
Chapter 1
Description of Signals

Abstract Signals are everywhere. Literally. The universe is bathed in the back-
ground radiation, the remnant of the original Big Bang and, as your eyes scan
this page, a signal is being transmitted to your brain where different sets of
neurons analyze it and process it. All human activities are based on processing
and analysis of sensory signals but the goal of this book is somewhat narrower.
The signals we will be mainly interested in can be described as data resulting from
quantitative measurements of some physical phenomena and our emphasis will be
on data that display randomness that may be due to different causes, be it errors of
measurements, the algorithmic complexity, or the chaotic behavior of the underlying
physical system itself.

1.1 Types of Random Signals

For the purpose of this book, signals will be functions of real variable t interpreted
as time. To describe and analyze signals we will adopt the functional notation: x(t)

will denote the value of a nonrandom signal at time t . The values themselves can
be real or complex numbers, in which case we will symbolically write x(t) ∈ R, or,
respectively, x(t) ∈ C. In certain situations it is necessary to consider vector-valued
signals with x(t) ∈ Rd , where d stands for the dimension of the vector x(t) with d

real components.
Signals can be classified into different categories depending on their features. For

example:

• Analog signals are functions of continuous time and their values form a contin-
uum. Digital signals are functions of discrete time dictated by the computer’s
clock and their values are also discrete and dictated by the resolution of the
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W. A. Woyczyński, A First Course in Statistics for Signal Analysis, Statistics
for Industry, Technology, and Engineering, https://doi.org/10.1007/978-3-030-20908-7_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20908-7_1&domain=pdf
https://doi.org/10.1007/978-3-030-20908-7_1


4 1 Description of Signals

Fig. 1.1 Signal x(t) = sin(t) + 1
3 cos(3t) [V] is analog and periodic with period P = 2π [s]. It is

also deterministic

system. Of course, one can also encounter mixed type signals which are sampled
at discrete times but whose values are not restricted to any discrete set of
numbers.

• Periodic signals are functions whose values are periodically repeated. In other
words, for a certain number P > 0, we have x(t + P) = x(t), for any t . Number
P is called the period of the signal. Aperiodic signals are signals that are not
periodic.

• Deterministic signals are signals not affected by random noise; there is no
uncertainty about their values. Random signals, often also called stochastic
processes , include an element of uncertainty; their analysis requires use of
statistical tools and providing such tools is the principal goal of this book.

For example, signal x(t) = sin(t) + 1
3 cos(3t) [V] shown in Fig. 1.1 is deter-

ministic, analog, and periodic with period P = 2π [s]. The same signal, digitally
sampled during the first 5 s at time intervals equal to 0.5 s, with resolution 0.01 V,
gives tabulated values:

t 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x(t) 0.50 0.51 0.93 1.23 0.71 −0.16 0.51 −0.48 −0.78 −1.21

This sampling process is called the analog-to-digital conversion: given the
sampling period T and the resolution R, the digitized signal xd(t) is of the form

xd(t) = R

⌊
x(t)

R

⌋
, for t = T , 2T , . . . , (1.1.1)
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Fig. 1.2 Signal x(t) = sin(t) + 1
3 cos(3t) [V] digitally sampled at time intervals equal to 0.5 s

with resolution 0.01 V

where the, convenient to introduce here, “floor” function �a� is defined as the largest
integer not exceeding real number a. For example, �5.7� = 5, but �5.0� = 5, as well.

Note the role the resolution R plays in the above formula. Take, for example,
R = 0.01. If the signal x(t) takes all the continuous values between m = mint x(t)

and M = maxt x(t), then x(t)/0.01 takes all the continuous values between 100 ·m
and 100 ·M , but �x(t)/0.01� takes only integer values between 100 ·m and 100 ·M .
Finally, 0.01�x(t)/0.01� takes as its values only all the discrete numbers between
m and M that are 0.01 apart (Fig. 1.2).

