Exper-
imental evaluations are illustrated in Sect. 4. Finally, Sect. 5 contains conclusion
with possible remarks for future works.

2 Related Works

In this section, we briefly review the promising deep distance metric learning
algorithms and then concentrate on the geometric learning.

2.1 Deep Metric Learning

Since 2014 deep metric learning have been attracted by many researchers
[9,10,14,19,22,24] and the idea of integrating metric learning into deep net-
works was first proposed in 1994 [6]. Faraki et al. combine geometrically dimen-
sion reduction and metric learning method and then integrate it into a deep
framework [11]. They use Riemannian manifolds in their optimization algorithm
[1] and achieve improvements.
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In paper [14], a nonlinear manifold of similar face images by applying distance
metric learning approaches into deep learning is learned. A joint loss function
containing a logistic loss and a regularization term of network weights and biases
are used. A new structure for feature embedding which learns full advantages of
batches through training phase was proposed in 2016 [18]. First, some positive
pairs are randomly selected and then the distances between those selected pairs
and all negative pairs are calculated using log − sum − exp formula.

An interesting metric learning approach which learns a map function transfer-
ring each sample to a new point in the mapped space was proposed in 2017 [22].
Some benefits of this work are as follows:- (1) A new loss is proposed which is
not based on pairs or triples; therefore, data are not needed to be pre-processed
to extract pairs or triples like other existing metric learning approaches. (2) Dur-
ing learning of embedding space, the network is encouraged to optimize a global
metric for clustering; this method uses the global structure of embedding space
to learn a quality metric for clustering.

An online deep metric learning framework was proposed in 2018 [16]. It
consists of several metric layers in a neural network and each metric layer is
actually an existing online metric learning algorithm which can be optimized in
a closed form. Each metric layer is followed by a nonlinear function like ReLu.
Let x0, x1 are the input and the output of the first metric layer respectively,
the output is calculated as x1 = Ltx0 while LtL = M and M is the metric
matrix which is calculated in a closed form optimization. The network is only
updated through the forward pass. In the next subsection, We briefly overview
some pioneer works that apply geometry to metric learning approaches.

2.2 Geometric Metric Learning

In 2016, a Mahalanobis-Based cost function named Geometric Mean Metric
Learning (GMML) was proposed [26]. They revisited the convenient Euclidean-
based optimization procedure and proposed a new geometric learning method
on SPD manifolds. They then reached a geometrical closed-form solution for the
Metric Learning problem, which significantly reduces the time complexity. In
[23] a new local method based on GMML named L-GMML was introduced and
applied to the task of ranking. Some local matrices and a corresponding anchor
document were first learned and then the anchors were weighted.

A new Riemannian network architecture for deep networks using SPD matri-
ces was proposed in [15]. They introduced some new geometric layers such as
bi-linear mapping layers (BiMap), eigenvalue rectification layers (ReEig), and
an eigenvalue logarithm layer (LogEig). In the following, these three layers are
briefly explained.

BitMap Layer. The BiMap layer transforms an input SPD matrix to a new
more compact matrix with higher ability to discriminate data. This layer uses a
bi-linear mapping function fb as follows

Xk = fb(Xk−1;W k) = W kXk−1W kT (1)
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where Xk−1 ∈ Sym+
dk−1

is the input matrix of k-th layer, W k ∈ R
dk×dk−1∗ , dk <

dk−1 is the connection weights and Xk ∈ Rdk×dk is the output of the layer.

ReEig Layer. The ReEig layer makes input SPD matrices far away from non-
positive ones and it is formulated as follows

Xk = f (k)
r (Xk−1) = Uk−1 max(εI,Σk−1)Uk−1T (2)

where Uk−1 and Σk−1 are the output of the eigenvalue decomposition and
Xk−1 = Uk−1Σk−1Uk−1T

. ε denotes as a rectification threshold, I is Identity
matrix and max(εI,Σk−1) is a diagonal matrix which is defined as follows:-

A(i, i) =

{
Σk−1(i, i) ,Σk−1(i, i) > ε

ε ,Σk−1(i, i) ≤ ε
(3)

LogEig Layer. The LogEig layer is defined as the following.

Xk = f
(k)
l (Xk−1) = log(Xk−1) = Uk−1 log(εI,Σk−1)Uk−1T (4)

where log(Xk−1) is the logarithm of diagonal elements. According to [3] this
metric layer (Log-Euclidean Riemannian metric) provide a lie group structure
to the Riemannian manifold of SPD matrices. As a result, the SPD manifold
is reduced to a flat space in which conventional Euclidean computations can
be simply conducted and there is no need to take the pain to do Riemannian
operations such as geodesic calculations.

Riemannian Manifold Metric Learning (RMML) aims to reduce the geodesic
distance of similar pairs while increasing the geometric distance of dissimilar
ones on nonlinear manifolds. RMML is extended for both SPD and Grassmann
manifolds, [27].

3 The Proposed Model

As discussed earlier, the aim of the metric learning approaches is to eventually
obtain a metric that gives “small” distance for similar points and “large” distance
for dissimilar ones. Different metric learning approaches are willing to fulfill this
guideline implicitly or explicitly. Figure 1 shows the impact of learning a metric
matrix M based on Mahalanobis distance.

In the Mahalanobis-based metric learning approaches, it is intended to find
a matrix M through training stage where distance between ith and jth samples
are defined as dM = (xi−xj)TM(xi−xj). Matrix M must be an SPD matrix, so
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Fig. 1. Mahalanobis-based metric learning

there is a matrix W such that WTW = M . We revisit the Mahalanobis distance
as follows

dM = (xi − xj)TWTW (xi − xj)

= (Wxi − Wxj)T (Wxi − Wxj)

= ‖Wxi − Wxj‖22.
(5)

We interpret Wxi as the transformed point of the original point xi and ‖Wxi −
Wxj‖22 as the Euclidean distance in the transformed space. So, using metric
learning algorithms, data are implicitly transformed to a new space, hoping that
the data would be more discriminated in the transformed space.

We propose incorporating metric learning algorithms into neural networks
by introducing a geometric layer. Let x(i) and x(i+1) = Wx(i) be the input
and the output of the ith metric layer respectively where M = W tW is the
metric matrix. Matrix M is an SPD matrix which is learned through a closed-
form optimization on the SPD manifold. We use a closed-form geometric metric
optimization algorithm (GMML) that has been proposed in [26]. In the following,
we explain the process that has been conducted in each metric layer.

In each metric layer, we wish to find a matrix M that decrease the sum of
distances over all similar points while M−1 increase the sum of distances over
dissimilar pairs simultaneously. We propose the use of the following objective
function like that was proposed by [26].

min
M�0

∑
(xi,xj)∈S

dM (xi,xj) +
∑

(xi,xj)∈D
dM−1(xi,xj) (6)

where S, D are sets of similar indices and dissimilar indices respectively.
dM (xi,xj) is the distance between xi and xj and defined as (xi − xj)M(xi −
xj)T .

In the Euclidean space, the gradient of dM (xi,xj) with respect to M is

(xi,xj)(xi,xj)T

while the gradient of dM−1(xi,xj) is

−M−1(xi,xj)(xi,xj)TM−1



576 H. Hajiabadi et al.

The inner product of those two gradients is negative, so, they are in the oppo-
site direction and an increase in the gradient of M cause a decrease in that of
M−1. Since the first and second terms of the cost function 6 are in the opposite
direction, the minimization of the cost function causes small distance for similar
pairs and large distance for dissimilar ones.

The Eq. 6 can be reformulated as follows:

min
M�0

∑

(xi,xj)∈S
tr

(
M(xi − xj)(xi − xj)

t)

+
∑

(xi,xj)∈D
tr

(
M−1(xi − xj)(xi − xj)

t) (7)

where tr(.) is the summation of diagonal elements. By considering

S :=
∑

(xi,xj)∈S
(xi − xj)(xi − xj)T ,

D :=
∑

(xi,xj)∈D
(xi − xj)(xi − xj)T

(8)

in which S and D are:

S := {(xi,xj)|xi and xj are in the same class},

D := {(xi,xj)|xi and xj are in different classes}.
(9)

The Eq. 7 is briefed as

min
M�0

tr(MS) + tr(M−1D). (10)

To achieve the optimal solution for Eq. (10), we set its derivative to zero. Deriva-
tive of Eq. (10) with respect to matrix M is as follows

S − M−1DM−1 = 0 ⇒ MSM = D. (11)

To obtain matrix M from the above equation, both D � 0 and S � 0 should
hold, and it results in a positive distance as described in the following:

S1/2MSMS1/2 = S1/2DS1/2 ⇒
(S1/2MSMS1/2)1/2 = (S1/2DS1/2)1/2 ⇒
(S1/2MS1/2S1/2MS1/2)1/2 = (S1/2DS1/2)1/2 ⇒
(S1/2MS1/2) = (S1/2DS1/2)1/2 ⇒
S−1/2(S1/2MS1/2)S−1/2 = S−1/2(S1/2DS1/2)1/2S−1/2 ⇒
M = S−1/2(S1/2DS1/2)1/2S−1/2

(12)

The last equation is indeed the midpoint of the geodesic joining S−1 to D [4].
Therefore, the obtained result automatically satisfies the constraint of M � 0.
Figure 2 shows the proposed architecture which is a conventional ANN extended
with several metric layers.
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Fig. 2. Our proposed architecture

3.1 The Proposed Geometric Network

We propose a Geometric network based on SPD manifolds. We put a GMML
layer as a metric layer followed by a ReEig layer. These successive layers are
repeated through the network. It is noted that GMML method is fast and lead
to accurate results and can be optimized in a closed-form way.

Typical neural networks apply a Stochastic Gradient Descent (SGD) algo-
rithm for backpropagation that uses the gradient of the loss function and a
learning rate to create a descent step [12], which ultimately reduces the value
of loss function. In the forward path, a predicted label is produced and then is
compared with the desired one to obtain the error. Afterward, the gradient of
the loss function flow back through the network and update all the weights in
the opposite direction of the gradient to reduce the loss value.

Alternatively, we propose to update the weights of the geometric metric layers
by a closed-form optimization in two steps as follows. We first obtain the optimal
matrix, M , by optimizing Eq. (7) which leads to Eq. (10). Then, as demonstrated
in Eq. (5), the optimal weights of the metric layers are obtained by W = M

1
2 .

By doing so, there is no more need to update metric layers’ weights through
back-propagation.

As it is shown in Eq. (5), each metric layer implicitly transforms data into
the new space, Xnew = WXold, hoping that the data in the new space would be
more discriminative. W is obtained by the decomposition of the metric matrix
M where M = WTW . Two matrices M and W have the same dimension. The
optimal value of M is obtained according to Eq. (12). We calculate the output
of a metric layer by xk+1 = Wxk where xk is the input of the layer. The process
is shown in Algorithm 1. If each metric layer is convex we will advance of using a
closed-form optimization to reach a simple and global optimal value. The prove
of convexity for GMML is straightforward, since it is the summation of two
convex function [5]. Note that other closed form metric learning algorithm can
be used instead of GMML.
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Algorithm 1. The GMML Layer
Input of first layer: S0: set of similar pairs, D0: set of dissimilar pairs
Input of kth layer: Xk−1: output of k − 1th layer
Output of kth layer: Xk = W kXk−1 where W k calculates as below

1: Calculate Sk−1 and Dk−1 according to

Sk−1 :=
∑

(xk−1
i ,xk−1

j )∈Sk−1

(xk−1
i − xk−1

j )(xk−1
i − xk−1

j )T ,

Dk−1 :=
∑

(xk−1
i ,xk−1

j )∈Dk−1

(xk−1
i − xk−1

j )(xk−1
i − xk−1

j )T
(13)

2: Compute Mk as:

Mk = (Sk−1)−1/2((Sk−1)1/2Dk−1(Sk−1)1/2)1/2(Sk−1)−1/2 (14)

3: Decompose matrix Mk = (W k)T (W k) to obtain W k

4: Compute the output of GMML layer as Xk = W kXk−1

The ReLU layer in typical neural networks includes max(0, x) non-linearity.
This layer is used to improve the non-linearity of the network. In the [15], the
ReLU layer is replaced by a new geometric layer called ReEig. This layer recti-
fies the small positive eigenvalues. We use ReEig layer instead of simple ReLu to
enhance the non-linearity of the network. This layer has been defined in Eqs. (2)
and (3). It prevents the input SPD matrices from having non-positive Eigenval-
ues. Our proposed GMML layer and ReEig layer has been implemented in the
Algorithm 1 and Algorithm 2 respectively.

Algorithm 2. The kth ReEig Layer
Input: Xk−1, ε: a rectification threshold
Output: Xk

1: Decompose Xk−1 as Xk−1 = U k−1Σk−1(Uk−1)T

2: Calculate Xk as Xk = f
(k)
r (Xk−1) = U k−1 max(εI , Σk−1)(Uk−1)T where

A(i, i) =

{
Σk−1(i, i) , Σk−1(i, i) > ε

ε , Σk−1(i, i) ≤ ε

In Fig. 2 we propose a back-propagation stage based on the SGD algorithm
that can accelerate the convergence speed. As the forward propagation in the
geometric layers can find new feature spaces through the close-form optimization,
the back-propagation for these layers can be omitted. In the experiments, we do
not use backpropagation for metric layers.
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4 Experiments

In this section, we evaluate how our proposed method works in a simple classifi-
cation problem. The proposed approach is evaluated on several small benchmark
datasets described in Table 1 with some statistics about each.

Table 1. Description about chosen datasets

Name # of input # of Classes Dimension

Breast-cancer 569 2 30

Wine 178 3 13

Iris 150 3 4

Vehicle 846 4 18

Vowel 990 11 14

German 1000 2 24

We have incorporated our proposed metric learning architecture into a Multi
Layers Perceptron (MLP) to learn a metric and then classify data in the new
learned space. We have first set up a network containing two metric learning
layers (GMML + ReEng layer) followed by a simple MLP. The employed MLP
is a network with two hidden layers including 20, 10 nodes respectively. The
gradient of the Cross-entropy loss function is used for error back-propagation.
In all experiments, we have used 10 fold cross validation for model selection.
It means that the original dataset is partitioned into 10 disjoint subsets where
9 subsets have been used for training and the remaining one for testing.

The data have been initially normalized. Table 2 shows the experimental
results on six benchmark datasets. We have compared our model with three
promising metric learning algorithms including GMML, LMNN, ITML. The
results show that our model performs better than others in all datasets. Results
for the other methods are based on the experiments reported by [26].

Table 2. Comparison with the state-of-the-art metric learning methods

Name GMML ITML LMNN OURS

Wine 0.96 0.92 0.94 0.96

Iris 0.97 0.974 0.95 0.98

Breast cancer 0.96 0.92 0.91 0.99

Vehicle 0.78 0.70 0.77 0.81

Vowel 0.57 0.56 0.53 0.6

German 0.72 0.705 0.71 0.78
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We also have explored how the number of constraints would affect the accu-
racy of the classification. We first picked 30% of data randomly and make similar
and dissimilar sets over the selected data. We gradually increase the number of
constraints and investigate the effect of increased constraints on the classifica-
tion. We first pick 30% of data to generate similar and dissimilar pairs over
them and explore how our proposed model work on this configuration. Figure 3
shows how an increase in the number of constraints affects the performance of
the classifier.

Fig. 3. Horizontal axis represents the percentage of data which are used for constraints
and the vertical axis represents the precision

5 Conclusion

In this paper, we have proposed a new neural network architecture based on met-
ric learning approaches which are updated on the SPD manifold. We focused on
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classification tasks and it is considered as an initial attempt to explore the use
of geometric learning on neural networks. Our proposed method has been imple-
mented and evaluated on several benchmark datasets which showed a significant
improvement in comparison with the state-of-the-art metric learning algorithms.
We also explored how the number of constraints affects the performance of the
classifier. As a future work, we aim to integrate this architecture into more
complicated deep networks. Also, we plan to incorporate more metric learning
algorithms into the proposed model.
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Abstract. The k nearest neighbour method (kNN) can be used not only
on an entire data set, but also after a selection of instances is performed.
Selection of instances should select prototypes which well represent the
knowledge about a given problem. We propose a new algorithm of pro-
totype selection. The algorithm is based on selection of instances which
represent the borders between classes and additionally they are trust-
worthy instances. Moreover, our algorithm was optimized with a for-
est of dedicated locality sensitive hashing (LSH) trees to speed up the
prototype selection and the classification process. The algorithm’s final
expected complexity is O(m logm). Additionally, results show that the
new algorithm lays ground for accurate classification.

1 Introduction

Let us assume that we have a learning data set D = {〈xi, yi〉 : i = 1, . . . , m}
where xi ∈ Rn are the input vectors and yi ∈ [1, . . . , c] are the class labels.
Selection of instances (prototypes) means that we are looking for a subset S ⊆ D
which is enough to build a trustworthy classifier upon, for example a k nearest
neighbour (kNN) classifier [1]. There are a few purposes to use instance selec-
tion. One is to remove noise or outliers to simplify the learning and classification
process. Methods relevant to that use case can be seen as a filter methods. Good
examples of such algorithms are the ENN [2], RNN [3] or ENRBF [4]. Another
(and even more interesting) group of instance selection methods are algorithms
which select a possibly small subset of D, usually no more than around 20%
of instance count. Those method we will call the prototype selection methods.
Nowadays there are dozens of prototype selection algorithms, but is hard to say
that all of them are really practical. We would like to recommend articles devoted
to prototype selection algorithms [5–9]. In case of many of the algorithms, unfor-
tunately, if they are accurate then their learning time is (extremely) long or the
obtained reduction rate is small. Sometimes if the learning time is short then
the accuracy is too poor. For example in the article [10], the authors present
a method which is fast (O(m log m)) and quite accurate but the reduction is
average (between filter methods and prototype selection). Basing on the article
by Garcia et al. [5] we made a summary in Table 1.

Column acc shows averaged classification accuracies on test portions from
cross-validation, column red shows average reduction rates of a given method,
c© Springer Nature Switzerland AG 2019
L. Rutkowski et al. (Eds.): ICAISC 2019, LNAI 11508, pp. 583–594, 2019.
https://doi.org/10.1007/978-3-030-20912-4_53
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Table 1. The accuracies, reduction rates and times on average data sets.

column time is the learning time in seconds. Given the above comments and
an analysis of the results presented in the last Tables, we construct a new algo-
rithm of an expected complexity of O(m log m) which is characterized by a good
reduction and possibly high accuracy.

2 Trust-Margin Prototypes

For almost all known instance selection algorithms, we can say that such algo-
rithm tries to retain positive instances for the classification process. However,
in dozens of algorithm, it is done in several different ways. The most usual way
to is define the positivity is the positive impact on classification, counted on the
base of training data.

The main idea of our algorithm is to retain trust-border instances. The mar-
gins between classes look differently for different datasets. The margins differ
mostly in their width and in the noise level. The margin width is the distance
between the regions of two classes (if any). The noise level can be seen as per-
centage of enemy instances on the wrong side of a border. The width of the noisy
part of the border is also crucial in classification. That’s why we decided to define
trust-border prototypes, as only some of the instances placed on the border can
be seen as trustworthy prototypes, while others look more (or even very) noisy.
The definition of a trustworthy border instance is as follows: xi is a trust-border
prototype if among its k nearest neighbours, there are between 1 and k′ enemy
instances. We choose k′ to be much smaller than k (e.g. k = 11, k′ = 3) to ensure
that the prototype is not too close to the actual class border.
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This means that primarily the prototypes are selected from border-situated
instances whose neighbours are mostly from their class. All instances which
have more than k′ enemies among their k nearest neighbors are treated as not
trustworthy. Such concept is aimed at cleaning the border.

Assume that we have an initial set of trust-border prototypes defined by:

S = {〈xi, yi〉 : kNN(X,xi, k, k′)} (1)

where kNN(X,xi, k, k′) is true if between k nearest neighbours from X at least
1 and at most k′ neighbours belong to the enemy, such that have a class label
opposite to yi.

Note that such strategy also rejects clean instances which have no enemies
among their k nearest neighbours. Hence, besides trust-border instances some of
the clean instances may be vital for the classification to be accurate. Imagine that
there is an island of instances separated from rest of dataset. In such case not
one of those island-instances becomes a prototype (because nearest neighbours
do not contain any enemy) and it may happen that their closest prototype(-s)
is(are) from an opposite class. Such situation leads to a case where an almost
obvious classification would become inaccurate. To overcome this problem we
have to add some of the clean instances which would be classified badly to
represent such islands of clean instances.

To do this, we construct set of those clean instances which would be badly
classified by the set of the initial prototypes S:

W = {〈xi, yi〉 : (〈x′
i, y

′
i〉 ∈ kNN(X,xi, k) ⇒ y′

i = yi) ∧ LkNN(S,xi,1) �= yi} (2)

where kNN(X,xi, k) means the set of k nearest neighbours of xi from set X.
And LA is the most frequent class label among the instances in the set A.

Now we have to select reliable instances from W as new additional prototypes
to overcome the problem described above. The most reliable instances in W are
those for which the distance to their closest enemy (an opposite class instance)
is the smallest, but not all of them are necessary.

To include the most reliable instances from W , we first sort the elements of
W according to the ascending distance to their nearest enemy. The next step
is the selection of prototypes in the sorted W . We extract the first instance w
from W (one with the smallest distance to the nearest enemy). This instance is
added to the (primarily empty) set S′. For each instance w′ ∈ W which is too
close to w, w′ is removed from W . We assume that w′ is too close to w if:

||xw′ − xw|| ≤ ||xw − xwe
||/2. (3)

Next, we repeat the process until W becomes empty. In other words we repeat-
edly extract the next (in the order of ascending distance to their nearest enemy)
instance w from W , add it to S′ and remove the instances which are too close
to w. Finally the initial set S of trust-border prototypes is extended by S′.
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2.1 Random Regions Tree (LSH) and Forest of Trees

The above concept of an algorithm can be fast only if we use dedicated data
structures which will support fast realization of some of the above-described
actions. Plain data structures lead to complexity of O(m2). We have decided to
use randomized regions with tree structures. Those structures reduce the costs
to approximately O(m log m). We will use those tree structures in two modes:
one just for searching for nearest neighbours, and another to search and remove
nearest neighbours. Some other approaches which were also used to approximate
nearest neighbours are the vantage-point trees [29], r-trees [30] or kd-trees [31].

To bring the neighbour search closer to O(m log m), especially in multidi-
mensional spaces, we have decided to base on locality sensitive hashing (LSH).
LSH was proposed in [32]. The main idea of LSH is to independently and uni-
formly draw random hyperplanes which divide the space Rn into regions (bins)
of similar objects. The most important idea of the construction of random data
structures was to eliminate the curse of dimensionality. We can view the set of
random hyperplanes as a random binary tree. The bins contain a set of points
and they serve as a source of potential neighbors of any point in the given bin.
Sometimes a point may be situated near a border of its bin—in such cases not all
of its actual nearest neighbors can be found in the given bin. This is the reason
behind the concept of an LSH forest (LSHF) presented in [33] where the authors
proposed to use a few LSH trees and search for neighbors inside the appropriate
bins in each of the LSH trees.

