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Foreword to the Third Edition

The third edition contains two additional chapters. Chapter 3 is devoted to wavelets
and the uncertainty principle, and Chap. 11 discusses the forecasting problems for
stationary time series. In Chap. 3, we discuss the transition from the windowed
Fourier transform to the continuous wavelet transforms and then move on to Haar
wavelets and mutiresolution analysis. In Chap. 11, the forecasting (prediction)
problems are discussed in the context of the Wold decomposition theorem, and a
solution to the optimal predictor problem is found in the context of the spectral
representation of stationary time series.

Both topics are essential for a deeper understanding of statistical analysis of
random signals and make the book more complete. Some misprints in the previous
edition have also been corrected.

https://sites.google.com/a/case.edu/waw Wojbor A. Woyczyński
Cleveland, OH, USA
February 2019
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Foreword to the Second Edition

The basic structure of the Second Edition remains the same but many changes have
been introduced responding to several years’ worth of comments of students and
other users of the First Edition. Most of the figures have been redrawn to better show
the scale of the quantities represented in them, some notation and terminology has
been adjusted to better reflect the concepts under discussion, and several sections
have been considerably expanded by addition of new examples, illustrations, and
commentary. Thus the original conciseness has been somewhat softened. A typical
example here would be an addition of Remark 4.1.2 which explains how one can see
the Bernoulli white noise in continuous time as a scaling limit of switching signals
with exponential inter-switching times. There are also new, more applied exercises
as well, such as Problem 9.7.9 on simulating signals produced by spectra generated
by incandescent and luminescent lamps.

Still the book remains more mathematical than many other signal processing
books. So, at Case Western Reserve University the course (required, for most
of the Electrical Engineering, and some Biomedical Engineering juniors/seniors)
based on this book runs in parallel with a signal processing course that is entirely
devoted to practical applications and software implementation. This one-two punch
approach has been working well, and the engineers seem to appreciate the fact that
all probability/statistics/Fourier analysis foundations are developed within the book;
adding extra mathematical courses to a tight undergraduate engineering curriculum
is almost impossible. A gaggle of graduate students in applied mathematics,
statistics and assorted engineering areas also regularly enrolls. They are often asked
to make in-class presentations of special topics included in the book but not required
of the general undergraduate audience.

Finally, by popular demand, there is now a large appendix which contains
solutions of selected problems from each of the nine chapters. Here, most of the
credit goes to my former graduate students who served as TAs for my courses:
Aleksandra Piryatinska (now, at San Francisco State University), Sreenivas Konda
(now, at Temple University), Dexter Cahoy (now, at Louisiana Tech), and Peipei Shi
(now, at Eli Lilly, Inc.). In preparing the second edition the author took into account

ix



x Foreword to the Second Edition

useful comments that appeared in several reviews of the original book; the review
published in September 2009 in the Journal of American Statistical Association by
Charles Boncelet was particularly thorough and insightful.

http://stat.case.edu/~Wojbor Wojbor A. Woyczyński
Cleveland, OH, USA
May 2010

http://stat.case.edu/~Wojbor


Introduction

This book was designed as a text for a first, one-semester course in statistical
signal analysis for students in engineering and physical sciences. It has been
developed over the last few years as lecture notes used by the author in classes
mainly populated by electrical, systems, computer, and biomedical engineering
juniors/seniors and graduate students in sciences and engineering who have not
been previously exposed to this material. It was also used for industrial audiences as
educational and training materials and for an introductory time series analysis class.

The only prerequisite for this course is a basic two- to three-semester calculus
sequence; no probability or statistics background is assumed except the usual
high school elementary introduction. The emphasis is on a crisp and concise, but
fairly rigorous presentation of fundamental concepts in the statistical theory of
stationary random signals and relationships between them. The author’s goal was
to write a compact but readable book of less than 200 pages countering the recent
trend toward fatter and fatter textbooks. Since Fourier series and transforms are
of fundamental importance in random signal analysis and processing, this material
is developed from scratch in Chap. 2, emphasizing the time-domain vs. frequency-
domain duality. Our experience showed that although harmonic analysis is normally
included in the calculus syllabi, students’ practical understanding of its concepts is
often hazy. Chapter 3 introduces the alternative harmonic analysis concepts based
on the wavelet transforms, while Chap. 4 explains the basic concepts of probability
theory, the law of large numbers, the stability of fluctuations law, and the statistical
parametric inference procedures based on the latter.

In Chap. 5, the fundamental concept of a stationary random signal and its
autocorrelation structure is introduced. This time-domain analysis is then expanded
to frequency domain by discussion in Chap. 6 of power spectra of stationary signals.
How stationary signals are affected by their transmission through linear systems is
the subject of Chap. 7. This transmission analysis permits a preliminary study of
the issues of designing filters with the optimal signal-to-noise ratio; this is done
in Chap. 8. Chapter 9 concentrates on Gaussian signals where the autocorrelation
structure completely determines all the statistical properties of the signal. The text
concludes, in Chap. 10, with description of algorithms for computer simulations
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xii Introduction

of stationary random signals with given power spectrum density. The routines are
based on the general spectral representation theorem for such signals which is
also derived in this chapter. Finally, Chap. 11 discusses the prediction problem for
stationary time series.

The book is essentially self-contained, assuming the indispensable calculus
background mentioned above. A complementary bibliography, for readers who
would like to pursue the study of random signals in greater depth, is described at
the end of this volume.

Some general advice to students using this book: The material is deliberately
written in a compact, economical style. To achieve the understanding needed for
independent solving of the problems listed at the end of each chapter in the Problems
and Exercises sections, it is not sufficient to read through the text in the manner you
would read through a newspaper or a novel. It is necessary to look at every single
statement with a “magnifying glass” and to decode it in your own technical language
so that you can use it operationally and not just be able to talk about it. The only
practical way to accomplish this goal is to go through each section with pencil and
paper, explicitly completing, if necessary, routine analytic intermediate steps that
were omitted in the exposition for the sake of the clarity of the presentation of the
bigger picture. It is the latter that the author wants you to keep at the end of the day;
there is no danger in forgetting all the little details if you know that you can recover
them by yourself when you need them.

Finally, the author would like to thank Professors Mike Branicky and Ken Loparo
of the Department of Electrical and Computer Engineering and Professor Robert
Edwards of the Department of Chemical Engineering of Case Western Reserve
University for their kind interest and help in the development of this course and
comments on the original version of this book. My graduate students Alexey
Usoltsev and Alexandra Piryatinska also contributed to the editing process, and I
appreciate the time they spent on this task. Partial support for this writing project
from the Columbus Instruments International Corporation of Columbus, Ohio, Dr.
Jan Czekajewski, President, is here also gratefully acknowledged.

Four anonymous referees spent considerable time and effort trying to improve
the original manuscript. Their comments are appreciated, and, almost without
exception, their sage advice was incorporated in the final version of the book. I
thank them for their help.
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Notation

To be used only as a guide and not as a set of formal definitions

AVx Time average of signal x(t)

BWn Equivalent-noise bandwidth of the system
BW1/2 Half-power bandwidth of the system
C The set of all complex numbers
Cov(X, Y ) E[(X − EX)(Y − EY )], covariance of X and Y

δmn Kronecker’s delta, = 0 if m �= n, and =1 if m = n

δ(x) Dirac delta “function”
ENx Energy of signal x(t)

E(X) Expected value (mean) of random quantity X

FX(x) Cumulative distribution function (c.d.f.) of random quantity X

fX(x) Probability density function (p.d.f.) of random quantity X

γX(τ) E(X(t)−μX)(X(t+τ)−μX) autocovariance function of a stationary
signal X(t)

h(t) Impulse response function of a linear system
H(f ) Transfer function of a linear system, Fourier transform of h(t)

|H(f )|2 Power transfer function of a linear system
L2

0(P) Space of all zero-mean random quantities with finite variance
mα(X) E|X|α—α-th absolute moment of random quantity X

μk(X) E(Xk)—k-th moment of random quantity X

N(μ, σ 2) Gaussian (normal) probability distribution with mean μ and variance
σ 2

P Period of a periodic signal
P(A) Probability of event A

PWx Power of signal x(t)

QX(α) F−1
X (α), α’s quantile of random quantity X

R Resolution
R The set of all real numbers
ρX,Y Cov(X, Y )/(σXσY ), correlation coefficient of X and Y

Std (X) σX = √Var(X)—the standard deviation of random quantity X
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xviii Notation

SX(f ) Power spectral density of stationary signal X(t)

SX(f ) Cumulative power spectrum of stationary signal X(t)]
T Sampling period
u(t) Heaviside unit step function, u(t) = 0, for t < 0, and = 1, for

t ≥ 0
Var (X) E(X − EX)2 = EX2 − (EX)2—the variance of random quantity

X

W(n) Discrete-time white noise
W(n) Cumulative discrete-time white noise
W(t) Continuous-time white noise
W(t) The Wiener process
x(t), y(t), etc. Deterministic signals
X (X1, X2, . . . , Xd)—a random vector in dimension d

x(t) ∗ y(t) Convolution of signals x(t) and y(t)

X(f ), Y (f ) Fourier transforms of signals x(t), and y(t), respectively
X, Y,Z Random quantities (random variables)
z∗ Complex conjugate of complex number z, i.e., if z = α+ jβ then

z∗ = α − jβ

�a� “Floor” function, the largest integer not exceeding number a

〈 . , . 〉 Inner (dot, scalar) product of vectors or signals
⇔ If, and only if
:= Is defined as
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Chapter 1
Description of Signals

Abstract Signals are everywhere. Literally. The universe is bathed in the back-
ground radiation, the remnant of the original Big Bang and, as your eyes scan
this page, a signal is being transmitted to your brain where different sets of
neurons analyze it and process it. All human activities are based on processing
and analysis of sensory signals but the goal of this book is somewhat narrower.
The signals we will be mainly interested in can be described as data resulting from
quantitative measurements of some physical phenomena and our emphasis will be
on data that display randomness that may be due to different causes, be it errors of
measurements, the algorithmic complexity, or the chaotic behavior of the underlying
physical system itself.

1.1 Types of Random Signals

For the purpose of this book, signals will be functions of real variable t interpreted
as time. To describe and analyze signals we will adopt the functional notation: x(t)

will denote the value of a nonrandom signal at time t . The values themselves can
be real or complex numbers, in which case we will symbolically write x(t) ∈ R, or,
respectively, x(t) ∈ C. In certain situations it is necessary to consider vector-valued
signals with x(t) ∈ Rd , where d stands for the dimension of the vector x(t) with d

real components.
Signals can be classified into different categories depending on their features. For

example:

• Analog signals are functions of continuous time and their values form a contin-
uum. Digital signals are functions of discrete time dictated by the computer’s
clock and their values are also discrete and dictated by the resolution of the

© Springer Nature Switzerland AG 2019
W. A. Woyczyński, A First Course in Statistics for Signal Analysis, Statistics
for Industry, Technology, and Engineering, https://doi.org/10.1007/978-3-030-20908-7_1
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4 1 Description of Signals

Fig. 1.1 Signal x(t) = sin(t)+ 1
3 cos(3t) [V] is analog and periodic with period P = 2π [s]. It is

also deterministic

system. Of course, one can also encounter mixed type signals which are sampled
at discrete times but whose values are not restricted to any discrete set of
numbers.

• Periodic signals are functions whose values are periodically repeated. In other
words, for a certain number P > 0, we have x(t +P) = x(t), for any t . Number
P is called the period of the signal. Aperiodic signals are signals that are not
periodic.

• Deterministic signals are signals not affected by random noise; there is no
uncertainty about their values. Random signals, often also called stochastic
processes , include an element of uncertainty; their analysis requires use of
statistical tools and providing such tools is the principal goal of this book.

For example, signal x(t) = sin(t) + 1
3 cos(3t) [V] shown in Fig. 1.1 is deter-

ministic, analog, and periodic with period P = 2π [s]. The same signal, digitally
sampled during the first 5 s at time intervals equal to 0.5 s, with resolution 0.01 V,
gives tabulated values:

t 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x(t) 0.50 0.51 0.93 1.23 0.71 −0.16 0.51 −0.48 −0.78 −1.21

This sampling process is called the analog-to-digital conversion: given the
sampling period T and the resolution R, the digitized signal xd(t) is of the form

xd(t) = R

⌊
x(t)

R

⌋
, for t = T , 2T , . . . , (1.1.1)
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Fig. 1.2 Signal x(t) = sin(t) + 1
3 cos(3t) [V] digitally sampled at time intervals equal to 0.5 s

with resolution 0.01 V

where the, convenient to introduce here, “floor” function �a� is defined as the largest
integer not exceeding real number a. For example, �5.7� = 5, but �5.0� = 5, as well.

Note the role the resolution R plays in the above formula. Take, for example,
R = 0.01. If the signal x(t) takes all the continuous values between m = mint x(t)

and M = maxt x(t), then x(t)/0.01 takes all the continuous values between 100 ·m
and 100 ·M , but �x(t)/0.01� takes only integer values between 100 ·m and 100 ·M .
Finally, 0.01�x(t)/0.01� takes as its values only all the discrete numbers between
m and M that are 0.01 apart (Fig. 1.2).

Randomness of signals can have different origin, be it quantum uncertainty
principle, computational complexity of algorithms, chaotic behavior in dynami-
cal systems, or random fluctuations and errors in measurement of outcomes of
independently repeated experiments.1 The usual way to study them is via their
aggregated statistical properties. The main purpose of this book is to introduce
some of the basic mathematical and statistical tools useful in analysis of random
signals that are produced under stationary conditions, that is, in situations where the
measured signal may be stochastic and contain random fluctuations, but the basic
underlying random mechanism producing it does not change over time; think here
about outcomes of independently repeated experiments, each consisting of tossing
a single coin (Fig. 1.3).

At this point, to help the reader visualize the great variety of random signals
appearing in the physical sciences and engineering, it is worthwhile to review a
gallery of pictures of random signals, both experimental and simulated, presented
in Figs. 1.4, 1.5, 1.6, 1.7, and 1.8. The captions explain the context in each case.

1See, e.g., M. Denker and W.A. Woyczyński, Introductory Statistics and Random Phenomena:
Uncertainty, Complexity, and Chaotic Behavior in Engineering and Science, Birkhäuser-Boston,
1998.
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Fig. 1.3 Signal x(t) = sin(t) + 1
3 cos(3t) [V] in presence of additive random noise with average

amplitude of 0.2 V. The magnified noise component itself is pictured underneath the graph of the
signal

Fig. 1.4 Several, computer-generated trajectories (sample paths) of a random signal called the
Brownian motion stochastic process or the Wiener stochastic process. Its trajectories, although
very rough, are continuous. It is often used as a simple model of diffusion. The random mechanism
that created different trajectories was the same. Its importance for our subject matter will become
clear in Chap. 9
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Fig. 1.5 Several, computer-generated trajectories (sample paths) of random signals called Lévy
stochastic processes with parameter α = 1.5, 1, and 0.75, respectively (from top to bottom).
They are often used to model anomalous diffusion processes wherein diffusing particles are also
permitted to change their position by jumping. Parameter α indicates intensity of jumps of different
sizes. Parameter value α = 2 corresponds to the Wiener process (shown in Fig. 1.4) which has
trajectories that have no jumps. In each figure, the random mechanism that created different
trajectories was the same. However, different random mechanisms led to trajectories presented
in different figures
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Fig. 1.6 Computer simulation of the evolution of passive tracer density in a turbulent velocity
field with random initial distribution and random “shot-noise” initial velocity data. The simulation
was performed for 100,000 particles. The consecutive frames show the location of passive tracer
particles at times t = 0.0, 0.3, 0.6, 1.0, 2.0, 3.0 s
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Fig. 1.7 Some deterministic signals (in this case, the images) transformed by deterministic
systems can appear random. The above picture shows a series of iterated transformations of the
original image via a fixed linear 2D mapping (matrix). The number of iterations applied is indicated
in the top left corner of each image. The curious behavior of iterations, the original image first
dissolving into seeming randomness only to return later to an almost original condition, is related to
the so-called ergodic behavior. Thus irreverently transformed is Professor Henri Poincaré (1854–
1912) of the University of Paris, the pioneer of ergodic theory of stationary phenomena (From
Scientific American, reproduced with permission. Copyright 1986, James P. Crutchfield)
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Fig. 1.8 A signal (again, an image) representing the large-scale and apparently random distribu-
tion of mass in the universe. The data come from the APM galaxy survey and shows more than two
million galaxies in a section of sky centered on the South Galactic pole. The so-called adhesion
model of the large scale mass distribution in the Universe uses Burgers equation to model the
relevant velocity fields

The signals shown in Figs. 1.4 and 1.5 are, obviously, not stationary and
have a diffusive character. However, their increments (differentials) are stationary
and, in Chap. 9, they will play an important role in construction of the spectral
representation of stationary signals themselves. The signal shown in Fig. 1.4 can
be interpreted as a trajectory, or sample path, of a random walker moving, in
discrete time steps, up or down a certain distance with equal probabilities 1/2 and
1/2. However, in the picture these trajectories are viewed from far away, and in
accelerated time, so that both time and space appear continuous.

In certain situations the randomness of the signal is due to uncertainty about
initial conditions of the underlying phenomenon which otherwise can be described
by perfectly deterministic models such as partial differential equations. A sequence
of pictures in Fig. 1.6 shows evolution of the system of particles with an initially
random (and homogeneous in space) spatial distribution. The particles are then
driven by the velocity field �v(t, �x) ∈ R2 governed by the so-called 2D Burgers
equation2

∂ �v(t, �x)

∂t
+
(
∇ · �v(t, �x)

)
�v(t, �x) = D

(
∂2�v(t, �x)

∂x2
1

+ ∂2�v(t, �x)

∂x2
2

)
, (1.1.2)

where �x = (x1, x2), the nabla operator ∇ = ∂/∂x1 + ∂/∂x2, and the positive
constant D is the coefficient of diffusivity. The initial velocity field is also assumed
to be random.

2See, e.g., W.A. Woyczyński, Burgers-KPZ Turbulence–Göttingen Lectures, Springer-Verlag 1998.
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1.2 Characteristics of Signals

Several physical characteristics of signals are of primary interest.

• The time average of the signal: For analog, continuous-time signals the time
average is defined by the formula

AVx = lim
T→∞

1

T

∫ T

0
x(t) dt, (1.2.1)

and for digital, discrete-time signals which are defined only for the time instants
t = nT , n = 0, 1, 2, . . . , N − 1, it is defined by the formula

AVx = 1

N

N−1∑
n=0

x(nT ). (1.2.2)

For periodic signals, it follows from (1.2.1) that

AVx = 1

P

∫ P

0
x(t) dt, (1.2.3)

so that, for the signal x(t) = sin t + (1/3) cos(3t) pictured in Fig. 1.1, the time
average is 0 as both sin t and cos(3t) integrate out to zero over the period P = 2π .

• Energy of the signal: For an analog signal x(t), the total energy

ENx =
∫ ∞

0
|x(t)|2 dt, (1.2.4)

and for digital signals

ENx =
∞∑

n=0

|x(nT )|2 · T . (1.2.5)

Observe that the energy of a periodic signal, such as the one from Fig. 1.1, is
necessarily infinite if considered over the whole positive time line. Also note that,
since in what follows it will be convenient to consider complex-valued signals, the
above formulas include notation for the square of the modulus of a complex number:
|z|2 = (Re z)2 + (Im z)2 = z · z∗; more about it in the next section.

• Power of the signal: Again, for an analog signal, the (average) power

PWx = lim
T→∞

1

T

∫ T

0
|x(t)|2 dt (1.2.6)
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and for a digital signal

PWx = lim
N→∞

1

NT

N−1∑
n=0

|x(nT )|2 · T = lim
N→∞

1

N

N−1∑
n=0

|x(nT )|2. (1.2.7)

As a consequence, for an analog periodic signal with period P ,

PWx = 1

P

∫ P

0
|x(t)|2 dt. (1.2.8)

For example, for the signal in Fig. 1.1,

PWx = 1

2π

∫ 2π

0

(
sin t + (1/3) cos(3t)

)2
dt (1.2.9)

= 1

2π

∫ 2π

0

(
sin2 t + 2

3
sin t cos(3t)+ 1

9
cos2(3t)

)
dt

= 1

2π

∫ 2π

0

(
1

2
(1− cos(2t))+ 2

3

1

2
(sin(4t)− sin(2t))+ 1

9

1

2
(1+ cos(6t))

)
dt

= 1

2π

(
1

2
2π + 1

9

1

2
2π

)
= 5

9
.

The above routine calculation, deliberately carried out here in detail, was somewhat
tedious because of the need for various trigonometric identities. To simplify such
manipulations and make the whole theory more elegant, we will introduce in the
next section a complex number representation of the trigonometric functions via the
so-called de Moivre formulas.

Remark 1.2.1 (Timeline Infinite in Both Direction) Sometimes it is convenient to
consider signals defined for all time instants t , −∞ < t < +∞, rather than just for
positive t . In such cases all of the above definitions have to be adjusted in obvious
ways, replacing the one-sided integrals and sums by two-sides integrals and sums,
and adjusting the averaging constants correspondingly.

1.3 Time Domain and Frequency Domain Descriptions
of Periodic Signals

The Time Domain Description The trigonometric functions

x(t) = cos(2πf0t), and y(t) = sin(2πf0t),

represent a harmonically oscillating signal with period P = 1/f0 (measured, say,
in seconds [s]), and the frequency f0 (measured, say, in cycles per second, or Hertz
[Hz]), and so do the trigonometric functions
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x(t) = cos(2πf0(t + θ)), and y(t) = sin(2πf0(t + θ))

shifted by the phase-shift θ . The powers

PWx = 1

P

∫ P

0
cos2(2πf0t) dt = 1

P

∫ P

0

1

2
(1+ cos(4πf0t)) dt = 1

2
, (1.3.1)

PWy = 1

P

∫ P

0
sin2(2πf0t) dt = 1

P

∫ P

0

1

2
(1− cos(4πf0t)) dt = 1

2
, (1.3.2)

using the trigonometric formulas from Tables 1.1 and 1.2. The phase shifts,
obviously do not change the power of the above harmonic signals.

Table 1.1 Trigonometric formulas

sin(α ± β) = sin α cos β ± sin β cos α;

cos(α ± β) = cos α cos β ∓ sin α sin β;

sin α + sin β = 2 sin
α + β

2
cos

α − β

2
;

sin α − sin β = 2 cos
α + β

2
sin

α − β

2
;

cos α + cos β = 2 cos
α + β

2
cos

α − β

2
;

cos α − cos β = −2 sin
α + β

2
sin

α − β

2
;

sin2 α − sin2 β = cos2 β − cos2 α = sin(α + β) sin(α − β);

cos2 α − sin2 β = cos2 β − sin2 α = cos(α + β) cos(α − β);

sin α cos β = 1

2

[
sin(α + β)+ sin(α − β)

]
;

cos α cos β = 1

2

[
cos(α + β)+ cos(α − β)

]
;

sin α sin β = 1

2

[
cos(α − β)− cos(α + β)

]
;



14 1 Description of Signals

Table 1.2 Complex numbers and De Moivre formulas

(i) By definition,

j = √−1.

(ii) Hence, for any integer m,

j4m = 1, j4m+1 = j, j4m+2 = −1, j4m+3 = −j.

(iii) Cartesian representation of the complex number:

z = a + jb, a = Re z, b = Im z,

where both a and b are real numbers and are called, respectively, the real and imaginary
components of z. The complex number,

z∗ = a − jb,

is called the complex conjugate of z.

(iv) The polar representation of the complex number (it is a good idea to think about complex
numbers as representing points, or vectors, in the two-dimensional plane spanned by the
two basic unit vectors, 1 and j ):

z = |z|(cos θ + j sin θ) = |z| · ejθ ,

and

z∗ = |z|(cos θ − j sin θ) = |z| · e−jθ ,

where

|z| =
√

a2 + b2 = √z · z∗, and θ = Arg z = arctan
Imz

Rez
,

is called, respectively, the modulus of z, and the argument of z. Alternatively,

Re z = z+ z∗
2

= |z| cos θ, Im z = z− z∗
2j

= |z| sin θ.

(v) For any complex number w = β + jα,

ew = eβ+jα = eβ(cos α + j sin α).

(vi) For any complex number z = a + jb = |z|ejθ , and any integer n,

zn = |z|nejnθ = (a2 + b2)n/2(cos nθ + j sin nθ).
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Taking their linear combination (like the one in Fig. 1.1), with amplitudes A and
B, respectively,

z(t) = Ax(t)+ By(t) = A cos(2πf0(t + θ))+ B sin(2πf0(t + θ)), (1.3.3)

also yields a periodic signal with frequency f0. For a signal written in this form we
no longer need to include the phase shift explicitly since

cos(2πf0(t + θ)) = cos(2πf0t) cos(2πf0θ)− sin(2πf0t) sin(2πf0θ),

and

sin(2πf0(t + θ)) = sin(2πf0t) cos(2πf0θ)+ cos(2πf0t) sin(2πf0θ),

so that

z(t) = a cos(2πf0t)+ b sin(2πf0t), (1.3.4)

with the new amplitudes

a = A cos(2πf0θ)+B sin(2πf0θ), and b = B cos(2πf0θ)−A sin(2πf0θ).

The power of the signal z(t), in view of (1.3.1) and (1.3.2), is given by the
Pythagorean-like formula

PWz = 1

P

∫ P

0
z2(t) dt = 1

P

∫ P

0
(a cos(2πf0t)+ b sin(2πf0t))

2 dt

= a2 · PWx + b2 · PWy + 2ab
1

P

∫ P

0
cos(2πf0t) sin(2πf0t) dt = 1

2
(a2 + b2),

(1.3.5)

because (see Tables 1.1 and 1.2, again)

1

P

∫ P

0
cos(2πf0t) sin(2πf0t) dt = 1

P

∫ P

0

1

2
sin(4πf0t) dt = 0. (1.3.6)

The above property (1.3.6), called orthogonality of the sine and cosine signals, will
play a fundamental role in this book.

The next observation is that signals

z(t) = a cos(2π(mf0)t)+ b sin(2π(mf0)t), m = 0, 1, 2, . . . ,

have the frequency equal to the multiplicity m of the fundamental frequency f0,
and as such have, in particular, period P (but also period P/m). Their power is
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also equal to (a2 + b2)/2. So, if we superpose M of them, with possibly different
amplitudes am and bm, for different m = 0, 1, 2, . . . ,M, the result is a periodic
signal

x(t) =
M∑

m=0

(
am cos(2π(mf0)t)+ bm sin(2π(mf0)t)

)

= a0 +
M∑

m=1

(
am cos(2π(mf0)t)+ bm sin(2π(mf0)t)

)
(1.3.7)

with period P , and the fundamental frequency f0 = 1/P , which has the mean and
power

AVx = a0, and PWx = a2
0 +

1

2

M∑
m=1

(a2
m + b2

m). (1.3.8)

The above result follows from the fact that not only sine and cosine signals (of
arbitrary frequencies) are orthogonal to each other (see, (1.3.6)) but also cosines
of different frequencies are orthogonal to each other, and so are sines. Indeed, if
m �= n, that is, m− n �= 0, then

1

P

∫ P

0
cos(2πmf0t) cos(2πnf0t) dt (1.3.9)

= 1

P

∫ P

0

1

2

(
cos(2π(m− n)f0t)+ cos(2π(m+ n)f0t)

)
dt = 0,

and

1

P

∫ P

0
sin(2πmf0t) sin(2πnf0t) dt (1.3.10)

= 1

P

∫ P

0

1

2

(
cos(2π(m− n)f0t)− cos(2π(m+ n)f0t)

)
dt = 0.

Example 1.3.1 (Superposition of Simple Cosine Oscillations) Consider the signal

x(t) =
12∑

m=1

1

m2 cos(2πmt). (1.3.11)

Its fundamental frequency is f0 = 1, its average AVx = 0, and its power (see,
(1.3.8))
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Fig. 1.9 Signal x(t) =∑12
m=1 m−2 cos(2πmt) in its time-domain representation

PWx = 1

2

12∑
m=1

(
1

m2

)2

≈ 0.541.

With its sharp cusps, the shape of the above signal is unlike that of any simple
harmonic oscillation and one could start wondering what kind of other periodic
signals can be well represented (approximated) by superpositions of harmonic
oscillations of the form (1.3.7). The answer, discussed at length in Chap. 2, is that
almost all of them can, as long as their power is finite (Fig. 1.9).

The Frequency Domain Description The signal x(t) in Example 1.3.1 would
be completely specified if, instead of writing the whole formula (1.3.11), we just
listed the frequencies present in the signal and the corresponding amplitudes, that
is, considered the list

(1, 1/12), (2, 1/22), (3, 1/33), . . . , (12, 1/122).

Similarly, in the case of the general superposition (1.3.7), it would be sufficient to
list the cosine and sine frequencies and associated amplitudes, that is, compile the
lists

(0, a0), (1f0, a1), (2f0, a2), . . . , (Mf0, aM), (1.3.12)

and

(1f0, b1), (2f0, b2), . . . , (Mf0, bM). (1.3.13)

The lists (sequences) ((1.3.12) and (1.3.13)) are called the frequency domain
(spectral) representation of the signal (1.3.7).
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Fig. 1.10 Signal x(t) =∑12
m=1 m−2 cos(2πmt) in its frequency domain representation. Only the

amplitudes of frequencies m = 1, 2, . . . , 12, are shown since all the phase shifts are zero

Remark 1.3.1 (Amplitude-Phase Form of the Spectral Representation) Alterna-
tively, if the signal x(t) in (1.3.7) is rewritten in the amplitude-phase form,

x(t) =
M∑

m=0

cn cos(2π(mf0)(t + θm)),

then the frequency domain representation must list the frequencies present in
the signal, mf0, m = 0, 1, . . . ,M , and the corresponding amplitudes cm m =
0, 1, . . . ,M , and phases θm, m = 0, 1, . . . ,M .

For the signal from Example 1.3.1, such a representation is graphically pictured
in Fig. 1.10. We will see in Chap. 2 that, for any periodic signal, the spectrum is
always concentrated on a discrete set of frequencies, namely, the multiplicities of
the fundamental frequency.

Finally, the formula (1.3.8) shows how the total power of signal x(t) is distributed
over different frequencies. Such a distribution, provided by the list

(0, a2
0), (1f0, (a

2
1 + b2

1)/2), (2f0, (a
2
2 + b2

2)/2), . . . , (Mf0, (a
2
M + b2

M)/2),

(1.3.14)

is called the power spectrum of the periodic signal (1.3.7).
Observe that, in general, knowledge of the power spectrum is not sufficient

for the reconstruction of the signal x(t) itself, while knowledge of the whole
representation in the frequency domain is.

To complete our elementary study of periodic signals note that if an arbitrary
signal is studied only in a finite time interval [0, P ], then it can always be treated
as a periodic signal with period P since one can extend its definition periodically
to the whole time line by copying its waveform from the interval [0, P ] to intervals
[P, 2P ], [2P, 3P ], and so on.
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1.4 Building a Better Mousetrap: Complex Exponentials

Catching the structure of periodic signals via their decomposition into a super-
position of basic trigonometric functions leads to some cumbersome calculations
employing various trigonometric identities (as we have seen in Sect. 1.3). A
greatly simplified and also more elegant approach to the same problem employs
a representation of trigonometric functions in terms of exponential functions of the
imaginary variable. The cost of moving into the complex domain is not high as we
will rely, essentially, on a single relationship

ejα = cos α + j sin α, where j = √−1, (1.4.1)

which is known as de Moivre formula,3 and which immediately yields two identities

cos α = 1

2
(ejα + e−jα), and sin α = 1

2j
(ejα − e−jα). (1.4.2)

In what follows, we are going to routinely utilize the complex number techniques.
Thus, for the benefit of the reader, the basic notation and facts about them are
summarized in Table 1.2.

Since de Moivre formula is so crucial for us, it is important to understand where
it is coming from. The proof is straightforward and relies on the power series
expansion of the exponential function,

ejα =
∞∑

k=0

jkαk

k! . (1.4.3)

However, the powers of the imaginary unit j can be expressed via a simple formula

jk =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, ifk = 4m;
j, ifk = 4m+ 1;
−1, ifk = 4m+ 2;
−j, ifk = 4m+ 3,

so the whole series (1.4.3) splits neatly into the real part, corresponding to even
indices of the form k = 2n, n = 0, 1, 2, . . . ,, and the imaginary part, corresponding
to the odd indices of the form k = 2n+ 1, n = 0, 1, 2, . . . :

3Throughout this book we denote the imaginary unit
√−1 by the letter j , which is a standard usage

in the electrical engineering signal processing literature as the, usual in the mathematical literature,
letter i is reserved for electrical current.
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∞∑
k=0

jkαk

k! =
∞∑

n=0

(−1)nα2n

(2n)! + j

∞∑
n=0

(−1)nα2n+1

(2n+ 1)! .

Now, it suffices to recognize in the above formula the familiar power series
expansions for trigonometric functions,

cos α =
∞∑

n=0

(−1)nα2n

(2n)! , sin α =
∞∑

n=0

(−1)nα2n+1

(2n+ 1)!

to obtain de Moivre formula.
Given de Moivre formulas which provides a representation of sine and cosine

functions via the complex exponentials, we can now rewrite the general superposi-
tion of harmonic oscillation

x(t) = a0 +
M∑

m=1

am cos(2πmf0t)+
M∑

m=1

bm sin(2πmf0t), (1.4.4)

in terms of the complex exponentials

x(t) =
M∑

m=−M

zmej2πmf0t , (1.4.5)

with the real amplitudes, am and bm, in representations (1.4.4), and the complex
amplitudes zm in the representation (1.4.5), connected by the formulas

a0 = z0, am = zm + z−m, bm = j (zm − z−m), m = 1, 2, . . . ,

or, equivalently,

z0 = a0 zm = am − jbm

2
, z−m = am + jbm

2
, m = 1, 2, . . .

The above relationships show that for the signal of the form (1.4.5) to represent
a real-valued signal x(t) it is necessary and sufficient that the paired amplitudes for
symmetric frequencies, mf0 and −mf0, be complex conjugates of each other:

z−m = z∗m, m = 1, 2, . . . (1.4.6)

However, in the future it will be convenient to consider general complex-valued
signals of the form (1.4.5) without the restriction (1.4.6) on its complex amplitudes.

At the first sight, the above introduction of complex numbers and functions of
complex-valued variables may seem as an unnecessary complication in the analysis
of signals. But let us calculate the power of the signal x(t) given by (1.4.5). The
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need for unpleasant trigonometric formulas disappears as now we need to integrate
only exponential functions. Indeed, remembering the |z|2 = z · z∗ now stands for
the square of the modulus of a complex number, we have

PWx = 1

P

∫ P

t=0
|x(t)|2 dt = 1

P

∫ P

t=0

∣∣∣
M∑

m=−M

zmej2πmf0t
∣∣∣2 dt

= 1

P

∫ P

t=0

( M∑
m=−M

zmej2πmf0t ·
M∑

k=−M

z∗ke−j2πkf0t
)

dt

= 1

P

M∑
m=−M

M∑
k=−M

zmz∗k
∫ P

t=0
ej2π(m−k)f0t dt =

M∑
m=−M

|zm|2, (1.4.7)

because, for m− k �= 0,

1

P

∫ P

t=0
ej2π(m−k)f0t dt = 1

j2π(m− k)f0
ej2π(m−k)f0t

∣∣∣P
t=0

= 0, (1.4.8)

as the function ej2π(m−k)f0t = cos(2π(m−k)f0t)+j sin(2π(m−k)f0t) is periodic
with period P , and for m− k = 0,

1

P

∫ P

t=0
ej2π(m−k)f0t dt = 1. (1.4.9)

Thus all the off-diagonal terms in the double sum in (1.4.7) disappear. The
formulas (1.4.8) and (1.4.9) express mutual orthogonality and normalization of the
complex exponential signals,

ej2πmf0t , m = 0,±1,±2, . . . ,±M.

In view of (1.4.7), the distribution of the power of the signal (1.4.5) over different
multiplicities of the fundamental frequency f0 can be written as a list with simple
structure,

(mf0, |zm|2), m = 0,±1,±2, . . . ,±M. (1.4.10)

Remark 1.4.1 (Aperiodic Signals) Nonperiodic signals can also be analyzed in
terms of their frequency domains but their spectra are not discrete. We will study
them later on.
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1.5 Problems and Exercises

1* Find the real and imaginary parts of (j + 3)/(j − 3); (1 + j
√

2)3; 1/(2 −
j); (2− 3j)/(3j + 2).4

2* Find the moduli |z| and arguments θ of complex numbers z = 5; z = −2j ;
z = −1+ j ; z = 3+ 4j .

3* Find the real and imaginary components of complex numbers z = 5 ejπ/4;
z = −2 ej (8π+1.27); z = −1 ej ; z = 3 eje.

4* Show that

5

(1− j)(2− j)(3− j)
= j

2
, and (1− j)4 = −4.

5* Sketch sets of points in complex plane (x, y), z = x+jy, such that |z−1+j | =
1; |z+ j | ≤ 3; Re (z∗ − j) = 2; |2z− j | = 4; z2 + (z∗)2 = 2.

6* Using de Moivre’s formulas find (−2j)1/2 and Re (1 − j
√

3)77. Are these
complex numbers uniquely defined?

7 Write the signal x(t) = sin t + cos(3t)/3 from Fig. 1.1 as a sum of phase-shifted
cosines.

8 Using de Moivre’s formulas write the signal x(t) = sin t + cos(3t)/3 from
Fig. 1.1 as a sum of complex exponentials.

9 Find the time average and power of the signal x(t) = −2e−j2π4t + 3e−j2πt +
1− 2ej2π3t . What is the fundamental frequency of this signal? Plot the distribution
of power of x(t) over different frequencies. Write this (complex) signal in terms of
cosines and sines. Find and plot its real and imaginary parts.

10* Using de Moivre’s formula derive the complex exponential represen-
tation (1.4.5) of the signal x(t) given by the cosine series representation
x(t) =∑M

m=1 cm cos(2πmf0(t + θm)).

11 Find the time average and power of the signal x(t) from Fig. 1.9. Use a symbolic
manipulation language such as Mathematica or Matlab if you like.

12* Using a computing platform such as Mathematica, Maple, or Matlab produces
plots of the signals

xM(t) = π

4
+

M∑
m=1

[
(−1)m − 1

πm2
cos mt − (−1)m

m
sin mt

]
,

4Solutions of the problems marked by the asterisk can be found at the end of the book in the chapter
Solutions to Selected Problems and Exercises.
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for M = 0, 1, 2, 3, . . . , 9 and −2π < t < 2π . Then produce their plots in the
frequency-domain representation. Calculate their power (again, using Mathematica,
Maple, or Matlab, if you wish). Produce plots showing how power is distributed
over different frequencies for each of them. Write down your observations. What is
likely to happen with the plots of these signals as we take more and more terms of the
above series, that is, as M →∞? Is there a limit signal x∞(t) = limM→∞ xM(t)?
What could it be?

13* Use the analog-to-digital conversion formula (1.1.1) to digitize signals from
Problem 13 for a variety of sampling periods and resolutions. Plot the results.

14* Use your computing platform to produce a discrete-time signal consisting of a
string of random numbers uniformly distributed on the interval [0,1]. For example,
in Mathematica, the command

Table[Random[], {20}]

will produce the following string of 20 random numbers between 0 and 1:

{0.175245, 0.552172, 0.471142, 0.910891, 0.219577,
0.198173, 0.667358, 0.226071, 0.151935, 0.42048,
0.264864, 0.330096, 0.346093, 0.673217, 0.409135,
0.265374, 0.732021, 0.887106, 0.697428, 0.7723}

Use the “random numbers” string as additive noise to produce random versions of
the digitized signals from Problem 14. Follow the example described in Fig. 1.3.
Experiment with different string length and various noise amplitudes. Then center
the noise around zero and repeat your experiments.



Chapter 2
Spectral Representation of Deterministic
Signals: Fourier Series and Transforms

Abstract In this chapter we will take a closer look at the spectral or frequency-
domain representation of deterministic (nonrandom) signals which was already
mentioned in Chap. 1. The tools introduced below, usually called Fourier or
harmonic analysis, will play a fundamental role later on in our study of random
signals. Almost all of the calculations will be conducted in the complex form.
Compared with working in the real domain, manipulation of formulas written in
the complex form turns out to be simpler and all the tedium of remembering various
trigonometric formulas is avoided. All of the results written in the complex form
can be translated quickly into results for real trigonometric series expressed in
terms of sines and cosines via the familiar from Chap. 1 de Moivre’s formula,
ejt = cos t + j sin t.

2.1 Complex Fourier Series for Periodic Signals

Any finite-power, complex-valued signal x(t), periodic with period P (say, sec-
onds), can1 be written in the form of an infinite complex Fourier series, meant as a
limit (in a sense to be made more precise later), for M →∞, of finite superposition
of complex harmonic exponentials discussed in Sect. 1.4 (see (1.4.5)):

x(t) =
∞∑

m=−∞
zmej2πmf0t =

∞∑
m=−∞

zmejmω0t , (2.1.1)

where f0 = 1
P

is the fundamental frequency of the signal (measured in Hz=1/s), and
ω0 = 2πf0 is called the fundamental angular velocity (measured in radians/s). The
complex number zm, where m can take values . . . ,−2,−1, 0, 1, 2, . . . , is called

1For mathematical issues related to the feasibility of such a representation, see the discussion in
the subsection of this section devoted to the analogy between the orthonormal basis in a 3D space
and complex exponentials.
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the m-th Fourier coefficient of signal x(t). Think about it as the amplitude of the
harmonic component, with the frequency mf0, of the signal x(t).

In this text we will carry out our calculations exclusively in terms of the
fundamental frequency f0, although one can find in the printed and software signal
processing literature sources where all the work is done in terms of ω0. It is an
arbitrary choice, but some formulas are simpler if written in the frequency domain;
transition from one system to the other is easily accomplished by adjusting various
constants appearing in the formulas.

The infinite Fourier series representation (2.1.1) is unique in the sense that two
different signals2 will have two different sequences of Fourier coefficients. The
uniqueness is a result of the fundamental property of complex exponentials

em(t) := ej2πmf0t , m = . . . ,−2,−1, 0, 1, 2, . . . (2.1.2)

called orthonormality:
The scalar product (sometimes also called inner, or dot, product) of two complex

exponentials en and em is 0 if the exponentials are different, and it is 1 if they are
the same. Indeed,

〈en, em〉 := 1

P

∫ P

0
en(t)e

∗
m(t) dt (2.1.3)

= 1

P

∫ P

0
ej2π(n−m)f0t dt =

{
0, if n �= m;
1, if n = m.

Recall that, for a complex number z = a+jb = |z|ejθ with real component a and
imaginary component b, the complex conjugate z∗ = a− jb = |z|e−jθ . Sometimes
it is convenient to describe the orthonormality using the so-called Kronecker delta
notation:

δ(n) =
{

0, ifn �= 0;
1, ifn = 0.

Then, simply,

〈em, en〉 = δ(n−m).

Using the orthonormality property we can directly evaluate the coefficients zm

in the Fourier series (2.1.1) of a given signal x(t) by formally calculating the scalar
product of x(t) and em(t):

2Meaning that their difference has positive power.
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〈x, em〉 = 1

P

∫ P

0

( ∞∑
n=−∞

znen(t)

)
· e∗m(t) dt (2.1.4)

=
∞∑

n=−∞
zn

1

P

∫ P

0
en(t)e

∗
m(t) dt = zm,

so that we get an explicit formula for the Fourier coefficient of signal x(t),

zm = 〈x, em〉 = 1

P

∫ P

0
x(t)e−j2πmf0t dt. (2.1.5)

Thus the basic Fourier expansion (2.1.1) can now be rewritten in the form of a formal
identity

x(t) =
∞∑

n=−∞
〈x, en〉en(t). (2.1.6)

It is worthwhile to recognize that the above calculations on infinite series and
interchanges of the order of integration and infinite summations were purely formal,
that is, the soundness of the limit procedures was not rigorously established.
The missing steps can be found in the mathematical literature devoted to Fourier
analysis.3 For our purposes suffice it to say that if a periodic signal x(t) has finite
power

PWx = ‖x‖2
L2 := 1

P

∫ P

0
|x(t)|2 dt <∞, (2.1.7)

and the concept of convergence of the functional infinite series (2.1.1) is defined in
the right way, then all of the above formal manipulations can be rigorously justified.
We will return to this issue at the end of this section. In what follows we will usually
consider signals with finite power.

Real-Valued Signals Signal x(t) is real-valued if and only if the coefficients zm

satisfy the algebraic condition,

z−m = z∗m, (2.1.8)

in which case cancellation of the imaginary parts in the Fourier series (2.1.1) occurs.
Indeed, under assumption (2.1.8),

zm = |zm|ejθm, θ−m = −θm, (2.1.9)

3See, e.g., A. Zygmund, Trigonometric Series, Cambridge University Press.
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and, since

ejα + e−jα

2
= cos α,

we get

x(t) = c0 +
∞∑

m=1

cm cos(2πmf0t + θm), (2.1.10)

where

c0 = z0, and cm = 2|zm|, m = 1, 2, . . . (2.1.11)

The power PWx of a periodic signal x(t) given by its Fourier series (2.1.1) can
also be directly calculated from its Fourier coefficient zm. Indeed, again calculating
formally, we obtain that

PWx = 1

P

∫ P

0
|x(t)|2 dt = 1

P

∫ P

0
x(t)x∗(t) dt

= 1

P

∫ P

0

( ∞∑
k=−∞

zkek(t)

)
·
( ∞∑

m=−∞
zmem(t)

)∗
dt

=
∞∑

k=−∞

∞∑
m=−∞

zkz
∗
m

1

P

∫ P

0
ek(t)e

∗
m(t) dt =

∞∑
m=−∞

zmz∗m,

in view of the orthonormality (2.1.3) of the complex exponentials. The multi-
plication of the two infinite series was carried out term-by-term. The resulting
relationship

PWx = 1

P

∫ P

0
|x(t)|2 dt =

∞∑
m=−∞

|zm|2 (2.1.12)

is known as the Parseval formula. A similar calculation for the scalar product
(1/P )

∫ P

0 x(t)y∗(t) of two different periodic signals, x(t) and y(t), gives an
extended Parseval formula listed in Table 2.1.

Remark 2.1.1 (Distribution of Power Over Frequencies in a Periodic Signal) Par-
seval’s formula describes how the power PWx of the signal x(t) is distributed over
different frequencies. The sequence (or its plot)

(mf0, |zm|2), m = 0,±1,±2, . . . (2.1.13)
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Table 2.1 Analogy between
orthogonal expansions in 3D
and in the space of periodic
signals with finite power

Objects
3D vectors Signals with finite power

�x = (x1, x2, x3) x(t) =∑∞
m=−∞ zmem(t),

�y = (y1, y2, y3) y(t) =∑∞
m=−∞ wmem(t),

Bases
Unit coordinate vectors Complex exponentials

.

.

.

�e1 = (1, 0, 0) e1(t) = ej2πf0t

�e2 = (0, 1, 0) e2(t) = ej2π(2f0)t

�e3 = (0, 0, 1) e3(t) = ej2π(3f0)t

.

.

.

Scalar products
〈�x, �y〉 =∑3

i=1 xiyi 〈x(t), y(t)〉
= 1

P

∫ P

0 x(t)y∗(t)dt

Orthonormality
〈 �em, �en〉 = δ(n−m) 〈em(t), en(t)〉 = δ(n−m)

Expansions
Basis Fourier

�x =∑3
m=1〈�x, �em〉 �em x(t) =∑∞

m=−∞〈x, em〉em(t)

Formulas
Pythagoras’ Parseval’s

||�x||2 =∑3
m=1 x2

m PWx = 1
P

∫ P

0 |x(t)|2 dt

=∑∞
m=−∞ |zm|2

Scalar product Extended Parseval’s

〈�x, �y〉 =∑3
m=1 xmym

1
P

∫ P

0 x(t)y∗(t) dt

=∑∞
m=−∞ zmw∗m

is called the power spectrum of the signal x(t). Simply stated, it says that the
harmonic component of x(t), with frequency mf0, has power |zm|2 (always a
nonnegative number!).

Analogy between the orthonormal basis of vectors in the 3D space R3 and the
complex exponentials; the completeness theorem: It is useful to think about the
complex exponentials em(t) = e2πjmf0t , m = . . . ,−1, 0, 1, . . . , as an infinite-
dimensional version of the orthonormal basic vectors in R3. In this mental picture
the periodic signal x(t) is now thought of as an infinite-dimensional “vector”
uniquely expandable into an infinite linear combination of the complex exponentials
in the same way a 3D vector is uniquely expandable into a finite linear combination
of the three unit coordinate vectors. Table 2.1 describes this analogy more fully. Note
that the Parseval formula can now be seen just as an infinite-dimensional extension
of the familiar Pythagorean theorem.

So far, the delicate issue of the very feasibility of the Fourier expansion (2.1.1)
for any periodic signal with finite power has been left out. Note that in the 3D
case, the fact that any vector �x is representable in the form x1�e1 + x2�e2 + x3�e3,



30 2 Spectral Representation of Deterministic Signals: Fourier Series and Transforms

where �e1, �e2, �e3, are the unit coordinate vector, is due to the fact that �e1, �e2, �e3, is
a “maximal” system of orthogonal vectors in 3D; it cannot be further expanded.
In other words, if a vector �e is orthogonal to �e1, �e2, �e3, then it must be zero. A
similar situation arises if one considers the system of all basic harmonic complex
exponentials,4 em(t) = e2πjmf0t , m = . . . ,−1, 0, 1, . . . , in the space of finite
power periodic complex signals with period P = 1/f0. If x(t) is such a signal
and 〈x(t), em(t)〉 = 0, for all m = . . . ,−1, 0, 1, . . . , then necessarily x(t) = 0.
This fact is known as the Completeness Theorem for complex exponentials and one
can find its proof in any mathematical textbook on harmonic or functional analysis.
Removing even one of the complex exponentials from the above system creates an
incomplete orthonormal system.

Examples Recall that a signal is called even if it is symmetric under the change
of the direction of time, i.e., if x(t) = x(−t); it is called odd if it is antisymmetric
under the change of the direction of time, i.e., if x(t) = −x(−t). The real Fourier
expansion of a real-valued signal x(t) the periodic extension thereof to the whole
real line is even, i.e., x(t) = x(−t), for all t ∈ R, will contain only cosine functions
(which are even) and, similarly, the real Fourier expansion of an odd real-valued
signal x(t) = −x(−t) will contain only sine functions (which are odd). This
phenomenon will be illustrated in the following examples.

Example 2.1.1 (Pure Cosine Expansion of an Even Rectangular Waveform) Con-
sider a rectangular waveform with period P , and amplitude a > 0, defined by the
formula

x(t) =

⎧⎪⎪⎨
⎪⎪⎩

a, for0 ≤ t < P/4;
0, forP/4 ≤ t < 3P/4;
a, for3P/4 ≤ t < P.

The signal is pictured below, for particular values P = 1, and a = 1 (Fig. 2.1).

Calculation of coefficients zm in the expansion of the signal x(t) into a complex
Fourier series is here straightforward: For m = 0,

z0 = 1

P

∫ P

0
x(t)e−j2π0t/P dt = a

P

(
P

4
− 0+ P − 3P

4

)
= a

2
.

In the case m �= 0,

zm = 1

P

∫ P

0
x(t)e−j2πmt/P dt

4Note that the sequence also includes the constant e0(t) ≡ 1.
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Fig. 2.1 An even rectangular waveform signal from Example 2.1.1. The period P = 1 and the
amplitude a = 1

= a

P

(∫ P/4

0
e−j2πmt/P dt +

∫ P

3P/4
e−j2πmt/P dt

)

= a

P

(
P

−j2πm
e−j2πmt/P

∣∣∣∣
P/4

0
+ P

−j2πm
e−j2πmt/P

∣∣∣∣
P

3P/4

)

= a

−j2πm

(
e−j (π/2)m − 1− e−j (3π/2)m + 1

)

= − a

πm
e−j (2π/2)m

(
ej (π/2)m − e−j (π/2)m

2j

)

= − a

πm
cos πm sin

π

2
m = − a

πm
(−1)m sin

π

2
m.

If m = 2k, then sin((π/2)m) = 0, and if m = 2k + 1, k = 0,±1,±2, . . ., then
sin (π/2)m = (−1)k, which gives, for k = ±1,±2, . . . ,

z2k = 0,
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and

z2k+1 = −a

π(2k + 1)
(−1)2k+1(−1)k = (−1)ka

π(2k + 1)
.

Thus the complex Fourier expansion of the signal x(t) is

x(t) = a

2
+ a

π

∞∑
k=−∞

(−1)k

2k + 1
ej2π(2k+1)t/P .

Observe that for any m = . . . ,−1, 0, 1, . . . , we have zm = z−m. Pairing up complex
exponentials with the exponents of opposite signs, and using de Moivre’s formula,
we arrive at the real Fourier expansion that contains only cosine functions:

x(t) = a

2
+ a

π

(
2 cos(2πt/P )− 2

3
cos(2π3t/P )+ . . .

)
.

Example 2.1.2 (Pure Sine Expansion of an Odd Rectangular Waveform) Consider
a periodic rectangular waveform of period P which is defined by the formula

x(t) =

⎧⎪⎪⎨
⎪⎪⎩

a, for0 ≤ t < P/4;
0, forP/4 ≤ t < 3P/4;
−a, for3P/4 ≤ t < P.

The signal is pictured below for particular values P = 1 and a = 1 (Fig. 2.2).
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Fig. 2.2 An odd rectangular waveform signal from Example 2.1.2. The period P = 1 and the
amplitude a = 1
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For m = 0,

z0 = 1

P

∫ P

0
x(t)dt = 0,

and, for m �= 0,

zm = a

P

(∫ P/4

0
e−j2πmt/P dt −

∫ P

3P/4
e−j2πmt/P dt

)

= −a

j2πm

(
e−j (π/2)m − 1− 1+ e−j (3π/2)m

)

= − a

j2πm

[
e−j (2π/2)m

(
ej (π/2)m + e−j (π/2)m

)
− 2
]

= − a

jπm

(
(−1)m · cos

π

2
m− 1

)
,

since, by de Moivre’s formula, e−jπm = cos πm− j sin πm, and cos πm = (−1)m,
and sin πm = 0, for any integer m. On the other hand, cos(π/2)m = 0 if m is odd,
and = (−1)k when m = 2k is even, so we get that

zm =
{

a/(jπ(2k + 1)), for odd m = 2k + 1;
a[1− (−1)k]/(jπ2k), for even m = 2k.

Thus the complex Fourier series of the signal x(t) is of the form

x(t) = a

π

∞∑
k=−∞

[
1

j (2k + 1)
ej2π(2k+1)t/P + [1− (−1)k]

j2k
ej2π(2k)t/P

]
.

Observe that in this case, for any m = . . . ,−1, 0, 1, . . . , we have zm = −z−m,
so pairing-up the exponentials with opposite signs in the exponents, and using de
Moivre’s formula, we get a real Fourier series expansion for x(t) that contains only
sine functions:

x(t) = 2a

π

[
sin 2π(1)t/P + sin(2π(2)t/P )+ 1

3
sin(2π(3)t/P )

+0 · sin(2π(4)t/P )+ 1

5
sin(2π(5)t/P )+ 1

6
sin(2π(6)t/P )+ . . .

]
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Fig. 2.3 A neither odd nor even rectangular waveform signal from Example 2.1.3. The period
P = 1 and the amplitude a = 1

The purpose of going through the above example was to show that, for irregular
periodic signals, the calculation of Fourier coefficients can get quite messy although
the final result may display a pleasing symmetry.

Example 2.1.3 (A General Expansion for a Rectangular Waveform Which Is Neither
Odd Nor Even) Consider a periodic rectangular waveform of period P which is
defined by the formula

x(t) =

⎧⎪⎪⎨
⎪⎪⎩

0, for 0 ≤ t < P/4;
a, for P/4 ≤ t < P/2;
0, for P/2 ≤ t < P.

The signal is pictured below for parameter values P = 1 and a = 1 and, for
simplicity’s sake, we will carry out our calculations only in that case (Fig. 2.3).
For m = 0,

z0 =
∫ 1/2

1/4
1 dt = 1

4
.

For m �= 0,

zm = |zm|eiθm =
∫ 1/2

1/4
e−j2πmtdt = 1

−j2πm

[
e−j2πm/2 − e−j2πm/4

]

= 1

πm
e−j3πm/4

(
ejπm/4 − e−jπm/4

2j

)
= 1

πm
sin(

π

4
m)e−j3πm/4.
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Thus

|zm| = 1

πm
sin(πm/4), and θm = −3πm/4,

and the complex Fourier series for x(t) is

x(t) = 1

4
+

∞∑
m=−∞,m�=0

1

πm
sin(πm/4)e−j3πm/4ej2πmt .

Again, pairing-up the complex exponentials with opposite signs in the exponents
we obtain the real expansion in terms of the cosines, but this time with phase shifts
that depend on m:

x(t) = 1

4
+

∞∑
m=1

2

πm
sin(πm/4) cos (2πmt − 3πm/4),

which, using the trigonometric formula cos(α+β) = cos α cos β− sin α sin β, also
can be written as a general real Fourier series,

x(t) = a0 +
∞∑

m=1

am cos(2πmt)+ bm sin(2πmt),

with

a0 = 1

4
, am = 2

πm
sin

πm

4
cos

3πm

4
, bm = 2

πm
sin

πm

4
sin

3πm

4
.

2.2 Approximation of Periodic Signals by Finite
Fourier Sums

Up to this point the equality in the Fourier series representation

x(t) =
∞∑

m=−∞
〈x, em〉em(t),

for periodic signals, or its real version in terms of sine and/or cosine functions,
was understood only formally. But, of course, usefulness of such an expansion will
depend on whether we can show that the signal x(t) can be well approximated by a
finite cut-off of the infinite Fourier series, that is, on whether we can prove that
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x(t) ≈ sM(t) :=
M∑

m=−M

〈x, em〉em(t) (2.2.1)

for M large enough, with the error in the above approximate equality ≈ rigorously
estimated.

One can pursue here several options:

Approximation in Power—Mean-Square Error If the error of approximation
is measured as the power of the difference between the signal x(t) and the finite
Fourier sum sM(t) in (2.2.1), then the calculation is relatively simple and the error
is often called the mean-square error. Indeed, using the Parseval formula,

PWx−sM = ‖x − sM‖2
L2 := 1

P

∫ P

0
|x(t)− sM(t)|2 dt

= 1

P

∫ P

0
|

∞∑
m=−∞

〈x, em〉em(t)− sM(t)|2 dt

= 1

P

∫ P

0
|
∑
|m|>M

〈x, em〉em(t)|2 dt =
∑
|m|>M

|〈x, em〉|2,

which converges to 0, as M →∞, because we assumed that the power of the signal
is finite:

PWx =
∞∑

m=−∞
|〈x, em〉|2 <∞.

Note that the unspoken assumption here is that the orthonormal system en(t), n =
0,±1,±2, . . . , is rich enough to make the Fourier representation possible for
any finite power signal. This assumption, often called completeness of the above
orthonormal system, can actually be rigorously proven (see the footnote and other
sources cited in the Bibliographical Comments at the end of this volume).

Approximation at Each Time Instant t Separately This type of approximation
is often called the point-wise approximation and the goal is to verify that, for each
time instant t ,

lim
M→∞ sM(t) = x(t). (2.2.2)

Here the situation is delicate, as examples at the end of this section will show, and the
assumption that signal x(t) has finite power is not sufficient to guarantee the point-
wise approximation. Neither is a stronger assumption that the signal is continuous.
However,
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If the signal is continuous, except, possibly, at a finite number of points, and has a bounded
continuous derivative, except, possibly, at a finite number of points, then the point-wise
approximation (2.2.2) holds true at all points of continuity of the signal.

Uniform Approximation in Time t If one wants to control the error of approxi-
mation simultaneously (uniformly) for all times t , then more stringent assumptions
on the signal are necessary. Namely, we have the following theorem5:

If the signal is continuous everywhere and has a bounded continuous derivative except at a
finite number of points then

max
0≤t≤P

∣∣∣x(t)− sM(t)

∣∣∣→ 0 as M →∞. (2.2.3)

Note that the above statements do not resolve the question of what happens with
the finite Fourier sums at discontinuity points of a signal, like those encountered
in the rectangular waveforms in Examples 2.1.1–2.1.3. It turns out that under the
assumptions of the above-quoted theorems, the points of discontinuity of the signal
x(t) are necessarily jumps, that is the left and right limits

x(t−) = lim
s↑t

x(s), and x(t+) = lim
s↓t

x(s) (2.2.4)

exist, and the finite Fourier sums sM(x) of x(t) converge, as M →∞, to the average
value of the signal at the jump:

lim
M→∞ sM(t) = x(t−)+ x(t+)

2
. (2.2.5)

Example 2.2.1 (Approximation of a Rectangular Signal by Finite Fourier Sums)
For the signal x(t) in Example 2.1.1, the first three nonzero terms of its cosine
expansion were

x(t) = a

2
+ a

π

(
2 cos(2π

t

P
)− 2

3
cos(2π

3t

P
)+ . . .

)
.

Hence, in the case of period P = 1 and amplitude a = 1, the first four
approximating sums are as follows:

s0(t) = 1

2
, s1(t) = 1

2
+ 2

π
cos 2πt,

s2(t) = 1

2
+ 2

π
cos 2πt, s3(t) = 1

2
+ 2

π
cos 2πt − 2

3π
cos 6πt.

