
Chapter 11
Prediction Theory for Stationary
Random Signals

Abstract Prediction (or forecasting) of future values of the stationary random
signals based on the known past depends on the functional analytic tools from
Hilbert spaces. Essentially, the optimal predictor is an orthogonal projection of
the future values of the signal onto the space spanned by the past values. The
chapter presents the relevant Wold decomposition theorem, and an application of
the Spectral Representation to the solution of the optimal prediction problem.

11.1 The Wold Decomposition Theorem and Optimal
Predictors

In this chapter we will consider prediction problems for discrete time weakly
stationary random signals (Xn), n = . . . ,−2,−1, 0, 1, 2, . . . . The assumption is
that the second moments are finite, the mean value EXn = 0, and the span of the
“past” of the process in the Hilbert space L2 will be denoted

M0 = span{Xn, n ≤ 0}

The optimal predictor X̂m of the values of the process at time m > 0 (in the future)
based on the knowledge of the past of the process is, obviously, the orthogonal
projection

X̂m := Pred0Xm = ProjM0
Xm.

In what follows we shall also need the special notation for the following spaces:

Mn = span{Xk, k ≤ n}, M−∞ =
⋂

n

Mn.
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We also need to distinguish between two important categories of time series (Xn):

Definition 11.1.1

(a) The process (Xn) is said to be deterministic (or, singular) if M−∞ = M+∞,
or, equivalently, in view of the stationarity assumption, if Mk = Mk+1 for all
k. In this case the perfect linear prediction is possible because the error

E(X̂m − Xm)2 = ‖X̂m − Xm‖2
2 = 0.

(b) The process (Xn) is said to be regular if M−∞ = {0}. In this case

E(X̂m − Xm)2 = ‖X̂m − Xm‖2
2 > 0.

In general,

{0} �= M−∞ �= M+∞,

so the process is neither deterministic nor regular. However, nondeterministic
processes can be decomposed into a regular and deterministic part:

Wold’s Decomposition Theorem If the process (Xn) is regular, then

Xn = Zn + Yn, n = . . . ,−2,−1, 0, 1, 2, . . . ,

where (Zn) is regular, and (Yn) is deterministic, and, moreover, the two components
are orthogonal to each other,

(Zn) ⊥ (Yn).

The regular process (Zn) can be expressed in the form

Zn =
∞∑

k=0

γkWn−k,

where both (Wn) and (Yn) have zero mean, (Wn) form an uncorrelated sequence
with constant variance σ 2, γ0 = 0, and

∑∞
k=0 γ 2

k < ∞. The decomposition is
unique.

Proof Let

Wk = Xk − X̂k, k = n, n − 1, n − 2, . . .

Since Wk ⊥ Mk−1, we see right away that the sequence (Wk) is uncorrelated, that
is EWkWl = 0, for l < k. Define the coefficients γk as follows:
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γk = EXnWn−k

σ 2
, k = 1, 2, . . . .

Now, we have the obvious inequality

0 ≤ E

(
Xn −

m∑

k=0

γkWn−k

)2

= EX2
n − σ 2

m∑

k=0

γ 2
k ,

which implies that
∑∞

k=0 γ 2
k < ∞, and that

∑∞
k=0 γkWn−k converges in L2 to a

random quantity in the subspace spanned by the sequence Wn,Wn−1,Wn−2, . . . .

Now, the sequence (Yn) can be defined by the equality,

Yn = Xn −
∞∑

k=0

γkWn−k,

so that

EYnWl = EXnWl − σ 2γn−l = 0, for, l ≤ n,

and EYnWl = 0, for l > n, because Wl orthogonal to the subspace Mn � Yn.
Therefore Wn ∈ Mn−1, and by induction, Wn ∈ Mk , for all k ≤ n, so that

M−∞ =
∞⋂

k=0

Mn−s .

To finish the proof of the theorem let us make two observations.

(i) If M⊥
W is the subspace orthogonal to M⊥

W , the subspace spanned by (Wn),
then M−∞ = M⊥

W . Indeed, if XinM−∞, then X ∈ Mn, and is orthogonal to
Wn+1, for every n. Hence, X ∈ M⊥

W . Conversely, if X ∈ M⊥
W , then X ∈ Mn,

for some n. Since X ⊥ Wn we have X ∈ Mn−1, and, by induction, X ∈ Mk ,
for all k ≤ n. Moreover, X ∈ Mk , for k > n, because Mn ⊂ Mk . So the first
observation is verified.