In our algorithm we construct the LSH tree in a slightly different way. The
first random division is in the root node of a tree. The random division is con-
structed from randomly chosen dimensions with random strength by

linearComb(y, rI , rR) =
h∑

i=1

yrIi · rRi (4)

where h is the length of the random combination, rI are random indices of
selected dimensions and rR are random coefficients of the linear combination.
Next, we start independent divisions into two subtrees with appropriate subsets
of vectors. This means that the division on the left branch does not divide
anything in the right subtree (and vice versa). In every partition of a node,
the division is shifted (if necessary) to keep a balance not worse than β (each
branch has a fraction of at least β vectors in a node). This strategy keeps the
number of nodes in the tree small. The tree is quite strongly balanced and there
are no useless divisions. The further split of new nodes is continued if their
number of vectors is still too big compared to the desired number of neighbors.
The meta-code of the algorithm starts with the Algorithm RandBinsTree 1.
The balanced version of partitioning is presented in Algorithm2. The balanced
version of partitioning resembles a typical partition operation (as in quicksort).

The non-leaf nodes have their sub-nodes defined, while leaf nodes an interval
of a bin defined. Additionally, the pivot point is stored to define final shift of
the random hyperplane. This information is necessary to define a classification
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process which has to traverse the tree from the root node to an appropriate bin
and then select nearest neighbours among the bin items.

Algorithm 1. RandBinsTree(D, left, right, bCount)
Data: D = [y1, . . . ,ym] data vectors
[left, right) interval of the current split
ids an array of vector indices
β = .1 partition threshold of minimal balance
α = 1 − (β + .5)/2 threshold: whether to continue splitting
bCount minimal count of elements in a bin
h = 10 the length of the random combination (see eq. 4)
Result: ids array of bins defined by nodes, initially: [1, . . . , m]

1 begin
2 for i ∈ [1, . . . , h] do
3 rI [i]=rand integer(1,n);

4 rR[i]=rand real(0,1);

5 for i = 1 to m do
6 hash[i] = linearComb(yi, r

I , rR);

7 node.div = bPartition(ids, hash, left, right, β);
8 if (node.div − left) ∗ α > bCount then
9 node.left = RandBinsTree(D, left, node.div, bCount)

10 else
11 lim = (node.div − left < bCount) ? right : node.div
12 node.left=new node(left,lim);

13 if (right − node.div) ∗ α > bCount then
14 node.right = RandBinsTree(D, node.div, right, bCount)

15 else
16 lim = (right − node.div < bCount) ? left : node.div
17 node.right=new node(lim,right);

18 return node

The trees of random bins are used to speed up the search of nearest neigh-
bours. A forest of such trees is constructed. Divisions constructed by a single
tree are quite sharp and nearest neighbours are roughly approximated by those.
Using a number of trees the nearest neighbours are much better approximated.
First, we collect candidate instances from each tree and then the nearest neigh-
bours are selected from among those, see Algorithm 3. Because the number of
trees and bin size is O(1), the classification cost is O(log m) (O(log m) is the
expected length of the longest path from the root node to a leaf).

The final complete Trust-Margin algorithm actually needs two types of LSH
trees: those described above and another one which is a extension of the above
random bins tree. The second type of tree must have an additional feature—it
must be able to remove instances from the tree if necessary. This means that
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Algorithm 2. bPartition(K,A, left, right, β)
Data: A an array of values
K a corresponding array with keys, in case of swap in A the corresponding
elements of K are also swapped
[left, right) the current split’s interval
β minimal proportion partition threshold
Result: pivot the array division point

1 begin
2 minBalance = β(right − left);
3 min = left + minBalance; max = right − minBalance;
4 right − −;
5 pivot = left;
6 while left < right do
7 pivot = left + (right − left)/2; if A[left] > A[pivot] then

swap(A[left], A[pivot], K[left], K[pivot]);
8 if A[pivot] > A[right] then swap(A[left], A[right], K[left], K[right]);
9 if A[pivot] > A[right] then swap(A[pivot], A[right], K[pivot], K[right]);

10 pivot = partition(left, right, pivot);
11 if pivot < min then left = pivot + 1;
12 else if pivot > max then right = pivot − 1;
13 else return pivot;

14 return pivot;

we will need to alternately call to find neighbours for given instances xi and to
remove a given instance xi. What’s more, we will use a forest of such trees in
parallel.

Because of alternating execution of instance removal and neighbours search,
the tree must adopt its structure during the removals. Otherwise, at the end,
while searching for neighbours, all tree nodes would have to be analyzed as
possible candidates for nearest neighbours. Such strategy would degrade com-
putational complexity.

To overcome this problem the tree structure must be corrected from time to
time—it is not necessary to modify the tree structure at every removal because
leafs keep a set of instances in a bin. This means that after removing a given
instance we have to check whether tree pruning is necessary. First, the procedure
decrements the counter of instances in appropriate bin and triggers the prune-
check procedure. The prune-check procedure starts from the leaf and travels
towards the root node. At a given node it is checked whether it is necessary to
concatenate a node division. The condition whether to concatenate in case of a
leaf node is that if the number of elements in the bin has been reduced twice
from its original value, the remaining elements are shifted to the left border of
an appropriate interval in the ids array. Check-condition for concatenation in
case of a non-leaf node tests whether both subnodes have less than minCount
elements or whether one of the subnodes has 0 elements. If the condition is true,
an appropriate concatenation is prepared.
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Algorithm 3. NearestNeighbors(x, T∗, k, c)
Data: x define whose neighbours have to be found
Ti, i = 1, . . . , t an array of random trees, Ti consists of the root node and ids an
array of vector indices
k desired number of neighbors
c = 4 an overhead multiplier
Result: NN set of k nearest neighbours

1 begin
2 foreach Ti do
3 I = items of the bin nearest to x in tree Ti

4 N = N ∪ I

5 NN = find k nearest neighbours in N

2.2 Trust-Margin Prototype Selection with Tree Structures

Now we can present the fast version of the Algorithm (4). First, the tree forest
for searching through all instances of X is created (first line of the code). In the
next line the initial trust-border prototypes are selected as defined in Eq. 1 but
here the kNN search uses the tree forest TX instead of plainly searching in set
X directly.

In line 4 collect the instances whose neighbours were from the same class but
they were badly classified by selected prototypes in S. Here the kNN also works
using the tree forest structures, contrary to Eq. 2. Lines 5–9 are responsible for
finding the nearest enemy for each instance, so that the instances in can be
sorted W according to the ascending order of nearest enemy distance. The last
loop tries to add only the necessary instances as supporting prototypes from the
tree TW constructed on the instances earlier added to W . Finally the tree forest
T is built to serve as the base for further classification tasks (in searching for
nearest prototypes in classification).

3 Results Analysis

To present a comparison of the algorithm with known algorithms, we have take
around 40 data sets from the UCI machine learning repository [34]. Data sets
differ in origin, goal, the numbers of instances, features and classes, so that we
can objectively present the real behavior of the proposed algorithm. We prepared
a comparison of the new algorithm Trust-Margin with DROP2, DROP4 [6],
Explore and Del [35] algorithms. All tests were conducted on the base of 10
times repeated 10-fold stratified cross-validation. For each test the data set was
standardized. Each learning algorithm was always used with the same learning
parameters (no manual parameter tuning was done).

To visualize the performance of all algorithms we present average accuracy
for each benchmark data set and for each learning machine. The ranks are
calculated for each machine for a given dataset D. The ranks are calculated as
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Algorithm 4. MarginProto(X,y)
Data: 〈X,y〉 — a dataset
k — k nearest neighbours
k′ — maximal number of enemy instances
Result: S — a set of prototypes

1 T X = LSHF (X)

2 S = {〈xi, yi〉 : kNN(xi, T
X , k, k′)}

3 T S = LSHF (S)

4 W = {〈xi, yi〉 : (〈x′
i, y

′
i〉 ∈ kNN(xi, T

X , k) ⇒ y′
i = yi) ∧ LkNN(xi,TS ,1) 	= yi}

5 for i = 1 to c do
6 Ti = LSHF ({〈xj , yj〉 : yj = i})
7 foreach 〈xw, yw〉 ∈ W do
8 we = argminj{||xj − xw|| : 〈xj , yj〉 ∈ ∐

i�=yw
kNN(xj , Ti, 1)}

9 sort W in order of ascending enemies;

10 T W = LSHFred(W )

11 while T W 	= ∅ do
12 〈xw, yw〉 = POP (W )

13 T W = T W − 〈xw, yw〉
14 S′ = S′ + 〈xw, yw〉
15 Q = extract all w′ from T W such that ||xw′ − xw|| ≤ ||xw − xwe ||/2
16 W = W − Q

17 S = S + S′

18 T = LSHF (S)

follows: First, for a given benchmark dataset D the averaged accuracies of all
learning machines are sorted in descending order. The machine with the highest
average accuracy is ranked 1. Then, the following machines in the accuracy order
whose accuracies are not statistically different from the result of the first machine
are ranked 1, until a machine with a statistically different result is encountered.
That machine starts the next rank group (2, 3, and so on), and an analogous
process is repeated on the remaining (yet unranked) machines. Notice that each
cell of the main part of Table 2 is in form: acc + std(rank), where acc is average
accuracy (for given data set and given learning machine), std is its standard
deviation and rank is the rank describe just above. If a given cell of the table is
in bold it means that this result is the best for given data set or not worse then
the best one (rank 1 = winners).

The new Trust-Margin algorithm has obtained the highest number of 25 wins,
while the second results was 20 obtained by DROP4. Additionally, Trust-Margin
had 8 unique wins (the number in brackets), which means that this algorithm
was the best one and all other were statistically worse. All other algorithms had
at most 2 unique wins. Two algorithms have obtained mean ranks below 2 (the
best results). Those methods are DROP4 with result 1.69 and the Trust-Margin
with 1.81. In case of several datasets results for Trust-Margin are much better
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Table 2. Comparison of Trust-Margin prototype selection with DROP2, DROP4,
Explore and Del

Dataset Trust-Margin Drop2 Drop4 Explore Del

Autos 41.94± 9(5) 67.74± 11(2) 63.86± 12(3) 48.87± 9.9(4) 70.6 ± 12(1)

Balance-scale 89.14 ± 2.1(1) 74.64± 5.4(4) 79.82± 4.3(3) 81.75± 5.3(2) 78.83± 4.8(3)

Blood-transfusion 78.76 ± 3.8(1) 69.28± 6.2(4) 71.3± 5.8(3) 76.02± 1.2(2) 75.83± 4.2(2)

Breast-cancer-

diagnostic

95.18 ± 2.7(1) 91.9± 3.3(3) 93.44± 3.2(2) 94.25± 3.9(2) 89.08± 5.8(4)

Breast-cancer-original 96.62 ± 1.9(1) 93.46± 2.8(3) 94.72± 2.8(2) 96.68 ± 2(1) 96.3 ± 2.1(1)

Breast-cancer-

prognostic

76.32 ± 2.2(1) 68.87± 10(2) 66.96± 10(2) 76.17 ± 2.7(1) 76.32 ± 2.2(1)

Breast-tissue 44.56± 7.2(3) 66.22 ± 12(1) 65.68 ± 14(1) 61.02± 12(2) 64.71 ± 13(1)

Car-evaluation 69.64± 0.75(4) 80.23 ± 2.8(1) 79.79 ± 2.8(1) 70.26± 1.1(3) 75.57± 2.7(2)

Cardiotocography-1 68.4± 2.7(2) 70.67 ± 3.3(1) 71.1 ± 3(1) 63.13± 7.2(4) 67.36± 3.2(3)

Cardiotocography-2 88.49 ± 1.8(1) 86.8± 2.4(3) 87.34± 2(2) 83.4± 3.1(5) 84.64± 2.6(4)

Chess-rook-vs-pawn 85.35± 1.9(3) 90.46± 1.7(2) 91.04 ± 1.6(1) 76.64± 6.2(5) 83.24± 2.4(4)

CMC 43.14 ± 3.7(1) 42.95 ± 3.9(1) 43.01 ± 3.9(1) 43.31 ± 4(1) 41.99± 4(2)

Congressional-voting 91.03 ± 5.2(1) 81.31± 9.3(3) 89.35± 7.3(2) 90.93 ± 6.5(1) 87.97± 6(2)

Connectionist-bench-

sonar

72.17± 8.1(3) 81.96 ± 8.6(1) 80.53± 7.9(2) 70.52± 10(3) 66.78± 10(4)

Connectionist-bench-

vowel

37.73± 5.7(4) 96.33 ± 2.8(1) 96.02 ± 3(1) 51.92± 9.1(3) 95.55± 3.1(2)

Cylinder-bands 62.64± 4.8(2) 65.43 ± 8.1(1) 62.68± 8.6(2) 64.26 ± 0.96(1) 64.26 ± 1.2(1)

Dermatology 86.7 ± 5.5(1) 88.02 ± 5(1) 87.6 ± 4.7(1) 81.85± 6.1(3) 85.72± 6.1(2)

Ecoli 85.14 ± 5.1(1) 79.85± 6.6(3) 84.13 ± 4.8(1) 81.47± 6.5(2) 82.42± 6.3(2)

Glass 56.24± 7.7(3) 66.53 ± 9.5(1) 67.22 ± 9.4(1) 60.21± 9.6(2) 65.93 ± 9.1(1)

Habermans-survival 74.09 ± 3.6(1) 65.62± 8.9(4) 67.78± 6.9(3) 73.14± 2.2(2) 73.14± 3.1(2)

Hepatitis 83.75 ± 5.8(1) 82.25 ± 11(1) 82.38 ± 13(1) 83.75 ± 5.8(1) 83.25 ± 7.4(1)

Ionosphere 79.89 ± 5.1(1) 81.12 ± 6.9(1) 80.48 ± 7.4(1) 78.06± 7.4(2) 81.08 ± 7.5(1)

Iris 93.87 ± 5.2(1) 92.6± 6.7(2) 93.87 ± 6.2(1) 93.47 ± 7.6(1) 88.33± 8.2(3)

Libras-movement 38.53± 5(4) 81.75 ± 6.7(1) 81.5 ± 6.4(1) 56.86± 8.4(3) 79.75± 7.1(2)

Liver-disorders 62.14 ± 8.2(1) 61.66 ± 8.7(1) 60.29 ± 8.2(1) 58.66± 5.7(2) 57.69± 7.6(2)

Lymph 72.96± 12(2) 76.7 ± 9.6(1) 77.19 ± 11(1) 70.5± 12(2) 68.7± 12(3)

Monks-problems-1 80.47± 4.9(2) 94.66 ± 2.9(1) 94.62 ± 2.9(1) 70.42± 7.1(4) 74.41± 6.6(3)

Monks-problems-2 65.62 ± 0.98(1) 55.96± 6.5(3) 57.42± 6.2(2) 65.72 ± 0.79(1) 65.72 ± 0.79(1)

Monks-problems-3 97.08 ± 2.6(1) 93.18± 3.5(2) 93.39± 3.5(2) 84.59± 6.8(3) 82.52± 6.6(4)

Parkinsons 83.95± 5.9(2) 87.73 ± 7.1(1) 87.82 ± 7.4(1) 80.83± 7(3) 83.41± 7.7(2)

Pima-indians-diabetes 74.35 ± 4(1) 68.71± 5.6(4) 70.41± 5(3) 72.59± 5.7(2) 69.89± 5.6(3)

Sonar 72.17± 8.1(3) 81.96 ± 8.6(1) 80.53± 7.9(2) 70.52± 10(3) 66.78± 10(4)

Spambase 88.59 ± 1.3(1) 86.34± 1.6(3) 87.64± 1.6(2) 82.46± 4.3(5) 84.14± 2(4)

Spect-heart 78.92 ± 7.1(1) 77.5± 7.5(2) 77.61± 7.7(2) 79.42 ± 1.7(1) 79.45 ± 1.8(1)

Spectf-heart 78.74± 3.5(2) 67.4± 8.5(3) 68.22± 8.9(3) 79.42 ± 1.7(1) 79.19 ± 2.7(1)

Statlog-australian-

credit

75.29± 5(3) 75.38± 5.7(3) 77.72± 5.7(2) 76.87± 6.5(2) 80.64 ± 5.5(1)

Statlog-german-credit 71.05 ± 2.1(1) 65.47± 4.9(3) 66.23± 4.4(3) 70.91 ± 3(1) 69.69± 3.2(2)

Statlog-heart 79.19 ± 7.3(1) 74.56± 7.6(2) 75.78± 7.5(2) 78.78 ± 6.8(1) 76.37± 8.8(2)

Statlog-vehicle 61.5± 3.5(4) 66.22± 4.3(2) 67.4 ± 4.4(1) 51.41± 8.5(5) 64.01± 4.5(3)

Thyroid-disease 94.38 ± 0.32(1) 87.99± 1.3(3) 90.65± 1.5(2) 93.13 ± 7.1(1) 88.3± 10(3)

Vote 90.28 ± 6.6(1) 85.24± 9.1(3) 90.72 ± 6.6(1) 89.26 ± 7.1(1) 87.82± 8.9(2)

Wine 94.1 ± 5(1) 93.08 ± 6.5(1) 93.54 ± 5.7(1) 93.29 ± 6.7(1) 89.93± 7.2(2)

Mean Accuracy 75.24± 4.6 77.76± 6.3 78.54± 6.1 74.44± 5.9 76.84± 5.9

Mean Rank 1.81 ± 0.18 2.048± 0.17 1.69 ± 0.12 2.262± 0.2 2.238± 0.16

Wins[unique] 25[8] 18[2] 20[2] 15[0] 12[2]
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than for others. However, in case of some datasets the results are worse and we
have to analyse it further detail, and probably optimize the algorithm in the
future. Those results show that the new method is accurate, but its complexity
O(m log m) is much better than the other algorithms’ complexity of O(m3).
Figure 1 presents an analysis of learning time used by the new Trust-Margin
algorithm. We have tested the time for different numbers of instances of the
MNIST8 dataset [36]. On the OX axis is the number of instances. On the left
we show time (blue dots) and on the right (red squares) the proportion of time
to the number of instances. This clearly shows that the complexity of learning
is less than O(m log m).

Fig. 1. Low time consumption of Trust-Margin algorithm. (Color figure online)

4 Summary

The proposed prototype selection algorithm (Trust-Margin) was constructed
upon the new concept of trust-border instances, which goal is to retain only
trustworthy instances on the class borders. It was presented that the algorithm
can be very efficient if it is realized with supporting tree structures designed
especially for this algorithm. It was shown that the algorithm has an expected
complexity of O(m log m). The comparative results shows that new algorithm is
accurate comparing to known algorithm but it is much faster.
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Instance selection of linear complexity for big data. Knowl.-Based Syst. 107, 83–95
(2016)

11. Sanchez, J., Pla, F., Ferri, F.: Prototype selection for the nearest neighbor rule
through proximity graphs. Pattern Recognit. Lett. 18(6), 507–513 (1997)

12. Garcia, S., Cano, J., Herrera, F.: A memetic algorithm for evolutionary prototype
selection: a scaling up approach. Pattern Recognit. 41(8), 2693–2709 (2008)

13. Skalak, D.B.: Prototype and feature selection by sampling and random mutation
hill climbing algorithms. In: International Conference on Machine Learning, New
Brunswick, NJ, USA, pp. 293–301 (1994)

14. Marchiori, E.: Hit miss networks with applications to instance selection. J. Mach.
Learn. Res. 9, 997–1017 (2008)

15. Marchiori, E.: Class conditional nearest neighbor for large margin instance selec-
tion. IEEE Trans. Pattern Anal. Mach. Intell. 32(2), 364–370 (2010)

16. Angiulli, F.: Fast nearest neighbor condensation for large data sets classification.
IEEE Trans. Knowl. Data Eng. 19(11), 1450–1464 (2007)

17. Brodley, C.: Recursive automatic bias selection for classifier construction. Mach.
Learn. 20(1/2), 63–94 (1995)

18. Cano, J.R., Herrera, F., Lozano, M.: Using evolutionary algorithms as instance
selection for data reduction in KDD: an experimental study. IEEE Trans. Evol.
Comput. 7(6), 561–575 (2003)

19. Kuncheva, L.: Editing for the k-nearest neighbors rule by a genetic algorithm.
Pattern Recognit. Lett. 16(8), 809–814 (1995)

20. Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Mach.
Learn. 6(1), 37–66 (1991)

21. Riquelme, J., Aguilar-Ruiz, J., Toro, M.: Finding representative patterns with
ordered projections. Pattern Recognit. 36(4), 1009–1018 (2003)

22. Barandela, R., Ferri, F., Sanchez, J.: Decision boundary preserving prototype selec-
tion for nearest neighbor classification. Int. J. Pattern Recognit. Artif. Intell. 19(6),
787–806 (2005)

23. Hart, P.E.: The condensed nearest neighbor rule. IEEE Trans. Inf. Theory 14(3),
515–516 (1968)

24. Hattori, K., Takahashi, M.: A new edited k-nearest neighbor rule in the pattern
classification problem. Pattern Recognit. 33(3), 521–528 (2000)

https://doi.org/10.1007/978-3-540-24844-6_90
https://doi.org/10.1007/978-3-319-59063-9_32


594 N. Jankowski and M. Orliński
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Abstract. We consider the problem of classifying image sequences to
several classes. Such problems arise in numerous applications, e.g., when
a task to be completed requires that all sub-tasks are properly executed.
In order to derive realistic classifiers for such complicated problems, we
assume that images in the sequence form a Markov chain, while the con-
ditional probability density function of transitions has the matrix normal
distribution, i.e., it has the covariance matrix being the Kronecker prod-
uct of inter-rows and inter-columns covariance matrices. Under these
assumptions we derive the Bayes classifier for image sequences and its
empirical version that is based on applying the plug-in rule. We also
provide interpretable versions of such classifiers at the expense of addi-
tional assumptions. The proposed classifier is tested on the sequence of
images from the laboratory experiments of detecting stages of an addi-
tive manufacturing process. Finally, we state conclusions and (partial)
explanations on why the problem of classifying sequences of images is
(much) more difficult than that of classifying individual images.

Keywords: Matrix normal distribution · Bayesian classifier ·
Classification of image sequences

1 Introduction

Our aim is discuss a way to develop a classifier for image sequences. Each
sequence is considered as a whole entity that can be a member of a certain
class and our aim is to build an appropriate classifier. In other words, a classifier
obtains an ordered set of images as one input.

This task only seemingly reduces to known classification problems by vec-
torization, because then it is extremely difficult to take into account stochastic
dependencies between images and their covariance structures.

A large number of examples can be pointed out when we need (or it is desir-
able) to classify whole image sequences. In particular, they include the following
cases.
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– Quality control of a manufacturing process when at each stage we have images
of properly and improperly produced items. Then, we can classify an item
as conforming only when all the sequence of images is similar to the proper
sequence. This class of examples is our main focus (see Sect. 6).

– Learning and teaching of complicated tasks to be performed requiring high
precision of movements. Examples include: laparoscopic surgery (see [26]),
training professional sportsmen and women and autonomous parking (see,
e.g., [13]).

– Collecting, e.g., cytological images of the same patient (see [2]) along time
and comparing them with image sequences of other patients.

– Subsequent histological sections of the same tissue (see [5,6]), but recognized
as one entity in the same spirit as in CT and in MRI images.

– When states of a dynamic systems are described as matrices or images (see,
e.g. [20]), then the ability of classifying their sequences are of importance to
decide at which state of the evolution the system is, e.g., whether it is still in
transient states or near the equilibria states.

– Recognition of untidy hand written words by splitting them into letters, but
considering them as one entity and testing to which word they are mostly
similar.

The ability of classifying whole image sequences can also be useful for image
understanding, but this topic is far outside the scope of this paper. We refer
the reader to [24] for more detailed discussion on image understanding and the
bibliography.