Randomness of signals can have different origin, be it quantum uncertainty
principle, computational complexity of algorithms, chaotic behavior in dynami-
cal systems, or random fluctuations and errors in measurement of outcomes of
independently repeated experiments.1 The usual way to study them is via their
aggregated statistical properties. The main purpose of this book is to introduce
some of the basic mathematical and statistical tools useful in analysis of random
signals that are produced under stationary conditions, that is, in situations where the
measured signal may be stochastic and contain random fluctuations, but the basic
underlying random mechanism producing it does not change over time; think here
about outcomes of independently repeated experiments, each consisting of tossing
a single coin (Fig. 1.3).

At this point, to help the reader visualize the great variety of random signals
appearing in the physical sciences and engineering, it is worthwhile to review a
gallery of pictures of random signals, both experimental and simulated, presented
in Figs. 1.4, 1.5, 1.6, 1.7, and 1.8. The captions explain the context in each case.

1See, e.g., M. Denker and W.A. Woyczyński, Introductory Statistics and Random Phenomena:
Uncertainty, Complexity, and Chaotic Behavior in Engineering and Science, Birkhäuser-Boston,
1998.
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Fig. 1.3 Signal x(t) = sin(t) + 1
3 cos(3t) [V] in presence of additive random noise with average

amplitude of 0.2 V. The magnified noise component itself is pictured underneath the graph of the
signal

Fig. 1.4 Several, computer-generated trajectories (sample paths) of a random signal called the
Brownian motion stochastic process or the Wiener stochastic process. Its trajectories, although
very rough, are continuous. It is often used as a simple model of diffusion. The random mechanism
that created different trajectories was the same. Its importance for our subject matter will become
clear in Chap. 9
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Fig. 1.5 Several, computer-generated trajectories (sample paths) of random signals called Lévy
stochastic processes with parameter α = 1.5, 1, and 0.75, respectively (from top to bottom).
They are often used to model anomalous diffusion processes wherein diffusing particles are also
permitted to change their position by jumping. Parameter α indicates intensity of jumps of different
sizes. Parameter value α = 2 corresponds to the Wiener process (shown in Fig. 1.4) which has
trajectories that have no jumps. In each figure, the random mechanism that created different
trajectories was the same. However, different random mechanisms led to trajectories presented
in different figures
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Fig. 1.6 Computer simulation of the evolution of passive tracer density in a turbulent velocity
field with random initial distribution and random “shot-noise” initial velocity data. The simulation
was performed for 100,000 particles. The consecutive frames show the location of passive tracer
particles at times t = 0.0, 0.3, 0.6, 1.0, 2.0, 3.0 s
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Fig. 1.7 Some deterministic signals (in this case, the images) transformed by deterministic
systems can appear random. The above picture shows a series of iterated transformations of the
original image via a fixed linear 2D mapping (matrix). The number of iterations applied is indicated
in the top left corner of each image. The curious behavior of iterations, the original image first
dissolving into seeming randomness only to return later to an almost original condition, is related to
the so-called ergodic behavior. Thus irreverently transformed is Professor Henri Poincaré (1854–
1912) of the University of Paris, the pioneer of ergodic theory of stationary phenomena (From
Scientific American, reproduced with permission. Copyright 1986, James P. Crutchfield)
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Fig. 1.8 A signal (again, an image) representing the large-scale and apparently random distribu-
tion of mass in the universe. The data come from the APM galaxy survey and shows more than two
million galaxies in a section of sky centered on the South Galactic pole. The so-called adhesion
model of the large scale mass distribution in the Universe uses Burgers equation to model the
relevant velocity fields

The signals shown in Figs. 1.4 and 1.5 are, obviously, not stationary and
have a diffusive character. However, their increments (differentials) are stationary
and, in Chap. 9, they will play an important role in construction of the spectral
representation of stationary signals themselves. The signal shown in Fig. 1.4 can
be interpreted as a trajectory, or sample path, of a random walker moving, in
discrete time steps, up or down a certain distance with equal probabilities 1/2 and
1/2. However, in the picture these trajectories are viewed from far away, and in
accelerated time, so that both time and space appear continuous.