5Proofs of these two mathematical theorems and other results quoted in this section can be found
in, e.g., T.W. Körner, Fourier Analysis, Cambridge University Press, 1988.
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Fig. 2.4 Graph of the Fourier sum s1(t) for the rectangular waveform signal x(t) from Exam-
ple 2.1.1, plotted against the original signal x(t)
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Fig. 2.5 Graph of the Fourier sum s3(t) for the rectangular waveform signal x(t) from Exam-
ple 2.1.1, plotted against the original signal x(t). Note the behavior of the Fourier sum s3(t) at the
signal’s discontinuities, where it matches the average value of the signal at both sides of the jump,
reflecting the asymptotics of formula (2.2.5)

The graphs of s1(t) and s3(t) are compared with the original signal x(t) in
Figs. 2.4 and 2.5. Note the behavior of the Fourier sums at the signal’s disconti-
nuities where the Fourier sums converge to the average value of the signal on both
sides of the jump according to formula (2.2.5).

Remark 2.2.1 (Irregular Behavior of Fourier Sums) A word of warning is appropri-
ate here. Abandoning the assumptions in the above two theorems leads very quickly
to difficulties with approximation of the signal by its Fourier series. For example,
there are continuous signals which, at some time instants, have finite Fourier sums
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diverging to infinity. However, even for them, one can guarantee that the averages
of consecutive Fourier sums converge to the signal for each t :

s0(t)+ s1(t)+ . . .+ sM(t)

M + 1
→ x(t), as M →∞.

The expression on the left-hand side of the above formula is called the M-th Césaro
average of the Fourier series. If one only assumes that the signal x(t) is integrable,
that is

∫ P

0 |x(t)| dt < ∞, which is the minimum assumption assuring that the
Fourier coefficients zm = 〈x, em〉 make sense, then one can find signals whose
Fourier sums diverge to infinity, for all time instants t .

The Gibbs Phenomenon Another observation is that the finite Fourier sums of
a signal satisfying the assumptions of the above quoted statements, despite being
convergent to the signal, may have shapes that are very unlike the signal itself.

Example 2.2.2 (Behavior of Fourier Sums at Signal’s Discontinuities) Consider the
signal x(t), with period P = 1, defined by the formula

x(t) = t, for − 1/2 ≤ t < 1/2.

Clearly it is an odd signal, so z0 = 0. For m �= 0, integrating by parts,

zm =
∫ 1/2

−1/2
te−j2πmt dt = t

−1

j2πm
e−j2πmt

∣∣∣1/2

−1/2
− −1

j2πm

∫ 1/2

−1/2
e−j2πmt dt

= −1

j2πm
(−1)m

because the last integral is zero. The complex Fourier expansion of x(t) is

x(t) =
∞∑

m=−∞,m�=0

−1

j2πm
(−1)mej2πmt ,

which yields a pure sine real Fourier expansion

x(t) =
∞∑

m=1

( −1

j2πm
(−1)mej2πmt + −1

j2π(−m)
(−1)−mej2π(−m)t

)

=
∞∑

m=1

(−1)m+1

πm
sin(2πmt).
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Fig. 2.6 Approximation of
the periodic signal x(t) from
Example 2.2.2 by Fourier
sums s1(t), s4(t), and s10(t)

(top to bottom). Visible is the
Gibbs phenomenon
demonstrating that the shape
of the Fourier sum near a
point of discontinuity of the
signal does not necessarily
resemble the shape of the
signal itself
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Figure 2.6 shows approximation of the periodic signal x(t) from Example 2.2.2
by Fourier sums s1(t), s4(t), and s10(t). Visible is the so-called Gibbs phenomenon
demonstrating that the shape of the Fourier sum near a point of discontinuity of the
signal does not necessarily resemble the shape of the signal itself. Yet, as the order
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M of the approximation increases, the oscillations move closer to the jump so that
the mean-square convergence of finite Fourier sums to the signal x(t) still obtains.

2.3 Aperiodic Signals and Fourier Transforms

Periodic Signals with Increasing Period: From Fourier Series to Fourier
Transform Consider a signal xP (t) of period P and fundamental frequency f0 =
1/P . We already know that such signals can be represented by its Fourier series

xP (t) =
∞∑

m=−∞

[
1

P

∫ P/2

−P/2
x(s)e−j2πmf0s ds

]
· ej2πmf0t . (2.3.1)

Notice that, for the purposes of this section, we have written the formula for the
Fourier coefficients of xP (t) as an integral over a symmetric interval (−P/2, P/2]
rather than the usual interval of periodicity (0, P ]. Since both the signal xP (t) and
complex exponentials

exp(−j2πmf0s) = cos(2πmf0s)+ j sin(2πmf0s)

are periodic with period P , any interval of length P will do.

Instead of considering aperiodic signals right off the bat we will make a
gradual transition from analysis of periodic to aperiodic signals by considering
what happens with the Fourier series if in the above representation (2.3.1) period
P increases to ∞; the limit case of infinite period P = ∞ would then correspond
to the case of an aperiodic signal.

To see the limit behavior of the Fourier series (2.3.1) we shall introduce the
following notation:

1. The multiplicities of the fundamental frequency will become a running discrete
variable fm:

fm = m · f0;

2. The increments of the new running variable will be denoted by

fm = fm − fm−1 = f0 = 1

P
.

In this notation the Fourier expansion (2.3.1) can be rewritten in the form

xP (t) =
∞∑

m=−∞

[ ∫ P/2

−P/2
x(s)e−j2πfms ds

]
ej2πfmtfm (2.3.2)
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because fm = f0 = 1/P. Now, if the period P → ∞, which is the same
as assuming that the fundamental frequency f0 = fm → 0, the sum on the
right-hand side of the formula (2.3.2) converges to the integral so that our Fourier
representation (2.3.2) of a periodic signal xP (t) becomes the following integral
identity for the aperiodic signal:

x∞(t) =
∫ ∞

−∞

[ ∫ ∞

−∞
x∞(s)e−j2πf s ds

]
ej2πf tdf. (2.3.3)

The inner transformation,

X(f ) =
∫ ∞

−∞
x(t)e−j2πf t dt, (2.3.4)

is called the Fourier transform of signal x(t), and the outer transform,

x(t) =
∫ ∞

−∞
X(f )ej2πf tdf, (2.3.5)

is called the inverse Fourier transform of (complex in general) function X(f ). The
variable in the Fourier transform is the frequency f .

Note that since |e−j2πf t | = 1, the necessary condition for the existence of the
Fourier transform in the usual sense is the absolute integrability of the signal:∫ ∞

−∞
|x(t)| dt <∞. (2.3.6)

Later on we will try to extend its definition to some important nonintegrable signals.

Example 2.3.1 (Fourier Transform of a Double Exponential Signal) Let us trace the
above limit procedure in the case of an aperiodic signal x∞(t) = e−|t |. If this signal
is approximated by periodic signals with period P obtained by truncating x(t) to
the interval [−P/2, P/2) and extending it periodically, i.e.,

xP (t) = e−|t |, for − P/2 ≤ t < P/2,

then the Fourier coefficients of the latter are, remembering that P = 1/f0,

zm,P = 1

P

∫ P/2

−P/2
e−|t |e−j2πmt/P dt

= 2f0

1+ (2πmf0)2

(
1− e−1/(2f0)

(
cos(2πmf0)+ 2πmf0 sin(2πmf0)

))
.

Since the original periodic signal xP (t) was even, the Fourier coefficients zm =
z−m so that the discrete spectrum of xP (t) is symmetric. Now, as P → ∞, that is
f0 = 1/P → 0, the exponential term e−1/(2f0) → 0, and with f0 = f,mf0 = f ,
we get that
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Fig. 2.7 Adjusted Fourier coefficients Zm,P · P of a truncated, end periodically extended double
exponential signal from Example 2.3.1 (shown above, for graphical convenience, as functions of
continuous parameter m) approach the Fourier transform X∞(f ) of the aperiodic signal x∞(t) =
e−|t |. The values of P , from top left to bottom right, are 1, 2, 4, 8

zm,P → 2

1+ (2πf )2
df, as P →∞.

Thus, the Fourier transform of the aperiodic signal x∞(t) is

X∞(f ) = 2

1+ (2πf )2
.

Taking the inverse Fourier transform we verify6 that

∫ ∞

−∞
2

1+ (2πf )2 ej2πf t df = e−|t |.

Figure 2.7 illustrates the convergence, as period P increases, of Fourier coefficients
zm,P to the Fourier transform X∞(f ).

6When faced with integrals of this sort the reader is advised to consult a book of integrals, or a
computer package such as Mathematica or Maple.
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2.4 Basic Properties of Fourier Transform

The property that makes the Fourier transform of signals so useful is its linearity,
that is, the Fourier transform of a linear composition αx(t) + βy(t) of signals x(t)

and y(t) is the same linear composition αX(f )+βY (f ) of their Fourier transforms.
To facilitate notation we will often denote the fact that X(f ) is the Fourier transform
of signal x(t) by writing x(t) �→ X(f ) (read, x(t) maps into X(f )). So,

αx(t)+ βy(t) �−→ αX(f )+ βY (f ). (2.4.1)

The proof is instantaneous using linearity of the integral.
The familiar Parseval formula for periodic signals carries over in the form

ENx =
∫ ∞

−∞
|x(t)|2 dt =

∫ ∞

−∞
|X(f )|2 df. (2.4.2)

It shows how the total energy of the signal is distributed of the continuous range
of frequencies from minus to plus infinity. The nonnegative function |X(f )|2 is
called the energy spectrum of the aperiodic signal x(t). The energy of the signal
contained in the frequency band [f1, f2] can then be calculated as the integral of the
square of the modulus of its Fourier transform over that frequency interval:

ENx[f1, f2] =
∫ f2

f1

|X(f )|2 df. (2.4.2a)

An observant reader will see immediately that integrability of the signal necessary
to define the Fourier transform is not sufficient for the validity of the Parseval
formula (2.4.2) as the finiteness of the integral

∫∞
−∞ |x(t)| dt does not imply that

the signal has finite energy ENx (and, vice versa, finiteness of ENx does not imply
the absolute integrability of the signal, see Problem 2.7.11).

Parseval’s formula also has the following useful extension

∫ ∞

−∞
x(t) · y(t) dt =

∫ ∞

−∞
X(f ) · Y ∗(f ) df. (2.4.3)

In the context of transmission of signals through linear systems the critical
property of the Fourier transform is that the convolution [x ∗ y](t) of signals x(t)

and y(t),

[x ∗ y](t) =
∫ ∞

−∞
x(s)y(t − s) ds (2.4.4)
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a fairly complex, nonlocal operation, has the Fourier transform that is simply the
point-wise product of the corresponding Fourier transforms

[x ∗ y](t) �−→ X(f ) · Y (f ). (2.4.5)

Indeed,

∫ ∞

−∞
[x ∗ y](t)e−j2πf t dt =

∫ ∞

−∞

[ ∫ ∞

−∞
x(s)y(t − s) ds

]
e−j2πf tdt =

=
∫ ∞

−∞

∫ ∞

−∞
y(t − s)e−j2πf (t−s)x(s)e−j2πf s ds dt

=
∫ ∞

−∞
y(u)e−j2πf u du ·

∫ ∞

−∞
x(s)e−j2πf s ds = X(f ) · Y (f ),

where the penultimate equality resulted from the substitution t − s = u.
Since many electrical circuits are described by linear differential equations the

behavior of the Fourier transform under differentiation of the signal is another
important issue. Here the calculation is also direct:

∫ ∞

−∞
x′(t)e−j2πf tdt = x(t)e−j2πf t |∞−∞ + j2πf

∫ ∞

−∞
x(t)e−j2πf tdt =

= 0+ j2πf XZ(f ).

The first term is 0 because the signal’s absolute integrability (remember, we have to
assume it to guarantee the existence of the Fourier transform) implies that x(∞) =
x(−∞) = 0. Thus we have a rule

x′(t) �−→ (j2πf ) ·X(f ). (2.4.6)

Similarly, one can employ the Fourier Transform technique to study linear partial
differential equations which describe temporal evolution of physical phenomena in
continuous media, see Problem 2.7.18.

The above and other, simple-to-derive operational rules for Fourier transforms
are summarized in Table 2.2.

Example 2.4.1 (Deterministic Gaussian Signal and Its Fourier Transform Have the
Same Functional Shape) Consider the curious example of a signal of the form
x(t) = e−πt2

which has the familiar bell shape. Its Fourier transform is

X(f ) =
∫ ∞

−∞
e−πt2−j2πf t dt =

∫ ∞

−∞
e−π(t+jf )2

e−πf 2
dt = e−πf 2

,
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Table 2.2 Properties of the Fourier Transform

Signal Fourier transform

Linearity

αx(t)+ βy(t) �−→ αX(f )+ βY (f )

Convolution

[x ∗ y](t) �−→ X(f ) · Y (f )

Differentiation

x(n)(t) �−→ (j2πf )nX(f )

Time reversal

x(−t) �−→ X(−f )

Time delay

x(t − t0) �−→ X(f ) · e−j2πt0f

Frequency translation

x(t) · ej2πf0t �−→ X(f − f0)

Frequency differentiation

(−j)ntnx(t) �−→ (2π)−1X(n)(f )

Frequency convolution

x(t)y(t) �−→ [X ∗ Y ](f )

because
∫ ∞

−∞
e−π(t+jf )2

dt =
∫ ∞

−∞
e−πt2

dt = 1.

Indeed, changing to polar coordinates r, θ , we can evaluate easily that

( ∫ ∞

−∞
e−πt2

dt
)2 =

∫ ∞

−∞
e−πt2

dt ·
∫ ∞

−∞
e−πs2

ds

=
∫ ∞

−∞

∫ ∞

−∞
e−π(t2+s2) dt ds =

∫ 2π

0
dθ

∫ ∞

0
e−πr2

r dr = 1.

Thus signal x(t) = e−πt2
has the remarkable property of having the Fourier trans-

form of exactly the same functional shape. This fact has profound consequences
in Fourier analysis, mathematical physics, quantum mechanics, and the theory of
partial differential equations.
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2.5 Fourier Transforms of Some Non-integrable Signals:
Dirac-Delta Impulse

There exist important nonintegrable signals, such as x(t) = const , or x(t) = cos t

that are not absolutely integrable over the whole time-line and, as a result, their
Fourier Transforms are not well defined in the context of the classical calculus.
Nevertheless, to cover these and other important cases, it is possible to extend the
standard calculus by introduction of the so-called Dirac-delta “function” δ(f )

which, loosely speaking, is an infinitely high but infinitely narrow spike located
at f = 0 which, very importantly, has the “area,” that is the “integral,” equal to 1.
Of course, one can similarly introduce the time-domain Dirac-delta δ(t) in which
case it is often called the Dirac-delta impulse.

Heuristically (but one can also make this approach rigorous) the best way to think
about the Dirac-delta is as a limit,

δ(f ) = lim
ε→0

rε(f ), (2.5.1)

where

rε(f ) =
{

1/(2ε), for− ε ≤ f ≤ +ε;
0, elsewhere,

is a family of rectangular functions of width 2ε, which have the area 1 underneath;
see Fig. 2.8.

Obviously, the choice of the rectangular functions is not unique here. Any
sequence of nonnegative functions which integrate to 1 over the whole real line
and converge to zero pointwise at every point different from the origin would do.

Fig. 2.8 Approximation of
the Dirac-delta δ(f ) by
rectangular functions rε(f )

for ε = 1, 1/3, and 1/9
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Fig. 2.9 Approximation of
the Dirac delta δ(f ) by
two-sided exponential
functions
(1/(2a)) exp(−|f |/a) for
a = 1, 1/3, and 1/9
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For example, as approximants to the Dirac-delta we can also take the family of
double-sided exponential functions of variable x,

1

2a
exp

( |f |
a

)
,

indexed by parameter a → 0+. Three functions of this family, for parameter values
a = 1, 1/3, 1/9, are pictured in Fig. 2.9.

More formally, the Dirac-delta will be defined here as a “functional” charac-
terized by its “probing property” describing its scalar products with other, regular
functions:

〈δ,X〉 :=
∫ ∞

−∞
δ(f )X(f ) df = X(0). (2.5.2)

In other words, integration of a function X(f ) against the Dirac-delta produces the
value of that function at f = 0. This property permits us to use the Dirac-delta
operationally whenever it appears inside integrals.

The “probing” formula (2.5.2) can be justified remembering our intuitive defini-
tion (2.5.1). Indeed, if function X(f ) is regular enough, then

∫ ∞

−∞
δ(f )X(f ) df = lim

ε→0

∫ ∞

−∞
rε(f )X(f ) df

= lim
ε→0

1

2ε

∫ ε

−ε

X(f ) df = X(0)

in view of the fundamental theorem of calculus.
Other properties of the Direc-delta follow immediately, For the Dirac-delta

shifted to f = f0,
∫ ∞

−∞
δ(f − f0)X(f ) df = X(f0). (2.5.3)
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Also,
∫ ε

−ε

δ(f ) df = 1, (2.5.4)

and ∫ ∞

−∞
δ(f )X(f )df = 0, if X(0) = 0, (2.5.5)

The last property is often intuitively stated as follows:

δ(f ) = 0, for f �= 0. (2.5.6)

Equipped with the Dirac-delta technique we can immediately obtain the Fourier
transform of some nonintegrable signals.

Example 2.5.1 (Fourier Transforms of Complex Exponentials) Finding the Fourier
transform of the harmonic oscillation signal x(t) = ej2πf0t is impossible by direct
integration as

∫ ∞

−∞
ej2πf0t e−j2πf tdt = 1

j2π(f0 − f )

(
cos 2π(f0−f )t+j sin 2π(f0−f )t

)∣∣∣∣
∞

t=−∞
,

and the limits

lim
t→±∞ cos 2π(f0 − f )t, and lim

t→±∞ sin 2π(f0 − f )t,

do not exist. But one immediately notices that, in view of (2.5.2), the inverse
transform of the shifted Dirac-delta is,

∫ ∞

−∞
δ(f − f0)e

j2πf tdf = ej2πf0t .

Thus the Fourier transform of x(t) = ej2πf0t is δ(f − f0). In particular, the Fourier
transform of a constant 1 is δ(f ) itself.

Example 2.5.2 (Fourier Transforms of Real Harmonic Oscillations) The Fourier
transform of the signal x(t) = cos 2πt has to be found in a similar fashion as direct
integration of

∫∞
−∞ cos (2πt) e−j2πf tdt is again impossible. But one observes that

the inverse Fourier transform

∫ ∞

−∞
1

2

(
δ(f − 1)+ δ(f + 1)

)
ej2πf t df = ej2πt + e−j2πt

2
= cos 2πt,

so the Fourier transform of cos 2πt is (δ(f − 1)+ δ(f + 1))/2.
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Table 2.3 Common Fourier transforms

Signal Fourier transform

e−a|t | �−→ 2a

a2 + (2πf )2 , a > 0

e−πt2 �−→ e−πf 2{
1, for|t | ≤ 1/2;
0, for|t | > 1/2.

�−→ sin πf

πf{
1− |t |, for|t | ≤ 1;
0, fort | > 1.

�−→ sin2 πf

π2f 2

ej2πf0t �−→ δ(f − f0)

δ(t) �−→ 1

cos 2πf0t �−→ δ(f + f0)+ δ(f − f0)

2
sin 2πf0t �−→ j

δ(f + f0)− δ(f − f0)

2
e−at · u(t) �−→ 1

a + j2πf
, a > 0

Table 2.3 lists Fourier transforms of some common signals. Here, and thereafter,
u(t) denotes Heaviside’s Unit Step Function equal to 0, for t < 0, and 1, for t ≥ 0.

Calculus of Dirac-Delta “Functions”: Theory of Schwartzian Distributions
There exists a large theory of Dirac-delta “functions,” and of similar mathematical
objects called distributions (in the sense of Schwartz),7 which develops tools that
help carry out operations such as distributional differentiation. To give the reader a
little taste of it let us start here with the classical integration-by-parts formula which,
for usual, vanishing at f = ±∞ functions X(f ), and Y (f ), states that

〈X, Y ′〉 =
∫ ∞

−∞
X(f ) · Y ′(f ) df = −

∫ ∞

−∞
X′(f ) · Y (f ) df = −〈X′, Y 〉.

(2.5.7)

This identity, applied formally, can be used as the definition of the derivative δ′(f )

of the Dirac-delta by assigning to it the following probing property:

〈X, δ′〉 =
∫ ∞

−∞
X(f ) · δ′(f ) df = −

∫ ∞

−∞
X′(f ) · δ(f ) df = −X′(0). (2.5.8)

Symbolically, we can write

X(f ) · δ′(f ) = −X′(f ) · δ(f ).

7For a more complete exposition of the theory and applications of the Dirac delta and related
“distributions,” see A.I. Saichev and W.A. Woyczyński, Distributions in the Physical and
Engineering Sciences, Volume 1: Distributional Calculus, Integral Transforms and Wavelets,
Birkhäuser-Boston, 1998. Also, see Bibliographical Comments at the end of this volume.
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In the particular case X(f ) = f (here, the function has to be thought of as a limit
of functions vanishing at ±∞) we get

f · δ′(f ) = −δ(f ),

a useful computational formula.

2.6 Discrete and Fast Fourier Transforms

In practice, for many signals, we only sample the value of the signal at discrete
times, although in reality the signal continues between these sampling times. In
such cases we can approximate the integrals involved in calculation of the Fourier
transforms in the same way as one does in numerical integration in calculus,
using left-handed rectangles, trapezoids, Simpson’s rule, etc. We use the simplest
approximation, which is equivalent to assuming that the signal is constant between
the sampling times (and rectangles’ areas approximate the area under the function).

So, suppose that the sampling period is Ts , with the sampling frequency fs =
1/Ts , so that the signal’s sample is given in the form of a finite sequence,

xk = x(kTs), k = 0, 1, 2, . . . , N − 1, (2.6.1)

so that we can interpret it as a periodic signal with period

P = 1

f0
= NTs = N

fs

. (2.6.2)

The integral in formula (2.3.1) approximating the Fourier transform of the signal
x(t) at discrete frequencies mf0,m = 0, 1, 2, . . . , N − 1, can now be, in turn,
approximated by the sum:

Xm = X(mf0) = 1

P

N−1∑
k=0

x(kTs)e
−j2πmf0kTs · Ts

= 1

N

N−1∑
k=0

xke
−j2πmk/N , (2.6.3)

in view of relationships (2.6.2). The sequence,

Xm, m = 0, 1, 2, . . . , N − 1, (2.6.4)

is traditionally called the Discrete Fourier Transform (DFT) of the signal sample
xk, k = 0, 1, 2, . . . , N − 1, described in (2.6.1).
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Note that the calculation of the DFT via formula (2.6.3) calls for N2 multiplica-
tions,

xk · e−j2πmk/N , m, k = 0, 1, 2, . . . , N − 1.

One often says that the formula’s computational (algorithmic) complexity is of the
order N2. This computational complexity, however, can be dramatically reduced
by cleverly grouping terms in the sum (2.6.3). The technique, which usually is
called the Fast Fourier Transform (FFT), was known to Carl Friedrich Gauss at
the beginning of the nineteenth century, but was rediscovered and popularized by
Cooley and Tukey in 1965.8 We will explain it in the special case when the signal’s
sample size N is a power of 2. So assume that N = 2n, and let ωN = e−j2π/N .
The complex number ωN is called a complex N -th root of unity because ωN

N = 1.
Obviously, for M = N/2, we have

ω
(2k)m
2M = ωkm

M , ωM+m
M = ωm

M, and ωM+m
2M = −ωm

2M. (2.6.5)

The crucial observation is to recognize that the sum (2.6.3) can be split into two
pieces

Xm = 1

2

(
Xeven

m +Xodd
m · ωm

2M

)
, (2.6.6)

where

Xeven
m = 1

M

M−1∑
k=0

x2kω
km
M , and Xodd

m = 1

M

M−1∑
k=0

x2k+1ω
km
M , (2.6.7)

and that, in view of (2.6.5),

Xm+M = 1

2

(
Xeven

m −Xodd
m · ωm

2M

)
. (2.6.8)

As a result, only values Xm,m = 0, 1, 2, . . . ,M − 1 = N/2 − 1, have to
be calculated by computationally laborious multiplications. The values Xm,m =
M,M + 1, . . . , 2M − 1 = N − 1, are simply obtained by formula (2.6.8). The
above trick is then repeated at levels N/22, N/23, . . . , 2. If we denote by CC(n) the
computations complexity of the above scheme, that is the number of multiplications
required, we see that

CC(n) = 2CC(n− 1)+ 2n−1,

8Cooley, J.W. and Tukey, O.W. “An Algorithm for the Machine Calculation of Complex Fourier
Series.” Math. Comput. 19, 297–301, 1965.
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with the first term on the right being the result of halving the size of the sample
at each step, and the second term resulting from multiplications of Xodd

m by ωm
2M

in (2.6.6) and (2.6.8). Iterating the above recursive relation one obtains that

CC(n) = 2n−1 log2 2n = 1

2
N log2 N, (2.6.9)

a major improvement over the N2-order of the computational complexity of the
straightforward calculation of DFT.

2.7 Problems and Exercises

1* Prove that the system of real harmonic oscillations

sin(2πmf0t), cos(2πmf0t), m = 1, 2, . . .

forms an orthogonal system. Is the system normalized? Is the system complete? Use
the above information to derive formulas for coefficients in the Fourier expansions
in terms of sines and cosines. Model this derivation on calculations in Sect. 2.1.

2* Using the results from Problem 1 find formulas for amplitudes cm and phases
θm in the expansion of a periodic signal x(t) in terms of only cosines, x(t) =∑∞

m=0 cm cos(2πmf0t + θm).

3 Find a general formula for the coefficients in the cosine Fourier expansion for the
even rectangular waveform x(t) from Example 2.1.1.

4 Find a general formula for the coefficients bm in the sine Fourier expansion for
the odd rectangular waveform x(t) from Example 2.1.2.

5 Carry out calculations of Example 2.1.3 in the case of arbitrary period P and
amplitude a.

6 Find three consecutive approximations by finite Fourier sums of the signal x(t)

from Example 2.1.3. Graph them and compare the graphs with the graph of the
original signal.

7 Find the complex and real Fourier series for the periodic signal with period P

defined by the formula

x(t) =
{

a, for0 ≤ t < P/2;
−a, forP/2 ≤ t < P.

In the case P = π and a = 2.5 produce graphs comparing the signal x(t) and its
finite Fourier sums of order 1, 3, and 6.
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8 Find the complex and real Fourier series for the periodic signal with period P = 1
defined by the formula

x(t) =
{

1− t/2, for0 ≤ t < 1/2;
0, for1/2 ≤ t < 1.

Produce graphs comparing the signal x(t) and its finite Fourier sums of order 1,3,
and 6.

9* Find the complex and real Fourier series for the periodic signal x(t) = | sin t |.
Produce graphs comparing the signal x(t) and its finite Fourier sums of order 1, 3,
and 6. In electrical engineering, signal | sin t | is produced by running the sine signal
through a rectifier.

10 Find the complex and real Fourier series for the periodic signal with period
P = π defined by the formula

x(t) = et , for − π/2 < t ≤ π/2.

Produce graphs comparing the signal x(t) and its finite Fourier sums of order 1,3,
and 6.

11 Find an example of a signal x(t) that is absolutely integrable, i.e.,∫∞
−∞ |x(t)| dt < ∞ but has infinite energy ENx =

∫∞
−∞ |x(t)|2 dt , and vice versa,

find an example of a signal which has finite energy but is not absolutely integrable.

12 Provide a detailed verification of Fourier transform properties listed in Table 2.2.
Provide a detailed verification of the Fourier transforms Table 2.3.

13*

(a) The nonperiodic signal x(t) is defined as equal to 1/2 on the interval [−1,+1],
and 0 elsewhere. Plot it and calculate its Fourier transform X(f ). Plot the latter.

(b) The nonperiodic signal y(t) is defined as equal to (t+2)/4 on the interval [−2, 0],
(−t+2)/4 on the interval [0, 2], and 0 elsewhere. Plot it and calculate its Fourier
transform Y (f ). Plot the latter.

(c) Compare the Fourier transforms X(f ) and Y (f ). What conclusion do you draw
about the relationship of the original signals x(t) and y(t)?

14 Find the Fourier transform of the periodic signal x(t) =∑∞
m=−∞ zmej2πmf0t .

15 Find the Fourier Transform of the solution x(t) of the differential equation
x′′(t)+ x(t) = cos t .

16 Find the Fourier transform of the signals given below. Graph both the signal and
its Fourier transform (real and imaginary parts separately, if necessary):
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(a)

x(t) = 1

1+ t2 , −∞ < t <∞,

(b)

e−t2/2, −∞ < t <∞,

(c)

x(t) =
{

sin t · e−t , fort ≥ 0;
0, fort < 0,

(d)

x(t) = sin t · e−|t |,

(e)

x(t) = y ∗ z(t), y(t) = u(t)− u(t − 1), z(t) = e−|t |,

where u(t) is the unit step signal =0 for negative t and =1 for t ≥ 0.

17 Find the convolution (x ∗ x)(t) if x(t) = u(t)− u(t − 1), where u(t) is the Unit
Step Function. First, use the original definition of the convolution and then verify
your result using the Fourier transform method.

18* Utilize the Fourier transform (in the space variable z) to find a solution of the
diffusion (heat) partial differential equation

∂u

∂t
= σ

∂2u

∂z2 ,

for a function u(t, z) satisfying the initial condition u(0, z) = δ(z). The solution of
the above equation is often used to describe the temporal evolution of the density of
a diffusing substance.9

9It was the search for solutions to this problem that induced Jean-Baptiste Fourier (born March
21, 1768, in Auxerre, France, died May 16, 1830, in Paris) to introduce in his treatise Théorie
analytique de la chaleur (1822; The Analytical Theory of Heat) the tools of infinite functional series
and integral transforms now known under the names of Fourier series and transforms. During the
Napoleonic era Fourier was also known as an Egyptologist and administrator. The modern young
author of research papers, impatient with delays in publication of his/her work, should find solace
in the fact that appearance of Fourier’s great memoir was held up by the referees for 15 years; it
was first presented to the Institut de France on December 21, 1807.
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19 Assuming the validity of the Parseval formula
∫∞
−∞ |x(t)|2 dt = ∫∞−∞ |X(f )|2 df ,

prove its extended version
∫∞
−∞ x(t) · y∗(t) dt = ∫∞−∞X(f ) · Y ∗(f ) df . Hint: In

the case of real-valued x(t), y(t), X(f ), and Y (f ), it suffices to utilize the obvious
identity 4xy = (x + y)2 − (x − y)2, but in the general, complex case, first verify,
and then apply the following polarization identity:

4xy∗ = |x + y|2 − |x − y|2 + j (|x + jy|2 − |x − jy|2).

Remember that the modulus square |z|2 = zz∗.

20 Consider the triangular signal, x(t) = 1 + t , for t ∈ [−1, 0], = 1 − t , for
t ∈ [0, 1], and equal to zero elsewhere. Find its Fourier transform, and the Fourier
transform of its second derivative x′′(t). Calculate the second derivative first.



Chapter 3
Uncertainty Principle and Wavelet
Transforms

Abstract The method of wavelet transforms, which provides a decomposition of
functions in terms of a fixed orthogonal family of functions of constant shape but
varying scales and locations, recently acquired broad significance in the analysis of
signals and of experimental data from various physical phenomena. Its value for the
whole spectrum of problems in many areas of science and engineering, including the
study of electromagnetic and turbulent hydrodynamic fields, image reconstruction
algorithms, prediction of earthquakes and tsunami waves, and statistical analysis of
economic data, is by now quite obvious.

Although the systematic ideas of wavelet transforms have been developed only
since the early 1980s, to get the proper intuitions about sources of their effectiveness
it is necessary to become familiar with a few more traditional ideas, tools, and
methods. One of those is the celebrated uncertainty principle for the Fourier
transforms which will be given special attention in this chapter. A close relative
of the wavelet transform—the windowed Fourier transform—will also be studied in
this context.

3.1 Time–Frequency Localization and the Uncertainty
Principle

Consider a (perhaps complex-valued) signal x(t) such that

∫ ∞

−∞
|x(t)|2dt = 1. (3.1.1)

The quantity |x(t)|2 can be thought of as the signal’s “energy” density and
describes its distribution in time. If the signal x(t) is square integrable but the

© Springer Nature Switzerland AG 2019
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condition (3.1.1) is not satisfied, then one can always normalize it by considering
x(t)/(

∫∞
−∞ |x(t)|2dt)1/2. In this context, the quantity

∫
t |x(t)|2dt

can be interpreted as the location in time of the signal’s “center of gravity,” or its
mean location. For the purposes of this section, and without loss of generality, we
will assume that its mean location is at 0 or, in other words, that

∫
t |x(t)|2dt = 0.

In this case, the quantity

σ 2[x] =
∫ ∞

−∞
t2|x(t)|2dt (3.1.2)

measures the average square deviation from the mean time location, or the degree
of localization of the signal around its mean in the time domain.

On the other hand, the Fourier transform,

X(f ) =
∫ ∞

−∞
x(t)e−j2πf tdt,

displays no direct information about the signal’s time localization, but has explicit
information about its frequency localization. The square of its modulus |X(f )|2
is the frequency domain counterpart of the time density |x(t)|2. Note that, by
Parseval’s formula (2.4.2),

∫ ∞

−∞
|X(f )|2df =

∫ ∞

−∞
|x(t)|2dt,

so that |X(f )|2 can be viewed as the signal’s normalized density in the frequency
domain. Assume (again, without loss of generality) that the mean frequency

∫ ∞

−∞
f |X(f )|2df = 0.

Then the quantity

σ 2[X] =
∫ ∞

−∞
f 2X(f )|2df (3.1.3)

measures the mean square deviation from the mean frequency location, or the degree
of localization of the signal in the frequency domain.

The uncertainty principle asserts that there exists a lower bound on the simulta-
neous localization of the signal in time and frequency domains. More precisely, it
states that
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σ 2[x]σ 2[X] ≥ 1/4, (3.1.4)

whenever the variances σ 2[x] and σ 2[X] are well defined. Note the universal
constant 1/4.

To see why the uncertainty principle holds true, consider the integral

I (a) =
∫ ∞

−∞
|atx(t)+ x′(t)|2dt ≥ 0, (3.1.5)

where a is a real parameter. Then, since

|atx(t)+ x′(t)|2 = (atx + x′)(atx∗ + (x′)∗),

we get that

I (a) = a2
∫ ∞

−∞
t2|x|2dt + a

∫ ∞

−∞
t (x(x′)∗ + x′x∗) dt +

∫ ∞

−∞
|x′|2 dt. (3.1.6)

The first integral in (3.1.6) is just σ 2[x] (by definition (3.1.2)). The second integral
is equal to

∫ ∞

−∞
t (xx∗)′dt = t |x(t)|2

∣∣∣∞−∞ −
∫ ∞

−∞
|x|2dt = −1,

since t |x(t)|2 decays to zero at ±∞ in view of the assumption σ 2[x] <∞. Finally,
the third integral is equal to

∫ ∞

−∞
f 2|X(f )|2df = σ 2[X]

because of Parseval’s formula and the fact that the Fourier transform of x′ is equal
to jf X(f ). As a result, the integral

I (a) = a2σ 2(x)− a + σ 2(X). (3.1.7)

This is a quadratic polynomial in variable a and, in view of (3.1.5), it is nonnegative
for all values of x. As such, it has a nonpositive discriminant

1− 4σ 2(x)σ 2(X) ≤ 0,

which immediately yields the uncertainty principle (3.1.4).

Remark 3.1.1 (The Heisenberg Uncertainty Principle in Quantum Mechanics) The
(3D version of the) above uncertainty principle concerning time-frequency local-
ization has a celebrated interpretation in quantum mechanics, where the principle
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asserts that the position and the momentum of a particle cannot be simultaneously
measured with arbitrary accuracy. Indeed, in quantum mechanics the particle is
represented by a complex wave function, and its modulus square is the probability
density of its position in space. The observables are represented by operators on
wave functions. The position observable is represented by a multiplication by
variable (vector) and the momentum observable is represented by the operation
of differentiation. However, via the Fourier transform, the latter also becomes an
operation of multiplication but by an independent variable (vector) in the frequency
domain. Thus the uncertainty principle (3.1.4) gives the universal lower bound
for the product of variances of the probability distributions of the position and
of the momentum. In the three-dimensional space, and in the physical units, the
lower bound 1/4 in (3.1.4) has to be replaced by a different mathematical constant
multiplied by a universal physical constant called the Planck constant.

Remark 3.1.2 One can check that the equality in the uncertainty principle (3.1.4)
obtains only for the Gaussian function x(t) = π−1/4 exp(−t2/2). Thus the optimal
simultaneous time and frequency localization is attained for a Gaussian-shaped
signal.

3.2 Windowed Fourier Transform

3.2.1 Forward Windowed Fourier Transform

The uncertainty principle discussed above is a basic law of mathematics and it is
impossible to fool nature by measuring the frequency of the incoming signal with
an arbitrary precision in a finite time interval. Moreover, for most of the signals
we have to deal with in practical problems, such as speech, musical sounds, and
radar signals, the situation is often much worse than the basic uncertainty inequality.
Nevertheless, it is often possible to process these signals in such a way that, without
violation of the uncertainty principle, one can obtain information about the signal’s
“current” frequency and its time evolution. These various practical signal processing
methods are adapted to different kinds of signals and pursue different goals. In this
section we will take a look at one of these methods called the windowed Fourier
transform which is closest perhaps to the spirit of the usual Fourier transform.

In what follows, to better grasp the mechanisms behind the windowed Fourier
transform, it will be instructive to test them on a sample signal that we will call
the simplest tune. Mathematically, it is described by the real part of the complex
function

x(t) = exp(j�(t)), (3.2.1)
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Fig. 3.1 Plot of the simplest tune in case of f0 = 10ν and β = �/ν = 5

where

�(t) = f0t + �

ν
sin(νt) (3.2.2)

is the signal phase. The simplest tune is plotted in Fig. 3.1.
It is customary to say in the theoretical physics context that the simplest tune has

the instantaneous frequency (admittedly, an oxymoron)

finst (t) = d�(t)

dt
= f0 +� cos(νt), (3.2.3)

which oscillates with period T = 2π/ν between its high value f0 + � and low
value f0 −�. By contrast with a theoretician, an experimenter has to deal not with
mathematical formulas but with real signals and his job is to come up with a signal
processing method that will discover the existence of frequency oscillations in the
simplest tune.

The mathematical tool that is helpful in this situation is called the windowed
Fourier transform which is just the usual Fourier transform

X(f, τ) =
∫ ∞

−∞
x(t)w(t − τ)e−j2πf t dt (3.2.4)

of the time-windowed signal x(t)w(t − τ), where w(t) is the windowing function
that usually is chosen to have value equal to 1 in a vicinity of the origin t = 0 (say,
inside an interval of length λ), and that either vanishes or has values very close to 0
outside this neighborhood. This windowing function property will assure effective
time-localization.
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Usually, one defines the windowing function w(t) via a windowing shape
function w0(s) of a dimensionless variable s and the formula

w(t) = w0(t/λ), (3.2.5)

where λ is a scaling parameter. Some typical examples of normalized (‖w0‖ = 1)
windowing shape functions are (see Fig. 3.2):

Fig. 3.2 Examples of
windowing shape functions.
(a) Finite memory window;
(b) Relaxation window;
(c) Gaussian window
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(a) Finite memory window

w0(s) = χ(s + 1)− χ(s); (3.2.6a)

(b) Relaxation window

w0(s) = 2χ(−s) exp(2s); (3.2.6b)

(c) Gaussian window

w0(s) = π−1/4 exp(−s2/2) (3.2.6c)

where χ(s) is the unit step function.
Shift τ centers the window at different locations on the time-axis t . If x(t) is a

time-dependent signal and processing is performed in the real-time, then τ is just the
current time of the experiment and the time-window w(t) has to satisfy the causality
principle, i.e., w(t) ≡ 0 for t > 0. So, in this case, the finite memory and relaxation
windows are appropriate but the Gaussian window is not. If the whole signal is
recorded before processing, or the variable t has other interpretation (e.g., space or
angle variable), then the experimenter has more freedom in selecting the windowing
shape function, and very often the Gaussian window is a good candidate.

3.2.2 Frequency Localization

The time-window w(t) was designed to separate well the time-localized pieces of
duration λ of the incoming signal x(t). Luckily, it turns out that the Fourier image of
the time-window w(t) can help in frequency localization. To see how this happens
let us express the original signal x(t) through its Fourier transform:

x(t) =
∫ ∞

−∞
X(f )ej2πff t df, (3.2.7)

and substitute it into the right-hand side of (3.2.4). Note that, in the case of the
simplest tune (3.2.1), X(f ) exists only in the distributional sense. The change of
the integration order gives that

X(f, τ) = e−j2πf τ

∫ ∞

−∞
X(f ′)W(f − f ′)ej2πf ′τ df ′. (3.2.8)

Remarkably, except for the nonessential factor in front of the integral, this expres-
sion looks like the symmetric counterpart of (3.2.4) in the frequency domain. Now,
the role of the signal is played by its Fourier image X(f ) and the time-window has
been replaced by the frequency-window W(f ), that is the Fourier transform of the
time window w(t).
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The uncertainty principle (3.1.4) tells us that if the effective duration of the time-
window is λ, then one can expect the effective width of the frequency-window to
be of order at least 1/λ. In terms of the dimensionless window shapes w0(t) and
W0(f ) where, similar to (3.2.5),

W(f ) = λW0(λf ), (3.2.9)

both w0(t) and W0(f ) have to have a similar effective widths ∼ 1.
However, the actual situation is a bit more complicated than the above juggling

of the uncertainty principle may indicate. When the engineers talk about effectively
localized frequency-window, they think about the compact support of the frequency-
windowing shape function W0(f ) or at least about its rapid decay outside a finite
frequency band. However, we know from the properties of the Fourier transform
that it is impossible for both the function and its Fourier transform to have compact
supports. Furthermore, the frequency windowing shape function will decay rapidly
for |f | > 1 only if the time windowing shape function is smooth. This fact
eliminates time windowing shape functions (3.2.6a) and (3.2.6b), which have good
time-localization properties, as good candidates for good frequency localization by
their Fourier transforms. Abrupt truncations in them introduce discontinuities of
the first kind which slow the decay of their Fourier transforms. For example, the
modulus of Fourier image of the relaxation window (3.2.6b)

|W0(f )| = 1

π
√

4+ f 2
(3.2.10)

decays to zero slowly as |W0(f )| ∼ 1/(π |f |), (f →∞).

So, to achieve better frequency localization one has to take smoother windowing
shape functions.

Example 3.2.1 (Compact Time Window and Power-Law Decay of the Frequency
Window) Take the windowing shape function

w0(t) = 8

3

[
χ(t + 2)− χ(t)

]
sin2

(
πt

2

)
. (3.2.11)

normalized appropriately and shifted to satisfy the causality principle. Its frequency
counterpart

W0(f ) = ejf 4

3
π

sin f

f (π2 − f 2)
(3.2.12)

decays as 1/|f |3, faster than (3.2.11), which produces tolerable frequency local-
ization while preserving perfect time localization. The power law of the frequency
windowing shape (3.2.12) decay was caused by hidden discontinuities (in the second
derivative) of the time windowing shape (3.2.11).



3.3 Continuous Wavelet Transforms 65

Example 3.2.2 (Gaussian Time and Frequency Windows; Gabor Transform) Since
the Fourier image of a Gaussian time windowing shape gives a Gaussian frequency
windowing shape, in this case we have excellent localization in both time and
frequency domains. Indeed, if w0(t) is given by (3.2.6c), then, using the symmetric
definition of the Fourier transform, and its inverse,

X(f ) = 1√
2π

∫ ∞

−∞
x(t)e−jf t dt, x(t) = 1√

2π

∫ ∞

−∞
(X(f ))ejf t df,

(3.2.13)

we obtain

W0(f ) ≡ w0(f ).

The windowed Fourier transform

G(f, τ) = π−1/4
∫ ∞

−∞
x(t)ejf t−(t−τ)2/2 dt (3.2.14)

based on the Gaussian window is called the Gabor transform in honor of the
physicist who introduced it for studying quantum-mechanical problems.

3.3 Continuous Wavelet Transforms

3.3.1 Definition and Properties of Continuous Wavelet
Transform

In this section we take a general look at the continuous wavelet transform both
theoretically and as it relates to physical and engineering problems. Mathematical
questions concerning particular wavelet systems will be dealt with in the last three
sections of this chapter.

The continuous wavelet image of signal x(t) is defined by

X̂(λ, τ ) = A(λ)

∫
x(t)ψ∗

(
t − τ

λ

)
dt, λ > 0, (3.3.1)

where ψ(z) is a certain function called the mother wavelet and λ and τ are called,
respectively, the scale variable and the location variable. Function A(λ) will be
specified later. Note that to distinguish it from the Fourier transform

X(f ) =
∫

x(t)e−j2πf t dt, (3.3.2)

the continuous wavelet transform will be denoted by applying a “hat” to X.
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A compression and dilation of the mother wavelet are accomplished for the
continuous wavelet transform by the scaling parameter λ. In a sense, one can
interpret the value of the continuous wavelet transform X̂(λ, τ ) as a measure of
the contribution of the rescaled by λ mother wavelet ψ((t−τ)/λ) to the signal x(t).

The coefficient A(λ) can be selected arbitrarily as to magnify or reduce sensitiv-
ity of the transform to different scales. However, very often it is simply selected as

A(λ) = 1/
√

λ, (3.3.3)

so that

X̂(λ, τ ) = 1√
λ

∫ ∞

−∞
x(t)ψ∗

(
t − τ

λ

)
dt. (3.3.4)

This choice guarantees that the arbitrary rescaling of the mother wavelet preserves
the mother wavelet’s L2-norm. Indeed,

∥∥∥∥ 1√
λ

ψ∗
(

t − τ

λ

)∥∥∥∥
2

2
= 1

λ

∫ ∞

−∞

∣∣∣∣ψ
(

t − τ

λ

)∣∣∣∣
2

dt =
∫ ∞

−∞
|ψ(s)|2 ds = ‖ψ(s)‖2

2.

(3.3.5)
One could say that with this choice of A(λ) all the scales carry equal weight.

As we already mentioned in the previous section, for all its great features
discussed at length in Chap. 2, the Fourier transform has from the point of view
of a physicist one essential shortcoming: its “mother wavelet” exp(j2πf t) has
unbounded support. As a result, based on information contained in the Fourier
image X(f ) it is difficult to assess where signal x(t) (or its special features) is
located on the t axis and where it is equal to 0. In particular, this type of information
is totally lost in the “spectral density” of the distribution of harmonic components
over the frequency f axis. That drawback will be removed in the continuous wavelet
transform by selecting a localized mother wavelet ψ(z) which decays rapidly to zero
as z → ±∞. Consequently, in the continuous wavelet transform, in addition to the
scale parameter λ, there appears another primary parameter—the location shift τ .
Varying it we can track the time t evolution of the “events.”

Example 1 (Morlet Wavelets) The often encountered in practical application
mother wavelet

ψ(z) = ejQzϕ(z), (3.3.6)

with the Gaussian windowing function

ϕ(z) = exp(−z2/2), (3.3.7)

is traditionally called the complex-valued Morlet wavelet (the plot of its real part,
for Q = 10, is shown in Fig. 3.3). As a result, the Fourier image of ψ(z) is also
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Fig. 3.3 The plot of the real
part of the Morlet mother
wavelet for Q = 10

Gaussian:

�(f ) = 1√
2π

exp

(
− (f −Q)2

2

)
. (3.3.8)

Recall that the Gaussian shape of the windowing function is the minimizer in the
uncertainty principle discussed in Sect. 3.1, and, consequently, it optimizes the joint
resolution in time t and frequency ω. Indeed, the continuous wavelet image

X̂(λ, τ ) = A(λ)

∫ ∞

−∞
x(t)ϕ

(
t − τ

λ

)
exp

(
−j

Q

λ
(t − τ)

)
dt

= A(λ)

∫ ∞

−∞
x(t) exp

(
−j

Q

λ
(t − τ)− (t − τ)2

2λ2

)
dt (3.3.9)

contains information about the original (not too fast increasing) function x(t) in
the window of effective length ∼ λ/

√
2. Expressing X̂(λ, τ ) through the Fourier

images of the analyzed functions we get

X̂(λ, τ ) = 2πλA(λ)

∫ ∞

−∞
X(ω)ϕ(λω −Q)eiωτ dω

= √2πλA(λ)

∫ ∞

−∞
X(ω) exp

(
−λ2

2

(
ω − Q

λ

)2
)

eiωτ dω. (3.3.10)

This means that X̂(λ, τ ) depends on the values of the Fourier image X(ω) in the
frequency band of width σ [�] = 1/λ

√
2 centered at the frequency

� = Q/λ. (3.3.11)
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In other words, X̂(λ, τ ) supplies information about the spectral properties of the
original function with resolution 1/λ

√
2. The arbitrary parameter Q entering in the

definition (3.3.6) of the Morlet wavelet could be called the efficiency factor of the
Morlet wavelet since the quantity Q/2π is of the order of the number of Morlet
wavelet’s periods contained in its window.

Just as the first automobiles of the last century took inspiration from and
mimicked the horse-drawn carriages, and only later developed their own identity,
the wavelets underwent a similar evolution which started with their identity as
“improved” versions of the Fourier transform and only gradually developed into
being recognized for their own outstanding capabilities. These capabilities, still far
from being fully tapped, are related to the fact that the mathematical theory of
wavelets, as we will see later on, imposes very few restrictions on the choice of
the mother wavelet’s shape. We will illustrate them on concrete applications in the
rest of this section.

One of the powerful applications of the continuous wavelet transform is the
study of open and hidden singularities in the incoming signal x(t). Usually, the
singularities are caused by physical (biological, economic, etc.) laws, whose validity
the experimenter is trying to confirm, or come from the existence of the sharp
boundaries between the regions where the process x(t) evolves smoothly. The
mother wavelets that are useful in this context are quite unlike the Morlet wavelet
(3.3.6)–(3.3.7).

Example 2 (Mexican Hat Wavelet) Differentiation can bring to the surface func-
tion’s hidden singularities. For this reason one often selects mother wavelets so that
the corresponding continuous wavelet transform converges, for λ → 0, to a desired
derivative of the function being analyzed. One of such examples is the Mexican hat
mother wavelet,

ψ(z) = − d2

dz2
ϕ(z) = (1− z2) exp

(
−z2

2

)
, (3.3.12)

which is just the second derivative of the Gaussian function (3.3.7) (Fig. 3.4). Its
Fourier image is1

�(ω) = ω2

√
2π

exp

(
−ω2

2

)
. (3.3.13)

Substituting (3.3.12) into (3.3.1), and integrating by parts twice, we get

X̂(λ, τ ) = −A(λ)λ2
∫ ∞

−∞
ϕ

(
t − τ

λ

)
d2

dt2 x(t) dt. (3.3.14)

1From now onwards, but only in this chapter, we will use the variable ω = 2πf in the Fourier
transform.
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Fig. 3.4 The Mexican hat
mother wavelet

It is customary to select

A(λ) = 1/λ3
√

2π, (3.3.15)

so that X̂(λ, τ ) converges, for λ→ 0, to exactly x′′(τ ).
Another property of the continuous wavelet transform essential to understand its

mechanism is based on the Cauchy-Schwartz inequality

∣∣∣∣
∫ ∞

−∞
x(t)y∗(t) dt

∣∣∣∣
2

≤
∫ ∞

−∞
|x(t)|2 dt

∫ ∞

−∞
|y(t)|2 dt, (3.3.16)

which applied to the function

y(t) = 1√
λ

ψ

(
t − τ

λ

)
(3.3.17)

yields the inequality

|X̂(λ, τ )|2 ≤ ‖f ‖2
2‖ψ‖2

2. (3.3.18)

The inequality provides an upper bound on possible values of the modulus of
the continuous wavelet transform (3.3.4) of x(t). Let us assume, without loss of
generality, that both the signal and the mother wavelet are normalized so that
‖x‖2 = ‖ψ‖2 = 1.

It is clear that the maximum values are achieved, and the inequality (3.3.18)
becomes an equality, if the original function x(t) is equal, for certain λ = λ0 and
τ = τ0, to the wavelet

f (t) = 1√
λ0

ψ

(
t − τ0

λ0

)
. (3.3.19)
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Fig. 3.5 The gray-scale plot of the wavelet image of x(t) = exp(−|t |) in the case of the Mexican
hat mother wavelet. The horizontal axis represents the τ -variable and the vertical—λ-variable. The
gray-scale level changes from black to white as the values of the wavelet image increase. The black
oval spot in the lower middle portion of the plot is a consequence of the singularity of the original
function’s second derivative at t = 0

Informally, we can say that the continuous wavelet transform is best tuned to,
or resonates with signals that have shapes similar to that of the mother wavelet
(Fig. 3.5).

Note that the more complex-structured the mother wavelet (3.3.17) and the
resonating signal (3.3.19) are, the more pronounced the above resonance property
of the corresponding continuous wavelet transform is. To make things a bit more
formal let us define the signal as complex-structured if its time (3.1.2) and frequency
(3.1.3) localizations satisfy the “strong” uncertainty principle:

σ 2[x] · σ 2[X] � 1/4. (3.3.20)

Example 4 (Complex-Structured Signal) Let us consider signal f (t) whose Fourier
image is the familiar Gaussian function

X(ω) = π−1/4

√
2πμ

exp

(
− ω2

2μ2 (1+ jγ )

)
, (3.3.21)
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where γ is a real number and the constant μ (with the dimension of frequency) has
the meaning of effective width of the Fourier image. The coefficient in front of the
exponential function has been selected so that the normalization condition

‖f x‖2
2 = 2π‖X‖2

2 = 1

is satisfied. Applying the inverse Fourier transform we obtain

x(t) =
√

μ

π1/4
√

1+ jγ
exp

(
− t2μ2

2(1+ jγ )

)
. (3.3.22)

In turn, using the integral formula

∫ ∞

−∞
t2 exp(−r2t2) dt =

√
π

2r3 ,

we find the frequency and time localizations of the complex-valued signal (3.3.22):

σ 2[X] = μ2

2
, σ 2[x] = 1

2μ2
(1+ γ 2). (3.3.23)

Substituting these expressions into (22) we get the following condition for the signal
x(t) (3.3.23) to be complex-structured:

γ � 1. (3.3.24)

Remark 1 To better see reasons why signal (3.3.22) turned out to be complex-
structured let us write the complex-valued Fourier image X(ω) of an arbitrary signal
x(t) in the exponential form

X(ω) = A(ω) exp(−j�(ω)), (3.3.25)

where A(ω) = |X(ω)| is the nonnegative amplitude and �(ω)—the real phase of
the complex Fourier image X(ω). The amplitude and phase of the Fourier image
(3.3.21) of signal (3.3.22) are

A(ω) = π−1/4

√
2πμ

exp

(
− ω2

2μ2

)
, and �(ω) = γω2

2μ2 . (3.3.26)

The complex structure of signal (3.3.22) was conditioned on the fast nonlinear
variation of the phase of the Fourier image (3.3.21) as a function of ω. Indeed,
according to (3.3.3), the signal can be written in the form

x(t) =
∫

A(ω) exp

(
j

(
ωt − γ

ω2

2μ2

))
dω.
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Employing the stationary phase method, asymptotically (γ → ∞), the value of
signal x(t) at a given instant t is determined by the integral contribution in the small
neighborhood of the stationary point, in our case � = 2tμ2/γ . Substituting here,
instead of �, the effective width μ of the Fourier image we shall find the effective
duration of the complex-structured signal:

T ≈ γ /μ, (T μ� 1).

Remark 2 The approximate estimate of the signal (3.3.22) duration obtained above
via the stationary phase method may seem unnecessary at first sight since we already
know the exact form of the signal and the exact formula for its time localization:

σ [x] =
√

(1+ γ 2)/2μ2. (3.3.27)

Nevertheless, the above argument has a heuristic value, emphasizing the principal
role of the phase in complex-structure signal formation. It also shows a universal
method of calculation of its form and duration.

Example 5 (Complex-Structured Mother Wavelet) As another example of mother
wavelet let us take function ψ(z) coinciding with the complex-structured signal
x(t) (3.3.22). The continuous wavelet image X̂(λ, τ ) of function x(t) to which the
mother wavelet is perfectly tuned is

K(λ, τ) = 1√
λ

∫
x(t)x∗

(
t − τ

λ

)
dt. (3.3.28)

Recall that the form (5) of the continuous wavelet transform selected here guarantees
that, for any λ, the normalization condition

∥∥∥∥ 1√
λ

x

(
t − τ

λ

)∥∥∥∥ = 1

is satisfied. Notice that we also introduced special notation K(λ, τ) for the
special continuous wavelet image of the mother wavelet itself. Function K(λ, τ)

is sometimes called the wideband ambiguity function of the mother wavelet and it
plays an important role in wavelet theory. In terms of the Fourier images

K(λ, τ) = 2π
√

λ

∫ ∞

−∞
X(ω)X∗(ωλ)ejωτ dω, (3.3.29)

so that substituting (3.3.21) we obtain

K(λ, τ) = 1

μ

√
λ

π

∫ ∞

−∞
exp

(
−1

2
ρ

ω2

μ2
+ jωτ

)
dω, (3.3.30)
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Fig. 3.6 Graphs of function
I (λ) for different
complexity-structure of
signals as measured by γ

where

ρ = (1+ λ2)+ jγ (1− λ2). (3.3.31)

Finally, evaluation of the integral (33) gives

K(λ, τ) =
√

2λ

ρ
exp

(
−τ 2μ2

2ρ

)
.

The above function has a maximum at τ = 0, and its modulus square has the
following dependence on λ :

I (λ) = |K(λ, 0)|2 = 2λ

|ρ| =
2λ√

(1+ λ2)2 + γ 2(1− λ2)2
.

It is natural to interpret function I (λ) as a sort of resonance curve which charac-
terizes the response efficiency of the continuous wavelet transform as a function
of the scale parameter λ. Figure 3.6 shows graphs of function I (λ) for signals of
different complexity, as measured by parameter γ . It is clear from the illustrations
that the resonance is best emphasized for large values of γ , that is for signals of
large complexity.

The maximal value of I (λ) is achieved for λ = 1. It is related to the fact that for
λ = 1 function (3.3.28) becomes the autocorrelation function

k(τ ) =
∫

x(t)x∗(t − τ) dt

of the original signal. The autocorrelation function has some remarkable properties.
In particular, it transforms any signal, however complex, into a simple signal whose
Fourier image,

K(ω) = 2π |Xω)|2, (3.3.33)
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is real and nonnegative, with the phase �(ω) ≡ 0. In electrical engineering one
often says that all the harmonics of the autocorrelation function K(t) have identical
phases.

The autocorrelation function achieves its maximum at τ = 0 and decays
relatively rapidly as |τ | increases. In particular, it is easy to see that its localization
properties are determined by

σ [k] = 1

μ
√

2
,

so that, in view of (3.3.27), it is clear that for γ � 1 the autocorrelation function
k(τ ) = k(λ = 1, τ ) is much better localized on the τ -axis than the original signal
x(t) (3.3.22) on the t-axis.

3.3.2 Inversion of the Continuous Wavelet Transform

As for any other integral transform the basic question is: Does the continuous
wavelet image X̂(λ, τ ) contain sufficient information permitting recovery of the
original function x(t)? In more practical terms: Does there exist an inversion
formula for the continuous wavelet transform?

To answer these questions let us multiply equality (3.3.1) by ψ((θ − τ)/λ) and
integrate over all τ . The result is the auxiliary integral

I (λ, θ) =
∫ ∞

−∞
X̂(λ, τ )ψ

(
θ − τ

λ

)
dτ. (3.3.34)

Equivalently,

I (λ, θ) = A(λ)

∫ ∞

−∞
dt x(t)

∫ ∞

−∞
dτ ψ∗

(
t − τ

λ

)
ψ

(
θ − τ

λ

)
. (3.3.35)

It is easy to see that the inner integral can be expressed via the autocorrelation
function (3.3.33)

k(z) =
∫ ∞

−∞
ψ(s)ψ∗(s − z) ds (3.3.36)

of the mother wavelet as follows:

∫ ∞

−∞
ψ∗
(

t − τ

λ

)
ψ

(
θ − τ

λ

)
dτ = λk

(
θ − t

λ

)
. (3.3.37)
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As a result,

I (λ, θ) = λA(λ)

∫ ∞

−∞
f (t)k

(
θ − t

λ

)
dt. (3.3.38)

To solve this integral equation for f (t) let us multiply (3.3.41) by a function B(λ),
to be selected later, and integrate over all λ:

∫ ∞

0
I (λ, θ)B(λ) dλ =

∫ ∞

−∞
f (t)g(θ − t) dt, (3.3.39)

where

g(s) =
∫ ∞

0
k(s/λ)C(λ) dλ, (3.3.40)

and

C(λ) = λA(λ)B(λ). (3.3.41)

Clearly, the right-hand side of (3.3.39) would be reduced to x(θ), thus solving Eq.
(3.3.38) for function x(t) if

g(s) =
∫ ∞

0
k(s/λ)C(λ) dλ = δ(s). (3.3.42)

Let us find C(λ) for which the distributional Eq. (3.3.42) is satisfied. Remembering
that the Fourier image of the autocorrelation function k(z) is 2π |ψ̃(ω)|2, we get the
equation

G(ω) = 2π

∫ ∞

0
|�(ωλ)|2λC(λ) dλ = 1/2π, (3.3.43)

equivalent to Eq. (3.3.42). To eliminate the dependence of the above integral on ω

we shall select C(λ) so that

λC(λ) = 1/Dλ. (3.3.44)

In this case, (3.3.43) becomes

4π2

D

∫ ∞

0
|�(ωλ)|2 dλ

λ
= 1, (3.3.45)

where

D = 4π2
∫ ∞

0
|�(κ)|2 dκ

κ
(3.3.46)
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is the normalizing constant that can be calculated from (45) by introducing the new
variable of integration κ = ωλ to get

4π2

D

∫ ∞

0
|�(κ)|2 dκ

κ
= 1, (3.3.47)

Putting together (3.3.41), (3.3.44), and (3.3.46) we get that

B(λ) = 1

Dλ3A(λ)
, (3.3.48)

so that, from (3.3.48) and (3.3.39),

1

D

∫ ∞

0

I (λ, θ) dλ

λ3A(λ)
= x(θ).