Clearly, it is rather impossible to construct a universal classifier for image
sequences. We impose the following constraints on the class of considered clas-
sification tasks (see the next section for details):

– we confine ourselves to images represented by grey levels,
– images in a given sequence have the Markov property of the first order (a

generalization to a higher order Markov chains is not difficult),
– conditional densities of the Markov chain have matrix normal distributions

(MND) – see Appendix for basic properties of MND.

The last assumption is made for pragmatic reasons, otherwise we usually do not
have enough observations in order to estimate the full covariance matrix of large
images. An alternative approach, when we do not have enough observations, is
proposed in [23].

The paper is organized as follows:

– in the following section we provide a short review of the works that have
common points with this paper,

– then, in Sect. 3, we provide the problem statement and preliminary results on
the Bayesian classifiers for image sequences,

– these topics are continued in the next section, in which special cases are
discussed,

– in Sect. 5 we provide the empirical version of the Bayes MND classifier for
image sequencies, while
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– a laboratory example is discussed in Sect. 5.

The paper ends by concluding remarks, including a discussion on the following
question: why is the classification of an image sequence such a difficult problem?

2 Previous Work

In this section we provide a short survey of papers on classifiers that arise in
cases when the assumption that class densities have the MND distribution holds.
Then, we briefly discuss recent works on classifying image sequences.

The role of multivariate normal distributions with the Kronecker product
structure of the covariance matrix for deriving classifiers was appreciated in
[10], where earlier results are cited. In this paper the motivation for assuming
the Kronecker product structure comes from repeated observations of the same
object to be classified. The topic of classifying repeated measurements was fur-
ther developed in [11], where repeated observations are stacked into a matrix
according to their ordering along the time axis. In [11] the test for verifying
the hypothesis on the Kronecker product structure of the covariance matrix was
developed. The classifier based on the MND’s assumption occurred to be useful
for classifying images (see [17,18], where it was applied to classifying images of
flames from a gas burner). In [19] it was documented – by extensive simulations
– that such classifiers are relatively robust against the class imbalance.

As far as we know, classifiers that are based on MND’s for recognizing image
sequences, considered as entities, were not considered in the literature and this
is the main topic of this paper.

The above does not mean that the topic of classifying image sequence was
not considered. It was, but using other assumptions and approaches. It is worth
distinguishing the following cases.

1. A rough classification of videos according to their type (comedy, drama etc.).
The stream of literature on these topics is the largest. It is completely outside
the scope of this paper. The closest paper in this stream is [8], in which the
classification of sporting disciplines by convolutional neural networks (CNN)
is discussed.

2. Detecting changes in a video stream, e.g., for safety monitoring. Here, one
can distinguish two problem statements, namely,

– the so-called novelty detection, when a proper state is known, but the
type of changes is unspecified (see [21], [15])

– a directional change detection, when the class of possible changes is a
priori known. One can meet such tasks in monitoring of production pro-
cesses. They are similar in spirit to pattern recognition problems (see [16]
for an example).

3. The classification of (an) object(s) that are visible on several subsequent
frames (see [9] and bibliography therein).

4. The classification of image sequences, where each sequence is considered as
one entity. This is our main topic.
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The differences between group 3 and group 4 are, in some cases, subtle. For
example, consider a camera mounted over a road and two cars (say, a truck
and a small car behind it). If one is interested in classifying cars into small and
large ones (and possibly in classifying their types), then we are faced with case
3. However, if the small car overtakes the large one, we can ask whether the
overtaking maneuver was done properly or not. This task illustrates the one
from group 4, since we have to recognize all stages of this maneuver.

3 Problem Statement and Preliminary Results

By X we denote a sequence of ordered images Xk, k = 1, 2, . . . ,K, represented
by m × n matrices of grey levels that are considered to be real-valued variables.
In practice, grey levels are represented by integers from the range 0 to 255, but –
at this level of generality – it seems reasonable to consider them as real numbers,
without imposing constraints on their range.

Sequence X can be classified to one of J > 1 classes, labeled as j =
1, 2, . . . , J . The following assumptions apply to all J classes, but we avoid index-
ing them by class labels, unless necessary.

As (1) X is a random tensor, having a probability density function (p.d.f.),
denoted further by f(X) or, equivalently, by f(X1, X2, . . . , XK). Slightly
abusing the notation, we shall write f(XL1 , . . . , XL2) for p.d.f.’s of sub-
sequences of X, where 1 ≤ L1 < L2 ≤ K.

As (2) Elements of X form a Markov chain in the following sense:

f(Xk|Xk−1, . . . , X1) = fk(Xk|Xk−1), for k = 2, . . . K, (1)

where fk(Xk|Xk−1) is the conditional p.d.f. of Xk when Xk−1 is given.
fk(Xk|Xk−1) is known as the transition p.d.f. of moving from Xk−1 to Xk,
for every k > 1.
For k = 1 we assume that f1(X1|X0) = f1(X1), i.e., f1 is the unconditional
p.d.f. of random matrix X1.

As (3) We assume that X1 ∼ Nn,m(M1, U1, V1), i.e., f1(X1) is the MND with
the expectation matrix M1 and U1 as n×n inter-rows covariance matrix and
V1 as m × m covariance matrix between columns (see Appendix).

As (4) For k > 1 the transition p.d.f.’s fk(Xk|Xk−1) are also assumed to have
the MND’s of the following form:

α

c
exp

[
−1

2
tr[U−1(Xk(α) − Mk)V −1 (Xk(α) − Mk)T

]
, (2)

where c is the normalization constant which is given by:

c
def
= (2π)0.5nm det[U ]0.5n det[V ]0.5m , (3)

while n × m matrix Xk(α) is defined as follows: for 0 ≤ α ≤ 1

Xk(α) = αXk + (1 − α)Xk−1. (4)
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In the above, Mk plays the role of the mean matrix of the image sequence
(video frame) at k-th step.

Several remarks are in order, concerning the above assumptions.

Remark 1 – By selecting 0 ≤ α ≤ 1, one can control the influence of the
previous image on the p.d.f. of the present one. The choice is case dependent.
For example, when a small object is slowly moving over almost the same
background, the influence of the previous frame is large, suggesting smaller
values of α.

– For α = 1 we obtain the independence between Xk and Xk−1. This case can
happen, e.g., when images are taken from a very fast-moving train.

Proposition 1. Let As (1)–As (4) hold. Tentatively, we additionally assume:

U1 = U and V1 = V. (5)

Then, each Xk, k = 2, . . . , K has the matrix normal distribution with the expec-
tation matrix, denoted as Mk(α), of the following form:

Mk(α) = α−1 [Mk − (1 − α)Mk−1(α)] , k = 2, 3, . . . , K, (6)

where M1(α)
def
= M1.

The covariance matrices of Xk’s are of the form:

Ck−1(α)U1, Ck−1(α)V1, k = 2, 3, . . . , K, (7)

where
C(α)

def
= (1 + (1 − α)2)/α2. (8)

Notice that Mk(α) → Mk and C(α) → 1 as α → 1.

Proof. For k = 2 it suffices to integrate f2(X2|X1) f1(X1) with respect to X1.
The rest of the proof goes by the induction, since – after this integration – we
again obtain MND with the expectation (6) and the covariances (7), when k = 2
is substituted. •
Notice the growth of the variances in (7). For this reason, it is advisable to use
α < 1, but close to 1 and to apply the Markov scheme, proposed in As (4), to
rather short image sequences.

Under As (1) and As (2) it is easy to derive the following expression for the
natural logarithm of f

log f(X) =
K∑

k=2

log fk(Xk|Xk−1) + log f1(X1). (9)

If, additionally, As (3) and As (4) hold, then for minus log f(X) we obtain:

LLF (X, M, U, V )
def
= − log f(X) = log(c/α) (10)

+
1
2

K∑
k=2

tr[U−1(Xk(α) − Mk)V −1 (Xk(α) − Mk)T

+tr[U−1
1 (X1 − M1)V −1

1 (X1 − M1)T ,
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where M consists of Mk, k = 1, 2, . . . , K. The LLF also depends on K, α, m,
n, but we omit displaying them as arguments, since – in a given application –
they remain the same for each class.

Each class has its own p.d.f., denoted further by fj(X) and the correspond-
ing minus log-likelihood function: LLF (X, M(j), U (j), V (j)), where M

(j) is the
sequence of means for j-th class, while U (j), V (j) are the corresponding covari-
ance matrices, j = 1, 2, . . . , J . We assume that for each class there exists a
priori probability pj > 0 that sequence X was drawn from this class. Clearly∑J

j=1 pj = 1.
It is well known (see, e.g., [4]) that for the 0-1 loss function the Bayes risk of

classifying X is minimized by the following classification rule:

j∗ = arg max
1≤j≤J

pj f (j)(X), (11)

where f (j) is the p.d.f. of sequences X from j-th class.
Under all the above assumptions As (1)–As (4), our aim in this paper is the

following:

1. having learning sequences of mutually independent X
(j)
n ’s from j-th class,

n = 1, 2, . . . , Nj , j = 1, 2, . . . , J
2. and assuming proper classifications to one of the classes
3. to construct an empirical classifier that mimics (11) decision rule in the plug-

in way

and to test this rule on real data. Notice that each X
(j)
n is a sequence itself. Its

elements will further be denoted as X(j)
k,n, k = 1, 2, . . . , K.

4 Some Properties of the Bayes Classifier for Sequences

From (11) we obtain that the Bayesian classifier for sequence X is the form:

j∗ = arg min
1≤j≤J

[
− log(pj) + LLF (X, M(j), U (j), V (j))

]
(12)

or – in the full form:
X is classified to class j∗, for which the following expression is minimal with

respect to j:
{

1
2

K∑
k=2

tr[(U (j))−1 (Xk(α) − M(j)
k ) (V (j))−1 (Xk(α) − M(j)

k )T (13)

+tr[U (j)
1 )−1 (X1 − M1) (V (j)

1 )−1 (X1 − M1)T + log(c(j))
}

− log(pj).

Above and further on the summand log(1/α2) is omitted, since it does not
depend on j.

In order to reveal the interpretation of the optimal classifier (13), it is expe-
dient to consider the following special cases.
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Corollary 1. Let As (1)–As (4) hold and, additionally, the a priori class prob-
abilities are equi-distributed, i.e., pi = 1/J . Then, the Bayes risk is minimized
by this j for which the sum of the Mahalanobis distances between Xk(α) and
M(j)

k is minimized.

Proof. It suffices to observe that

tr[(U (j))−1 (Xk(α) − M(j)
k ) (V (j))−1 (Xk(α) − M(j)

k )T (14)

= vecT (Xk(α) − M(j)
k )Σ−1

j vec(Xk(α) − M(j)
k ),

where Σj
def
= Uj ⊗ Vj , while ⊗ is the Kronecker product of matrices. •

Corollary 2. If – in addition to the assumptions made in Corollary 1 – there
are no correlations between rows and between columns (Uj’s and Vj’s are the
identity matrices) and there are no correlations between images (α = 0), then
sequence X is classified to this class j for which

K∑
k=1

||vec(Xk − M(j)
k )||2 (15)

is minimal, where ||.|| is the Euclidean norm of a vector. Thus, (15) is the nearest
mean classifier in the generalized sense, i.e., the distance of all the sequence X

is compared to the sequences of all mean matrices M
(j), j = 1, 2, . . . , J and the

closest one is selected.

Corollary 2 is intuitively pleasing, but it is a very special case of (13).

Corollary 3. For J = 2, if U
(1)
1 = U

(2)
1 , V

(1)
1 = V

(2)
1 and U

(1)
2 = U

(2)
2 ,

V
(1)
2 = V

(2)
2 , then the classifier (13) is linear with respect to vec(Xk(α)),

k = 1, 2, . . . , K.

Proof. Follows directly from the right hand side of the equality in (14), since –
under our assumptions – we have Σ1 = Σ2 and the quadratic terms vanish. •

5 An Empirical Bayes, Plug-In Classifier for Sequences
of Matrices (images)

Having learning sequences of X
(j)
n , n = 1, 2, . . . , Nj , for each class j – j =

1, 2, . . . , J – at our disposal, we construct the empirical Bayes classifier, using the
classical plug-in approach. Its derivation relays the assumptions As (1)–As (4),
but – as we shall see – we can formally try to use it without imposing the MND
structure of the observations. Clearly, if the observations do not follow MND,
information contained in the full covariance matrix is partially lost, since we use
only inter-rows and inter-columns covariances. On the other hand, however, we
obtain a classifier, which is able to classify image sequences of a moderate size.
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A Classifier for MND Sequences (CMNDS)

The learning phase. Firstly, pj ’s are estimated as p̂j = Nj/N , where N =∑J
j=1 Nj . The means M

(j) are estimated as the empirical means of X
(j)
n ,

n = 1, 2, . . . , Nj , but for large images and large K (long sequences) this
is not a trivial computational task. These empirical means are denoted as
M̂

(j)’s. Notice that, for practical reasons, we propose to estimate M
(j) as

if X
(j)
n , n = 1, 2, . . . , Nj were mutually independent, i.e., for α = 1. We

introduce α < 1 in the testing phase only when it leads to the reduction of
the classification error.
The estimation of U (j)’s and V (j)’s is done in a non-classic way. Details are
provided in the Appendix. The resulting estimates are denoted as Û (j)’s and
V̂ (j)’s.

The recognition phase. When new sequence X is to be classified we use the
empirical version of (12) rule, i.e., it is classified to class ĵ such that

ĵ = arg min
1≤j≤J

[
− log(p̂j) + LLF (X, M̂(j), Û (j), V̂ (j))

]
. (16)

The constant c that is present in LLF also depends on j, but our experiments
indicate that in some cases it is better to consider it as a constant and to neglect
it (as done in the example presented in the next section).

The assessment of the quality of learning can be done by the classic approach,
namely, by the cross-validation. Notice, however, that we have to estimate two
covariance matrices for each class, which may be difficult, even for small images,
due to the lack of sufficiently long learning sequences. The second difficulty is
the possibility that Û (j) and/or V̂ (j) are ill-conditioned. Even if we replace the
calculations of their inversions by solving the corresponding sets of linear matrix
equations, a kind of the regularization may be necessary.

6 A Laboratory Example

In order to test the CMNDS, we use the same example as in [17], but this time
we consider triples of subsequent images as one sequence to be classified. These
images were taken during the monitoring of a laser based additive manufacturing
process of constructing a thin wall, described in more detail in [22].

The classification (and then decision) problem that arises during monitor-
ing of this process is to determine whether the laser head is above the main
body of the wall (Class 1) or near one of its ends (Class 2). This task cannot
be solved just by gauging positions of the laser head, since near the ends the
wall it becomes thicker and thicker as construction of the wall is progressing.
Additionally, these thicker parts occupy larger and larger of the wall. Precisely
this unwanted behavior is to be prevented by: firstly, recognizing that a thicker
end begins and then by reducing the laser power appropriately (see [22] for
details concerning the reduction of the laser power). Here, we concentrate on
the recognition phase only.
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Original images were down-sampled by 10 to the size 12 × 24. Then, they
were averaged (each class separately). The resulting images are shown in Fig. 1,
where the left hand side image corresponds to Class 1 and the second one is
typical for Class 2.

Three element sequences, typical for Class 1, consists of:

(a) either three images as the one on the l.h.s. of Fig. 1 or
(b) two such images and the one similar to that on the r.h.s. of this figure.

Analogously, the triples typical for Class 2 contain:

(c) either three images like the one on the r.h.s. or
(d) two of this kind and one similar to the l.h.s. sub-image.

For learning and testing purposes we had 300 such triples, but classes are
not well balanced, since the laser head spends much more time in the middle of
the wall than near its ends.

Remark 2. Notice that ordering of images in these two kinds of sequences is
not artificial – it is natural for this process, since the laser head moves back and
forth along the wall. However, the presence of the sequences like those described
as (b) and such as mentioned in (d) may lead to large classification errors.

Fig. 1. Averaged images typical for Class 1 (left panel) and for Class 2 (right panel)

Fig. 2. Estimated V matrices for Class 1 (left panel) and Class 2 (right panel)

Matrices U and V for both classes were estimated by the method that is
described in the learning phase of CMNDS and in the Appendix. The results are
shown in Fig. 2 for V -type matrices and in Fig. 3 for U -type matrices. As one
can observe, both U -type and V -type matrices are essentially different between
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Fig. 3. Estimated U matrices for Class 1 (left panel) and Class 2 (right panel)

classes. Thus, we cannot use a linear classifier and therefore the full version of
the quadratic classifier (16) was used in our example.

The following cross-validation methodology was used for testing CMNDS (see
[1] for the survey of the test error estimation of classifiers). The whole sequence
of triple sequences was split at random into the learning sequence of the length
125 the testing sequence of the length 175. Then, the matrices of means and
covariances were estimated and plugged-in into the classifier, which was tested
on the remaining 175 triples. The classification error was stored and the whole
cycle of random drawing, learning and testing was repeated 1000 times. The
averaged classification error (for α = 0.9) was the following: 32% with minor
fluctuations between all 1000 runs.

This result is rather disappointing, since for almost the same MND classifier,
but applied to individual images, we obtained 4% of the averaged classification
errors, using the same sequence of 900 images and the same methodology of
testing the classifier.

One of possible reasons is that we have a relatively small number of learn-
ing and testing examples, namely, 900 images provide only 300 of triple image
sequences. As a remedy in this example one may try to extend the data artifi-
cially, in a way similar to those that are used in imputation techniques, e.g., as
it is proposed in [7], but this is outside the scope of this paper.

The reasons of a high recognition errors can be case-dependent (see
Remark 2), but – in general – they indicate that the problem of classifying image
sequences is much more difficult in practice than one might expect. Notice, how-
ever, that we do not apply any feature selection techniques, i.e., raw image
triples were fed as inputs both in the learning and the testing phase. Applying
a dedicated feature selection technique, e.g., a modified version of the method
proposed in [3], one may expect much better results.

7 Concluding Remarks

Under several restricting, but interpretable and partly removable, assumptions
the method of classifying image sequences (considered as entities) is proposed.
It was extensively tested on image sequences from laboratory experiments, con-
cerning the monitoring of the additive manufacturing, laser based, process. The
results of testing indicate that the method works properly, but the percentage
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of correct classifications (68%) is lower than 94% obtainable under the MND
assumptions, i.e., when images are considered separately. This conclusion is in
agreement with the results reported in [8] that classifying individual images may
sometimes lead to a better correct classification rates than classifying whole
sequences. These facts indicate that problems of classifying image sequences
is much more difficult than classifying individual images. It requires further
research on deciding which problem statement is more appropriate in a given
application.

Acknowledgements. Special thanks are addressed to Professor J. Reiner and to
MSc. P. Jurewicz from the Faculty of Mechanical Engineering, Wroclaw University of
Technology for common research on laser power control for additive manufacturing.

Appendix: MND and Its Estimation

The matrix normal distribution (MND) has the probability density function of
the form (see, e.g., [14]):

f(X) =
1
c

exp
[
−1

2
tr[U−1(X − M)V −1 (X − M)T ]

]
, (17)

where c is the normalization constant, which is given by:

c
def
= (2π)0.5nm det[U ]0.5n det[V ]0.5m , (18)

where n × m matrix M denotes the mean.
Concerning the covariance structure of MND densities:

1. n × n matrix U denotes the covariance matrix between rows of an image,
2. m×m matrix V stands for the covariance matrix between columns, we assume

that det[U ] > 0, det[V ] > 0. We use the notation: X ∼ Nn,m(M, U, V ).
The MND is a special case of a general class of Gaussian p.d.f.’s, since
vec(X) ∼ Nnm(vec(M), Σ), where vec(X) is the operation of stacking
columns of matrix X, while Σ is an nm × nm covariance matrix, which
is the Kronecker product of U and V .
We assume that we have the sequence of observations: Xi, i = 1, 2, . . . N .
Conditions for estimating properly the covariance matrices can be found in
[12]. The maximum likelihood estimates (MLE) of the covariance matrices
fulfil the following set of equations (see [12,25]):

Û =
1

N m

N∑
i=1

(Xi − M̂) V̂ −1 (Xi − M̂)T , (19)

V̂ =
1

N n

N∑
i=1

(Xi − M̂)T Û−1 (Xi − M̂). (20)

Equations (19) and (20) can be solved by the flip-flop method. It was proved
in [25] that one iteration is sufficient to obtain the efficient estimators of Uj

and Vj .
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Abstract. Touch screen gestures are a well-known method of person
authentication in mobile devices. In most applications it is, however,
reduced to checking if the user entered the correct pattern. Using addi-
tional information based on the speed and shape of finger movements can
provide higher security without significantly impacting the convenience
of this authorization method. In this work a new distance function for
the k-nearest neighbour (kNN) classifier is considered in the problem of
person recognition based on touch screen gestures. The function is based
on the well-known Lp distance and the elastic distance considered in elas-
tic shape analysis. Performance of the classifier is measured using 5-fold
stratified cross-validation on a set of 12 people. Only four gesture perfor-
mances per gesture for each person are used to train a model. The effects
of sampling rate on the classifier performance is also measured. The kNN
classifier with the proposed distance function has higher accuracy than
both the Lp distance and the elastic distance.

Keywords: Touch screen gestures · Biometrics · Classification ·
Elastic shape analysis · Pattern recognition

1 Introduction

Biometric identification, that is the process of identifying a person based on
physiological or behavioural characteristics distinguishing them from other peo-
ple [10]. Many different methods were designed based on various features like
face images, iris, fingerprints or signature. Different applications have differ-
ent requirements for a method used for identification. For example, most touch
screen devices lack dedicated biometry hardware. Applying biometric methods to
the common gesture-based identification would improve security without impact-
ing user convenience.

In this work, the k-nearest neighbours algorithm (abbreviated kNN) is
applied to the problem of person recognition based on a performance of a hand
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gesture on a touch display. This problem has been previously studied in [21].
Other approaches to person recognition based on hand gestures include using
data from a specialized glove [5,20] or sequences of images from a camera (includ-
ing a depth camera) [6,23].

The kNN classifier and its variants is the most popular family of nonpara-
metric, distance-based classification algorithms. During the years, it has received
a lot of attention and many variants were proposed, for example variants based
on manifold learning [15,26] or weighted kNN [7,13]. The kNN algorithm was
selected for its good performance on small data sets, such as the set of avail-
able training gestures, as well as its ability to learn incrementally as the user
repeatedly performs the same gesture [14].

One of the major problems of applying the kNN classifier to gesture recog-
nition is moderately high dimensionality of the input data [19]. It has, however,
been shown that appropriate selection of the distance function results in high
accuracy of the constructed classifier [20].

In recent years the elastic metric [27] has been suggested for comparing
functional data. The method, partially inspired by increasingly popular data
analysis using Riemannian geometry [2,9,16,25], received a significant amount
of attention [1,17,18,22,24,25,28], with important developments such as the
Square Root Velocity Function representation [12].

In this work the classical Lp distance is extended by combining it with the
elastic metric. A set of five gestures, twelve people and five gesture executions
per person is used in experiments. The resulting parameter tuning is evaluated
using stratified 5-fold cross-validation to prevent overfitting [11].

2 Materials and Methods

2.1 Gesture Data Set

The touch screen gesture data was gathered using mobile devices with touch
screens (smartphones) [21]. People were asked to perform a predefined set of
gestures, moving a finger along a certain path connecting rings arranged in a
rectangular pattern (see Fig. 1). The task is to recognize a person based on a
single performance of a gesture (a survey) from a predefined set of people, a
special case of the classification. A few repetitions of each gesture performed by
each person are available for building a statistical model for this classification
task. In total, NG = 5 gestures performed NR = 5 times by each one of NP = 12
people were analysed. Only continuous gestures (performed without raising a
finger from the screen) were considered because of continuity assumption of the
proposed model.