(ii) Since Zn = ∑∞
k=0 γkWn−k , the subspace MZ

n spanned by Zn,Zn−1, . . . , is
contained in the subspace MW

n spanned by Wn,Wn−1, . . . . Conversely, if Wn ∈
Mn = MZ

n ⊕ MY
n , and Wn ⊥ MY

n , then Wn ∈ MZ
n . So MW

n = MZ
n .

Now we are ready to complete the proof of the Decomposition Theorem. Since,
for every n, Yn ∈ M−∞ =⊇ MY

n , the condition X ∈ M−∞ implies that X ∈ Mn

because X ⊥ MW
n = MZ

n . Thus X ∈ MnY . This proves that |calMY
n = M−∞,

and the sequence (Yn) is deterministic.
Now, since Zn = Wn + ∑∞

k=1 γkWn−k , and Wn ⊥ ∑∞
k=1 γkWn−k ∈ MW

n−1, the

error E(Zn − Ẑn)
2 = σ 2 > 0, so that the sequence (Zn) is regular.
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Since

Xn = Zn + Yn =
∞∑

k=0

γkWn−k + Yn = Wn +
∞∑

k=1

γkWn−k + Yn,

and

Wn ⊥
∞∑

k=1

γkWn−k + Yn,

the best predictor for Xn is the orthogonal projection of Xn onto Mn−1, which is

X̂n =
∞∑

k=1

γkWn−k + Yn.

The square of its error

‖Xn − X̂n‖2
L2 = E(Xn − X̂n)

2 = EW 2
n = σ 2,

because γ0 = 1.

11.2 Application of the Spectral Representation to the
Solution of the Prediction Problem

In this section we will consider the case of discrete time stationary signal X(n), and
assume that EX(n) = 0. The spectral representation theorem of Sect. 10.4 gives rise
to a linear isometry

L2([0, 1], dCW ) � g −→
∫ 1

0
g(f )dW(f ) ∈ L2(�,F , P ),

which simply extends the representation,

X(n) =
∫ 1

0
ej2πnf dW(f ),

where the cumulative control function

CW (f ) = E[W(f )]2 = SX(f ),
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where SX(f ) is the cumulative spectral function of the process X(n). Obviously, in
the particular case g(f ) = ej2πnf the isometry is the mapping,

ej2πnf −→ X(n).

So, the optimal prediction of the value of the signal at the future time m > 0,
based on the past values X(n), n ≤ 0, is reduced to finding the function,

g(f ) ∈ spanL2(dS)(e
j2πnf , n ≤ 0),

such that the error of the prediction is minimal, that is

‖ej2πmf − g(f )‖L2(dS) = min
h

‖ej2πmf − h(f )‖L2(dS),

where h ∈ spanL2(dS)(e
j2πnf , n ≤ 0). Or, equivalently, the optimal choice of g has

to be an orthogonal projection in L2, that is

ej2πmf − g(f ) ⊥ spanL2(dS)(e
j2πnf , n ≤ 0),

that is

∫ 1

0

[
ej2πmf − g(f )

]
e−j2πnf dS(f ) = 0, for n = 0,−1,−2, . . . .

Remark 11.2.1 Observe that if the cumulative spectral function SX(f ) does not
increase (or, its spectral density SX(f ) = 0) over the interval [a, b] ⊂ [0, 1] of
length greater than 1/2, then the signal X(n) is singular.

Indeed, let e−j2πf be in the arc of the unit circle in the complex plane
corresponding to f � [a, b], and let ej2πf0 be the midpoint of the arc. Then, for
large enough N ,

∣∣∣∣e
j2πf0 − e−j2πf

N

∣∣∣∣ < 1,

because of the above length assumption, so, also,

∣∣∣∣1 − e−j2πf

Nej2πf0

∣∣∣∣ <
1

|ej2πf0 | = 1.

Hence, we get the following uniformly convergent expansion on the complement of
the interval [a, b]:
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ej2πf = 1

e−j2πf
= 1

Ne
j2πf

0

· 1

e−j2πf /(Nejπf0)

= 1

Nej2πf0
· 1

1 − (1 − e−j2πf /(Nej2πf0))

1

Nej2πf0
·

∞∑

n=0

(1 − e−jf 2π/(Nej2πf0))n ∈ spanL2(dSX)(e
j2πf n, n ≤ 0) = M0,

which completes the justification of the above statement. On the other hand, on the
set [a, b], where the spectral density is 0, the approximation is trivial.