In certain situations the randomness of the signal is due to uncertainty about
initial conditions of the underlying phenomenon which otherwise can be described
by perfectly deterministic models such as partial differential equations. A sequence
of pictures in Fig. 1.6 shows evolution of the system of particles with an initially
random (and homogeneous in space) spatial distribution. The particles are then
driven by the velocity field �v(t, �x) ∈ R2 governed by the so-called 2D Burgers
equation2

∂ �v(t, �x)

∂t
+

(
∇ · �v(t, �x)

)
�v(t, �x) = D

(
∂2�v(t, �x)

∂x2
1

+ ∂2�v(t, �x)

∂x2
2

)
, (1.1.2)

where �x = (x1, x2), the nabla operator ∇ = ∂/∂x1 + ∂/∂x2, and the positive
constant D is the coefficient of diffusivity. The initial velocity field is also assumed
to be random.

2See, e.g., W.A. Woyczyński, Burgers-KPZ Turbulence–Göttingen Lectures, Springer-Verlag 1998.
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1.2 Characteristics of Signals

Several physical characteristics of signals are of primary interest.

• The time average of the signal: For analog, continuous-time signals the time
average is defined by the formula

AVx = lim
T →∞

1

T

∫ T

0
x(t) dt, (1.2.1)

and for digital, discrete-time signals which are defined only for the time instants
t = nT , n = 0, 1, 2, . . . , N − 1, it is defined by the formula

AVx = 1

N

N−1∑
n=0

x(nT ). (1.2.2)

For periodic signals, it follows from (1.2.1) that

AVx = 1

P

∫ P

0
x(t) dt, (1.2.3)

so that, for the signal x(t) = sin t + (1/3) cos(3t) pictured in Fig. 1.1, the time
average is 0 as both sin t and cos(3t) integrate out to zero over the period P = 2π .

• Energy of the signal: For an analog signal x(t), the total energy

ENx =
∫ ∞

0
|x(t)|2 dt, (1.2.4)

and for digital signals

ENx =
∞∑

n=0

|x(nT )|2 · T . (1.2.5)

Observe that the energy of a periodic signal, such as the one from Fig. 1.1, is
necessarily infinite if considered over the whole positive time line. Also note that,
since in what follows it will be convenient to consider complex-valued signals, the
above formulas include notation for the square of the modulus of a complex number:
|z|2 = (Re z)2 + (Im z)2 = z · z∗; more about it in the next section.

• Power of the signal: Again, for an analog signal, the (average) power

PWx = lim
T →∞

1

T

∫ T

0
|x(t)|2 dt (1.2.6)
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and for a digital signal

PWx = lim
N→∞

1

NT

N−1∑
n=0

|x(nT )|2 · T = lim
N→∞

1

N

N−1∑
n=0

|x(nT )|2. (1.2.7)

As a consequence, for an analog periodic signal with period P ,

PWx = 1

P

∫ P

0
|x(t)|2 dt. (1.2.8)

For example, for the signal in Fig. 1.1,

PWx = 1

2π

∫ 2π

0

(
sin t + (1/3) cos(3t)

)2
dt (1.2.9)

= 1

2π

∫ 2π

0

(
sin2 t + 2

3
sin t cos(3t) + 1

9
cos2(3t)

)
dt

= 1

2π

∫ 2π

0

(
1

2
(1 − cos(2t)) + 2

3

1

2
(sin(4t) − sin(2t)) + 1

9

1

2
(1 + cos(6t))

)
dt

= 1

2π

(
1

2
2π + 1

9

1

2
2π

)
= 5

9
.

The above routine calculation, deliberately carried out here in detail, was somewhat
tedious because of the need for various trigonometric identities. To simplify such
manipulations and make the whole theory more elegant, we will introduce in the
next section a complex number representation of the trigonometric functions via the
so-called de Moivre formulas.