A survey can be modelled as a curve fP,G,R(t) : [0, 1] → R
2 where P ∈

{1, 2, . . . , NP } is the number of person, G ∈ {1, 2, . . . , NG} is the number of
gesture used for recognition and R ∈ {1, 2, . . . , NR} is the number of repetition.
The pressure data and total time of gesture execution, collected for previous
experiments, was not used.
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Fig. 1. Five gestures considered in this study. In each subfigure sample surveys per-
formed by the same person are displayed. Small dots are placed in equal time intervals
to show variability in speed of gesture. All gestures except the G-shaped one begin in
the top left corner, whereas the G-shaped gesture begins in the top right corner.
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2.2 The Classification Algorithm

The proposed distance function combines the classic Lp space distance and the
elastic metric, which is most easily expressed using the Square Root Veloc-
ity Function (SRVF) representation of compared functions. For a function
f : [0, 1] → R

2, its SRVF representation is expressed as a function q : [0, 1] → R
2

such that q(t) = F (ḟ(t)) where F (v) = v/
√‖v‖ if ‖v‖ > 0 and 0 otherwise.

For discretized curves, the first order forward finite difference formula is used to
approximate the derivative.

The classification is performed using the k-nearest neighbour algorithm. To
calculate the distance between two given surveys f1, f2 the following function is
used:

dC(f1, f2) = α

(∫ 1

0

‖f1(t) − f2(t)‖p dt

)1/p

+

(1 − α)min
γ∈Γ

√∫ 1

0

∥∥
∥q1(t) − q2(γ(t))

√
γ̇(t)

∥∥
∥
2

dt,

(1)

where α ∈ [0, 1] and p ∈ (0,∞] are the parameters, Γ is the set of reparametriza-
tions, that is function γ : [0, 1] → [0, 1] such that γ(0) = 0, γ(1) = 1 and γ̇(t) > 0
for all t ∈ [0, 1] and q1, q2 are SRVF representations of, respectively, f1 and f2.
For p ≥ 1 the function dC , as a convex combination of two metrics, is also a
metric. For details regarding calculation of the elastic metric, see [3,12]. In this
paper, the dynamic programming approach is used to perform the minimization.
The same discretization of the minimization over the set of reparametrizations
as in [1] was used.

An important property of the elastic metric is its ability to simultaneously
consider bending and stretching in a principled way (see Fig. 2). In general, it is
defined as a Riemannian metric on the manifold of curves with two parameters
whose ratio describes the relative weight of curve bending and stretching required
to fit two given curves. However, a performant algorithm to compute this distance
is known only for a single ratio of this two parameters and gives rise to the
described SRVF representation framework.

2.3 Experiment Design

During the computational experiment each gesture was analysed separately. Five
surveys for each person were used in evaluation based on a stratified 5-fold cross-
validation. In each fold 4 surveys for each person were put in the training set
and the remaining one was a part of the validation set.

The curves were discretized at regular time intervals, t ∈ {0,Δt, 2Δt, . . . , 1},
for Δt ∈ {0.02, 0.05}. The parameters were optimized using full grid search over
the following sets: p ∈ {0.5, 1, 2,∞}, α ∈ {0, 0.01, 0.1, 0.5, 0.9, 0.99, 1} and k = 1.
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Fig. 2. Two sample gestures (shown in solid lines) and reparametrization visualised
as dashed lines connecting matching point on both curves. Endpoints of dashed lines
mark places on curves that correspond to sampled at a constant time interval.

Table 1. Accuracy of the elastic kNN classifier for sampling Δt = 0.05.

α 0 0.01 0.1 0.5 0.9 0.99 1

p = 0.5 60.0% 60.0% 60.3% 60.0% 68.3% 62.7% 62.7%

p = 1 60.0% 60.0% 60.3% 64.0% 68.3% 63.7% 62.7%

p = 2 60.0% 60.0% 60.3% 65.3% 67.0% 60.3% 62.7%

p = ∞ 60.0% 59.7% 61.0% 63.0% 57.0% 48.7% 48.3%

Table 2. Accuracy of the elastic kNN classifier for sampling Δt = 0.02.

α 0 0.01 0.1 0.5 0.9 0.99 1

p = 0.5 68.0% 68.7% 70.0% 68.7% 72.3% 65.7% 64.3%

p = 1 68.0% 68.7% 70.0% 73.3% 69.0% 66.3% 65.3%

p = 2 68.0% 68.7% 70.3% 73.0% 66.3% 61.3% 62.3%

p = ∞ 68.0% 69.0% 70.0% 67.7% 54.3% 49.0% 48.7%
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3 Results and Discussion

Tables 1 and 2 present results of the experiments for considered values of Δt, α
and p. Accuracy of the kNN classifier with k = 1 and distance function described
by given parameters is presented and the highest accuracy for each discretization
step is written in bold. The results of a kNN classifier with the Lp distance can
be read from columns with α = 1. The results for the elastic metric are in
columns with α = 0. For sampling with Δt = 0.05 the highest accuracy (68.3%)
was obtained using α = 0.9 and p equal to either 0.5 or 1. Using sampling with
Δt = 0.02, even higher accuracy (73.3%) was obtained for α = 0.5 and p = 1.

The results indicate that the new proposed distance function constitutes an
improvement over existing functions: the Lp distance and the elastic distance.
The accuracy is satisfactory regarding a very small set of samples per person
used in building the model (four gesture executions per person) and a relatively
large number of people that were recognized (twelve people).

Other values of Δt (0.002, 0.005, 0.01 and 0.04) and k = 3 were also tested in
a more limited parameter space. There was no or very small improvement over
presented results.

The time needed to calculate the distance dC given by Eq. (1) is mostly spent
on calculating the elastic distance. On average, it is equal to 2 ms for sampling
Δt = 0.02 and 0.3 ms for Δt = 0.05. The measured time of calculation of the
Lp distance was equal to about 5µs for Δt = 0.05 and 13µs for Δt = 0.02.
The results were obtained on an Intel Core i7 processor using custom software
written in Julia [4].

4 Conclusions

A new distance function for the k-nearest neighbour classifier was introduced
in this study. It was compared against other known distance functions, the Lp

distance and the elastic metric. The accuracy of the kNN classifier with the
proposed distance function was shown to be higher than for other functions. For
optimally fitted parameters, the accuracy was equal to 73.3%. Classifiers based
on the Lp distance and the elastic metric reached the accuracy of only 65.3%
and 68%, respectively.

The proposed variant of the kNN classifier has satisfactory accuracy even on
very small datasets. Given its excellent ability to incorporate new examples into
the model, it is a very good choice for person recognition based on touch screen
gestures.

In future work we will consider using dimensionality reduction methods as
part of preprocessing and combination with feature selection algorithms [8,19].
We will also test other variants of the kNN algorithm with the proposed distance
function.
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Abstract. Our aim is to explore the importance of chosen parts of
frontal face images for person recognition. We have used logistic regres-
sion as the method of face image classification based on rough image
classification, and on selected parts of an image divided into rectangular
image blocks. Rough image means that no image processing transfor-
mation is performed before classification. Experiments on the images of
40 persons taken from the ORL face database show that a person clas-
sification based on collections of rough face images are effective, high
accuracy rates are easy to obtain, but deeper analysis based on image
partitioning suggests that the most important factor for correct classifi-
cation are border parts of the face image. Furthermore, the experiments
confirm the thesis that randomly generated projections do not degrade,
or only slightly reduce the accuracy of classification, reducing the size of
the vector of features in a significant way.

Keywords: Face classification · Multinomial logistic regression ·
Spatial importance · Random projection · Privacy preserving

1 Introduction

Face recognition is a problem that has been the focus of attention from many
years [1,8,9,13,18]. The face as a biometric factor [7,16] may not be the most
reliable and efficient but is gaining increasing acceptance because it could work
without the co-operation of the test subject. Passers-by may not even be aware
of the system. In most instances, the images were not taken in a controlled
environment, so illumination, facial expression, pose and other disturbances can
affect the results of recognition [6,14]. Many different face classification methods
use some kind of partition of a face image into rectangular image blocks, see for
example, the modular PCA approach [8], the rectangular image block random
projections methods [20–22], histogram of oriented gradients (HOG) based meth-
ods [4,24] or Local Binary Pattern (LBP) [17]. We do not even try to give a full
overview of modular face recognition methods, i.e., methods based on a rectan-
gular image partitioning, because of the presented results of the research concern
very different conditions of performance and often require intensive processing of
c© Springer Nature Switzerland AG 2019
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each image prior to classification. Nevertheless, in spite of their simplicity, meth-
ods used in this work provide the hard to beat accuracy of facial recognition.
Better results are possible, but are obtainable at the cost of time-consuming
image processing procedures.

Our goal is to find the parts of a face image which are more important for the
correct person classification than others. To do this we resign of feature selection
such as, for example, eigenfaces (PCA) [23,25,27,28]. In this paper, we have used
pixel values as features.

Furthermore, it occurred during the simulations that the logistic regression
can work efficiently with very high-dimensional feature vectors and that ran-
domly generated projections of data do not destroy the classification results.
Thus, such approaches allow us to compress efficiently the image data, addition-
ally protecting the privacy of visualized people.

The methods examined in this paper could be used in open recognition sys-
tems. Random projection-based methods of image dimensionality reduction are
independent of the data. Thus, adding or removing images from the classifica-
tion system does not require any changes in transformation. The computational
complexity of designing the transformation is linear with respect to the size of
an image. Random projection of the whole image treated as a vector is a very
simple method of obtaining low dimensional feature vectors representing large
images. The block-based approach allows for even lower projection dimensions.
Furthermore, the logistic regression estimates the probability of belonging to a
certain class so it is possible to use the reject option when the maximum of the
probability value is too low.

The main message of this paper is that border parts of the face image are
the most important for correct facial classification based on a set of images
taken in a changing frontal position. These border parts contain images of the
subject’s hair, beard, jawline, arms, forehead and ears, i.e., very soft biometric
features. Experiments were performed on a set of images taken from the ORL
facial database. ORL consists of 400 images of 40 persons where the images were
taken at different times with different facial expressions, different facial details
and head positions.

The paper is organized as follows. Section 2 provides important information
about multinomial logistic regression classification method. The next Section
describes classes of features used for facial recognition. Section 4 presents the
ORL database details and gives the classification results based on full-size face
images. These results form a base for spatial analysis of images in relation to
their role in the correct person classification. Results of different sub-images
classification are given in Sect. 5. Finally, some comments and conclusions are
summarized.

2 Multinomial Logistic Regression

As a basic method of classification we have used multinomial logistic regression
(MLR). This approach is known also as the log-linear model, softmax regression,
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or maximum-entropy classifier [5,10,12,15,26]. MLR is a method that attempts
to separate objects belonging to different classes, and group objects belonging
to the same class. The logistic regression classifier provides models of class prob-
abilities as logistic functions of linear combinations of discriminative variables
(features). The method works well even in the high-dimensional settings, so even
rough images (image pixel values in a vector form) can be used as features. A
symmetric formulation for multi-class logistic regression is given as:

Pr{Y = c|X = x} =
exp(w0c + xTwc)
∑C

l=1 w0l + xTwl

, c = 1, . . . , C, (1)

where x ∈ Rd is a feature vector, wc ∈ Rd is the weight vector corresponding to
class c and w0c is an additional, class-dependent bias parameter. The unknown
weights are usually jointly estimated by maximum a posteriori (MAP) estima-
tion using regularization of the weights (commonly as L2 regularization term)
[5]. Thus, it suffices to minimize with respect to w’s the following regularized
negative log-likelihood function:

−
C∑

c=1

rc∑

j=1

[(w0c+wT
c xj(c))−log

C∑

i=1

exp(w0i+wT
i xj(c))]+ρ(

C∑

c=1

(w2
0c+wT

c wc), (2)

where x1(c), . . . xrc(c), c = 1, . . . C are learning feature samples and ρ is the
regularization parameter. The softmax function is often used in the final layer of
a neural network-based classifiers. Thus, MLR could be seen as a simple neural
network with the specific method of training weights.

3 Feature used for Faces Classification

An image can be classified in a number of ways, depending on our a priori
knowledge and many other factors. In this paper, we have used rough images (in
vectorized form) as feature vectors and its randomly generated projections into
lower dimensional space. We have used dense Gaussian projections [3,22] without
any other transformations. In the first case, i.e., pixel values taken as features,
partitioning of images makes no sense. The other - a random projection based
approach combined with MLR classifier - consists in adding a layer of random
weights preceding the softmax layer. Such a method of reducing the image’s
dimensions in connection with neural networks has a long history starting from
the perceptron of Rosenblatt [19]. In the modular methods, i.e., in methods
based on the division of the image into sub-images, we have to establish an
image partitioning pattern. First, each image is divided into rectangular blocks
usually of the same size. Every image block is considered as a separate image
and is projected independently from other image blocks, forming only a part of
a new feature vector. All these local feature vectors are concatenated, forming
the feature vector of dimension kM , where M stands for a number of blocks and
k is a dimension of the local random projection. It should be noted that random
projection requires only O(kd) operations for providing a transformation matrix
whereas PCA needs 0(kd2) [11].
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4 Experiments

The proposed methods of classification have been conducted on the AT&T
Laboratories Cambridge ORL faces database (http://www.cl.cam.ac.uk). This
database contains 400 images taken from 40 persons. Each person is represented
by 10 different face images. For some subjects, the images were taken at different
times with different facial expressions, different facial details (with or without
glasses) and head pose. The lighting conditions were also variable, though the
overall quality of the photos is similar. The images of the two subjects from
the ORL face database are presented in Fig. 1. All images in the database are
gray-scale and normalized to a resolution of 92× 112 pixels. In our experiments,
the images are additionally cropped to the size of 90 × 108 pixels. Thus, the
full dimension (d) in our experiments is equal to 9720. In the modular approach
every image is split up into 30 blocks of the size 18 × 18 pixels. Figure 2 shows
examples of partitioned images of one of the subjects. In experiments, we used 5
(or 1, or 7, or 9) images of each subject as a part of the training set. The remain-
ing 5 (or 9, or 3 or 1) images of each subject form the testing set. The process
of the learning set selection and, if applicable, the projection matrix generation,
were performed many times.

Fig. 1. Sample images of the ORL database (two different subjects).

, ,

Fig. 2. Samples of partitioned images of the first subject taken from the ORL database.

So, there are 40 classes, with 200 (or 280, or 360) images used for learning and
another 200 (or 120, or 40) images for testing. Notice that, if we use 5 images per
person as a learning set and the remainder of the images for testing, there exist

http://www.cl.cam.ac.uk
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Table 1. Mean classification accuracy (100 repetitions) with random projections of
partitioned images and dimensionality of projection k = 10, k = 40, k = 50, and
k = 100.

k 10 40 50 100

Accuracy % 93.11 94.41 94.48 94.06

Variance 3.8 3.7 2.7 3.3

about 1.141̇096 different combinations of the learning and testing sets. Thus,
the accuracy of the classification was estimated by Monte-Carlo cross-validation
performed on 100 repetitions.

It should be emphasized that the number of weights in the MLR classifier
based on whole images, i.e., without any feature selection, is equal to 388 800.
The number of the classifier parameters is comparable to the number of weight in
a complicated deep-network (see for example [2]). Nevertheless, the computations
performed using Mathematica 11.0 are very fast and stable. 100 repetitions of
the learning process take a few minutes.

4.1 Classification of Full Dimension Images

In the first part of the experiments, we concentrate on recognition possibilities
of the classification system where whole images are treated as vectors. Further,
we examine the accuracy of the system based on Gaussian random projections
of images (treated as vectors).

The accuracy of classification is given in Tables 2, 3. Notice, that the fea-
ture dimension equals 9720 (in the case without projections) or is equal to the
dimension of the projection. In the next table (see Table 3) we present the mean
accuracy of classification when rough images are projected into low-dimensional
space of dimensionality from 50 to 1000. The number of training samples was
set to 200. It occurred that dimension k = 300 allows us to obtain a similar
accuracy as when the classification is performed on the whole image. In the
modular approach the feature dimension depends on k, i.e., the dimensionality
of random projections, and is equal to 30 × k. The accuracy of classification for
k = 10, 40, 50, k = 100 and 5 images per class used for training, is provided by
Table 1.

Table 2. Mean classification accuracy (100 repetitions) without random projections
for 1, 5, 7 and 9 images per individual taken for training. Variances of the results are
given in the last row.

Number of training samples 40 5 × 40 7 × 40 9 × 40

Accuracy % 66.66 94.88 96.15 96.48

Variance 6.26 4.6 3.5 6.8
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Table 3. Mean classification accuracy (100 repetitions) with randomly generated pro-
jections of whole image and dimensionality k = 50, 100, 200, 300, 400, 500, 600, 700,
and k = 1000. The number of training samples was 5 × 40 = 200.

k 50 100 200 300 400 500 600 700 1000

Accuracy % 86.20 91.50 93.44 94.22 94.86 94.76 94.25 94.85 95.69

Variance 7.5 2.6 4.4 2.1 2.0 2.0 4.0 2.2 2.4

5 Classification Based on Selected Parts of Images

A modular approach to face images classification leads to the question which
parts of the face image are important for good classification taking into account
that the images are captured at different times, with different facial expres-
sions, different facial details and head pose, and in different lighting conditions.
We have examined different combinations of the modular parts of the face
images, i.e., combinations of sub-images of the size 18 × 18 pixels. The first two
rows show the mean classification accuracy for three small sub-images located in
the left bottom part of each image ((1, 18)×(1, 18) and (1, 18)×(19, 36)) in close
to the center of images ((37, 54) × (37, 54)), where, for example (1, 18) × (1, 18)
denotes the sub-image containing the first 18 rows and columns of the full image.
Figure 3 shows samples of such sub-images taken from different images of two
different subjects. Results of classifications are given in Table 3. The first row
of this table provides average classification accuracy for sub-images of the form
(1, 18)×(1, 18) (see the first two rows in Fig. 3). We do not provide other classifi-
cation results for the other image block of the size 18×18 pixels. These accuracies
concentrate about 50% for blocks located close to the image borders and 20–30%
when the blocks are inside.

Fig. 3. Sample sub-images (1, 18) × (1, 18) and (37, 54) × (37, 54) (two different sub-
jects).
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Fig. 4. Sample sub-images of the form (19, 90) × (19, 72) (two different subjects).

Relatively the most informative are the two first block-rows in combination
with the last (the 6th) block-row. This part of face image allows us to predict
correct person identity almost as precisely as in the case of the complete image.

Very interesting are results presented in the last row of Table 4. The classifi-
cation is conducted using the central part of each image which reproduced face
features of subjects (see Fig. 4 where samples of such sub-images are depicted).
Results of classification based on central parts of face images are less precise than
those obtained on the base of previously mentioned (1, 36)× (1, 90)+(91, 108)×
(1, 90) sub-images (Table 5).

Table 4. Mean classification accuracy for sub-images of the size 18 × 18 pixels (100
repetitions) 5, and 9 sub-images per individual are taken for training.

Sub-image Mean (5) % Variance (5) Mean (9) % Variance (9)

(1, 18) × (1, 18) 52.08 6.35 57.55 42.3

(1, 18) × (19, 36) 51.53 7.67 55.08 50.56

(37, 54) × (37, 54) 26.62 6.75 31.07 36.14

(1, 18) × (1, 36) 66.67 8, 08 73.03 32.86

(1, 36) × (1, 30) 72.63 6.54 77.30 34.3

(1, 18) × (1, 90) 79.84 5.53 85.48 21.93

(19, 36) × (1, 90) 76.34 8.02 83.95 29.44

(37, 54) × (1, 90) 69.89 8.71 79.08 35.06

(55, 72) × (1, 90) 68.79 7.49 78.97 31.11

(73, 90) × (1, 90) 67.18 7.67 75.20 39.60

(91, 108) × (1, 90) 78.12 6.74 86.75 26.32

(37, 90) × (1, 90) 84.48 7.43 93.9 12.8

(1, 36) × (1, 90) +
(91, 108) × (1, 90)

93.56 3.26 96.3 9.27

(19, 90) × (19, 72) 79.82 7.34 88.53 17.18
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Table 5. Mean classification accuracy (100 repetitions) with random projections of
chosen blocks of the image and projection dimensionality k = 100 and k = 200. The
number of training samples was 5 × 40 = 200; variances are given in brackets.

Sub-image k (37, 90) × (1, 90)
accuracy % (variance)

(1, 36) × (1, 90) + (91, 108) × (1, 90)
accuracy % (variance)

100 82.88 (5.23) 92.85 (3.9)

200 91.43 (12.40) 92.48 (5.42)

In the modular approach the feature dimension depends on k, i.e., the dimen-
sionality of random projections, and is equal to 30×k. Table 1 provides the mean
accuracy of classification for projection dimensionality k = 10, 40, 50, k = 100.
In every case, 5 images per class are used for training.

6 Conclusions

In this paper, we have examined which parts of the face image are more impor-
tant for correct person classification. Experiments strongly suggest that the most
important factor in correct facial classification of parts of images taken in a
changing frontal position are the border parts of the face image. These border
parts contain images of the subject’s hair, beard, jawline, arms, forehead and
ears, i.e., very soft biometric features. Results of classification based on central
parts of face images are less certain in contrast to the human experience.

The experiments presented in the paper show also that randomly generated
projections do not degrade, or only slightly diminish the accuracy of classifi-
cation. Moreover, the size of the vector of features is reduced in a significant
way. Furthermore, during the simulation it occurred that the logistic regres-
sion can work efficiently with very high-dimensional feature vectors. Thus, such
approaches allow us to compress efficiently the image data, additionally protect-
ing the privacy of the visualized peoples.

Acknowledgments. This research was supported by scientific grant at the Faculty
of Electronics, Wroc�law University of Science and Technology.