Substituting expression (3.3.34) for I (λ, t) we finally obtain the inverse continuous
wavelet transform

x(t) = 1

D

∫ ∞

0

dλ

λ3A(λ)

∫ ∞

−∞
dτX̂(λ, τ )ψ

(
t − τ

λ

)
. (3.3.49)

In particular, if the continuous wavelet transform is defined by (3.3.4)–(3.3.5), then
the inversion formula takes the form

x(t) = 1

D

∫ ∞

0

dλ

λ2
√

λ

∫ ∞

−∞
dτX̂(λ, τ )ψ

(
t − τ

λ

)
. (3.3.50)

However, the above inversion formulas require several caveats.

Remark 3 The observant reader would have noticed that the passage from (3.3.45)
to (3.3.47) is justified only if |�(ω)|2 is an even function. For that reason formulas
(3.3.49)–(3.3.50) are valid only for two-sided mother wavelets, as mother wavelets
with even square modulus are called. To this class belong all the purely real-valued
mother wavelets such as the Mexican hat. On the other hand, the complex-valued
Morlet wavelet is not of this type. For that reason mathematicians often work with
one-sided mother wavelets whose Fourier image is

�(ω) ≡ 0, ω ≤ 0. (3.3.51)

For such mother wavelets, instead of (3.3.46) we have the equality

G(ω) = 2π

D

∫ ∞

0
|�(ωλ)|2 dλ

λ
= 1

2π
χ(ω). (3.3.52)
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To explain its consequences let us express the right-hand side of (3.3.39) in terms of
the Fourier images X(ω) and G(ω):

∫ ∞

−∞
I (λ, θ)B(λ) dλ = 2π

∫ ∞

−∞
X(ω)G(ω)eiωθ dω.

Substituting here (3.3.34), (3.3.48), and (3.3.52), we arrive at the relation that
replaces equality (3.3.49) for one-sided mother wavelets:

∫ ∞

−∞
X(ω)χ(ω)eiωθ dω = 1

D

∫ ∞

0

dλ

λ3A(λ)

∫ ∞

−∞
dτX̂(λ, τ )ψ

(
θ − τ

λ

)
.

As we have shown before, the Fourier integral on the left-hand side is, up to
coefficient 1/2, equal to the analytic signal

x1(t) = 2

D

∫ ∞

0

dλ

λ3 A(λ)

∫ ∞

−∞
dτX̂(λ, τ )ψ

(
θ − τ

λ

)
(3.3.53)

corresponding to the original signal x(t). Remembering that the real part of the
analytic signal coincides with x(t), we arrive at the inversion formula for the
continuous wavelet transform for one-sided mother wavelets:

x(t) = 2

D
Re
∫ ∞

0

dλ

λ3 A(λ)

∫
dτX̂(λ, τ )ψ

(
θ − τ

λ

)
. (3.3.54)

Example 6 (Poisson Wavelets) As an example of one-sided mother wavelets con-
sider

ψm(z) = (1− jz)−m−1, m > 0, (3.3.55)

which are called Poisson wavelets. Their Fourier images

�m(ω) = 1

2π

∫ ∞

−∞
e−jωz dz

(1− iz)m+1 (3.3.56)

can be calculated by means of the residues method to be

�m(ω) = 1

�(m+ 1)
ωme−ωχ(ω). (3.3.57)

Poisson wavelets can be used to identify open and hidden singularities of signal
x(t) and, for m = 2, like the Mexican hat, in the search for edges between different
regimes of the original function x(t). Indeed, for m = 2, the Poisson wavelet

ψ2(z) = −1

2

d2

dz2

1

1− jz
. (3.3.58)
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Its real part

Re ψ2(z) = −1

2

d2

dz2

1

1+ z2

has a shape similar to that of the Mexican hat and possesses, for λ → 0, the same
differentiating properties.2

3.4 Haar Wavelets and Multiresolution Analysis

In this section we will take a look at a special (one can say “digital”) series
representation for real-valued signals in terms of the so-called Haar wavelets. This
idealized system provides a good easy introduction to the concepts of wavelet
transforms and multiresolution analysis. Each term of the expansion will provide
information about both the time and the frequency localization of the signal. The
Haar wavelets will be obtained from a single prototype—a mother wavelet—by
translations in time and frequency, although the explicit shift in frequency will be
replaced by a more natural in this case dilation (rescaling, stretching) in time. This
will guarantee that all the wavelets have the same shape. To eliminate redundancy
and overdetermination, we will make the wavelet system orthogonal.

The Haar mother wavelet is defined as follows:

ψ(t) =

⎧⎪⎪⎨
⎪⎪⎩

1, for 0 ≤ t < 1/2;
−1, for 1/2 ≤ x < 1;
0, otherwise.

(3.4.1)

The Haar wavelet

ψm,n(t) := 2m/2ψ(2m(t − 2−mn)), (3.4.2)

of order (m, n), m, n = . . . ,−1, 0, 1, . . . , is obtained by rescaling (dilating or
compressing) the time in the mother wavelet ψ(t) by a factor of 2m and then
translating the resulting wavelet by an integer n multiplicity of 2−m. The dilation
makes the wavelet ψm,n(t) fit in the interval of length 2−m, and the translation places
its support finally in the interval [2−mn, 2−m(n + 1)] (see Fig. 3.7). We will call
parameter m—the level of resolution of the wavelet, and parameter n—the location
parameter of the wavelet. Then the number 2−m can be seen as its resolution, and
2−mn—as its location.

2For a more detailed analysis of the theoretical properties of wavelets, see, e.g., A.I. Saichev and
W.A. Woyczyński, Distributions in the Physical and Engineering Sciences, Volume 1, Distributions
and Fractal Calculus, Integral Transforms and Wavelets, 1997.
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Fig. 3.7 The Haar mother wavelet and a wavelet of order (1,3)

The coefficient 2m/2 in the definition (3.4.2) was selected to make all the Haar
wavelets normalized in L2(R), that is, to compensate for the dilation operation to
guarantee that

‖ψm,n‖2
2 =

∫ ∞

−∞
ψ2

m,n(t) dt = 1. (3.4.3)

It turns out that:
The system of Haar wavelets

ψm,n(t), m, n = . . .− 2,−1, 0, 1, 2, . . . (3.4.4)

is orthogonal, that is

〈ψj,k, ψm,n〉 =
∫ ∞

−∞
ψj,k(t)ψm,n(t) dt = 0, if (j, k) �= (m, n), (3.4.5)

and complete in L2(R). The latter means that any function x(t) in L2(R) has an
L2-convergent representation

x(t) =
∞∑

m=−∞

∞∑
n=−∞

wm,nψm,n(t) (3.4.6)

where, in view of the orthonormality, the expansion coefficients

wm,n = wm,n[x] = 〈x,ψm,n〉 =
∫ ∞

−∞
x(t)ψm,n(t) dt. (3.4.7)
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The above properties of orthogonality and completeness parallel properties of the
trigonometric system of functions on a finite interval (say, [0, 2π ]) which give rise
to the usual Fourier series expansions.

The orthogonality (3.4.5) can be shown as follows. For a fixed resolution level
j = m, if location parameters k, n are different, then wavelets ψj,k(t) and ψj,n(t)

have disjoint supports, and the integral of their product is clearly zero. At different
resolution levels, say j < m, either the supports of ψj,k(t) and ψm,n(t) are disjoint
and the previous argument applies, or the support of ψm,n(t) sits entirely within the
interval where ψj,k(t) is constant (either +2j/2 or −2j/2), and again the integral of
their product vanishes because

∫ ∞

−∞
ψj,k(t)ψm,n(t) dt = ±2j/2

∫ ∞

−∞
ψm,n(t) dt = 0.

The completeness of the Haar wavelet system (4) is more difficult to establish and
the proof relies on demonstrating that if all the wavelet coefficients wm,n[x] = 0,
then function x(t) is necessarily 0 in L2. We will give a flavor of the proof by
showing that this is indeed the case if x ∈ L1 ∩ L2. So, assume that wm,n =
0, m, n = . . .− 1, 0, 1, . . . .

Since w0,0 = 0 then

∫ 1/2

0
x(t) dt =

∫ 1

1/2
x(t) dt = 1

2

∫ 1

0
x(t) dt.

However, since w−1,0 = 0,

∫ 1

0
x(t) dt =

∫ 2

1
x(t) dt = 1

2

∫ 2

0
x(t) dt

and, by induction, for any n

∫ 1/2

0
x(t) dt = 1

2n+1

∫ 2n

0
x(t) dt = lim

n→∞
1

2n+1

∫ 2n

0
x(t) dt = 0,

since we assumed the finiteness of the integral
∫ |x(t)| dt (f ∈ L1). Clearly, the

same argument can be repeated for any dyadic interval of the form [2−mn, 2−m(n+
1)], so that, by approximation, for any interval [a, b]

∫
[a,b]

x(t) dt = 0.

This implies that x = 0 in L1 ∩ L2, and the proof of completeness of the Haar
wavelets is done.
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Remark 1 Observe a seemingly paradoxical nature of expansion (3.4.6), where an
arbitrary square integrable function in L1, for which in general

∫
x(t) dt �= 0,

has an expansion into a series of Haar wavelets for which
∫

ψm,n(t) dt = 0. The
explanation is that the convergence of the series (3.4.6) is in L2 (that is in the mean
square sense) so that the integrals themselves need not be preserved in the limit.
To avoid this phenomenon one sometimes considers functions I[0,1](t − n), n =
. . . ,−1, 0, 1, . . . in combination with the Haar wavelet subsystem ψm,n for m ≥ 0.
We will return to this theme later.

Note that the inner series in the expansion (6) consists of wavelets of fixed
resolution 2−m, that is, it represents a function with constant values on dyadic
intervals [2−mn, 2−m(n + 1)], n = . . . ,−1, 0, 1, . . . , and gives the contents of
function x(t) at fixed resolution level m (see Fig. 3.8) Then the partial sum

xR,S(t) =
S∑

m=R

∞∑
n=−∞

wm,nψm,n(t) (3.4.8)

of the expansion (3.4.6) gives an approximation of function x(t) at resolutions finer
than 2−R and coarser than 2−S (see Fig. 3.9).

Thus expansion (3.4.6) may be interpreted as a multiresolution analysis of the
function space L2(R).

Remark 2 (Scaling Function) We have already observed in Remark 1 that the
multiresolution analysis of functions in L2(R) can be accomplished by means of
a slightly different system that starts out with the scaling function

ϕ(t) = I[0,1](t)

and its integer translates

ϕn(t) = ϕ(t − n), n = . . . ,−1, 0, 1, . . . ,

and supplements them with Haar functions ψm,n(t) with nonnegative resolution
levels m = 0, 1, 2, . . . and arbitrary integer location parameter n. Note that the
resulting system is still orthonormal and complete, and gives a multiresolution
expansion of a function f ∈ L2(R) of the form

f =
∞∑

n=−∞
wnϕn(t)+

∞∑
m=0

∞∑
n=−∞

wm,nψm,n, (3.4.9)

with coefficients

wn = wn(f ) =
∫ ∞

−∞
f (t)ϕn(t) dt, (3.4.10)

and wm,n as in formula (3.4.7).
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Fig. 3.8 Function f (t) = t exp(−t2/2) and its contents at resolution levels m = −2,−1, 0

Remark 3 (Self-Similar (Fractal) Properties of Haar Wavelets) The crucial obser-
vation for the general theory of wavelets (to be discussed in the next section) is that
the scaling function ϕ(t) (the indicator function of the interval [0,1]) is self-similar
in the sense that it satisfies the scaling relation

ϕ(x) = ϕ(2x)+ ϕ(2x − 1), (3.4.11)
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Fig. 3.9 (a) Approximation of function x(t) = t exp(−t2/2) with resolution finer than 22 and
coarser than 2−2. In view of the definition (1) of the Haar mother wavelet,

∫ 4
0 x−2,2(t)dt = 0,

while
∫ 4

0 x(t) dt �= 0, which leaves a vertical gap between x and its approximation x−2,2 (see

Remarks 1 and 2). (b) Addition of the constant cR = ∑−R−1
m=−∞ wm,02m/2 (in our case, R = 2)

removes the gap

and that the mother wavelet ψ(t) can be obtained from the scaling function via the
formula

ψ(x) = ϕ(2x)− ϕ(2x − 1). (3.4.12)

The scaling relation (3.4.11) asserts that the scaling function is a certain linear
combination of its own dilations and translations. It completely characterizes the
indicator function ϕ(t) up to a constant multiplier. Indeed, given values of ϕ(t) at
t = 0 and 1, the scaling relation (3.4.11) permits computation of values of ϕ at all
dyadic rationals, i.e., real numbers of the form 2−mn.
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3.5 Continuous Daubechies’ Wavelets

The Haar wavelets discussed in the previous section enjoyed many useful properties
such as orthonormality, completeness, compact support, and self-similarity but, as
elegant as their construction was, they were anything but smooth. As a matter of
fact they were not even continuous—a property important in many applications.
So, in the present section we will explore the possibility of constructing smoother
wavelets.

Since the scaling relation (3.4.11) characterizes the indicator scaling function I

and thus the Haar wavelets, more complex scaling relations will have to be allowed.
It turns out that one can find smooth scaling functions which satisfy a scaling
relation

ϕ(t) =
N∑

k=0

akϕ(2t − k)

for some positive integer N > 2 and coefficients ak (by (3.4.11), N = 2 was
necessary and sufficient for Haar wavelets). Then the mother wavelet can be selected
to be

ψ(t) =
N∑

k=0

(−1)kaN−kϕ(2t − k),

and the corresponding wavelet system can be built with its help via formula (3.4.2).
Such an approach was suggested by Ingrid Daubechies in 1988, and the resulting
wavelets are called Daubechies wavelets.

Conceptually, the above construction is a clear-cut generalization of the construc-
tion of Haar wavelets from the scaling function I provided in the previous section.
However, for N > 2, the selection of coefficients ak becomes highly nontrivial.
Also, as a rule, the smoother one wants the wavelets to be, the larger N has to be
selected.

Below, we provide a sketch of the relatively simple construction of continuous
Daubechies wavelets which is due to David Pollen (1992). Their scaling function
ϕ(t) satisfies the scaling relation

ϕ(t) = aϕ(2t)+ (1− a)ϕ(2t − 1)+ (1− a)ϕ(2t − 2)+ āϕ(2t − 3), (3.5.1)

where

a = 1+√3

4
, (3.5.2)
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and where, for real numbers of the form α + β
√

3 with (dyadic) rational α, β, the
overline indicates the “conjugation” operation,

α + β
√

3 = α − β
√

3.

The support of the resulting ϕ(t) is contained in the interval [0, 3] and, additionally,

∞∑
k=−∞

ϕ(k) = 1. (3.5.3)

Assume that there exists a scaling function ϕ(t) supported by [0,3] and satisfying
(3.5.1) and (3.5.3) for integer values of the argument t . The scaling relation (3.5.1)
written for t = 0, 1, 2, 3 becomes a matrix equation

⎛
⎜⎜⎝

ϕ(0)

ϕ(1)

ϕ(2)

ϕ(3)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

a 0 0 0
(1− a) 1− a a 0

0 ā (1− a) 1− a

0 0 0 ā

⎞
⎟⎟⎠

⎛
⎜⎜⎝

ϕ(0)

ϕ(1)

ϕ(2)

ϕ(3)

⎞
⎟⎟⎠

which, in view of condition (3.5.3), has exactly one solution:

ϕ(0) = 0, ϕ(1) = 1+√3

2
, ϕ(2) = 1−√3

2
, ϕ(3) = 0.

Starting with these prescribed values and using the scaling relation (3.5.1) one
can produce values of the scaling function ϕ(t) for any dyadic rational t . For
example,

ϕ(1/2) = 2+√3

4
, ϕ(3/2) = 0, ϕ(5/2) = 2−√3

4
,

and so on.
The values of ϕ(t) for dyadic t are clearly of the form α + β

√
3 with dyadic α

and β. One can also prove that they also satisfy two extended partition of unity (see
also (3.5.3)) formulas

∞∑
k=−∞

ϕ(t − k) = 1

and

∞∑
k=−∞

(
3−√3

2
+ k

)
ϕ(t − k) = t.
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Since the support of ϕ(t) is contained in [0, 3] the above properties also give the
interval translation properties for dyadic t ∈ [0, 1]:

2ϕ(t)+ ϕ(t + 1) = t + 1+√3

2
,

2ϕ(t + 2)+ ϕ(t + 1) = −t + 3−√3

2
,

ϕ(t)− ϕ(t + 2) = t + −1+√3

2
.

Combining them with the scaling relation (3.5.1) gives the scaling relations for
dyadic t ∈ [0, 1]:

ϕ

(
0+ t

2

)
= aϕ(t);

ϕ

(
1+ t

2

)
= āϕ(t)+ at + 2+√3

4
;

ϕ

(
2+ t

2

)
= aϕ(1+ t)+ āt +

√
3

4
;

ϕ

(
3+ t

2

)
= āϕ(1+ t)− at + 1

4
; (3.5.4)

ϕ

(
4+ t

2

)
= aϕ(2+ t)− āt + 3− 2

√
3

4
;

ϕ

(
5+ t

2

)
= āϕ(2+ t).

Compared with the original scaling relation (3.5.1), they have a clear advantage:
the values of ϕ(t) at the next resolution level depend only on one value at the
previous resolution level (instead of four in (3.5.1)).

The above formulas form a basis for the following recursive construction of
the continuous version of the scaling function on the whole interval [0,3]. Start
with function g0(t) which is equal to ϕ(t) at integers 0,1,2,3, and which linearly
interpolates ϕ in-between these integers. Clearly, g0(t) is continuous. In the next
step, form g1(t) at the second resolution level by applying the (right-hand sides of)
scaling relations (3.5.4) to g0. More precisely, for t ∈ [0, 1], define
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g1

(
0+ t

2

)
= ag0(t);

g1

(
1+ t

2

)
= āg0(t)+ at + 2+√3

4
;

g1

(
2+ t

2

)
= ag0(1+ t)+ āt +

√
3

4
;

g1

(
3+ t

2

)
= āg0(1+ t)− at + 1

4
;

g1

(
4+ t

2

)
= ag0(2+ t)− āt + 3− 2

√
3

4
;

g1

(
5+ t

2

)
= āg0(2+ t).

Outside [0, 3] set g1(t) = 0. Function g1(t) is continuous and coincides with
ϕ(t) at dyadic points with resolution 2−1 (in-between, it again provides a linear
interpolation). Continuing this procedure we obtain a sequence gn of continuous,
piecewise linear functions (zero outside [0, 3]) which agree with ϕ(t) at dyadic
points of the form k2−n.

Notice that functions |gn(t)| ≤ 3 for all n = 1, 2, . . ., and since 0 ≤ |ā| ≤ a < 1
(see (3.5.2)), we get that

max
t
|gk(t)− gk+j (t)| ≤ ak max

t
|g0(t)− gj (t)| ≤ 6ak.

Hence the sequence of functions gk(t) satisfies uniformly the Cauchy condition, and
the limit

ϕ(t) = lim
n→∞ gn(t)

is a continuous function. This is the scaling function we were searching for.

Remark 1 Note that the scaling function ϕ(t) is not differentiable because

lim
j→∞

ϕ(2−j )− ϕ(0)

2−j
= lim

j→∞
ϕ(2−j )

2−j
= lim

j→∞
ajϕ(1)

2−j
= lim

j→∞(2a)jϕ(1) = ∞,

since 2a > 1 and ϕ(0) �= 0.
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1.0

Fig. 3.10 Values of the Daubechies’ scaling function computed at dyadic points t = n · 2−6, 0 ≤
t ≤ 3, via the scaling relation (3.5.1)
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Fig. 3.11 Values of the Daubechies’ mother wavelet computed at dyadic points t = n · 2−6, 0 ≤
t ≤ 3, via the formula (3.5.5)

With some additional work one can now establish that∫ ∞

−∞
ϕ(t) dt = 1,

and that the integer translations of ϕ(t) form an orthonormal system, that is
(Figs. 3.10 and 3.11)

∫ ∞

−∞
ϕ(t)ϕ(t − k) dt =

{
0, if k �= 0;
1, if k = 0.
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Following the general scheme explained in detail for the Haar wavelets in
Sect. 3.4, we can now define the mother wavelet ψ(t) via equality

ψ(t) = −āϕ(2t)+ (1− a)ϕ(2x− 1)− (1− a)ϕ(2x− 2)+ aϕ(2x− 3) (3.5.5)

and check that
∫ ∞

−∞
ψ(t) dt = 0.

The integer shifts of the mother wavelet are orthonormal, that is

∫ ∞

−∞
ψ(t)ψ(t − k) dt =

{
0, ifk �= 0;
1, if k = 0.

Moreover, the scaling function ϕ and the mother wavelet ψ are orthogonal as well,
that is

∫ ∞

−∞
ϕ(t)ψ(t − k) dt = 0.

Thus, again, by an argument similar to that used for the Haar wavelets, the set of
Daubechies wavelets

ψm,n(t) = 2m/2ψ(2m − n), m, n = . . .− 1, 0, 1 . . .

forms an orthonormal complete basis in L2(R), and so does the set of functions

ϕn(t) = ϕ(t − n), n = . . . ,−1, 0, 1, . . . ,

ψm,n(t) = 2m/2ψ(2m − n), m = . . . 0, 1, 2 . . . , n = . . . ,−1, 0, 1, . . . .

3.6 Exercises

Windowed Fourier Transform

1 Let f̃ (ω, τ ) be the windowed Fourier transform of the signal f (t). Denote by
f̃ ′(ω, τ) the windowed Fourier transform of the derivative f ′(t). Express f̃ ′ in
terms of f̃ .

2 Signal x(t) is a solution of the differential equation

dx(t)

dt
+ hx(t) = f (t),
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where f (t) is a signal with known windowed Fourier image f̃ (ω, τ ) and h is a
(real or complex) constant. Express the windowed Fourier image of x(t) in terms of
f̃ (ω, τ ).

3 Let f̃ (ω, τ ) be the windowed Fourier image of signal f (t) (i.e., f (t) �→
f̃ (ω, τ )). Find the windowed Fourier images of signals (a) f (t)eiω0t , and (b)
f (t + θ).

4 Find the windowed Fourier transform f̃ (ω, τ ) of function f (t) = eνt .

5 Utilizing results of the previous exercises, find the windowed Fourier image of
the signal f (t) = eνt cos ω0t.

Wavelets

6 Obtain, in the case of two-sided mother wavelets, a formula connecting |X̂|2 and
|x|2, analogous to the Parseval formula for the ordinary Fourier transform.

7 Denote by X̂a(λ, τ ) the continuous wavelet image of signal x(at), a > 0,

compressed (a > 1) or dilated (a < 1) in comparison with the original signal
x(t). Find out how X̂a(λ, τ ) is related to the continuous wavelet image of signal
x(t) itself in the case of wavelet transform definition (3.3.4).

8 Find X̂(λ, τ ) (Fig. 7.10) for the self-similar signal x(t) = |t |α .

9 Let

x(t) = (5− 9t + 4t2)/(5− 12t + 8t2)3.

Find numerically and graphically the Haar wavelet expansion of x(t) with resolution
level coarser than 0 and finer than 6. Graph the resolution level n contents of x(t) for
n = 0, 1, . . . , 6. Use your computer in order to estimate numerically the maximum
error of your approximation.

10 Use your computer and the defining scaling relations to produce numerical
values of the Daubechies scaling function and mother wavelet at the dyadic points
up to resolution level 6.



Chapter 4
Random Quantities and Random Vectors

Abstract By definition, values of random signals at a given sampling time are
random quantities which can be distributed over a certain range of values. The tools
for the precise, quantitative description of those distributions are provided by the
classical probability theory. However natural, it’s development has to be handled
with care since the overly heuristic approach can easily lead to apparent para-
doxes.1 But the basic intuitive idea, that, for independently repeated experiments,
probabilities of their particular outcomes correspond to their relative frequencies
of appearance, is correct. Although the concept of probability is more elementary
than the concept of cumulative probability distribution function, we assume that the
reader is familiar with the former at the high school level, and start our exposition
with the latter which not only applies universally to all types of data, both discrete
and continuous, but also gives us a tool to immediately introduce the probability
calculus ideas, including the physically appealing probability density function.

4.1 Discrete, Continuous, and Singular Random Quantities

Think here about an electrical engineer whose responsibility is to monitor the
voltage on the electrical outlets in the university’s circuits laboratory. The record of
a month worth of daily readings on a very sensitive voltmeter may look as follows:

109.779, 109.37, 110.733, 109.762, 110.364, 110.73,
109.906, 110.378, 109.132, 111.137, 109.365, 108.968,
111.275, 110.806, 110.99, 111.522, 110.728, 109.689,
111.163, 107.22, 109.661, 108.933, 111.057, 111.055,
112.392, 109.55, 111.042, 110.679, 111.431, 112.06

Not surprisingly, the voltage varies slightly and irregularly from day to day, and
this variability is visualized in Fig. 4.1.

1See, e.g., Problem 4.7.25.
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Fig. 4.1 Variability of daily voltage readings on an electrical outlet

Fig. 4.2 The histogram of daily voltage readings on an electrical outlet

In the presence of such uncertainty he may want to get a better idea of how
the voltage values are distributed within its range and he is likely to visualize this
information in the form of a histogram shown in Fig. 4.2.

In this chapter we will discuss analytical tools for study of such random
quantities. The discrete and continuous random quantities are introduced, but we
also show that, in the presence of fractal phenomena, the above classification is not
exhaustive.

For the purposes of these lectures, random quantities (also called random
variables in the literature), denoted by capital letters X, Y, etc., will symbolize
measurements of experiments with uncertain outcomes.

A random quantity X will be fully characterized by its cumulative distribution
functions (c.d.f.), denoted FX(x), which gives the probability, P(X ≤ x), of the
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outcomes of experiment X do not exceeding number x:

FX(x) := P(X ≤ x). (4.1.1)

Necessarily,

FX(−∞) = 0, FX(∞) = 1, (4.1.2)

function FX(x) is nondecreasing,

FX(x) ≤ FX(y), if x < y, (4.1.3)

and probability of the measurement being contained in the interval (a, b] is

P(a < X ≤ b) = FX(b)− FX(a). (4.1.4)

If a < b < c, we thus have

P(a < X ≤ c) = FX(c)− FX(a) = [FX(b)− FX(a)] + [FX(c)− FX(b)]

= P(a < X ≤ b)+ P(b < X ≤ c).

This fundamental property of probabilities, called additivity, can be extended from
disjoint intervals to more general disjoint2 sets A and B, yielding the formula

P(X ∈ A ∪ B) = P(X ∈ A)+ P(X ∈ B).

In other words, probability behaves like the area measure of planar sets.

Discrete Probability Distributions A random quantity X with a discrete prob-
ability distribution takes on only (finitely or infinitely many) discrete values, say
x1, x2, . . . , so that

P(X = xi) = pi, i = 1, 2, . . . , (4.1.5a)

where

0 < pi < 1.
∑

pi = 1. (4.1.5b)

In the discrete case, c.d.f.

2Recall that sets A and B are called disjoint if their intersection is the empty set, i.e., A ∩ B = ∅.
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FX(x) =
∞∑
i=1

piu(x − xi), (4.1.6)

where u(x) is the Unit Step Function. In other words, c.d.f. has jumps of size pi at
locations xi and is constant at other points of the real line.

Example 4.1.1 (Bernoulli Distribution) In this case the values of X, that is the
possible outcomes of the experiment, are assumed to be either 1 or 0 (think about
it as a model of an experiment in which “success” or “failure” are the only possible
outcomes), with P(X = 1) = p > 0, P(X = 0) = q > 0, with p, q satisfying
condition p + q = 1. The c.d.f. of the Bernoulli random quantity is

FX(x) =

⎧⎪⎪⎨
⎪⎪⎩

0, forx < 0;
q = 1− p, for0 ≤ x < 1;
1, for1 ≤ x.

The Bernoulli family of distributions has one parameter p which must be a number
between 0 and 1. Then q = 1− p (Fig. 4.3).

Example 4.1.2 (Binomial Distribution) The binomial random quantity X can take
values 0, 1, . . . , n, with corresponding probabilities

pk = P(X = k) =
(

n

k

)
pk(1− p)n−k, k = 0, 1, 2, . . . , n,

where the binomial coefficient is defined by
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Fig. 4.3 Cumulative distribution function FX(x) of a Bernoulli random quantity X with
parameter p = 0.4 has a jump of size q = 1− 0.4 = 0.6 at x = 0, and a jump of size p = 0.4 at
x = 1
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(
n

k

)
= n!

k!(n− k)! .

Recall that the name “binomial coefficient” comes from the elementary binomial
formula

(a + b)n =
n∑

k=0

(
n

k

)
akbn−k,

familiar in the special cases:

(a + b)2 = a2 + 2ab + b2,

(a + b)3 = a3 + 3a2b + 3ab2 + b3,

and so on (Fig. 4.4).

Probabilities pk = pk(n, p) in the binomial probability distribution are proba-
bilities that exactly k “successes” occur in n independent3 Bernoulli experiments,
each with probability of “success” equal to p.

The normalization condition
∑

k pk = 1 (4.5.1b) is here satisfied because, in
view of the above-mentioned binomial formula,
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Fig. 4.4 Cumulative distribution function FX(x) of a binomial random quantity X with parame-
ters p = 0.5 and n = 5

3A rigorous definition of the concept of independence of random quantities will be discussed later
on in this chapter.
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n∑
k=0

(
n

k

)
pk(1− p)n−k = (p + q)n = 1.

The binomial family of distributions has two parameters: p, which must be between
0 and 1, and n, which can be an arbitrary positive integer.

Example 4.1.3 (Poisson Distribution) The values of a Poisson random quantity X

can be arbitrary nonnegative integers 0, 1, 2, . . . , and their probabilities are defined
by the formula

pk = P(X = k) = e−μ μk

k! , k = 0, 1, 2, . . .

The normalization condition
∑

k pk = 1 is satisfied in this case because of the
power series expansion for the exponential function:

∞∑
k=0

e−μ μk

k! = e−μ
∞∑

k=0

μk

k! = e−μeμ = 1.

The family of Poisson distributions has one parameter μ > 0. Poisson random
quantities often are used as models of numbers of arrivals of “customers” in queuing
systems (an internet web site, a line at the check-out counter, etc.) within a given
time interval.

Continuous Distributions A random quantity X is said to have a continuous
probability distribution4 if its c.d.f. FX(x) can be written as an integral of a certain
nonnegative function fX(x) which traditionally is called the probability density
function (p.d.f.) of X, that is

FX(x) = P(X ≤ x) =
∫ x

−∞
fX(z) dz. (4.1.7)

Then, of course, the probability of the random quantity to assume values between a

and b is just the integral of the p.d.f. over the interval [a, b], see Fig. 4.5, where
fX(x) was selected to be (3/5

√
π)e−x2 + (2/5

√
π)e−(x−2)2

. Note that in the
continuous case it does not matter whether the interval between a and b is open
or closed since the probability of the random quantity taking a particular value is
always zero. Thus we have

4Strictly speaking, c.d.f.s that admit the integral representation (4.1.7), that is have densities, are
called absolutely continuous distributions as there exist continuous c.d.f.s which do not admit this
integral representation, see an example of a singular c.d.f. later in this section, and, e.g., M. Denker
and W.A. Woyczyński, Introductory Statistics and Random Phenomena: Uncertainty, Complexity
and Chaotic behavior in Engineering and Science, Birkhäuser-Boston, 1998.
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Fig. 4.5 The shaded area under fX(x), and above the interval [−1, 2] is equal to the probability
that a random quantity X with p.d.f. fX(x) takes values in the interval [−1, 2]

P(a < X ≤ b) = FX(b)− FX(a) =
∫ b

a

fX(z) dz. (4.1.8)

Also, necessarily, we have the normalization condition,

∫ ∞

−∞
fX(x) dx = FX(+∞) = 1, (4.1.9)

and, in view of (4.1.7), and the Fundamental Theorem of Calculus, we can obtain
the p.d.f. fX(x) by differentiation of the c.d.f. FX(x):

d

dx
FX(x) = fX(x).

Example 4.1.4 (Uniform Distribution) The density of a uniformly distributed ran-
dom quantity X is defined to be a positive constant within a certain interval, say
[c, d], and zero outside this interval. Thus, because of the normalization condition
(4.1.9),

fX(x) =
{

(d − c)−1, forc ≤ x ≤ d;
0, elsewhere.

The family of uniform densities is parametrized by two parameters c and d, with
c < d.

The c.d.f. of a uniform random quantity is
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FX(x) =

⎧⎪⎪⎨
⎪⎪⎩

0, forx < c;
(x − c)/(d − c), forc ≤ x ≤ d;
1, ford ≤ x.

Example 4.1.5 (Exponential Distribution) An exponentially distributed random
quantity X has the p.d.f. of the form

fX(x) =
{

0, forx < 0;
e−x/μ/μ, forx ≥ 0.

There is one parameter, μ > 0. The c.d.f. in this case is easily computable:

FX(x) =
{

0, forx < 0;
1− e−x/μ, forx ≥ 0.

An exponential p.d.f. and the corresponding c.d.f. are pictured in Fig. 4.5.
Exponential p.d.f.s often appear in applications as probability distributions of

random waiting times between Poisson events discussed earlier in this section. For
example, under certain simplifying assumptions, it can be proven that the random
time intervals between consecutive hits at a web site have an exponential probability
distribution. For this reason, exponential p.d.f.s play a crucial role in the analysis of
the internet traffic and other queuing networks.

Example 4.1.6 (Gaussian (Normal) Distribution) The density of a Gaussian (also
called normal) random quantity X is defined by the formula

fX(x) = 1√
2π σ

e
−(x−μ)2

2σ2 .

There are two parameters, μ, which is a real number, and σ > 0, and this
distribution is often denoted N(μ, σ 2) p.d.f. (N for “normal”). The Gaussian c.d.f.
is of the form, see Fig. 4.6,

FX(x) =
∫ x

−∞
1√

2π σ
e
−(z−μ)2

2σ2 dz,

but, unfortunately, the integral cannot be expressed in terms of the elementary
functions of the variable x. Thus the values of this c.d.f., and the probabilities of a
Gaussian random quantity taking values within a given interval, have to be evaluated
numerically, using tables (provided at the end of this chapter), or mathematical
software such as Matlab, Maple, or Mathematica; see Example 4.1.6 (continued)
below (Fig. 4.7).

However, the normalization condition for the Gaussian p.d.f. can be verified
directly analytically by a clever trick that replaces the square of the integral by a
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Fig. 4.6 (Top) Probability density function (p.d.f) fX(x) for a random quantity with values
uniformly distributed over the interval [0, 1]. (Bottom) C.d.f. FX(x) for the same random quantity

double integral which is then evaluated in polar coordinates r, θ . We carry out this
calculation in the special case μ = 0, σ 2 = 1:

(∫ ∞

−∞
fX(x) dx

)2

=
∫ ∞

−∞
fX(x) dx·

∫ ∞

−∞
fX(y) dy =

∫ ∞

−∞

∫ ∞

−∞
fX(x)·fX(y) dx dy

= 1

2π

∫ ∞

−∞

∫ ∞

−∞
e
−x2−y2

2 dx dy = 1

2π

∫ 2π

0

∫ ∞

0
e
−r2

2 r dr dθ = 1.
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Fig. 4.7 (Top) Probability density function (p.d.f) fX(x) of an exponentially distributed random
quantity with parameter μ = 1. (Bottom) Cumulative distribution function (c.d.f.) FX(x) for the
same random quantity

Example 4.1.6 ((Continued): Calculations of N(0,1) Probabilities) The values of
the Gaussian N(0, 1) cumulative distribution, traditionally denoted �(x), are
tabulated at the end of this chapter. They are listed only for positive values of
variable x, because, in view of the symmetry of the N(0, 1) density, we have

�(−x) = 1−�(x).

Thus

P(−1.53 < X < 2.11) = �(2.11)−�(−1.53) = �(2.11)− (1−�(1.53))

= 0.9826− (1− 0.9370) = 0.9196.
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Fig. 4.8 (Top) Probability density function (p.d.f) fX(x) for a Gaussian random quantity with
parameters μ = 0, σ = 1. (Bottom) Cumulative distribution function (c.d.f.) FX(x) for the same
random quantity

This leaves unanswered the question of how to calculate the general N(μ, σ 2)

probabilities. For a solution, see Example 4.1.9 (Fig. 4.8).

Remark 4.1.1 (Importance of the Gaussian Distribution) The fundamental impor-
tance of the Gaussian probability distribution stems from the Central Limit Theorem
(see Sect. 4.5) which asserts that, for a large number of independent repetitions of
experiments with random outcomes, the fluctuations (errors) of the outcomes around
their mean value have, approximately, a Gaussian p.d.f. At a more fundamental
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Fig. 4.9 Cumulative distribution function (c.d.f.) FX(x) of mixed type described by formula
(4.1.10). This distribution has both discrete and continuous components

level, this result is related to the invariance of Gaussian densities under the Fourier
transformation, see Example 2.4.1.

Mixed and Singular Distributions A random quantity is said to have a c.d.f. of
mixed type if it has both discrete and continuous components. The c.d.f. thus has
both discrete jumps, perhaps infinitely (but countably) many, as well as points of
continuous increase where its derivative is well defined. For example, the c.d.f.

FX(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, forx < −1;
x/6+ 2/6, for− 1 ≤ x < 0;
x/6+ 4/6, for0 ≤ x < 1;
1, for1 ≤ x

(4.1.10)

represents a random quantity X which is uniformly distributed on the intervals
(−1, 0) ∪ (0, 1) with probability 1/3, but also takes the discrete values −1, 0, 1,
with positive probabilities equal to the jump sizes of the c.d.f at those points. Think
here about a cloud of particles randomly, and uniformly distributed over the intervals
(−1, 0) ∪ (0, 1), with absorbing boundaries at x = ±1, and a sticky trap at x = 0;
the probability of finding a particle at those discrete points is positive, 1/6 at x = ±1
and 1/3 at x = 0 (Fig. 4.9).

Thus, for example,

P
(
−1

2
< X ≤ 1

2

)
= FX

(
1

2

)
− FX

(
−1

2

)
=
(

1

12
+ 4

6

)
−
(
− 1

12
+ 2

6

)
= 1

2
,
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and

P(X = 0) = lim
ε→0

P(−ε < X ≤ ε) = lim
ε→0

(FX(ε)− FX(−ε))

= lim
ε→0

[(ε/6+ 4/6)− (−ε/6+ 2/6)] = 1/3.

Similarly,

P(X = −1) = 1/6, P(X = 0) = 2/6, P(X = 1) = 1/6.

Remark 4.1.2 (Mixture of Gaussian p.d.f.s.) The reader will notice that the example
of a p.d.f. which appeared in Fig. 4.5 is a mixture of two Gaussian p.d.f.s.

It is tempting to venture a guess that all c.d.f.s have to be either discrete,
continuous, or of mixed type. This, however, is not the case.

The limit of the so-called “devil’s staircase” c.d.f.s shown in Fig. 4.10 is
an example of a c.d.f. which, although continuous, and differentiable “almost
everywhere,” does not have a p.d.f.

Observe that inside the interval [0,1] its derivative is 0 on the union of the infinite
family of disjoint intervals whose lengths add up to 1. Indeed, as is clear from the
construction displayed in Fig. 4.10, this set has the linear measure

lim
n→∞

(
1

3
+ 2 · 1

32 ++ . . .+ 2n−1 · 1

3n

)
= 1

3

∞∑
i=0

(
2

3

)i

= 1

3
· 1

1− 2/3
= 1,

in view of the formula for the sum of a geometric series. Thus integration of this
derivative cannot possibly give a c.d.f. which must grow from 0 to 1. Distributions
of this type are called singular and they arise in studies of fractal phenomena. One
can prove that the set of points of increase of the limit “devil’s staircase,” i.e., the set
of points on which the probability is concentrated, has a fractional dimension equal
to ln 2/ ln 3 = 0.6309 . . . 5

Distributions of Functions of Random Quantities One often measures random
quantities through devices that distort the original quantity X to produce a new
random quantity, say, Y = g(X), and the natural question is how the c.d.f. FX(x) of
X is affected by such a transformation. In other words, the question is: Can FY (y)

be expressed in terms of g and FX(x)? In the case when the transforming function
g(x) is monotonically increasing the answer is simple:

Fg(X)(y) = P(g(X) ≤ y) = P
(
X ≤ g−1(y)

)
= FX(g−1(y)), (4.1.11)

5See, for example, M. Denker and W.A. Woyczyński, Introductory Statistics and Random Phe-
nomena: Uncertainty, Complexity and Chaotic Behavior in Engineering and Science, Birkhäuser-
Boston, 1998.
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Fig. 4.10 The construction of the singular “devil’s staircase” c.d.f. FX(x). It continuously grows
from 0, at x = 0, to 1, at x = 1, and yet it has no density; its derivative is equal to 0 on disjoint
intervals whose lengths add up to 1

where g−1(y) is the inverse function of g(x), that is g−1(g(x)) = x, or, equivalently,
if y = g(x), then x = g−1(y).

Remembering the chain rule of the elementary calculus, and the formula for the
derivative of the inverse function g−1(y), we also immediately obtain, in the case of
monotonically increasing g(x), the expression of the p.d.f. of Y = g(X) in terms of
the p.d.f. of X itself:

fg(X)(y) = d

dy
FX(g−1(y)) = fX(g−1(y)) · 1

g′(g−1(y))
. (4.1.12)

Example 4.1.7 (Linear Transformation of a Standard Gaussian Random Quantity)
Recall that a Gaussian random quantity X is called standard (or, N(0, 1)) if its p.d.f.
is of the form

fX(x) = 1√
2π

e
−x2

2 .

It is a special case of the general Gaussian p.d.f. introduced in Example 4.1.6, with
parameters μ and σ specified to be 0 and 1, respectively. Consider now a new
random quantity Y obtained from X by a linear transformation
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Fig. 4.11 Probability density functions of N(0, 1), N(0.5, 0.25), and N(1, 2.25) random quanti-
ties (from left to right)

Y = aX + b, a > 0.

Think about this transformation as representing the change in units of measurement
and the choice of the origin (like changing the temperature measurements from
degrees Celsius to Fahrenheit: if X represents temperature measurements in degrees
Celsius, then Y = 1.8 ·X+32 gives the same measurements in degrees Fahrenheit).

The transforming function in this case, y = g(x) = ax + b, is monotonically
increasing, and

g′(x) = a, and g−1(y) = (y − b)/a.

Formula (4.1.12) gives now the following expression for the p.d.f. of Y :

fY (y) = 1√
2π

e
−((y−b)/a)2

2 · 1

a
= 1√

2πa2
e
−(y−b)2

2a2 .

The conclusion is that the transformed random quantity Y has also a Gaussian p.d.f.,
but with parameters μ = b and σ 2 = a2; in other words, Y is N(b, a2)-distributed.
Several examples of Gaussian p.d.f.s are shown in Fig. 4.11.

Example 4.1.7 ((Continued): Calculation of General N(μ, σ 2) Probabilities) The
relationship established in Example 4.1.7 permits utilization of tables of the N(0, 1)

distributions supplied at the end of this chapter to calculate N(μ, σ 2) probabilities
for arbitrary values of parameters μ and σ 2 > 0. Indeed, if a random quantity Y has
the N(μ, σ 2) distribution, then it is of the form

Y = σX + μ,
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where X has the N(0, 1) distribution with c.d.f. FX(x) = �(x), so that

FY (y) = P(Y ≤ y) = P(σX + μ ≤ y)

= P(X ≤ (y − μ)/σ) = �

(
y − μ

σ

)
, (4.1.13)

and the values of the latter can be taken from Table 4.1. For example, if Y is
Gaussian with parameters σ = 1.8 and μ = 32, then

P(30 < Y < 36) = �

(
36− 32

1.8

)
−�

(
30− 32

1.8

)

= �(2.22)− (1−�(−1.11)) = 0.9868− (1− 0.8665) = 0.8533.

In the next two examples we will consider the quadratic transformation Y =
X2/2 corresponding to calculation of the (random) kinetic energy6 Y of an object
of unit mass m = 1, traveling with random velocity X.

Example 4.1.8 (Kinetic Energy of a Unit Mass Traveling with Random, Exponen-
tially Distributed Velocity) Suppose that the random quantity X has an exponential
c.d.f. and p.d.f. given in Example 4.1.5, with parameter μ = 1. It is transformed by a
quadratic “device” g(x) = x2/2 into the random quantity Y = X2/2. Note that the
exponential p.d.f. is concentrated on the positive half-line and that the transforming
function g(x) is monotonically increasing in that domain. Then the c.d.f. FY (y) = 0,
for y ≤ 0, and, for y > 0, we can repeat the argument from formula (4.1.11) to
obtain

FY (y) = P(Y ≤ y) = P(X2/2 ≤ y)

= P(X ≤ √2y) = FX(
√

2y) = 1− e−
√

2y.

Similarly, using (4.1.12), one gets the p.d.f. of X2/2:

fY (y) = d

dy
FY (y) =

{
0, for y ≤ 0;
e−
√

2y/
√

2y), for y > 0.

Note that this p.d.f. has a singularity at the origin; indeed, fY (y) ↑ +∞ as y ↓
0+. Observe, however, that the singularity does not affect the p.d.f. normalization
condition

∫∞
−∞ fY (y) dy = 1.

6Recall that an object of mass m traveling with velocity v has kinetic energy E = mv2/2.



4.1 Discrete, Continuous, and Singular Random Quantities 107

Table 4.1 Gaussian N(0, 1) c.d.f.: �(z) = (2π)−1/2
∫ z

−∞ e−x2/2 dx

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5395 0.5438 .5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753

0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141

0.3 0.6179 0.6217 0.6255 0.6296 0.6331 0.6366 0.6406 0.6443 0.6480 0.6517

0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6884 0.6879

0.5 0.6915 0.6956 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7857 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549

0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852

0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8075 0.8106 0.8133

0.9 0.8195 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8503 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8613 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8796 0.8810 0.8830

1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8977 0.9015

1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177

1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9359 0.9370 0.9382 0.9309 0.9404 0.9418 0.9429 0.9441

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545

1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9606 0.9616 0.9625 0.9633

1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9666 0.9693 0.9699 0.9706

1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9773 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857

2.2 0.9891 0.9861 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890

2.3 0.9893 0.9896 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890

2.4 0.9918 0.9820 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964

2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974

2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981

2.9 0.9981 0.9982 0.9983 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993

3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995

3.3 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997

3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998

If the transforming function y = g(x) is not monotonically increasing (or,
decreasing, see Problem 4.7.26, and Sects. 8.1 and 8.2) over the range of the random
quantity X (as, for example, g(x) = x2 in the case when X takes both positive and
negative values), then a more subtle analysis is required to find the p.d.f. of the
random quantity Y = g(X).
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Example 4.1.9 (Square of a Standard Gaussian Random Quantity) Assume that
X has the standard N(0, 1) Gaussian p.d.f. and that the transforming function is
quadratic: y = g(x) = x2. The quadratic function is monotonically increasing only
over the positive half-line; it is monotonically decreasing over the negative half-
line). So, we have to proceed with caution and start with an analysis of the c.d.f. of
Y = X2 taking advantage of the symmetry of the Gaussian p.d.f.:

FY (y) = P(Y ≤ y) = P(X2 ≤ y)

= 2P(0 ≤ X ≤ √y) = 2(FX(
√

y)− 1/2).

The above formula, obviously, is valid only for y > 0; on the negative half-line
the c.d.f. of Y = X2 vanishes. Thus the p.d.f. of Y = X2 is

fY (y) = d

dy
FY (y) =

{
0, for y ≤ 0;
e−y/2/(

√
2πy), for y > 0.

This p.d.f. is traditionally called the chi-square probability density function. We’ll
see its importance in Sect. 4.6, where it plays the central role in the statistical
parameter estimation problems.

Random Quantities as Functions on a Sample Space For those who insist
on mathematical precision, the above introduction of random quantities via their
probability distributions should be preceded by their formal definition as functions
on a sample space. This approach had been pioneered by A.N. Kolmogorov7 and
it has become a commonly accepted, mainstream approach to the mathematical
probability theory.

The definition starts with an introduction of the triple (�,B, P), where the
sample space � is an arbitrary set8 consisting of sample points ω. They should be
thought of as labels for different (not necessarily numerical) outcomes of a random
experiment being modeled. The field B consists of subsets of the sample space �

which are called random events. To make the logical operations (such as “not,”
“or,” and “and”) on random events possible it is assumed that B contains the whole
sample space �, and the empty set ∅, and is closed under complements, unions, and
intersections. In other words, one imposes on B the following axioms:

A1.1. �,∅ ∈ B;
A1.2. If B ∈ B, then its complement � \ B ∈ B;
A1.3. If A,B ∈ B, then A ∪ B ∈ B and A ∩ B ∈ B.

7See his fundamental Grundbegriffe der Wahrscheinlichkeisrechnung, Berlin 1933, but also an
earlier work in the same direction by H. Steinhaus, Studia Mathematica, 1923, and Bibliographical
Comments at the end of this volume.
8Without loss of generality one can always take as � the unit interval [0, 1], see Remark 4.1.2.
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The probability measure is then defined as a function P : B �→ [0, 1], assigning
to any random event B a real number between 0 and 1, so that it is normalized
to 1 on the whole sample space, and is additive on mutually exclusive (disjoint)
random events. In other words one imposes on the probability measure the following
axioms:

A2.1. P(�) = 1 (normalization);
A2.2. If A ∩ B ∈ ∅, then P(A ∪ B) = P(A)+ P(B) (additivity).

Finally, a random quantity (variable) X is any function on the sample space
� which assigns to each sample point ω (that is to each outcome of a random
experiment) a real number X(ω) in such a way that determining probabilities of
X(ω) taking values in any given interval on the real line is possible. In other words,
one demands that the function, X : � �→ R, is measurable, i.e., it satisfies the
following axiom:

A3.1. For each a, b ∈ R, the set of sample points {ω : a < X(ω) ≤ b} ∈ B.

The consequence is that B = {ω : a < X(ω) ≤ b} is always a (measurable)
random event and the probability P(B) thereof is well defined. This permits now an
introduction of the cumulative distribution function of the random quantity X (and
brings us back to the beginning of Section 4.2) via the formula

FX(x) = P({ω : −∞ < X(ω) ≤ x}), x ∈ R.

To permit limit operations on random events and random quantities one usually
extends the above axioms to guarantee that infinite unions are permitted in
axioms A1.3 and A2.2. A wide spectrum of examples of sample spaces can be
encountered in research practice; we provide three, the first very simple, and the
third, rather complex.

Example 4.1.10 (Coin Toss—A Small Sample Space) In this case the outcomes can
be labeled H (heads), and T (tails), and the sample space is � = {H, T } has
only two sample points, H and T . The field of random events can be taken to be
B = {∅, {H }, {T },�}. For any number p ∈ [0, 1], the probability measure P on all
random events in B can now be defined as follows:

P(∅) = 0, P(H) = p, P(T ) = 1− p, P(�) = 1.

Now one can define a variety of random quantities on (�,B, P). If in the game you
are playing one wins $1 if heads come up and nothing if tails come up, then the
corresponding random quantity X is a function on � defined by the equalities,

X(H) = 1, X(T ) = 0,

and its probability distribution is
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P({ω : X(ω) = 1}) = p, P({ω : X(ω) = 0}) = 1− p.

However, if in the game you are playing one wins one dollar if heads come up
and one loses one dollar if tails come up, then the corresponding random quantity
X is a function on � defined by the equalities,

X(H) = +1, X(T ) = −1,

and its probability distribution is

P({ω : X(ω) = +1}) = p, P({ω : X(ω) = −1}) = 1− p.

Example 4.1.11 (Coin Toss—A Larger Sample Space) The above “natural” choice
of the “minimal” sample space is not unique. For example, one can choose � =
[0, 1] with P being the length measure of the subsets of the unit interval. Then take

X(ω) =
{

0, for ω ∈ [0, 1− p];
1, for ω ∈ (1− p, 1].

Then, obviously, P({ω : X(ω) = 0}) = 1− p, and P({ω : X(ω) = 1}) = p.

Example 4.1.12 (Gas of Particles—A Large Sample Space) Consider a gas con-
sisting of 6 · 1023 (Avogadro number) of particles (say, of mass 1) moving in R3

according to the Newtonian mechanics. The sample space consists of all possible
configurations (states) of the gas described by particles’ positions (x1, x2, x3) and
velocities (v1, v2, v3). Hence, each sample point

ω = (x1
1 , x2

1 , x3
1 , v1

1, v2
1, v3

1, . . . , x1
N, x2

N, x3
N, v1

N, v2
N, v3

N)

is a 6 · 6 · 1023-dimensional vector, and the sample space is of the same huge
dimension:

� = R6·6·1023
.

The field B of random events here is also huge and consists of all the subsets of
� that are defined by imposing upper and lower bounds on the components of the
positions and velocities of all 6 · 1023 particles.

Various probability measures on B can then be defined. In statistical mechanics
the standard way to define it is by assigning energy E(ω) to each configuration
ω and then demanding that the probability (fraction of all particles) of the system
being in state ω is proportional to exp(−β)Eω. The resulting probability measure
on � is called the Gibbs-Boltzmann measure.

If the random quantity of interest is just the kinetic energy (temperature) of the
configuration,
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Fig. 4.12 Distribution of particle speed for 106 oxygen particles at −100, 20, and 600 degrees
Celsius (left to right). Speed distribution was derived from Maxwell-Boltzmann distribution (from
http://en.wikipedia.org/wiki/Maxwell-Boltzmann_statistics)

Eω = 1

2

N∑
i=1

[
(v1

i )
2 + (v2

i )
2 + (v3

i )
2
]
,

then the above Gibbs-Boltzman distribution correctly gives the classical Maxwell
probability density function of gas particle speeds s = √(v1)2 + (v2)2 + (v3)2:

fS(s) = (2/π)1/2(kT )−3/2s2 exp(−s2/2kT ), s ≥ 0,

where k is the Boltzmann constant, and T is the absolute temperature. To accom-
modate different types of particles additional parameters are usually included in the
above formula, see Fig. 4.12 for an example of plots of p.d.f.s of particle speeds for
oxygen particles.9

Remark 4.1.3 (Unit Interval as a Universal Sample Space) For any random quan-
tity X one can always choose the unit interval [0, 1] as the underlying sample space
� (although, not always this is the most natural selection) with sample points ω ∈ �

being just numbers between 0 and 1. Indeed, equip � with the Lebesgue (length)
measure as the underlying probability P. That is, if A = [a, b] ⊂ � = [0, 1], then
we set

9See, e.g., Carter, Ashley H., “Classical and Statistical Thermodynamics”, Prentice-Hall, Inc.,
2001, New Jersey.

http://en.wikipedia.org/wiki/Maxwell-Boltzmann_statistics
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P(A) = P({ω : a ≤ ω ≤ b}) = b − a,

and let ω = FX(x) be the cumulative distribution function of X. Since, the above
c.d.f. is not necessarily a strictly increasing function we will define its inverse
F−1

X (ω), ω ∈ [0, 1], as the reflection in the diagonal, x = ω, in the (x, ω)-plane,
of the plot of the p.d.f. FX(x). More precisely, we uniquely define the (generalized)
inverse of the c.d.f. by the equality,10

F−1
X (ω) = min{x : FX(x) ≥ ω}.

Of course, if FX(x) is strictly increasing, then the above definition yields the usual
inverse function satisfying the conditions,

F−1
X (FX(x)) = x, and FX(F−1

X (ω)) = ω.

In the next step, define

X(ω) = F−1
X (ω), ω ∈ � = [0, 1].

Clearly, X(ω) defined in this fashion has the correct c.d.f.,

P({ω ∈ [0, 1] : X(ω) ≤ x}) = P({ω ∈ [0, 1] : F−1
X (ω) ≤ x})

= P({ω : 0 ≤ ω ≤ FX(x)}) = FX(x).

For instance, Example 4.1.11, defines the Bernoulli random quantity as a function
on [0, 1] via the above “generalized” inverse of the Bernoulli c.d.f. shown in Fig. 4.3.
As an example of the strictly increasing c.d.f., we can take the Cauchy random
quantity X with the c.d.f.,

FX(x) = 1

π

(
arctan(x)+ π

2

)
,

which continuously increases from 0 to 1 as X ranges from −∞ to +∞. Solving
the equation FX(x) = ω yields the inverse function

F−1
X (ω) = tan

(
πω − π

2

)
= X(ω)

and a representation of the Cauchy random quantity as a function on the unit
interval. Both the Cauchy c.d.f. and its inverse are shown in Fig. 4.13.

10Traditionally the inverse of the c.d.f. of a random quantity is called its quantile function, see
Sect. 4.6.
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Fig. 4.13 Cumulative
distribution function, FX(x),
of a Cauchy random quantity
(thick line), and its inverse,
X(ω) = F−1

X (ω) (thin line),
providing a representation of
the Cauchy random quantity
X(ω) as a function on the
sample space � = [0, 1]

-2 -1 0 1 2
-2

-1

0

1

2

4.2 Expectations and Moments of Random Quantities

The expected value or, in brief, the expectation of a random quantity X is its mean
value (or, for a physics-minded reader, the center of the probability mass) with
different values of X given weights equal to their probabilities. The expectation
of X will be denoted EX, or E(X), whichever is more convenient. So, for a discrete
random quantity X with P(X = xi) = pi,

∑
i pi = 1, we have

EX =
∑

i

xipi, (4.2.1)

and for an (absolutely) continuous random quantity with probability density fX(x)

EX =
∫ ∞

−∞
xfX(x) dx. (4.2.2)

More generally, one can consider the expectation of a function g(X) of a random
quantity X which is defined by the formulas,

E[g(X)] =
{∑

i g(xi)pi, inthediscretecase;∫∞
−∞ g(x)fX(x) dx, inthecontinuouscase.

(4.2.3)

In particular, if g(x) = xk, k = 1, 2, . . . , then the numbers
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μk(X) = Eg(X) = EXk =
{∑

i xk
i pi, inthediscretecase;∫∞

−∞ xkfX(x) dx, inthecontinuouscase
(4.2.4)

are called k-th moments of X. The first moment μ1 = μ1(X) is just the expectation
of EX of the random quantity X.

If g(x) = |x|α, −∞ < α <∞, then

mk(X) = E|X|α

are called α-th absolute moments, and for g(x) = |x − μ1|α , the numbers

E|X − μ1|α = E|X − EX|α,

are called α-th absolute central moments of X. The latter measure the mean value of
the α-th power of the deviation of the random quantity X from its expectation EX.
In other words, they provide a family of parameters which measure how the values
of the random quantity are spread around its “center of mass.”

In the special case α = 2, the second central moment

E(X − EX)2 =
{∑

i (xi − μ1)
2pi, indiscretecase;∫∞

−∞(x − μ1)
2fX(x) dx, incontinuouscase

(4.2.5)

is called the variance of the random quantity X and denoted Var(X). Again, for a
physically minded reader, it is worth noticing that the variance is just the moment of
inertia of the probability mass distribution. A simple calculation gives the formula

Var(X) = EX2 − (EX)2, (4.2.6)

which is sometimes simpler computationally then (4.2.5); the variance is thus the
difference between the second moment (sometimes called also mean square of a
random quantity) and the square of the first moment. This rule is then often phrased:
variance is equal to the mean square minus the squared mean.

Example 4.2.1 (Moments of the Bernoulli Distribution) For the Bernoulli random
quantity X, with distribution given in Example 4.1.1, all the moments are

μk(X) = 1k · p + 0k · (1− p) = p,

and the variance is

Var(X) = (1− p)2p + (0− p)2(1− p) = p(1− p).

Example 4.2.2 (Mean and Variance of the Uniform Distribution) A uniformly
distributed random quantity X (see Example 4.1.4) has expectation
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EX =
∫ d

c

x
1

d − c
dx = d + c

2
.

Its variance is

Var (X) =
∫ d

c

(
x − d + c

2

)2 1

d − c
dx = (d − c)2

12
.

Notice that the expectation or expected value EX of a random quantity X scales
linearly, that is,

E(αX) = αE(X), −∞ < α <∞, (4.2.7)

so that the change of scale of the measurements affects the expectations proportion-
ally: if, for example, X is measured in meters, then EX is also measured in meters.
Indeed, in the continuous case,

E(αX) =
∫ ∞

−∞
(αx)fX(x) dx = α

∫ ∞

−∞
xfX(x) dx = αE(X),

and the discrete case can be verified in an analogous fashion.
On the other hand, the variance Var(X) has the quadratic scaling

Var(αX) = α2Var(X). (4.2.8)

This follows immediately from the linear scaling of the expectations (4.2.7) and
the formula (4.2.6). Thus the mean-square deviation has a somewhat unpleasant
nonlinear property which implies that if X is measured, say, in meters, then its
variance is measured in meters square.

For this reason, one often considers the standard deviation Std(X) of random
quantity X which is defined as the square root of the variance:

Std(X) = √Var (X). (4.2.9)

The standard deviation scales linearly, at least for positive α, since

Std(αX) = |α|Std(X), −∞ < α <∞. (4.2.10)

This means that changing the measurement units affects the standard deviation
proportionately as well. If a random quantity is measured in meters, then its standard
deviation is also measured in meters.

Additionally, observe that the expectation is additive with respect to constants,
that is, for any constant β, −∞ < β <∞,

E(X + β) = E(X)+ β. (4.2.11)
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The verification is again immediate and follows from the additivity property of the
integrals (or, in the discrete case, sums):

E(X + β) =
∫ ∞

−∞
(x + β)fX(x) dx

=
∫ ∞

−∞
xfX(x) dx +

∫ ∞

−∞
βfX(x) dx = E(X)+ β,

because
∫∞
−∞ fX(x) dx = 1.