Remark 1.2.1 (Timeline Infinite in Both Direction) Sometimes it is convenient to
consider signals defined for all time instants t , −∞ < t < +∞, rather than just for
positive t . In such cases all of the above definitions have to be adjusted in obvious
ways, replacing the one-sided integrals and sums by two-sides integrals and sums,
and adjusting the averaging constants correspondingly.

1.3 Time Domain and Frequency Domain Descriptions
of Periodic Signals

The Time Domain Description The trigonometric functions

x(t) = cos(2πf0t), and y(t) = sin(2πf0t),

represent a harmonically oscillating signal with period P = 1/f0 (measured, say,
in seconds [s]), and the frequency f0 (measured, say, in cycles per second, or Hertz
[Hz]), and so do the trigonometric functions
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x(t) = cos(2πf0(t + θ)), and y(t) = sin(2πf0(t + θ))

shifted by the phase-shift θ . The powers

PWx = 1

P

∫ P

0
cos2(2πf0t) dt = 1

P

∫ P

0

1

2
(1 + cos(4πf0t)) dt = 1

2
, (1.3.1)

PWy = 1

P

∫ P

0
sin2(2πf0t) dt = 1

P

∫ P

0

1

2
(1 − cos(4πf0t)) dt = 1

2
, (1.3.2)

using the trigonometric formulas from Tables 1.1 and 1.2. The phase shifts,
obviously do not change the power of the above harmonic signals.

Table 1.1 Trigonometric formulas

sin(α ± β) = sin α cos β ± sin β cos α;

cos(α ± β) = cos α cos β ∓ sin α sin β;

sin α + sin β = 2 sin
α + β

2
cos

α − β

2
;

sin α − sin β = 2 cos
α + β

2
sin

α − β

2
;

cos α + cos β = 2 cos
α + β

2
cos

α − β

2
;

cos α − cos β = −2 sin
α + β

2
sin

α − β

2
;

sin2 α − sin2 β = cos2 β − cos2 α = sin(α + β) sin(α − β);

cos2 α − sin2 β = cos2 β − sin2 α = cos(α + β) cos(α − β);

sin α cos β = 1

2

[
sin(α + β) + sin(α − β)

]
;

cos α cos β = 1

2

[
cos(α + β) + cos(α − β)

]
;

sin α sin β = 1

2

[
cos(α − β) − cos(α + β)

]
;
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Table 1.2 Complex numbers and De Moivre formulas

(i) By definition,

j = √−1.

(ii) Hence, for any integer m,

j4m = 1, j4m+1 = j, j4m+2 = −1, j4m+3 = −j.

(iii) Cartesian representation of the complex number:

z = a + jb, a = Re z, b = Im z,

where both a and b are real numbers and are called, respectively, the real and imaginary
components of z. The complex number,

z∗ = a − jb,

is called the complex conjugate of z.

(iv) The polar representation of the complex number (it is a good idea to think about complex
numbers as representing points, or vectors, in the two-dimensional plane spanned by the
two basic unit vectors, 1 and j ):

z = |z|(cos θ + j sin θ) = |z| · ejθ ,

and

z∗ = |z|(cos θ − j sin θ) = |z| · e−jθ ,

where

|z| =
√

a2 + b2 = √
z · z∗, and θ = Arg z = arctan

Imz

Rez
,

is called, respectively, the modulus of z, and the argument of z. Alternatively,

Re z = z + z∗
2

= |z| cos θ, Im z = z − z∗
2j

= |z| sin θ.

(v) For any complex number w = β + jα,

ew = eβ+jα = eβ(cos α + j sin α).