References

1. Brunelli, R., Poggio, T.: Face recognition: features versus templates. IEEE Trans.
PAMI 15(10), 1042–1052 (1993)

2. Chang, O., Constante, P., Gordon, A., Singana, M.: A novel deep neural network
that uses space-time features for tracking and recognizing a moving object. J. Artif.
Intell. Soft Comput. Res. 7(2), 125–136 (2017)

3. Dasgupta, S., Gupta, A.: An elementary proof of the Johnson-Lindenstrauss
lemma. Random Struct. Algorithms 22(1), 60–65 (2002)

4. Deniz, O., Bueno, G., Salido, J., De la Torre, F.: Face recognition using histograms
of oriented gradients. Pattern Recognit. Lett. 32(12), 1598–1603 (2011)



624 E. Skubalska-Rafaj�lowicz

5. Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear
models via coordinate descent. J. Stat. Softw. 33(1), 1–22 (2010)

6. Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J.: From few to many: illumi-
nation cone models for face recognition under variable lighting and pose. IEEE
Trans. Pattern Anal. Mach. Intell. 21(6), 643–660 (2001)

7. Gonzalez-Sosa, E., Fierrez, J., Vera-Rodriguez, R., Alonso-Fernandez, F.: Facial
soft biometrics for recognition in the wild: recent works, annotation, and COTS
evaluation. IEEE Trans. Inf. Forensics Secur. 13(8), 2001–2014 (2018)

8. Gottmukkal, R., Asari, V.K.: An improved face recognition technique based on
modular PCA approach. Pattern Recognit. Lett. 24(4), 429–436 (2004)

9. Hou, Y.-F., Pei, W.-J., Chong, Y.-W., Zheng, C.-H.: Eigenface-based sparse rep-
resentation for face recognition. In: Huang, D.-S., Jo, K.-H., Zhou, Y.-Q., Han,
K. (eds.) ICIC 2013. LNCS (LNAI), vol. 7996, pp. 457–465. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39482-9 53

10. James, G., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statistical
Learning. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-7138-7

11. Jolliffe, I.: Principal Component Analysis, 2nd edn. Springer, NewYork (2002).
https://doi.org/10.1007/b98835

12. Krishnapuram, B., Carin, L., Figueiredo, M.A.T., Hartemink, A.J.: Sparse multi-
nomial logistic regression: fast algorithms and generalization bounds. IEEE Trans.
Pattern Anal. Mach. Intell. 27(6), 957–968 (2005)

13. Learned-Miller, E., Huang, G.B., RoyChowdhury, A., Li, H., Hua, G.: Labeled faces
in the wild: a survey. In: Kawulok, M., Celebi, M.E., Smolka, B. (eds.) Advances
in Face Detection and Facial Image Analysis, pp. 189–248. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-25958-1 8

14. Lee, K.-C., Ho, J., Driegman, D.: Acquiring linear subspaces for face recognition
under variable lighting. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 684–698
(2005)

15. Ng, A.Y., Jordan, M.I.: On discriminative vs. generative classifiers: a comparison of
logistic regression and naive Bayes. In: Advances in Neural Information Processing
Systems, vol. 14, pp. 841–848 (2002)

16. Ning, X., Li, W., Tang, B., He, H.: BULDP: biomimetic uncorrelated locality
discriminant projection for feature extraction in face recognition. IEEE Trans.
Image Process. 27(5) (2018). https://doi.org/10.1109/TIP.2018.2806229

17. Ojala, T., Pietikainen, M., Harwood, D.: A comparative study of texture mea-
sures with classification based on feature distributions. Pattern Recognit. 29, 51–59
(1996)

18. Proença, H., et al.: Trends and Controversies. IEEE Intell. Syst. 33(3), 41–67
(2018). https://doi.org/10.1109/MIS.2018.033001416

19. Rosenblatt, F.: Perceptron simulation experiments. Proc. IRE 48(3), 301–309
(1960). https://doi.org/10.1109/JRPROC.1960.287598

20. Skubalska-Rafaj�lowicz, E.: Spatially-organized random projections of images for
dimensionality reduction and privacy-preserving classification. In: Proceedings of
10th International Workshop on Multidimensional (nD) Systems (nDS), pp. 1–5
(2017)

21. Skubalska-Rafaj�lowicz, E.: Open-set face classification for access monitoring using
spatially-organized random projections. In: Saeed, K., Homenda, W. (eds.) CISIM
2018. LNCS, vol. 11127, pp. 166–177. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-99954-8 15

https://doi.org/10.1007/978-3-642-39482-9_53
https://doi.org/10.1007/978-1-4614-7138-7
https://doi.org/10.1007/b98835
https://doi.org/10.1007/978-3-319-25958-1_8
https://doi.org/10.1109/TIP.2018.2806229
https://doi.org/10.1109/MIS.2018.033001416
https://doi.org/10.1109/JRPROC.1960.287598
https://doi.org/10.1007/978-3-319-99954-8_15
https://doi.org/10.1007/978-3-319-99954-8_15


Whole Image and Modular Image Face Classification 625

22. Skubalska-Rafaj�lowicz, E.: Relative stability of random projection-based image
classification. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W.,
Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2018. LNCS (LNAI), vol. 10841, pp.
702–713. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91253-0 65

23. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86
(1991)

24. Wang, H., Zhang, D.S., Miao, Z.H.: Fusion of LDB and HOG for face recognition.
In: Proceedings of the 37th Chinese Control Conference, Wuhan, China, 25–27
July 2018, pp. 9192–9196 (2018)

25. Yang, J., Zhang, D., Frangi, A.F., Yang, J.: Two-dimensional PCA: a new app-
roach to appearance-based face representation and recognition. IEEE Trans. Pat-
tern Anal. Mach. Intell. 26(1), 131–137 (2004)

26. Yu, H.-F., Huang, F.-L., Lin, C.-J.: Dual coordinate descent methods for logistic
regression and maximum entropy models. Mach. Learn. 85, 4–75 (2011)

27. Zhang, F., Yang, J., Qian, J., Yong, X.: Nuclear norm-based 2-DPCA for extracting
features from images. IEEE Trans. Neural Netw. Learn. Syst. 26(10), 2247–2260
(2015)

28. Zhou, C., Wang, L., Zhang, Q., Wei, Q.: Face recognition based on PCA and
logistic regression analysis. Optik 125, 5916–5919 (2014)

https://doi.org/10.1007/978-3-319-91253-0_65


Classifier Selection for Highly Imbalanced
Data Streams with Minority

Driven Ensemble

Paweł Zyblewski , Paweł Ksieniewicz , and Michał Woźniak(B)

Department of Systems and Computer Networks, Faculty of Electronics,
Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27,

50-370 Wrocław, Poland
{pawel.zyblewski,pawel.ksieniewicz,michal.wozniak}@pwr.edu.pl

Abstract. The nature of analysed data may cause the difficulty of the
many practical data mining tasks. This work is focusing on two of the
important research topics associated with data analysis, i.e., data stream
classification as well as data analysis with imbalanced class distribu-
tions. We propose the novel classification method, employing a classifier
selection approach, which can update its model when new data arrives.
The proposed approach has been evaluated on the basis of the com-
puter experiments carried out on the diverse pool of the non-stationary
data streams. Their results confirmed the usefulness of the proposed con-
cept, which can outperform the state-of-art classifier selection algorithms,
especially in the case of high imbalanced data streams.

Keywords: Data streams · Concept drift · Imbalanced data ·
Classifier selection

1 Introduction

This work is focusing on the special case of data stream classification where on
the one hand we may observe so-called concept drift, i.e., changes in incoming
data distributions [11], on the other hand, we have to analyse imbalanced data
[10]. This is motivated by the fact that real data streams may exhibit high and
changing class imbalance ratio, which may further complicate the classification
task. Nevertheless, it is also worth noting that the imbalance ratio is not the
sole problem because observations from the minority class may form clusters of
an unknown structure that are scattered [14]. This observation causes that the
efficient classifier dedicated to solve such a task should take into consideration the
local characteristics of the data. An additional complication comes from the fact
that the size of minority sample set may be not sufficient enough for the learning
algorithm to achieve the appropriate generalisation level and consequently, the
trained model may be overfitted [3].

Many approaches have been proposed to deal with the imbalanced data dis-
tributions, which may be grouped into:
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1. Data preprocessing which employs over- or undersampling approaches.
2. Inbuilt mechanisms adapting classification algorithms for imbalanced prob-

lems ensuring balanced accuracy for instances from both classes.
3. Hybrid methods combining the advantages of methods using data pre-

processing with the classification methods.

Unfortunately, there are not so many works on the imbalanced data stream
classification. In [7] authors employ the classifier ensembles, where each of the
individual models is trained on majority class samples in the consecutive data
chunks as well as on the already accumulated observations form the minority
class. In [19] authors also use the ensemble approach, where prior to learning on
every data chunk undersampling is performed based on k-means algorithm. Chen
and He [2] present improvement of the mentioned technique and propose a family
of algorithms sera, musera and rea, which add selected incoming minority
class objects to the currently processed data chunk. In [13] authors discuss a
method for calculating the weights of classifiers learned on data windows and
using combination rule based on weighted voting. Dizler et al. [6] extend the
previously developed Learn++ algorithm for imbalanced data (Learn++.NIE
and Learn++.CDS ).

Because most of the works from this domain employ the classifier ensemble
[20] therefore in this work we will focus on the same approach, which is also
reported as an effective tool of imbalanced data classification as well as for
the nonstationary data stream classification [11]. One of the most promising
approach from this domain is so-called classifier selection or classifier ensemble
selection [5], where the classification model is selected for the particular region
of a features space. We may distinguish two main groups of the methods. The
first one proposes to partition the features space in advance (so-called static
selection) [9,12] and a particular classifier is assigned to each partition. The
second approach tries to select the classification model on fly (so-called dynamic
selection) for each incoming observation. For each type of classifier selection the
key issue is to select the most competent model from given classifiers. Most of the
methods estimate their competences taking into considerations the surroundings
of a classified sample [17,18].

In nutshell the main contributions of the work are as follows:

– Proposition of the Minority Driven Ensemble algorithm, which allows the
intelligent classifier selection taking into consideration local data characteris-
tics of each class.

– Experimental evaluation of the Minority Driven Ensemble algorithm on the
basis of high number of diverse data streams and a detailed comparison with
the state-of-art classifier selection approaches.

2 Minority Driven Ensemble

In order to deal with the problem of imbalanced data stream classification we
propose the mde (Minority Driven Ensemble) method, which is a combination



628 P. Zyblewski et al.

of a chunk-based approach to ensemble learning and a classifier selection for the
classification process.

2.1 Ensemble Construction

Let’s assume that the data stream consists of fixed-size data chunks DSk, where
k is the chunk index and N is the chunk size. We do not detect a concept
drift, but the proposed algorithm employs a mechanism allowing it to construct
self-adapting classifier ensemble E instead. As the individual classifier k-nearest
neighbors classifier is used based on the particular data chunk devoided of out-
liers according to 5-neighbour taxonomy [15] (i.e., samples from minority class
for which five nearest neighbours are majority class examples). Let Ψk denotes
the classifier based of the kth chunk.

If the fixed ensemble size ES is exceeded, we remove from it the worst rated
individual according to the balanced accuracy measure (bac) [1]. Additionally,
at each step we remove from the ensemble all models which bac scores are lower
than 0.5+α, where α is the algorithm’s parameter responsible for the outdated
models removing rate. The pseudocode of the presented method is shown in
Algorithm1.

Algorithm 1. Ensemble construction pseudocode

Input:
Stream of data chunks {DS1,DS2, ...,DSk},
Fixed ensemble size (ES),
Outdated models removing rate (α)

1: E ← ∅

2: for each Data chunk DS ∈ Stream do
3: S ← scoreBaseModels(DS)
4: if len(E) > 1 then
5: E ← pruneThreshold(α)
6: if len(E) > ES − 1 then
7: E ← pruneWorstClassifier(E,S)
8: DSfiltered ← removeOutliers(DS)
9: Ψ ← trainNewClassifier(DSfiltered)

10: E ← Ψ
11: end for

2.2 Prediction

During the classification process if at least one individual classifier returns
support for minority class higher than 0, then the instance is classified as the
minority class example, i.e., among k nearest neighbours, at least one belongs
to minority class. Based on this idea we may simplify the prediction process.

The principle of the proposed combination rule is presented in Fig. 1. The
first three subplots present the decision border implementing the principle of
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minimum support for three subsequent processed chunks during subtle changes
in the minority class distribution. The last subplot (on the right) shows the
illustration of the mentioned above combination rule.

Fig. 1. Binary prediction as non-zero support for a minority class (three on the top)
and a maximum from the pool (on the bottom).

3 Experimental Evaluation

This section presents the details of the experimental study that allows us to com-
pare the classification performance of the proposed Minority Driven Ensemble
algorithm with other state-of-art methods.

3.1 Set-Up of Experiments

Evaluation for each experiment is based on the balanced accuracy measure (bac),
according to scikit-learn implementation [16], employing k-nearest neighbours
classifier as the base model for the ensemble construction. All experiments and
algorithms were implemented in Python programming language and may be
repeated according to source code published on Github1.

3.2 Datasets

The experiments were carried out using 96 diverse data streams. Each of the
streams counts one hundred thousand instances, divided into 200 chunks of 500

1 https://github.com/w4k2/classifier-selection.

https://github.com/w4k2/classifier-selection
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objects described by 8 features, and contains five concept drifts. The base con-
cepts were generated according to procedure of creating the Madelon [8] synthetic
classification dataset. Each of the base concepts combinations was generated
three times, for the repeatability of the research, based on the determined seeds.

The variety of obtained streams was obtained by generating three streams
for each combination of the following parameters of the classification task:

– the imbalance ratio — successively 10, 20, 30 and 40% of the minority class,
– the level of label noise — successively 0, 10, 20 and 30%,
– the type of concept drift — gradual or sudden.

3.3 Goals of the Experiments

Experiment 1 — Hyperparameters Optimization. The main goal of the
first experiment was to tune the two hyperparameters of mde:

– ES — ensemble size,
– α — pruning parameter responsible for the outdated models removing rate.

We have tested the mean bac and statistical dependence for multiple values
of these two parameters. Experiment was conducted on the data stream with
an imbalance ratio of 1:9 and label noise of 0.1. Sudden and gradual drifts were
tested separately.

Experiment 2 — Comparative Analysis of Classifier Selection
Methods. During the second experiment, we compared the performance of
four dynamic selection (DS) techniques implemented in DESlib [4] with mde,
depending on imbalance ratio, drift type and label noise level.

The comparative methods were:

– Modified Classifier Ranking (Rank) uses for classification such an individual
classifier which classifies correctly the highest number of consecutive samples
in the region of competence.

– Local classifier accuracy ( lca) selects for classification such an individual
classifier which correctly classifies the higher number of samples within the
local region, but considering only those examples where the classifier predicted
the same class as the one it gave for the test instance.

– KNORA-Eliminate (knorae) chooses to the ensemble only the classifiers
which can correctly classify all samples within the competence region. In the
case if no classifier is selected the size of competence region is decreased.

– KNORA-Union (knorau) makes the decision on the basis of weighted vot-
ing, where the weight assigned to an individual classifier is proportional to
the number of correctly classified objects in the competence region.

The detailed description of the reference methods may be found in [5]. We
consider the dynamic selection dataset (dsel) for the DS methods as the pre-
vious data chunk with the random over-sampling performed on it. Ensemble
construction process is the same as described in Sect. 2.



Classifier Selection for Highly Imbalanced Data Streams with mde 631

4 Experimental Evaluation

Experiment 1 — Hyperparameters Optimization. The results of hyper-
parameters’ optimisation are shown in Fig. 2, which shows the relation between
the α parameter (X-axis) and the ensemble size (Y-axis). Each value is equal to
the mean bac achieved by mde for given values of ES and α. Colours corre-
spond with the statistical dependencies between mean bac values, according to
the Mann–Whitney U test.

Fig. 2. Optimisation of mde hyperparameters for sudden and gradual concept drift

Increasing the ensemble size initially stabilises the bac, but over time
degrades the ability of the ensemble to respond to the concept drift. Increas-
ing the α removing rate parameter initially compensates for degradation in the
concept drift responding time, but over time negatively affects the bac.

The ES of three classifiers and the α = 0.05 were chosen for further
experiments.

Experiment 2—Comparative Analysis of Classifier SelectionMethods.
Figure 3 shows the influence of random over-sampling on reference methods per-
formance on data streams with high imbalance ratio (1:9). The use of oversampling
equates the performance of all tested DS methods.

Figure 4 presents how performance of the methods depends on the imbalance
ratio. Proposed mde is very effective for high imbalanced data streams (10%,
20% of minority objects). Enlarging the percentage of minority class to 30%
reduces the differences between mde and reference methods. For the cases of low
imbalance data (40% of minority class), mde performs worse than reference DS
methods.
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Fig. 3. Reference methods performance with (left) and without oversampling (right).

Fig. 4. Influence of imbalance scale on the quality of classification.

The aim of the following paper is to demonstrate the ability of the proposed
method to classify highly imbalanced data, so all further experiments present
results for streams with a percentage of a minority class not greater than 20%.

Figure 5 presents the relation between the classification quality and the type
of drift. The type of drift does not affect the relation between the analysed
classification methods. In either case mde outperforms the benchmark classifiers.

Figure 6 shows the relation between the performances of the individual meth-
ods and the label noise ratio. The increase of noise has a negative effect on the
overall classification quality.

The statistical analysis of the experimental evaluation is presented in Table 1.
It confirms that in most cases mde outperforms the benchmark classifier selec-
tion methods. Only for slightly imbalanced data, i.e., when imbalance ratio is
small (30% of minority examples) mde is not statistically significantly better
than knorau and knorae. For almost balanced data streams (40% of minority
samples), rank, knorau, and knorae outperform mde.
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Fig. 5. Influence of concept drift type on the quality of classification.

Fig. 6. Influence of label noise on the quality of classification.

Table 1. Presentation of statistical dependency of methods in all analysed contexts.
Bold points the best algorithm and algorithms statistically dependent to the best.

Value mde k-e k-u rANK LCA
Minority class percentage

10% 0.697 0.632 0.637 0.631 0.634
20% 0.780 0.738 0.741 0.736 0.735
30% 0.796 0.794 0.794 0.792 0.786
40% 0.788 0.821 0.821 0.820 0.811
Drift types
incremental 0.731 0.675 0.680 0.675 0.674
sudden 0.747 0.694 0.698 0.693 0.694
Label noise
0% 0.851 0.770 0.776 0.769 0.773
10% 0.753 0.700 0.704 0.699 0.699
20% 0.701 0.656 0.659 0.655 0.654
30% 0.651 0.614 0.617 0.613 0.611
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5 Conclusions

The main aim of this work was to propose a novel, effective classifier selec-
tion method for a challenging task of imbalanced data stream classification.
We proposed the Minority Driven Ensemble algorithm, which employs dynamic
classifier selection approach to exploit local data characteristics. The computer
experiments confirmed the usefulness of the proposed method and on the basis of
a thorough statistical analysis we may assert that especially for high imbalanced
data streams, mde is statistically significantly better that state-of-art classifier
selection methods. Especially, we observed that mde is a quite robust to noise
and does not allow for significant deterioration of its classification performance
in the case of concept drift appearance.

The results presented in this paper are quite promising therefore they encour-
age us to continue our work on employing classifier selection approach for imbal-
anced data, with the special focus on imbalanced non-stationary data stream
mining.
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Abstract. Social network analysis commonly focuses on the relationships
between two actors that could represent either individuals or populations. The
present paper not only introduces a new concept of sympathy states to represent
a sympathy between two actors but also models how different sympathy states
affect each other in an adaptive manner taking into account who expresses the
sympathy and who receives it. The designed network model was designed with
the Eurovision Song Contest in mind and takes into account external political
events that affect the scores in this contest over the years. The properties of the
model were analyzed using social network analysis. The model represents a first
attempt in modeling sympathy states and their adaptive dynamics modulated by
external events by Network-Oriented Modeling based on adaptive temporal-
causal networks.

Keywords: Sympathy states � Social network � European countries �
Hebbian learning � Adaptive network

1 Introduction

Social Network Modeling or Analysis is used to model relationships between a set of
social actors. In a social network, the edges represent the connections, while the nodes
are the social actors [1]. Even though Social Network Analysis (SNA) often focuses on
the relationship between people, it is also used to capture connections between groups,
organizations or nations [1]. Particularly, the development of worldwide social plat-
forms, such as Facebook, has allowed modeling of social networks on a population basis
between countries [2]. Nonetheless, the influence of one relationship of two social actors
on another relationship of two actors has not been studied yet neither on an individual
nor on a population level. Therefore, the aim of the present study is to fill in this research
gap by using a Network-Oriented Modeling approach applying them to this domain.

The newly designed model is based upon temporal-causal model principles.
A central role was assigned to nodes called sympathy states that represent how one
actor feels connected to another actor. In the current application of the network model,
the actors are based on European populations, where the sympathy states represent a
sympathy from the inhabitants of one European country to those of another country,
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as often observed for the Eurovision Song Contest. For the scope of this project, the
sympathy states were created only for countries who participated in the final of
Eurovision song contest of the year 2013. This selection was based upon the fact that
Eurovision song contest voting system provides empirical data of sympathy between
countries as a score, and that the initial sympathy state selection is based on transnational
Facebook friendship data set of the year 2012 [4]. The model covers a time period of four
years, from 2013 to 2016, to make the results more robust. Moreover, external political
events are included in the model for each year that is modeled. These events affect the
sympathy states, thus creating an adaptive dynamic model that relates to the real-life
situation.

In this paper, in Sect. 2 the network model is introduced. Section 3 explains the
principles used to determine the connection weights. In Sect. 4 the model is illustrated
by example simulations. Analysis of the network model based on Social Network
Analysis is discussed in Sect. 5. Section 6 discusses the possibility of tuning the
parameters to empirical data.

2 The Designed Temporal-Causal Network Model

A dynamic modeling approach was used that enables to design complex high-level
conceptual representations of adaptive dynamic models in the form of temporal–causal
networks [8, 9, 16]. This approach can be considered as generic and is suitable to describe
complex networks ranging from mental networks to social networks [16]. The approach
can be considered as a branch in the causal modeling areawhich has a long tradition inAI;
e.g., see [13–15]. It distinguishes itself by a dynamic perspective on causal relations,
according to which causal relations exert causal effects over time, and these causal
relations themselves can also change over time. The models, which can be represented
conceptually or numerically by a set of parameters, are declarative and therefore not
dependent on specific computational methods for simulation or analysis [8, 9, 16]. The
connections represent the causal impacts according to the chosen domain which causes
the state values to vary over time.When a state is affected bymore than one causal relation
a specific combination function is used. For example, a logistic sum is utilized to
aggregate multiple impacts, where the threshold and steepness are used as parameters to
define the curvature. Other parameters take the form of connection weights and speed
factors. The connection weights show differences in the causal connection strengths,
whereas a state’s speed factor indicates the time necessary for the state to change [8].
Together the connections weights, speed factors, and combination functions define the
structure of a temporal-causal networkmodel. In the upper part of Table 1 these concepts,
their notation, and explanation are shown. The corresponding numerical representation is
obtained from the conceptual representation as shown in the lower part of Table 1. The
following difference and differential equations are obtained:

YðtþDtÞ ¼ YðtÞþ gY ½cYðxX1;YX1 tð Þ; . . .;xXk ;YXk tð ÞÞ � Y tð Þ�Dt
dY tð Þ=dt ¼ gY ½cYðxX1;YX1 tð Þ; . . .;xXk ;YXk tð ÞÞ � Y tð Þ� ð1Þ
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A variety of standard combination functions are available that can be used to deal
with multiple impacts on a state. This study uses the alogistic sum combination
function in which the parameters steepness r and threshold s can be adjusted. For
example, the model will show more abrupt behavior when high steepness values are
applied. To indicate the dependence of s and r these are used as subscripts:

alogisticr;s V1; . . .Vkð Þ ¼ 1
1þ e�r V1 þ ...þVk�sð Þ �

1
1þ ers

� �
ð1þ e�rsÞ ð2Þ

Table 1. Conceptual and numerical representation of a temporal-causal network model

Concept Representation Explanation

States and
connections

X, Y, X ! Y Represents the structure of
a network via nodes and
links

Connection
weight

xX,Y A connection weight xX,Y

2 [−1, 1] denotes the
strength of the causal
impact of state X on state Y

Aggregating
multiple
impacts on a
state

cY(..) For each state Y a
combination function cY(..)
is chosen to aggregate the
causal impacts on state Y

Timing of
causal effect

ηY For each state Y a speed
factor ηY � 0 is used to
describe the speed of
change of a state

State values
over time t

Y(t) At each time point t each
state Y in the model has a
real number value in [0, 1]

Single causal
impact

impactX;Y ðtÞ ¼ xX;YXðtÞ At t state X with a
connection to state Y has an
impact on Y, using
connection weight xX,Y

Aggregating
multiple
impacts

aggimpactY ðtÞ
¼ cY ðimpactX1;Y ðtÞ; . . .; impactXk ;Y ðtÞÞ
¼ cY ðxX1;YX1 tð Þ; . . .;xXk ;YXk tð ÞÞ

The aggregated causal
impact of multiple states Xi

on Y at t, is determined
using combination function
cY(..)