Finally, the variance is invariant under translations, that is, for any constant
β, −∞ < β <∞,

Var(X + β) = Var(X). (4.2.12)

Indeed,

Var(X + β) = E
(
(X + β)− E(X + β)

)2 = E
(
X + β − E(X)− β

)2 = Var(X).

The above properties indicate that any random quantity X can be standardized by,
first, centering it, and then by rescaling it, so that the standardized random quantity
has expectation 0 and variance 1. Indeed, if

Z = X − EX

Std(X)
, (4.2.13)

then it immediately follows from (4.2.10) and (4.2.11) that EZ = 0 and Var(Z) = 1.

Example 4.2.3 (Mean and Variance of the Gaussian Distribution) Let us begin with
a random quantity X with the standard N(0, 1) p.d.f. Its expectation

E(X) =
∫ ∞

−∞
x

1√
2π

e−x2/2 dx = 0

because the integrand is an odd function and is integrated over the interval (−∞,∞)

which is symmetric about the origin. Thus its variance is just the second moment
(mean square) of X which can be evaluated easily by integration-by-parts11

Var (X) =
∫ ∞

−∞
x2 1√

2π
e−x2/2 dx = 1√

2π

∫ ∞

−∞
x · (xe−x2/2) dx.

11Recall the integration-by-parts formula:
∫

f (x)g′(x) dx = f (x)g(x)− ∫ f ′(x)g(x) dx.
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= 1√
2π

(
−x · e−x2/2

∣∣∣∞−∞ +
∫ ∞

−∞
e−x2/2 dx

)
= 1,

because limx→±∞ x · e−x2/2 = 0 and (1/
√

2π)
∫∞
−∞e−x2/2 dx = 1.

Now, let us consider a general Gaussian random quantity Y with N(μ, σ 2) p.d.f.,

fY (y) = 1√
2πσ 2

e
− (y−μ)2

2σ2 .

In view of Example 4.1.7,

Y = σX + μ.

The above properties of the expectation and the variance ((4.2.7) and (4.2.8), and
(4.2.11) and (4.2.12)) immediately give

E(Y ) = E(σX + μ) = σE(X)+ μ = μ,

and

Var(Y ) = Var(σX + μ) = Var(σX) = σ 2Var(X) = σ 2.

Thus the parameters μ and σ 2 in the Gaussian N(μ, σ 2) p.d.f. are, simply, its
expectation and variance.

Remark 4.2.1 (Sums of Random Quantities?) Note that the discussions carried out
in the previous two section permitted us, in principle, to determine the probability
distributions (and thus expectations, moments, etc.) of functions g(X), once the
distribution of X itself was known. However, an effort to determine the distribution
of the sum X+Y if the separate distributions of X and Y are known is bound to end
up in failure; there is simply not enough information about how the values of X and
Y are paired up. This is one of the reasons why one must study the distribution of
the pair (X, Y ) viewed as the distribution a single random vector. This will be done
in the next section.

4.3 Random Vectors, Conditional Probabilities, Statistical
Independence, and Correlations

A random vector X has components X1, X2, . . . , Xd , which are scalar random
quantities, that is

X = (X1, X2, . . . , Xd),



118 4 Random Quantities and Random Vectors

where d is the dimension of the random vector. For the sake of simplicity of notation
we shall consider first the case of dimension d = 2, and we shall write X = (X, Y ).

Statistical properties of random vectors are characterized by their joint probabil-
ity distributions. In the discrete case, for a random vector X taking discrete values
x = (x, y), the joint probability distribution is

P(X = x) = P(X = x, Y = y) = pX(x, y), (4.3.1)

and ∑
(x,y)

pX(x, y) = 1. (4.3.2)

Example 4.3.1 (A Bernoulli Random Vector) The random vector (X, Y ) takes
values (0, 0), (0, 1), (1, 0), (1, 1), with the following joint probabilities:

p(X,Y )(0, 0) = (1− p)2, p(X,Y )(0, 1) = p(1− p),

p(X,Y )(0, 1) = (1− p)p, p(X,Y )(1, 1) = p2.

It is easy to check that

1∑
x=0

1∑
y=0

p(X,Y )(x, y) = 1.

In the special case p = 1/2 all four possible values of this random vector are taken
with the same probability equal to 1/4.

A continuous random vector is characterized by its joint p.d.f. f(X,Y )(x, y),
which is a nonnegative function of two variables x, y, such that

∫ ∞

−∞

∫ ∞

−∞
f(X,Y )(x, y) dx dy = 1. (4.3.3)

In this case the probability that the random vector (X, Y ) takes values in a certain
domain A of the 2D space is calculated by evaluating the double integral of the joint
p.d.f. over the domain A:

P((X, Y ) ∈ A) =
∫ ∫

A

f(X,Y )(x, y) dx dy. (4.3.4)

For example, if the domain A is a rectangle [a, b] × [c, d] = {(x, y) : a ≤ x ≤
b, c ≤ y ≤ d}, then

P((X, Y ) ∈ A) = P(a ≤ X ≤ b, c ≤ Y ≤ d) =
∫ b

a

∫ d

c

f(X,Y )(x, y) dy dx.

(4.3.5a)
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Fig. 4.14 Plot of the surface representing a 2D Gaussian joint p.d.f. (4.3.6) in the case σx, σy = 1
and μx,μy = 0

If the domain B = {(x, y) : x2 + y2 ≤ R2} is a centered disk of radius R, then

P((X, Y ) ∈ B) = P(X2 + Y 2 ≤ R2) =
∫ R

−R

∫ √R2−x2

−
√

R2−x2
f(X,Y )(x, y) dy dx.

(4.3.5b)

The graph of a 2D joint p.d.f. is a surface over the (x, y)-plane such that the
volume underneath it is equal to 1, see (4.3.3).

Example 4.3.2 (A 2D Gaussian Random Vector) An example of the 2D Gaussian
joint p.d.f. is given by the formula

f(X,Y )(x, y) = 1

2πσxσy

exp

[
− (x − μx)

2

2σ 2
x

− (y − μy)
2

2σ 2
y

]
, (4.3.6)

where σx, σy > 0 and μx,μy are arbitrary real numbers. Figure 4.14 shows the plot
of the surface representing a 2D Gaussian joint p.d.f. in the case σx, σy = 1 and
μx,μy = 0.

Calculation of the probabilities P(a ≤ X ≤ b, c ≤ Y ≤ d) is here reduced to
calculation of one-dimensional Gaussian probabilities since the joint 2D density in
this case is the product of two 1D Gaussian densities, one depending only on x,
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and the other on y,12 and the double integral splits into the product of two single
integrals. To obtain numerical values, tables of (or software for) 1D N(0, 1) c.d.f.
have to be used; see Sect. 4.5.

In the special case of equal variances σ 2
x = σ 2

y = σ 2, the probability that
the above Gaussian random vector takes values in a disk of radius R centered at
(μx, μy) can, however, be carried out explicitly by calculation of the integral in
polar coordinates (θ, r):

P
(
(X−μx)

2+(Y −μy)
2 ≤ R2

)
=
∫ R

−R

∫ √R2−x2

−
√

R2−x2

1

2πσ 2
exp

[
−x2 + y2

2σ 2

]
dy dx

= 1

2πσ 2

∫ 2π

0

∫ R

0
exp

[
− r2

2σ 2

]
r dr dθ

= 1

σ 2

[
−σ 2 exp

[
− r2

2σ 2

]]R

0
= 1− e−R2/2σ 2

.

Because the joint p.d.f. gives complete information about the random vector
(X, Y ), it yields also complete information about the probability distributions of
each of the component random quantities. These distributions are called marginal
distributions of the random vector.

In particular, for a discrete random vector, the marginal distribution of the
component X is

pX(x) =
∑
y

p(X,Y )(x, y). (4.3.7)

To find the probability of X taking a particular value x0 we simply need to sum, over
all possible y’s, the probabilities of (X, Y ) taking values (x0, y). For a continuous
random vector the marginal p.d.f. of the component X is

fX(x) =
∫ ∞

−∞
f(X,Y )(x, y) dy. (4.3.8)

It is important to observe that the marginal distributions of components of
a random vector do not determine its joint distribution. Indeed, the example
provided below shows that it is quite possible for random vectors to have the same
marginal probability distributions of their components while their joint probability
distributions are different.

12We will have more to say about joint p.d.f.s of this type in the next few pages. The multiplicative
property is equivalent to the concept of statistical independence of components of a random vector.
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Example 4.3.3 (Different Random Vectors with the Same Marginal Probability
Distributions) A random vector (X, Y ) has components X and Y which take values
1, 2, and 3, and 1 and 2, respectively. The joint probability distribution of this
random vector is given in the following table:

Y\ X 1 2 3 Y

1 30/144 24/144 18/144 6/12

2 30/144 24/144 18/144 6/12

X 5/12 4/12 3/12
∑ = 1

So, for example, P((X, Y ) = (3, 2)) = 3/24. The last row in the above table gives
the marginal probability distribution for the component X, and the last column, the
marginal probability distribution for the component Y .

Consider now another random vector (W,Z) with components W and Z which
also take values 1, 2, and 3, and 1 and 2, respectively. The joint distribution of this
random vector is given by a different table:

Z\W 1 2 3 Z

1 1/12 2/12 3/12 6/12

2 4/12 2/12 0 6/12

W 5/12 4/12 3/12
∑ = 1

This time P((X, Y ) = (3, 2)) = 0. The last row in the above table gives the marginal
probability distribution for the component W , and the last column, the marginal
probability distribution for the component Z. The marginal probability distributions
for vectors (X, Y ) and (W,Z) are the same, while their joint distributions are
different.

Conditional Probabilities Knowledge of the joint p.d.f. permits us also to intro-
duce the concept of the conditional probability (in the discrete case) and the
conditional density (in the continuous case). Thus, the conditional probability of
the component X taking value x, given that the second component Y took value y,
is given by the formula13

pX|Y (x|y) ≡ P(X = x|Y = y) = P(X = x, Y = y)

P(Y = y)
= p(X,Y )(x, y)

pY (y)
, (4.3.9)

13The notation pX|Y (x|y) ≡ P(X = x|Y = y) reads: probability of X = x, given Y = y.
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and the conditional probability density function of X given Y = y is given by the
formula

fX|Y (x|y) = f(X,Y )(x, y)

fY (y)
. (4.3.10)

In other words, conditional probability distributions are distributions of values of
one component of a random vector calculated under the assumption that the value
of the other component has already been determined.

Conditional probabilities are bona fide probabilities as they satisfy the normal-
ization property. Indeed, say, in the continuous case, for each fixed y,

∫ ∞

−∞
fX|Y (x|y) dx =

∫∞
−∞ f(X,Y )(x, y) dx

fY (y)
= fY (y)

fY (y)
= 1,

in view of the formula (4.3.8) which calculates the marginal density from the joint
density.

If the component X of random vector (X, Y ) takes on distinct values
x1, x2, . . . , xn, then the additive property of probabilities immediately gives the
following total probability formula:

P(Y = y) =
n∑

i=1

P(Y = y|X = xi) · P(X = xi).

Example 4.3.4 (How to Avoid Running into a Bear?) Heuristically, one can think
about conditional probabilities as probabilities obtained under additional con-
straints. Think here about probability of your running into a bear during a hike.
Given that you are hiking in the Cleveland Metroparks, the probability of the event
may be only 0.0001; in Yellowstone the similar conditional probability may be as
high as 0.75. Now assume you participate, with 51 of your classmates, in a raffle
and the prize is a trip to Yellowstone; the consolation prize is a group hike in
the Metroparks. The total probability of your running into a bear would then be
0.0001 · (51/52)+ 0.75 · (1/52) ≈ 0.015.

One of the corollaries of the total probability formula is the celebrated Bayes
formula for reverse conditional probabilities which, loosely speaking, computes the
conditional probability of X, given Y , in terms of the conditional probabilities of Y ,
given X:

P(X = xi |Y = y) = P(Y = y|X = xi) · P(X = xi)∑n
i=1 P(Y = y|X = xi) · P(X = xi).
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Indeed,

P(X = xi |Y = y) = P(X = xi, Y = y)

P(Y = y)
· P(X = xi)

P(X = xi)

= P(Y = y|X = xi) · P(X = xi)

P(Y = y)
,

and an application of the total probability formula immediately gives the final result.

Example 4.3.5 (Transmission of a Binary Signal in the Presence of Random Errors)
A channel transmits binary symbols 0 and 1 with random errors. The probability that
the symbols 0 and 1 appear at the input of the channel are, respectively, 0.45 and
0.55. Because of transmission errors, if the symbol 0 appears at the input, then the
probability of it being received as 0 at the output is 0.95. The analogous conditional
probability is 0.9, for the symbol 1 to be received, given that it was transmitted. Our
task is to find the reverse conditional probability that the symbol 1 was transmitted
given that 1 was received.

The random vector here is (X, Y ), where X is the input signal and Y is the output
signal. The problem’s description contains the following information:

P(X = 0) = 0.45, P(X = 1) = 0.55,

and

P(Y = 0|X = 0) = 0.95, P(Y = 1|X = 1) = 0.9,

so that

P(Y = 1|X = 0) = 0.05, P(Y = 0|X = 1) = 0.1.

We are seeking P(X = 1|Y = 1) and the Bayes formula gives the answer:

P(X = 1|Y = 1)

= P(Y = 1|X = 1) · P(X = 1)

P(Y = 1|X = 0) · P(X = 0)+ P(Y = 1|X = 1) · P(X = 1)

= 0.9 · 0.55

0.05 · 0.45+ 0.9 · 0.55
≈ 0.9565.

Statistical Independence Components X and Y of a random vector X = (X, Y )

are said to be statistically independent if the conditional probabilities of X given Y

are independent of Y and vice versa. In the discrete case, this means that, for all x

and y,

P(X = x|Y = y) = P(X = x),
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which is equivalent to the statement that the joint p.d.f. is the product of the marginal
p.d.f.s. Indeed, the above independence assumption and the formula defining the
conditional probabilities yield

P(X = x, Y = y) = P(X,Y )(x, y)

= PX(x) · PY (y) = P(X = x) · P(Y = y). (4.3.11)

In the continuous case the analogous definition of independence of X and Y can
be stated via the multiplicative formula for the joint p.d.f.:

f(X,Y )(x, y) = fX(x) · fY (y). (4.3.12)

Note that both the 2D Bernoulli distribution of Example 4.3.1 and the 2D
Gaussian distribution of Example 4.3.2 have statistically independent components
X and Y . Also, components of the random vector (X, Y ) in Example 4.3.3 are
independent since the table was actually obtained by multiplying the marginal
probabilities in the corresponding rows and columns. However, the components W

and Z of random vector (W,Z) in Example 4.3.3 are not statistically independent.
To see this it is sufficient to observe that

P(W = 3, Z = 2) = 0,

but

P(W = 3) · P(Z = 2) = 3/12 · 6/12 = 18/144 �= 0.

Moments of Random Vectors and Correlations If a random quantity Z is a
function of a random vector (X, Y ), say,

Z = g(X, Y ),

then, as in Section 4.3, we can calculate the mean of Z using the joint p.d.f. Indeed,

EZ =
∑
x

∑
y

g(x, y)p(X,Y )(x, y), (4.3.13)

in the discrete case, and

EZ =
∫ ∞

−∞

∫ ∞

−∞
g(x, y)f(X,Y )(x, y) dx dy, (4.3.14)

in the continuous case.
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A mixed central second-order moment corresponding to function g(x, y) = (x−
μX)(y−μY ) will play a pivotal role in the analysis of random signals. The number,

Cov (X, Y ) = E
[
(X − μX)(Y − μY )

]
= E(XY )− E(X)E(Y ), (4.3.15)

is called the covariance of X and Y . Obviously, the covariance of X and X is just
the variance of X:

Cov (X,X) = E
[
(X − μX)(X − μX)

]
= Var (X). (4.3.16)

In the case when the expectations of X and Y are zero,

Cov (X, Y ) = E(X · Y ). (4.3.17)

By the Cauchy-Schwartz Inequality,14

|Cov (X, Y )| ≤ Std(X) · Std(Y ). (4.3.18)

This suggests introduction of yet another parameter for a 2D random vector which
is called the correlation coefficient of X and Y :

Cor (X, Y ) ≡ ρX,Y = Cov (X, Y )

Std(X) · Std(Y )
. (4.3.19)

In view of (4.3.18) the correlation coefficient is always contained between −1 and
+1:

− 1 ≤ ρX,Y ≤ 1, (4.3.20)

and, in view of (4.3.17), if random components X and Y are linearly dependent, that
is Y = αX, then the correlation coefficient takes its extreme values

ρX,αX = ±1, (4.3.21)

depending on whether α is positive or negative. In those cases we say that the
random quantities X and Y are perfectly (positively or negatively) correlated. If
ρX,Y = 0, then the random quantities X and Y are said to be uncorrelated.

14Recall that if a = (a1, . . . , ad ) and b = (b1, . . . , bd ) are two d-dimensional vectors, then the
Cauchy-Schwartz inequality says that the absolute value of their scalar (dot) product is not larger
than the product of their norms (magnitudes), i.e., |〈a, b〉| ≤ ‖a‖ · ‖b‖., where 〈a, b〉 = a1b1 +
· · · + adbd , and ‖a‖2 = a2

1 + · · · + a2
d ; see Sect. 4.7.
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The opposite case is that of statistically independent random quantities X and Y .
Then, because of the multiplicative property f(X,Y )(x, y) = fX(x)fY (y) (4.3.11)
and (4.3.12) of the joint p.d.f., we always have

E(XY ) =
∫ ∫

xyfX(x)fY (y) dx dy = EX · EY, (4.3.22)

so that

Cov (X, Y ) = E(XY )− EX · EY = 0, (4.3.23)

and the correlation coefficient ρX,Y = 0. Thus independent random quantities
are always uncorrelated. In this context, the correlation coefficient ρX,Y is often
considered as a measure of “independence” of random quantities X and Y ; more
appropriately it should be interpreted as a measure of the “linear association” of
random quantities X and Y .

Remark 4.3.1 (Uncorrelated Random Quantities Need Not Be Independent)
Although statistically independent random quantities are always uncorrelated,
the reverse implication is not true in general. Indeed, consider an example of a
2D random vector (X, Y ) with values uniformly distributed inside the unit circle.
Obviously, because of the symmetry, EX = EY = 0, and the covariance (calculated
in polar coordinates)

Cov(X, Y ) =
∫ 1

−1

∫ +
√

1−x2

−
√

1−x2
xy

dy dx

π
=
∫ 2π

0

∫ 1

0
r3 cos θ sin θ

dr dθ

π
= 0.

So X and Y are uncorrelated. But they are not independent because, for example,

P(
√

2/2 < X < 1,
√

2/2 < Y < 1) �= P(
√

2/2 < X < 1) · P(
√

2/2 < Y < 1).

Indeed, the left-hand side is zero since the square {(x, y) : √2/2 < x < 1,
√

2/2 <

y < 1} lies outside the unit circle, but the right-hand side is positive since

P(
√

2/2 < X < 1) =
∫ 1

√
2/2

∫ +
√

1−x2

−
√

1−x2

dy dx

π
= P(

√
2/2 < Y < 1) > 0;

each of the above probabilities is simply the (normalized) area of the sliver of the
unit disc to the right of the vertical line x = √2/2. However, in certain special cases
the reverse implication is true: Gaussian random quantities are independent if and
only if they are uncorrelated, see Chap. 9.
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Example 4.3.6 (A Discrete 2D Distribution with Nontrivial Correlation) Consider
the random vector (W,Z) from Example 4.3.3. The expectations of the components
are

EW = 1(5/12)+ 2(4/12)+ 3(3/12) = 11/6,

EZ = 1(6/12)+ 2(6/12) = 3/2.

The variances are

Var(W) = (1− 11/6)2(5/12)+ (2− 11/6)2(4/12)

+(3− 11/6)2(3/12) = 23/36,

Var(Z) = (1− 3/2)2(6/12)+ (2− 3/2)2(6/12) = 1/4.

The expectation of the product is

E(WZ) = (1 · 1)(1/12)+ (2 · 1)(2/12)+ (3 · 1)(3/12)

+(1 · 2)(4/12)+ (2 · 2)(2/12)+ (3 · 2)0 = 5/2.

Thus the covariance is

Cov(W,Z) = E(WZ)− E(W)E(Z) = 5/2− (11/6)(3/2) = −1/4,

and, finally, the correlation coefficient of W and Z,

Cor(W,Z) = Cov (W,Z)

Std(W) · Std(Z)
= −1/4√

23/36 · √1/4
= −√3/23 ≈ −0.361.

Example 4.3.7 (A Continuous 2D Distribution with Nontrivial Correlation) A
random vector (X, Y ) has a continuous joint p.d.f. of the form

f(X,Y )(x, y) =
{

C(1− (x + y)), for x, y ≥ 0, x + y ≤ 1;
0, elsewhere.

The constant C can be determined from the normalization condition,

∫ 1

0

∫ 1−x

0
C(1− (x + y)) dy dx = 1,

which gives C = 6. The plot of the surface representing this density is given in
Fig. 4.15.
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Fig. 4.15 The plot of the surface representing the joint p.d.f. from Example 4.3.7
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Fig. 4.16 The marginal density FX(x) of the X component of the random vector from
Example 4.3.7

The marginal density of the component X,

fX(x) =
∫ 1−x

0
6(1− (x + y)) dy = 3(1− x)2,

for 0 < x < 1. It is equal to 0 elsewhere, and its plot is pictured in Fig. 4.16.
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The expectations of X and Y are easily evaluated using the marginal p.d.f.:

EX = EY =
∫ 1

0
x · 3(1− x)2 dx = 1

4
.

Similarly, the variances

σ 2(X) = σ 2(Y ) =
∫ 1

0
(x − 1/4)2 · 3(1− x)2 dx = 3

80
.

Finally, the covariance

Cov (X, Y ) =
∫ 1

0

∫ 1−x

0
(x − 1/4)(y − 1/4) · 6(1− (x + y)) dy dx = − 1

80
.

So the random components X and Y are not independent; they are negatively
correlated. The correlation coefficient itself is now easily evaluated to be

ρX,Y = −1/80

3/80
= −1

3
.

4.4 The Least Squares Fit, Linear Regression

The roles of the covariance and the correlation coefficient will become better
understood in the context of the following least squares regression problem.
Consider a sample,

(x1, y1), (x2, y2), . . . , (xN , yN),

of N , 2D, vectors. Its representation in the (x, y) plane is called the scatter plot of
the sample; see, for example, Fig. 4.17. Our goal is to find a line,

y = ax + b,

which would provide the best approximation to the scatter plot in the sense of
minimizing the sum of the squares of the errors of the approximation measured
in the vertical direction. To be more precise the error of the approximation for the
i-th sample point is expressed by the formula

εi(a, b) = |yi − (axi + b)|, i = 1, 2, . . . , N,
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and the sum of the squares of the errors,

N∑
i=1

ε2
i (a, b) =

N∑
i=1

(yi − (axi + b))2

is a nice, differentiable function of two variables a and b. We can find its minimum
taking partial derivatives with respect to a and b and equating them to 015:

∂

∂a

N∑
i=1

ε2
i (a, b) = −2

N∑
i=1

(yi − (axi + b))xi = 0,

∂

∂b

N∑
i=1

ε2
i (a, b) = −2

N∑
i=1

(yi − (axi + b)) = 0.

These two equations, sometimes called the normal equations, are linear in a and b

and can be easily solved by the substitution method. To make the next step more
transparent we will introduce the following simplified notation for different sample
means (think here about the means of random quantities with N possible values
with each value assigned probability 1/N). The x and y components of the above
data will be treated as N -D vectors, and denoted,

x = (x1, . . . , xN), y = (y1, . . . , yN).

Various sample means will be denoted as follows:

x = 1

N

N∑
i=1

xi, y = 1

N

N∑
i=1

yi,

x2 = 1

N

N∑
i=1

x2
i , y2 = 1

N

N∑
i=1

y2
i ,

xy = 1

N

N∑
i=1

xiyi .

Now, the normal equations for a and b can be written in the form

ax + b − y = 0, and ax2 + bx − xy = 0,

15This explains why we consider quadratic errors rather than the straight absolute errors; in the
latter case the calculus tools would not work so well.
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which can be immediately solved to give

b = y − ax, a = xy − x · y
x2 − (x)2

.

The first of the above two equations indicates that the point with coordinates
formed by the sample means x̄ and ȳ is located on the regression line. To better see
the meaning of the second equation observe that

xy − x · y = 1

N

N∑
i=1

(xi − x)(yi − y) = Cov(x, y)

is just the sample covariance of the x- and y-coordinates of 2D data, and that

x2 − (x)2 = Var(x), y2 − (y)2 = Var(y).

Thus the equation y = ax + b of the regression line becomes now,

y = Cov(x, y)

Var(x)
x +

(
y − Cov(x, y)

Var(x)
x

)
,

and can be, finally, rewritten in a more elegant and symmetric form,

y − y

Std(y)
= ρx,y · x − x

Std(x)
, (4.4.1)

where

ρx,y = Cov(x, y)

Std(x)Std(y)

is the sample correlation coefficient; the standard deviation Std, as usual, denotes
the square root of the variance Var. The significance of the form of the regression
equation (4.4.1) is now clear: ρx,y is the slope of the regression line but only after
the x- and y-coordinates were standardized (see (4.2.11)), that is, they were centered
by the means x and y, and rescaled by the standard deviations Std(x), and Std(y),
respectively.

Example 4.4.1 Consider a 2D vector sample of size 10:



132 4 Random Quantities and Random Vectors

The coefficients a = 0.9934 and b = 1.0925, so that the equation of the regression
line is

y = 0.9934 · x + 1.0925

and the correlation coefficient,

ρx,y = 0.9503,

turns out to be relatively close to 1, indicating strong positive “linear association”
between the x- and y-data.

The scatterplot of these data as well as the plot of the regression line (best linear fit)
are shown in Fig. 4.17.
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Fig. 4.17 The scatterplot and the least squares fit regression line for data from Example 4.4.1
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4.5 The Law of Large Numbers and the Stability of
Fluctuations Law

One of the fundamental theorems of statistics, called the Law of Large Numbers
(LLN), says that if X1, X2, . . . , Xn are independent random quantities with identical
probability distributions, and finite identical expectations EXi = μX, then, as n →
∞, the averages converge to that expectation, i.e.,

X̄n ≡ X1 +X2 + . . .+Xn

n
−→ μX, as n→∞. (4.5.1)

Of course, the immediate issue is what do we mean here by convergence of
random variables X̄n. For the purpose of these lectures the convergence of X̄n to
μX will mean that the standard deviation of the fluctuations of the averages X̄n

around the mean μX, that is the differences X̄n − μX, converge to zero as n →∞.
More formally,

lim
n→∞Std (X̄n − μX) = 0. (4.5.2)

The statement (4.5.2) can be easily verified if we observe first that:

(a) For any random vector (X, Y ) with finite absolute first moments of the
components, the expectation

E (X + Y ) = E (X)+ E (Y ). (4.5.3a)

Indeed, taking g(x, y) = x + y in formulas (4.3.14) and (4.3.15), and using the
definition of expectation of functions of random vector we obtain

E (X + Y ) =
∫ ∞

−∞

∫ ∞

−∞
(x + y)f(X,Y )(x, y) dx dy

=
∫ ∞

−∞
x

(∫ ∞

−∞
f(X,Y )(x, y) dy

)
dx +

∫ ∞

−∞
y

(∫ ∞

−∞
f(X,Y )(x, y) dx

)
dy

=
∫ ∞

−∞
xfX(x) dx +

∫ ∞

−∞
yfY (y) dy = E (X)+ E (Y ),
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in view of the formula (4.3.9) for the marginal p.d.f. of a component of a random
vector.16

(b) For any random (X, Y ) with independent components with finite variances, the
variance

Var (X + Y ) = Var (X)+ Var (Y ). (4.5.3b)

This follows immediately from the multiplicative property (4.3.22) of the
expectations of independent random variables, see Sect. 4.3.

Now, if X and Y are independent, then X−μX and Y −μY are also independent,
so that, utilizing (4.5.3a) and (4.5.3b),

Var (X + Y ) = E((X − μX)+ (Y − μY ))2

= E(X − μX)2 + 2E(X − μX)E(Y − μY )+ E(Y − μY )2 = Var (X)+ Var (Y ),

because E(X − μX) = E(Y − μY ) = 0. Hence,

Var (X̄n − μX) = Var

(
X1 − μX

n
+ . . .+ Xn − μX

n

)
= Var (X)

n
(4.5.4)

which obviously approaches 0 as n→∞. Thus the Law of Large Numbers (4.5.1),
also often called the Law of Averages, is verified, at least in the situation when
random quantities Xi have well-defined finite variances.17

A more subtle information about the averages is provided by the following
Stability of Fluctuations Law, usually called the Central Limit Theorem (CLT) in
the mathematical and statistical literature. It states that as the averages X̄n fluctuate
around the expectation μX, the fluctuations, if viewed under a “magnifying glass,”
turn out to follow, asymptotically as n → ∞, a Gaussian or normal probability
distribution. More precisely, the c.d.f. of the standardized (see (4.2.13)) random
fluctuations of the averages X̄n around the mean μX,

Zn =
√

n

Std (X)
· (X̄n − μX), (4.5.5)

converges to the standard N(0, 1) Gaussian c.d.f., that is

16Note how the knowledge of the joint probability distribution of the random vector (X, Y ), and
also of (X1, X2, . . . , Xn), is what permits us to study the sums X + Y and X1 + X2 + · · · + Xn

as real-valued random quantities with well-defined probability distributions; see Remark 4.2.1 and
the following Remark 4.5.1.
17Observe that not all random quantities have well-defined, finite variances, see Problem 4.7.28 in
Sect. 4.7.
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lim
n→∞P(Zn ≤ z) = �(z) ≡

∫ z

−∞
φ(x) dx, (4.5.6)

where the density

φ(z) = 1√
2π

e−z2/2, (4.5.7)

is that of the standard N(0, 1) Gaussian random quantity. The important assumption
of the Central Limit Theorem is that the common variance of Xi’s is finite.

Summarizing the above discussion, the Central Limit Theorem can be loosely
rephrased as follows:

Standardized random fluctuations of averages of independent and identically
distributed random quantities around their common expected value have a limiting
standard Gaussian cumulative distribution function.

Remark 4.5.1 (Probability Distribution of a Sum of Independent Random Quanti-
ties) It can be immediately verified that all of Zn’s in (4.5.5) have mean zero
and variance one, see (4.2.13) and (4.5.3), but the proof of the convergence to a
Gaussian limit is more delicate. Without going into the details (for a sketch of the
full proof, see Sect. 4.7), it is clear that the proof has to rely on determination of the
probability distribution of the sum Z = X + Y of two (or more) of independent
random quantities X, and Y . In the case of continuous random quantities (for the
derivation in case of discrete random quantities, see Sect. 4.7), it turns out that the
p.d.f. of Z = X + Y is the convolution of p.d.f.s of X and Y . Indeed, in view of
independence of X and Y , the c.d.f. of Z, for an arbitrary but fixed z, is equal to

FZ(z) = P(Z ≤ z) = P(X + Y ≤ z) =
∫ ∫

{(x,y):x+y≤z}
f(X,Y )(x, y) dx dy

=
∫ ∞

−∞

∫ z−y

−∞
fX(x)fY (y) dx dy =

∫ ∞

−∞

(∫ z−y

−∞
fX(x) dx

)
fY (y) dy

=
∫ ∞

−∞

(∫ z

−∞
fX(u− y) du

)
fY (y) dy =

∫ z

−∞

(∫ ∞

−∞
fX(u− y)fY (y) dy

)
du,

after a change of variables, x = u−y, and then, a change of the order of integration.
Consequently, the p.d.f.

fZ(z) = fX+Y (z) =
∫ ∞

−∞
fX(z− y)fY (y) dy = (fX ∗ fY )(z). (4.5.8)

As we have seen in Chap. 2, convolution can be a fairly complex operation even in
the case of relatively simple fX(x) and fY (y). Moreover, the distribution of X1 +
. . .+Xn in (4.5.1) is an n-fold convolution of the p.d.f. fX(x), and the n is growing



136 4 Random Quantities and Random Vectors

to infinity. So dealing directly with the p.d.f. of the average X̄n, n → ∞, seems to
be a hopeless task. However, in view of Chap. 2, it is obvious that the whole problem
would be greatly simplified if instead of dealing with p.d.f.s one could employ their
Fourier transforms; the convolution are replaced in the frequency domain by simple
point-wise products. This idea is implemented in the sketch of the proof suggested
in Problem 4.7.24.

4.6 Estimators of Parameters and Their Accuracy:
Confidence Intervals

The Law of Large Numbers can be reinterpreted as follows: If X1, X2, . . . , Xn,
are independent and identically distributed random quantities representing repeated
sampling from a certain probability distribution FX(x), then, as n increases, the
sample means X̄n, n = 1, 2, . . . , become better and better estimators of the
expectation of that distribution. In statistical terminology the Law of Large Numbers
(4.5.1) says that X̄n is a consistent estimator for parameter μX.

The Central Limit Theorem (4.5.5) and (4.5.6) permits us to say what is the
error of approximation of the theoretical mean μX by the sample mean X̄n, or,
in other words, to establish the accuracy of the above estimation. Indeed, for a
given sample of size n, the CLT says that the difference between the parameter
μX and its estimator, the sample mean X̄n, is, after normalization by

√
n/Std(X),

approximately N(0, 1)-distributed so that, for large n,

P
(
−ε

Std(X)√
n

≤ X̄n − μX ≤ ε
Std(X)√

n

)
≈ �(ε)−�(−ε) = 2�(ε)− 1,

(4.6.1)
where �(z) is the c.d.f. of the standard Gaussian (N(0, 1)) random quantity
tabulated in Table 4.1.

If X itself has a Gaussian p.d.f. the above approximate equality becomes exact for
all n. This follows from the fact that the sum of two independent Gaussian random
quantities is again a Gaussian random quantities, obviously with the mean and
variance being the sums of means and variances, respectively, of the corresponding
random summands; see Sect. 4.7.

The contents of the formula (4.6.1) can be rephrased as follows: the true value of
parameter μX is contained in the random interval

(
X̄n − ε

Std(X)√
n

, X̄n + ε
Std(X)√

n

)

with probability

C = C(ε) = 2�(ε)− 1.
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The above random interval is called the confidence interval, and the probability
C = C(ε) is called its confidence level. The above statement is sometimes
abbreviated by writing

μX = X̄n ± ε
Std(X)√

n

at the confidence level C. Note that it is the center of the above random interval that
is random; its length is not random unless Std(X) itself has to be estimated from the
sample.

Example 4.6.1 (A 95% Confidence Interval for μX with Known Std(X)) Sixteen
independently repeated measurements of a random quantity X were conducted
resulting in X̄16 = 2.56. Suppose that we know that Std(X) = 0.12. To find
the 95%-confidence interval for μX using (4.6.1) we need to find ε such that
2�(ε) − 1 = 0.95, i.e., �(ε) = 0.975. From Table 4.1 of the Gaussian N(0, 1)

c.d.f. we have ε = 1.96. Thus, at the 95%-confidence level,

2.56− 1.96
0.12√

16
≤ μX ≤ 2.56+ 1.96

0.12√
16

,

that is,

μX = 2.56± 0.059

at the 95%-confidence level. The above approximate confidence interval is exact if
X has a Gaussian distribution.

Remark 4.6.1 (Error of the Gaussian Approximation in the CLT) To be honest we
left open the essential, but delicate question of how good is the approximate equality
in the basic formula (4.6.1) or, equivalently, the question of precise estimation of
the error in the Central Limit Theorem (4.5.6) which, by itself, only says that the
difference

P(Zn ≤ z)−�(z)→ 0, as n→∞,

where

Zn = (X1 + . . .+Xn)− nμX√
n · Std(X)

are standardized sums X1+. . .+Xn. It turns out that the accuracy in CLT is actually
pretty good if Xi’s have higher absolute moments finite. In particular, if the third
central moment m3 = E|X − μX|3 < ∞, then, for all −∞ < x < ∞, and
n = 1, 2, . . . ,
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Fig. 4.18 Student’s-t p.d.f.s with (bottom to top) 1, 2, 5, 15, and ∞ degrees of freedom (from
http://en.wikipedia.org/wiki/Student’s-t-distribution)

|P(Zn ≤ z)−�(z)| ≤ νm3√
n(Std(X))3

,

where ν is a universal (independent of n and X) constant contained in the interval
(0.4097, 0.7975). Its exact value is not known.18

Of course, the procedure used in Example 4.6.1 requires advance knowledge of
the standard deviation Std(X). If that parameter is unknown, then the obvious step
is to try to estimate it from the sample X1, X2, . . . , Xn, itself using the sample
variance estimator

S2
n =

1

n− 1

n∑
i=1

(Xi − X̄)2, (4.6.2)

which is an unbiased estimator for Var(X), see Problem 4.7.29 (Fig. 4.18).
But in this case, even if Xi’s are Gaussian, the standardized random quantity

T =
√

n

Sn

(X̄ − μX) (4.6.3)

18This error estimate in CLT is known as the Berry-Esseen Theorem and its proof can be found,
for example, in V.V. Petrov’s monograph Sums of Independent Random Variables, Springer-Verlag,
1975.

http://en.wikipedia.org/wiki/Student's-t-distribution
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is no longer N(0, 1)-distributed, so a simple construction of the confidence interval
for μX using the Gaussian distribution is impossible. However, in the narrower
situation of a Gaussian random sample X1, X2, . . . , Xn, it is known that the random
quantity T has the p.d.f.

fT (x; n− 1) = �((n)/2)√
nπ�((n− 1)/2)

(
1+ x2

n− 1

)−n/2

, (4.6.4)

which, traditionally, is called Student’s-t p.d.f. with (n− 1) degrees of freedom.19

The Gamma function �(γ ) appearing in the definition of fT is defined by the
formula

�(γ ) =
∫ ∞

0
xγ−1e−x dx, γ > 0. (4.6.5)

It is worth noting that

γ�(γ ) = �(γ + 1), and �(n) = (n− 1)!, (4.6.6)

if n is a positive integer. So, the Gamma function is an interesting extension of the
concept of the factorial to noninteger numbers.

Thus, in the Gaussian case with unknown variance, the confidence interval for
μX at confidence level C = (2FT (ε)− 1) is of the form,

(
X̄n − ε

Sn√
n
, X̄n + ε

Sn√
n

)
. (4.6.7)

Since in practice the goal is often to construct confidence intervals at given
confidence levels, instead of tabulating the Student’s-t c.d.f.s FT (t), it is convenient
to tabulate the relevant probabilities via the tail quantile function q(α; n) defined by
the equality

q(α; n) = QT (1− α; n),

where the quantile function QT (α; n), see Remark 3.1.2, is the inverse function to
c.d.f. FT (t), i.e.,

FT (QT (α; n)) = α. (4.6.8)

19See, for example, M. Denker and W.A. Woyczyński, Introductory Statistics and Random Phe-
nomena: Uncertainty, Complexity and Chaotic Behavior in Engineering and Science, Birkhäuser-
Boston 1998, for more details on the statistical issues discussed in this section.
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Table 4.2 Tail quantiles qT (α; n) of student’s-t distribution

n\α 0.1000 0.0500 0.0250 0.0100 0.0050 0.0010 0.0005

1 3.078 6.314 12.706 31.821 63.657 318.317 636.61

2 1.886 2.920 4.303 6.965 9.925 22.326 31.598

3 1.638 2.353 3.182 4.451 5.841 10.213 12.924

4 1.533 2.132 2.776 3.747 4.604 7.173 8.610

5 1.476 2.015 2.571 3.365 4.032 5.893 8.610

6 1.440 1.943 2.447 3.143 3.707 5.208 5.959

7 1.415 1.895 2.365 2.998 3.500 4.785 5.408

8 1.397 1.860 2.306 2.896 3.355 4.501 5.041

9 1.383 1.833 2.262 2.821 3.250 4.297 4.781

10 1.372 1.813 2.228 2.764 3.169 4.144 4.587

11 1.364 1.796 2.201 2.718 3.106 4.025 4.437

12 1.356 1.782 2.179 2.681 3.055 3.930 4.318

13 1.350 1.771 2.160 2.650 3.012 3.852 4.221

14 1.345 1.761 2.145 2.624 2.977 3.787 4.141

15 1.341 1.753 2.131 2.602 2.947 3.733 4.073

16 1.337 1.746 2.120 2.584 2.921 3.686 4.015

17 1.333 1.740 2.110 2.567 2.898 3.646 3.965

18 1.330 1.734 2.101 2.553 2.879 3.610 3.992

19 1.328 1.729 2.093 2.540 2.861 3.579 3.883

20 1.325 1.725 2.086 2.528 2.845 3.552 3.849

21 1.323 1.721 2.080 2.518 2.831 3.527 3.819

22 1.321 1.717 2.074 2.508 2.819 3.505 3.792

23 1.320 1.714 2.069 2.500 2.807 3.485 3.768

24 1.318 1.711 2.064 2.492 2.797 3.467 3.745

25 1.316 1.708 2.059 2.485 2.787 3.450 3.725

26 1.315 1.706 2.056 2.479 2.779 3.435 3.707

27 1.314 1.703 2.052 2.473 2.771 3.421 3.690

28 1.312 1.701 2.049 2.467 2.763 3.408 3.674

29 1.311 1.699 2.045 2.462 2.756 3.396 3.659

30 1.311 1.697 2.042 2.457 2.750 3.385 3.646

40 1.303 1.684 2.021 2.423 2.704 3.307 3.551

60 1.296 1.671 2.000 2.390 2.660 3.232 3.460

120 1.289 1.658 1.980 2.358 2.617 3.160 3.373

∞ 1.282 1.645 1.960 2.326 2.576 3.090 3.291

Thus the tail quantile q(α; n) is the number such that the probability that Student’s-t
random quantity with n degrees of freedom is greater than α. Selected tail quantiles
qT (α; n) are provided in Table 4.2.

Using the tail quantiles qT (α; n) the C-confidence level interval for μX can now
be simply written in the form
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(
X̄n − qT

(1− C

2
, n− 1

) Sn√
n
, X̄n + qT

(1− C

2
, n− 1

) Sn√
n

)
. (4.6.9)

The Student’s-t p.d.f.s are symmetric about zero, and bell-shaped but flatter than
the N(0, 1) p.d.f. (why?). For large values of N , say n > 20, they are practically
indistinguishable from the standard Gaussian p.d.f. (why? see Problem 4.7.18), and
the latter can be used in construction of confidence intervals even in the case of
unknown variance.

Example 4.6.2 (A 95%-Confidence Interval for μX with Unknown Std(X)) Sixteen
independent measurements of a Gaussian random quantity X resulted in X̄16 = 2.56
and S16 = 0.12. With the desired confidence level C = 0.95, Table 4.2 yields the
tail quantile,

qT ((1− 0.95)/2; 15) = qT (0.025; 15) = 2.13.

Hence the 95%-confidence interval for the expectation μX is of the form

(
2.56− 2.13 · 0.12√

16
, 2.56+ 2.13 · 0.12√

16

)

or, in other words, μX = 2.56±0.064 at the 95% confidence level. Observe that, not
surprisingly, in the absence of the precise knowledge of the variance Var(X) which
had to be replaced by the estimator S16, this confidence interval is wider than that
in Example 4.6.1 (μX = 2.56± 0.059 at the same 95% confidence level) where the
value of the variance was assumed to be known exactly.

The final question in this section is: How good is the sample variance estimator
S2

n introduced in (4.6.2)? Here, again the answer is difficult for a general c.d.f.
FX. However, in the case of a Gaussian N(μX, σ 2

X) sample one can prove that the
nonnegative random quantity

χ2 = 1

σ 2
X

n∑
i=1

(Xi − X̄n)
2 (4.6.10)

has the p.d.f. of the form

fχ2(x; n− 1) = 1

2(n−1)/2�((n− 1)/2)
x(n−3)/2e−x/2, x ≥ 0, (4.6.11)

which traditionally is called the chi-square p.d.f. with (n− 1) degrees of freedom.
Again, here it is more convenient to tabulate the tail quantiles qχ2(α; n) rather

than the c.d.f.s themselves; see Table 4.3. Thus a C-confidence level interval for σ 2
X

is of the form
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(
(n− 1)S2

X

qχ2((1− C)/2; n− 1)
,

(n− 1)S2
X

qχ2((1+ C)/2; n− 1)

)
, (4.6.12)

if we decide to make a symmetric cutoffs at the top and the bottom of the range of
the chi-square p.d.f.

Example 4.6.3 (A 99%-Confidence Interval for Var(X)) Twenty-six independent
measurements of a Gaussian random quantity X resulted in the estimate S2

26 = 1.37
for the variance Var(X). With C = 0.99, Table 4.3 yields

qχ2((1+ 0.99)/2; 25) = qχ2(0.995; 25) = 10.52,

and

qχ2((1− 0.99)/2; 25) = qχ2(0.005; 25) = 46.92.

Thus the 99%-confidence level interval for the variance σ 2
X is

(
25 · 1.37

46.92
,

25 · 1.37

10.52

)
= (0.72, 3.25).

The interval is relatively large because the confidence level demanded is very high.
Note that it is not symmetric about the estimated value S2

26 = 1.37.

Remark 4.6.2 (Asymmetry of the Chi-Square Distribution) Both the standard Gaus-
sian and Student’s-t distribution are symmetric about the origin; their p.d.f.s are
even functions. For that reason, to construct confidence intervals for them at a given
(high) confidence level it is sufficient to know their tail quantiles only for small
tail probabilities. However, the chi-square distribution is asymmetric, see Fig. 4.19.

Fig. 4.19 Chi-square p.d.f.s
with (top to bottom) 1, 2, 3, 4,
and 5 degrees of freedom
(from http://en.wikipedia.org/
wiki/chi-square-distribution)

http://en.wikipedia.org/wiki/chi-square-distribution
http://en.wikipedia.org/wiki/chi-square-distribution
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Table 4.3 Tail quantiles qχ2 (α; n) of chi-square distribution

n\α 0.9950 0.9900 0.9750 0.9500 0.9000 0.1000 0.0500 0.0250 0.0100 0.0050

1 0.000 0.000 0.001 0.004 0.016 2.706 3.843 5.025 6.637 7.882

2 0.010 0.020 0.051 0.103 0.211 4.605 5.992 7.378 9.210 10.597

3 0.072 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.344 12.937

4 0.207 0.297 0.484 0.711 1.064 7.779 9.488 11.143 13.277 14.860

5 0.412 0.554 0.831 1.145 1.160 9.236 11.070 12.832 15.085 16.748

6 0.676 0.872 1.237 1.635 2.204 10.645 12.592 14.440 16.812 18.548

7 0.989 1.239 1.690 2.167 2.833 12.17 14.067 16.012 18.474 20.276

8 1.344 1.646 2.180 2.733 3.490 13.362 15.507 17.534 20.090 21.954

9 1.735 2.088 2.700 3.325 4.168 14.684 16.919 19.022 21.665 23.587

10 2.156 2.558 3.247 3.940 4.865 15.987 18.307 20.483 23.209 25.188

11 2.603 3.053 3.816 4.575 5.578 17.275 19.675 21.920 24.724 26.755

12 3.074 3.571 4.404 5.226 6.304 18.549 21.026 23.337 26.217 28.300

13 3.565 4.107 5.009 5.892 7.041 19.812 22.362 24.735 27.687 29.817

14 4.075 4.660 5.629 6.571 7.790 21.064 23.685 26.119 29.141 31.319

15 4.600 5.229 6.262 7.261 8.547 22.307 24.996 27.488 30.577 32.799

16 5.142 5.812 6.908 7.962 9.312 23.542 26.296 28.845 32.000 34.267

17 5.697 6.407 7.564 8.682 10.085 24.769 27.587 30.190 33.408 35.716

18 6.265 7.015 8.231 9.390 10.865 25.989 28.869 31.526 34.805 37.156

19 6.843 7.632 8.906 10.117 11.651 27.203 30.143 32.852 36.190 38.580

20 7.434 8.260 9.591 10.851 12.443 28.412 31.410 34.170 37.566 39.997

21 8.033 8.897 10.283 11.591 13.240 29.615 32.670 35.479 38.930 41.399

22 8.643 9.542 10.982 12.338 14.042 30.813 33.924 36.781 40.289 42.796

23 9.260 10.195 11.688 13.090 14.848 32.007 35.172 38.075 41.637 44.179

24 9.886 10.856 12.401 13.848 15.659 33.196 36.415 39.364 42.980 45.558

25 10.519 11.523 13.120 14.611 16.473 34.381 37.652 40.646 44.313 46.925

26 11.160 12.198 13.844 15.379 17.292 35.563 38.885 41.923 45.642 48.290

27 11.807 12.878 14.573 16.151 18.114 36.741 40.113 43.194 46.962 49.642

28 12.461 13.565 15.308 16.928 18.939 37.916 41.337 44.461 48.278 50.993

29 13.120 14.256 16.147 17.708 19.768 39.087 42.557 45.772 49.586 52.333

30 13.787 14.954 16.791 18.493 20.599 40.256 43.773 46.979 50.892 53.672

31 14.457 15.655 17.538 19.280 21.433 41.422 44.985 48.231 52.190 55.000

32 15.134 16.362 18.291 20.072 22.271 42.585 46.194 49.480 53.486 56.328

33 15.814 17.073 19.046 20.866 23.110 43.745 47.400 50.724 54.774 57.646

34 16.501 17.789 19.806 21.664 23.952 44.903 48.602 51.966 56.061 58.964

35 17.191 18.508 20.569 22.465 24.796 46.059 49.802 53.203 57.340 60.272

36 17.887 19.233 21.336 23.269 25.643 47.212 50.998 54.437 58.619 61.581

37 18.584 19.960 22.105 24.075 26.492 48.363 52.192 55.667 59.891 62.880

38 19.289 20.691 22.878 24.884 27.343 49.513 53.384 56.896 61.162 64.181

39 19.994 21.425 23.654 25.695 28.196 50.660 54.572 58.119 62.462 65.473

40 20.706 22.164 24.433 26.509 29.050 51.805 55.758 59.342 63.691 66.766
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Thus the tables need to contain tail quantiles for both small and large (close to 1)
tail probabilities. This need is on display in the above Example 4.6.3.

4.7 Problems and Exercises

Use Mathematica, Maple, or Matlab as needed throughout this and other problem
sections.

1 Plot the c.d.f.s of binomial random quantities X with p = 0.21 and n = 5, 13, 25.
Calculate probabilities that X take values between 1.3 and 3.7. Repeat the same
exercise for p = 0.5 and p = 0.9.

2* Calculate the probability that a random quantity uniformly distributed over
the interval [0, 3] takes values between 1 and 3. Do the same calculation for
the exponentially distributed random quantity with parameter μ = 1.5, and the
Gaussian random quantity with parameters μ = 1.5, σ 2 = 1.

3 Prove that γ�(γ ) = �(γ + 1), and that �(n) = (n − 1)! Use the integration
by parts formula. Verify analytically that �(1/2) = √

π . Use the idea employed
in Example 4.1.6 to prove that the standard Gaussian density is normalized. Then
calculate moments of order n of the standard Gaussian distribution.

4* The p.d.f. of a random variable X is expressed by the quadratic function
fX(x) = ax(1 − x), for 0 < x < 1, and is zero outside the unit interval. Find
a from the normalization condition and then calculate FX(x), EX, Var(X), Std(X),

the n-th central moment, and P(0.4 < X < 0.9). Graph fX(x), and FX(x).

5 Find the c.d.f and p.d.f. of the random quantity Y = X3, where X is uniformly
distributed on the interval [1, 3]. Calculate its mean, variance, and higher order
moments.

6* Find the c.d.f and p.d.f. of the random quantity Y = tan X, where X is uniformly
distributed over the interval (−π/2, π/2). Find a physical (geometric) interpretation
of this result. Show that the second moment of Y (and thus variance) is infinite, and
that the expectation E(Y ) is not well defined despite the symmetry of the p.d.f. about
zero. Also, see problem 4.7.28.

7 Verify that Var(X) = EX2 − (EX)2, see formula (4.2.6).

8 Calculate the expectation and the variance of the binomial distribution from
Example 4.1.2.

9 Calculate the expectation and the variance of the Poisson distribution from
Example 4.1.3.

10 Calculate the expectation, the variance, and the n-th moment of the exponential
distribution from Example 4.1.5.
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Fig. 4.20 A triangular p.d.f.
from Problem 4.7.13

11 Calculate the n-th central moment of the Gaussian distribution from Exam-
ple 4.1.6.

12 Derive the formula for the binomial distribution from Example 4.1.2 relying on
the observation that it is the distribution of the sum of n independent and identically
distributed Bernoulli random quantities. Show that if p = μ/n and n → ∞, then
the binomial probabilities converge to the Poisson probabilities.

13* A random quantity X has an even p.d.f., fX(x), of the triangular shape shown
in Fig. 4.20.

(a) How many parameters do you need to describe this p.d.f.? Find an explicit
analytic formula for p.d.f. fX(x) and c.d.f. FX(x). Graph both of them.

(b) Find the expectation and variance of X.
(c) Let Y = X3. Find the p.d.f. fY (y) and graph it.

14 A discrete 2D random vector (X, Y ) has the following joint p.d.f.:

P(X = 1, Y = 1) = 2

12
, P(X = 2, Y = 1) = 1

12
, P(X = 3, Y = 1) = 1

12
,

P(X = 1, Y = 3) = 2

12
, P(X = 2, Y = 3) = 4

12
, P(X = 3, Y = 2) = 2

12
.

Find the marginal distributions of X and Y , their expectations and variances, as
well as the covariance and the correlation coefficient of X and Y . Are X and Y

independent?

15* Verify the Cauchy-Schwartz Inequality (4.3.18). Hint: Take Z = (X −
EX)/σ(X) and W = (Y − EY/σ(Y ), and consider the discriminant of the
expression E(Z+xW)2. The latter is quadratic in variable x and necessarily always
nonnegative, so it can have at most one root.
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16 The following sample of random vector (X, Y ) was obtained: (1, 1.7), (2, 2),

(5, 4.3), (7, 5.9), (9, 8), (9, 8.7). Produce the scatter plot of the sample and the
corresponding least-squares regression line.

17 Using the table of N(0, 1) c.d.f. provided at the end of this chapter calculate
P(−1 ≤ Y ≤ 2) if Y ∼ N(0.7, 4).

18 Produce graphs of Student’s-t p.d.f. fT (x, n), for n = 2, 5, 12, 20, and compare
them with the standard normal p.d.f.

19 Produce graphs of the chi-square p.d.f. fχ2(x, n) for n = 2, 5, 12, 20.

20 Find a constant c > 0 such that the function

fX(x) =
{

c(1+ x)−4, for x > 0;
0, for x ≤ 0

is a valid p.d.f. Find P(1/5 < X < 5), E(X) and the p.d.f., fY (y), of Y = X1/5.

21 Measurements of voltage V and current I on a resistor yielded the following
n = 5 paired data: (1.0, 2.3), (2.0, 4.1), (3.0, 6.4), (4.0, 8.5), (5.0, 10.5). Draw the
scatter plot and find the regression line providing the least squares fit for the data.

22 Independent measurements of the leakage current I on a capacitor yielded the
following data: 2.71, 2.66, 2.78, 2.67, 2.71, 2. 69, 2.70, 2.73 mA. Assuming that the
distribution of the random quantity I is Gaussian, find the 95% confidence intervals
for the expectation eI and the variance σ 2

I .

23 Verify that the random quantities Zn, n = 1, 2, . . . , defined in (4.5.5) have
expectation 0 and variance 1.

24* Complete the following sketch of the proof of the Central Limit Theorem
from Sect. 4.5. Start with a simplifying observation (based on Problem 23) that it is
sufficient to consider random quantities Xn, n = 1, 2, . . . , with expectations equal
to 0 and variances 1.

(a) Define FX(u) as the inverse Fourier transform of the distribution of X:

FX(u) = EejuX =
∫ ∞

−∞
ejux dFX(x).

Find F ′X(0) and F ′′X(0). In statistical literature FX(u) is called the characteristic
function of the random quantity X. Essentially, it completely determines the
probability distribution of X via the Fourier transform (inverse of the inverse
Fourier transform).

(b) Calculate FX(u) for the Gaussian N(0, 1) random quantity. Note the fact that its
functional shape is the same as that of the N(0, 1) p.d.f. This fact is the crucial
reason for the validity of CLT.

(c) Prove that, for independent random quantities X and Y ,
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FX+Y (u) = FX(u) · FY (u).

(d) Utilizing (c), calculate

F√n(X̄−μX)/Std(X)(u).

Then find its limit as n→∞. Compare it with the characteristic of the Gaussian
N(0, 1) random quantity. (Hint: it is easier to work here with the logarithm of
the above transform.)

25 Use the above introduced characteristic function technique to prove that the
sum of two independent Gaussian random quantities is again a Gaussian random
quantity.

26 What is the probability P that a randomly selected chord is shorter than the
side S of an equilateral triangle inscribed in the circle? Here are two, seemingly
reasonable solutions20:

(a) A chord is determined by its two endpoints. Fix one of them to be A. For the
chord to be shorter than the side S, the other endpoint must be chosen on either
the arc AB or on the arc CA, and each of them is subtended by an angle of
120◦. Thus, P = 2/3.

(b) A chord is completely determined by its center. For the chord to be shorter
than the side S, the center must lie outside the circle of radius equal to the half
of the radius of the original circle and the same center. Hence, the probability
P equals the ratio of the annular area between two circles and the area of the
original circle, which is 3/4.

These two solutions are different. How is that possible?

27 Derive formulas for the c.d.f. FY (y), and the p.d.f. fY (y), of a transformation
Y = g(X) of a random quantity X, in terms of its c.d.f. FX(x), and p.d.f. fX(x), in
case when the transforming function y = g(x) is monotonically decreasing. Follow
the line of reasoning used to derive the analogous formulas (4.1.11) and (4.1.12) for
monotonically increasing transformations. How would you extend these formulas to
transformations that are monotonically increasing on some intervals and decreasing
on their complement?

28 Consider the Cauchy random quantity X defined in Remark 4.1.2. Plot its c.d.f.,
and then plot X = X(ω) as a function on the unit interval. Calculate the probability
that X takes values between −3 and +3. Compare it with the similar probability
for the standard Gaussian random quantity. Find and plot its p.d.f. Compare the rate

20For more information, see M. Denker and W.A. Woyczyński, Introductory Statistics and
Random Phenomena: Uncertainty, Complexity and Chaotic behavior in Engineering and Science,
Birkhauser-Boston 1998, Example 5.1.1.
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of decay at +∞ of the Cauchy p.d.f. with that of the N(0, 1) p.d.f. Show that the
expectation of the Cauchy random quantity is undefined and its variance is infinite.

29 Show that the variance estimator S2
n introduced in (4.6.2) is unbiased, that is,

ES2
n = Var(X). Also, see problem 4.7.6.
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Chapter 5
Stationary Signals

Abstract In this chapter we introduce basic concepts necessary to study the
time-dependent dynamics of random phenomena. The latter will be modeled as
a family of random quantities indexed by a parameter, interpreted in this book
as time. The parameter may be either continuous or discrete. Depending on the
context, and tradition followed by different authors, such families are called random
signals, stochastic processes, or (random) time series. The emphasis here is on
random dynamics which is stationary, that is, governed by an underlying statistical
mechanisms that do not change in time, although, of course, particular realizations
of such families will be functions that vary with time. Think here about a random
signal produced by the proverbial repeated coin tossing; the outcomes vary while
the fundamental mechanics remains the same.

5.1 Stationarity and Autocovariance Functions

A random (or stochastic) signal is a time-dependent family of real-valued1 random
quantities X(t). Depending on the context, one can consider random signals on the
positive time line, t ≥ 0, on the whole time line, −∞ < t < ∞, or on a finite time
interval, t0 ≤ t ≤ t1. Also, it is useful to be able to consider random vector signals
and signals with discrete time t = . . . ,−2,−1, 0, 1, 2, . . .

In this book we will restrict our attention to signals that are statistically stationary
which means that at least some of their statistical characteristics do not change in
time. Several choices are possible here:

First-Order Strictly Stationary Signals In this case the c.d.f., FX(t)(x) = P(X(t) ≤
x), does not change in time (is time-shift invariant), that is,

FX(t)(x) = FX(t+τ)(x), for all t, τ, x (5.1.1)

1At the end of this section we will show how the concepts discussed below should be adjusted if
one considers the complex-valued stochastic signals.
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Second-Order Strictly Stationary Signals In this case the joint c.d.f.,

F(X(t1),X(t2))(x1, x2)) = P(X(t1) ≤ x1, X(t2) ≤ x2, )

does not change in time, that is

F(X(t1),X(t2))(x1, x2) = F(X(t1+τ),X(t2+τ))(x1, x2), for all t1, t2, τ, x1, x2.

(5.1.2)

In a similar fashion one can define the n-th order strict stationarity of random
signal X(t), as the time-shift invariance of the n-th order joint c.d.f., that is the
requirement that

F(X(t1),...,X(tn))(x1, . . . , xn) = F(X(t1+τ),...,X(tn+τ))(x1, . . . , xn), (5.1.3)

for all t1, . . . , tn, τ, x1, . . . , xn.

Finally, a random signal X(t) is said to be strictly stationary if, for each n =
1, 2, . . . , it is n-th order strictly stationary.

Obviously, as n increases, verifying the n-th order stationarity gets more and
more difficult, not to mention practical difficulties with checking the full strict
stationarity. For this reason, a more modest concept of second-order weakly
stationary signals is useful. In this case the invariance property is demanded only of
the moments of the signal up to order two. More precisely, we have the following
fundamental definition:

Definition 5.1.1 A signal X(t) is said to be second-order weakly stationary if its
expectations and covariances are time-shift invariant, that is, if for all t, τ ,

μX(t) ≡ E[X(t)] = E[X(t + τ)] ≡ μX(t + τ), (5.1.4)

and, for all t1, t2, τ , autocovariance function (ACvF)

γX(t1, t1 + τ) ≡ Cov(X(t1),X(t1 + τ))

= Cov(X(t2),X(t2 + τ)) ≡ γX(t2, t2 + τ), (5.1.5)

where, as in Chap. 3, for a random vector (X, Y ), the covariance

Cov(X, Y ) = E(X − μX)(Y − μY ).