(vi) For any complex number z = a + jb = |z|ejθ , and any integer n,

zn = |z|nejnθ = (a2 + b2)n/2(cos nθ + j sin nθ).
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Taking their linear combination (like the one in Fig. 1.1), with amplitudes A and
B, respectively,

z(t) = Ax(t) + By(t) = A cos(2πf0(t + θ)) + B sin(2πf0(t + θ)), (1.3.3)

also yields a periodic signal with frequency f0. For a signal written in this form we
no longer need to include the phase shift explicitly since

cos(2πf0(t + θ)) = cos(2πf0t) cos(2πf0θ) − sin(2πf0t) sin(2πf0θ),

and

sin(2πf0(t + θ)) = sin(2πf0t) cos(2πf0θ) + cos(2πf0t) sin(2πf0θ),

so that

z(t) = a cos(2πf0t) + b sin(2πf0t), (1.3.4)

with the new amplitudes

a = A cos(2πf0θ)+B sin(2πf0θ), and b = B cos(2πf0θ)−A sin(2πf0θ).

The power of the signal z(t), in view of (1.3.1) and (1.3.2), is given by the
Pythagorean-like formula

PWz = 1

P

∫ P

0
z2(t) dt = 1

P

∫ P

0
(a cos(2πf0t) + b sin(2πf0t))

2 dt

= a2 · PWx + b2 · PWy + 2ab
1

P

∫ P

0
cos(2πf0t) sin(2πf0t) dt = 1

2
(a2 + b2),

(1.3.5)

because (see Tables 1.1 and 1.2, again)

1

P

∫ P

0
cos(2πf0t) sin(2πf0t) dt = 1

P

∫ P

0

1

2
sin(4πf0t) dt = 0. (1.3.6)

The above property (1.3.6), called orthogonality of the sine and cosine signals, will
play a fundamental role in this book.

The next observation is that signals

z(t) = a cos(2π(mf0)t) + b sin(2π(mf0)t), m = 0, 1, 2, . . . ,

have the frequency equal to the multiplicity m of the fundamental frequency f0,
and as such have, in particular, period P (but also period P/m). Their power is
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also equal to (a2 + b2)/2. So, if we superpose M of them, with possibly different
amplitudes am and bm, for different m = 0, 1, 2, . . . ,M, the result is a periodic
signal

x(t) =
M∑

m=0

(
am cos(2π(mf0)t) + bm sin(2π(mf0)t)

)

= a0 +
M∑

m=1

(
am cos(2π(mf0)t) + bm sin(2π(mf0)t)

)
(1.3.7)

with period P , and the fundamental frequency f0 = 1/P , which has the mean and
power

AVx = a0, and PWx = a2
0 + 1

2

M∑
m=1

(a2
m + b2

m). (1.3.8)

The above result follows from the fact that not only sine and cosine signals (of
arbitrary frequencies) are orthogonal to each other (see, (1.3.6)) but also cosines
of different frequencies are orthogonal to each other, and so are sines. Indeed, if
m �= n, that is, m − n �= 0, then

1

P

∫ P

0
cos(2πmf0t) cos(2πnf0t) dt (1.3.9)

= 1

P

∫ P

0

1

2

(
cos(2π(m − n)f0t) + cos(2π(m + n)f0t)

)
dt = 0,

and

1

P

∫ P

0
sin(2πmf0t) sin(2πnf0t) dt (1.3.10)

= 1

P

∫ P

0

1

2

(
cos(2π(m − n)f0t) − cos(2π(m + n)f0t)

)
dt = 0.

Example 1.3.1 (Superposition of Simple Cosine Oscillations) Consider the signal

x(t) =
12∑

m=1

1

m2 cos(2πmt). (1.3.11)

Its fundamental frequency is f0 = 1, its average AVx = 0, and its power (see,
(1.3.8))
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Fig. 1.9 Signal x(t) = ∑12
m=1 m−2 cos(2πmt) in its time-domain representation

PWx = 1

2

12∑
m=1

(
1

m2

)2

≈ 0.541.

With its sharp cusps, the shape of the above signal is unlike that of any simple
harmonic oscillation and one could start wondering what kind of other periodic
signals can be well represented (approximated) by superpositions of harmonic
oscillations of the form (1.3.7). The answer, discussed at length in Chap. 2, is that
almost all of them can, as long as their power is finite (Fig. 1.9).