Timing of
the causal
effect

YðtþDtÞ ¼ YðtÞþ gY aggimpactY ðtÞ � YðtÞ½ �Dt
¼ YðtÞþ gY ½cY ðxX1 ;YX1 tð Þ; . . .;xXk ;YXk tð ÞÞ � Y tð Þ�Dt

The causal impact on Y is
exerted over time
gradually, using speed
factor ηY; here the Xi are all
states with connections to
state Y
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In principle parameters such as connection weights may have specific constant
values. However, in adaptive cases, these parameters may change over time as well [8].

Therefore, in the adaptive network model introduced here the connection weights
xX,Y(t) can be modeled as states with their own combination function. This study will
use an adaptive model based on Hebbian learning. Hebbian learning was originally
invented by Hebb [7] for the assumption that ‘neurons that fire together, wire together’
[6, 7]. In other words, when both states are often active simultaneously the connection
between these states becomes stronger, which is a useful effect in the present domain of
the model: if both countries exhibit high sympathy towards each other then the con-
nection between these countries should be strengthened. Therefore, in the present
model Hebbian learning is used for the connections between reciprocal sympathy
states; see Fig. 1. The numerical representation used for Hebbian learning is based on
the combination function

c X1;X2;Wð Þ ¼ X1X2 1 �Wð Þþ lW ð3Þ

where X1 and X2 indicate the activation level of the two connected states, W the
connection weight, and l the persistence factor; this entails the following difference
and differential equation for the connection weight:

xX1;X2ðtþDtÞ ¼xX1;X2 tð ÞþgxX1 ;X2
½X1 tð ÞX2 tð Þð1 � xX1;X2 tð ÞÞþ lxX1;X2 tð Þ � xX1;X2 tð Þ�Dt

dxX1;X2 tð Þ=dt ¼gxX1 ;X2
½X1 tð ÞX2 tð Þð1� xX1;X2 tð ÞÞþ lxX1;X2 tð Þ � xX1;X2 tð Þ� ð4Þ

Initially, twenty-six countries were selected to model sympathy states. This
selection was based on the countries who participated in the Eurovision song contest
2013 final. Subsequently, a subset was selected from the transnational Facebook
friendship data set based on the twenty-six countries chosen. The Facebook transna-
tional data set contains information on the five countries to which people in the selected
country are most connected to in terms of border-crossing Facebook Friendships [4].
Accordingly, sympathy states were created between ‘sender’ and ‘receiver’ countries
where the obtained score in the Facebook matrix was at least 1. This indicates that the
receiver country is the country with which sender country has the fifth-highest number

Fig. 1. The Hebbian learning principle for the connections between reciprocal sympathy states
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of Facebook friendships [4]. This resulted in 76 sympathy states, which contained the
in- formation of the sender and the receiver country. For a part of such a network
model, see Fig. 2.

However, once the model was extended over multiple years, 2013, 2014, 2015 and
2016, respectively, three sympathy states had to be removed from themodel due to lack of
empirical data over the years. Thus, the final model contained 73 sympathy states (see
Appendix A). The initial state values of these sympathy states were also based on the
Facebook Friendship data set. The data set contained cell values that range from 0 to 5,
where 0 indicates that country is not mentioned, and 5 that the receiver country is the
country with which sender country has the highest number of Facebook friendships [4].
As mentioned earlier, only connections that had a value from 1 to 5 were included in the
model. Consequently, the initial values were also based on this scoring system but con-
verted to a range within 0 to 1. Thus, the resulting initial values ranged from 0.1 to 0.5.

3 Principles Determining the Nonadaptive
Connection Weights

The values of the nonadaptive connection weights were based upon four basic ele-
ments: country name, sender or receiver country, geographical location, and size. The
first rule stands for that country X’s sympathy to country Y would affect any other
sympathy state where also country X’ and/or Y is a participant. This rule determines all
the connections that should be established. The second rule is more elaborate as it takes
into account which country is the sender and which the receiver (see Fig. 3 column 1).
Furthermore, this rule was refined by implementing the location and size rule upon it
(see Fig. 3 column 2–5). Figure 3 shows that the relationship of the connection is
defined first. In other words, every connection is classified based on the information of
why this connection is created. In total there are four categories: (1) receiving countries
are the same, (2) sending countries are the same, (3) receiving country in the sender

Fig. 2. Some sympathy states and their causal relations
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Table 2. Connection weight principles used

If the 3
countries are
bordering

If the 3 countries
are in the same
neighbourhood

If from small to big
country (based on
European
population)

Else

Receiving countries are the same
SR* to SR*
Georgia/Germany to
Finland/Germany

0.8

SR* to SR*
Hungary/Germany to
Romania/Germany

0.6

SR* to SR*
Hungary/Germany to
Greece/Germany

0.2

Sending countries are the same
S*R to S*R
Finland/Norway to
Finland/Germany

0.5

S*R to S*R
Norway/Iceland to
Norway/Denmark

0.6

Receiving country and sending country in new node are the same
SR* to S*R
Estonia/Russia to
Russia/Azerbaijan

0.2

SR* to S*R
Georgia/Russia to
Russia/Georgia

0.8

SR* to S*R
Germany/Netherlands
to Netherlands/
Belgium

0.8

SR* to S*R
Hungary/Romenia to
Romenia/Germany

0.6

SR* to S*R
Russia/Belarus to
Belarus/Italy

0.2

SR* to S*R
Netherlands/Belgium
to Belgium/Spain

0.2

(continued)
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node and the sending country in the receiver node are the same, and (4) sending
country in the sender node and the receiving country in the receiver node are the same.
This creates a principle that each connection consist of three countries as one of the
countries always is repeating, thus creating the connection. An exception for this rule is
when the connection is reciprocal, meaning that both sympathy states consists of the
same countries but in a reversed way. Then a connection weight of 0.8 was assigned
and the Hebbian learning principle was implemented as discussed before.

For the remaining connections that consist of three countries it is checked whether
all three of these countries are bordering; for an overview, see Table 2. If this is true,
then a connection weight of 0.8 is assigned, based on the assumption that the sympathy
state of bordering countries could have a strong effect on the third bordering country’s
sympathy as well. If the countries are not bordering, it is checked if the three countries
are in the same neighborhood. If that is the case, then a connection strength value of 0.6
is assigned, meaning that the sympathy state still exhibits an influence but weaker than
before. Lastly, if none of the previous constraints holds true, a value of 0.2 is assigned.

An exception of these assignment principles is possible when the connection is
based on the combination of the size rule and the sender or receiver country rule
category three. If the sender country is relatively small based on its population as
compared to the receiver country in the sender sympathy node, for example, Estonia to
Russia, then this sympathy state would have a small connection weight value to the
sender node, 0.2 respectively. This is based upon the assumption that the proportion of
friendships of a small population towards a large population is relatively irrelevant for
the larger population’s friendships to other countries. The size ranking was based upon
the population of each country, where the larger countries were considered to be Russia,
Germany, France, United Kingdom, and Italy (population above 60 million) [10].

The model was built upon the assumption that the results of the Eurovision song
contest are influenced by political events that have happened in the preceding year,

Table 2. (continued)

If the 3
countries are
bordering

If the 3 countries
are in the same
neighbourhood

If from small to big
country (based on
European
population)

Else

Sending country and receiving country in new node are the same
S*R to SR*
Azerbaijan/Russia
to Georgia/Azerbaijan

0.8

S*R to SR*
Italy/Spain to Malta/
Italy

0.6

S*R to SR*
Italy/Spain to Belarus/
Italy

0.2
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as Eurovision happens in the first half of the year. Therefore, political events in the
years 2012, 2013, 2014, and 2015 that had an influence on the foreign affairs between
countries were identified. Consequently, this search resulted in 12 events across the
time span of 2012 to late 2015 that were thought to have an effect on the sympathy state
value (see Table 3). Information about these events was obtained from news articles
and European Foreign Policy Scorecards [5]. The events are independent of each other
and are not affected by the sympathy states.

Implementing the events allows adjusting a sympathy state value at a certain year
by increasing it, positive effect, or decreasing it, negative effect. Consequently, the final
model consists in total of 85 states, where 73 of these states represent sympathy states
and the other 12 states represent events. A small example illustrating the final model
can be found in Fig. 3.

Fig. 3. Example of sympathy states in relation to relevant events

Table 3. Political events included in the model

Event Year Event Year

Common economic space 2010 Belgium royal family visits
France

2014

Russia military support 2011 Crimean crisis 2015
Eastern Partnership 2012 Poster conflict 2015
Vladimir Putin re-elected 2012 Malta security operation 2015
DCFTA 2013 Paris attacks 2015
Restored border between Russia and
Belarus

2014 Railway collaboration 2015
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4 Example Model Simulation

As mentioned before, the main components of the model are the sympathy states that
interact with each other, while the number of the events can be varied depending on the
number of years included as well as whether meaningful events can be identified in the
context of the sympathy states. In Fig. 4 a base scenario of the model is represented.
Specifically, one event is modeled (indicated by the arrow), which has both positive,
strengthening, and negative, weakening effects on specific sympathy states. In the
present scenario, the speed factors for all sympathy states are set to 0.3, while the speed
factor for the event is set to 0.06 to achieve that its effects only occur at a later time
point. In total 60 time points were simulated, that represent 60 months or approximately
5 years. As can be seen in Fig. 4 the model does not reach an equilibrium within the
considered time interval, which is a desirable effect as it is assumed that the interactions
between the sympathy states change over time. This example considers only one event;
by incorporating multiple events over time a realistic situation can be achieved.

5 Social Network Analysis

To analyze the network the Social Network Analysis tool Gephi version 0.9.2. was used
[3]. The social network consists of 85 nodes and 797 edges, where the nodes represent the
sympathy states and events, and the edges represent the relationships between them. It can
be observed in Fig. 5 that sympathy nodes with high betweenness centrality are located
relatively more in the center of the network, meaning that these nodes are often involved
between other actors in the network. Table 4 shows the top five sympathy nodes in
regards to betweenness centrality, suggesting that these sympathy nodes have a high
influence over the other sympathy states. Furthermore, the number of relations (edges)

Fig. 4. Example simulation results
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was analyzed. In particular, the average degree is 9.376, with a range from 1 to 36°.
Table 4 indicates the sympathy nodes with the highest degree value, meaning that these
nodes have the highest connectionswith other nodes. Lastly, the clusters were analyzed in
the network. Based on modularity analysis the number of communities in this network is
5 with a modularity of 0.55.

6 Best Fit to the Empirical Eurovision Voting Data

Matlab v2017a was used to simulate the numerical representation of the model. An
attempt has been made to exploit available empirical data based on voting in order to
get a good fit of the model parameters. It was not easy to use such data in a solid way.
The empirical data was obtained from Eurovision voting results from the years 2013,

Fig. 5. Social network analysis graph with labels

Table 4. Top 5 sympathy states with highest degree values and top 5 sympathy states with
highest betweenness centrality

Sympathy state Degree Sympathy state Betweenness centrality

Finland/Russia 36 Finland/Germany 630.13
Russia/Ukraine 36 Lithuania/Russia 493.36
Lithuania/Russia 35 Finland/Russia 480.67
Ukraine/Russia 35 Finland/Norway 362.22
Georgia/Russia 33 Romania/Germany 350.19
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2014, 2015 and 2016 [11]. The scoring system of Eurovision is based on a scale from 0
to 12, however, the model uses state values in the range between 0 and 1, thus the
empirical data was converted to match this range. Initially only final voting results were
taken into account, however, if the country did not participate in any of the finals after
the year 2013 then a score from a semi-final was used. In a situation where empirical
data could not be obtained in a certain year, because the sender and the receiver country
were in a different semi-final, the approximate value was estimated using logarithmic
trend-line equation using the other scoring values as reference points. Consequently, a
complete empirical data set was created for four time points. Subsequently, by inter-
polation this data set was extended across all months of every year using Matlab,
resulting in a data set of 60 time points for all 85 states. The empirical data was
compared with the model data with a step size of Δt = 1, representing a one-month
interval, and the time interval from a starting point at t = 17 and end point at t = 53.
Such a selection was chosen because the generated empirical data outside these
boundaries was either greater than 1 or smaller than 0, which is by default outside of
the range of the model. To improve the model’s fit to the empirical data sympathy state
speed factors were tuned using the simulated annealing algorithm in Matlab. Conse-
quently, 73 parameters were optimized and the implications can be seen in Fig. 6. The
optimization was based on decreasing the root mean square error (RMSE) between the
model and the empirical data. After optimization, the obtained RMSE was still 0.56.

7 Discussion

The current model could be viewed as an expansion of the social influence theories. All
the previous social influence theories have discussed how one person influences the
release of the same behavior in others either via contagion, conformity, social facili-
tation or other types of social influence [12]. This could be viewed in analogy with the
sympathy states of the present model: a certain sympathy from one country to another
could be viewed as an expressed social behavior on a population level. Moreover, the
vicinity of the actors that often plays a role in social influence theories is also taken into
account in the present model: if the participants of the sympathy states are closely

Fig. 6. Simulation results after parameter tuning
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located then the influence of one sympathy state to another is stronger. However, where
the present model differs from the current theories is that rather than modeling whether
the initial behavior is replicated by the other sympathy state, the present model attempts
to show that, firstly, any behavior could have an influence on another behavior as long
as at least one of the participants is part of the new behavior, and, secondly, that these
behaviors can be modulated by external factors that are independent of the behaviors
themselves. Nonetheless, the present model could not mimic the real world data
entirely due to certain limitations.

Firstly, the empirical data was not accurate. Multiple time points had to be gen-
erated via estimation, which caused the empirical data to be unreliable and outside the
range of the model state values. Consequently, a relatively high error value was gen-
erated that rather could be attributed to the imprecision of the empirical data than to the
model. Secondly, due to the scope of this project only a limited amount of events, with
the main focus on political events, were taken into account. However, real-world
processes are more complex and cannot be summarized in twelve events, as the sum of
many small events also could generate a significant impact on a sympathy state.
Therefore, future research could expand the number of events included in the model,
thus, resulting in a model that can better represent the complex relations between
country sympathies. Thirdly, due to the time constraints, only a subset of all European
countries was included in the model. Thus, perhaps important sympathy states were
lost that could have improved the accuracy of the model. All of these factors could be
improved upon in future research, which would improve the validity of the model.

In conclusion, in spite of the limitations mentioned above, the present model offers
a first attempt in modeling sympathy state relations. The model achieved to show that a
sympathy state exhibits an influence over another sympathy state and that this inter-
action can be modulated by external factors. Therefore, these results unfold a promising
future research field for simulating population-based sympathy interactions.

Appendix A Sympathy States Used

List of all sympathy states used:

Georgia/Azerbaijan, Russia/Azerbaijan, Russia/Belarus, Ukraine/Belarus, France/
Belgium, Netherlands/Belgium, Lithuania/Denmark, Norway/Denmark, Finland/
Estonia, Estonia/Finland, Sweden/Finland, Belgium/France, Italy/France, Armenia/
Georgia, Finland/Germany, Georgia/Germany, Greece/Germany, Hungary/Germany,
Netherlands/Germany, Romania/Germany, Georgia/Greece, Romania/Hungary,
Ukraine/Hungary, Norway/Iceland, Belarus/Italy, Malta/Italy, Moldova/Italy,
Romania/Italy, Belarus/Lithuania, Belgium/Netherlands, Germany/Netherlands,
Denmark/Norway, Estonia/Norway, Finland/Norway, Iceland/Norway, Lithuania/
Norway, Sweden/Norway, Hungary/Romania, Italy/Romania, Moldova/Romania,
Spain/Romania, Armenia/Russia, Azerbaijan/Russia, Belarus/Russia, Estonia/Russia,
Finland/Russia, Georgia/Russia, Lithuania/Russia, Moldova/Russia, Ukraine/Russia,
Belgium/Spain, Italy/Spain, Romania/Spain, Denmark/Sweden, Estonia/Sweden,
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Finland/Sweden, Iceland/Sweden, Norway/Sweden, Azerbaijan/Ukraine, Belarus/
Ukraine, Georgia/Ukraine, Moldova/Ukraine, Russia/Ukraine, Greece/UK,
Iceland/UK, Lithuania/UK, Malta/UK, Norway/UK, Lithuania/Ireland, UK/Ireland,
Ireland/Spain, Ireland/UK.
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Abstract. In this paper, a class of modern machine learning methods
is utilized for estimating the transient stability boundary characteriz-
ing the large-scale power system grids. The boundary characteristic is
viewed as a highly multidimensional response of power system variables.
The proposed estimation methods based on various forms of the LASSO
algorithm lead to simultaneous variable selection and function recovery
yielding models of the reduced complexity. The obtained models have
a clear interpretation and exhibit a smaller prediction error compared
with known machine learning techniques used in the existing literature
on modelling of large-scale power engineering systems. The performance
of our method is assessed based on the real data generated from the
470-bus power system.
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1 Introduction

Machine learning is an active field of research with numerous applications in
science and engineering including modelling and prediction of power systems
[1,5]. In large-scale modern data driven systems one has to cope with the high-
dimensional features and limited size of training data. This large-dimensional-
small data set case calls for new learning techniques that are able to perform
simultaneous estimation and variable selection.

In this paper we utilize a class of such techniques (called the shrinkage learn-
ing algorithms) in the context of large-scale power systems. In fact, the proper
evaluation and predictive behavior of power systems require accurate and com-
putationally feasible machine learning methods applicable to large-dimensional
data sets. Previously applied approaches to various problems of power sys-
tems include classical regression analysis, neural networks, and support vector
machines, [2–4]. The particularly challenging power system problem is the func-
tional characterization of the future behavior of the transient stability boundary.
Transient stability is the ability of the power system to maintain synchronism
c© Springer Nature Switzerland AG 2019
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when it is subjected to severe transient disturbances such as a fault on transmis-
sion system facilities, loss of a large load, or loss of a generator. The transient
stability problem is inherently high dimensional, due to the consideration of a
large number of measurements existing in the given power system.

Various regression estimation approaches have been commonly used in deter-
mining future system responses for a given set of new inputs. The previous esti-
mation methods utilize full multidimensional input signals without reducing the
data dimensionality and extracting the proper features yielding the best possi-
ble prediction. There are numerous feature selection techniques like AIC, BIC,
forward selection, backward selection, just to name a few, that could be applied
to reduce the data dimensionality. The computational cost, however, of these
methods is usually very high and therefore would be difficult to employ them in
the real-time power system.

In this paper a class of modern linear regression methods called the LASSO
procedure is used for prediction of the transient stability boundary of power
systems. Traditionally, the various forms of the least square method have be
used yielding explicit solutions. In particular, the so-called Ridge Regression,
which is based on the minimization of the mean squared error penalized by
the sum of square values of the regression coefficients has been utilized in the
transient stability boundary problem. Different from the Ridge Regression, the
LASSO approach uses the sum of absolute values of the regression coefficients
as the penalty. The fundamental property of the LASSO strategy is that it
automatically shrinks to zero a number of regression coefficients that seem to
be redundant in the overall prediction accuracy. Thus, the LASSO approach
has a potential advantage over the classical regression methods since it provides
the joint automatic feature selection with model specification. This makes the
method extremely suitable for the transient stability problem as well as other
power engineering problems where observations are inherently high-dimensional.

This paper is organized as follows. In Sect. 3, the LASSO algorithm is briefly
overviewed as well as its extensions called the adaptive LASSO and multi-step
LASSO are described. A basic numerical method called “shooting algorithm”
to determine the LASSO solution is also introduced. In Sect. 4, the problem
of Transient Stability Boundary is described. In Sect. 5, the LASSO regression
method is applied to transient stability data and its accuracy is compared with
Ridge Regression and Kernel Ridge Regression techniques. The automatic fea-
ture selection property of the LASSO algorithm is revealed. We demonstrate
that the LASSO method developed in this paper has superior properties over
the state-of-the-art algorithms used so far in modelling of large-scale power engi-
neering systems. The paper is the further extension of the study initiated in [10]
concerning the use of modern machine learning algorithms for high-dimensional
power systems.
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2 LASSO Regression Methods

2.1 Regularized Least Square Regression Methods: Ridge and
LASSO Algorithms

In this section we introduce the LASSO and other regression methods that min-
imize the constrained least square error with respect to a specific penalty.

The regression function m(x) = E[Y |X = x] represents the optimal L2

prediction of the output scalar variable Y based on the input feature vector
X ∈ R

p. In practice, one does not know the joint distribution of (X, Y ) but
instead observes the training data set

Dn = {(X1, Y1), (X2, Y2), · · · , (Xn, Yn)}.

The regression estimation problem can be viewed as a supervised machine learn-
ing case where one would like to estimate m(x) from Dn [5]. Hence, given a new
input vector Xnew, the regression analysis tries to predict the corresponding
output Ynew using the data set Dn and often some a priori knowledge about
the underlying process. For high-dimensional input vector, i.e., for a large value
of p the problem of estimating the regression function m(x) is infeasible due to
the known curse of dimensionality property. Then, it is necessary to restrict the
shape of m(x) to a particular simpler form. It is common to use the following
linear model

Yi =
p∑

j=1

βjX
(j)
i + εi, i = 1, . . . , n, (1)

where {εi} is a sequence of zero-mean random variables representing the noise
process that is assumed to be independent of {Xi}. Here, Xi = [X(1)

i , . . . , X
(p)
i ]T

is the i-th input vector and β = [β1, · · · , βp]T is the vector of the unknown model
coefficients. The linear regression model is important because many other forms
of regression analysis (including generalized linear models) can be derived from
the estimation theory developed for linear regression.

In practical situations, we are facing with a large number of input variables
and as a result the linear model reveals the large variability and the reduced
prediction accuracy. Thus, one needs to perform a search for selecting features
that are important and most informative. This may result in the simplified model
with the stronger prediction accuracy. The LASSO regression algorithm provides
the required joint estimation-variable selection property.

To introduce the LASSO method let us begin with the classical least squares
approach for the model in (1). First, note that (1) can be re-written in the matrix
form

Y = Xβ + ε, (2)

where Y = [Y1, · · · , Yn]T , ε = [ε1, · · · , εn]T , and X is the n × p design matrix.
The parameter β that minimizes the mean-squared error

1
n

||Y − Xβ||2, (3)
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has the well-known closed-form expression

β̂LS = (XTX)−1XT Y. (4)

Hence, in the least-square solution β̂LS , all the p coefficients are estimated
including even those that have small or zero values. This property is particularly
harmful if p, the number of variables, is larger than n, the size of the training
set. Furthermore, the lease-square solution is not unique if the design matrix X
is not of a full rank. These negative properties of β̂LS are partially reduced by
the so-called Ridge Regression [5] being the version of the least squares, where
the penalized term is added. Hence, the solution of

min
β

( 1
n

||Y − Xβ||2 + λ||β||2
)
, (5)

defines β̂Ridge - the ridge regression estimate of β, where ||β||2 is the L2 norm
of β. In (5) the parameter λ ≥ 0 controls the amount of shrinkage on β towards
zero. Hence, larger λ imposes the larger shrinkage to small values. The advantage
of the ridge regression is that it provides the explicit solution of the following
form

β̂Ridge = (XTX + λIp)−1XTY, (6)

where Ip is the unit matrix.
It is important to note that the ridge regression method is unable to set

the coefficients exactly to zero. Hence, this approach cannot to adapt to the
model sparsity. The latter is measured by the number of elements of the set
S = {j : βj �= 0}, i.e., the cardinality of S denoted as p0 is much smaller
than p. Nevertheless, the ridge regression leads to the smaller mean squared
error compared with the ordinary least square method and therefore it gives
better prediction. The ridge regression approach to modeling the transit stability
boundary in power systems has been examined in [6].