It is a consequence of the above two conditions that, for any second-order weakly
stationary signal,

μX(t) = μX = constant, (5.1.6)
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and the autocovariance function depends only on the time lag τ , and can be written
as a function of a single variable:

γX(t, t + τ) = γX(0, τ ) = γX(τ) (5.1.7)

or, equivalently,

γX(s, t) ≡ γX(0, t − s) = γX(t − s). (5.1.8)

Note that the variance of the stationary signal is also independent of time and is
equal to the value of ACvF at τ = 0. Indeed,

Var(X(t)) = Cov(X(t),X(t)) = γX(t, t) = γX(0) = σ 2
X = constant. (5.1.9)

In the remainder of these lecture notes we will restrict our attention to second-
order weakly stationary signals X(t) which we will simply call stationary signals. We
will analyze them assuming only the knowledge of their mean value μX and their
autocovariance function γX(t).

The following properties of the autocovariance function follow directly from its
definition and the Schwartz Inequality (see Sect. 4.7):

γX(−τ) = γX(τ), (5.1.10)

and

|γX(τ)| ≤ γX(0) = σ 2
X. (5.1.11)

In other words the covariance function is even and its absolute value is dominated
by its value at τ = 0, where it is simply equal to the signal’s variance.

Remark 5.1.1 (Autocovariance Function (ACvF) vs. Autocorrelation Function
(ACF)) You may remember that in Chap. 4 (see (4.3.19)) we have defined the
correlation coefficient of random quantities X and Y as normalized covariance,
that is the covariance of X and Y , divided by the product of standard deviations of
X and Y . Thus, for weakly stationary signals the autocorrelation function is also
dependent only on the time lag and is expressed by the formula

ρX(τ) = Cov(X(t),X(t + τ))

Std(X(t))Std(X(t + τ))
= γX(τ)

γX(0)
.

So, in view of (5.1.11), the autocorrelation function always takes values between
−1 and+1. However, in this book we will employ only the autocovariance function
as it also contains information about the variance of the signal (as its value at
τ = 0) which, as we will see later on, represents the mean power of the signal.
However, in the signal processing literature one often finds the autocovariance
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Fig. 5.1 A sample of a 21-channel recording of the sleep electroencephalogram (EEG) of a
neonate. The duration of this multidimensional random signal is 60 s and the sampling rate is
64 Hz (From A. Piryatinska’s Ph.D. Dissertation, Department of Statistics, Case Western Reserve
University, 2004)

function γX(τ), called autocorrelation function without normalizing it. So, when
consulting a particular book or article one has to make sure what definition of ACvF
is employed.

The reminder of this section is devoted to a series of examples of stationary data.
The first, real-life example shown in Fig. 5.1, displays a sample of a 21-channel
recording of the sleep electroencephalogram (EEG) of a neonate. The duration of
this multidimensional random signal is 1 min and the sampling rate is 64 Hz. This
particular EEG was taken during the so-called mixed frequency sleep stage, and in
addition to the EEG also shows related signals such as electrocardiogram (EKG),
breathing signal, and eye muscle contraction signal. Signal’s components seem
stationary for some channels while other channels seem to violate the stationarity
property. This can be due to some artifacts in the recordings caused, for example, by
the physical movements of the infant or by the onset of a different sleep stage (active,
passive, rapid eye movement (REM), etc.) The study of EEG signals provides
important information on the state of the brain’s neural network and, in the case
of infants, can be used to assess the maturity level of their brain. In Sect. 5.2 we will
provide a method to estimate the autocovariance function for such real-life data.

Examples 5.1.1–5.1.6 provide various mathematical models of stationary signals.
In those cases, the autocovariance functions can be explicitly calculated.
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Example 5.1.1 (A Random Harmonic Oscillation) Consider a signal which is a
simple harmonic oscillation with nonrandom frequency f0 = 1/P but random
amplitude A such that the second moment EA2 < ∞, and random phase �

uniformly distributed over the period and independent of A. In other words,

X(t) = A cos(2πf0(t +�)).

The signal is stationary because its mean value

EX(t) = EA cos 2πf0(t +�) = EA ·
∫ P

0
cos 2πf0(t + θ)

dθ

P
= EA · 0 = 0,

and its autocovariance

γX(t, t + τ) = EX(t)X(t + τ) = E[A cos 2πf0(t +�) · A cos 2πf0(t + τ +�)]

= EA2 ·
∫ P

0
cos 2πf0(t + θ) · cos 2πf0(t + τ + θ)

dθ

P

= EA2 1

2

( ∫ P

0
cos 2πf0(t + t + τ + 2θ)

dθ

P
+
∫ P

0
cos 2πf0(τ )

dθ

P

)
,

= EA2

2
cos 2πf0(τ ),

where we used Table 1.1, and the independence of the amplitude A and the phase
� to split the expectations of the product into the product of the expectations. As a
result we see that the autocovariance γX(t, t + τ) is just a function of the time lag τ

which means the signal is stationary. Thus, the ACvF

γX(τ) = EA2

2
cos (2πf0τ).

Example 5.1.2 (Superposition of Random Harmonic Oscillations) In this example
we consider a signal which is a sum of simple harmonic oscillations with frequen-
cies kf0, k = 1, 2, . . . , N,, random amplitudes Ak, k = 1, 2, . . . , N, such that
EA2

k < ∞, and random phases �k, k = 1, 2, . . . , N, uniformly distributed over
the corresponding periods. All of the above random quantities are assumed to be
independent of each other. In other words,

X(t) =
N∑

k=1

Ak cos(2πkf0(t +�k)).
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In this case one can verify (see Problems and Exercises) that the signal is again
stationary and the covariance function is of the form

γX(τ) = 1

2

N∑
k=1

EA2
k cos(2πkf0τ).

Example 5.1.3 (Discrete-Time White Noise) In this example the time is discrete,
that is, t = n = . . . ,−2,−1, 0, 1, 2, . . . , and the random signal W(n), has mean
zero, and values at different times that are independent (uncorrelated would suffice)
and identically distributed; we will denote their common variance by σ 2

W . In other
words,

μW = 0,

and

γW (n, n+ τ) = E(W(n)W(n+ τ)) =
{

σ 2
W, if τ = 0,

0, if τ �= 0.

Note that the above defined signal is stationary because its autocovariance is indeed
a function of only the time lag and can be written in the form

γW (n, n+ τ) = σ 2
Wδ(τ),

where

δ(τ ) =
{

1, if τ = 0;
0, if τ �= 0,

is the discrete-time version of Dirac delta-function which is usually called Kro-
necker delta. This kind of signal is called discrete-time white noise and it has mean
zero, and autocovariance function,

γW (τ) = σ 2
Wδ(τ).

Observe that in the definition of the white noise we did not specify the
distribution of the random quantities W(n). So, in principle, the white noise can have
an arbitrary distribution as long as its variance is finite. In practice, the distribution
in the white noise model to be employed must be determined from the detailed
analysis of the physical phenomenon under consideration (or experimentation and
estimation). Figure 5.1 shows a sample discrete-time white noise random signal
W(n), n = 1, 2, . . . , 50, with Wn’s all distributed uniformly on the interval
[−1/2+ 1/2]. Hence EWn = 0, and σ 2

W = 1/12.
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By the standard white noise we will always mean the white noise with variance
σ 2

W = 1. Thus we can standardize any white noise W(n) by dividing all of its values
by its standard deviation σW . So, in Example 5.1.1, the white noise W(n) is not
standard, but the white noise W(n)/

√
12 is.

Example 5.1.4 (Moving Average of the White Noise) The moving average signal
X(n) is obtained from the white noise W(n) with variance σ 2

W by the “windowing”
procedure. The windowing procedure mixes values of the white noise, W(n),W(n−
1), . . . ,W(n− q), in the time window of fixed width q + 1, extending into the past,
giving values with different time lags different weights, say, b0, b1, . . . , bq . More
precisely,

X(n) = b0W(n)+ b1W(n− 1)+ . . .+ bqW(n− q).

You can interpret the moving average signal as a discrete-time convolution of the
white noise with the windowing weight sequence. One immediately obtains that
μX = 0. Since, for independent random quantities, the variance of the sum is equal
to the sum of the variances, the variance

σ 2
X = σ 2

W

q∑
i=0

b2
i .

Calculation of the autocovariance function is little more complicated (see Problems
and Exercises) and for now we will carry it out only in the case of the window of
width 2, when

X(n) = b0W(n)+ b1W(n− 1).

Then

γX(n, n+ τ) = EX(n)X(n+ τ)

= E
((

b0W(n)+ b1W(n− 1)
)(

b0W(n+ τ)+ b1W(n+ τ − 1)
))

= b2
0E(W(n)W(n+ τ))+ b0b1E(W(n− 1)W(n+ τ)

)

+b0b1E
(
W(n)W(n+ τ − 1))+ b2

1E(W(n− 1)W(n+ τ − 1))

=

⎧⎪⎪⎨
⎪⎪⎩

(b2
0 + b2

1)σ
2
W, if τ = 0;

b0b1σ
2
W, if τ = 1;

b0b1σ
2
W, if τ = −1;

0, if |τ | > 1.
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Since γX(n, n + τ) depends only on the time lag τ the moving average signal
is stationary. For the sample white noise signal from Fig. 5.1, the moving average
signal X(n) = 2W(n) + 5W(n − 1) is shown in Fig. 5.2, and its corresponding
autocovariance, function

γX(τ) =

⎧⎪⎪⎨
⎪⎪⎩

29/12, if τ = 0;
10/12, if τ = ±1;
0, if τ = ±2,±3, . . . ,

is shown in Fig. 5.3. Compare Figs. 5.2 and 5.3 and note that the moving average
operation smoothed out the original white noise signal.

The method of determining ACvF for a moving average signal from Exam-
ple 5.1.4 can be streamlined using the fact that the ACvF of a standard white noise
is the Kronecker delta. This “Kronecker delta calculus” makes it also easy to obtain
the ACvF of an arbitrary infinite moving average of the white noise of the form

X(n) =
∞∑

k=−∞
bkW(n− k), (5.1.12)

where W(n) is the standard white noise. Since EW(n)W(n+ τ) = δ(τ ) which is 0
if τ �= 0, and 1 if τ = 0, we have automatically that

γX(τ) = E

( ∞∑
k=−∞

bkW(n− k) ·
∞∑

l=−∞
blW(n+ τ − l)

)

0 20 40 60 80

-0.4

-0.2

0.0

0.2

0.4

Fig. 5.2 A sample discrete-time white noise random signal W(n), n = 1, 2, . . . , 50, with uniform
distribution on the interval [−1/2,+1/2], so that σ 2

W = 1/12. For the sake of the clarity of the
picture, values of W(n) for consecutive integers n were joined by straight-line segments
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Fig. 5.3 Sample moving average signal X(n) = 2W(n)+ 5W(n− 1) for the sample white noise
shown in Fig. 5.1. Note that the moving average signal appears smoother than the original white
noise. The constrained oscillations are a result of nontrivial, although short-term in this example,
correlations

=
∞∑

k=−∞

∞∑
l=−∞

bkblE
(
W(n− k) ·W(n+ τ − l)

)

=
∞∑

k=−∞

∞∑
l=−∞

bkblδ
(
(n+ τ − l)− (n− k)

)
=

∞∑
k=−∞

∞∑
l=−∞

bkblδ
(
(τ + k)− l

)
.

Since δ(τ − (l − k)) = 1, if, and only if l = τ + k (otherwise it is zero), the whole
double summation over the whole (k, l) lattice reduces to the single summation on
the “diagonal,” l = τ + k, and we get the final result

γX(τ) =
∞∑

k=−∞
bkbk+τ . (5.1.13)

The variance of such a moving average signal is

σ 2
X = γX(0) =

∞∑
k=−∞

b2
k,

and to assure that it is finite the sequence of coefficients, . . . , b−1, b0, b1, . . . , must
be square summable, i.e., the condition

∑∞
k=−∞ b2

k <∞ must be satisfied.

Example 5.1.5 (Random Switching Signal) Consider a continuous-time signal
X(t) switching back and forth between values +1 and −1 at random times.
More precisely, the initial value of the signal, X(0), is a random quantity with
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Fig. 5.4 Autocovariance function for the moving average signal X(n) = 2W(n) + 5W(n − 1).
Note that the values of the signal separated by more that one time unit are uncorrelated

the symmetric Bernoulli distribution, that is P(X(0) = ±1) = 1/2, and the
interswitching times form a sequence T1, T2, . . . , of independent random quantities
with the identical standard exponential c.d.f.s:

P(Ti ≤ t) = 1− e−t , t > 0,

of mean one. The initial random value X(0) is assumed to be independent of
interswitching times Ti . A typical sample of such a signal is shown in Fig. 5.4.

Calculation of the mean and the autocovariance function of the switching signal
depends on the knowledge of the fact that such a random signal can be written in
the form

X(t) = X(0) · (−1)N(t),

where N(t) is the (nonstationary) random signal counting the number of switches
up to time t ; in particular, N(0) = 0. One can prove2 that N(t) has increments
in disjoint time intervals that are statistically independent, with the distributions
thereof depending only on the interval’s length. More strikingly, these increments
must have the Poisson probability distribution with mean equal to the interval’s
length, that is

P
(
N(t + τ)−N(t) = k

)
= P

(
T1+ . . .+ Tk ≤ τ < T1+ . . .+ Tk+1

)
= e−τ · τ

k

k! ,

2See, for example, O. Kallenberg, Foundations of Modern Probability, Springer-Verlag 1997.
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for any t, τ ≥ 0, and k = 0, 1, 2, . . . Indeed,

P(N(t) ≥ k) = P(T1 + . . .+ Tk ≤ t) =
∫ t

0
e−s sk−1

(k − 1)! ds = 1− e−t
k∑

l=0

t l

l! ,

because the p.d.f. of the sum of k independent standard exponential random
quantities is

fT1+...+Tk
(s) = e−s sk−1

(k − 1)! , s ≥ 0,

see Problem 5.3.8; the above integral was evaluated by repeated integration by parts.
Armed with this information we can now easily complete calculations of the

mean and autocovariance function of the switching signal:

μX(t) = EX(t) = EX(0) · E(−1)N(t) = 0,

and, for τ > 0,

γX(t, t + τ) = E[X(t)X(t + τ)] = EX2(0) · E
[
(−1)N(t)(−1)N(t+τ)

]

= 1 · E
[
(−1)2N(t)(−1)N(t+τ)−N(t)

]
= E(−1)N(t+τ)−N(t)

∞∑
k=0

(−1)k · e−τ τ k

k! = e−2τ .

Therefore, the random switching signal X(t) is stationary and, because of the
symmetry property of all autocovariance functions, its ACvF

γX(τ) = e−2|τ |.

Remark 5.1.2 (Transition from a Switching Signal to the Bernoulli White Noise
in Continuous Time) Now, let us make the switching model more flexible by
permitting the exponential interswitching times T1, T2, . . . , to have mean (expected
value) μ > 0. That means that the common p.d.f. of Tk’s is fT (t) = e−t/μ/μ, t ≥ 0.
Recall that in Example 5.1.5, we simply assumed that μ = 1. The corresponding
counting, Poisson signal, Nμ(t), now has the distribution

P(Nμ(t) = k) = e−t/μ (t/μ)k

k! , k = 0, 1, 2, . . . ,

with expectation ENμ(t) = t/μ. Define the rescaled switching signal
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Xμ(t) = X(0)√
μ
· (−1)Nμ(t),

with X(0) independent of Nμ(t), and P(X(0) = ±1) = 1/2, so that the signal
Xμ(t) now switches between the values +1/

√
μ and −1/

√
μ. Repeating the

calculation from Example 5.1.5 in the present, general case we obtain the following
expression for its ACvF:

γXμ(t, t + τ) = E[Xμ(t)Xμ(t + τ)] = EX2(0)

μ
· E
[
(−1)Nμ(t)(−1)Nμ(t+τ)

]

= 1

μ
E(−1)Nμ(t+τ)−Nμ(t) = 1

μ

∞∑
k=0

(−1)k · e−τ/μ(τ/μ)k

k! = 1

μ
e−2τ/μ,

for τ ≥ 0. So, the random switching signal Xμ(t) is stationary and its autocovari-
ance function

γXμ(τ) = 1

μ
e−2|τ |/μ.

Now, if we let ET = μ → 0, that is if we permit the switching signal to switch
more and more often, as the size of the switches increase, then its ACvF converges
to the Dirac-delta impulse δ(t), see Fig. 2.9. So, we can think about the limit of
the switching signals, with μ → 0, as a continuous-time white noise; it switches
between +∞ and −∞ “infinitely often” in any finite time interval. Indeed, for any
t, t0, the expected number of switches in the time interval [t0, t0 + t],

E(Nμ(t + t0)−Nμ(t0)) = t

μ
→∞, as μ→ 0.

Example 5.1.6 (Solution of a Stochastic Difference Equation) Consider a stochastic
difference equation

X(n) = αX(n− 1)+ βW(n), n = −2,−1, 0, 1, 2, . . . ,

where W(n) is a standard discrete-time white noise with σ 2
W = 1. Observe that the

above system, rewritten in the form

X(n)−X(n− 1)

n
= (α − 1)X(n− 1)+ βW(n), n = −2,−1, 0, 1, 2, . . . ,

can be viewed as a discrete-time version of the stochastic differential equation

dX(t) = (α − 1)X(t) dt + βW(t)dt,
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where W(t) represents the continuous-time version of the white noise to be
discussed in later chapters and mentioned in Remark 5.1.2.

The solution of the above stochastic difference equation can be found by
recursion. So,

X(n) = α(αX(n− 2)+ βW(n− 1))+ βW(n)

= α2X(n− 2)+ αβW(n− 1)+ βW(n) = . . .

= αlX(n− l)+
l−1∑
k=0

αkβW(n− k).

for any l = 1, 2, . . . . Assuming that |α| < 1 and that X(n− k) remain bounded, the
first term αkX(n − k) → 0 as k → ∞. In that case the second term converges to
the infinite sum and the solution is of the form

X(n) = β

∞∑
k=0

αkW(n− k).

This is the special form of the general moving average signal appearing in (4.1.12),
with the windowing sequence,

ck =
{

βαk, fork = 0, 1, 2, . . . ;
0, fork = −1,−2, . . . .

Hence its autocovariance function, see ((4.1.12)–(4.1.13)); also, see Problem 4.3.4,

γX(τ) =
∞∑

k=−∞
ckcτ+k = β2

∞∑
k=0

αkατ+k = β2 ατ

1− α2 ,

for positive α < 1.

Remark 5.1.3 (Autoregressive and ARMA Processes) There are two other classes
of stationary time series which are very important, both theoretically and in
applications. One is the general autoregressive process X(n) satisfying the equation,

X(n) = c +
p∑

k=1

αkX(n− k)+ βW(n),

where |αk| ≤ 1, and W(n) is the discrete time white noise.
Another example is the ARMA (Autoregressive Moving Average) process

satisfying a more general equation,
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X(n) = c +W(n)+
p∑

k=1

αkX(n− k)+
q∑

k=1

βkW(n− k).

Example 5.1.7 (Using Moving Averages to Filter Noise out of Signal) Consider a
signal of the form

X(n) = sin(0.02n)+W(n),

where W(n) is the white noise considered in Example 5.1.3, and let Y (n) be a
moving average of signal X(n) with the windowing sequence b0 = b1 = b2 =
b3 = b4 = 1/5, that is,

Y (n) = 1

5
X(n)+ 1

5
X(n− 1)+ 1

5
X(n− 2)+ 1

5
X(n− 3)+ 1

5
X(n− 4).

The values of both signals X(n) and Y (n) for time instants n = 1, 2, . . . , 750
are shown in Fig. 5.5. Clearly, the moving average operation filtered some of the
white noise out of the original signal and the transformed signal appears smoother
(Fig. 5.6).

Remark 5.1.4 (ACvF for Complex-Valued Signals) For complex values stationary
signals X(t) the definition of the autocovariance function has to be adjusted so
that the value of ACvF at t = 0 remains the variance of the signal which must be
a nonnegative number. That is why taking the expectation of the simple product
of values of the signal separated by the time lag τ will not do; a square of a
complex number is in general a complex number. For that reason, for complex-

0 1 2 3 4

-1.0

-0.5

0.0

0.5

1.0

Fig. 5.5 A sample of the random switching signal from Example 5.1.4. The values are ±1 and
the initial value is +1. The interswitching times are independent and have an exponential c.d.f. of
mean one
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Fig. 5.6 (Top) Signal X(n) from Example 5.1.6 containing a nonrandom harmonic component
plus a random white noise. (Bottom) The same signal after a smoothing, moving average operation
filtered out some of the white noise. The figure shows values of both signals for times n =
1, 2, . . . , 750

valued stationary signals, the autocovariance function is defined, in the zero-mean
case, by the formula

γX(τ) = E[X∗(t) ·X(t + τ)], (5.1.14)

where the asterisk denotes the complex conjugate. In this case, of course, the
variance

Var X(t) = E[X∗(t) ·X(t)] = E|X(t)|2 = γX(0) ≥ 0.

Note that in the complex-valued case, ACvF is not necessarily an even function of
the time lag τ . However, we do have the equality,

γX(−τ) = E[X∗(t) ·X(t − τ)] =
(

E[X∗(t − τ) ·X(t)]
)∗ = γ ∗X(τ). (5.1.15)

Example 5.1.8 (Simple Complex Random Harmonic Oscillation) Consider a
complex-valued random signal represented by a simple complex exponential with
a random, possibly complex-valued, amplitude A of zero mean, EA = 0, and finite
variance σ 2

A = E|A|2:

X(t) = A · ej2πf0t .

Then, clearly, E X(t) = E A · ej2πf0t = 0, and

γX(τ) = E[X∗(t) ·X(t + τ)] = E|A|2 · e−j2πf0t · ej2πf0(t+τ) = σ 2
A · ej2πf0τ .



166 5 Stationary Signals

This result is analogous to the result for the simple random real-valued oscillation
introduced at the beginning of this section. However, in the complex-valued case no
random phase is needed to produce a stationary signal.

Example 5.1.9 (Superposition of Simple Complex-Valued Random Harmonic Oscil-
lations) As in the real-valued case in Example 5.1.2 we can consider a superposi-
tion of simple complex-valued random harmonic oscillations. Let A1, A2, . . . , An

be a sequence of independent (or just uncorrelated, possibly, complex-valued)
random amplitudes with EAk = 0, and finite variance σA2

k = E|Ak|2. Set

X(t) =
n∑

k=1

Ak · ej2πfkt ,

where f1, f2, . . . , fn, is a sequence of different frequencies. Then, again,

E X(t) = E
n∑

k=1

Ak · ej2πfkt =
n∑

k=1

E(Ak) · ej2πfkt = 0,

and

γX(τ) = E[X∗(t) ·X(t + τ)] = E

(
n∑

k=1

A∗k · e−j2πfkt ·
n∑

l=1

Al · ej2πfl(t+τ)

)

=
n∑

k=1

n∑
l=1

E(A∗kAl) · e−j2π(fk−fl)t · ej2πflτ =
n∑

k=1

E|Ak|2 · ej2πfkτ ,

because, for different k, l, the covariance E(A∗kAl) = E(A∗k)E(Al) = 0.

5.2 Estimating the Mean and the Autocovariance Function,
Ergodic Signals

If one can obtain multiple independent samples of the same random stationary
signal, then the estimation of its parameters, the mean value and the autocovariance
function, can be based on procedures described in Sect. 4.6. However, very often,
the only available information is a single but, perhaps, long (timewise) sample of the
signal; think here about the historical temperature records at a given location, Dow-
Jones stock market index daily quotations over the past 10 years, or measurements
of the sun spot activity over a period of time; these measurements cannot be
independently repeated. Estimation of the mean and the autocovariance function of
a stationary signal X(t) based on its single sample is a delicate matter because the
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standard Law of Large Numbers and the Central Limit Theorem cannot be applied.
So one has to proceed with caution, as we now illustrate.

Estimation of the Mean µX If a stationary signal X(t) is sampled with the
sampling interval T , that is, the known values are

X(0),X(T ),X(2T ), . . . , X(NT ), . . . ,

then the obvious candidate for an estimator μ̂X of the signal’s mean μX is

μ̂X(N) = 1

N

N−1∑
i=0

X(iT ).

This estimator is easily seen to be unbiased as

E[μ̂X(N)] = 1

N

N−1∑
i=0

E[X(iT )] = μX. (5.2.1)

To check whether the estimator μ̂X(N) converges to μX as the observation
interval NT →∞, that is to check the estimator’s consistency, we will take a look
at the estimation error in the form of the mean-square distance (variance) between
μ̂X(N) and μX,

Var(μ̂X(N)) = E[(μ̂X − μX)2]

= 1

N2
E
[N−1∑

i=0

(X(iT )− μX)

N−1∑
k=0

(X(kT )− μX)
]

= 1

N2

N−1∑
i=0

N−1∑
k=0

γX(iT , kT ) = 1

N2

N−1∑
i=0

N−1∑
k=0

γX((i − k)T )

= σ 2
X

N
+ 2

N

N−1∑
k=1

(1− k

N
)γX(kT ). (5.2.2)

So the error of replacing the true value μX by the estimator μ̂X will converge to
zero, as N →∞, only if the sum in (5.2.2) increases slower3 than N , i.e.,

3Here we use Landau’s asymptotic notation: we write that f (x) = o(g(x)), as x → x0, and say
that f (x) is little “oh” of g(x) at x0, if limx→x0 f (x)/g(x) = 0.
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N−1∑
k=0

(1− k

N
)γX(kT ) = o(N), as N →∞. (5.2.3)

So, for example, if the covariance function γX(τ) vanishes outside a finite interval,
as was the case for finite moving averages in Example 5.1.2, then μ̂X is a consistent
estimator for μX.

Example 5.2.1 (Consistency of the Estimator μ̂X for Solutions of Discrete-Time
Stochastic Difference Equations) Consider the solution X(n) of the stochastic
difference equation from Example 5.1.5. Its autocovariance function was found to
be of the form

γX(τ) = β2 |α|τ
1− α2

, |α| < 1.

Since it decays exponentially as τ →∞, the sum in (5.2.2) converges and condition
(5.2.3) is satisfied. The mean-square error of replacing μX by the estimator μ̂X can
now be controlled:

Var(μ̂X(N)) = E[(μ̂X − μX)2] = γX(0)

N
+ 2

N

N−1∑
k=0

(1− k

N
)β2 |α|k

1− α2

≤ β2

N(1− α2)

(
1+ 2

N−1∑
k=0

|α|k
)
= β2(3− |α| − 2|α|N)

N(1− α2)(1− α)
.

Estimation of the Autocovariance Function γX(τ). For simplicity’s sake assume
that μX = 0, the sampling interval T = 1, the signal is real-valued, and that
observations, X(0), . . . , X(N), are given. The natural candidate for an estimator
of the autocovariance function γX(τ) = EX(0)X(τ) is the time average:

γ̂X(τ ;N) = 1

N − τ

N−τ−1∑
k=0

X(k)X(k + τ). (5.2.4)

It is an unbiased estimator since, for each fixed time lag, τ ,

E[γ̂X(τ,N)] = 1

N − τ
E
[N−τ−1∑

k=0

X(k)X(k + τ)
]

= 1

N − τ

N−τ−1∑
k=0

γX(τ) = γX(τ).
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One can also prove that if γX(τ) → 0 sufficiently fast,4 as n → ∞, and
if γX(0) = σ 2

X < ∞, then the mean-square distance from γ̂X(τ ;N) to γX(τ)

decreases to 0 as N →∞. In other words, the estimator (5.2.4) is consistent.

Remark 5.2.1 (Ergodicity) If the estimator μ̂X is unbiased and consistent, that is

E μ̂X(N) = μX, and Var(μ̂X(N))→ 0,

as N → ∞, then one often says that the signal is ergodic in the mean. Note that,
in general, this does not imply that for every sample path of the random signal the
estimator converges to the estimated parameter. To guarantee that, for a general test
function g, the time averages

g(X(1))+ g(X(2))+ · · · + g(X(N)

N
,

converge to Eg(X(1)), as N → ∞, for (almost) every sample path of the random
signal, stronger ergodicity and stricter stationarity assumptions are needed. A.I.
Khinchin proved5 (in the context of statistical mechanics) that a decay of the
autocorrelation function to zero is a sufficient condition for ergodicity. A more
detailed analysis of the ergodic behavior of stationary time series can be found in
the above quoted books by M. Denker and W.A. Woyczyński, and by P.J. Brockwell
and R.A. Davis.

Remark 5.2.2 (Confidence Intervals) Under fairly weak assumptions one can show
that the asymptotic distributions (N → ∞) of the suitably rescaled estimators
μ̂X(N), γ̂X(τ ;N), are asymptotically normal. Thus the confidence intervals for
them can be constructed following the ideas discussed in Sect. 4.6.

Example 5.2.2 (Estimated Autocorrelation Functions of EEG Signals) Figure 5.7
shows two samples of the central channel recording for a full-term neonate EEG
(see Fig. 5.1 for a sample of the full 21-channel EEG). The duration of each of
the samples was 3 min, and the signals were sampled at 64 Hz. The data in the
top picture were recorded during the quiet sleep stage, and in the bottom picture—
during the active sleep stage.

The estimated autocorrelation functions (ACFs) (not ACvFs!) for both signals
were then calculated using formula (5.2.4) and are shown in Fig. 5.8. The example is
taken from A. Piryatinska’s Case Ph.D. Dissertation mentioned already in Sect. 5.1.

Note that the ACF of the active sleep signal decays much slower than the ACF
of the quiet sleep, indicating the longer-range dependence structure of former.
Information of the rate of decay in EEG ACFs can then be used to automatically

4For a thorough exposition of these issues see, for example, P.J. Brockwell and R.A. Davis, Time
Series: Theory and Methods, Springer-Verlag, New York 1991.
5See A.I. Khinchin, Mathematical Foundation of Statistical Mechanics, Dover Publications, Inc.,
New York, 1949, p. 68.
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Fig. 5.7 (Top) Three-minute recording of the central channel EEG for an infant in a quiet sleep
stage. (Bottom) Analogous recording for an active sleep stage

classify stationary segments of the EEG signals as those corresponding to different
sleep stages recognized by pediatric neurologists.

5.3 Problems and Exercises

1* Consider a random signal

X(t) =
n∑

k=0

Ak cos
(

2πkf0(t +�k)
)
,

where A0,�0, . . . , An,�n are independent random variables of finite variance,
and �0, . . . , �n are independent, independent of As and uniformly distributed
on the time interval [0, P = 1/f0]. Is this signal stationary? Find its mean and
autocovariance functions.

2* Consider a random signal

X(t) = A1 cos 2πf0(t +�0),
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Fig. 5.8 (Left) Estimated autocovariance function (ACF) for the quiet sleep EEG signal from
Fig. 5.7. (Right) Analogous estimated ACF for the active sleep stage

where A1,�0, are independent random variables, and �0 is uniformly distributed
on the time interval [0, P/3 = 1/(3f0)]. Is this signal stationary? Is the signal
Y (t) = X(t)− EX(t) stationary? Find its mean and autocovariance functions.

3 Find the mean and autocovariance functions of the discrete-time signal

Y (n) = 3W(n)+ 2W(n− 1)−W(n− 2),

where W(n), n = . . . ,−2,−1, 0, 1, 2, . . . , is the discrete-time white noise with
σ 2

W = 4, that is

EW(n) = 0

and

E(W(k)W(n)) =
{

4, ifn− k = 0;
0, ifn− k �= 0.

4 Consider a general complex-valued moving average signal
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X(n) =
∞∑

k=−∞
ckWn−k,

where ck is a complex-valued “windowing” sequence. Determine a condition on the
windowing sequence that would guarantee that X(n) has finite variance. W(n) is
the standard white noise signal with mean zero, and γW (n) = δ(n).

5 Simulation of a discrete-time white noise with an arbitrary probability distri-
bution. Formula (4.1.11), FY (y) = FX(g−1(y)), describes the c.d.f. FY (y) of the
random quantity Y = g(X) in terms of the c.d.f. FX(x) of the random quantity X,
and a strictly increasing function g(x). It also permits construction of an algorithm
to produce random samples from any given probability distribution provided a
random sample uniformly distributed on the interval [0, 1] is given. The latter can
be obtained by using the random number generator in any computing platform, see
Problem 1.4.14.

Let U be a uniformly distributed on [0,1] random quantity U with the c.d.f.

FU(u) = u, 0 ≤ u ≤ 1. (5.3.1)

Then, for a given c.d.f. FZ(z), the random quantity Z = F−1
Z (U), where F−1

Z (u) is
the function inverse to FZ(z) (that is, a solution of the equation u = FZ(F−1

Z (u)))
has the c.d.f. FZ(z). Indeed, a simple calculation, using (4.3.1), shows that

P(F−1
Z (U) ≤ z) = P(U ≤ FZ(z)) = FZ(z),

because 0 ≤ FZ(z) ≤ 1. So, for example, if the desired c.d.f. is exponential, with
FZ(z) = 1− e−z, z ≥ 0, then F−1

Z (u) = − ln(1− u), 0 ≤ u ≤ 1, and the random
quantity Z = − ln(1− U) has the above exponential c.d.f.

The general simulation algorithm is thus as follows:

(i) Choose the sample size N , and produce a random sample, u1, u2, . . . , uN ,
uniformly distributed on [0,1];

(ii) Calculate the inverse function F−1
Z (u);

(iii) Substitute the random sample, u1, u2, . . . , uN , into F−1
Z (u) to obtain the

random sample
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z1 = F−1
Z (u1), z2 = F−1

Z (u2), . . . , zN = F−1
Z (uN),

which has the desired c.d.f. FZ(z).
Use the above algorithm, and Problem 1.4.15, to produce and plot examples of

the white noise W(n) with:

(a) The standard Gaussian N(0, 1) p.d.f.
(b) The double exponential p.d.f. fW(w) = e−|w|/2. Be careful as its c.d.f. has a

different analytic expression for positive and negative w’s.
(c) The p.d.f., fW(w) = √

2(π(1 + w4))−1. Check that the variance is finite
in this case. Start with a calculation of the corresponding c.d.f.s; a symbolic
manipulation platform such as Mathematica is going to be great help here.
Check the result graphically by plotting the histograms of the random samples
against the theoretical p.d.f.s.

6 Simulations of stationary random signals. Using the algorithm from the above
Problem 5, produce simulations of stationary signals from Examples 5.1.4 and 5.1.6,
using both uniformly distributed white noise and the white noises constructed in
parts (a), (b), and (c) of the above problem. Experiment with these simulations by
varying parameters in the above models, and changing the length of the sample of
the produced discrete-time random signals.

7 Using the procedures described in Sect. 5.2, estimate the means and the autoco-
variance functions (ACvF) for sample signals obtained in simulations in Problem 6.
Then, compare graphically the estimated and the theoretical ACvFs.

8* Show that if X1, X2, . . . , Xn are independent, exponentially distributed random
quantities with identical p.d.f.s e−x, x ≥ 0, then their sum Yn = X1 + X2 + . . . +
Xn has the p.d.f. e−yyn−1/(n − 1)!, y ≥ 0. Use the technique of characteristic
functions (Fourier transforms) from Chap. 3. The random quantity Yn is said to have
the Gamma probability distribution with parameter n. Thus the Gamma distribution
with parameter one is just the standard exponential distribution, see Example 5.1.4.
Produce plots of Gamma p.d.f.s with parameters n = 2, 5, 20, and 50. Comment on
what you observe as n increases.



Chapter 6
Power Spectra of Stationary Signals

Abstract The Fourier transform X(f ) of the sample paths of a stationary, real-
valued random signal X(t) does not exist in the usual sense and analysis of the
spectral contents of such signals requires a different, more subtle approach which
has to rely on the concept of the mean power of the random signal. Only then
we can investigate how it is distributed over different frequencies. The question
is, of course, of fundamental importance in practical applications as real-life signal
processing devices such as measuring instruments, amplifiers, and antennas transmit
different frequencies with different attenuation.

6.1 Mean Power of a Stationary Signal

For stationary signals with periodic sample paths, like the superpositions of
simple harmonic oscillations with random amplitudes discussed in Examples 5.1.2
and 5.1.9, the concept of the mean power is a straightforward adaptation of the
power concept for periodic nonrandom signals:

E(PWX) = E
(

1

P

∫ P

0
|X(t)|2 dt

)
= 1

P

∫ P

0
E|X(t)|2 dt = σ 2

X.

Note that PWX itself is here a random quantity. Hence, in particular, in Exam-
ple 5.1.9, where

X(t) =
n∑

k=1

Ak · ej2π(kf0)t ,

with P = 1/f0, we have

E(PWX) = σ 2
X = γX(0) =

n∑
k=1

E|Ak|2,
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and the last expression provides a clear description of how mean power is distributed
over different component frequencies of the signal’s sample paths; the power
spectrum in this case is discrete and the mean power carried by the frequency fk

is equal to E|Ak|2.
For general stationary signals the situation is more complicated. Mean energy

E(ENX) of a stationary signal X(t) over the whole time line, that is the expected
value of energy, is infinite. Indeed, using the linearity property of expectations we
can interchange the order of taking the mean and the integration to obtain that

E(ENX) = E
∫ ∞

−∞
X2(t) dt =

∫ ∞

−∞
E(X2(t)) dt =

∫ ∞

−∞
σ 2

X dt = ∞. (6.1.1)

However, the mean power E(PWX) of a stationary signal, taken as a limit of mean
power over finite but expanding time intervals, is always finite since

E(PWX) = E lim
T→∞

1

2T

∫ T

−T

X2(t) dt = σ 2
X <∞. (6.1.2)

To find the distribution of mean power E(PWX) over different frequencies f we
will consider a windowed signal,

XT (t) =
{

X(t), for|t | ≤ T ;
0, otherwise,

(6.1.3)

that is, the original signal restricted to the time window, −T ≤ t ≤ T , of duration
2T . Then, with the well-defined Fourier transform of the windowed signal defined
by the equality,

XT (f ) =
∫ ∞

−∞
XT (t)e−j2πf t dt =

∫ T

−T

X(t)e−j2πf t dt,

we can express the mean power of the original signal by the formula,

E[PWX] = E
[

lim
T→∞

1

2T

∫ T

−T

X2(t) dt

]

= E
[

lim
T→∞

1

2T

∫ ∞

−∞
X2

T (t) dt

]
= E

[
lim

T→∞
1

2T

∫ ∞

−∞
|XT (f )|2 df

]

=
∫ ∞

−∞
lim

T→∞
E|XT (f )|2

2T
df,

where the Parseval Equality (see Sect. 2.4) was used in the second line of the above
calculation. Denoting
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SX(f ) := lim
T→∞

E|XT (f )|2
2T

, (6.1.4)

the mean power has the representation

E(PWX) = σ 2
X =

∫ ∞

−∞
SX(f ) df. (6.1.5)

The function SX(f ) is called the power spectral density or, simply, power spectrum
of the stationary signal X(t). It shows how the mean power PWX of the random
stationary signal X(t) is distributed over different frequencies f,−∞ < f < ∞.
The mean power concentrated in a frequency band, f1 < f < f2, is then given by
the integral

PWX[f1, f2] =
∫ f2

f1

SX(f ) df.

6.2 Power Spectrum and Autocovariance Function

What makes the power spectrum SX(f ) a practical tool in the analysis of random
stationary signals is the fact that it is simply the Fourier transform of the signal’s
autocovariance function γX(t). In other words,

SX(f ) =
∫ ∞

−∞
γX(t)e−j2πf tdt. (6.2.1)

This fundamental property can be easily verified by direct calculation. Indeed,

SX(f ) = lim
T→∞

E|XT (f )|2
2T

= lim
T→∞

E(X∗T (f )XT (f )

2T

= lim
T→∞

1

2T
E
[∫ T

−T

X∗(t)e2πjf tdt

∫ T

−T

X(s)e−2πjf sds

]

= lim
T→∞

1

2T

∫ T

−T

∫ T

−T

E[X∗(t)X(s)]e−2πjf (s−t)dt ds

= lim
T→∞

1

2T

[∫ T

−T

(∫ s+T

s−T

γX(τ)e−2πjf τ dτ

)
ds

]

=
∫ ∞

−∞
γX(τ)e−2πjf τ dτ.

Given the properties of the Fourier transform, we also immediately obtain that the
autocovariance γX(τ) of signal X(t) is the inverse Fourier transform of the power



178 6 Power Spectra of Stationary Signals

spectrum SX(f ):

γX(τ) =
∫ ∞

−∞
SX(f )ej2πf τ df. (6.2.2)

Remark 6.2.1 (What Kind of Functions Can Serve as Autocovariance Functions of
Stationary Signals?) Although any integrable nonnegative function,

S(f ) ≥ 0,

∫ ∞

−∞
S(f ) df <∞,

can serve as a power spectrum of some stationary signal, the above formula (6.2.2)
shows that for γ (t) to be an autocovariance function of a stationary process it must
be the inverse Fourier transform of a nonnegative integrable function S(f ). This
turns out to be a very restrictive condition. In particular, it forces γ (t) to satisfy the
following positive-definiteness condition:

For any positive integer N , any real number t1, . . . , tN , and any complex numbers
z1, . . . , zN , the quadratic form

N∑
n=1

N∑
k=1

γ (tn − tk)znz
∗
k ≥ 0.

Indeed, since S(f ) ≥ 0,

N∑
n=1

N∑
k=1

γ (tn − tk)znz
∗
k =

N∑
n=1

N∑
k=1

∫ ∞

−∞
SX(f )ej2πf (tn−tk) df znz

∗
k .

=
∫ ∞

−∞
SX(f )

N∑
n=1

N∑
k=1

(
zne

j2πf tn
)
·
(
zke

j2πf tk
)∗

df.

=
∫ ∞

−∞
SX(f )

∣∣∣∣∣
N∑

n=1

zne
j2πf tn

∣∣∣∣∣
2

df ≥ 0.

Actually the positive-definiteness condition is necessary and sufficient of a function
to be an ACvF. This result is known as the Bochner Theorem. The practical lesson
is that one cannot pick examples of ACvF ’s off the top of ones head. There are
numerous criteria guaranteeing that a given function actually is positive definite.
For example, one can prove that if γ (τ) is even, and decreasing and convex on the
positive half-line (like γ (t) = e−|τ |), then it is positive definite, see bibliography on
Fourier analysis provided at the end of this book.

Estimation of the Power Spectrum SX(f ) For simplicity’s sake assume that the
signal is real-valued, and that the observations X(0), . . . , X(N) are made at discrete
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sampling times, t = 0, 1, 2, . . . , N . To estimate the spectrum the natural way to
proceed is to replace the theoretical ACvF γX(τ) in (6.2.1) by the estimated ACvF
γ̂X(τ ;N) given by the formula (5.2.4) and replacing the integral by the finite sum.
This yields the estimator:

ŜX(f ;N) =
N−1∑

τ=−(N−1)

γ̂X(|τ |;N)e−j2πf τ .

A direct discretization of the defining formula (6.1.4) immediately gives another
estimator for the power spectrum,

IN(f ) := 1

N

∣∣∣∣∣
N∑

n=1

X(n)e−j2πf n

∣∣∣∣∣
2

. (6.2.3)

For large N , ŜX(f ;N) ≈ IN(f ) (see Sect. 10.2), and the random quantity IN(f )

is usually called the periodogram of the sampled signal X(t) based on a sample of
size N .

Observe that if we have a concrete, discrete-time sample,

X(1) = x1, . . . , X(N) = xN,

of the signal X(t), then the (nonrandom) sum inside the modulus of the periodogram
formula,

N∑
n=1

xne
−j2πf n,

is a finite Fourier (complex-valued) trigonometric polynomial with coefficients
x1, . . . , xN . It is a periodic function of f with period P = 1, so the periodogram
IN(f ) needs to be studied only for f in the interval [0, 1] (or any other interval of
length 1, such as, e.g., [−1/2,+1/2]). In view of the Parseval formula (2.1.12) for
Fourier series,

∫ 1

0
IN(f ) df =

∫ 1

0

1

N

∣∣∣∣∣
N∑

n=1

xne
−j2πf n

∣∣∣∣∣
2

df = 1

N

N∑
n=1

x2
n.

The expression on the right is, of course, the average power (the energy per unit
time) of the sample signal x1, . . . , xN ,. Thus the above formula shows that, indeed,
the periodogram IN(f ) gives the correct distribution of the average power of the
sample signal over the frequencies f ∈ [0, 1].
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Fig. 6.1 Left: Periodogram of the neonatal quiet sleep EEG signal from Fig. 5.7. Right: Analogous
periodogram for the active sleep stage (From A. Piryatinska’s 2004 Case Ph.D. Dissertation.)

Let us return now to two samples of neonatal sleep signals displayed in
Fig. 5.7. Their estimated autocovariance functions were shown in Fig. 5.8. Their
periodograms have been calculated using formula (6.2.3) and are reproduced in
Fig. 6.1. Since the signal was recorded at the sampling frequency of 64 Hz, and the
duration of each recording was 3 min, the total number of sample points is N = 192.
The reader will notice that the periodogram is quite noisy and, perhaps, should be
smoothed out to better reflect the true spectrum of the random signal. Nevertheless,
a comparison of these rough spectra for quiet sleep and active sleep segment clearly
shows that the active sleep signal shows bigger concentration of the spectrum at low
frequencies than the quite sleep signal.

Example 6.2.1 (Simple Random Harmonic Oscillation) In this case the random
signal is of the form

X(t) = A cos(2πf0(t +�)),

where the random amplitude A has zero mean, EA = 0, and finite variance
EA2 < ∞. The random phase � is independent of A and uniformly distributed
on the interval [0, P ] with P = 1/f0. In Chap. 5 we have calculated that the
autocovariance function for this signal is
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γX(τ) = E|A|2
2

cos(2πf0τ).

Hence the power spectrum of the simple random harmonic oscillation with funda-
mental frequency f0 is

SX(f ) =
∫ ∞

−∞
γX(τ)e−2πjf τ dτ

=
∫ ∞

−∞
E|A|2

2

ej2πf0τ + e−2πjf0τ

2
e−j2πf τ dτ

= E|A|2
4

(
δ(f − f0)+ δ(f + f0)

)
,

because the inverse Fourier transform of δ(f − f0) is

∫ ∞

−∞
δ(f − f0)e

2πjf τ df = e2πjf0τ .

Example 6.2.2 (Superposition of Random Harmonic Oscillations (Random Periodic
Signal)) The signal is of the form

X(t) =
N∑

k=1

Ak cos(2πkf0(t +�k)),

where the zero-mean amplitudes A1, . . . , AN, and phases �1, . . . , �N , are all
independent random quantities and �1, . . . , �N , are uniformly distributed on the
interval [0, P ], P = 1/f0. The autocovariance function of this signal is

γX(τ) =
N∑

k=1

E|Ak|2
2

cos(2πkf0τ),

and, arguing as in Example 6.2.1, the power spectrum is a linear combination of the
Dirac deltas:

SX(f ) = 1

4

N∑
k=1

E|Ak|2
(
δ(f − kf0)+ δ(f + kf0)

)
.

Thus in this case the power spectrum is concentrated on discrete frequencies
±f0,±2f0, . . . ,±Nf0.

Example 6.2.3 (Band-Limited Noise) A stationary signal X(t) is said to be a band-
limited noise if its spectrum,
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SX(f ) =
{
N0, for− fmax < f < fmax;
0, elsewhere.

In other words, for a band-limited noise the mean power is distributed uniformly
over the frequency band [−fmax,+fmax]. The mean power of the band-limited
white noise,

PWX =
∫ ∞

−∞
SX(f ) df =

∫ fmax

−fmax

N0 df = 2fmaxN0,

is finite. The autocovariance function of the band-limited white noise can be easily
calculated by taking the inverse Fourier transform. Thus we obtain

γX(τ) =
∫ ∞

−∞
SX(f )ej2πf τ df = N0

∫ fmax

−fmax

ej2πf τ df

= N0

j2πτ

(
ej2πfmaxτ − e−j2πfmaxτ

)
= N0

πτ
sin(2πfmaxτ).

Figure 6.2 shows both the power spectrum of a band-limited white noise and its
autocovariance function, for fmax = 1 and N0 = 1. Observe that, not surprisingly,
as the bandwidth 2fmax expands to infinity the autocovariance function approaches
the Dirac delta, the autocovariance function of the ideal white noise which will be
discussed in the next example. Note that the maximum value of the autocovariance
function γX(τ) is attained at τ = 0 and is equal to the mean power PWX = 2fmax
which diverges to +∞ as the bandwidth increases. However,

∫∞
−∞γX(τ) dτ =

SX(0) = 1, and the value of the power spectrum at zero frequency is independent
of the bandwidth and remains constant.

Example 6.2.4 (The Continuous-Time White Noise Signal) By a standard white
noise signal we mean a stationary signal W(t) with a totally flat power spectrum
over the whole frequency range,

SW(f ) = 1, −∞ < f <∞.

We can think about it as a limit, for fmax →∞, of the band limited noise described
in Example 6.2.3, but, clearly, the white noise signal is not realizable physically
since its mean power is infinite:

E(PWW) =
∫ ∞

−∞
1 df = ∞.

However it is a very useful abstraction. The Fourier transform of its autocovariance
function γW (τ) must satisfy the equation
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Fig. 6.2 Top: Power spectrum of the band-limited white noise X(t) from Example 6.2.3. The
bandwidth is 2fmax and mean power PWX = 2. Bottom: Autocovariance function of the above
band-limited noise. Observe that as the bandwidth expands to infinity the autocovariance function
approaches the Dirac delta, the autocovariance function of the ideal white noise

∫ ∞

−∞
γW (τ)e−j2πf τ dτ ≡ 1

for all −∞ < f <∞, which implies that

γW (τ) = δ(τ ).

Loosely speaking the above formula can be interpreted as follows: we can say that,
for t �= s, the white noise has “values,” X(t) and X(s), that are uncorrelated and,
for t = s, the covariance between X(t) and X(s) is infinite. This autocovariance
function is thus not a true function but its shape is not surprising if you compare it to
the shape of the autocovariance function for the discrete-time white noise discussed
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in Chap. 5. Because of the form of its autocovariance function the white noise is
sometimes called a delta-correlated signal.

If a random signal W(t) has the spectrum SW (f ) ≡ N′ > 0, then we shall call
W(t) a white noise of amplitude N′.
Example 6.2.5 (Random Switching Signal) The random switching signal X(t)

discussed in Chap. 5 has the autocovariance function

γX(τ) = e−2|τ |.

Thus its power spectral density can be directly calculated by taking the Fourier
transform of the autocovariance function:

SX(f ) =
∫ ∞

−∞
e−2|t |e−j2πf tdt =

∫ ∞

0
e−(2+j2πf )t dt +

∫ 0

−∞
e−(−2+j2πf )t dt

= 1

2

1

1+ jπf
+ 1

2

1

1− jπf
= 1

1+ (πf )2 .

Observe that the autocovariance function decays here exponentially as the time
lag increases while the power spectrum decays only like the inverse square of the
frequency when the latter goes to infinity. The situation is pictured in Fig. 6.3.

At this point is worth recalling Remark 5.1.2, where we made the following
observation: If instead of the above standard switching signal X, with standard,
mean-one exponential inter-switching times, one considers a more general switch-
ing signal Xμ, with μ (on the average) switches per unit time, then as μ → 0, then
its ACvF,

γXμ(τ) = 1

μ
e−2|τ |/μ → δ(τ ).

Thus, the standard white noise can also be seen as a limit of the general switching
signals for which the switching rate and the amplitude of the switches become larger
and larger.

6.3 Power Spectra of Interpolated Digital Signals

A random signal sampled at discrete sampling time interval Ts , that is with sampling
frequency fs = 1/Ts , produces a sequence of random quantities

. . . , X(−2Ts), X(−Ts), X(0);X(Ts), X(2Ts), . . . (6.3.1)
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Fig. 6.3 Top: Autocovariance function of the random switching signal from Example 6.2.5.
Bottom: The corresponding power spectrum

To fill in the gaps in the signal produced by discrete sampling at times nTs we shall
interpolate the discrete signal1 by extending its definition to other times t via the
formula

X(t) = X(nTs), for nTs ≤ t < (n+ 1)Ts, (6.3.2)

and n = . . . ,−2,−1, 0, 1, 2, . . . . Having extended the definition of the signal to
continuous time we can obtain its power spectrum following the method developed
in Sect. 5.1. In the present case the windowed signal is of the form

1The material of this section should be compared with the analysis of the discrete and the fast
Fourier transforms carried out in Sect. 2.7 for nonrandom, deterministic signals.
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XN(t) =
{

X(t), for−NTs ≤ t < NTs;
0, elsewhere,

with the window size being 2NTS .
Now the mean power

E(PWX) = E lim
N→∞

1

2NTs

N−1∑
n=−N

X2(nTs)Ts

= E lim
N→∞

1

2NTs

∫ ∞

−∞
|XN(f )|2df =

∫ ∞

−∞
lim

N→∞
E|XN(f )|2

2NTs

df (6.3.3)

=
∫ ∞

−∞
S(f ) df,

with the power spectral density

S(f ) = lim
N→∞

E|XN(f )|2
2NTs

, (6.3.4)

and the equality in (6.3.3) resulting from the Parseval formula.
In the next step we evaluate the Fourier transform XN(f ) of the windowed

interpolated signal which is needed in formula (6.3.4):

XN(f ) =
∫ ∞

−∞
XN(t)e−j2πf t dt =

N−1∑
n=−N

∫ (n+1)Ts

nTs

X(t)e−j2πf t dt

= 1

−j2πf

N−1∑
n=−N

X(nTs)
(
e−j2πf (n+1)Ts − e−j2πf nTs

)

= 1− e−j2πf Ts

j2πf

N−1∑
n=−N

X(nTs)e
−j2π.f nTs .

Substituting this result into (6.3.4) we get the following structure of the power
spectrum of X(t):

S(f ) = lim
N→∞

|1− e−j2πf Ts |2
4π2f 2 · E|∑N−1

n=−N X(nTs)e
−2πjf nTs |2

2NTs
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= 1− cos 2πf Ts

2π2f 2
lim

N→∞

N−1∑
k=−N

N−1∑
n=−N

γX((n− k)Ts)e
−2πj (n−k)f Ts

1

2NTs

.

Changing the second summation variable by substitution n = m+ k we get

S(f ) = 1− cos 2πf Ts

2π2f 2
lim

N→∞

N−1∑
k=−N

N−1−k∑
m=−N−k

γX(mTs)e
−j2πmf Ts

1

2NTs

= 1− cos 2πf Ts

2π2f 2T 2
s

·
∞∑

m=−∞
γX(mTs)e

−j2πmf Ts Ts.

Hence, the power spectrum can be written as a product

S(f ) = S1(f )S2(f ), (6.3.5)

where the factor

S1(f ) = 1− cos 2πf Ts

2π2f 2T 2
s

(6.3.6)

decays to 0 at infinite frequencies (f → ±∞) and is independent of the statistical
properties of the signal (that is, of the autocovariance function γX(nTs)). The second
factor

S2(f ) =
∞∑

m=−∞
γX(mTs)e

−j2πmf Ts Ts (6.3.7)

is a periodic function with period fs = 1/Ts , represented by the Fourier series
with coefficients given by the discrete-time autocovariance function of the discretely
sampled signal.

So, if instead of the original power spectrum we consider the ratio S(f )/S1(f ),
then we obtain clean relationships paralleling the symmetry of formulas for
continuous-time signals:

S(f )

S1(f )
=

∞∑
m=−∞

γX(mTs)e
−j2πmf Ts Ts (6.3.8)
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and

γX(mTs) =
∫ fs/2

−fs/2

S(f )

S1(f )
ej2πmf Ts df. (6.3.9)

Remark 6.3.1 It is clear that all the relevant information about the spectrum of the
signal sampled with the sampling interval Ts is contained in the frequency interval
(−fs/2,+fs/2). Power assigned to higher frequencies appearing in the side “lobes”
of the spectrum (see Fig. 6.4) is simply an artifact of the interpolation. Should we
select a different interpolation scheme, the factor S1(f ) responsible for the decay of
the “lobes” would look differently.

Example 6.3.1 (Interpolated Moving Average of the Discrete-Time White Noise)
Let the sampling interval Ts = 1, and let W(n) be a discrete-time white noise signal
(EW(n) = 0, γW (τ) = δ(τ )/2). For the moving average signal

Y (n) = 1

2
W(n)+ 1

2
W(n− 1),

we have calculated in Chap. 5 that

γY (0) = 1/4, γY (±1) = 1/8, γY (τ ) = 0, for |τ | ≥ 2.

So, the periodic S2(f ) factor of the power spectrum of the interpolated Y (n) is
of the form

S2(f ) = 1

8
ej2πf ·1 + 1

4
+ 1

8
e−j2πf ·1 = 1

4
(1+ cos 2πf ),

-2 -1 0 1 2

0.0

0.1

0.2

0.3

0.4

0.5

Fig. 6.4 Power spectrum of the interpolated moving average of the discrete-time white noise
signal. The sampling rate is fs = 1/Ts = 1, and the relevant spectrum is concentrated in the
interval (−fs/2,+fs/2). The side “lobes” are an artifact of the interpolation scheme
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and the power spectral density itself of the interpolated Y is

SY (f ) = S1(f )S2(f ) = 1− cos 2πf

2π2f 2
· 1

4
(1+ cos 2πf ) = 1

2

[
sin(2πf )

2πf

]2

.

6.4 Problems and Exercises

1 Consider the first-order moving average signal

Y (n) = 4W(n)− 6W(n− 1)+ 3W(n− 2),

where W(n) is the standard discrete-time white noise signal with σ 2
W = 1.

(a) Simulate long samples of this signal using both uniformly distributed (sym-
metric) and standard Gaussian white noises, and estimate its power spectrum
via the periodogram formula (6.2.3). Plot it. Then smooth it out by taking its
convolution with a Gaussian kernel. Plot it again.

(b) Calculate and plot the power spectrum density of Y via “interpolation” formula
in Example 6.3.1. Compare this plot with the plots obtained in Part (a).

2 With W(n) being the discrete-time white noise signal with σ 2
W = 5 (either

uniformly distributed and symmetric, or Gaussian) simulate long samples of the
signal

Y (n) = W(n)+ 0.5W(n− 1)− 0.3W(n− 2).

Derive and plot the power spectrum density of Y both via the periodogram formula
(6.1.3) and the “interpolated” formula in Example 6.3.1. Follow the plan described
in Problem 1.

3 For a given window of size q, find the power spectrum density of a general
moving average signal

Y (n) = b0W(n)+ b1W(n− 1)+ · · · + bqW(n− q),

where W(n) is the discrete-time white noise with σ 2
W = 1 (see Example 6.3.1).

4 Discrete sampling with linear interpolation. Consider a signal X sampled at
sampling interval Ts . Its interpolation to continuous time signal is given by the
following formula:

X(t) =
∞∑

m=−∞
X(mTs)�(t −mTs),
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where the interpolating kernel

�(t) =

⎧⎪⎪⎨
⎪⎪⎩

1− t/Ts, for0 < t < Ts;
1+ t/Ts, for− Ts < t < 0;
0, elsewhere.

(a) Plot the kernel �(t) and the interpolated X(t) for an example of the sampled
signal selected by you. Explain the interpolation effect.

(b) Demonstrate that the Fourier transform of the interpolated signal is of the form

XN(f ) =
N∑

m=−N

X(mTs)e
−2πjmTsf �(f ),

where �(f ) is the Fourier transform of the kernel �(t). Produce a plot of �(f ).
(c) Verify that the power spectrum density for the interpolated signal X(t) is

S(f ) = lim
N→∞

E|XN(f )|2
(2N + 1)Ts

= �2(f )
1

Ts

∞∑
m=−∞

γX(mTs)e
−2πjmf Ts .

5* A stationary signal X(t) has the autocovariance function

γX(τ) = 16e−5|τ | cos 20πτ + 8 cos 10πτ .

(a) Find the variance of this signal.
(b) Find the power spectrum density of this signal.
(c) Find the value of the spectral density at zero frequency.

6 A stationary signal X(t) has the spectral density of the form

SX(f ) =
{

5, for 10
2π
≤ |f | ≤ 20

2π
;

0, elsewhere.

(a) Find the mean power of X.
(b) Find the autocovariance function of X.
(c) Find the value of the autocovariance at τ = 0.

7 A stationary signal X(t) has the spectral density of the form

SX(f ) = 9

(2πf )2 + 64
.
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At what frequency does the spectral density fall to one half of its maximal value
(this value is called the half-power bandwidth)?

(a) Write an expression for the spectral density of a bandlimited white noise Y that
has the same value at zero frequency and the same mean power as X. What is its
bandwidth? It is called the equivalent noise bandwidth of X. Compare it with
the half-power bandwidth.

(b) Find the autocovariance function of signal X.
(c) Find the autocovariance function of signal Y .
(d) Compare the values of these two autocovariance functions at τ = 0.

8

(a) Consider a solution of the stochastic differential equation described in Exam-
ple 5.1.6. Take α = 0.7, β = 1, and assume that the white noise W(n) is
Gaussian, N(0,1). Produce pictures of five different trajectories of length 100 of
this solution truncating the infinite series representing the solution to the first
ten terms.

(b) Use the above generated sample signals to estimate their mean and ACvF. Plot
the ACvF and compare it graphically with the theoretically derived ACvF. For
better comparison, smooth out the empirical ACvF s by taking their convolution
with a “nice” kernel, cf. the “moving average” technique applied in Chap. 5 to
random signals themselves.

(c) Use the periodogram formula from Sect. 6.2 to estimate the power spectra of
the above sample signals. Smooth them out. Compare them graphically with
the theoretical power spectrum of the same signal.