The Frequency Domain Description The signal x(t) in Example 1.3.1 would
be completely specified if, instead of writing the whole formula (1.3.11), we just
listed the frequencies present in the signal and the corresponding amplitudes, that
is, considered the list

(1, 1/12), (2, 1/22), (3, 1/33), . . . , (12, 1/122).

Similarly, in the case of the general superposition (1.3.7), it would be sufficient to
list the cosine and sine frequencies and associated amplitudes, that is, compile the
lists

(0, a0), (1f0, a1), (2f0, a2), . . . , (Mf0, aM), (1.3.12)

and

(1f0, b1), (2f0, b2), . . . , (Mf0, bM). (1.3.13)

The lists (sequences) ((1.3.12) and (1.3.13)) are called the frequency domain
(spectral) representation of the signal (1.3.7).
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Fig. 1.10 Signal x(t) = ∑12
m=1 m−2 cos(2πmt) in its frequency domain representation. Only the

amplitudes of frequencies m = 1, 2, . . . , 12, are shown since all the phase shifts are zero

Remark 1.3.1 (Amplitude-Phase Form of the Spectral Representation) Alterna-
tively, if the signal x(t) in (1.3.7) is rewritten in the amplitude-phase form,

x(t) =
M∑

m=0

cn cos(2π(mf0)(t + θm)),

then the frequency domain representation must list the frequencies present in
the signal, mf0, m = 0, 1, . . . ,M , and the corresponding amplitudes cm m =
0, 1, . . . ,M , and phases θm, m = 0, 1, . . . ,M .

For the signal from Example 1.3.1, such a representation is graphically pictured
in Fig. 1.10. We will see in Chap. 2 that, for any periodic signal, the spectrum is
always concentrated on a discrete set of frequencies, namely, the multiplicities of
the fundamental frequency.

Finally, the formula (1.3.8) shows how the total power of signal x(t) is distributed
over different frequencies. Such a distribution, provided by the list

(0, a2
0), (1f0, (a

2
1 + b2

1)/2), (2f0, (a
2
2 + b2

2)/2), . . . , (Mf0, (a
2
M + b2

M)/2),

(1.3.14)

is called the power spectrum of the periodic signal (1.3.7).
Observe that, in general, knowledge of the power spectrum is not sufficient

for the reconstruction of the signal x(t) itself, while knowledge of the whole
representation in the frequency domain is.

To complete our elementary study of periodic signals note that if an arbitrary
signal is studied only in a finite time interval [0, P ], then it can always be treated
as a periodic signal with period P since one can extend its definition periodically
to the whole time line by copying its waveform from the interval [0, P ] to intervals
[P, 2P ], [2P, 3P ], and so on.
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1.4 Building a Better Mousetrap: Complex Exponentials

Catching the structure of periodic signals via their decomposition into a super-
position of basic trigonometric functions leads to some cumbersome calculations
employing various trigonometric identities (as we have seen in Sect. 1.3). A
greatly simplified and also more elegant approach to the same problem employs
a representation of trigonometric functions in terms of exponential functions of the
imaginary variable. The cost of moving into the complex domain is not high as we
will rely, essentially, on a single relationship

ejα = cos α + j sin α, where j = √−1, (1.4.1)

which is known as de Moivre formula,3 and which immediately yields two identities

cos α = 1

2
(ejα + e−jα), and sin α = 1

2j
(ejα − e−jα). (1.4.2)

In what follows, we are going to routinely utilize the complex number techniques.
Thus, for the benefit of the reader, the basic notation and facts about them are
summarized in Table 1.2.

Since de Moivre formula is so crucial for us, it is important to understand where
it is coming from. The proof is straightforward and relies on the power series
expansion of the exponential function,

ejα =
∞∑

k=0

jkαk

k! . (1.4.3)

However, the powers of the imaginary unit j can be expressed via a simple formula

jk =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, ifk = 4m;
j, ifk = 4m + 1;
−1, ifk = 4m + 2;
−j, ifk = 4m + 3,

so the whole series (1.4.3) splits neatly into the real part, corresponding to even
indices of the form k = 2n, n = 0, 1, 2, . . . ,, and the imaginary part, corresponding
to the odd indices of the form k = 2n + 1, n = 0, 1, 2, . . . :

3Throughout this book we denote the imaginary unit
√−1 by the letter j , which is a standard usage

in the electrical engineering signal processing literature as the, usual in the mathematical literature,
letter i is reserved for electrical current.