An ultimate penalization strategy applied to the mean-squared error that
leads to the automatic feature selection would rely on the L0 norm of the model
coefficients. Hence, the following minimization is sought

min
β

( 1
n

||Y − Xβ||2 + λ||β||0
)
, (7)

where ||β||0 =
∑p

j=1 1(β �= 0). Here 1(A) is the indicator function of the set
A. The resulting optimization problem is, however, not convex and does not
have the unique solution. A convex replacement for the L0 norm is the L1 norm
penalty. This leads to the celebrated LASSO procedure [5] that seeks the solution
of the following convex optimization problem

min
β

( 1
n

||Y − Xβ||2 + λ||β||1
)
, (8)

where ||β||1 is the L1 norm of β. The sought solution β̂LASSO is not given in the
explicit form and relies on some specialized convex optimization algorithms [9].
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The geometric nature of the L1 penalty is the origin of the sparsity property of the
LASSO method that successfully shrinks the increasing number of the model coef-
ficients toward zero as λ increases. In fact, the asymptotic analysis of the LASSO
procedure reveals that the optimality model discovery property can be achieved
if λ tends to infinity with n with the rate slower than

√
n. For the finite sample

size the parameter λ must be specified via some data-driven methods, e.g., cross-
validation (CV) techniques. This strategy is also adapted in this paper.

2.2 Adaptive LASSO and Multiple-step LASSO

It has been observed in [7,8] that the LASSO solution has a tendency to include
more features than the true number of the relevant features, i.e., the solution
β̂LASSO overestimates the set S = {j : βj �= 0}. This is particularly the case,
when the design matrix X is strongly correlated. However, due to the screening
property discussed in [7], the set S of the true relevant features forms a subset
of the features that are selected by LASSO. A modified version of LASSO is
based on putting more shrinkage to the features with smaller weights, and this
idea leads to the so-called adaptive LASSO [8]. This estimate is obtained by
minimizing the following criterion:

1
n

||Y − Xβ||2 + λ

p∑

j=1

|βj |
|β̂init,j |

, (9)

where {β̂init,j} are the initial weights selected by the aforementioned standard
LASSO procedure. Hence, the features corresponding to larger weights are pre-
served, and the features corresponding to smaller weights experience even more
shrinkage. This leads to more weights being set to zero resulting in a further
simplified linear model. The recursive implementation of the adaptive LASSO
algorithm yields the so-called multi-step adaptive LASSO (MSA-LASSO) regres-
sion algorithm. This method leads to the further reduction of the linear model
complexity. The adaptive LASSO and MSA-LASSO can be efficiently found by
convex optimization algorithms.

2.3 The Shooting Algorithm for LASSO

There are two distinct approaches for a numerical evaluation of the LASSO-
type regression estimates. The first approach is based on the exact path-following
method such as the LARS algorithm and its modifications [9]. The second strategy
is utilizing the coordinate descent algorithm also called the shooting method [9].
The latter method is usually faster than the first one and is especially efficient
in high-dimensional and sparse data settings [7]. To explain this method let us
denote by Qλ(β) the criterion function in (8). Then, the gradient of ||Y−Xβ||2/n
with respect to β is given by

G(β) = 2XT (Xβ − Y)/n.
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The j-th coordinate of G(β), i.e., the derivative of G(β) with respect to βj is
equal to Gj(β) = 2XT

j (Xβ − Y)/n. Then the shooting algorithm performs the
following steps:

1. Let β(0) ∈ R
p be an initial estimator. Set m = 0.

2. Repeat
– m = m + 1
– For j = 1, · · · , p:

β
(m)
j = 0, if |Gj(β

(m−1)
−j )| ≤ λ,

β
(m)
j = arg minβ0 Qλ

(
β
(m−1)
+j

)
, if |Gj(β

(m−1)
−j )| > λ,

where β
(m−1)
−j is the vector setting the j-th component of the current

solution β(m−1) to zero and β
(m−1)
+j is the vector which equals to β(m−1)

except that the j-th component is equal to the scalar variable β0 appear-
ing in the above optimization step.

– Until numerical convergence.

2.4 Kernel Ridge Regression

In our simulation studies, the kernel version of the Ridge Regression is used in
order to be compared our proposed LASSO and MSA-LASSO procedures. The
Kernel Ridge Regression is an extension of the ordinary Ridge Regression that
allows nonlinear relationships between input variables. The generic formula for
the kernel method is the following:

f̂(x) =
n∑

i=1

αiK(x,Xi), (10)

where K(·, ·) is the proper kernel function that satisfies Mercer’s conditions. The
weight vector α = [α1, · · · , αn]T can be estimated by α̂ = (XXT + λI)−1Y. In
our simulation studies, the polynomial kernel K(a,b) = (q + aTb)d is used,
where d is the kernel order and q is the offset parameter. To specify the Kernel
Ridge Regression we use a Cross-Validation data-driven strategy to select the
parameters λ, d, and q. The prediction error of the Kernel Ridge Regression is to
be compared with LASSO and MSA-LASSO algorithms. It is worth noting that
the Kernel Ridge Regression approach was utilized recently [6] for the problem
of determination of transient stability boundary in power systems.

3 The Transient Stability Problem

Transient stability is the ability of a power system to maintain synchronism
when disturbances happen due to a fault in the system such as loss of a large
load, loss of a generator, or a fault on transmission facilities. It is a reflection
of the capability of the power system to absorb the kinetic energy due to the
imposition by the transient disturbance. The transient stability behavior of a
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power system, in general, is determined by the initial operating point describing
the steady state before disturbance, the severity of the disturbance, and the
post-fault structure of the power system. Hence, for a certain contingency and
a given post-fault relay actions, transient stability is characterized only by the
pre-contingency initial operating point.

The degree of the power system stability is measured by the so-called tran-
sient stability index (TSI). The TSI is a function of the initial operating point
(for a given type of faults) and a post-contingency state. Hence, TSI = fTSI(x),
where x is the p-dimensional vector describing a power flow. We use all the bus
magnitudes and all bus angles to represent the pre-contingency variable x. It is
worth noting that the transient stable region is characterized by TSI ≥ TSI0,
where TSI0 is the threshold value. The boundary region {x : fTSI(x) = TSI0}
is called the transient stability boundary (TSB), and it defines the boundary
between secure and insecure regions of the initial state for a given power system.

In the classical setting of power system analysis the post-contingency tran-
sient stability behavior has been determined by analyzing a large number of
coupled nonlinear differential and algebraic equations in the time domain. An
alternative approach is to implement machine learning techniques. Comparing
with time-domain simulations, machine learning methods have an advantage
with respect to speed, and easiness to implement, thus making itself feasible in
real scenarios when immediate decisions are necessary.

4 Transient Stability Boundary Estimation Using the
LASSO

The power system where regression estimate is performed is a medium scale real
power system with 470 buses. It consists of 470 buses, 45 generating units, 214
loads and 482 transmission lines, 152 fixed shunts, and 374 adjustable transform-
ers. All 45 generators are modeled with a 5th order generator modeled while the
excitation systems of most generators are model with terminal voltage trans-
ducers, voltage regulators, exciters, and power system stabilizers. The original
470 Bus System was lightly loaded so that the system was very stable. The con-
tingency is due to a 3-phase fault near bus 1007 on line 1007–1028 for 8 cycles
and then the fault is cleared by opening line 1007–1028. This contingency is an
example showing a case that the instability of the system is due to the swing
of one generator against the rest of the system. Therefore for this contingency,
the stability boundary is at 8 cycles. In this paper we examine the cases that a
perturbation of ±25% for active and reactive power happens, and in these cases
the perturbation for generator reference voltage setting is ±2%.

Measurements are taken at the all 470 buses. Therefore, the observations
include 470 bus voltages, and 469 bus angles. Therefore, the observations are
939-dimensional. For each of the observation Xi, critical clearing time (CCT) is
simulated as the response Yi to the ith input feature vector Xi. Here the CCT is
used as a transient stability index. The mapping function from Xi to Yi would
define the transient stability boundary between the secure and insecure regions of
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operating under the certain fault and post-contingency structure already men-
tioned. Data set of the length 1199 is generated from the system under the
above mentioned contingency. We split the data, and use the length n = 800
as the training set, and the rest n′ = 399 as the testing set. The training data
set {(

X1, Y1

)
, ...,

(
Xn, Yn

)} is first normalized so that the input observations
{Xi} as well as the responses {Yi} would have zero mean and unite variance.
Let {(X̃1, Ỹ1

)
, ...,

(
X̃n′ , Ỹn′

)} denote the testing set after the normalization. In
order to measure the performance of the implemented regression techniques, the
following prediction error is employed

MSE =
1
n′

n′∑

i=1

( ̂̃Y i − Ỹi)2, (11)

where ̂̃Y i is the predicted value of the testing observation X̃i based on the
estimated model. Hence, ̂̃Y i = X̃T

i β̂, where β̂ is the estimated weights derived
from the original training data by using one of the regression techniques studied
in this paper.

5 Prediction Based on LASSO Regression Methods

As discussed in the previous sections, regularization parameter λ plays an impor-
tant role in LASSO regression as it controls the level of feature selection. For the
given training set, we use the CV method to select the tuning parameter λ. We
determine the CV choice of λ as the minimizer of the following criterion follows

MSECV(λ) =
1

NCV

NCV∑

j=1

1
|Sj |

∑

(Xi,Yi)∈Sj

(Ŷi,−Sj
− Yi)2, (12)

where {S1, · · · , SNCV} is the partition of data set into NCV subsets. The predic-
tion value Ŷi,−Sj

= XT
i β̂−Sj

(λ), where β̂−Sj
(λ) is the estimator that is based

on all data but Sj . In our studies we use NCV = 3, i.e., the 3-fold CV. We
run the shooting algorithm for 2000 iterations, and then we obtain the value of
MSECV(λ). In Fig. 1(a) we plot the dependence of MSECV(λ) on λ.

Figure 1(a) shows that MSECV(λ) achieves minimum when λ̂ = 0.00152. In
Fig. 1(b) we plot the number of non-zero features as a function of λ. The number
of selected features by LASSO decreases as the value of λ increases. Therefore
in applications when we need a smaller number of features, we can select larger
λ as long as residual sum of squares is still at the acceptable low level. In our
simulation studies we choose λ̂ = 0.00152 and perform the shooting LASSO
algorithm based on 1500 iterations. This yields our final estimate β̂LASSO(λ̂CV)
of β. We have found that among all the original 939 input features of the linear
model, only 81 features are nonzero. Hence, 858 features out of the total 939 are
eliminated automatically by the LASSO method. Yet the prediction error is lower
than the linear model utilizing the all 939 features. As a result, a low complexity
model is obtained consisting of the most informative features. Specifically, we
find that the prediction error in (11) for the estimate β̂(λ̂CV) is 0.07349.
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Fig. 1. (a) MSECV(λ) vs λ, (b) Number of non-zero weights vs λ.

6 MSA-LASSO and Ridge Regression

In this section we examine the multi-step adaptive LASSO (MSA-LASSO) algo-
rithm discussed in Sect. 2.2. The MSA-LASSO method requires the choice of the
regularization parameter λ in each iteration. Table 1 shows a sequence of values
of λ selected by the CV. The resulted prediction error and number of features
selected in the linear model are also shown.

Table 1. Prediction results by applying the MSA-LASSO algorithm.

LASSO step k λ̂
(k)
CV MSECV(λ̂

(k)
CV) MSE for prediction # of selected features

1 0.01519734 0.06273982 0.07349168 81

2 0.00016132 0.05442373 0.07127725 53

3 0.00014077 0.05309322 0.07101012 45

4 0.00007339 0.05266391 0.07111103 43

5 0.00011722 0.05262231 0.07091939 43

6 0.00012935 0.05260251 0.07082070 43

The Ridge Regression algorithm was also implemented with the parameter λ
selected based on the 3-fold CV strategy. This estimate employs the full model
dimensionality yielding the higher prediction error 0.09020790. Next, the Kernel
Ridge Regression algorithm has been also implemented for different values of the
order parameter d, see Sect. 2.4. The constant q and the regularization param-
eter λ are selected simultaneously by a 3-fold Cross-Validation. The results are
summarized in Table 2. From these results, we see that Kernel Ridge Regression
leads to a smaller prediction error compared with the Ridge Regression method.
However, the prediction error is still larger than the one obtained using the
LASSO type algorithms. It is worth mentioning that the Kernel Ridge Regres-
sion relies on the higher-order nonlinear relationships among different features,
while LASSO uses merely the linear relationship in the reduced dimensionality
regression model.
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Table 2. Regression result by applying Kernel Ridge Regression using polynomial
kernel up to order 12.

Kernel order d q̂
(d)
CV λ̂

(d)
CV MSECV(λ̂

(d)
CV, q̂

(d)
CV) MSE for prediction

2 316228 3224.9 0.08795147 0.08513388

3 9474635 1612079.2 0.10264472 0.08146376

4 14330126 5.0646e11 0.10262463 0.08131985

5 18938420 0.01 0.10260855 0.08119592

6 23713737 0.01 0.10259889 0.08114725

...
...

...
...

...

12 52329912 0.01 0.10257793 0.08104084

7 Concluding Remarks

In this paper, we have examined a class of LASSO algorithms in the context of
transient stability analysis. Our results show that the LASSO algorithm and its
adaptive extensions outperform the commonly used techniques utilizing Ridge
Regression and Kernel Ridge Regression techniques in terms of the prediction
error. For the 25% perturbation data, the properly tuned LASSO regression leads
to a 13.6% smaller mean square prediction error compared with Kernel Ridge
Regression, or a 21.5% smaller mean square prediction error compared with
Ridge Regression. Furthermore, due to the adaptive nature of LASSO algorithm,
we achieve not only a smaller prediction error bust also a more parsimonious
model compared with the solutions employing the L2 penalty. Depending on
the purpose of application, one can choose between the LASSO method based
model that leads to more precise prediction with a larger number of features,
and the one that exhibits a slightly larger error with a smaller number of feature
variables.
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Abstract. Medium-term electric energy demand forecasting is coming
a key tool for energy management, power system operation and main-
tenance scheduling. This paper offers a solution to forecasting monthly
electricity demand based on multilayer perceptron model which approx-
imates a relationship between historical and future demand patterns.
Energy demand time series exhibit non-stationarity, long-run trend,
cycles of seasonal fluctuations and random noise. To simplify the forecast-
ing problem the monthly demand time series is represented by patterns
of yearly periods, which filter out a trend and unify data. An output vari-
able is encoded using coding variables describing the process. The coding
variables are determined on historical data or predicted using ARIMA
and exponential smoothing. As an illustration, the proposed neural net-
work model is applied to monthly energy demand forecasting for four
European countries. The results confirm high accuracy of the model and
its competitiveness compared to other models such as ARIMA, exponen-
tial smoothing, kernel regression and neuro-fuzzy system.

Keywords: Medium-term load forecasting · Multilayer perceptron ·
Pattern-based forecasting

1 Introduction

Power system load forecasting is an integral activity built into the processes of
the system operation planning in a longer horizon and its current control. It is
impossible to operate the system without accurate predictions. This is due to the
fact that electricity cannot be stored in larger quantities and current demand has
to be covered by production at any time. The accuracy of forecasts translates
into production and transmission costs as well as the degree of reliability of the
electricity supplies to recipients. Accurate forecasts of electricity demand are also
required in competitive electricity markets. Forecasts for different time horizons
and territorial areas determine the investment strategies of energy companies
and allow them to optimize their market positions. This directly translates into
the financial results of the competitive energy market participants.
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Time series of the monthly electricity demand, which are the subject of this
work, usually express an upward trend and yearly seasonality. The trend is corre-
lated with the level of economic development of a given country. Seasonal fluctu-
ations reflect the annual cycle associated with climatic factors and variability of
seasons. Among the factors that disrupt both the trend and seasonal variations
of the series, political decisions and factors affecting economic development are
mentioned.

The methods of medium-term prediction of power systems loads can be
divided into two general categories [1]: autonomous modeling approach and
conditional modeling approach. In the first approach primarily historical loads
and information about weather conditions are applied as input variables to pre-
dict electrical power loads. This approach is more suitable for stable economies,
without sudden changes affecting the electricity demand. The conditional mod-
eling focuses on the economic analysis and long-term planning and forecasting
of energy policy. The socio-economic conditions are taken into account, which
influence the energy demand in a given region. Economic growth is described by
economic indicators, which constitute additional inputs of the forecasting model
[1,2]. The executive parts of these both approaches employ statistical models or
models based on machine learning and computational intelligence. Classical sta-
tistical models include autoregressive moving average models such as ARIMA,
exponential smoothing and linear regression. Limited adaptive abilities of these
methods as well as problems with modeling nonlinear relationships have resulted
in increased interest in artificial intelligence techniques [3]. Artificial neural net-
works (NNs) are the most popular representatives of this group. They offer many
advantages compared to statistical models such as identifying and modeling non-
linear functions, learning appropriate relationships directly from data, ability to
generalization and parallel processing. In [3] the authors applied NNs in two
variants: multilayer perceptron and radial basis function network, to forecast
the trend of the monthly loads time series. The seasonal component is pre-
dicted using the Fourier series. Both forecasts, trend and seasonal fluctuations
are aggregated. Due to the problem decomposition, considerable simplification
of neural models has been achieved. The networks contained only two hidden
neurons, which translated into faster training. Both components of the monthly
load time series, a trend and seasonal fluctuations, are independently predicted
in [4] using NNs. To identify the trend, the authors used moving averages and
cubic splines. The combined forecast turned out to be more accurate than the
forecast generated by the single NN.

NNs are often combined with other methods such as fuzzy logic and evo-
lutionary algorithms. For example in [5] they are supported by fuzzy logic. In
this work seasonal variables are defined in the form of trapezoidal indicators
of the season. The authors train a collection of NNs with the same architec-
ture but other starting weights. NNs responses are aggregated, which in effect
gives more accurate forecasts. To prevent overfitting various regularization tech-
niques are used. A weighted evolving fuzzy neural network for monthly electricity
demand forecasting was proposed in [6]. Fuzzy rules implemented in neurons are
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introduced here additively in the training process. The novelty of this work is
introducing a weighted factor to calculate the importance of each factor among
the different rules. Moreover, an exponential transfer function is employed to
transfer the distance of any two factors to the value of similarity among differ-
ent rules. In [7] NNs trained by different heuristic algorithms, including grav-
itational search algorithm and cuckoo optimization algorithm, are utilized to
estimate monthly electricity demands. The authors showed that the proposed
approach outperforms the others and provides more accurate forecasting than
traditional methods. An example of combination of NNs and genetic algorithms
can be found in [8]. This work uses NNs, which architecture is developed using
genetic algorithm to realize the hourly load forecasting based on the monthly
total load consumption.

In this work we use multilayer perceptron for forecasting monthly electricity
demand. What distinguishes the proposed model from other neural models is
that it works on patterns of seasonal cycles of the time series. Patterns allows
us to unify data and filter out the trend. The relationship between input and
output variables in the pattern space is simpler compared to the original space.
Thus, the forecasting neural model has an easier task to solve and can contain
only a few neurons.

The paper is organized as follows. Section 2 presents the proposed forecasting
model including time series representation using patterns. In Sect. 3 the perfor-
mance of the proposed model on real-world data is evaluated. Finally, Sect. 4 is
a summary of our conclusions.

2 Forecasting Model

Monthly electricity demand time series exhibit yearly cycles which we trans-
form into input patterns. An input pattern xi = [xi,1xi,2 . . . xi,n]T of length
n = 12 is a vector of predictors representing n timepoints preceding the fore-
casted point, i.e. the time series sequence covering a seasonal cycle Xi =
{Ei−n+1, Ei−n+2, . . . , Ei}. The vector xi is a normalized version of the demand
vector [Ei−n+1Ei−n+2 . . . Ei]T . Its components are calculated as follows [9,10]:

xi,t =
Ei−n+t − Ei

Di
(1)

where t = 1, 2, ..., n, Ei is the mean value of the sequence Xi, and Di =√∑n
j=1(Ei−n+j − Ei)2 is a measure of its dispersion.

The normalized x-vectors for different n-length demand sequences have all
the unity length, mean value equal to zero and the same variance. Thus, the
input data are unified. The trend is filter out and x-patterns carry information
about the shapes of the yearly cycles.
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The forecasted variable is Ei+τ , i.e. electricity demand at month i+τ , where
τ ≥ 1 is a forecast horizon. This variable is also encoded to unify data filtering
the trend out. The encoded demand is:

yi,τ =
Ei+τ − E∗

D∗
(2)

In this equation coding variables E∗ and D∗ should be determined for the sea-
sonal cycle covering the timepoint i+ τ . But this future cycle is unobtainable in
the moment of forecasting (timepoint i). Thus, the coding variables cannot be
determined from it. We use in their place coding variables determined for the
known preceding seasonal cycle Xi, i.e. E∗ = Ei, D∗ = Di. Let us mark this
approach by C1.

In the second approach, C2, E∗ and D∗ represents mean value and dis-
persion of the seasonal cycle including i + τ . When the forecast horizon is
τ ∈ {1, 2, ..., 12}, this cycle covers the future sequence {Ei+1, Ei+2, . . . , Ei+12}
which is unknown. We predict the coding variables for this sequence using
ARIMA and exponential smoothing (ETS).

The third approach for coding variable calculation, C3, is used only for one-
step ahead forecasts. In this case E∗ and D∗ are determined on the basis of
the sequence {Ei−n+2, Ei−n+3, . . . , Ei+1}, where the last component, Ei+1, is
unavailable. In such case, as in C2, the coding variables are forecasted using
ARIMA and ETS.

Having transformed input and output data the training set is composed. It
includes pairs of x-patterns and corresponding encoded output variables y: Φ =
{(xi, yi,τ )|xi ∈ R

n, yi,τ ∈ R, l = 1, 2, ..., N}. The x-pattern size determines a
number of NN inputs, 12. The number of hidden neurons is a variable, adjusted
to the complexity of the target function which maps x onto y. When the forecast
horizon is τ , the neural model has one output, y. This variant of the forecasting
model is marked by A1 in the simulation study section. But other variant is also
considered, marked by A2, where the network forecasts all seasonal cycle for the
next year. In this case it has n = 12 outputs for τ = 1, 2, ..., 12, and the training
set is Ψ = {(xi,yi)|xi ∈ R

n,yi ∈ R
n, l = 1, 2, ..., N}, where yi = [yi,1yi,2...yi,n].

Variants A1 and A2 are used for twelve months ahead forecasts. In experimental
part of the work we test the NNs also in one month ahead forecasting (variant B).
In this case the training set is Φ, where τ = 1 and x-pattern represents the sequence
of twelve months directly preceding the forecasted month.