9* Verify positive-definiteness (see Remark 6.2.1) of autocovariance functions of
stationary signals directly from their definition,

γX(τ) = E
[
(X(t)− E(X(t)))∗ · (X(t + τ)− E(X(t)))

]
.

Is stationarity condition necessary for positive-definiteness of the covariance func-
tion of X(t)?



Chapter 7
Transmission of Stationary Signals
Through Linear Systems

Abstract Signals produced in nature are almost never experienced in their original
form. Usually, we have access to them after they pass through various sensing and/or
transmission devices such as voltmeter for electric signals, an ear (Fig. 7.1) for
acoustic signals, an eye for visual signals, a fiber optic cable for wide-band internet
signals, etc. All of them impose restrictions on the signal being transmitted by
attenuating different frequency components of the signal to a different degree. This
process is generally called filtering and the devices that change signal’s spectrum
are traditionally called filters.

The typical examples here are the so-called band-pass filters which permit transmis-
sion of the components of the signal only in a certain frequency band, attenuating the
frequencies in that band in a uniform fashion, but totally “killing” the frequencies
outside this band. Figure 7.1 shows results of filtering a portion of the EEG
signal from Fig. 5.1 through four band-pass filters with frequency bands (top to
bottom) 0.5–3.5 Hz, 4–7.5 Hz, 8–12.5 Hz, and 13–17 Hz. In neurological literature
the contents of the EEG signal within these frequency bands are traditionally called
Delta, Theta, Alpha, and Beta waves, respectively.

In this chapter we study how statistical characteristics of random stationary
signals are affected by transmission through linear filters. The linearity assumption
means that we suppose that there is a linear relationship between the signals on the
input and on the output of the filter. In real life it is not always the case, but the study
of nonlinear filters is much more difficult than the linear theory presented below, and
beyond the scope of this book.

7.1 Time Domain Analysis

In this section we conduct the time-domain analysis of transmission of random
signals through a linear system shown schematically below:
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Fig. 7.1 A portion of the EEG signal from Fig. 5.1 filtered through four band-pass filters with
frequency bands (top to bottom) 0.5–3.5 Hz, 4–7.5 Hz, 8–12.5 Hz, and 13–17 Hz, respectively

X(t) −→ h(t) −→ Y (t)

The input signal X(t) is assumed to be (real-valued) random and stationary, with
mean μX = EX(t), and autocovariance function

γX(τ) = E(X(t)− μX)(X(t + τ)− μX).

The system is identified by a “structure” function h(t), and the output signal Y (t) is
defined as the continuous-time moving average (convolution):

Y (t) =
∫ ∞

−∞
X(s)h(t − s) ds =

∫ ∞

−∞
X(t − s)h(s) ds. (7.1.1)

Note that in the case of a nonrandom Dirac-delta impulse input δ(t) the nonrandom
output signal is

y(t) =
∫ ∞

−∞
δ(s)h(t − s) ds = h(t − 0) = h(t).

For this reason the system-identifying time-domain “structure” function h(t) is
usually called the impulse response function.

The mean value of the output signal is easily calculated in terms of the input
signal and of the impulse response function:
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EY (t) =
∫ ∞

−∞
E[X(t − s)]h(s) ds = μX

∫ ∞

−∞
h(s) ds. (7.1.2)

The above formula makes sense only if the last integral is well defined. For this
reason we will always assume that the system is realizable, that is,

∫ ∞

−∞
|h(s)| ds <∞. (7.1.3)

In view of (7.1.2), for realizable systems, if the input signal has zero mean, then the
output signal has also zero mean:

μX = 0 #⇒ μY = 0.

In this situation, from now onwards, we will restrict our attention only to zero mean
signals.

The calculation of the autocovariance function of the output signal Y (t) is a little
bit more involved. Replacing the product of the integrals by the double integral we
obtain

γY (τ ) = E(Y (t)Y (t + τ))

= E
[∫ ∞

−∞
X(t − s)h(s) ds

∫ ∞

−∞
X(t + τ − u)h(u) du

]

=
∫ ∞

−∞

∫ ∞

−∞
E
[
X(t − s)X(t + τ − u)

]
h(s)h(u) ds du.

Then, in view of the stationarity assumption,

E
[
X(t − s)X(t + τ − u)

]
= E

[
X(−s)X(τ − u)

]
= γX(τ − u+ s),

so that, finally,

γY (τ ) =
∫ ∞

−∞

∫ ∞

−∞
γX(τ − u+ s)h(s)h(u) ds du. (7.1.4)

A system is said to be causal if the current values of the output depend only on
the past and present values of the input. This property can be equivalently stated as
the requirement that the impulse response function,

h(t) = 0, for t ≤ 0. (7.1.5)
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Fig. 7.2 A standard integrating circuit. The voltage Y (t) on the output is the integral of the current
X(t) on the input

In other words, the moving average is performed only over the past. This condition,
in particular, implies that the second output integral in (7.1.1) is restricted to the
positive half-line,

Y (t) =
∫ ∞

0
X(t − s)h(s) ds, (7.1.6)

and formula (6.1.4) for the autocovariance function takes the form

γY (τ ) =
∫ ∞

0

∫ ∞

0
γX(τ − u+ s)h(s)h(u) ds du. (7.1.7)

In what follows in this chapter we will consider only causal filters.

Example 7.1.1 (An Integrating Circuit) A standard integrating circuit with a single
capacitor is shown in Fig. 7.2.

The impulse response function for this system is the Unit Step Function u(t)

multiplied by 1/C, where the constant C represents capacitance of the capacitor:

h(s) = 1

C
u(s) =

{
0, for s < 0;
1/C, for s ≥ 0.

The output

Y (t) = 1

C

∫ ∞

−∞
X(s)u(t − s)ds = 1

C

∫ t

−∞
X(s) ds.

Obviously, this system, although causal, is not realizable over the whole time line
since ∫ ∞

−∞
|h(t)| dt =

∫ ∞

0

1

C
dt = ∞.

To avoid this difficulty we need to restrict the integrating circuit to a finite time
interval and assume that the adjusted impulse response function is of the form

h(s) =

⎧⎪⎪⎨
⎪⎪⎩

0, for s < 0;
1/C, for 0 ≤ s ≤ T ;
0, for s > T .

(7.1.8)
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In this situation the system is realizable and the output is

Y (t) =
∫ ∞

−∞
X(s)h(t − s)ds = 1

C

∫ t

t−T

X(s)ds.

The autocovariance function is equal to

γY (τ ) =
∫ T

0

∫ T

0
γX(τ − u+ s) h(s) h(u) ds du

= 1

C2

∫ T

0

∫ T

0
γX(u− (τ + s)) ds du, (7.1.9)

because, for real-valued signals, the autocovariance function is even, γX(−τ) =
γX(τ).

Therefore, if the input signal is the standard white noise X(t) = W(t) with the
autocovariance γW (t) = δ(t), and C = 1, then for τ ≥ 0, the output autocovariance
function

γY (τ ) =
∫ T

0

∫ T

0
δ(u− (τ + s)) du ds =

∫ T

0
ζ(s) ds,

where

ζ(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, for τ + s < 0;
1/2, for τ + s = 0;
1, for 0 < τ + s < T ;
1/2, for τ + s = T ;
0, for τ + s > T .

Hence, (Figs. 7.3 and 7.4)

γY (τ ) =

⎧⎪⎪⎨
⎪⎪⎩

0, for τ < −T ;
T − |τ |, for − T ≤ τ ≤ T ;
0, for τ > T .

(7.1.10)

If the input signal X(t) is a simple random harmonic oscillation with the
autocovariance function γX(τ) = cos τ , and, again, C = 1, then the output
autocovariance is

γY (τ ) =
∫ T

0

∫ T

0
cos(τ − u+ s) ds du = 2 cos τ(1− cos T ). (7.1.11)
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Fig. 7.3 The output autocovariance function γY (τ) (7.1.10) of the integrating system (7.1.8) with
T = 1, in the case of the standard white noise input X(t) = W(t)

As simple as the formula (7.1.9) for the output autocovariance function seems to
be, the analytic evaluation of the double convolution may get tedious very quickly.
Consider, for example, an input signal X(t) with the autocovariance function

γX(τ) = 1

1+ τ 2
, (7.1.12)

which corresponds to the exponentially decaying power spectrum (see Sect. 6.4).
In this case,

γY (τ ) =
∫ T

0

∫ T

0

1

1+ (τ − u+ s)2
ds du (7.1.13)

= 1

2

(
2(T − τ) arctan(T − τ)− 2τ arctan τ

− log(1+ (T − τ)2)+ log(1+ τ 2)

)

+1

2

(
− 2τ arctan(τ )+ 2(τ + T ) arctan(τ + T )

+ log(1+ τ 2)+ log(1+ T 2 + 2T τ + τ 2)

)
.

So, even for a relatively simple autocovariance function of the input, the output
autocovariance may be quite complex. And yes, you guessed right, to avoid the
tedium of the paper-and-pencil calculations we have obtained the above formula
using Mathematica. Figure 7.5 traces graphically the dependence of γY (τ ) on T .
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Fig. 7.4 The output autocovariance functions γY (τ) (7.1.11) of the integrating system (7.1.8) with
T = 1, 2, and 3 (top to bottom), in the case simple random harmonic oscillation input with
γX(τ) = cos τ . Note the increasing amplitude of γY (τ) as T increases

Example 7.1.2 (An RC-Filter) A standard RC-filter is shown in Fig. 7.6.

The impulse response function of this circuit is of the form

h(t) = 1

RC
exp

(
− t

RC

)
· u(t), (7.1.14)
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Fig. 7.5 The output autocovariance functions γY (τ) (7.1.13) of the integrating system (7.1.8) with
T = 1, 2, 3, and 4, in the case of input with γX(τ) = 1/(1+ τ 2). Note the growing maximum and
spread of γY (τ) as T increases

Fig. 7.6 A standard RC-filter
with the impulse response
function h(t) =
(1/RC) exp(−t/RC) · u(t)

where u(t) is the usual Unit Step Function, R is the electrical resistance, and C is the
capacitance. The product RC represents the so-called time constant of the circuit.

In the case of the white noise input signal with γX(τ) = δ(τ ), the output
autocovariance function, for τ > 0, is

γY (τ ) =
∫ ∞

0

∫ ∞

0
δ(u− (s + τ))h(u)h(s) du ds =

∫ ∞

0
h(s + τ)h(s) ds

=
∫ ∞

0

1

RC
e−

s+τ
RC · 1

RC
e−

s
RC ds = 1

2RC
e−

τ
RC .

So

γY (τ ) = 1

2RC
exp

(
− |τ |

RC

)
. (7.1.15)
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Fig. 7.7 The output autocovariance function γY (τ) for the RC-filter (7.1.14) with a standard white
noise input with γX(τ) = δ(τ ). The figure on the left shows the case of a small time constant,
RC = 1, and the one on the right, the case of a larger time constant, RC = 3. Note the difference
in the maximum and the spread of γY (τ) in these two cases

The shape of the output autocovariance function for small and large values of the
RC constant is shown in Fig. 7.7.

Remark 7.1.1 (Ornstein-Uhlenbeck Stationary Signals) You may have noticed that
the ACvF appearing in (7.1.15) has the same exponential shape as that of the
switching signal considered in Sect. 5.1, and also, in discrete time, that of the
solution of a stochastic difference equation considered in the same section. However,
if the input white noise in the above example has a Gaussian distribution, then
the output is also Gaussian (obviously, not a switching signal which takes only
two values). A Gaussian stationary signal with the exponential ACvF (7.1.15) is
traditionally called the Ornstein-Uhlenbeck signal (process) and it appears as a
model in numerous physical and engineering problems, see Chap. 9 for a detailed
discussion of Gaussian stationary signals.

For the simple random harmonic oscillation with autocovariance γX(τ) = cos τ

as the input, the output autocovariance is

γY (τ ) =
∫ ∞

0

∫ ∞

0
cos(τ − u+ s)

1

RC
exp

( −s

RC

)
1

RC
exp

(−u

RC

)
ds du

= cos τ

1+ (RC)2 .

But a slightly more complex input autocovariance function,

γX(τ) = e−2|τ |,

corresponding to the switching input signal produces the output autocovariance
function of the form,
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γY (τ ) = 1

(RC)2

∫ ∞

0

∫ ∞

0
e−|τ−u+s|e−(s+u)/(RC) ds du (7.1.16)

= 1

(RC)2

[ ∫ τ

0

∫ ∞

0
e−(τ−u+s)e−(s+u)/(RC) ds du

+
∫ ∞

τ

(∫ u−τ

0
eτ−u+se−(s+u)/(RC) ds +

∫ ∞

u−τ

e−(τ−u+s)e−(s+u)/(RC) ds

)
du

]
,

which, although doable (see Problems and Exercises), is not fun to evaluate.

7.2 Frequency Domain Analysis and System’s Bandwidth

Examples provided in the preceding section demonstrated analytic difficulties
related to the time domain analysis of random stationary signals transmitted through
linear systems. In many cases analysis becomes much simpler if it is carried out in
the frequency domain. For this purpose let us consider the Fourier transform H(f )

of the system’s impulse response function h(t):

H(f ) =
∫ ∞

−∞
h(t)e−2πjf t dt, (7.2.1)

which traditionally is called the system’s transfer function.
Now the task is to calculate the power spectrum,

SY (f ) =
∫ ∞

−∞
γY (τ )e−2πjf τ dτ, (7.2.2)

of the output signal given the power spectrum,

SX(f ) =
∫ ∞

−∞
γX(τ)e−2πjf τ dτ,

of the input signal. Since the output autocovariance function γY (t) has been
calculated in Sect. 6.1, substituting the expression obtained in (7.1.4) into (7.2.1)
we get

SY (f ) =
∫ ∞

−∞

(∫ ∞

−∞

∫ ∞

−∞
γX(τ − s + u)h(s)h(u) ds du

)
e−2πjf τ dτ

=
∫ ∞

−∞

∫ ∞

−∞

(∫ ∞

−∞
γX(τ −s +u)e−2πjf (τ−s+u) dτ

)
h(s)e−2πjf sds · h(u)e2πjf udu.
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Making the substitution τ − s + u = w in the inner integral we arrive at the final
formula

SY (f ) = SX(f ) ·H(f ) ·H ∗(f ) = SX(f ) · |H(f )|2. (7.2.3)

So the output power spectrum is obtained simply by multiplying the input power
spectrum by a fixed factor |H(f )|2 which is called the system’s power transfer
function.

The appearance of the power transfer function, |H(f )|2, in formula (7.2.3)
suggests introduction of the concept of the system’s bandwidth. As in the case of
signals (see Sect. 6.4) several choices are possible.

The equivalent-noise bandwidth BWn is defined as the cutoff frequency fmax of
the limited-band white noise with the amplitude equal to the value of the system’s
power transfer function at 0 and the mean power equal to the integral of the system’s
power transfer function, that is,

2BWn|H(0)|2 =
∫ ∞

−∞
|H(f )|2 df,

which gives

BWn = 1

2|H(0)|2
∫ ∞

−∞
|H(f )|2 df. (7.2.4)

The half-power bandwidth BW1/2 is defined as the frequency where the system’s
power transfer function declines to one half of its maximum value which is always
equal to |H(0)|2. Thus it is obtained by solving, for an unknown BW1/2, the
equation,

|H(BW1/2)|2 = 1

2
|H(0)|2. (7.2.5)

Obviously, the above bandwidth concepts make best sense for low-pass filters,
that is in the case when the system’s power transfer function has a distinctive
maximum at 0, dominating its values elsewhere. But for other systems, such as
bandpass filters, similar bandwidth definitions can be easily devised.

Example 7.2.1 (An RC-Filter) Recall that in this case the impulse response
function is given by

h(t) = 1

RC
e−

t
RC · u(t).
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Fig. 7.8 Power transfer functions |H(f )|2 = 1/(1 + (2πRCf )2) for the RC-filter with the RC

constants 0.1 (thick line), 0.5 (medium line), and 2.0 (thin line). The half-power bandwidths BW1/2
are, respectively, 1.6, 0.32, and 0.08

So, the transfer function is

H(f ) =
∫ ∞

−∞
h(t)e−2πjf t dt =

∫ ∞

0

1

RC
e−

t
RC e−2πjf t dt = 1

1+ 2πjRCf

and, consequently, the power transfer function is (Fig. 7.8)

|H(f )|2 = 1

1+ 2πjRCf
· 1

1− 2πjRCf
= 1

1+ (2πRCf )2
. (7.2.6)

The half-power bandwidth of the RC-filter is easily computable from the
equation,

1

1+ (2πRC(BW1/2))2 =
1

2
,

which gives

BW1/2 = 1

2πRC
.

The bandwidth decreases hyperbolically with the increase of the RC constant.
The output power spectra for an RC-filter are thus easily evaluated. In the case

of the standard white noise input with SX(f ) ≡ 1, the output power spectrum is

SY (f ) = 1

1+ (2πRCf )2
.
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If the input signal is a random oscillation with the power spectrum,

SX(f ) = A2
0

2

(
δ(f − f0)+ δ(f + f0)

)
,

then the output power spectrum is

SY (f ) = A2
0

2

(
δ(f − f0)+ δ(f + f0)

)
· 1

1+ (2πRCf )2 .

If the input is a switching signal with the power spectrum,

SX(f ) = 1

1+ (af )2 ,

then the output power spectrum is

SY (f ) = 1

1+ (af )2 ·
1

1+ (2πRCf )2 .

Example 7.2.2 (Bandwidth of the Finite-Time Integrating Circuit) Let us calculate
the bandwidths BWn and BW1/2 for the finite time integrator with the impulse
response function

h(t) =
{

1, for 0 ≤ t ≤ T ;
0, elsewhere.

In this case the transfer function

H(f ) =
∫ T

0
e−2πjf tdt = 1

2πjf

(
1− e−2πjf T

)
,

so that the power transfer function

|H(f )|2 = (1− e−2πjf T )(1− e2πjf T )

(2πf )2 = 2(1− cos 2πf T )

(2πf )2 . (7.2.7)

Finding directly the integral of the power transfer function is a little tedious but,
fortunately, by Parseval’s formula,

∫ ∞

−∞
|H(f )|2 df =

∫ ∞

−∞
h2(t) dt =

∫ T

0
dt = T ,
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and

H(0) =
∫ T

0
h(t) dt = T .

Thus the equivalent-noise bandwidth (7.2.4) is

BWn = 1

2T 2 · T =
1

2T
.

Finding the half-power bandwidth requires solving Eq. (7.2.5)

2(1− cos 2π(BW1/2)T )

(2π(BW1/2))2 = T 2

2
,

which can be done only numerically. Indeed, a quick graphical analysis (see
Fig. 7.9), for T = 1, gives the half-power bandwidth BW1/2 = 0.443, slightly
less than the corresponding equivalent-noise bandwidth BWeqn = 0.500.

7.3 Digital Signal, Discrete Time Sampling

In this section we will take a look at transmission of random stationary signals
through linear systems when the signals are sampled at discrete times with the
sampling interval Ts . The system can be schematically represented as follows:

X(nTs) −→ h(nTs) −→ Y (nTs).

The input signal now forms a stationary random sequence,

X(nTs), n = . . .− 1, 0, 1, . . . , (7.3.1)

and the output signal,

Y (nTs), n = . . .− 1, 0, 1, . . . , (7.3.2)

is produced by discrete-time convolution of the input signal X(nTs) with the discrete
time impulse response sequence h(nT s):

Y (nTs) =
∞∑

i=−∞
X(iTs)h(nTs − iTs)Ts. (7.3.3)
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Fig. 7.9 Top: Power transfer function (7.2.7) of the finite time integrating circuit with T = 1.
Bottom: Magnified portion of the power transfer function for f between 0.44 and 0.45. This
graphical analysis gives the half-power bandwidth BW1/2 = 0.443

In the discrete-time case the realizability condition is

∞∑
n=−∞

|h(nTs)| <∞,

and the causality condition means that

h(nTs) = 0, for n < 0.
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With discrete-time inputs and outputs the autocovariance functions are just discrete
sequences and are defined by the formulas,

γX(kTs) = E(X(nTs)X(nTs + kTs)), γY (kTs) = E(Y (nTs)Y (nTs + kTs)).

Then a direct application of (7.3.3) yields the following formula for the output
autocovariance sequence as a function of the input autocovariance sequence and the
impulse response sequence:

γY (kTs) =
∞∑

l=−∞

∞∑
i=−∞

γX(kTs − lTs + iTs)h(lTs)h(iTs)T
2
s . (7.3.4)

To move into the frequency domain one can either directly apply the discrete or
fast Fourier transforms or, as in Sect. 6.3, use the straight continuous-time Fourier
transform technique assuming that both the signal and the impulse response function
have been interpolated by constants between sampling points. We will follow the
latter approach. So, using the formula (6.3.5), we get

SX(f ) = S1(f ) · S2,X(f ), (7.3.5)

with

S2,X(f ) =
∞∑

m=−∞
γX(mTs)e

−j2πmf Ts Ts,

and

SY (f ) = S1(f ) · S2,Y (f ), (7.3.6)

with

S2,Y (f ) =
∞∑

m=−∞
γY (mTs)e

−j2πmf Ts Ts,

and

S1(f ) = 1− cos 2πf Ts

2π2f 2T 2
s

.

Remember that all the relevant information about the discrete sampled signal is
contained in the frequency interval (−fs/2, fs/2) (see Remark 6.3.1). The transfer
function of this system is
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H(f ) =
∫ ∞

−∞
h(t)e−j2πf t dt =

∞∑
k=−∞

h(kTs)

∫ (k+1)Ts

kTs

e−j2πf t dt

= 1− ej2πf Ts

−j2πf Ts

∞∑
k=−∞

h(kTs)e
−j2πf kTs Ts, (7.3.7)

so that the power transfer function,

|H(f )|2 = 1− cos 2πf Ts

2π2f 2T 2
s

∞∑
k=−∞

∞∑
n=−∞

h(kTs)h(nTs)e
−j2πf (k−n)Ts T 2

s . (7.3.8)

Again, all the relevant information about the discrete power transfer function is
contained in the frequency interval (−fs/2, fs/2) (see Remark 6.3.1).

Finally, since we already know from Sect. 7.2 that

SY (f ) = |H(f )|2SX(f ),

we also get from ((7.3.5)–(7.3.6)) that

S2,Y (f ) = |H(f )|2S2,X(f ). (7.3.9)

or, equivalently,

∞∑
m=−∞

γY (mTs)e
−j2πmf Ts Ts = |H(f )|2 ·

∞∑
m=−∞

γX(mTs)e
−j2πmf Ts Ts.

(7.3.10)

Example 7.3.1 (Autoregressive Moving Average Signal (ARMA)) We now take the
sampling period Ts = 1 and the output Y (n) determined from the input X(n)

via the autoregressive moving average scheme with parameters p and q (in brief,
ARMA(p, q)):

Y (n) =
q∑

l=0

b(l)X(n− l)−
p∑

l=1

a(l)Y (n− l). (7.3.11)

Defining a(0) = 1, we can then write

p∑
l=0

a(l)Y (n− l) =
q∑

l=0

b(l)X(n− l).
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Since the Fourier transform of the convolution is a product of Fourier transforms,
we have

X(f )

q∑
l=0

b(l)e−2πjf lT = Y (f )

p∑
l=0

a(l)e−2πjf lT ,

so the transfer function

H(f ) = Y (f )

X(f )
=
∑q

l=0 b(l)e−2πjf lT∑p

l=0 a(l)e−2πjf lT
. (7.3.12)

Example 7.3.2 (A Solution of Stochastic Difference Equation) This example was
considered in Chap. 5 but let us observe that it is a special case of Example 7.3.1,
with parameters p = 1, q = 0, and the input signal being the standard discrete
white noise W(n) with σ 2

W = 1. In other words,

Y (n) = −a1Y (n− 1)+ b0W(n).

In view of (7.3.12), the power transfer function

|H(f )|2 = b0

1+ a1e−2πjf
· b0

1+ a1se2πjf
= b2

0

1+ a2
1 + 2a1 cos 2πf

,

with, again, all the relevant information contained in the frequency interval−1/2 <

f < 1/2.

Given that the input is the standard white noise, we have that

SY (f ) = |H(f )|2 · 1 = b2
0

1+ a2
1 + 2a1 cos 2πf

. (7.3.13)

One way to find the output autocovariance sequence γY (n) would be to take
into account the relationship (7.3.10) and expand (7.3.13) into the Fourier series;
its coefficients will form the desired autocovariance sequence. This procedure is
straightforward and requires only an application of the formula for the sum of a
geometric series (see Sect. 6.4).

However, we would like to explore here a different route and employ a recursive
procedure to find the output autocovariance sequence. First, observe that

γY (k) = E(Y (n)Y (n+ k))

= E(−a1Y (n− 1)+ b0X(n)) · (−a1Y (n+ k − 1)+ b0X(n+ k))

= a2
1E(Y (n− 1)Y (n+ k − 1))− a1b0E(Y (n− 1)X(n+ k))
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−a1b0E(X(n)Y (n+ k − 1))+ b2
0E(X(n)X(n+ k))

= a2
1γY (k)− a1b0γXY (k − 1)+ b2

0γX(k),

where

γXY (k) = E(X(n)Y (n+ k))

is the crosscovariance sequence of signals X(n) and Y (n). So,

γY (k) = b0

1− a2
1

(
− a1γXY (k − 1)+ b0γX(k)

)
.

For k = 0,

γY (0) = σ 2
Y =

b0

1− a2
1

(
− a1E(X(n)Y (n− 1))+ b0γX(0)

)

= b2
0

1− a2
1

γX(0) = b2
0

1− a2
1

.

For k = 1,

γY (1) = b0

1− a2
1

(
− a1γXY (0)+ b0γX(1)

)
= b0(−a1)

1− a2
1

E(X(0)Y (0))

= b0(−a1)

1− a2
1

E
(
X(0)

(
a1Y (−1)+ b0X(0)

))
= b2

0(−a1)

1− a2
1

.

For a general k > 1,

γY (k) = b0

1− a2
1

(
− a1γXY (k − 1)+ b0γX(k)

)
,

and, as above,

γXY (k − 1) = E
(
X(0)Y (k − 1)

)

= E
(
X(0)(−a1Y (k − 2)+ b0X(k − 1))

)

= (−a1)E
(
X(0)Y (k − 2)

)

= (−a1)γXY (k − 2) = · · · = (−a1)
k−1γXY (0) = b(0)(−a1)

k−1.
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Since the autocovariance sequence must be an even function of variable k, we finally
get, for any k = . . . ,−2,−1, 0, 1, 2, . . . ,

γY (k) = b2
0

1− a2
1

(−a1)
|k|,

thus recovering the result from Chap. 5.

7.4 Problems and Exercises

In the next three exercises also try solving the problem by finding first the
autocovariance function of the output to see how hard the problem is in the time-
domain framework.

1∗ The impulse response function of a linear system is h(t) = 1− t , for 0 ≤ t ≤ 1,
and 0 elsewhere.

(a) Produce a graph of h(t).

(b) Assume that the input is the standard white noise. Find the autocovariance
function of the output.

(c) Find the power transfer function of the system, its equivalent-noise bandwidth,
and half-power bandwidth.

(d) Assume that the input has the autocovariance function γX(t) = 3/(1 + 4t2).
Find the power spectrum of the output signal.

(e) Assume that the input has the autocovariance function γX(t) = exp(−4|t |).
Find the power spectrum of the output signal.

(f) Assume that the input has the autocovariance function γX(t) = 1−|t | for |t | < 1
and 0 elsewhere. Find the power spectrum of the output signal.

2 The impulse response function of a linear system is h(t) = e−2t , for 0 ≤ t ≤ 2,
and 0 elsewhere.

(a) Produce a graph of h(t).

(b) Assume that the input is the standard white noise. Find the autocovariance
function of the output.

(c) Find the power transfer function of the system, its equivalent-noise bandwidth,
and half-power bandwidth.

(d) Assume that the input has the autocovariance function γX(t) = 3/(1 + 4t2).
Find the power spectrum of the output signal.

(e) Assume that the input has the autocovariance function γX(t) = exp(−4|t |).
Find the power spectrum of the output signal.

(f) Assume that the input has the autocovariance function γX(t) = 1−|t | for |t | < 1
and 0 elsewhere. Find the power spectrum of the output signal.
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3 The impulse response function of a linear system is h(t) = e−0.05t , for t ≥ 10,
and 0 elsewhere.

(a) Produce a graph of h(t).

(b) Assume that the input is the standard white noise. Find the autocovariance
function of the output.

(c) Find the power transfer function of the system, its equivalent-noise bandwidth,
and half-power bandwidth.

(d) Assume that the input has the autocovariance function γX(t) = 3/(1 + 4t2).
Find the power spectrum of the output signal.

(e) Assume that the input has the autocovariance function γX(t) = exp(−4|t |).
Find the power spectrum of the output signal.

(f) Assume that the input has the autocovariance function γX(t) = 1−|t | for |t | < 1
and 0 elsewhere. Find the power spectrum of the output signal.

4 For a pair of random signals X(t) and Y (t), the crosscovariance γXY is defined
as follows:

γXY (t, s) = E((X(t)− μX(t))(Y (s)− μY (s)).

Random signals X(t) and Y (t) are said to be jointly stationary if they are stationary
and their crosscovariance satisfies the condition,

γXY (t, t + τ) = γXY (τ).

Consider random signals

X(t) = a cos(2π(f0t +�)), Y (t) = b sin(2π(f0t +�)),

where a and b are nonrandom constants and � is uniformly distributed on [0, 1].
Find the crosscovariance function for X and Y . Are these signals jointly stationary?

5* Consider the circuit shown in (Fig. 7.10).

Fig. 7.10
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Fig. 7.11

Assume that the input is the standard white noise.

(a) Find the power spectra SY (f ) and SZ(f ) of the outputs Y (t) and Z(t).
(b) Find the crosscovariance,

γYZ(τ) = E
(
Z(t)Y (t + τ)

)
,

between those two outputs.

6 Find the output autocovariance sequence for the discrete-time system represent-
ing a stochastic difference equation described in Example 7.3.2. Use the Fourier
series expansion of formula (7.3.12).

7 Consider the circuit shown in Fig. 7.11.

(a) Assume that the input is the standard white noise. Find the power spectrum
SY (f ) and the autocovariance function γY (τ ) of the output Y (t). Hint: Think
about the above circuit as two simple RC filters in series.

(b) Find the half-power and equivalent-noise bandwidth for the system shown in
Fig. 7.11 in the case when R1 = R2 and C1 = C2.

8 Show that a continuum limit of RC filters in series has a Gaussian p.d.f.-like
power transfer function. Then prove that a white noise transmitted through such a
filter yields a stationary signal on the output with Gaussian p.d.f.-like autocovariance
function. More precisely, consider n rescaled RC filters in series, each with the time
constant equal to RC/

√
n. Calculate its power transfer function, and take n →∞,

to obtain the sought power transfer function of the form

|H(f )|2 = e−(2πRCf )2
.

Hint Use the basic calculus fact that (1 + 1/x)x → e, as x → ∞. Then use
the inverse Fourier transform to calculate the desired ACvF of the output. Note the
fundamental fact: The (inverse) Fourier transform of a Gaussian p.d.f.-like function
is also a Gaussian p.d.f.-like function.
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Chapter 8
Optimization of Signal-to-Noise Ratio
in Linear Systems

Abstract Useful, deterministic signals passing through various transmission
devices often acquire extraneous random components due to, say, thermal noise
in conducting materials, radio clutter or aurora borealis magnetic field fluctuations
in the atmosphere, or deliberate jamming in warfare. If there exists some prior
information about the nature of the original useful signal and the contaminating
random noise it is possible to devise algorithms to improve the relative power of
the useful component of the signal or, in other words, to increase the signal-to-
noise ratio of the signal, by passing it through a filter designed for the purpose. In
this short chapter we give a few examples of such designs just to show how the
previously introduced techniques of analysis of random signals can be applied in
this context.

8.1 Parametric Optimization for a Fixed Filter Structure

The general problem of optimization (maximization) of the signal-to-noise ratio in
a linear system schematically pictured below

x(t)+N(t) −→ h(t) −→ y(t)+M(t)

can be formulated as follows: Consider a linear filter (system) characterized by its
impulse response function h(t) with the input signal X(t) of the form

X(t) = x(t)+N(t), (8.1.1)

where x(t) is a deterministic “useful” signal, and N(t) is a random stationary
“noise” signal with zero-mean and autocovariance function γN(t). Given the
linearity of the system, the output signal Y (t) is of the form

Y (t) = y(t)+M(t), (8.1.2)

where the deterministic “useful” output component
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y(t) =
∫ ∞

−∞
x(s)h(t − s)ds, (8.1.3)

and the “noise” output is a stationary zero-mean signal with the autocovariance
function,

γM(τ) =
∫ ∞

−∞

∫ ∞

−∞
γN(τ − s + u)h(s)h(u) ds du.

The task is as follows: given the shape of the input signal, design the structure of
the filter which would maximize the signal-to-noise power ratio on the output. More
precisely, we need to find an impulse response function h(t) such that, for a given
detection time t , the signal-to-noise ratio

S/N = PWy(t)

E(PWM)
(8.1.4)

is maximized over all possible impulse response functions; in brief, we want to find
h(t) for which

S/N = max.

Here, PWy(t) = y2(t) is the instantaneous power of the output signal, and
E(PWM) = γM(0) = σ 2

M is the mean power of the output noise. Hence, the
optimization problem is to find h(t), and also detection time t0, such that

S/N = y2(t0)

γM(0)
= y2(t0)

σ 2
M

= max . (8.1.5)

In the present section we will take a look at a relatively simple situation when
the general structure of the filter is essentially fixed and only certain parameters,
including the detection time t0, need to be optimized.

To show the essence of our approach we will just consider the RC-filter with the
impulse response function

h(t) = be−bt · u(t), (8.1.6)

with a single parameter b = 1/RC to be determined in addition to the optimal
detection time t0.
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Suppose that the “useful” input signal we are trying to detect on the output is a
rectangular impulse

x(t) =
{

A, for 0 ≤ t ≤ T ;
0, elsewhere,

(8.1.7)

and that the input noise is a white noise of “amplitude” N0, with the autocovariance
γN(t) = N0δ(t).

The deterministic “useful” output signal

y(t) =
∫ ∞

−∞
x(s)h(−(s − t))ds

=
{∫ t

0 Abe−b(t−s) ds for 0 < t < T ;∫ T

0 Abe−b(t−s) ds for t ≥ T ,

=
{

A(1− e−bt ), for 0 < t ≤ T ;
A(1− e−bT )e−b(t−T ), for t ≥ T .

(8.1.8)

It is pictured in Fig. 8.1 below.
Clearly, the maximum of the output signal is attained at t0 = T . On the other

hand, as calculated in Chap. 6, the autocovariance function of the output noise,

γM(τ) = N0
b

2
e−bτ ,
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Fig. 8.1 Response y(t) (8.1.8) of the RC-filter (8.1.6) to the rectangular input signal x(t) (8.1.7).
The parameter values are T = 1 , A = 1, and b = 1/RC = 1. The maximum is clearly attained
for t0 = T
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Fig. 8.2 Graph of the factor (1 − e−z)2/z in the formula (8.1.9) for the signal-to-noise ratio
S/N (z)

so that, at already optimized detection time t0 = T ,

S
N = y2(T )

γM(0)
= A2T [1− e−bT ]2

bN0/2
.

To simplify our calculations we will substitute z = bT . Now, our final task is to find
the maximum of the function

S
N (z) = 2A2T

N0
· (1− e−z)2

z
(8.1.9)

of one variable z. Function S/N (z), although simple-looking, is a little tricky and
we will start exploration of its maximum by graphing it, see Fig. 8.2. To find the
location of the maximum we calculate the derivative and try to solve the equation

d

dz

(1− e−z)2

z
= 2(1− e−z)e−zz− (1− e−z)2

z2 = 0.

Although the above equation can be easily simplified to the equation

ez − 1− 2z = 0,

the latter cannot be solved explicitly. So, as usual, as the first step we explore the
solution graphically, see Fig. 8.3. The nontrivial zero is approximately at zmax =
1.25, which gives bmax = 1.25/T so that the optimal RC constant

RCmax ≈ 1

bmax
= T

1.25
= 0.8T . (8.1.10)

Note that RCmax is independent of the “amplitude,” N0, of the input noise.
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Fig. 8.3 A plot of function ez − 1− 2z = 0. The nontrivial zero is approximately at zmax = 1.25

Evaluated at the optimal values of parameters, t0 and b, the maximum available
signal-to-noise ratio is

S
N max

≈ y2(T )

bmaxN0/2
= 2A2T [1− e−bmaxT ]2

bmaxN0
= 0.81 · A2T

N0
. (8.1.11)

It is proportional to signal’s duration T , and to the square of its amplitude A, but
inversely proportional to the “amplitude,” N0, of the noise.

8.2 Filter Structure Matched to Input Signal

In this section we will solve a more ambitious problem of designing the structure
of the filter to maximize the signal-to-noise ratio on the output rather than just
optimizing filter parameters. To be more precise, the task at hand is to find an
impulse response function h(t), and the detection time t0, such that

S/N = y2(t0)

σ 2
M

= max, (8.2.1)

for a given deterministic (nonrandom) input signal x(t) transmitted in the presence
of the white noise input N(t) with autocovariance function γN(t) = N0δ(t), where,
as before, x(t) = 0, for t ≤ 0, and

y(t) =
∫ ∞

0
x(t − s)h(s) ds. (8.2.2)
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For the output noise,

σ 2
M = γM(0) = N0

∫ ∞

0

(∫ ∞

0
δ(u− s)h(u) du

)
h(s) ds = N0

∫ ∞

0
h2(s) ds.

(8.2.3)

In this situation

S/N = y2(t0)

σ 2
M

= (
∫∞

0 x(t0 − s)h(s) ds)2

N0
∫∞

0 h2(s)ds
. (8.2.4)

In view of the Cauchy-Schwartz Inequality,

S/N ≤
∫∞

0 x2(t0 − s) ds · ∫∞0 h2(s) ds

N0
∫∞

0 h2(s)ds
= 1

N0

∫ ∞

0
x2(t0 − s) ds, (8.2.5)

with the equality, that is the maximum for S/N , achieved when the two factors,
h(s) and x(t0 − s), in the scalar product in the numerator of (8.2.4) are linearly
dependent. In other words, for any constant c, the impulse response function

h(s) = cx(t0 − s)u(s) = cx(−(s − t0))u(s) (8.2.6)

gives the optimal structure of the filter and maximizes the S/N ratio. This, so-
called, matching filter has the impulse response function equal to the input signal
x(t) run backwards in time, then shifted to the right by t0, and, finally, cut off at 0.

With the selection of the matching filter, in view of (8.2.4), the maximal value of
the S/N ratio is

S/Nmax = (
∫∞

0 x(t0 − s)cx(t0 − s)u(s) ds)2

N0
∫∞

0 (cx(t0 − s)u(s))2 ds
=
∫∞

0 x2(t0 − s) ds

N0
. (8.2.7)

Example 8.2.1 (Matching Filter for a Rectangular Input Signal) Consider a rectan-
gular input signal of the form

x(t) =
{

A, for 0 < t < T ;
0, elsewhere,

transmitted in the presence of an additive white noise with autocovariance function
γN(t) = N0δ(t). According to formula (8.2.6), its matching filter at detection time
t0, is

h(t) =
{

A, for 0 < t < t0;
0, elsewhere,
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Fig. 8.4 The dependence of the optimal signal-to-noise ratio on the detection time t0 for the
matching filter from Example 8.2.1. The input signal is the sum of a rectangular signal of amplitude
A = 1, and duration T = 1, and the white noise with autocovariance function γN(t) = δ(t)

if 0 ≤ t0 ≤ T , and

h(t) =
{

A, for t0 − T < t < t0;
0, elsewhere,

if t0 > T . So the S/Nmax, as a function of the detection time t0, is

S/Nmax(t0) =
{

A2t0/N0, for 0 < t0 < T ;
A2T/N0, for t0 > T.

Clearly, the earliest detection time t0 to maximize S/Nmax(t0) is t0 = T (see
Fig. 8.4).

At the optimal detection time t0 = T , or any later detection time,

S/Nmax = A2T

N0
. (8.2.8)

This result should be compared with the maximum signal-to-noise ratio
0.81A2T/N0 (see (8.1.11)) obtained in Sect. 8.1 by optimally tuning the RC-
filter: the best matching filter gives about a 25% gain in the signal-to-noise ratio
over the best RC-filter.

It is also instructive to trace the behavior of the deterministic part y(t) of the
output signal for the matching filter as a function of detection time t0. The formula
(8.2.2) applied to the matching filter immediately gives that, for 0 < t0 < T ,
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Fig. 8.5 The response y(t) of the matching filter for the rectangular input signal with amplitude
A = 1 and duration T = 1 (see Example 8.2.1). Left: For detection time t0 = 0.5 < T = 1.
Right: For detection time t0 = 1.25 > T = 1

y(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A2t, for 0 < t < t0;
A2t0, for t0 < t < T ;
−A2(t − (t0 + T )), for T < t < t0 + T ;
0, elsewhere,

(8.2.9)

and, for t0 ≥ T ,

y(t) =

⎧⎪⎪⎨
⎪⎪⎩

A2(t − (t0 − T )), for t0 − T < t < t0;
−A2(t − (t0 + T )), for t0 < t < t0 + T ;
0, elsewhere.

(8.2.10)

These two output signals are pictured in Fig. 8.5.

8.3 The Wiener Filter

Acausal Filter Given stationary random signals X(t) and Y (t) the problem is to
find a (not necessarily causal) impulse response function h(t) such that the mean-
square distance between Y (t) and the output signal,

Yh(t) =
∫ ∞

−∞
X(t − s)h(s) ds,

is smallest possible. In other words, we need h(t) minimizing the error quantity

E
(
Y (t)− Yh(t)

)2
.
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In the space of all finite variance (always zero-mean) random quantities equipped
with the covariance as the scalar product, the best approximation Yh(t) of a random
quantity Y (t) by elements of the linear subspace X spanned by linear combinations
of values of X(t − s),−∞ < s < ∞, is given by the orthogonal projection of
X(t) on X .1 That means that the difference Y (t)− Yh(t) must be orthogonal to all
X(t − s),−∞ < s <∞, or more formally,

E
(
(Y (t)− Yh(t)) ·X(t − s)

)

= E
(
Y (t) ·X(t − s)

)
− E

(∫ ∞

−∞
X(t − u)h(u) du ·X(t − s)

)

= γYX(s)−
∫ ∞

−∞
γX(s − u)h(u) du = 0,

for all s,−∞ < s < ∞. Hence, the optimal h(t) can be found by solving, for each
s, the integral equation

γYX(s) =
∫ ∞

−∞
γX(s − u)h(u) du, (8.3.1)

which involves only the autocovariance function γX(s) and the crosscorrelation
function γYX(s). The solution is found readily in the frequency domain. Remember-
ing that the Fourier transform of a convolution is the product of Fourier transforms,
and denoting by H(f ) the transfer function (the Fourier transform of the impulse
response function) of the optimal h(t), Eq. (8.3.1) can be rewritten in the form

SYX(f ) = SX(f ) ·H(f ),

which immediately gives the explicit formula for the transfer function of the optimal
filter:

H(f ) = SYX(f )

SX(f )
. (8.3.2)

The minimal error can then also be calculated explicitly:

E
(
Y (t)− Yh(t)

)2 = γY (0)−
∫ ∞

−∞
γYX(s)h(s) ds, (8.3.3)

1This argument is analogous to the one encountered in Chap. 2, when we discussed the best
approximation in power of deterministic periodic signals by their Fourier series.
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or, in terms of the optimal transfer function, using the Parseval formula for the last
integral, we have

E
(
Y (t)− Yh(t)

)2 =
∫ ∞

−∞

(
SY (f )− S∗YX(f )H(f )

)
df. (8.3.4)

Example 8.3.1 (Filtering White Noise Out of a Stationary Signal) Assume that
signal X(t) is the sum of a “useful” signal Y (t) and noise N(t), that is X(t) =
Y (t)+N(t), where Y (t) has the power spectrum

SY (f ) = 1

1+ f 2 ,

and is uncorrelated with the white noise N(t), which is assumed to have the power
spectrum SN(f ) ≡ 1. Then,

SYX(f ) = SY (f ) = 1

1+ f 2 , and SX(f ) = SY (f )+ SN(f ) = 2+ f 2

1+ f 2 .

The transfer function of the optimal filter is then

H(f ) = SYX(f )

SX(f )
= 1

2+ f 2
,

with the corresponding impulse response function

h(t) = 1

2
√

2
e−
√

2|t |,

and the error

E
(
Y (t)−Yh(t)

)2 =
∫ ∞

−∞

( 1

1+ f 2−
1

1+ f 2 ·
1

2+ f 2

)
df =

∫ ∞

−∞
1

2+ f 2 df = π√
2
.

Causal Filter For given stationary random signals X(t) and Y (t), the construction
of the optimal causal filter requires finding a causal impulse response function
h(t) = 0, for t ≤ 0, such that the error

E
(

Y (t)−
∫ ∞

0
X(t − s)h(s) ds

)2

is minimal. In other words, we are trying to find the best mean-square approximation
to Y (t) by (continuous) linear combinations of the past values of X(t). Using the
same orthogonality argument we applied for the acausal optimal filter we obtain
another integral equation for the optimal h(t):
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γYX(s) =
∫ ∞

0
γX(s − u)h(u) du,

this time valid only for all s > 0. This equation is traditionally called the Wiener-
Hopf equation. It is clear that to solve the above equation via an integral transform
method we have to replace the Fourier transform used in the acausal case by the
Laplace transform. However, the details here are more involved and, for the solution,
we refer the reader to the literature of the subject.2

8.4 Problems and Exercises

1 The triangular signal x(t) = 0.01t , for 0 < t < 0.01, and 0 elsewhere, is
combined with white noise having a flat power spectrum of 2V 2/Hz. Find the value
of the RC-constant such that the signal-to-noise ratio at the output of the RC-filter
is maximal at t = 0.01 s.

2* A signal of the form x(t) = 5e−(t+2)u(t) is to be detected in the presence of
white noise with a flat power spectrum of 0.25 V 2/Hz using a matched filter.

(a) For t0 = 2 find the value of the impulse response of the matched filter at t =
0, 2, 4.

(b) Find the maximum output signal-to-noise ratio that can be achieved if t0 = ∞.

(c) Find the detection time t0 that should be used to achieve output signal-to-noise
ratio that is equal to 95% of the maximum signal-to-noise ratio discovered in
part (b).

(d) The signal x(t) = 5e−(t+2)u(t) is combined with white noise having a power
spectrum of 2 V 2/Hz. Find the value of RC such that the signal/noise at the
output of the RC filter is maximal at t = 0.01 s.

3 Repeat the construction of the optimal filter from Example 8.3.1 in the case when
the useful signal Y (t) has a more general power spectrum

SY (f ) = a

b2 + f 2
,

and the uncorrelated white noise N(t) has arbitrary power spectrum SN(f ) ≡ N .
Discuss the properties of this filter when the noise power is much bigger than the
power of the useful signal, that is, when N � SY (f )? Construct the optimal acausal
filters for other selected spectra of Y (t) and N(t).

2 Norbert Wiener’s original Extrapolation, Interpolation, and Smoothing of Stationary Time series,
MIT Press and J. Wiley, New York 1950, is still very readable, but also see Chap. 10 of A. Papoulis,
Signal Analysis, McGraw-Hill, New York, 1977.



Chapter 9
Gaussian Signals, Covariance Matrices,
and Sample Path Properties

Abstract In general, determination of the shape of the sample paths of a random
signal X(t) requires knowledge of n-D (or, in the terminology of signal processing,
n-point) probabilities

P
(
a1 < X(t1) < b1, . . . , an < X(tn) < bn

)
,

for an arbitrary n, and arbitrary windows a1 < b1, . . . , an < bn. But, usually,
this information cannot be recovered if the only signal characteristic known is
the autocorrelation function. The latter depends on the 2-point distributions but
does not uniquely determine them. However, in the case of Gaussian signals, the
autocovariances determine not only 2-point probability distributions but also all the
n-point probability distributions, so that complete information is available within the
second-order theory. In particular, that means that you only have to estimate means
and covariances to obtain the complete model. Also, in the Gaussian universe, the
weak stationarity implies the strict stationarity as defined in Chap. 4. For the sake
of simplicity all signals in this chapter are assumed to be real-valued. The chapter
ends with a more subtle analysis of sample paths properties of stationary signals
such as continuity and differentiability; in the Gaussian case these issues have fairly
complete answers.

Of course, faced with real-world data the proposition that they are distributed
according to a Gaussian distribution must be tested rigorously. Many such tests have
been developed by the statisticians.1 In other cases, one can make an argument in
favor of such a hypothesis based on the Central Limit Theorem (4.5.5) and (4.5.6).

9.1 Linear Transformations of Random Vectors

In Chap. 3 we have calculated probability distributions of transformed random
quantities. Repeating that procedure in the case of a linear transformation of the

1See, e.g., M. Denker and W.A. Woyczyński’s book mentioned in previous chapters.

© Springer Nature Switzerland AG 2019
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for Industry, Technology, and Engineering, https://doi.org/10.1007/978-3-030-20908-7_9
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1D random quantity X given by the formula

Y = aX, a > 0, (9.1.1)

we can obtain the cumulative distribution function (c.d.f.) FY (y) of the random
quantity Y in terms of the c.d.f. FX(x) of the random quantity X as follows:

FY (y) = P(Y ≤ y) = P(aX ≤ y) = P(X ≤ y/a) = FX(y/a). (9.1.2)

To obtain an analogous formula for the probability density functions (p.d.f.) it
suffices to differentiate both sides of (9.1.2) to see that

fY (y) = d

dy
FY (y) = 1

a
fX

(y

a

)
. (9.1.3)

Example 9.1.1 Consider a standard 1D Gaussian random quantity X ∼ N(0, 1)

with the p.d.f.

fX(x) = 1√
2π

e−x2/2. (9.1.4)

Then the random quantity, Y = aX, a > 0, has the p.d.f.,

fY (y) = 1√
2πa

e
− y2

2a2 . (9.1.5)

Obviously, the expectation

EY = E(aX) = aEX = 0,

and the variance of Y is

σ 2
Y = E(aX)2 = a2EX2 = a2. (9.1.6)

If we conduct the same argument for a < 0, the p.d.f. of Y = aX will be

fY (y) = 1√
2π(−a)

e
− y2

2a2 . (9.1.7)

Thus formulas (9.1.6) and (9.1.7) can be unified in a single statement: If X ∼
N(0, 1), then, for any a �= 0, random quantity Y = aX has p.d.f.

fY (y) = 1√
2π |a|e

− y2

2a2 . (9.1.8)
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Using the above elementary reasoning as a model we will now derive the formula
for a d-dimensional p.d.f.

f �Y (�y) = f �Y (y1, . . . , yd)

of a random (column) vector

�Y =
⎛
⎜⎝

Y1
...

Yd

⎞
⎟⎠

obtained by a nondegenerate linear transformation

�Y = A �X (9.1.9)

consisting of multiplication of the random vector

�X =
⎛
⎜⎝

X1
...

Xd

⎞
⎟⎠ ,

with a known p.d.f.

f �X(�x) = f �X(x1, . . . , xd),

by a fixed nondegenerate nonrandom matrix

A =
⎛
⎝ a11, · · · , a1d

· · ·
ad1, · · · , add

⎞
⎠ .

In other words, we assume that det(A) �= 0, or, equivalently, that the rows of the
matrix A form a linearly independent system of vectors.

In terms of its coordinates the result of the linear transformation (9.1.9) can be
written in the explicit form

�Y =

⎛
⎜⎜⎝

a11X1 + a12X2 + · · · + a1dXd

a21X1 + a22X2 + · · · + a2dXd

· · · · · · · · · · · ·
ad1X1 + ad2X2 + · · · + addXd

⎞
⎟⎟⎠ .

To calculate the probability distribution of �Y following the above 1D approach
we must make use of the essential assumption of invertibility of the matrix A, an
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analogue of the assumption a �= 0 in the 1D case. Then, for a domain D in the
d-dimensional space Rd ,

P( �Y ∈ D) = P(A �X ∈ D) = P( �X ∈ A−1D). (9.1.10)

This identity can be rewritten in terms of p.d.f.s of �Y and �X as follows:

∫
D

f �Y (�y) dy1 · . . . · dyd =
∫

A−1D

f �X(�x) dx1 · . . . · dxd .

Making a substitution �x = A−1�z in the second integral, in view of the d-dimensional
change of variables formula, we get that

∫
D

f �Y (�y) dy1 · . . . · dyd =
∫

D

f �X(A−1�z) · | det (A−1)| dz1 · . . . · ·dzd,

where det (A−1) is just the Jacobian of the substitution �x = A−1�z. Remembering
that the determinant of the inverse matrix A−1 is the reciprocal of the determinant
of the matrix A, we get the identity

∫
D

f �Y (�y) dy1 · . . . dyd =
∫

D

f �X(A−1�z)
| det (A)| dz1 · . . . · dzd .

Since this identity holds true for any domain D, the integrands on both sides must
be equal which gives the final formula for the p.d.f. of �Y :

f �Y (�y) = f �X(A−1 �y)

| det (A)| , if det(A) �= 0. (9.1.11)

The 1D formula (9.1.3) is, obviously, the special case of the above general result.

9.2 Gaussian Random Vectors

As in the one-dimensional case, all nondegenerate zero-mean d-dimensional Gaus-
sian random vectors can be obtained as nondegenerate linear transformations of a
standard d-D Gaussian random vector

�X =
⎛
⎜⎝

X1
...

Xd

⎞
⎟⎠
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in which the coordinates X1, . . . , Xd are independent N(0, 1) random quantities.
Because of their independence, the d-dimensional p.d.f. of �X is the product of 1D
N(0, 1) p.d.f.s and is thus of the product form

f �X(�x) = e
−x2

1
2√
2π
· . . . · e

−x2
d

2√
2π

= 1

(2π)d/2 e−
1
2 (x2

1+···+x2
d )

= 1

(2π)d/2
e−

1
2 ‖�x‖2 = 1

(2π)d/2
e−

1
2 �xT �x, (9.2.1)

where ‖�x‖ stands for the norm (magnitude) of the vector �x, and the superscript T

denotes the transpose of a matrix. Indeed,

�xT �x = (x1, . . . , xd) ·
⎛
⎜⎝

x1
...

xd

⎞
⎟⎠ = x2

1 + · · · + x2
d = ‖�x‖2.

It is the latter form in (9.2.1) that will be useful now in applying formula (9.1.11).
Indeed, substituting the last expression for f �X(�x) in (9.2.1) into (9.1.11), one
immediately gets,2

f �Y (�y) = 1

(2π)d/2| det(A)|e
− 1

2 ‖A−1 �y‖2

= 1

(2π)d/2| det(A)|e
− 1

2 (A−1 �y)T ·(A−1 �y)

= 1

(2π)d/2| det(A)|e
− 1

2 �yT (AAT )−1 �y. (9.2.2)

Thus formula (9.2.2) gives the general form of the d-dimensional zero-mean
Gaussian p.d.f., and just as we identified the parameter a2 in the 1D case (9.1.5)
and (9.1.6) as the variance of the random quantity Y , we can identify entries of the
matrix

� = AAT (9.2.3)

appearing in the exponent in (9.2.2) as statistically significant parameters of the
random vector �Y .

2Remember that, for any matrices M, and N, we have (MN)T = NT MT , (MN)−1 = N−1M−1,
and (MT )−1 = (M−1)T .



234 9 Gaussian Signals, Covariance Matrices, and Sample Path Properties

To see what they are let us first calculate the entries γij , i, j = 1, 2, . . . , d, of
matrix �:

γij = ai1aj1 + ai2aj2 + · · · + aidajd . (9.2.4)

On the other hand, covariances (we are working with zero-mean vectors!) of
different components of random vector �Y

E(YiYj ) = E
(
(ai1X1 + . . .+ aidXd) · (aj1X1 + . . .+ ajdXd)

)

= ai1aj1 + ai2aj2 + · · · + aidajd , (9.2.5)

because EXiXj = 1, if i = j , and = 0, if i �= j .
So, it turns out that

� = (γij ) = (EYiYj ), (9.2.6)

and matrix � = (γij ) is simply the covariance matrix of the general zero-mean
Gaussian random vector �Y . Thus, since

det(�) = det(AAT ) = det(A) · det(AT ) = (det(A))2,

we finally get that the p.d.f. of �Y can be written in the form

f �Y (�y) = 1

(2π)d/2| det(�)|1/2 e−
1
2 �yT �−1 �y, (9.2.7)

where � is the covariance matrix of �Y satisfying the nondegeneracy condition
det(�) �= 0.

Remark 9.2.1 (Gaussian Random Vectors with Nonzero Mean) Of course, to get the
p.d.f. of a general Gaussian random vector with nonzero expectation

E �Y = �μ = (μ1, . . . , μd)T ,

it suffices to shift the p.d.f. (9.2.7) by �μ to obtain that

f �Y (�y) = 1

(2π)d/2| det(�)|1/2
e−

1
2 (�y−�μ)T �−1(�y−�μ), (9.2.7)

where

� = (σij ) = (E(Yi − μi)(Yj − μj )) (9.2.8)
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is the covariance matrix of �Y . A Gaussian random vector with joint p.d.f. given by
formulas (8.2.7) and (8.2.8) is often called a normal N( �μ,�) random vector.

Example 9.2.1 (2D Zero-Mean Gaussian Random Vectors (See, Also, Exam-
ple 4.3.2)) Let us carry out the above calculation explicitly in the special case
of dimension d = 2. Then the covariance matrix

� =
(

EY1Y1 EY1Y2

EY2Y1 EY2Y2

)
=
(

σ 2
1 σ1σ2ρ

σ1σ2ρ σ 2
2

)
,

where the variances of coordinate vectors

σ 2
1 = EY 2

1 , σ 2
2 = EY 2

2 ,

and the correlation coefficient of the two components

ρ = EY1Y2

σ1σ2
.

The determinant of the covariance matrix

det(�) = σ 2
1 σ 2

2 (1− ρ2),

and its inverse

�−1 = 1

σ 2
1 σ 2

2 (1− ρ2)

(
σ 2

2 −σ1σ2ρ

−σ1σ2ρ σ 2
1

)
.

Hence, the p.d.f. of a general zero-mean 2D Gaussian random vector is of the
form

f�Y(y1, y2) = 1

(2π)2/2σ1σ2

√
1− ρ2

×

exp

⎡
⎢⎢⎢⎣−

1

2
(y1, y2)

(
σ 2

2 −σ1σ2ρ

−σ1σ2ρ σ 2
1

)

σ 2
1 σ 2

2 (1− ρ2)

(
y1

y2

)
⎤
⎥⎥⎥⎦ ,

which, after performing prescribed matrix algebra, leads to the final expression

f�Y(y1, y2) = 1

2πσ1σ2

√
1− ρ2

· exp

[
− 1

2(1− ρ2)

(
y2

1

σ 2
1

− 2ρ
y1y2

σ1σ2
+ y2

2

σ 2
2

)]
.

(9.2.9)
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Fig. 9.1 Level curves for the 2D Gaussian probability density functions f �Y (y1, y2) (9.2.9), for the
following selection of parameters (ρ, σ1, σ2) (clockwise, from the top left corner): (0,9,9), (0,8,10),
(3/4, 9,9), and (3/4,8,10). There are nine level curves in each plot, equally spaced between level
zero and the maximum of the p.d.f

The plots of the above densities are bell-shaped surfaces and we have seen one
example of such a surface in Chap. 4 (Fig. 4.14). The level curves of these densities,
described by the equations

y2
1

σ 2
1

− 2ρ
y1y2

σ1σ2
+ y2

2

σ 2
2

= const,

are ellipses in the (y1, y2)-plane, with semiaxes and orientations depending on
the parameters ρ, σ1, and σ2, representing, respectively, the correlation coefficient
between the two components of the Gaussian random vector �Y , the variance of the
first, and of the second component. Figure 9.1 shows the level curves of 2D Gaussian
densities for four selections of the above three parameters.
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9.3 Gaussian Stationary Signals

By definition, a nondegenerate zero-mean random signal X(t) is Gaussian if, for
any positive integer N , and any selection of sampling times t1 < t2 < · · · < tN , the
random vector

�X(t1,...,tN ) =

⎛
⎜⎜⎜⎝

X(t1)

X(t2)
...

X(tN)

⎞
⎟⎟⎟⎠ (9.3.1)

is a Gaussian zero-mean random vector with nondegenerate covariance
matrix. Thus, in view of results of Sect. 9.2, its N -dimensional joint p.d.f.
f(t1,...,tN )(x1, . . . , xN) is given by the formula3

f(t1,...,tN )(x1, . . . , xN) = 1

(2π)N/2| det(�)|1/2 · e−
1
2 �xT �−1 �x, det(�) �= 0,

(9.3.2)

where � is the N ×N covariance matrix

� = �(t1,...,tN ) = (γX(ti , tj )) = (EX(ti)X(tj )). (9.3.3)

Thus, in view of (9.3.1) and (9.3.2), the only information needed to completely
determine all finite-dimensional joint probability distributions of a zero-mean
Gaussian random signal X(t) is the knowledge of its autocovariance function

γX(s, t) = EX(s)X(t).

For stationary Gaussian signals the situation is simpler yet as the autocovariance
function γX(s, t) is just a function of a single variable:

γX(s, t) = γX(t − s).

Thus the covariance matrix � for a stationary random signal X(t) sampled at
t1, t2, . . . , tN , is of the form

�(t1,...,tN ) =

⎛
⎜⎜⎝

γX(0) γX(t2 − t1) γX(t3 − t1) . . . γX(tN − t1)

γX(t1 − t2) γX(0) γX(t3 − t2) · · · γX(tN − t2)

· · · · · · · · · · · · · · ·
γX(t1 − tN ) γX(t2 − tN ) γX(t3 − tN ) · · · γX(0)

⎞
⎟⎟⎠ .