20 1 Description of Signals

∞∑
k=0

jkαk

k! =
∞∑

n=0

(−1)nα2n

(2n)! + j

∞∑
n=0

(−1)nα2n+1

(2n + 1)! .

Now, it suffices to recognize in the above formula the familiar power series
expansions for trigonometric functions,

cos α =
∞∑

n=0

(−1)nα2n

(2n)! , sin α =
∞∑

n=0

(−1)nα2n+1

(2n + 1)!

to obtain de Moivre formula.
Given de Moivre formulas which provides a representation of sine and cosine

functions via the complex exponentials, we can now rewrite the general superposi-
tion of harmonic oscillation

x(t) = a0 +
M∑

m=1

am cos(2πmf0t) +
M∑

m=1

bm sin(2πmf0t), (1.4.4)

in terms of the complex exponentials

x(t) =
M∑

m=−M

zmej2πmf0t , (1.4.5)

with the real amplitudes, am and bm, in representations (1.4.4), and the complex
amplitudes zm in the representation (1.4.5), connected by the formulas

a0 = z0, am = zm + z−m, bm = j (zm − z−m), m = 1, 2, . . . ,

or, equivalently,

z0 = a0 zm = am − jbm

2
, z−m = am + jbm

2
, m = 1, 2, . . .

The above relationships show that for the signal of the form (1.4.5) to represent
a real-valued signal x(t) it is necessary and sufficient that the paired amplitudes for
symmetric frequencies, mf0 and −mf0, be complex conjugates of each other:

z−m = z∗
m, m = 1, 2, . . . (1.4.6)

However, in the future it will be convenient to consider general complex-valued
signals of the form (1.4.5) without the restriction (1.4.6) on its complex amplitudes.

At the first sight, the above introduction of complex numbers and functions of
complex-valued variables may seem as an unnecessary complication in the analysis
of signals. But let us calculate the power of the signal x(t) given by (1.4.5). The
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need for unpleasant trigonometric formulas disappears as now we need to integrate
only exponential functions. Indeed, remembering the |z|2 = z · z∗ now stands for
the square of the modulus of a complex number, we have

PWx = 1

P

∫ P

t=0
|x(t)|2 dt = 1

P

∫ P

t=0

∣∣∣
M∑

m=−M

zmej2πmf0t
∣∣∣2

dt

= 1

P

∫ P

t=0

( M∑
m=−M

zmej2πmf0t ·
M∑

k=−M

z∗
ke

−j2πkf0t
)

dt

= 1

P

M∑
m=−M

M∑
k=−M

zmz∗
k

∫ P

t=0
ej2π(m−k)f0t dt =

M∑
m=−M

|zm|2, (1.4.7)

because, for m − k �= 0,

1

P

∫ P

t=0
ej2π(m−k)f0t dt = 1

j2π(m − k)f0
ej2π(m−k)f0t

∣∣∣P
t=0

= 0, (1.4.8)

as the function ej2π(m−k)f0t = cos(2π(m−k)f0t)+j sin(2π(m−k)f0t) is periodic
with period P , and for m − k = 0,

1

P

∫ P

t=0
ej2π(m−k)f0t dt = 1. (1.4.9)

Thus all the off-diagonal terms in the double sum in (1.4.7) disappear. The
formulas (1.4.8) and (1.4.9) express mutual orthogonality and normalization of the
complex exponential signals,

ej2πmf0t , m = 0,±1,±2, . . . ,±M.