In all cases the NN has a single hidden layer with sigmoidal neurons. It learns
using Levenberg–Marquardt algorithm with Bayesian regularization, which min-
imizes a combination of squared errors and the weights. This prevent overfitting.
The model hyperparameters, i.e. the number of neurons, were selected in leave-
one-out cross-validation. When the forecasts of the encoded demands are gener-
ated by the network, the forecasts of demands are calculated using transformed
equation (2):

Êi+τ = ŷi,τD∗ + E∗ (3)
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3 Simulation Study

In this section, the proposed neural model is evaluated on real-word data includ-
ing monthly electricity demand for four European countries: Poland (PL), Ger-
many (DE), Spain (ES) and France (FR). The data are taken from the publicly
available ENTSO-E repository (www.entsoe.eu). They cover time period from
1998 to 2014 for PL, and from 1991 to 2014 for other countries. Our goal is to
construct the forecasting models for 2014 using historical data.
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Fig. 1. Real and forecasted monthly demand for A1 variant.

We consider three variants of the forecasting procedure, A1, A2 and B. In
variant A1 the model generates forecast for the k -th month of 2014 on the basis
of data up to December 2013. The forecast horizon changes from τ = 1 for
January 2014, to τ = 12 for December 2014. We train twelve NNs to generate
forecasts for successive months of 2014 (each month forecasted by a separate
model). Inputs of the models are the same: x-pattern representing time series
fragment from January to December of the previous year. The output variable
is encoded using C1 or C2 approach. In the latter case coding variables E∗ and
D∗ for 2014 are predicted using ARIMA and ETS on the basis of their historical
values.

In variant A2 instead of using twelve NNs for forecasting for individual
months, we use single NN with twelve outputs. Input patterns are the same
as for variant A1. Output variables are encoded using C1 or C2 approach. In C2
case we use ARIMA and ETS to forecast them.

www.entsoe.eu
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Fig. 2. Real and forecasted monthly demand for A2 variant.

In variant B the model generates forecast for the next month (from January to
December 2014, τ = 1) on the basis of data up to this month (e.g. the model for
July 2014 gets input pattern representing time series fragment from July 2013 to
June 2014). For each month we build separate NN model, which learns on the input
patterns representing twelve preceding months. The output variable is encoded
using C1 or C3 approach. The latter case needs the coding variables E∗ and D∗ to
be predicted. As for the A variants we use for this ARIMA and ETS.
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Fig. 3. Real and forecasted monthly demand for B variant.
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Fig. 4. Errors for A1 variant.

Figures 1, 2 and 3 show the real and forecasted monthly demand and Figs. 4, 5
and 6 show the errors (mean absolute percent errors MAPE) for each forecasted
month. The forecast errors are shown in Tables 1 and 2. For comparison errors
for other forecasting models are also presented: ARIMA, ETS, Nadaraya-Watson
estimator NW-E [10] and neuro-fuzzy system N-FS [9]. The last two models work
on patterns defined in the same way as in this work. Best results for each data
are underlined. When comparing errors of all models, it should be noted that
both NW-E and N-FS overcame other models in three out of eight cases each.
As we can see from Tables 1 and 2, the proposed method is competitive to other
ones but it is hard to indicate its best variant. However, C1 variant is usually
better than C2 and C3 ones. It means that the coding variables do not have to
be predicted. We can calculate them from the known preceding seasonal cycle.
This simplifies the forecasting procedure.
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Fig. 5. Errors for A2 variant.
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PL, variant B

1 2 3 4 5 6 7 8 9 10 11 12

Months

0

1

2

3

4

5
M

A
P

E
, %

B-C1
B-C3-ARIMA
B-C3-ETS

DE, variant B

1 2 3 4 5 6 7 8 9 10 11 12

Months

0

2

4

6

8

M
A

P
E

, %

ES, variant B

1 2 3 4 5 6 7 8 9 10 11 12

Months

0

1

2

3

4

5

M
A

P
E

, %

FR, variant B

1 2 3 4 5 6 7 8 9 10 11 12

Months

0

2

4

6

8

10

12

M
A

P
E

, %
Fig. 6. Errors for B variant.

In Table 3 the number of neurons are shown selected in leave-one-out proce-
dure. Surprisingly, NN in variant A2 having the most difficult task to forecast
twelve monthly demands at once needs the least hidden neurons: in most cases
only one. Single-output NNs need more neurons to approximate the target func-
tion: from 2.58 up to 5.92.

Table 1. MAPE for optimal number of neurons, A1 and A2 variants.

Model PL DE ES FR

A1-C1 1.76 1.86 2.02 6.84

A1-C2-ARIMA 2.17 2.31 3.21 7.47

A1-C2-ETS 2.31 2.32 2.10 5.48

A2-C1 1.75 1.93 1.90 4.71

A2-C2-ARIMA 1.38 1.88 3.39 7.41

A2-C2-ETS 1.55 1.86 2.28 5.42

ARIMA 3.25 4.36 1.93 10.76

ETS 6.42 2.82 2.36 6.77

N-WE 1.53 1.80 1.49 4.71

N-FS 1.57 4.94 1.67 3.34
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Table 2. MAPE for optimal number of neurons, B variant.

Model PL DE ES FR

B-C1 1.83 3.27 1.42 3.23

B-C3-ARIMA 1.97 2.29 1.80 4.00

B-C3-ETS 1.87 2.30 1.62 4.00

ARIMA 1.75 2.33 1.43 4.10

ETS 2.28 2.64 2.85 3.66

N-WE 1.30 2.47 1.16 2.83

N-FS 1.06 2.87 0.95 5.85

Table 3. Optimal number of neurons.

Model PL DE ES FR

A1-C1 5.25 4.17 3.33 4.58

A1-C2-ARIMA/ETS 2.92 4.17 5.92 4.00

A2-C1 4 1 2 2

A2-C2-ARIMA/ETS 1 1 1 1

B-C1 4.42 4.50 3.42 4.33

B-C3-ARIMA/ETS 3.00 2.58 4.17 3.17

4 Conclusion

In this work we examine the neural network model for pattern-based forecasting
monthly electricity demand. The model works on patterns representing normal-
ized yearly seasonal cycles of the demand time series. Input patterns express
shapes of the yearly cycles after filtering out a trend and unifying a variance.
Also the output data are unified using coding variables which are calculated
based on the historical data or they are predicted. The pattern approach sim-
plify the forecasting problem so the forecasting model does not have to capture
the complex nature of the process. This leads to model simplification and faster
learning.

Multilayer perceptron provides a flexible model which can forecast both indi-
vidual monthly demand and the whole yearly cycle. The proposed neural model
is competitive with other state-of-the-art models such as neuro-fuzzy system and
Nadaraya-Watson estimator as well as the classical statistical models including
ARIMA and exponential smoothing. However, it is difficult to indicate the best
variant of the model. It should be selected depending on the data, because each
monthly demand time series is characterized by its own features such as the
trend, variance, seasonal variations and the level of random noise.
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Abstract. The squirrel-cage induction motors (commonly called just
electric motors) are widely used in electromechanical devices. They usu-
ally act as a source of mechanical power for different types of industrial
machines. There is a natural life cycle of such electric motors ending in
malfunction caused by damage of particular electric or mechanical parts.
Sudden and unforeseen engine failure may turn out to be a heavy cost for
the company. Early detection of motor damage can minimize repair costs.
In this work a machine-learning based methodology for early motor mal-
function detection is presented. A test stand with a three-phase induction
motor that can simulate various types of stator winding short-circuit
faults under load controlled by a DC generator was build. This stand
was equipped with multiple sensors for continuous monitoring. Read-
ings from sensors were collected for different loads and types of damage.
Multiple methods of preprocessing and classification were tested. Sen-
sors types are evaluated for accuracy of malfunction recognition based
on the results of computational experiments. The 5-fold stratified cross-
validation was used for evaluation of preprocessing steps and classifiers.
The best results were achieved for neutral voltage, axial flux, and torque
sensors. Acquisition time of 0.16 s is sufficient for accurate classification.

Keywords: Induction motor · Malfunction detection · Classification ·
Pattern recognition · Computational intelligence methods

1 Introduction

Electric motors are used in many sectors of industry. The use of electric motors
is based on their reliability, the possibility of precise control and efficiency. On
the other hand, the effect of sudden and unforeseen motor failure or even unno-
ticed degradation of engine parts can lead to failure of the entire machine and,
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finally, this breaks the process where the engine is used. This can increase the
repair cost of the engine or a machine, or the cost related to unavailability of the
machine. Mitigation of these risks requires wear monitoring and prediction of
electric motor malfunction, which is fundamental for proper planning of service
breaks and, consequently, cost reduction. Equipped with various electromechan-
ical sensors, an electric motor can be monitored and sensor readings can be used
by a computational intelligence system for malfunction prediction.

One of the first attempts to apply artificial intelligence techniques for detec-
tion of faults in induction motors is described in [9]. In this work the shape of the
vibration spectrum was analyzed for fault symptoms. The authors assumed an
ideal machine which converts all electrical energy to kinetic energy and does not
produce any vibration (zero vibration energy). But in fact, a real machine pro-
duces some characteristic vibration patterns and examining whether any char-
acteristic frequencies appear in a spectrum gives information about engine wear.
Two faults were simulated in this work: a bearing fault and an imbalance in
supply. A simple Artificial Neural Networks (ANN) algorithm was tested and
evaluated.

In the review article [5] authors present and discuss the application of expert
systems, artificial neural networks (ANNs), fuzzy logic systems and genetic algo-
rithms to the diagnosis of electrical machine drives. The instantaneous voltages
and currents are taken as input signals for the diagnostic procedure.

A Support Vector Machine (SVM) based classification for fault diagnostics
of electrical machines was used in [21]. Numerical magnetic field analysis was
used to generate input data for diagnosis. The four fault states (broken rotor
bar, broken end-ring in rotor cage, shorted coil in stator winding and shorted
turn in stator winding) and one healthy state were analyzed.

In [22] the supervised and unsupervised neural networks were applied for
fault detection of electrical motors. The detection algorithm performance was
verified on three fault types: air gap eccentricity, broken rotor bar, and bearing
fault. The electrical supply frequency was the input signal.

In the work [15] the authors used unsupervised neural networks to detect
faults of a motor stator in the three-phase induction motor. They considered
alpha-beta stator currents as input signal.

The detection methods for stator turn fault and rotor bar fault were devel-
oped in [16]. Authors based their methods on calculating the cross-coupled
impedance and analyzing the current frequency signature of the motor.

In work [18] a bearing fault (the outer race) detection method using the
homogeneity algorithm is presented.

Authors of [11] show a methodology for vibration measurement and motor
current signature analysis that enables detection of malfunctions of rotor, stator
and other electric motor components.

In the study [7] the influence of a broken bar fault on the electromagnetic
characteristics of the induction motor is analyzed. Authors, using an asyn-
chronous cage motor and a finite element method-based analysis present another
fault detection method.
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The work [13] discusses the faults prediction of the electric motor using a
Bayesian graphical model. The model was built using the knowledge about the
system behavior, the degradation mechanisms, the functional decomposition and
the links between the system’s components. As the output, the probability of a
failure is given.

Based on presented state of the art, computational intelligence methods can
be useful for motor malfunction detection. It is still unknown what methods are
the most appropriate for this task, which sensors give the most useful data, and
what the shortest time of data acquisition for accurate malfunction recognition
is. Computational intelligence methods have already been used to solve classi-
fication problems in various industrial domains [19,20,23,24]. In this article, a
methodology for complex diagnosis of stator coil inter-winding short circuits in
three-phase squirrel-cage induction machine based on computational intelligence
methods is presented.

Data was collected from specially constructed experimental setup and com-
putational experiments were performed as described in the following sections to
prove these hypotheses.

2 Materials and Methods

2.1 Experimental Setup

The subject of this study is the induction motor Sg 112M-4 produced by a Polish
company Tamel. The experimental setup presented in Fig. 1 was build to collect
the data. Besides motor, the setup, in general, included a DC generator with
two 2 kW heaters for load simulation, two flexible couplings Rotex GS to link
the motor and the generator, and an excitation regulator.

Fig. 1. Overall experimental setup diagram.

For research purposes, the taps of selected windings were led out of the casing
for simple short circuits simulation. As a result, the nine classes of short circuits
were simulated, between the first winding and the others as presented in Fig. 2.

The detailed schema of the experimental setup is presented in Fig. 3. It
includes measuring instruments for motor monitoring.
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Fig. 2. Inter-winding short circuits schema.

The particular instruments (sensors marked by numbers in brackets) obser-
vations were read with the sampling frequency equal to 50 kHz by measurement
board NI USB-6259.

Fig. 3. Detailed experiment schema with sensor labels.

The measurement of currents and voltages (S1–S6) was performed using cur-
rent transducers model LEM HY 15-P and voltage transducers model LEM LV
25-P. The zero voltage measurement S14 between the voltage potential at the
zero point of the stator winding and the neutral point on the power board was
made using TESTEC TT-SI 9002 voltage probe. The vibration signals S11 and
S12 were obtained from accelerometers ICP 603C01 mounted respectively in the
X axis and Y axis. The noise level S13 generated by the induction motor was
measured by a Roga RG-50 microphone mounted 0.5 m from the machine. The
signals from both accelerometers, as well as from the microphone were directed
to the PA-3000 conditioner. Electromagnetic torque S7 and rotation speed S8
were registered by the Dataflex 22/50 torque meter and DF1 connection termi-
nal. A voltage signal proportional to derivative axial flux S9 was registered by
the coil that measured the voltage that was induced on it. Finally, a current S10
in the shorted circuit was measured by Tektornix A622 current clamps. This
signal was registered for control purposes only.
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2.2 Materials

Five levels of load of the motor were tested by adjusting load by set stator
current: idle (1 A), 2 A, 3 A, 4 A and 5 A. Then, for each load state, ten different
states of malfunction (undamaged and nine short circuits) were simulated. Ten
seconds of observations were recorded for each such configuration. Measurement
setup was repeated twenty times for each configuration. As a result of the data
acquisition 5 × 10 × 10 × 50 000 × 20 = 0.5 billions observations were recorded
for further analysis.

The data were organized in classes of records. Each class reflects the configu-
ration of the load of the motor and state of malfunction (or no malfunction). As
a result, there were 50 classes of 20 times repeated records of 10 s each, where
each record consisted of 0.5 million of observations.

The malfunction recognition task is to classify the previously unseen record
of data (new signal) to one of the known classes (malfunctions).

The difference in direct signal values is easily observable as the damage sever-
ity increases for example in axial flux (unipolar) data. This is shown in Fig. 4,
as well as in Fig. 5 where spectra of these signals are presented. For relatively
severe damage classes recorded signals are clearly different. Note that this may
not be sufficient as the focus is on achieving near perfect overall accuracy, and
that requires a low classification error also for low-degree damage cases where
such differentiation is not present.

Fig. 4. Comparison of axial flux signals for three different damage classes. The blue
line corresponds to signal in undamaged case, the orange one corresponds to short
circuit 1–2, and the green to short circuit 1–51. (Color figure online)
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Fig. 5. Comparison of axial flux signals spectra for three different damage classes. The
blue line corresponds to signal in undamaged case, the orange one corresponds to short
circuit 1–2, and the green to short circuit 1–51. (Color figure online)

3 Experiments

To answer the questions set out in the Introduction computational experiments
were performed in the following sequence:

1. Selection of the test set.
2. Cross-validation:

(a) Splitting into validation and training sets.
(b) Preprocessing.
(c) Classification.
(d) Evaluation on the validation set.

3. Evaluation on the test set.

Preprocessing is described in Sect. 3.1. Classification, cross-validation and eval-
uation are described in Sect. 3.2.

3.1 Preprocessing

Raw sensor data is inappropriate as direct input to classification algorithms, so
multiple preprocessing steps are required. First, we reduce the length of the signal
and apply the Fourier Transform. Using a lower resolution signal is considered to
speed up the classification and classifier training, so a resampling or averaging step
is needed. Applying a logarithmic transformation of the power spectrum is also
considered. Standardization (or normalization) and Principal Component Analy-
sis (PCA) [12] are the final steps of the preprocessing pipeline that were tested in
classification accuracy optimization. We evaluated different combinations of these
steps (including omitting some of them) and retrained our models each time. The
final shape of the preprocessing pipeline is presented in Fig. 6.
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Fig. 6. Preprocessing pipeline.

Recorded signals are 10 s long, although we also consider the classification of
much shorter signals. As shorter signals are easier to collect and faster to analyze,
it is important to measure the trade-off between classification accuracy and
speed, as outlined in the third hypothesis. As such, when investigating shorter
measurement times, only a number of first samples from a record available in
our dataset is taken and the rest is discarded. This has benefits similar to data
reduction mentioned above, but critically this determines the time needed to
classify the malfunction in the potential final detection device. We test different
lengths and based on the results the selection of the shortest one that still gives
good enough results can be performed.

Before transforming the data to the frequency domain, it is optionally aver-
aged so that only a constant number of samples per signal remain, irrespective
of the measurement time set in the first step.

Fast Fourier Transform is the most commonly used algorithm for obtain-
ing frequency domain information from time series data [3]. If performed, it is
applied on entire sequence obtained in the last step. We assume that classifi-
cation would happen continuously, and so this results in a form of short-time
Fourier Transform. The logarithm of the obtained power spectrum can be then
taken.

As part of the pipeline, standardization and PCA is performed afterward.
The optimal number of selected principal components of the PCA algorithm for
the current pipeline is found by grid search, similarly to the parameters of the
classification algorithm. It is very important to note that although standardiza-
tion and PCA are usually thought of as preprocessing steps, they essentially are
learning algorithms, as in both cases the results depend on training data input
into them. It can result in the pipeline being inadequate for test data if training
set and test set distributions vary significantly.

Data analysis was performed using the Simple Intuitive Language for Exper-
iment Modeling (SILEM) [1], a high-level framework based on the scikit-learn
Python package [17].

3.2 Classification

A test set consisting of 20% of the data was randomly selected using stratified
sampling. This means data was first divided into mutually exclusive groups based
on class labels, and then sampled uniformly from each group. The remaining 80%
of the data was used for training and validation.

Each tested model was trained using 5-fold cross-validation. This procedure
splits the training set into five disjoint subsets called folds. For each fold, a
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Table 1. List of methods and parameters.

Method Parameter Value

PCA number of components 10, 20, 50, 100

kNN metric Minkowski (p ∈ {1, 2, 3})

number of neighbours 1, 3, 5, 9, 15

SVM kernel polynomial, RBF, sigmoid

C 10−3, 10−2, 10−1, 1, 10, 100

MLP activation function logistic, relu

sizes of hidden layers (50), (100, 30), (100, 50, 25)

RF number of trees 10, 20, 50, 100, 200

criterion gini, entropy

GB number of trees 50, 100, 200, 500

learning rate 10−2, 10−1, 1

NB – –

model score is computed using the current fold for verification while the other
four folds are used for training the model. Final cross-validation score reported
by the procedure is the average of the scores across all fold.

For classification purposes Multi-Layer Perceptron (MLP) [8], Support Vec-
tor Machine (SVM) [4], k-Nearest Neighbour (kNN) [2], Random Forest (RF) [10]
Gradient Boosting (GB) [6] and Naive Bayes (NB) [14] algorithms were tested.

The tuning of hyperparameters, that is parameters that are set and passed
to algorithms in the pipeline before the learning process, is performed using the
grid search. For every hyperparameter, a list of values is specified manually. This
creates a space of parameters which is then exhaustively explored. Note cross-
validation as explained above is performed for each combination and the final
model is refit using the whole dataset previously passed to the cross-validation
procedure.

As there is no class imbalance in the collected data, choosing accuracy for
this problem as the scoring metric is appropriate. Although one of the aims is
to detect the malfunction as early as possible, assigning greater weight to these
classes would incline the models to prioritize minor-damage detection accuracy
over severe-damage detection accuracy which is not a desirable outcome.

We used the same set of grid parameters for each preprocessing pipeline and
for every measurement time that was tested. The parameter values tested are
given in Table 1.

4 Results and Discussion

First of all, accuracy on the test set using data from one or any two sensors
was calculated. We considered different measurement time lengths in order to
select one that is the shortest while still giving acceptable results. Accuracy,
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Fig. 7. Impact of measurement length on classification accuracy.

Table 2. Classifiers and parameter values that result in the highest accuracy of clas-
sification. Each row corresponds to classification using data from a single sensor.

Sensor Classifier Parameters Accuracy

Torque SVM number of PCA components: 100,
C: 100, kernel: rbf

89.5%

Rotation speed SVM number of PCA components: 100,
C: 1, kernel: polynomial

62.5%

Axial flux SVM number of PCA components: 100,
C: 1, kernel: polynomial

96.5%

Accelerometer – X axis SVM number of PCA components: 100,
C: 100, kernel: RBF

79.5%

Accelerometer – Y axis SVM number of PCA components: 100,
C: 10, kernel: RBF

81.5%

Microphone SVM number of PCA components: 100,
C: 10, kernel: RBF

61.5%

Neutral voltage SVM number of PCA components: 100,
C: 100, kernel: RBF

96.5%

as defined for multiclass classification, is equal to the ratio of the number of
examples classified correctly to the overall number of examples.

All experiments described in this section were performed using stages listed
in Sect. 3 and parameters presented in Table 1. Hyperparameters for PCA and
classifiers are found by performing grid search. During averaging, ns = 500
samples per signal were retained. We obtained comparable results without
the standardization step and significantly worse with normalization instead of
standardization.
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Table 3. Highest accuracy results for every single and pair combination of sensors.
Following sensors were considered: torque (S7), rotation speed (S8), axial flux (S9),
X-axis accelerometer (S11), Y-axis accelerometer (S12), microphone (S13) and neutral
voltage (S14).

S7 S8 S9 S11 S12 S13 S14

S7 SVM:
89.5%

SVM:
91.5%

SVM:
100%

SVM:
91.0%

SVM:
92.5%

SVM:
86.0%

SVM:
99.5%

S8 - SVM:
62.5%

MLP:
89.5%

SVM:
84.0%

MLP:
87.0%

MLP:
71.0%

SVM:
94.5%

S9 - - SVM:
96.5%

SVM:
96.5%

SVM:
99.5%

MLP:
90.5%

SVM:
99.5%

S11 - - - SVM:
79.5%

SVM:
85.5%

SVM:
80.5%

SVM:
95.0%

S12 - - - - SVM:
81.5%

SVM:
81.5%

SVM:
98.0%

S13 - - - - - SVM:
61.5%

SVM:
95.0%

S14 - - - - - - SVM:
96.5%

Some classifiers achieved almost perfect accuracy results with measurement
time lengths longer than one second. We focused on and tested the following mea-
surement time lengths, presented here as a number of samples: 512, 1024, 2048,
4096, 8192, 16384, 32768, 65536. Time lengths, therefore, range from 0.01 to
1.31 s. Figure 7 presents the dependency of classification accuracy on the length
of analyzed signal sample for the classifiers and single sensor combinations that
obtained the best result for any of the tested measurement lengths.

As can be seen in Fig. 7, there is no significant increase in accuracy for results
with measurement length longer than 8192 samples. Therefore, all further dis-
cussed results assume this number of samples. Table 2 presents accuracy achieved
by selecting and training a classifier based only on single sensor data. Highest
achieved accuracy for data from pairs of sensors are presented in Table 3.

5 Conclusions

We infer from the results that 0.16 s is a sufficient time to accurately evaluate if
this particular model of the electric motor is malfunctioning. Finest results are
obtained by selecting neutral voltage, axial flux or torque as signals to build the
classifier and the final malfunction detection device on. Combining two sensors
does significantly improve final accuracy. SVM classifier with RBF or polyno-
mial kernel provides the highest accuracy for this problem. Future research will
include using different preprocessing methods, including wavelet transform and
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spectra peak detection. Performance of other classification methods like recur-
rent neural networks will also be investigated.
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