Remark 11.2.2 It turns out that the Wold decomposition is equivalent to decom-
position of the spectral measure into the absolutely continuous (with density) and
singular components1

In the reminder of this section we will just consider the absolutely continuous
case when

S(f ) = S(f )df

with the spectral density S(f ) satisfying the condition,

0 < C1 ≤ S(f ) ≤ C2 < ∞, (11.2.1)

in which case L2(dS) = L2(df ) and the convergences in those two spaces are
equivalent.

In this case the best predictor g(f ) satisfies the following two conditions:

∫ 1

0
[ej2πmf − g(f )]S(f )e−j2πnf df = 0, for n ≤ 0, (11.2.2)

and

[ej2πmf − g(f )]S(f ) ∈ spanL2(S(f )df )(e
j2πnf , n ≥ 0) ≡ M>0. (11.2.3)

Now, assume that we can factor the spectral density,

S(f ) = S1(f ) · S∗
1 (f ),

1For more details see, U. Grenander and M. Rosenblatt, Statistical Analysis of Stationary Time
Series, Almqvist and Wiksell, Stockholm 1956, and P. Bremaud, Fourier Analysis and Stochastic
Processes, Springer 2014.
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with both

S1(f ), S−1
1 (f ) ∈ spanC(ej2πnf , n ≤ 0) =: C≤0

where C denotes the space of continuous functions. Then the condition (11.2.3) can
be rewritten in the form

[ej2πmf − g(f )]S1(f )S∗
1 (f ) ∈ spanL2(S(f )df )(e

j2πnf , n ≥ 0) ≡ M>0.

(11.2.4)

with

(S−1
1 (f ))∗ ∈ spanC(ej2πnf , n ≥ 0).

Hence,

h(f ) := [ej2πmf − g(f )]S1(f ) ∈ spanL2(S(f )df )(e
j2πnf , n > 0),

and the condition for the best linear prediction can be reformulated as follows:

ej2πmf S1(f ) = g(f )S1(f ) + h(f ), g ∈ M≤0, h ∈ M>0. (11.2.5)

Since S1, S
−1
1 ∈ C≤0,

g ∈ M≤0 ⇐⇒ gS1 ∈ M≤0,

so, what needs to be done at this point is to split the Fourier series of ej2πmf S1(f )

into the M≤0, and M>0 parts.
Given the expansion

S1(f ) = c0 + c−1e
−j2πf + c−2e

−j2π2f + . . .

we can write (11.2.5) with

h(f ) = c0e
j2πmf + c−1e

k2π(m−1)f + . . . + c−m+1e
j2πf ,

and

g(f )S1(f ) = c−m + c−m−1e
−j2πf + c−m−2e

−j2π2f + . . . .

Hence,

g(f ) = [
c−m + c−m−1e

−j2πf + c−m−2e
−j2π2f + . . .

] · S−1
1 (f ),

which expands as follows:

g(f ) = b0 + b−1e
−j2πf + b−2e

−j2π2f + . . . ,
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with the predictor

X̂m = b0X0 + b−1X−1 + b−2X−2 + . . .

The prediction error can then be calculated as follows:

‖X̂m − Xm‖2
L2(S(f )df )

=
∫ 1

0
|ej2πmf − g(f )|2S(f )df

=
∫ 1

0
|ej2πmf − g(f )S1(f )|2df =

∫ 1

0
|h(f )|2df (11.2.6)

=
∫ 1

0
|c0e

j2πmf + c−1e
k2π(m−1)f + . . .+ c−m+1e

j2πf |2df = |c0|2 + . . . |c−m+1|2.

When m → ∞,

∞∑

n=0

|c−n|2 =
∫ 1

0
|S1(f )|2df =

∫ 1

0
S(f )df = E|Xk|2, ∀k,

so that the signal (X(k)) is regular.

Remark 11.2.3 Let us take a look at the one step predictor X̂1 in the case log S(f )

satisfies some smoothness conditions to permit the following expansion of its
logarithm, log S(f ):

(
. . . + a−2e

−j2π2f + a1e
−j2π + a0

2

)
+

(a0

2
+ a1e

+j2π + a2e
+j2π2f + . . .

)
.