In view of (1.4.7), the distribution of the power of the signal (1.4.5) over different
multiplicities of the fundamental frequency f0 can be written as a list with simple
structure,

(mf0, |zm|2), m = 0,±1,±2, . . . ,±M. (1.4.10)

Remark 1.4.1 (Aperiodic Signals) Nonperiodic signals can also be analyzed in
terms of their frequency domains but their spectra are not discrete. We will study
them later on.
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1.5 Problems and Exercises

1* Find the real and imaginary parts of (j + 3)/(j − 3); (1 + j
√

2)3; 1/(2 −
j); (2 − 3j)/(3j + 2).4

2* Find the moduli |z| and arguments θ of complex numbers z = 5; z = −2j ;
z = −1 + j ; z = 3 + 4j .

3* Find the real and imaginary components of complex numbers z = 5 ejπ/4;
z = −2 ej (8π+1.27); z = −1 ej ; z = 3 eje.

4* Show that

5

(1 − j)(2 − j)(3 − j)
= j

2
, and (1 − j)4 = −4.

5* Sketch sets of points in complex plane (x, y), z = x+jy, such that |z−1+j | =
1; |z + j | ≤ 3; Re (z∗ − j) = 2; |2z − j | = 4; z2 + (z∗)2 = 2.

6* Using de Moivre’s formulas find (−2j)1/2 and Re (1 − j
√

3)77. Are these
complex numbers uniquely defined?

7 Write the signal x(t) = sin t + cos(3t)/3 from Fig. 1.1 as a sum of phase-shifted
cosines.

8 Using de Moivre’s formulas write the signal x(t) = sin t + cos(3t)/3 from
Fig. 1.1 as a sum of complex exponentials.

9 Find the time average and power of the signal x(t) = −2e−j2π4t + 3e−j2πt +
1 − 2ej2π3t . What is the fundamental frequency of this signal? Plot the distribution
of power of x(t) over different frequencies. Write this (complex) signal in terms of
cosines and sines. Find and plot its real and imaginary parts.

10* Using de Moivre’s formula derive the complex exponential represen-
tation (1.4.5) of the signal x(t) given by the cosine series representation
x(t) = ∑M

m=1 cm cos(2πmf0(t + θm)).

11 Find the time average and power of the signal x(t) from Fig. 1.9. Use a symbolic
manipulation language such as Mathematica or Matlab if you like.

12* Using a computing platform such as Mathematica, Maple, or Matlab produces
plots of the signals

xM(t) = π

4
+

M∑
m=1

[
(−1)m − 1

πm2
cos mt − (−1)m

m
sin mt

]
,

4Solutions of the problems marked by the asterisk can be found at the end of the book in the chapter
Solutions to Selected Problems and Exercises.



1.5 Problems and Exercises 23

for M = 0, 1, 2, 3, . . . , 9 and −2π < t < 2π . Then produce their plots in the
frequency-domain representation. Calculate their power (again, using Mathematica,
Maple, or Matlab, if you wish). Produce plots showing how power is distributed
over different frequencies for each of them. Write down your observations. What is
likely to happen with the plots of these signals as we take more and more terms of the
above series, that is, as M → ∞? Is there a limit signal x∞(t) = limM→∞ xM(t)?
What could it be?

13* Use the analog-to-digital conversion formula (1.1.1) to digitize signals from
Problem 13 for a variety of sampling periods and resolutions. Plot the results.

14* Use your computing platform to produce a discrete-time signal consisting of a
string of random numbers uniformly distributed on the interval [0,1]. For example,
in Mathematica, the command

Table[Random[], {20}]

will produce the following string of 20 random numbers between 0 and 1:

{0.175245, 0.552172, 0.471142, 0.910891, 0.219577,
0.198173, 0.667358, 0.226071, 0.151935, 0.42048,
0.264864, 0.330096, 0.346093, 0.673217, 0.409135,
0.265374, 0.732021, 0.887106, 0.697428, 0.7723}

Use the “random numbers” string as additive noise to produce random versions of
the digitized signals from Problem 14. Follow the example described in Fig. 1.3.
Experiment with different string length and various noise amplitudes. Then center
the noise around zero and repeat your experiments.
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