3Note that, for some simple (complex-valued) Gaussian stationary signals, like, e.g., X(t) = X·ejt ,
where X ∼ N(0, 1), one can choose the tis so that the determinant of the covariance matrix is zero;
take, for example N = 2, and t1 = π, t2 = 2π . Then the joint p.d.f. of the Gaussian random vector
(X(t1), . . . , X(tN ))T is not of the form (9.3.2). Such signals are called degenerate.
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For the real-valued signals under consideration it is always symmetric because, in
that case, ACvF is an even function so that γX(ti − tj ) = γX(tj − ti ). Also, it is
obviously invariant under translations, that is, for any t ,

�(t1,...,tN ) = �(t1+t,...,tN+t), (9.3.4)

which, in view of (9.3.2) and (9.3.3), implies that all finite-dimensional p.d.f.s of
X(t) are also invariant under translations, that is, for any positive integer N , any
sampling times t1, . . . , tN , and any time shift t ,

f(t1,...,tN )(x1, . . . , xN) = f(t1+t,...,tN+t)(x1, . . . , xN). (9.3.5)

In other words:

A Gaussian weakly stationary signal is strictly stationary.

In the particular case when the sampling times are uniformly spaced with the
intersampling time interval t , the covariance matrix � of the signal X(t) sampled
at times

t, t +t, t + 2t, . . . , t + (N − 1)t

is

⎛
⎜⎜⎝

γX(0) γX(t) γX(2t) · · · γX((N − 1)t)

γX(t) γX(0) γX(t) · · · γX((N − 2)t)

· · · · · · · · · · · · · · ·
γX((N − 1)t) γX((N − 2)t) γX((N − 3)t) · · · γX(0)

⎞
⎟⎟⎠

Example 9.3.1 (Ornstein-Uhlenbeck Random Signal (Process)) Consider a Gaus-
sian signal X(t) with autocovariance function

γX(t) = e−0.3|t |.

We are interested in finding the joint p.d.f. of the signal at times t1 = 1, t2 = 2, and
the probability that the signal has values between −0.6 and 1.4 at t1, and between
0.7 and 2.6 at t2.

The first step is then to find the covariance matrix

�(1,2) =
(

γX(0) γX(1)

γX(1) γX(0)

)
=
(

e0 e−0.3

e−0.3 e0

)
=
(

1 0.74
0.74 1

)
.
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The covariance coefficient of X(1) and X(2) is then

ρ = γX(2− 1)

γX(0)
= 0.74

and, in view of Example 8.2.1 (8.2.9), the joint p.d.f. of X(1) and X(2) is of the
form

f(1,2)(x1, x2) = 1

2π
√

1− 0.742
· exp

[ −1

2(1− 0.742)

(
x2

1 − 2 · 0.74x1x2 + x2
2

)]

= 0.24 · exp
[
−1.11

(
x2

1 − 1.48x1x2 + x2
2

)]
.

Finally, the desired probability

P
(
−0.6 ≤ X(1) ≤ 1.4, and 0.7 ≤ X(2) ≤ 2.6

)

=
∫ 1.4

−0.6

∫ 2.6

0.7
0.24 · e−1.11(x2

1−1.48x1x2+x2
2 ) dx1 dx2 = 0.17,

where the last integral has been evaluated numerically in Mathematica with a two-
digit precision.

9.4 Sample Path Properties of General and Gaussian
Stationary Signals

Mean-Square Continuity and Differentiability It is clear that the local properties
of the autocovariance function γX(τ) of a stationary signal X(t) affect properties of
the sample paths of the signal itself in the mean-square sense, that is in terms of the
behavior of the expectation of the square of signal’s increments, i.e., the variances
of the increments.4 Indeed, with no distributional assumptions on X(t), we have

σ 2(τ ) = E(X(t + τ)−X(t))2 = 2(γX(0)− γX(τ));

the variance of the increment is independent of t . Hence, we have the following
result:

4Recall that the sequence (Xn) of random quantities is said to converge to X, in the mean-square,
if E|Xn −X|2 → 0, as n →∞.
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A stationary signal X(t) is continuous in the mean-square sense, that is, for any
t > 0,

lim
τ→0

E(X(t + τ)−X(t))2 = 0,

if, and only if, the autocovariance function γX(τ) is continuous at τ = 0, that is,

lim
τ→0

γX(τ) = γX(0).

In particular, signals with autocovariance functions γX(τ) = e−|τ |, or γX(τ) =
1/(1+ τ 2), are mean-square continuous.

A similar, mean-square analysis of the limit at τ = 0 of the differential ratio,

E
(

(X(t + τ)−X(t))

τ

)2

= 2
γX(0)− γX(τ)

τ 2

shows that a stationary signal with autocovariance function γX(τ) = e−|τ | cannot
be possibly mean-square differentiable because in this case

lim
τ→0

γX(0)− γX(τ)

τ 2 = lim
τ→0

1− e−|τ |

τ 2 = ∞,

whereas the differentiability cannot be excluded for the signal with autocovariance
γX(τ) = 1/(1+ τ 2) because, in this case,

lim
τ→0

γX(0)− γX(τ)

τ 2
= lim

τ→0

1− 1/(1+ τ 2)

τ 2
= 1.

Of course, the above brief discussion just verifies the boundedness of the variance
of the signal’s differential ratio as τ → 0, not whether the latter has a limit. So, let
us take a closer look at the issue of the mean-square differentiability of a stationary
signal, that is the existence of the random quantity X′(t), for a fixed t . First, observe
that this existence is equivalent to the statement that5

lim
τ1→0

lim
τ2→0

E
(

X(t + τ1)−X(t)

τ1
− X(t + τ2)−X(t)

τ2

)2

= 0.

5This argument relies on the so-called Cauchy criterion of convergence for random quantities with
finite variance: A sequence Xn converges in the mean-square as n → ∞, that is, there exists a
random quantity X such that limn→∞ E(Xn − X)2 = 0, if and only if limn→∞ limm→∞ E(Xn −
Xm)2 = 0. This criterion permits the verification of the convergence without knowing what the
limit is; see, e.g., Theorem 11.4.2 in W. Rudin, Principles of Mathematical Analysis, McGraw-
Hill, New York 1976.
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But the expression under the limit signs is equal to

E
(

X(t + τ1)−X(t)

τ1

)2

+ E
(

X(t + τ2)−X(t)

τ2

)2

−2E
(

X(t + τ1)−X(t)

τ1
· X(t + τ2)−X(t)

τ2

)
.

So, the existence of the derivative X′(t) in the mean-square is equivalent to the
fact that the first two terms converge to γX′(0) and the third to −2γX′(0). But the
convergence of the last term means the existence of the limit

lim
τ1→0

lim
τ2→0

1

τ1τ2
E
(
(X(t + τ1)−X(t)) · (X(t + τ2)−X(t))

)

= lim
τ1→0

lim
τ2→0

1

τ1τ2

(
γX(τ2 − τ1)− γX(τ1)− γX(τ2)+ γX(0)

)

= lim
τ1→0

lim
τ2→0

1

τ1τ2
−τ1τ2γX(0),

where τf (t) := f (t + τ)− f (t) is the usual difference operator. Indeed,

−τ1τ2γX(0) = −τ1(γX(τ2)− γX(0))

= (γX(τ2 − τ1)− γX(−τ1))− (γX(τ2)− γX(0)).

Since the existence of the last limit appearing above means twice differentiability of
the autocovariance function of X at τ = 0 we arrive at the following criterion:

A stationary signal X(t) is mean-square differentiable if and only if its autoco-
variance function γX(τ) is twice differentiable at τ = 0. Moreover, in this case, the
crosscovariance of the signal X(t) and its derivative X′(t)

EX(t)X′(s) = lim
τ→0

γX(t + τ − s)− γX(t − s)

τ
= ∂

∂t
γX(t − s), (9.4.1)

and the autocovariance of the derivative signal

EX′(t)X′(s) = lim
τ→0

1

τ

(
∂

∂t
γX(t + τ − s)− ∂

∂t
γX(t − s)

)
= ∂2

∂t ∂s
γX(t − s).

(9.4.2)
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In a similar fashion one can calculate the crosscovariance of higher derivatives
of the signal X(t) to obtain that6

EX(n)(t)X(m)(s) == ∂n+m

∂tn∂sm
γX(t − s). (9.4.3)

Sample Path Continuity A study of properties of the individual sample paths (tra-
jectories, realizations) of stationary random signals is a more delicate matter, with
the most precise results obtainable only in the case of Gaussian signals. Indeed, we
have observed in the previous sections that, for a Gaussian signal, the autocovariance
function determines all the finite-dimensional probability distributions of the signal,
meaning that for any finite sequence of windows, [a1, b1], [a2, b2], . . . , [aN, bN ],
and any collections of time instants t1, t2, . . . , tN , we can find the probability that
the signal fits into those windows at prescribed times, that is,

P(a1 < t1 < b1, a2 < t2 < b2, . . . , aN < tN < bN).

So it seems that by taking N to∞, and making the time instants closer to each other,
and windows narrower, one could find the probability that the signal’s sample path
has any specific shape or property. This idea is roughly speaking correct but only in
a subtle sense that will be explained below.

The discussion of the sample path properties of stationary signals will be based
here on the following theorem of the theory of general random signals (stochastic
processes) due to N.N. Kolmogorov:

Theorem 9.4.1 Let g(h) be an even function, nondecreasing for h > 0, and such
that g(h) → 0 as h → 0. Furthermore, suppose that X(t) is a random signal such
that

P
(
|X(t + h)−X(t)| > g(h)

)
≤ q(h), (9.4.4)

for a function q(h) satisfying the following three conditions:

q(h) → 0, as h→ 0; (9.4.5)

∞∑
n=1

2nq(2−n) <∞; (9.4.6)

∞∑
n=1

g(2−n) <∞. (9.4.7)

Then, with probability 1, the sample paths of the signal X(t) are continuous.

6For details, see M. Loeve, Probability Theory, Van Nostrand, Princeton 1963, Section 34.3.
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Although the proof of the above theorem is beyond the scope of this book7 the
intuitive meaning of the assumptions (9.4.4)–(9.4.7) is clear: for the signal to have
continuous sample paths the increments of the signal over small time intervals can
be permitted to be large only with a very small probability.

Applied to the second order (not necessarily stationary) signals Theorem 9.4.1
immediately gives the following.

Corollary 9.4.1 If there exists a τ0 such that, for all τ, 0 ≤ τ < τ0, and all t in a
finite time interval,

E
(
X(t + τ)−X(t)

)2 ≤ C|τ |1+ε (9.4.8)

for some constants C, ε > 0, then the sample paths of the signal X(t) are continuous
with probability 1.

To see how Corollary 9.4.1 follows from Theorem 9.4.1 observe first that, for
any random quantity Z, and any constant a > 0.8

P(Z > a) ≤
∫ ∞

a

fZ(z) dz ≤
∫ ∞

a

z2

a2 fZ(z) dz ≤ EZ2

a2 .

Condition (9.4.8) implies then that

P
(
|X(t + τ)−X(t)| > g(τ)

)
≤ C|τ |1+ε

g2(τ )
,

so that selecting g(τ) = |τ |ε/4, and

q(τ) = C|τ |1+ε

g2(τ )
= C|τ |1+ε/2,

we easily see that g(τ) and q(τ) are continuous functions vanishing at τ = 0, and
that the conditions (9.4.6) and (9.4.7) of the theorem are also satisfied. Indeed,

∞∑
n=1

2nq(2−n) = C

∞∑
n=1

2n(2−n)1+ε/2 = C

∞∑
n=1

2−nε/2 <∞,

7For a more complete discussion of this theorem and its consequences for sample path continuity
and differentiability of random signals, see, for example, M. Loève, Probability Theory, Van
Nostrand, Princeton 1963, Section 35.3.
8This inequality is known as the Chebyshev Inequality and its proof here has been carried out only
in the case of absolutely continuous probability distributions. The proof in the discrete case is left
to the reader as an exercise, see Sect. 9.5.
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and

∞∑
n=1

g(2−n) =
∞∑

n=1

2−nε/4 <∞.

In the special case of a stationary signal we have E(X(t + τ) − X(t))2 =
2(γX(0) − γX(τ)), so the sample path continuity is guaranteed by the following
condition on the autocovariance function:

|γX(0)− γX(τ)| ≤ C|τ |1+ε, (9.4.9)

for some constant ε > O, and small enough τ .
In particular, for the autocovariance function γX(τ) = 1/(1+ τ 2),

|γX(0)− γX(τ)| = 1− 1

1+ τ 2 =
τ 2

1+ τ 2 ≤ τ 2,

and the condition (9.4.8) is satisfied thus giving the sample path continuity.
However, for a signal with autocovariance function γX(τ) = e−|τ |, the difference

γX(0) − γX(τ) behaves asymptotically like τ , for τ → 0. Therefore, there is no
positive ε for which condition (9.4.9) is satisfied and we cannot claim the continuity
of the sample path in this case—not a surprising result if one remembers that the
exponential autocovariance was first encountered in the context of the obviously
sample path discontinuous switching signal. Nevertheless, as we observed at the
beginning of this section a signal with an exponential autocovariance is mean-square
continuous.

For a Gaussian stationary signal X(t), Theorem 9.4.1 can be applied in a more
precise fashion since the probabilities P(X(t + τ)− X(t) > a) are known exactly.
Indeed, since for any positive z,

∫ ∞

z

e−x2/2 dx ≤
∫ ∞

z

x

z
e−x2/2 dx = 1

z
e−z2/2,

because x/z ≥ 1 in the interval of integration, we have, for any nonnegative function
g(τ), and positive constant C,

P
(
|X(t + τ)−X(t)| > Cg(τ)

)
≤
√

2

π

σ(τ)

Cg(τ)
exp

(
−1

2

C2g2(τ )

σ 2(τ )

)
, (9.4.10)

where σ 2(τ ) = E(X(t + τ)−X(t))2 = 2(γX(0)− γX(τ)). This estimate yields the
following result:

Corollary 9.4.2 If there exists τ0 such that, for all τ, 0 ≤ τ ≤ τ0, the
autocovariance function γX(τ) of a stationary Gaussian signal X(t) satisfies
condition
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γX(0)− γX(τ) ≤ K

| ln |τ ||δ , (9.4.11)

for some constants K > 0 and δ > 3, then the signal X(t) has continuous sample
paths with probability 1.

The proof of the Corollary is completed by selecting

g(τ) = | ln |τ ||−ν,

with any number ν satisfying condition 1 < ν < (δ − 1)/2, choosing

q(C, τ) = K ′

C| ln |τ ||δ/2−ν
exp

(
− C2

2K
| ln |τ ||δ−2ν

)
,

and verifying the convergence of the two series in conditions (9.4.6) and (9.4.7); see
an exercise in Sect. 9.5.

Returning to the case of a stationary random signal with an exponential auto-
covariance function we see that if the signal is Gaussian, then Corollary 9.4.2
guarantees the continuity of its sample paths with probability 1. Indeed, condi-
tion (9.4.11) is obviously satisfied since (e.g., picking δ = 4) we have

lim
τ→0

(γX(0)− γX(τ)) · | ln |τ ||4 = lim
τ→0

(1− e−|τ |) · | ln |τ ||4 = 0

in view of de l’Hospital’s rule.

9.5 Problems and Exercises

1* A zero-mean Gaussian random signal has the autocovariance function of the
form

γX(τ) = e−0.1|τ | cos 2πτ .

Plot it. Find the power spectrum SX(f ). Write the covariance matrix for the signal
sampled at four time instants separated by 0.5 s. Find its inverse (numerically; use
any of the familiar computing platforms, such as Mathematica and Matlab).

2 Find the joint p.d.f. of the signal from Exercise 9.5.1 at t1 = 1 and t2 = 2. Write
the integral formula for

P(0 ≤ X(1) ≤ 1, 0 ≤ X(2) ≤ 2).

Evaluate the above probability numerically.
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3* Find the joint p.d.f. of the signal from Problem 1 at t1 = 1, t2 = 1.5, t3 = 2,
and t4 = 2.5. Write the integral formula for

P(−2 ≤ X(1) ≤ 2,−1 ≤ X(1.5) ≤ 4,−1 ≤ X(2) ≤ 1, 0 ≤ X(2.5) ≤ 3).

Evaluate the above probability numerically.

4* Show that if a 2D Gaussian random vector �Y = (Y1, Y2) has uncorrelated
components Y1, Y2, then those components are statistically independent random
quantities.

5 Produce 3D surface plots for p.d.f.s of three 2D Gaussian random vectors:
(X(1.0),X(1.1))T , (X(1.0),X(2.0))T , and (X(1.0),X(5.0))T , where X(t) is the
stationary signal described in Example 9.3.1. Comment on the similarities and
differences in the three plots.

6 Prove that if there exists a τ0 such that, for all τ < τ0, and all t in a finite time
interval,

E
(
X(t + τ)−X(t)

)2 ≤ C
|τ |

| ln |τ ||1+δ
,

for some C > 0 and δ > 2, then the sample paths of the signal X(t) are continuous
with probability 1. Hint: This result is a little more delicate than Corollary 9.4.1
but the idea of the proof is similar: take g(τ) = | ln |τ ||−β , for a β between 1 and
δ/2, wherefrom q(τ) = |τ |/| ln |τ ||1+δ−2β , and check conditions (9.4.4)–(9.4.7) in
Theorem 9.4.1.

7 Verify the Chebyshev inequality, P(|Z| > a) ≤ EZ2/a2, a > 0, for a discrete
random quantity Z.

8 Produce 3D plots of several 2D Gaussian densities with selected means and
covariance matrices. Then plot level curves for them.

9 Random signal X(t) has an autocovariance function of the form γX(τ) =
exp(−|τ |α) with 0 < α ≤ 2. For which values of parameter α can you claim
the continuity of sample paths of X(t) with probability 1? For α > 2, the above
formula does not give a covariance function of any stationary signal. Why? Hint:
Check positive-definiteness condition from Remark 6.2.1.

10 Verify formula (9.4.3) for the crosscovariance of higher derivatives of a
stationary signal.

11 Verify the convergence of the series (9.4.6) and (9.4.7) in the proof of Corol-
lary 9.4.2.



Chapter 10
Spectral Representation of Discrete-Time
Stationary Signals and Their Computer
Simulations

Abstract This chapter provides a spectral representation of stationary, discrete-
time random signals and determines that its autocovariance function is a positive-
definite sequence cumulative power spectrum is also introduced. Stochastic integrals
with respect to signals with uncorrelated increments are developed permitting
introduction of computer algorithms to simulate stationary signals with a given
spectral density.

10.1 Spectral Representation

Given an arbitrary power spectrum SX(f ) or, equivalently, its Inverse Fourier Trans-
form, the autocovariance function, γX(τ), our ability to simulate the corresponding
stationary random signals X(t), using only the pseudo-random number generator
which produces, say, discrete-time white noise, depends on the observation that, in
some sense, all stationary random signals can be approximated by superpositions of
random harmonic oscillations such as those discussed in Examples 5.1.2 and 5.1.9.
Recall that if A1, . . . , AN , are independent, zero mean random variables with finite
variance, and 0 < f1, . . . , fN ≤ 1, is a sequence of distinct frequencies, then a
random superposition of N simple complex-valued harmonic oscillations in discrete
time, n = . . . ,−1, 0, 1, . . . ,

XN(n) =
N∑

k=1

Ak · ej2πfkn, 0 < fk ≤ 1, (10.1.1)

is a stationary signal with the autocovariance function of the form

γXN
(n) =

N∑
k=1

E|Ak|2 · ej2πfkn. (10.1.2)

This suggests the following, intuitive approach to our simulation problem:
Given a power spectrum, SX(f ), concentrated, say, on the frequency interval
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[0, 1], mimicking the continuous-time analysis of Sect. 6.2, we can expect the
corresponding ACvF to be the “discrete-time inverse Fourier transform,” i.e., the
Fourier coefficients of SX(f ),

γX(n) =
∫ 1

0
S(f )ej2πf n df.

The latter integral can now be approximated by its discretized version, so that

γX(n) ≈
N∑

k=1

S(fk) fk ej2πfkn, (10.1.3)

where

0 = f0 < f1 < . . . < fN = 1

is a partition of the [0, 1] interval and fk = fk − fk−1. Comparing (10.1.2)
and (10.1.3), it seems that to produce an approximated version of X(n), it now
suffices to generate a standard white noise W(k), k = 1, . . . N, take as the random
amplitudes in (10.1.1) the sequence

Ak =
√

S(fk)fkW(k), k = 1, . . . , N, (10.1.4)

so that E|Ak|2 = S(fk)fk , and produce the sequence,

XN(n) =
N∑

k=1

√
S(fk)fkW(k) · ej2πfkn ≈ X(n). (10.1.5)

Alternatively, we can consider the Fourier series expansion of the power spec-
trum (see Chap. 2, but here the variable is the frequency f ),

SX(f ) =
∞∑

n=−∞
cn · ej2πf n, (10.1.6)

with the Fourier coefficients

cn =
∫ 1

0
SX(f ) · e−j2πf n df. (10.1.7)

Now, the above integral can be replaced, approximately, by the discretized sum,

cn ≈
K∑

k=1

ak · e−j2πfkn, (10.1.8)

with the Fourier coefficients
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ak =
∫ fk

fk−1

SX(f ) df, k = 1, 2, . . . , K (10.1.9)

corresponding to the power of the signal X(n) concentrated in each of the frequency
bands [fk−1, fk] , k = 1, . . . , K. Finally, we recognize in (10.1.8) the discrete-time
version of the ACvF of the form (10.1.2) of the signal of the form (10.1.1), which
gives us yet another approximate expression for the sought signal X(n):

XK(n) ≈
K∑

k=1

Ak · e−j2πfkn, (10.1.10)

where Ak are selected to be arbitrary zero-mean, independent random variables,
with E|Ak|2 = ak, k = 1, . . . , K , so that

γXK
(n) =

K∑
k=1

ak · e−j2πfkn ≈ cn. (10.1.11)

If W(k) is the standard white noise (of an arbitrary distribution), then choosing

Ak = √ak ·W(k), k = 1, . . . , K (10.1.12)

will also do the job.
Obviously, the key to applying the above schemes is in the details: In what sense

the approximations is meant? What are the precise algorithms? What is the rigorous
justification for them? Also, clearly, for smooth spectra, S(f ), and large K , and N ,
the difference between the expressions, (10.1.5) and (10.1.10), is negligible.

In this chapter we work with discrete-time signals and the rigorous answer to
the above questions is contained in the so-called Spectral Representation Theorem
for stationary random signals which is derived in this chapter. On the way to its
formulation we introduce the necessary concepts including the crucial construction
of stochastic integrals with respect to a white noise signal, often called the white-
noise integrals. We conclude with a computer algorithm based on the Spectral
Representation Theorem.

10.2 Autocovariance as a Positive-Definite Sequence

In this chapter we will study random stationary signals in discrete time, that is
sequences of complex-valued random quantities

. . . , X(−2),X(−1),X(0),X(1),X(2), . . .
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with time n extending all the way from minus to plus infinity. The stationarity
is meant in the second-order, weak sense, that is we will assume that the means
EX(n) = 0 and the autocovariance function, now, really a sequence,

E[X∗(m)X(n)] = γ (n−m), m, n = . . . ,−2,−1, 0, 1, 2, . . . ,

depends only on the time-lag τ = n − m. The following properties of the
autocovariance sequence are immediately verified:

(i) For any n,

E|X(n)|2 = E[X∗(n)X(n)] = E|X(0)|2 = γX(0) ≥ 0, (10.2.1)

γX(−n) = γ ∗X(n), (10.2.2)

|γX(n)| ≤ γX(0). (10.2.3)

The last inequality is a direct consequence of the Cauchy-Schwartz inequality.
Also, importantly, the autocovariance sequence is positive definite, that is, for

any positive integer N , arbitrary integers, n1, n2, . . . , nN , and arbitrary complex
numbers λ1, λ2, . . . , λN ,

N∑
i,k=1

γX(ni − nk)λiλ
∗
k ≥ 0. (10.2.4)

Indeed,

N∑
i,k=1

γX(ni − nk)λiλ
∗
k =

N∑
i,k=1

E[X(ni)X
∗(nk)]λiλ

∗
k

= E
N∑

i,k=1

[λiX(ni)] · [λkX(nk)]∗ = E
N∑

i=1

λiX(ni) ·
N∑

k=1

[λkX(nk)]∗

= E

∣∣∣∣∣
N∑

i=1

λiX(ni)

∣∣∣∣∣
2

≥ 0.

Recall, see Remark 6.2.1, that the ACvF in continuous time was also proven to be
positive-definite.
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10.3 Cumulative Power Spectrum of Discrete-Time
Stationary Signal

The development of this section will be analogous to the development of the concept
of power spectrum of continuous-time signals in Sect. 5.2. However, we will proceed
in a slightly different fashion, and with more mathematical precision. The basic
structural result regarding the autocovariance function of a discrete-time stationary
signal can be formulated as follows:

Herglotz Theorem The following statements about sequence γ (n), n =
. . . ,−2,−1, 0, 1, 2, . . . , of complex numbers are equivalent:

(i) Sequence γ (n) is an autocovariance sequence of a stationary discrete-time
signal, that is, there exists a stationary signal X(n) such that γ (n) = γX(n);

(ii) Sequence γ (n) is positive-definite, that is, it satisfies condition (10.2.4);
(iii) There exists a nondecreasing bounded function SX(f ), defined on the interval

[0, 1], such that

γ (n) =
∫ 1

0
ej2πnf dS(f ), n = . . . ,−2,−1, 0, 1, 2, . . . . (10.3.1)

Function SX(f ) is called cumulative power spectrum of signal X.

Remark 10.3.1 (Power Spectrum Density) The integral of the form
∫

a(f ) dS(f ),
called the Stieltjes integral, is to be understood as the limit of sums

∑
a(fi)·S(fi),

when maxi |S(fi)| = S(fi) − S(fi−1) → 0. As before, 0 = f0 < f1 < . . . <

fN = 1, stands for a partition of the interval [0, 1].
If the cumulative power spectrum has a spectral density S(f ), 0 ≤ f ≤ 1, that

is,

S(f ) =
∫ f

0
S(g) dg,

dS(f )

df
= S(f ) ≥ 0,

then formula (10.2.1) takes the form of the usual Riemann integral

γ (n) =
∫ 1

0
ej2πnf S(f ) df, n = . . . ,−2,−1, 0, 1, 2, . . . , (10.3.2)

and the sequence γ (−n) can be simply viewed as the sequence of Fourier
coefficients of power spectrum density S(f ).

In the special case when the cumulative power spectrum is constant, except for
jumps, that is

S(f ) =
∑

k

sk u(f − fk), 0 = f0 < f1 < . . . < fN = 1,



252 10 Spectral Representation of Discrete-Time Stationary Signals and Their. . .

where u(t) is the unit step function, then

∫
a(f ) dS(f ) =

∑
l

a(fk)sk,

so that

γ (n) =
∑

k

ske
j2πnfk , n = . . . ,−2,−1, 0, 1, 2, . . . . (10.3.3)

and the power spectrum density can be understood as a sum of the Dirac-deltas:

S(f ) =
∑

k

sk δ(f − fk).

However, it is worth remembering that there are so-called singular cumulative
power spectra that are not of either of the two types described above (nor their
mixtures).1

Proof of Herglotz Theorem The implication (i) #⇒ (ii) has been proved following
the definition (10.2.4).

We shall now prove that (ii) #⇒ (iii). So, assume that γ (n) is positive definite.
In view of (10.2.4), selecting ni = i, λi = e−j2πif , i = 1, 2, . . . , N, we have

0 ≤
N∑

i,k=1

γ (i − k)e−j2πif ej2πkf =
N∑

i,k=1

γ (i − k)e−j2π(i−k)f

=
N−1∑

m=−N+1

(N − |m|)γ (m)e−j2πmf ,

after substitution m = i − k. Define,

SN(f ) := 1

N

N−1∑
m=−N+1

(N − |m|)γ (m)e−j2πmf .

Then,

SN(f ) ≥ 0, and
∫ 1

0
SN(f ) df = γ (0). (10.3.4)

1See Sect. 4.1 or, e.g., M. Denker and W.A. Woyczyński, Introductory Statistics and Ran-
dom Phenomena. Uncertainty, Complexity and Chaotic Behavior in Engineering and Science,
Birkhäuser-Boston 1998.
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By a fundamental real analysis result called Banach-Alaoglu Theorem,2 condi-
tions (10.3.4) guarantee the existence of a function S(f ) and a sequence Ni ↗
∞, i →∞, such that, for each bounded and smooth function a(f ),

∫ 1

0
a(f )SNi

(f ) df −→
∫ 1

0
a(f ) dS(f ).

Therefore, selecting a(f ) = ej2πmf , we have

∫ 1

0
ej2πmf dS(f ) = lim

i→∞

∫ 1

0
ej2πmf SNi

(f ) df = γ (m)

because, for each m such that |m| ≤ Ni ,

∫ 1

0
ej2πmf SNi

(f ) df = γ (m)

(
1− |m|

Ni

)
.

Thus the existence of the cumulative spectral measure for each discrete-time
stationary signal has been established.

The implication (iii) #⇒ (ii) can be verified directly. Indeed, given assumption
(iii),

N∑
i,k=1

γ (ni − nk)λiλ
∗
k =

N∑
i,k=1

∫ 1

0
ej2π(ni−nk)f dS(f ) · λiλ

∗
k

=
∫ 1

0

N∑
i,k=1

[λie
j2πnif ] · [λke

j2πnkf ]∗dS(f ) =
∫ 1

0

∣∣∣∣∣
N∑

i=1

λie
j2πnif

∣∣∣∣∣
2

dS(f ) ≥ 0,

because S(f ) is nondecreasing, so that its increments, “dS(f ),” are nonnegative.
The implication (ii) #⇒ (i) follows from the following fact established in

Sect. 10.2. For any given positive-definite matrix � = (γik), i, k = 1, 2, . . . , N,

there exists a Gaussian random vector X = (X1, X2, . . . , XN), with covariance
matrix �. Now, for any N , it suffices to take � = (γ (i − k)) , i, k = 1, 2, . . . , N,

and define

X(1) = X1, X(2) = X2, . . . , X(N) = XN.

2See, e.g., G.B. Folland, Real Analysis, J. Wiley, New York 1984.
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This proves the existence of a finite discrete-time stationary random signal with an
autocovariance sequence given by a prescribed positive-definite sequence.3

10.4 Stochastic Integration with Respect to Signals with
Uncorrelated Increments

Recall that our goal in this chapter is to develop a simulation algorithm for discrete-
time stationary signals with a given power spectrum, and one of the methods used
for that purpose involves representation of the random signal as a stochastic integral
with respect to another random signal which has uncorrelated increments which is
easy to simulate via a pseudo-random number generator. The purpose of this section
is to introduce such integrals.

The finite variance, zero-mean, real-valued signal W(w) of continuous, or
discrete parameter w is said to have uncorrelated increments if, for any w1 ≤ w2 ≤
w3,

E
[
(W(w3)−W(w2)) · (W(w2)−W(w1))

]
= 0. (10.4.1)

In other words, such signals have uncorrelated increments over disjoint intervals
of parameter w. Observe that condition (10.4.1) can be rewritten in terms of the
autocovariance function γW (v,w) = EW(v)W(w) (which here is truly a function
of two variables v,w, and not just the parameter lag w−v as is the case for stationary
signals) as follows:

E
[
(W(w3)−W(w2)) · (W(w2)−W(w1))

]
= (10.4.2)

EW(w3)W(w2)− EW(w2)W(w2)− EW(w3)W(w1)+ EW(w2)W(w1)

= γW (w3, w2)− γW (w2, w2)− γW (w3, w1)+ γW (w2, w1) = 0.

Example 10.4.1 (Random Walk: The Cumulative White Noise in Discrete Time) In
discrete time, the white noise, W(n), was defined simply as a sequence of zero-
mean, independent (and thus uncorrelated), identically distributed random quantities
with finite variance, so that its autocovariance sequence,

γW (n,m) = γW (m− n) = EW(n)W(m) =
{

0, if n−m �= 0;
σ 2, if n−m = 0.

3A step proving the existence of an infinite such sequence requires an application of the so-called
Kolmogorov Extension Theorem, see, e.g., P. Billingsley, Probability and Measure, Wiley, New
York, 1986.
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We will define the random walk, or cumulative white noise, generated by the white
noise W(n) as the random signal,

W(n) = W(1)+W(2)+ . . .+W(n), n = 1, 2, . . . ,

with the convention W(0) = 0.

The following mental picture is worth keeping in mind: In the case of the
symmetric Bernoulli white noise, W(n), with P(W(n) = ±1) = 1/2, the generated
random walk W(n) moves “forward” by 1, whenever W(n) = +1, and “backward”
by 1, whenever W(n) = −1; each possibility occurring with probability 1/2.

The cumulative white noise has uncorrelated increments. Indeed, if n1 ≤ n2 ≤
n3, then

E
[
(W(n3)−W(n2)) · (W(n2)−W(n1))

]

= E
[
(

n3∑
n=1

W(n)−
n2∑

n=1

W(n)) · (
n2∑

n=1

W(n)−
n1∑

n=1

W(n))
]

= E
[(

W(n2 + 1)+ . . .+W(n3)
)
·
(
W(n1 + 1)+ . . .+W(n2)

)]

= E
(
W(n1 + 1)+ . . .+W(n2)

)
· E
(
W(n2 + 1)+ . . .+W(n3)

)
= 0,

because W(n1 + 1)+ . . .+W(n2) and W(n2 + 1)+ . . .+W(n3) are independent
and zero-mean.

For any signal W(w) with uncorrelated increments we will introduce a cumula-
tive control function

C(w) := E[W(w)−W(0)]2 = E[W(w)]2 ≥ 0, (10.4.3)

which simply measures the variance of the increment of the signal from 0 to w.
Since the variance of the sum of uncorrelated random quantities is the sum of their
variances, the cumulative control function is always nondecreasing because, for 0 ≤
v ≤ w,

C(w) = E[(W(w)−W(0)]2 = E[(W(w)−W(v))+ (W(v)−W(0))]2

= E[(W(w)−W(v))]2 + E[(W(v)−W(0))]2 ≥ E[(W(v)−W(0))]2 = C(v).

(10.4.4)

Observe that, under condition W(0) = 0, the cumulative control function
determines the correlation structure of W(w) and vice versa. If, say, 0 ≤ v ≤ w,
then
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γW (v,w) = EW(v)W(w)

= E[W(v)−W(0)] · [(W(w)−W(v))+ (W(v)−W(0)] =

= E[W(v)−W(0)] · [(W(v)−W(0)] = C(v),

because the increments over intervals [0, v] and [v,w] are uncorrelated. Since an
analogous reasoning holds true in the case 0 ≤ w ≤ v, we get the general formula

γW (v,w) = C(min(v,w)). (10.4.5)

An important class of signals with independent (and thus uncorrelated) incre-
ments are those that also have stationary increments, that is for which the c.d.f. of
the increment W(w) − W(v) is the same as the c.d.f. of the increment W(w +
z)−W(v + z), for any z. Random walk from Example 10.4.1 is such a signal. For
signals with independent and stationary increments the cumulative control function
satisfies condition

C(w + v) = C(w)+ C(v) (10.4.6)

because

E[W(w + v)−W(0)]2 = E[W(w + v)−W(v)]2 + E[W(v)−W(0)]2

= E[W(w)−W(0)]2 + E[W(v)−W(0)]2.

Condition (10.4.6) forces the cumulative function to be linear, that is, of the form

CW (w) = const · w, (10.4.7)

and, in view of (10.4.5), the autocovariance structure of a signal with stationary and
uncorrelated increments is of the form

γW (v,w) = const ·min(v,w). (10.4.8)

Example 10.4.2 (The Wiener or Brownian Motion Process) A continuous-time
Gaussian signal with stationary and independent increments with

CW (w) = w, γW (v,w) = min(v,w)

is called the Wiener stochastic process (or the Brownian motion process). Its sample
trajectories are shown in Fig. 1.4. Notice that in this case, in view of Sect. 9.3,
the autocovariance function gives a complete description of all finite-dimensional
distributions of W(w). Indeed, given parameter values,
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w1 ≤ w2 ≤ . . . ≤ wN,

the random vector

(W(w1),W(w2), . . . ,W(wN))

is a Gaussian random vector with the covariance matrix � = (min(wi, wk)), so that
its joint c.d.f. can be explicitly calculated:

P
(
W(w1) ≤ a1,W(w2) ≤ a2, . . . ,W(wN) ≤ aN

)
(10.4.9)

=
∫ a1

−∞

∫ a2

−∞
. . .

∫ aN

−∞
e
− ζ2

1
2w1√

2πw1
· e

− (ζ2−ζ1)2

2(w2−w1)

√
2π(w2 − w1)

· . . . · e
− (ζN−ζN−1)2

2(wN−wN−1)√
2π(wN − wN−1)

×dζN · . . . · dζ2 · dζ1.

At this point, we are able to introduce the stochastic integral

∫ 1

0
x(w) dW(w),

with respect to a signal W(w) with uncorrelated increments, for a deterministic,
possibly complex-valued function x(w). If x(w) is a step function of the form

x(w) =
N∑

i=1

xi1(wi−1,wi ](w), (10.4.10)

with 0 = w0 < w1 < . . . < wN−1 < wN = 1, and 1A(w) denoting the indicator
function of set A,4 then, obviously

∫ 1

0
x(w) dW(w) :=

N∑
i=1

xi · (W(wi)−W(wi−1)). (10.4.11)

Note that the variance of the stochastic integral in (10.4.11) is

E

∣∣∣∣
∫

x(w) dW(w)

∣∣∣∣
2

= E

∣∣∣∣∣
N∑

i=1

xi · (W(wi)−W(wi−1))

∣∣∣∣∣
2

4Recall that the indicator function 1A(w) is defined as being equal to 1 for w belonging to set A,
and being 0 for w outside A.
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=
N∑

i=1

|xi |2E(W(wi)−W(wi−1))
2 =

N∑
i=1

|xi |2(C(wi)− C(wi−1))

=
∫ 1

0
|x(w)|2 dC(w), (10.4.12)

because, in view of (9.3.4), for any 0 < v < w,

E(W(w)−W(v))2 = C(w)+ C(v)− 2C(v ∧ w) = C(w)− C(v). (10.4.13)

Since any function x(w) such that

∫ 1

0
|x(w)|2 dC(w) <∞ (10.4.14)

is a limit of a sequence xn(w) of step functions,5 in the sense that

∫ 1

0
|xn(w)− x(w)|2 dC(w)→ 0, as n→∞,

the definition (10.4.11) of the stochastic integral for step functions can now be
extended to any x(w) satisfying condition (10.4.14), that is square integrable with
respect to dC(w), by setting

∫ 1

0
x(w) dW(w) := lim

n→∞

∫ 1

0
xn(w) dW(w), (10.4.15)

where the limit is understood as the limit in the mean-square of random quantities
(that is, variance, given that all the random quantities have zero means). In view
of this procedure, the general stochastic integral for a function x(w) satisfying
condition (10.4.14) enjoys the “isometric” property

E

∣∣∣∣
∫ 1

0
x(w) dW(w)

∣∣∣∣
2

=
∫ 1

0
|x(w)|2 dC(w). (10.4.16)

Example 10.4.3 (Gaussian Stochastic Integrals) Note that if the cumulative control
function C(w) of a Gaussian process with independent increments V(w) has a
density c(w), that is,

5See, e.g., G. B. Folland, Real Analysis, W. Wiley, New York 1984.
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C(w) =
∫ w

0
c(v) dv,

dC(w)

dw
= c(w) ≥ 0, 0 ≤ w ≤ 1,

then, in view of (10.4.16),

E(V(w))2 = E
(∫ w

0
dV(v)

)2

=
∫ w

0
c(v) dv =

∫ w

0

(√
c(v)

)2
dv,

which implies that, for any x(w) satisfying (10.4.14), the statistical properties of the
stochastic integrals,

∫ 1

0
x(v) dV(v), and

∫ 1

0
x(w)

√
c(w) dW(w), (10.4.17)

where W(w) is the Wiener process are the same. Later on this fact will serve as the
basis of computer simulation of stationary random signals with a given spectrum.

Because, for any complex numbers ξ, η, we have the so-called “polarization
formulas,”

Re [ξ · η∗] = 1

4
(|ξ + η|2 − |ξ − η|2),

Im [ξ · η∗] = 1

4
(|ξ + jη|2 − |ξ − jη|2),

which express the product in terms of the squared moduli, the “isometric” rela-
tion (10.3.16) extends from the mean-squares to scalar products. In other words, for
any x(w), y(w), satisfying condition (10.4.14)

E

[∫ 1

0
x(w) dW(w) ·

(∫ 1

0
y(w) dW(w)

)∗]
=
∫ 1

0
x(w) · y∗(w) dC(w).

(10.4.18)

10.5 Spectral Representation of Stationary Signals

The fundamental result about the structure of discrete-time stationary signals is
that they are, essentially, sequences of random Fourier coefficients of stochastic
processes with uncorrelated increments. More precisely, we have the following.

Spectral Representation Theorem A discrete-time random signal X(n), n =
. . . ,−2,−1, 0, 1, 2, . . . , is stationary if and only if it has the representation
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X(n) =
∫ 1

0
ej2πnf dW(f ) (10.5.1)

for a certain random process W(f ), 0 ≤ f ≤ 1, which has uncorrelated
increments. Moreover, the cumulative spectral function of X(n) is identical to the
cumulative control function of W(f ), that is,

SX(f ) = CW (f ), 0 ≤ f ≤ 1. (10.5.2)

Proof If random signal X(n) is of the form (10.5.1), then it is stationary because it
has zero mean and because, in view of the “isometry” (10.4.17),

E[X(n)X∗(m)] = E

[∫ 1

0
ej2πnf dW(f ) ·

(∫ 1

0
ej2πmf dW(f )

)∗]

=
∫ 1

0
ej2π(n−m)f dCW (f ).

The above calculation also identifies the cumulative control function of process
W(f ) as the cumulative spectral function of the random signal X(n).

The proof of the reverse implication is more delicate as it requires identification,
for each signal X(n), of a process W(f ) yielding representation (10.5.1). So,
assume that X(n) is a stationary signal with autocovariance sequence

γX(n) =
∫ 1

0
ej2πnf dSX(f ).

Denote by L2
0(P) the space of random quantities with zero mean and finite

variance in the space L2(dSX(f )) of complex functions on [0, 1] which are square
integrable with respect to cumulative spectral function SX(f ). Next, consider a
linear mapping I from L2

0(P) into L2(dSX(f )) defined by the identity

I [X(n)] := ej2πnf , n = . . . ,−2,−1, 0, 1, 2, . . . , (10.5.3)

on complex exponentials and extended, in a natural way, to all their combinations.
In other words, for any complex numbers c−N, . . . , c−1, c0, c1, . . . , cN ,

I

[
N∑

n=−N

cnX(n)

]
=

N∑
n=−N

cne
j2πnf . (10.5.4)
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Mapping I is an isometry6 on such linear combinations because

E

∣∣∣∣∣
N∑

n=−N

cnX(n)

∣∣∣∣∣
2

=
N∑

n,m=−N

cnc
∗
mE[X(n)X∗(m)]

=
N∑

n,m=−N

cnc
∗
m

∫ 1

0
ej2π(n−m)f dSW (f ) =

∫ 1

0

∣∣∣∣∣
N∑

n=−N

cne
j2πnf

∣∣∣∣∣
2

dSX(f ),

and, as such, it extends to the linear isometry

I : L[X(n), n = . . . ,−2,−1, 0, 1, 2, . . . ] �−→ L2(dSX(f )),

where L[X(n), n = . . . ,−2,−1, 0, 1, 2, . . . ] is the subspace of L2(P) consisting
of linear combinations of X(n)s and their mean-square limits. Since any isometry is
necessarily a one-to-one mapping, I has a well-defined inverse

I−1 : L2(dSX(f )) �−→ L[X(n), n = . . . ,−2,−1, 0, 1, 2, . . . ],

which is also a linear isometry.
Now we will define a stochastic process W(f ) by the formula

W(f ) := I−1(1[0,f ]),

where 1[0,f ](g), 0 ≤ g ≤ 1, is the indicator function of the interval [0, f ]. This
process has zero mean and uncorrelated increments since, for f1 ≤ f2 ≤ f3, in
view of the isometric property of I−1,

E[(W(f3)−W(f2)) · (W(f2)−W(f1))]

= E[(I−1(1[0,f3])− I−1(1[0,f2])) · (I−1(1[0,f2])− I−1(1[0,f1]))]

= E[I−1(1[0,f3])− 1[0,f2])) · (I−1(1[0,f2])− 1[0,f1]))]

= E[I−1(1(f2,f3]) · (I−1(1(f1,f2])]

=
∫ 1

0
1(f2,f3](f ) · 1(f1,f2](f ) dSX(f ) = 0.

The same calculation shows that

6In the sense that it preserves the norms: the standard deviation is the norm in space L2
0(P), and

‖a‖ = (
∫ 1

0 |a(f )|2 dSX(f ))1/2, for an a(f ) in L2(dSX(f )).
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EW2(f ) =
∫ 1

0
12[0,f ](g) dSX(g) = SX(f ).

Now, proceeding again via step functions like in Sect. 10.3, using the linearity and
isometry properties of I−1, we have, for any function a(f ) in space L2(dSX(f )),

I−1(a) =
∫ 1

0
a(f ) dW(f ).

In particular, selecting a(f ) = ej2πnf , we obtain that

X(n) = I−1(ej2πnf ) =
∫ 1

0
ej2πnf dW(f ),

which concludes the proof of the spectral representation theorem.

Example 10.5.1 (Spectral Representation of White Noise) Let W(f ) be the Wiener
process. Its cumulative control function

CW (f ) = f =
∫ f

0
df

has a control density function cW (f ) ≡ 1. The stationary, discrete-time signal

X(n) =
∫ 1

0
ej2πnf dW(f )

has the spectral density function SX(f ) = cW (f ) ≡ 1, and the autocovariance
sequence

γX(n) = EX(n)X∗(0) =
∫ 1

0
ej2πnf df = δ(n) =

{
0, if n �= 0;
1, if n = 0.

Hence, X(n) is the discrete-time white noise discussed in Chap. 6.

Example 10.5.2 (Spectral Representation of Filtered White Noise) Let X(n) be the
white noise discussed above. Consider the (acausal) filtered (i.e., moving average
of) white noise

Y (n) =
∞∑

k=−∞
ckX(n− k) =

∫ 1

0

( ∞∑
k=−∞

cke
j2π(n−k)f

)
dW(f ),

for n = . . . ,−2,−1, 0, 1, 2, . . . . Its autocovariance sequence
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γY (n) = EY (n)Y ∗(0) = E

( ∞∑
k=−∞

ckX(n− k) ·
∞∑

k=−∞
c∗kX∗(−k)

)

= E
∞∑

k,l=−∞
ckc

∗
l X(n− k)X∗(−l) =

∞∑
k,l=−∞

ckc
∗
l δ(n− (k − l))

=
∞∑

k,l=−∞
ckc

∗
l

∫ 1

0
ej2π(n−(k−l))f df =

∫ 1

0
|c(f )|2ej2πnf df,

where

c(f ) =
∞∑

k=−∞
cke

−j2πkf

is well defined as long as
∑∞

k=−∞ |ck|2 < ∞. Hence the power spectral density of
the filtered white noise is

SY (f ) = |c(f )|2.

10.6 Computer Algorithms: Complex-Valued Case

Given a spectral density SX(f ) of a discrete-time, stationary Gaussian signal X(n)

we can simulate a sample path of X(n), n = 1, 2, . . . , N, by first calculating the
autocovariance function γX(n) using formula (10.3.2),

γX(n) =
∫ 1

0
ej2πnf SX(f ) df, (10.6.1)

and then by producing a sample of an N -dimensional Gaussian random vector
X = (X1, X2, . . . , Xn), with the covariance matrix � = (γX(n − m), n,m =
1, 2, . . . , N), using the standard statistical software. This, however, would be
computationally expensive, and even infeasible if n is large.

So, in this section we will describe a different, explicit algorithm for such
a simulation based on the spectral representation of Sect. 9.4. The algorithm is
mathematically justified by the discussions of the preceding sections, and it has
the advantage of not being restricted to Gaussian signals.

The starting point is, of course, the Spectral Representation Theorem and, in
particular, formula (10.4.1) which writes the signal X(n) as a random Fourier
coefficient,
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X(n) =
∫ 1

0
ej2πnf dW(f ), n = 1, 2, . . . , N, (10.6.2)

of a process W(f ) with uncorrelated increments and cumulative control function
CW (f ) equal to the desired cumulative spectrum SX(f ).

We will assume that the spectrum of X(n) is (absolutely) continuous, that is, it
has a power spectrum density SX(f ) such that

CW (f ) = SX(f ) =
∫ f

0
SX(g) dg. (10.6.3)

For computational purposes the random integral (10.6.2) has to be discretized.
More precisely, we have to choose an integer K , and partition

f0 = 0, f1 = 1

K
, f2 = 2

K
, . . . , fK−1 = K − 1

K
, fK = 1,

of the interval [0, 1], and replace the right-hand side of (10.6.2) by the sums

XK(n) =
K∑

k=1

ej2πnfk

(
W(fk)−W(fk−1)

)

=
K∑

k=1

ej2πn(k/K)

(
W
( k

K

)
−W

(k − 1

K

))
.

The increments

W
( 1

K

)
−W

( 0

K

)
, W

( 2

K

)
−W

( 1

K

)
, . . . , W

(K

K

)
−W

(k − 1

K

)
,

are zero-mean, uncorrelated and have, respectively, variances

σ 2
1 =

∫ 1/K

0
SX(f ) df, σ 2

2 =
∫ 2/K

1/K

SX(f ) df, . . . , σ 2
K =

∫ 1

(K−1)/K

SX(f ) df.

Hence, the total mean powers of X(n) and XK(n) match exactly. Thus the
simulation algorithm calls for the following steps:

Step 0: Select a positive integer K determining the accuracy of our simulation.
Step 1: Generate, via a random number generator, a sequence

ξ1, ξ2, . . . , ξK,

of zero-mean, variance one, uncorrelated random values of an otherwise arbi-
trary distribution.
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Step 2: Calculate variances

σ 2
1 , σ 2

2 , . . . , σ 2
K

defined above via the desired power spectrum density.
Step 3: Calculate the complex numbers,

xn =
K∑

k=1

ej2πn(k/K)σkξk, n = 1, 2, . . . , N.

They represent an approximate sample of our desired random signal.
Step 4: Plot the real and imaginary parts of the sequence xn, n = 1, 2, . . . , N,

Re xn =
K∑

k=1

cos(j2πn(k/K))σkξk, Im xn =
K∑

k=1

sin(j2πn(k/K))σkξk,

as functions of variable n.

Remark 10.6.1 It should be observed that if the power spectrum density is symmet-
ric about the midpoint f = 1/2, that is, SX(1/2 + f ) = SX(1/2 − f ), then the
autocovariance function is real-valued because

γX(n) =
∫ 1

0
ej2πnf SX(f ) df =

∫ 1

0
cos(2πnf )SX(f ) df.

We shall illustrate the above algorithm on a concrete example implemented in
the symbolic manipulation language Mathematica.

Example 10.6.1 (Mathematica Simulation of a Complex-Valued Stationary Signal)
The goal is to simulate a discrete-time signal X(n), n = 1, 2, . . . , 150, with the
spectral density function SX(f ) = f (1− f ), 0 ≤ f ≤ 1, pictured below.

Step 0. Selecting a positive integer K determining the accuracy of the simulation.

In[1]:= K=100
Out[1]= 100

Step 1: Generating, via a pseudo-random number generator, a sequence

ξ1, ξ2, . . . , ξK,

of zero-mean, variance one, uncorrelated random values of an otherwise arbitrary
distribution. Here we start with a sample of 100 pseudo-random numbers with the
Gaussian, N [0, 1]-distribution, see Fig. 10.1.

In[2]:= xi = Table[Random[NormalDistribution[0, 1]], {100}]
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Fig. 10.1 A sample of 100 pseudo-random numbers with the Gaussian, N(0, 1) distribution

Out[2]= {-0.608542, -0.193407, 0.667423, 0.665791, 0.796963,
1.50578, -1.38957, -2.00677, 0.710005, 3.05874, 0.351129,
0.274176, -0.57993, -0.317531, -1.9642, 0.418438, -1.21485,
0.311505, 2.14493, -0.665234, 0.440417, -1.24286, 0.217456,
-1.48803, -1.66472, 0.720181, 2.09662, 0.751509, -0.748984,
0.203246, -0.490937, 1.91771, -0.696637, -0.661528, -0.456505,
1.19835, 0.667494, 1.04284, 0.534665, 0.756436, 0.0707936,
0.375792, -1.56415, 0.559878, 1.20885, -2.45781, -0.724939,
-1.04777, -0.0669847, -0.321047, 0.993232, 1.1395, -0.325509,
0.611529, 0.890348, 0.716697, 0.203702, -0.863057, -1.49988,
0.308803, 0.148938, 0.863372, 0.413497, -0.392592, 1.24894,
-0.795932, 0.929254, -1.40817, 0.728825, 0.0811022, -1.13286,
-0.368274, -1.59267, 0.155889, 0.332486, 1.14419, -1.19604,
-0.713426, -0.839724, 0.827024, -0.154212, -0.357799,
-0.341499, -0.0706729, -0.58252, 1.31315, 1.41184, 0.376868,
-0.0139196, -1.60352, -0.783236, -0.223895, 1.19736, 0.707607,
-0.212544, 0.115375, 1.27051, -0.18183, 1.27593, -0.775792}

In[2]:= ListPlot[xi, PlotJoined->True, Frame->True,
GridLines->Automatic]

Out[2] -Graphics-

Step 2: Calculation of standard deviations,

σ1, σ2, . . . , σK,

defined via the above power spectrum density.

In[4]:= SX[f_]:=f*(1-f)
In[5]:= sigma =

Table[ Sqrt[NIntegrate[SX[f], {f, (k-1)/100,
(k )/100}]], {k,1,100}]
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Out[5]= {0.00704746,0.0121518,0.0156098,0.0183757,0.0207284,
0.0227962,0.0246509,0.0263376,0.0278867,0.0293201,0.030654,
0.0319009,0.0330706,0.0341711,0.0352089,0.0361893,0.0371169,
0.0379956,0.0388287,0.039619,0.0403691,0.0410812,0.0417572,
0.0423989,0.0430078,0.0435852,0.0441324,0.0446505,0.0451405,
0.0456034,0.0460398,0.0464507,0.0468366,0.0471982,0.047536,
0.0478505,0.0481422,0.0484114,0.0486587,0.0488842,0.0490884,
0.0492714,0.0494335,0.0495749,0.0496957,0.0497963,0.0498765,
0.0499366,0.0499767,0.0499967,0.0499967,0.0499767,0.0499366,
0.0498765,0.0497963,0.0496957,0.0495749,0.0494335,0.0492714,
0.0490884,0.0488842,0.0486587,0.0484114,0.0481422,0.0478505,
0.047536,0.0471982,0.0468366,0.0464507,0.0460398,0.0456034,
0.0451405,0.0446505,0.0441324,0.0435852,0.0430078,0.0423989,
0.0417572,0.0410812,0.0403691,0.039619,0.0388287,0.0379956,
0.0371169,0.0361893,0.0352089,0.0341711,0.0330706,0.0319009,
0.030654,0.0293201,0.0278867,0.0263376,0.0246509,0.0227962,
0.0207284,0.0183757,0.0156098,0.0121518,0.00704746}

Step 3: Calculation of numbers

Re xn =
K∑

k=1

cos(2πn(k/K))σkξk, n = 1, 2, . . . , N,

and

Im xn =
K∑

k=1

sin(2πn(k/K))σkξk, n = 1, 2, . . . , N,

for N = 150. They represent an approximate samples of the real and imaginary
parts of our desired random signal.

In[6] ReXi= Table[N[Sum[Cos[2*Pi*n*(k/100)] * sigma[[k]]

* xi[[k]], {k,1,100}]],{n,1,150}]

Out[6] = {-0.023415, 0.204973, 0.262053, -0.306833, 0.0423987,
0.0801657,-0.114673, 0.180827, -0.182326, 0.0501663, 0.241876,
-0.422759,-0.267774, -0.2427, 0.018383, 0.664823, -0.415174,
0.173961,-0.0833322, 0.197514, -0.078882, 0.203239, 0.00381133,
-0.486851,0.193364, -0.182158, 0.0293311, -0.381732, 0.304001,
0.0549667,0.410134, -0.0548758, 0.104368, 0.00517703, -0.213219,
0.0621887,0.122844, 0.119623, -0.21869, -0.00453364, -0.416995,
0.0884643,0.459038, -0.279907, 0.0401727, -0.216858, 0.00620257,
-0.202628,0.0410997, 0.211609, 0.0410997, -0.202628, 0.00620257,
-0.216858,0.0401727, -0.279907, 0.459038, 0.0884643, -0.416995,
-0.00453364,-0.21869, 0.119623, 0.122844, 0.0621887, -0.213219,
0.00517703,0.104368, -0.0548758, 0.410134, 0.0549667, 0.304001,
-0.381732,0.0293311, -0.182158, 0.193364, -0.486851, 0.00381133,
0.203239,-0.078882, 0.197514, -0.0833322, 0.173961, -0.415174,
0.664823,0.018383, -0.2427, -0.267774, -0.422759, 0.241876,
0.0501663,-0.182326, 0.180827, -0.114673, 0.0801657, 0.0423987,
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-0.306833,0.262053, 0.204973, -0.023415, 0.103954, -0.023415,
0.204973,0.262053, -0.306833, 0.0423987, 0.0801657, -0.114673,
0.180827,-0.182326, 0.0501663, 0.241876, -0.422759, -0.267774,
-0.2427,0.018383, 0.664823, -0.415174, 0.173961, -0.0833322,
0.197514,-0.078882, 0.203239, 0.00381133, -0.486851, 0.193364,
-0.182158,0.0293311, -0.381732, 0.304001, 0.0549667, 0.410134,
-0.0548758,0.104368, 0.00517703, -0.213219, 0.0621887, 0.122844,
0.119623,-0.21869, -0.00453364, -0.416995, 0.0884643, 0.459038,
-0.279907,0.0401727, -0.216858, 0.00620257, -0.202628,
0.0410997, 0.211609}

In[7]:= ImXi = Table[N[Sum[Sin[2*Pi*n*(k/100)]*sigma[[k]]

*xi[[k]], {k, 1, 100}]], {n, 1, 150}]

Out[7]= {0.15977, -0.103151, -0.157232, 0.333, -0.139511,
0.245695, -0.43247, 0.407358, -0.70167, -0.0945059, 0.27421,
0.58988, 0.0705348, -0.11186, -0.0567596, -0.0596612,
-0.574812, -0.467159, 0.0811688, 0.38486, -0.463603, 0.178059,
0.791538, -0.0854149, -0.0661586, -0.106904, 0.0448853,
0.110552, -0.261648, -0.19714, -0.26017, 0.357341, -0.276876,
0.314915, 0.108389, -0.143431, -0.232836, -0.121447, 0.474415,
-0.426709, 0.176697, -0.123609, -0.138301, 0.132275, 0.660073,
-0.661418, -0.361657, 0.239999, -0.134132, 0., 0.134132,
-0.239999, 0.361657, 0.661418, -0.660073, -0.132275, 0.138301,
0.123609, -0.176697, 0.426709, -0.474415, 0.121447, 0.232836,
0.143431, -0.108389, -0.314915, 0.276876, -0.357341, 0.26017,
0.19714, 0.261648, -0.110552, -0.0448853, 0.106904, 0.0661586,
0.0854149, -0.791538, -0.178059, 0.463603, -0.38486,
-0.0811688, 0.467159, 0.574812, 0.0596612, 0.0567596, 0.11186,
-0.0705348, -0.58988, -0.27421, 0.0945059, 0.70167, -0.407358,
0.43247, -0.245695, 0.139511, -0.333, 0.157232, 0.103151,
-0.15977, 0., 0.15977, -0.103151, -0.157232, 0.333, -0.139511,
0.245695, -0.43247, 0.407358, -0.70167, -0.0945059, 0.27421,
0.58988, 0.0705348, -0.11186, -0.0567596, -0.0596612, -0.574812,
-0.467159, 0.0811688, 0.38486, -0.463603, 0.178059, 0.791538,
-0.0854149, -0.0661586, -0.106904, 0.0448853, 0.110552,
-0.261648, -0.19714, -0.26017, 0.357341, -0.276876, 0.314915,
0.108389, -0.143431, -0.232836, -0.121447, 0.474415, -0.426709,
0.176697, -0.123609, -0.138301, 0.132275, 0.660073, -0.661418,
-0.361657, 0.239999, -0.134132, 0.}

Step 4: Plotting the complex-valued sequence xn as a function of variable n.
The consecutive values of real (left plot) and imaginary (right plot) parts of the
numbers x1, . . . , x150 were joined in Fig. 10.2 to better show their progression in
time.

In[8]:= ListPlot[ReXi, PlotJoined->True, Frame->True,
GridLines->Automatic]

Out[8] -Graphics-
In[9]:= ListPlot[ImXi, PlotJoined->True, Frame->True,

GridLines->Automatic]
Out[9] -Graphics-
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Fig. 10.2 Samples of the real (left) and imaginary (right) components of a stationary signal with
spectral density SX(f ) = f (1− f ), 0 ≤ f ≤ 1

Note that, for K = 100, the smallest frequency present in the representation is
f = 1/100. Thus the produced signal sample is periodic with period P = 100
(Fig. 10.2).

Remark 10.6.2 The above simulation can be adapted to any discrete-time signal
X(tn) with tn = n ·t , extending the procedures described above in the case t =
1 (see Problem 5.5.3). In the theoretical limit, t → 0, one obtains the spectral
representation of continuous-time (see Problem 5.5.4).