Substituting

S1(f ) = exp
(
. . . + a−2e

−j2π2f + a1e
−j2π + a0

2

)
,

we see that both S1 and S−1
1 are functions from C≤0. Using the standard expansion

ez = 1 + z + z2/2 + . . . , one obtains the equality

c0 = 1
a0

2
+ (a0/2

2! + . . . = ea0/2.

Hence, the one step error

‖X̂1 − X1‖2
L2(S(f )df )

= |c0|2 = ea0 = exp

(∫ 1

0
log S(f )df

)
.
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Notice that, in general, this error is nonzero if, and only if,

∫ 1

0
log S(f )df > −∞,

which is the general condition for the regularity of the random stationary signal Xn.2

11.3 Examples of Linear Prediction for Stationary Time
Series

In this section we will consider a simple example of stationary time series where the
calculation of the optimal predictor is not very difficult.

Let X(t) be a stationary time series, t = . . . ,−1, 0, 1, . . . , with the autocovari-
ance function

γX(t) = a|t |, −1 < a < 1.

The corresponding spectral density, assuming the representation γX(t) =∫
SX(f )e−jf t df , is

Sx(f ) = 1 − a2

2π(ejf − a)(e−jf − a)
,

which can be rewritten in the form

SX(f ) = ŜX(ejf ),

where

ŜX(z) = (1 − a2)z

2π(z − a)(1 − az)
.

Finding the optimal predictor m steps ahead requires finding a function

�m(f ) = a1e
−jf + a2e

−j2f + a3e
−j3f ,

satisfying the condition

∫ π

−π

ejkf [ejmf − �m(f )]SX(f )df = 0, k = 1, 2, 3, . . .

2Again, see, Grenander and Rosenblatt, and Bremaud’s books cited on page 284, for more details.
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In other words, the Fourier expansion of the function

�m(f ) = [ejmf − �m(f )]SX(f ) =
∞∑

k=0

cke
jkf

contains only nonnegative powers of ejf .
In the case of rational ŜX(z), the function

�̂m(z) =
∞∑

k=1

akz
−k

is an analytic function of z for |z| ≥ 1, with �̂m(∞) = 0, and

�̂m(z) = [zm − �̂m(z)]ŜX(z),

is analytic for |z| ≤ 1.
So, if in our case we are attempting to make a prediction one time step ahead,

that is, assuming m = 0, we need to find a function �̂0(z) with no singularities for
|z| ≥ 1, vanishing at infinity, and such that the function

�̂0(z) = (1 − a2)[1 − �̂0(z)]]z
2π(z − a)(1 − az)

has no singularities for |z| ≤ 1. Since |a| < 1 we must have �̂0(a) = 1. The above
formula implies that �̂0(z) has no singularities other that a simple pole at z = 0.
Thus,

�̂0(z) = g0(z)z
−1,

where g0(z) is analytic in the whole complex plane, and g0(a) = a. So the only
function satisfying the above conditions is

�̂0(a) = az−1, with �(f ) = ae−jf .

Therefore the optimal predictor for X(t) is aX(t − 1). So, in this case the best
predictor just depends on the value of the process one step back and does not depend
on the whole past of the process.3

3For more details and analysis of more complicated rational spectral densities see An Introduction
to the Theory of Random Stationary Functions, by A.M. Yaglom, Dover Publications. New York,
1973.
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11.4 Problems and Exercises

1 Verify that in the case considered in Remark 11.2.1 the best predictor one time-
step ahead X̂1 is expressed by the formula

X̂1 =
∞∑

n=0

(Nejf0)−n−1
n∑

k=0

(
n

k

)
(ejf0)n−k(−1)kX−k.

2 Prove that if the spectral density S(f ) is satisfying the condition (11.2.1),

0 < C1 ≤ S(f ) ≤ C2 < ∞,

then L2(dS) = L2(df ), and the convergences in those two spaces are equivalent.

3 Show that in the case analyzed in Sect. 11.3 the optimal prediction m time steps
ahead, that is at time t + m, also depends only on the single value of the process in
the past and is of the form

am+1X(t − 1).

4 Show that in the case of the spectral density of the form

Sx(f ) = 1

|ejf − a1|2|ejf − a2|2 , |a1|, |a2| < 1,

the optimal prediction one time step ahead depends only on the two values of the
process in the past, and is of the form

(a1 + a2)X(t − 1) + a1a2X(t − 2).
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