Remark 10.6.3 The fact that the spectral density was concentrated on the interval
[0, 1] was related to selection of the complex exponentials of the form ej2πnf in the
Spectral Representation Theorem. A different selection of complex exponentials
would lead to different intervals. For example, choosing the complex exponentials
of the form ejnω, that is, conducting spectral analysis in terms of the angular
velocity rather than the frequency, would lead to spectral densities concentrated
on the interval [0, 2π ], or any other interval of length 2π . Figure 10.3 shows
several examples of such spectral densities concentrated on the symmetric frequency
intervals [−π,+π ], and the real parts of the sample paths of the corresponding
stationary signals.

Remark 10.6.4 Another way to produce a graphical representation of the complex-
valued signal xn considered in the above Example 10.6.1 would be to plot its moduli
and arguments instead of its real and imaginary parts.

10.7 Computer Algorithms: Real-Valued Case

To produce a sample of a real-valued stationary discrete-time signal it is not enough
to take a real part of the complex-valued signal because the real part of a complex-
valued stationary signal need not be stationary at all. Indeed, as we have observed
before (see Example 5.1.9), the simple complex random harmonic oscillation
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Fig. 10.3 Examples of real parts of simulated discrete-time stationary signals (right column)
with prescribed spectral density functions (left column). Note that the spectral densities in these
simulations are even and concentrated on the interval [−π,+π ]
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X(n) = A · ej2πf0n,

with the zero-mean random amplitude A, is stationary, with ACvF

EX∗(n)X(n+ τ) = E
(
A∗e−j2πf0n · Aej2πf0(n+τ)

)
= E|A|2 · ej2πf0τ = γX(τ),

but its real part,

ReX(n) = A · cos(2πf0n),

is not because

E[ReX∗(n) · ReX(n+ τ)] = E|A|2 · cos(2πf0n) cos(2πf0(n+ τ))

= 1

2
E|A|2

(
cos(2πf0(2n+ τ))+ cos(2πf0τ)

)

obviously depends not only on the time lag τ but also on the time n.
The solution here becomes clear if we abandon the complex domain altogether

and return full circle to the very first examples of stationary signals discussed in
Chap. 4 (see Examples 5.1.2 and 5.1.3), this time considering them in discrete time,
n = . . . ,−1, 0, 1, . . . ,. Without going again through all the rigorous mathematical
details developed in the complex case earlier in this chapter we just present the basic
algorithm.

Consider the real-valued superposition of harmonic oscillations with distinct
frequencies f1, . . . , fK,

XK(n) =
K∑

k=1

Ak cos(2πfk(n+�k)), (10.7.1)

where Ak, k = 1, . . . , K are independent, zero-mean real-valued random ampli-
tudes, and �k, k = 1, . . . , K are independent random phases, independent of
the amplitudes and uniformly distributed over the corresponding periods Pk =
1/fk, k = 1, . . . , K.

The signal XK(n) has, obviously, zero mean, and (following calculations
analogous to those in Example 5.1.2) the autocovariance sequence

EXK(n)XK(n+ τ) = E
K∑

k=1

Ak cos(2πfk(n+�k)) ·
K∑

l=1

Ak cos(2πfl(n+ τ +�l))

=
K∑

k=1

K∑
l=1

E
[(

Ak cos(2πfk(n+�k))
)(

Al cos(2πfl(n+ τ +�l))
)]
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=
K∑

k=1

EA2
k · E

(
cos(2πfk(n+�k)) · cos(2πfk(n+ τ +�k))

)
.

Taking into account the trigonometric formula for the product of the cosines in
Table 1.1, and the uniform distributions of �k, over the periods Pk , we finally obtain
the autocovariance sequence

γXK
(τ) = EXK(n)XK(n+ τ) = 1

2

K∑
k=1

EA2
k · cos(2πfkτ). (10.7.2)

The above autocovariance sequence corresponds to the power spectrum (see
Example 5.2.2)

SXK
(f ) = 1

4

K∑
k=1

EA2
k ·
(
δ(f − fk)+ δ(f + fk)

)
. (10.7.3)

Now, let us consider an arbitrary even power spectrum SX(f ), i.e., satisfying
condition

SX(−f ) = −SX(f ),

and restricted, for the sake of convenience, to the symmetric interval [−1/2,+1/2].
The strategy is to approximate SX(f ) by SXK

(f ) described in (10.7.3), while
preserving the total power, that is requiring that

PWX =
∫ +1/2

−1/2
SX(f ) df =

∫ +1/2

−1/2
SK(f ) df = PWXK

= γXK
(0). (10.7.4)

The frequencies fk will now be taken to correspond to the partition of the interval
[0, 1/2], that is

fk = 1

2
· k

K
, k = 1, . . . K. (10.7.5)

So, it suffices to select the random amplitudes Ak , so that

1

4
EA2

k =
∫ fk

fk−1

SX(f ) df ≡ σ 2
k , k = 1, . . . , K. (10.7.6)

As a result,
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PWXK
= 1

2

K∑
k=1

EA2
k = 2

K∑
k=1

∫ fk

fk−1

SX(f ) df = 2
∫ 1/2

0
SX(f ) df = PWX,

as required.
Now if we start with realizations of the standard white noise, ξk = W(k), k =

1, . . . , K, (of any distribution), and the white noise ηk = U(k), k = 1, . . . , K,

uniformly distributed on [−1/2,+1/2], then

θk = 2K

k
ηk, k = 1, . . . , K,

form a realization of independent random quantities, uniformly distributed over the
intervals

[
−K

k
,+K

k

]
=
[
−Pk

2
,+Pk

2

]
, k = 1, . . . , K,

respectively, and the superposition of real-valued harmonic oscillations,

XK(n) =
K∑

k=1

σkξk cos
(

2πfk(n+ 2Kηk/k)
)

(10.7.7)

will approximate, in the mean-square sense, signal X(n) with the required power
spectrum SX(f ).

Example 10.7.1 (Mathematica Simulation of a Real-Valued Stationary Signal)
We will implement the above algorithm for the power spectrum SX(f ) =
100f 2, −1/2 ≤ f ≤ +1/2, and a Gaussian signal. The general outlines are
the same as in Example 10.6.1. First we obtain a sample ξk of length K = 100 of
the standard Gaussian white noise:

In[1]:= xi = Table[Random[NormalDistribution[0, 1]], {100}]

Out[1]= {-0.856053, 1.08187, 2.46229, 0.714797, 0.714182,
-0.213566, -0.433184, -0.851746, -0.0462548, 1.50339,
-1.51236, -1.28448, 0.0673793, -0.108364, 0.270925,-0.330244,
1.35095, -0.44158, -0.357206, -0.647803, -1.09377, -1.34072,
0.849032, 0.0500218, -0.575234, -0.0171291, -1.79476, 1.31388,
-0.628999, -0.593384, -0.464793, 1.90548, 0.691585, -0.426236,
-0.420072, 0.133262, -0.0273259, -0.499321, -0.169682,
-0.91716, 1.63794, 0.746604, 0.0121301, 0.997426, 1.3202,
-0.510749, -0.198871, -0.439695, 0.908916, 1.75012, -0.244048,
0.0384926, 0.182402, 0.00244352, -2.0007, 0.259864, -0.755299,
-1.06697, 0.177168, 0.518347, 0.127846, -0.426915, 0.831972,
0.130949, -0.708484, 0.744263, 0.0306772, -2.40272, -0.388865,
1.04692, -2.36268, 1.26858, 0.020974, -1.19099, -0.0972772,
-1.11214, -0.253469, -1.07956, -1.73907, 1.55135, -0.273338,
0.814078, 0.280743, 0.199324, 1.59616, -0.569614, -1.32923,
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-0.0159629, 1.58278, -0.966994, -1.19754, -1.77986, 1.41761,
-1.27518, 0.322685, -0.398681, 1.02684, -0.735058, -0.141971,
-0.41919}

The next step is to produce a sample of length K = 100 of the white noise
ηk uniformly distributed on the interval −1/2,+1/2. This is accomplished by first
producing a white noise uniformly distributed on [0, 1] and then subtracting 1/2
from each of its terms:

In[2]:= eta = Table[Random[Real, {0, 1}] - 1/2, {100}]

Out[2]= {0.041948, 0.484289, -0.318925, -0.0276171, 0.0359713,
-0.088659, 0.252302, 0.353539, 0.255555, 0.089573, -0.0901944,
0.227213, 0.0284539, -0.273957, 0.441175, -0.189807,
-0.0364003, 0.273394, 0.445258, -0.40948, 0.152135, -0.333722,
-0.124852, -0.42935, -0.389813, -0.318011, -0.305928,
0.0982668, 0.0742158, 0.270648, -0.0582301, 0.244727, 0.318661,
-0.318925, -0.468036, -0.482485, -0.209793, 0.455031,
-0.409211, 0.207322, 0.326608, -0.318363, -0.354468, 0.116801,
-0.325528, -0.484641, 0.270384, 0.0461516, -0.435715, 0.33337,
0.0763118, 0.447885, -0.00993046, -0.437278, -0.365458,
-0.296843, 0.171408, 0.381647, -0.397422, -0.314357, -0.118799,
0.426616, -0.488212, -0.0216788, 0.0545938, 0.244979, 0.366257,
0.36152, -0.119879, 0.22962, -0.404127, -0.184632, -0.184164,
0.39625, 0.0195609, -0.132516, 0.325766, 0.333528, -0.114981,
-0.335674, -0.345642, 0.451881, -0.217559, 0.478683, 0.273157,
-0.474735, -0.229347, 0.000362175, -0.281437, -0.219714,
-0.095604, 0.138842, 0.338442, 0.0506663, -0.191477, -0.176526,
0.0226057, 0.154416, 0.288962, 0.45599}

The standard deviations σk are

In[3]:= sigma=Table[ Sqrt[NIntegrate[100 f^2, {f, (k - 1)/200,
(k )/200}]], {k, 1, 100}]

Out[3]={0.00204124, 0.00540062, 0.00889757, 0.0124164,
0.0159426, 0.0194722, 0.0230036, 0.0265361, 0.0300694,
0.0336031, 0.0371371, 0.0406714, 0.044206, 0.0477406,
0.0512754, 0.0548103, 0.0583452, 0.0618803, 0.0654153,
0.0689505, 0.0724856, 0.0760208, 0.0795561, 0.0830913,
0.0866266, 0.0901619, 0.0936972, 0.0972325, 0.100768,
0.104303, 0.107839, 0.111374, 0.114909, 0.118445, 0.12198,
0.125516, 0.129051, 0.132586, 0.136122, 0.139657, 0.143193,
0.146728, 0.150264, 0.153799, 0.157335, 0.16087, 0.164405,
0.167941, 0.171476, 0.175012, 0.178547, 0.182083, 0.185618,
0.189154, 0.192689, 0.196225, 0.19976, 0.203296, 0.206831,
0.210367, 0.213902, 0.217438, 0.220973, 0.224509, 0.228044,
0.23158, 0.235115, 0.238651, 0.242186, 0.245722, 0.249257,
0.252793, 0.256328, 0.259864, 0.263399, 0.266935, 0.27047,
0.274006, 0.277541, 0.281077, 0.284612, 0.288148, 0.291683,
0.295219, 0.298754, 0.30229, 0.305825, 0.309361, 0.312896,
0.316432, 0.319967, 0.323503, 0.327038, 0.330574, 0.33411,
0.337645, 0.341181, 0.344716, 0.348252, 0.351787}
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Entering the above data in the formula (10.7.7) gives us a sample of 150
consecutive values of the desired signal.

In[4]:= xn = Table[
N[Sum[Cos[2*Pi*(n + (200*eta[[k]]/k))*(k/200)]

*sigma[[k]]*xi[[k]],{k, 1, 100}]], {n, 1, 150}]
Out[4] = {0.902888, -1.44987, 0.73034, -0.0467446, -0.981386,
1.85137, -1.14327, 0.505844, -0.702551, -0.480106, 2.02188,
-0.324226, -2.58959, 3.54, -2.15705, 0.535498, -0.696431,
1.32388, -0.624256, -1.37706, 0.71946, 0.258689, 2.11401,
-2.44596, 1.29879, -1.55369, 0.938206, 0.444133, -0.487131,
0.11673, 0.286159, -1.11297, 0.330835, -0.246013, -0.0297903,
2.28609, -0.11916, -2.36099, 2.56028, -2.65337, -0.0894128,
2.2119, -0.816799, 0.344593, -0.698824, -0.470619, 0.502274,
0.940286, -1.94194, 0.897492, 1.39516, -1.53023, -0.126247,
0.8947, -0.958154, 0.199293, 0.66053, -1.34534, 1.75322,
-0.338096, -2.11878, 3.2534, -1.21718, -0.405543, 0.413332,
-0.375367, -2.4344, 4.33465, -4.15149, 2.44168, -1.26502,
1.6717, 0.914773, -2.10289, 0.713696, -0.939291, 0.124809,
-0.515525, 0.914653, 0.102627, 0.567457, 0.766725, -1.09135,
0.278225, -2.12101, 1.92608, 1.28077, -0.336511, -1.8577,
0.656761, 1.33076, -1.24178, -0.317488, -0.0655308, 0.540343,
0.00291415, -0.714359, 1.1559, -1.01383, 0.619388, 1.85065,
-3.39279, 2.73494, -1.73749, 0.369481, 0.452425, 0.801605,
-1.06127, 1.04946, -1.34485, 0.351694, -0.0323086, 0.0127435,
-1.72899, 0.569055, 1.27245, -1.53539, 2.53497, -1.98056,
1.01728, 0.252221, -0.123346, -0.963119, 1.52522, -2.59951,
2.70631, -0.853903, 0.17498, -1.08285, -0.805603, 3.50613,
-4.1166, 2.18343, -2.56471, 2.55596, 0.624361, -2.45507,
2.09628, -0.794994, -0.201666, 0.713224, 0.803646, -1.89323,
1.88523, -1.57122, 0.958893, -2.30286, 2.02618, 0.408114,
-1.40083}

This sample path is then plotted in Fig. 10.4. To visualize its progression in time
better, the discrete plot points are joined.

In[5]:= ListPlot[xn, PlotJoined -> True, Frame -> True,
GridLines -> Automatic, PlotStyle -> {Thickness[0.005]}]

Out[5]=

10.8 Problems and Exercises

1 Verify the polarization formulas preceding the “isometric” formula (10.4.17)

2 Given a discrete-time stationary signal X(n) with cumulative power spec-
trum SX(f ), find the cumulative power spectrum for the filtered signal Y (n) =∑∞

k=−∞ ckX(n− k). Follow calculations in Example 10.5.2. Repeat the calculation
in case when X(n) has the power spectral density.
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3 Extend the spectral representation (and the algorithm based on it) in the case of
discrete-time signal X(tn), with tn = n ·t , extending procedures described above
in the case t = 1.

4 Find the theoretical spectral representation for continuous-time stationary signals
taking t → 0 in Problem 3.

5 Use the simulation algorithm described in Sect. 10.5 to produce sample trajecto-
ries of complex-valued signals with the following spectral density functions defined
on the interval 0 ≤ f ≤ 1. Plot the spectral densities first.

(a)

S(f ) = 1√
f (1− f )

.

What is special about this spectrum? Check that the power of the corresponding
signal is finite.

(b)

S(f ) = 2/3,

(c)

S(f ) = | cos(πf )|,

(d)

S(f ) = 1− |f |,

0 20 40 60 80 100 120 140

-4

-2

0

2

4

Fig. 10.4 A sample of the Gaussian stationary signal with the spectral density SX(f ) =
100f 2,−1/2 ≤ f ≤ 1/2
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(e)

S(f ) = | sin(8πf )|.

In the simulations start with: (A) the white noise having the N(0, 1)

distributions, (B) the white noise having the U(−1, 1) distributions normalized
to have variance 1.

6 Use the simulation algorithm described in Sect. 10.6 to produce sample trajecto-
ries of real-valued signals with the following spectral density functions defined on
the interval −1/2 ≤ f ≤ +1/2. Plot the spectral densities first.

(a)

S(f ) = 1√
(1/2+ f )(1/2− f )

(b)

S(f ) = 2/3

(c)

S(f ) = cos(πf )

(d)

S(f ) = 1− f

(e)

S(f ) = | sin(8πf )|

In the simulations start with: (A) the white noise having the N(0, 1)

distributions, (B) the white noise having the U(−1, 1) distributions normalized
to have variance 1.

7 Produce plots of several sample paths of the cumulative discrete-time white noise
defined in Sect. 10.3. Use: (A) the white noise having the N(0, 1) distributions, (B)
the white noise having the U(−1, 1) distributions normalized to have variance 1.

8* Verify that the additivity property (10.4.7) of any continuous function forces its
linear form (10.4.8). Start with checking the property for the integers, then move
on to rational numbers, and finally extend the result to all real numbers using the
continuity assumption.
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Fig. 10.5 Experimental power spectral densities S(λ) of the light emitted by an incandescent light
at 2800◦K (left picture), and a fluorescent lamp at 5000◦K (right picture). The horizontal scale
shows the wave length λ in nanometers

9 Figure 10.5 shows experimental power spectral densities S(λ) of the light emitted
by an incandescent lamp at 2800◦K (on the left) and a fluorescent lamp at 5000◦K
(on the right). The horizontal scale shows the wave length λ in nanometers.

(a) Produce an approximate mathematical formulas for S(λ) representing the
above two power spectral densities. Assume an arbitrary vertical scale of the
experimental spectra (say, from 0 to 1). Plot them on top of pictures in Fig. 10.5
to verify your fit.

(b) Remembering the relationship f [1/s] · λ[m] = c[m/s], between the frequency,
wave length, and the speed of the traveling wave, and knowing the speed of
light, c[m/s] = 3.0 · 108, convert the approximate mathematical formulas from
part (a) to formulas representing the two spectral densities as functions of the
frequency f . Plot them.

(c) Use the numerical algorithm from Sect. 10.7 to produce several sample paths
of stationary signals with the power spectral densities from (b). Start with the
white noise having the N(0, 1) distributions. Plot them.

(d) Do the literature search to comment on whether the selection of the Gaussian
distribution in (c) was appropriate for the physical phenomenon under consid-
eration.



Chapter 11
Prediction Theory for Stationary
Random Signals

Abstract Prediction (or forecasting) of future values of the stationary random
signals based on the known past depends on the functional analytic tools from
Hilbert spaces. Essentially, the optimal predictor is an orthogonal projection of
the future values of the signal onto the space spanned by the past values. The
chapter presents the relevant Wold decomposition theorem, and an application of
the Spectral Representation to the solution of the optimal prediction problem.

11.1 The Wold Decomposition Theorem and Optimal
Predictors

In this chapter we will consider prediction problems for discrete time weakly
stationary random signals (Xn), n = . . . ,−2,−1, 0, 1, 2, . . . . The assumption is
that the second moments are finite, the mean value EXn = 0, and the span of the
“past” of the process in the Hilbert space L2 will be denoted

M0 = span{Xn, n ≤ 0}

The optimal predictor X̂m of the values of the process at time m > 0 (in the future)
based on the knowledge of the past of the process is, obviously, the orthogonal
projection

X̂m := Pred0Xm = ProjM0
Xm.

In what follows we shall also need the special notation for the following spaces:

Mn = span{Xk, k ≤ n}, M−∞ =
⋂
n

Mn.
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We also need to distinguish between two important categories of time series (Xn):

Definition 11.1.1

(a) The process (Xn) is said to be deterministic (or, singular) if M−∞ = M+∞,
or, equivalently, in view of the stationarity assumption, if Mk = Mk+1 for all
k. In this case the perfect linear prediction is possible because the error

E(X̂m −Xm)2 = ‖X̂m −Xm‖2
2 = 0.

(b) The process (Xn) is said to be regular if M−∞ = {0}. In this case

E(X̂m −Xm)2 = ‖X̂m −Xm‖2
2 > 0.

In general,

{0} �=M−∞ �=M+∞,

so the process is neither deterministic nor regular. However, nondeterministic
processes can be decomposed into a regular and deterministic part:

Wold’s Decomposition Theorem If the process (Xn) is regular, then

Xn = Zn + Yn, n = . . . ,−2,−1, 0, 1, 2, . . . ,

where (Zn) is regular, and (Yn) is deterministic, and, moreover, the two components
are orthogonal to each other,

(Zn) ⊥ (Yn).

The regular process (Zn) can be expressed in the form

Zn =
∞∑

k=0

γkWn−k,

where both (Wn) and (Yn) have zero mean, (Wn) form an uncorrelated sequence
with constant variance σ 2, γ0 = 0, and

∑∞
k=0 γ 2

k < ∞. The decomposition is
unique.

Proof Let

Wk = Xk − X̂k, k = n, n− 1, n− 2, . . .

Since Wk ⊥Mk−1, we see right away that the sequence (Wk) is uncorrelated, that
is EWkWl = 0, for l < k. Define the coefficients γk as follows:
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γk = EXnWn−k

σ 2
, k = 1, 2, . . . .

Now, we have the obvious inequality

0 ≤ E

(
Xn −

m∑
k=0

γkWn−k

)2

= EX2
n − σ 2

m∑
k=0

γ 2
k ,

which implies that
∑∞

k=0 γ 2
k < ∞, and that

∑∞
k=0 γkWn−k converges in L2 to a

random quantity in the subspace spanned by the sequence Wn,Wn−1,Wn−2, . . . .

Now, the sequence (Yn) can be defined by the equality,

Yn = Xn −
∞∑

k=0

γkWn−k,

so that

EYnWl = EXnWl − σ 2γn−l = 0, for, l ≤ n,

and EYnWl = 0, for l > n, because Wl orthogonal to the subspace Mn ( Yn.
Therefore Wn ∈Mn−1, and by induction, Wn ∈Mk , for all k ≤ n, so that

M−∞ =
∞⋂

k=0

Mn−s .

To finish the proof of the theorem let us make two observations.

(i) If M⊥
W is the subspace orthogonal to M⊥

W , the subspace spanned by (Wn),
then M−∞ =M⊥

W . Indeed, if XinM−∞, then X ∈Mn, and is orthogonal to
Wn+1, for every n. Hence, X ∈M⊥

W . Conversely, if X ∈M⊥
W , then X ∈Mn,

for some n. Since X ⊥ Wn we have X ∈ Mn−1, and, by induction, X ∈ Mk ,
for all k ≤ n. Moreover, X ∈Mk , for k > n, because Mn ⊂Mk . So the first
observation is verified.

(ii) Since Zn = ∑∞
k=0 γkWn−k , the subspace MZ

n spanned by Zn,Zn−1, . . . , is
contained in the subspace MW

n spanned by Wn,Wn−1, . . . . Conversely, if Wn ∈
Mn =MZ

n ⊕MY
n , and Wn ⊥MY

n , then Wn ∈MZ
n . So MW

n =MZ
n .

Now we are ready to complete the proof of the Decomposition Theorem. Since,
for every n, Yn ∈M−∞ =⊇MY

n , the condition X ∈M−∞ implies that X ∈Mn

because X ⊥ MW
n = MZ

n . Thus X ∈ MnY . This proves that |calMY
n = M−∞,

and the sequence (Yn) is deterministic.
Now, since Zn = Wn +∑∞

k=1 γkWn−k , and Wn ⊥∑∞
k=1 γkWn−k ∈MW

n−1, the

error E(Zn − Ẑn)
2 = σ 2 > 0, so that the sequence (Zn) is regular.
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Since

Xn = Zn + Yn =
∞∑

k=0

γkWn−k + Yn = Wn +
∞∑

k=1

γkWn−k + Yn,

and

Wn ⊥
∞∑

k=1

γkWn−k + Yn,

the best predictor for Xn is the orthogonal projection of Xn onto Mn−1, which is

X̂n =
∞∑

k=1

γkWn−k + Yn.

The square of its error

‖Xn − X̂n‖2
L2 = E(Xn − X̂n)

2 = EW 2
n = σ 2,

because γ0 = 1.

11.2 Application of the Spectral Representation to the
Solution of the Prediction Problem

In this section we will consider the case of discrete time stationary signal X(n), and
assume that EX(n) = 0. The spectral representation theorem of Sect. 10.4 gives rise
to a linear isometry

L2([0, 1], dCW ) ( g −→
∫ 1

0
g(f )dW(f ) ∈ L2(�,F , P ),

which simply extends the representation,

X(n) =
∫ 1

0
ej2πnf dW(f ),

where the cumulative control function

CW (f ) = E[W(f )]2 = SX(f ),
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where SX(f ) is the cumulative spectral function of the process X(n). Obviously, in
the particular case g(f ) = ej2πnf the isometry is the mapping,

ej2πnf −→ X(n).

So, the optimal prediction of the value of the signal at the future time m > 0,
based on the past values X(n), n ≤ 0, is reduced to finding the function,

g(f ) ∈ spanL2(dS)(e
j2πnf , n ≤ 0),

such that the error of the prediction is minimal, that is

‖ej2πmf − g(f )‖L2(dS) = min
h
‖ej2πmf − h(f )‖L2(dS),

where h ∈ spanL2(dS)(e
j2πnf , n ≤ 0). Or, equivalently, the optimal choice of g has

to be an orthogonal projection in L2, that is

ej2πmf − g(f ) ⊥ spanL2(dS)(e
j2πnf , n ≤ 0),

that is

∫ 1

0

[
ej2πmf − g(f )

]
e−j2πnf dS(f ) = 0, for n = 0,−1,−2, . . . .

Remark 11.2.1 Observe that if the cumulative spectral function SX(f ) does not
increase (or, its spectral density SX(f ) = 0) over the interval [a, b] ⊂ [0, 1] of
length greater than 1/2, then the signal X(n) is singular.

Indeed, let e−j2πf be in the arc of the unit circle in the complex plane
corresponding to f ( [a, b], and let ej2πf0 be the midpoint of the arc. Then, for
large enough N ,

∣∣∣∣ej2πf0 − e−j2πf

N

∣∣∣∣ < 1,

because of the above length assumption, so, also,

∣∣∣∣1− e−j2πf

Nej2πf0

∣∣∣∣ < 1

|ej2πf0 | = 1.

Hence, we get the following uniformly convergent expansion on the complement of
the interval [a, b]:
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ej2πf = 1

e−j2πf
= 1

Ne
j2πf

0

· 1

e−j2πf /(Nejπf0)

= 1

Nej2πf0
· 1

1− (1− e−j2πf /(Nej2πf0))

1

Nej2πf0
·
∞∑

n=0

(1− e−jf 2π/(Nej2πf0))n ∈ spanL2(dSX)(e
j2πf n, n ≤ 0) =M0,

which completes the justification of the above statement. On the other hand, on the
set [a, b], where the spectral density is 0, the approximation is trivial.

Remark 11.2.2 It turns out that the Wold decomposition is equivalent to decom-
position of the spectral measure into the absolutely continuous (with density) and
singular components1

In the reminder of this section we will just consider the absolutely continuous
case when

S(f ) = S(f )df

with the spectral density S(f ) satisfying the condition,

0 < C1 ≤ S(f ) ≤ C2 <∞, (11.2.1)

in which case L2(dS) = L2(df ) and the convergences in those two spaces are
equivalent.

In this case the best predictor g(f ) satisfies the following two conditions:

∫ 1

0
[ej2πmf − g(f )]S(f )e−j2πnf df = 0, for n ≤ 0, (11.2.2)

and

[ej2πmf − g(f )]S(f ) ∈ spanL2(S(f )df )(e
j2πnf , n ≥ 0) ≡M>0. (11.2.3)

Now, assume that we can factor the spectral density,

S(f ) = S1(f ) · S∗1 (f ),

1For more details see, U. Grenander and M. Rosenblatt, Statistical Analysis of Stationary Time
Series, Almqvist and Wiksell, Stockholm 1956, and P. Bremaud, Fourier Analysis and Stochastic
Processes, Springer 2014.
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with both

S1(f ), S−1
1 (f ) ∈ spanC(ej2πnf , n ≤ 0) =: C≤0

where C denotes the space of continuous functions. Then the condition (11.2.3) can
be rewritten in the form

[ej2πmf − g(f )]S1(f )S∗1 (f ) ∈ spanL2(S(f )df )(e
j2πnf , n ≥ 0) ≡M>0.

(11.2.4)

with

(S−1
1 (f ))∗ ∈ spanC(ej2πnf , n ≥ 0).

Hence,

h(f ) := [ej2πmf − g(f )]S1(f ) ∈ spanL2(S(f )df )(e
j2πnf , n > 0),

and the condition for the best linear prediction can be reformulated as follows:

ej2πmf S1(f ) = g(f )S1(f )+ h(f ), g ∈M≤0, h ∈M>0. (11.2.5)

Since S1, S
−1
1 ∈ C≤0,

g ∈M≤0 ⇐⇒ gS1 ∈M≤0,

so, what needs to be done at this point is to split the Fourier series of ej2πmf S1(f )

into the M≤0, and M>0 parts.
Given the expansion

S1(f ) = c0 + c−1e
−j2πf + c−2e

−j2π2f + . . .

we can write (11.2.5) with

h(f ) = c0e
j2πmf + c−1e

k2π(m−1)f + . . .+ c−m+1e
j2πf ,

and

g(f )S1(f ) = c−m + c−m−1e
−j2πf + c−m−2e

−j2π2f + . . . .

Hence,

g(f ) = [c−m + c−m−1e
−j2πf + c−m−2e

−j2π2f + . . .
] · S−1

1 (f ),

which expands as follows:

g(f ) = b0 + b−1e
−j2πf + b−2e

−j2π2f + . . . ,
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with the predictor

X̂m = b0X0 + b−1X−1 + b−2X−2 + . . .

The prediction error can then be calculated as follows:

‖X̂m −Xm‖2
L2(S(f )df )

=
∫ 1

0
|ej2πmf − g(f )|2S(f )df

=
∫ 1

0
|ej2πmf − g(f )S1(f )|2df =

∫ 1

0
|h(f )|2df (11.2.6)

=
∫ 1

0
|c0e

j2πmf + c−1e
k2π(m−1)f + . . .+ c−m+1e

j2πf |2df = |c0|2+ . . . |c−m+1|2.

When m→∞,

∞∑
n=0

|c−n|2 =
∫ 1

0
|S1(f )|2df =

∫ 1

0
S(f )df = E|Xk|2, ∀k,

so that the signal (X(k)) is regular.

Remark 11.2.3 Let us take a look at the one step predictor X̂1 in the case log S(f )

satisfies some smoothness conditions to permit the following expansion of its
logarithm, log S(f ):

(
. . .+ a−2e

−j2π2f + a1e
−j2π + a0

2

)
+
(a0

2
+ a1e

+j2π + a2e
+j2π2f + . . .

)
.

Substituting

S1(f ) = exp
(
. . .+ a−2e

−j2π2f + a1e
−j2π + a0

2

)
,

we see that both S1 and S−1
1 are functions from C≤0. Using the standard expansion

ez = 1+ z+ z2/2+ . . . , one obtains the equality

c0 = 1
a0

2
+ (a0/2

2! + . . . = ea0/2.

Hence, the one step error

‖X̂1 −X1‖2
L2(S(f )df )

= |c0|2 = ea0 = exp

(∫ 1

0
log S(f )df

)
.
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Notice that, in general, this error is nonzero if, and only if,

∫ 1

0
log S(f )df > −∞,

which is the general condition for the regularity of the random stationary signal Xn.2

11.3 Examples of Linear Prediction for Stationary Time
Series

In this section we will consider a simple example of stationary time series where the
calculation of the optimal predictor is not very difficult.

Let X(t) be a stationary time series, t = . . . ,−1, 0, 1, . . . , with the autocovari-
ance function

γX(t) = a|t |, −1 < a < 1.

The corresponding spectral density, assuming the representation γX(t) =∫
SX(f )e−jf t df , is

Sx(f ) = 1− a2

2π(ejf − a)(e−jf − a)
,

which can be rewritten in the form

SX(f ) = ŜX(ejf ),

where

ŜX(z) = (1− a2)z

2π(z− a)(1− az)
.

Finding the optimal predictor m steps ahead requires finding a function

�m(f ) = a1e
−jf + a2e

−j2f + a3e
−j3f ,

satisfying the condition

∫ π

−π

ejkf [ejmf −�m(f )]SX(f )df = 0, k = 1, 2, 3, . . .

2Again, see, Grenander and Rosenblatt, and Bremaud’s books cited on page 284, for more details.
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In other words, the Fourier expansion of the function

�m(f ) = [ejmf −�m(f )]SX(f ) =
∞∑

k=0

cke
jkf

contains only nonnegative powers of ejf .
In the case of rational ŜX(z), the function

�̂m(z) =
∞∑

k=1

akz
−k

is an analytic function of z for |z| ≥ 1, with �̂m(∞) = 0, and

�̂m(z) = [zm − �̂m(z)]ŜX(z),

is analytic for |z| ≤ 1.
So, if in our case we are attempting to make a prediction one time step ahead,

that is, assuming m = 0, we need to find a function �̂0(z) with no singularities for
|z| ≥ 1, vanishing at infinity, and such that the function

�̂0(z) = (1− a2)[1− �̂0(z)]]z
2π(z− a)(1− az)

has no singularities for |z| ≤ 1. Since |a| < 1 we must have �̂0(a) = 1. The above
formula implies that �̂0(z) has no singularities other that a simple pole at z = 0.
Thus,

�̂0(z) = g0(z)z
−1,

where g0(z) is analytic in the whole complex plane, and g0(a) = a. So the only
function satisfying the above conditions is

�̂0(a) = az−1, with �(f ) = ae−jf .

Therefore the optimal predictor for X(t) is aX(t − 1). So, in this case the best
predictor just depends on the value of the process one step back and does not depend
on the whole past of the process.3

3For more details and analysis of more complicated rational spectral densities see An Introduction
to the Theory of Random Stationary Functions, by A.M. Yaglom, Dover Publications. New York,
1973.
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11.4 Problems and Exercises

1 Verify that in the case considered in Remark 11.2.1 the best predictor one time-
step ahead X̂1 is expressed by the formula

X̂1 =
∞∑

n=0

(Nejf0)−n−1
n∑

k=0

(
n

k

)
(ejf0)n−k(−1)kX−k.

2 Prove that if the spectral density S(f ) is satisfying the condition (11.2.1),

0 < C1 ≤ S(f ) ≤ C2 <∞,

then L2(dS) = L2(df ), and the convergences in those two spaces are equivalent.

3 Show that in the case analyzed in Sect. 11.3 the optimal prediction m time steps
ahead, that is at time t +m, also depends only on the single value of the process in
the past and is of the form

am+1X(t − 1).

4 Show that in the case of the spectral density of the form

Sx(f ) = 1

|ejf − a1|2|ejf − a2|2 , |a1|, |a2| < 1,

the optimal prediction one time step ahead depends only on the two values of the
process in the past, and is of the form

(a1 + a2)X(t − 1)+ a1a2X(t − 2).



Solutions to Selected Problems
and Exercises

Chapter 1

Problem 1. Find the real and imaginary parts of (a) (j + 3)/(j − 3) and (b) (1 +
j
√

2)3.

Solution

(a)

j + 3

j − 3
= (j + 3)(−j − 3)

(j − 3)(−j − 3)
= 1− 3j − 3j − 9

12 + 32
= −4

5
− 3

5
j

(b)

(1+ j
√

2)3 = 13 + 3 · 12(j
√

2)+ 3 · 1(j
√

2)2 + (j
√

2)3 = −5+√2j

Problem 2. Find the moduli |z| and arguments θ of complex numbers
(a) z = −2j ; (b) z = 3+ 4j .

Solution

(a) | z |= √(−2)2 + 0 = 2, tan θ = ∞⇒ θ = −π/2 (You have to be careful with
the coordinate angle, here cosθ = 0, sin θ < 0).

(b) | z |= √9+ 16 = 5, tan θ = 4/3 ⇒ θ = arctan 4/3.

Problem 3. Find the real and imaginary components of complex numbers (a) z =
5 ejπ/4; (b) z = −2 ej (8π+1.27).

Solution

(a) z = 5ejπ/4 = 5 cos(π/4)+ j sin(π/4) = 5
√

2
2 + j 5

√
2

2 ⇒ Rez = 5
√

2
2 , Imz =

5
√

2
2
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W. A. Woyczyński, A First Course in Statistics for Signal Analysis, Statistics
for Industry, Technology, and Engineering, https://doi.org/10.1007/978-3-030-20908-7

291

https://doi.org/10.1007/978-3-030-20908-7


292 Solutions to Selected Problems and Exercises

(b) z = −2ej (8π+1.27) = −2 cos(1.27) − 2j sin(1.27) ⇒ Rez = −2 cos(1.27),
Imz = −2 sin(1.27)

Problem 4. Show that

5

(1− j)(2− j)(3− j)
= j

2
.

Solution

5

(1− j)(2− j)(3− j)
= 5

(1− 3j)(3− j)
= − 5

10j
= j

2

Problem 5. Sketch sets of points in complex plane (x, y), z = x+ jy, such that (a)
|z− 1+ j | = 1; (b) z2 + (z∗)2 = 2.

Solution

(a)

{(x, y) : |z− 1+ j | = 1} = {(x, y) : |x + jy − 1+ j | = 1}

= {(x, y) : |(x − 1)+ j (y + 1)| = 1} = {(x, y) : (x − 1)2 + (y + 1)2 = 12}

So the set is a circle with radius 1 and center at (1,−1).
(b)

{(x, y) : z2 + (z∗)2 = 2} = {(x, y) : (x + jy)2 + (x − jy)2 = 2}

= {(x, y) : x2 + 2jxy − y2 + x2 − 2jxy − y2 = 2} = {(x, y) : x2 − y2 = 1}

So the set is a hyperbola (sketch it, please).

Problem 6. Using de Moivre’s formulas find (−2j)1/2. Is this complex number
uniquely defined?

Solution

(−2j)1/2 = √2
(
ej ( 3π

2 +2πk)
)1/2 = √2ej ( 3π

4 +πk), k = 0, 1, 2, . . .

=
{√

2ej ( 3π
4 ), for k = 0, 2, 4, . . . ;√

2ej ( 3π
4 +π), for k = 1, 3, 5, . . . ;

=
⎧⎨
⎩
√

2
(

cos( 3π
4 )+ j sin( 3π

4 )
)

, for k = 0, 2, 4, . . . ;
√

2
(

cos( 7π
4 )+ j sin( 7π

4 )
)

, for k = 1, 3, 5, . . . ;
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Problem 10. Using de Moivre’s formula derive the complex exponential represen-
tation (1.4.5) of the signal x(t) given by the cosine series representation x(t) =∑M

m=1 cm cos(2πmf0t + θm).

Solution

x(t) = c0 +
M∑

m=1

cm cos(2πmf0t + θm)

= c0e
j2π0f0t +

M∑
m=1

cm

1

2

(
ej (2πmf0t+θm) + e−j (2πmf0t+θm)

)

= c0e
j2π0f0t +

M∑
m=1

cm

2
ej (2πmf0t+θm) +

M∑
m=1

cm

2
e−j (2πmf0t+θm)

=
−M∑

m=−1

(c−m

2
e−jθ−m

)
ej2πmf0t + c0e

j2π0f0t +
M∑

m=1

(cm

2
ejθm

)
ej2πmf0t

Problem 12. Using a computing platform such as Mathematica, Maple, or Matlab
produce plots of the signals

xM(t) = π

4
+

M∑
m=1

[
(−1)m − 1

πm2 cos mt − (−1)m

m
sin mt

]
,

for M = 0, 1, 2, 3, . . . , 9, and −2π < t < 2π . Then produce their plots in the
frequency-domain representation. Calculate their power (again, using Mathematica,
Maple, or Matlab, if you wish). Produce plots showing how power is distributed
over different frequencies for each of them. Write down your observations. What is
likely to happen with the plots of these signals as we take more and more terms of the
above series, that is, as M →∞? Is there a limit signal x∞(t) = limM→∞ xM(t)?
What could it be?

Partial Solution Sample Mathematica code for the plot:

M = 9;

Plot[
Sum[

(((-1)^m - 1)/(Pi*m^2))*Cos[m*t]
- (((-1)^m)/m)*Sin[m*t],

{m, M}],
{t, -2*Pi, 2*Pi}]
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Sample power calculation:

M2 = 2;

N[Integrate[(1/(2*Pi))*
Abs[Pi/4 +

Sum[(((-1)^m - 1)/(Pi*m^2))*Cos[m*u]
- (((-1)^m)/m)*
Sin[m*u], {m, M2}]]^2, {u, 0, 2*Pi}], 5]

1.4445

Problem 13. Use the analog-to-digital conversion formula (1.1.1) to digitize signals
from Problem 13 for a variety of sampling periods and resolutions. Plot the results.

Solution We provide a sample Mathematica code:

M=9;
x[t_]:=Sum[(((-1)^m-1)/(Pi*m^2))*Cos[m*t]

-(((-1)^m)/m)*Sin[m*t],{m,M}]
T=0.1;
R=0.05;

xDigital=Table[R*Floor[x[m T]/R],{m,1,50}];

ListPlot[xDigital]

Problem 14. Use your computing platform to produce a discrete-time signal
consisting of a string of random numbers uniformly distributed on the interval [0,1].
For example, in Mathematica, the command

Table[Random[], {20}]

will produce the following string of 20 random numbers between 0 and 1:

{0.175245, 0.552172, 0.471142, 0.910891, 0.219577,
0.198173, 0.667358, 0.226071, 0.151935, 0.42048,
0.264864, 0.330096, 0.346093, 0.673217, 0.409135,
0.265374, 0.732021, 0.887106, 0.697428, 0.7723}

Use the “random numbers” string as additive noise to produce random versions of
the digitized signals from Problem 14. Follow the example described in Fig. 1.3.
Experiment with different string length and various noise amplitudes. Then center
the noise around zero and repeat your experiments.

Solution We provide a sample Mathematica code:

M=9;
x[t_]:=Sum[(((-1)^m-1)/(Pi*m^2))*Cos[m*t]

-(((-1)^m)/m)*Sin[m*t],{m,M}]



Solutions to Selected Problems and Exercises 295

T=0.1;
R=0.05;
xDigital=Table[R*Floor[x[m T]/R],{m,1,50}];
ListPlot[xDigital]
Noise=Table[Random[],{50}];
noisysig = Table[Noise[[t]] + xDigital[[t]],
{t, 1, 50}];
ListPlot[noisysig]
Centernoise = Table[Random[] - 0.5, {50}];
noisysig1 = Table[Centernoise[[t]] + xDigital[[t]],
{t, 1, 50}];
ListPlot[noisysig1]

Chapter 2

Problem 1. Prove that the system of real harmonic oscillations

sin(2πmf0t), cos(2πmf0t), m = 1, 2, . . . ,

forms an orthogonal system. Is the system normalized? Is the system complete?
Use the above information to derive formulas for coefficients in the Fourier
expansions in terms of sines and cosines. Model this derivation on calculations in
Sect. 2.1.

Solution First of all, we have to compute the scalar products:

1

P

∫ P

0
sin (2πmf0t) cos (2πnf0t)dt,

1

P

∫ P

0
sin (2πmf0t) sin (2πnf0t)dt,

1

P

∫ P

0
cos (2πmf0t) cos (2πnf0t)dt.

Using the trigonometric formulas listed in Sect. 1.2 we obtain

1

P

∫ P

0
sin (2πmt/P ) cos (2πnt/P ) dt

= 1

2P

∫ P

0
(sin (2π(m− n)t/P )+ sin (2π(m+ n)t/P )) dt = 0 for all m, n;
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1

P

∫ P

0
cos (2πmt/P ) cos (2πnt/P ) dt

= 1

2P

∫ P

0
(cos (2π(m− n)t/P )+ cos (2π(m+ n)t/P )) dt

=
{ 1

2 , if m = n;
0, if m �= n.

Similarly,

1

P

∫ P

0
sin (2πmt/P ) sin (2πnt/P ) dt =

{ 1
2 , m = n;
0, m �= n.

Therefore we conclude that the given system is orthogonal but not normalized. It
can be normalized by multiplying each sine and cosine by 1/

√
2. It is not complete

but it becomes complete if we add the function identically equal to 1 to it; it is
obviously orthogonal to all the sines and cosines.

Using the orthogonality property of the above real trigonometric system we arrive
at the following Fourier expansion for a periodic signal x(t):

x(t) = a0 +
∞∑

m=1

[am cos(2πmf0t)+ bm sin(2πmf0t)],

with coefficients

a0 = 1

P

∫ P

0
x(t) dt

am = 2

P

∫ P

0
x(t) cos (2πmt/P ) dt,

bm = 2

P

∫ P

0
x(t) sin (2πmt/P ) dt.

for m = 1, 2, . . .

2. Using the results from Problem 1 find formulas for amplitudes cm and phases
θm in the expansion of a periodic signal x(t) in terms of only cosines, x(t) =∑∞

m=0 cm cos(2πmf0t + θm).

Solution Obviously, c0 = a0. To find the connection between am, bm and cm, and
θm we have to solve the following system:

am = cm cos θm, bm = −cm sin θm.
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This gives us:

θm = arctan

(
−bm

am

)
, cm =

√
a2
m + b2

m.

Problem 9. Find the complex and real Fourier series for the periodic signal x(t) =
| sin t |. Produce graphs comparing the signal x(t) and its finite Fourier sums of order
1, 3, and 6.

Solution The first observation is that x(t) has period π . So,

zm = 1

π

∫ π

0
| sin t |e−2jmt dt = 1

π

∫ π

0
sin t · e−2jmt dt

= 1

π

∫ π

0

ejt − e−j t

2j
· e−2jmt dt = 1

2jπ

∫ π

0
(ejt (1−2m) − e−j t (1+2m)) dt

= 1

2jπ

(
ejπ(1−2m) − 1

j (1− 2m)
− e−jπ(1+2m)

−j (1+ 2m)

)
dt = 2

π(1− 4m2)
,

because ejπ = e−jπ = −1, and e−2jmπ = 1 , for all m. Therefore, the sought
complex Fourier expansion is

x(t) = 2

π

∞∑
m=−∞

1

1− 4m2 · ej2mt .

We observe that for any m = . . . − 1, 0, 1, . . . we have z−m = zm. Pairing up
complex exponentials with the exponents of opposite signs, and using de Moivre’s
formula, we arrive at the real Fourier expansion that contains only cosine functions:

x(t) = 2

π

(
1+ 2

∞∑
m=1

cos(2mt)

1− 4m2

)
.

In particular, the partial sums of order 1, and 3, are

s1(t) = 2

π

(
1− 2 cos 2t

3

)

s3(t) = 2

π

(
1− 2 cos 2t

3
− 2 cos 4t

15
− 2 cos 6t

35

)
.

A Mathematica code and the output showing x(t), s1(t), and s6(t) is shown on the
next page.
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Problem 13.

(a) The nonperiodic signal x(t) is defined as equal to 1/2 on the interval [−1,+1],
and 0 elsewhere. Plot it and calculate its Fourier transform X(f ). Plot the latter.

(b) The nonperiodic signal y(t) is defined as equal to (t + 2)/4 on the interval
[−2, 0], (−t + 2)/4 on the interval [0, 2], and 0 elsewhere. Plot it and calculate
its Fourier transform Y (f ). Plot the latter.

(c) Compare the Fourier transforms X(f ) and Y (f ). What conclusion do you draw
about the relationship of the original signals x(t) and y(t)?

Solution

(a) The Fourier transform of x(t) is

X(f ) =
∫ +1

−1

1

2
e−j2πf t dt = e−j2πf − ej2πf

−4jπf
= sin 2πf

2πf
.

(b) Integrating by parts, the Fourier transform of y(t) is

Y (f ) =
∫ 0

−2
((t + 2)/4)e−j2πf t dt +

∫ +2

0
((−t + 2)/4)e−j2πf t dt

= 1

4

(
1

−j2πf
· 2− 1

(−j2πf )2 (1− ej2πf 2)

)

+1

4

( −1

−j2πf
· 2− 1

(−j2πf )2 (e−j2πf 2 − 1)

)

= 1

4

1

(−j2πf )2

(
−(1− ej2πf 2)− (e−j2πf 2 − 1)

)

= 1

4

1

(j2πf )2

(
ej2πf − e−j2πf

)2 =
(

sin 2πf

2πf

)2

(c) So we have that Y (f ) = X2(f ). This means that the signal y(t) is the
convolution of the signal x(t) with itself: y(t) = (x ∗ x)(t).

Problem 18. Utilize the Fourier transform (in the space variable z) to find a solution
of the diffusion (heat) partial differential equation

∂u

∂t
= σ

∂2u

∂z2
,

for a function u(t, z) satisfying the initial condition u(0, z) = δ(z). The solution of
the above equation is often used to describe the temporal evolution of the density of
a diffusing substance.
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Solution Let us denote the Fourier transform (in z) of u(t, z) by

U(t, f ) =
∫ ∞

−∞
u(t, z)e−j2πf z dz.

Then for the second derivative

∂2u(t, z)

∂z2 �−→ (j2πf )2U(t, f ) = −4π2f 2U(t, f ).

So taking the Fourier transform of both sides of the diffusion equation gives the
equation

∂

∂t
U(t, f ) = −4π2f 2σU(t, f ),

which is now just an ordinary differential linear equation in the variable t , which
has the obvious exponential (in t) solution

U(t, f ) = Ce−4π2f 2σ t ,

where C is a constant to be matched later to the initial condition u(0, z) = δ(z).
Taking the inverse Fourier transform gives

u(t, z) = 1√
4πσ t

e−
z2
4σ t

Indeed, by completing the square,

∫ ∞

−∞
U(t, f )ej2πf x df = C

∫ ∞

−∞
e−4π2f 2σ t ej2πf x df

= Ce
−x2
4σ t

∫ ∞

−∞
e−4π2σ t (f−jx/(4πσ))2

df

with the last (Gaussian) integral being equal to 1/
√

4πσ t . A verification of the
initial condition gives C = 1.

Chapter 4

2. Calculate the probability that a random quantity uniformly distributed over
the interval [0, 3] takes values between 1 and 3. Do the same calculation for
the exponentially distributed random quantity with parameter μ = 1.5, and the
Gaussian random quantity with parameters μ = 1.5, σ 2 = 1.
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Solution

a) Since X has uniform distribution on the interval [0,3], then the value of p.d.f. is
1/3 between 0 and 3, and 0 elsewhere.

P{1 ≤ X ≤ 3} = (3− 1) · 1/3 = 2/3

b)

∫ 3

1

1

μ
e−x/μdx = 2

3

∫ 3

1
e−2x/3dx = −1(e−2·3/3 − e−2/3) = 0.378

c) We can solve this problem using the table for the c.d.f. of the standard normal
random quantity:

P(1 ≤ X ≤ 3) = P(1− 1.5 ≤ X − μ ≤ 3− 1.5) = P(−0.5 ≤ Z ≤ 1.5)

= �(1.5)−�(−0.5) = .9332− (1−�(0.5)) = .9332− 1+ .6915 = .6247

4. The p.d.f. of a random variable X is expressed by the quadratic function
fX(x) = ax(1 − x), for 0 < x < 1, and is zero outside the unit interval. Find
a from the normalization condition and then calculate FX(x), EX, Var(X), Std(X),

the n-th central moment, and P(0.4 < X < 0.9). Graph fX(x), and FX(x).

Solution

a) We know that for the p.d.f. of any random quantity we have

∫ ∞

−∞
fX(x) dx = 1

So,

1 =
∫ 1

0
ax(1− x) dx = a

6
.

Thus the constant a = 6.
b) To find the c.d.f. we will use the definition:

FX(x) =
∫ x

−∞
fX(y) dy

In our case, when 0 < x < 1

FX(x) =
∫ x

0
6y(1− y) dy = x2(3− 2x)
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Finally,

FX(x) =
⎧⎨
⎩

0, x < 0;
x2(3− 2x), 0 ≤ x < 1;

1, x ≥ 1.

c)

EX =
∫ 1

0
6x2(1− x) dx = 1

2

Var(X) = E(X2)− (EX)2 =
∫ 1

0
6x3(1− x) dx − 1

4
= 3

10
− 1

4
= 0.05

Std(X) = √Var(X) = √0.05 ≈ 0.224

d) The n-th central moment:

∫ 1

0
(x − .5)n6x(1− x) dx = 6

∫ 1

0
x(1− x)

n∑
k=0

xk

(
−1

2

)n−k

dx

= 6
n∑

k=0

(
n

k

)(
−1

2

)n−k ∫ 1

0
xk+1(1−x)dx = 6

n∑
k=0

(
n

k

)(
−1

2

)n−k 1

6+ 5k + k2

e)

P(0.4 < X < 0.9) =
∫ 0.9

0.4
6x(1− x) dx = 0.62

6. Find the c.d.f and p.d.f. of the random quantity Y = tan X, where X is
uniformly distributed over the interval (−π/2, π/2). Find a physical (geometric)
interpretation of this result.

Solution The p.d.f. fX(x) is equal to 1/π for x ∈ (−π/2, π/2) and 0 elsewhere.
So, c.d.f.

FX(x) =

⎧⎪⎪⎨
⎪⎪⎩

0, for x ≤ −π/2;
(1/π)(x + π/2), for x ∈ (−π/2, π/2);
1, for x ≥ π/2.
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Hence,

FY (y) = P(Y ≤ y) = P(tan X ≤ y) = P(X ≤ arctan(y))

= FX(arctan(y)) = 1

π
(arctan(y)+ π/2).

The p.d.f.

fY (y) = d

dy
FY (y) = d

dy

1

π
(arctan(y)+ π/2) = 1

π(1+ y2)
.

This p.d.f. is often called Cauchy probability density function.
A physical interpretation: A particle is emitted from the origin of the (x, y)-plane

with the uniform distribution of directions in the half-plane, y > 0. The p.d.f. of the
random quantity Y describes the probability distribution of locations of the particles
when they hit the vertical screen located at x = 1.

13. A random quantity X has an even p.d.f. fX(x) of the triangular shape shown
in Sect. 4.7.

(a) How many parameters do you need to describe this p.d.f.? Find an explicit
analytic formula for p.d.f. fX(x) and c.d.f. FX(x). Graph both of them.

(b) Find the expectation and variance of X.
(c) Let Y = X3. Find the p.d.f. fY (y) and graph it.

Solution

(a) Notice that the triangle is symmetric about the line x = 0. Let us assume that
the vertices of the triangle have the following coordinates A(a, 0), B(−a, 0),
C(0, c). Then the pdf is represented by the equations y = − c

a
x + c, in the

interval [0, a], and y = c
a

x + c, in the interval [−a, 0]. So, we need at most 2
parameters.

Next, the normalization condition says that area under the pdf is one. So,
necessarily ac = 1 ⇒ c = 1/a. Therefore, actually, one parameter suffices and
our one-parameter family of pdf’s has the following analytic description:

fX(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, for x < −a;
x
a2 + 1

a
, for − a ≤ x < 0;

− x
a2 + 1

a
, for 0 ≤ x < a;

0, for x ≥ a.

The corresponding c.d.f is as follows: If x < −a, then FX(x) = 0; If −a ≤
x < 0, then FX(x) = ∫ x

−a
( t
a2 + 1

a
) dt = x2

2a2 + x
a
+ 1

2 ; If 0 ≤ x < a, then

FX(x) = 1
2 +

∫ x

0 (− t
a2 + 1

a
) dt = 1

2 − x2

2a2 + x
a

; If x > a then F(x) = 1.
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(b) Find the expectation and variance of X.

EX =
∫ ∞

−∞
x fX(x) dx =

∫ 0

−a

x

(
x

a2 +
1

a

)
dx+

∫ a

0
x

(
− x

a2 +
1

a

)
dx = 0.

Of course, the above result can be obtained without any integration by observing
that the p.d.f. is an even function, symmetric about the origin.

VarX =
∫ ∞

−∞
x2 fX(x)

dx =
∫ 0

−a

x2
(

x

a2
+ 1

a

)
dx +

∫ a

0
x2
(
− x

a2
+ 1

a

)
dx = a2

6
.

(c) The function y = g(x) = x3 is monotone, therefore there exists an inverse
function which in this case is x = g−1(y) = y1/3. The derivative g′(x) = 3x2,
and g′(g−1(y) = 3y2/3. Then, see (4.1.12),

fY (y) = fX(g−1(y))

g′(g−1(y)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, y < (−a)3(
y1/3

a2 + 1
a

)
1

3y2/3 (−a)3 ≤ y < 0(
− y1/3

a2 + 1
a

)
1

3y2/3 0 < y < a3

0 y ≥ a3

Here is the needed Mathematica code producing the desired plots:

(*pdf, a=2*)
H[x_] := If[x < 0, 0, 1]
f[a_, b_, x_] := H[x - a] - H[x - b];
ff[x_, a_] := (x/a^2 + 1/a)*f[-a, 0, x] +

(-x/a^2 + 1/2)*f[0, a, x]
Plot[ff[x, 2], {x, -3, 3}]

F[x_, a_] := (x^2/(2*a^2) + x/a + 1/2)*f[-a, 0, x] +
(1/2 - x^2/(2*a^2) + x/a)*f[0, a, x]

Plot[F[x, 2], {x, -4, 4}]

15. Verify the Cauchy-Schwartz Inequality (3.3.18). Hint: Take Z = (X −
EX)/σ(X) and W = (Y − EY/σ(Y ), and consider the discriminant of the
expression E(Z+xW)2. The latter is quadratic in variable x and necessarily always
nonnegative, so it can have at most one root.

Solution The quadratic form in x,

0 ≤ E(Z + xW)2 = EZ2 + 2xE(ZW)+ x2EW 2 = p(x)
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is nonnegative for any x. Thus the quadratic equation p(x) = 0 has at most one
solution (root). Therefore the discriminant of this equation must be nonpositive,
that is,

(2E(ZW))2 − 4EW 2EZ2 ≤ 0,

which gives the basic form of the Cauchy-Schwarz inequality

|E(ZW)| ≤
√

EW 2 ·
√

EZ2.

Finally, substitute for Z and W as indicated in the above hint to obtain the desired
result.

24. Complete the following sketch of the proof of the Central Limit Theorem
from Sect. 3.5. Start with a simplifying observation (based on Problem 23) that it is
sufficient to consider random quantities Xn, n = 1, 2, . . . , with expectations equal
to 0, and variances 1.

(a) Define FX(u) as the inverse Fourier transform of the distribution of X:

FX(u) = EejuX =
∫ ∞

∞
ejux dFX(x).

Find F ′X(0) and F ′′X(0). In statistical literature FX(u) is called the characteristic
function of the random quantity X. Essentially, it completely determines the
probability distribution of X via the Fourier transform (inverse of the inverse
Fourier transform).

(b) Calculate FX(u) for the Gaussian N(0, 1) random quantity. Note the fact that
its functional shape is the same as that of the N(0, 1) p.d.f. This fact is the
crucial reason for the validity of CLT.

(c) Prove that, for independent random quantities X and Y ,

FX+Y (u) = FX(u) · FY (u).

(d) Utilizing (c), calculate

F√n(X̄−μX)/Std(X)(u).

Then find its limit as n→∞. Compare it with the characteristic of the Gaussian
N(0, 1) random quantity. (Hint: it is easier to work here with the logarithm of
the above transform.)

Solution Indeed, (Xk − EXk)/Std(Xk) has expectation 0 and variance 1, so it is
enough to consider the problem for such random quantities. Then,
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(a)

F ′X(0) = d

du
EejuX

∣∣∣
u=0
= jEXejuX

∣∣∣
u=0
= jEX = 0

F ′′X(0) = d

du
jEXejuX

∣∣∣
u=0
= j2EX2ejuX

∣∣∣
u=0
= −EX2 = −1

(b) If Z is an N(0, 1) random quantity, then

FZ(u) =
∫ ∞

−∞
ejux e−x2/2

√
2π

dx = e−u2/2
∫ ∞

−∞
e−

1
2 (x2−2jux+(ju)2) 1√

2π
dx

= e−u2/2
∫ ∞

−∞
e−

1
2 (x−ju)2 1√

2π
dx = e−u2/2

∫ ∞

−∞
e−

1
2 z2 1√

2π
dz = e−u2/2

by changing the variable x − ju �→ z in the penultimate integral and because
the Gaussian density in the last integral integrates to 1.

(c) Indeed, if X and Y are independent, then

FX+Y (u) = Eeju(X+Y ) = E(ejuX · ejuY ) = EejuX · EejuY = FX(u) · FY (u)

because the expectation of a product of independent random quantities is the
product of their expectations.

(d) Observe first that

√
n(X̄ − μX)

Std(X)
= 1√

n
(Y1 + . . .+ Yn),

where

Y1 = X1 − μX

Std(X)
, . . . , Yn = Xn − μX

Std(X)

so that, in particular, Y1, . . . , Yn, are independent, identically distributed with
EY1 = 0 and EY 2

1 = 1. Hence, using (a)–(c)

F√n(X̄−μX)/Std(X)(u) = F(Y1/
√

n+···+Yn/
√

n)(u) = F(Y1/
√

n)(u)·. . .·F(Yn/
√

n)(u)

= [FY1(u/
√

n)]n.

Now, for each fixed but arbitrary u, instead of calculating the limit n → ∞ of
the above characteristic functions, it will be easier to calculate the limit of their
logarithm. Indeed, in view of de l’Hospital’s rule applied twice (differentiating with
respect to n; explain why this is OK):
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lim
n→∞ logF√n(X̄−μX)/Std(X)(u) = lim

n→∞ log[FY1(u/
√

n)]n

= lim
n→∞

logFY1(u/
√

n)

1/n
= lim

n→∞
(1/FY1(u/

√
n)) · F ′Y1

(u/
√

n) · (− 1
2u/n3/2)

−1/n2

= 1

2
u lim

n→∞
1 · F ′Y1

(u/
√

n)

1/n1/2 = 1

2
u lim

n→∞
F ′′Y1

(u/
√

n) · (− 1
2u/n3/2)

− 1
2 · 1/n3/2

= −1

2
u2,

because F ′Y1
(0) = 0, and F ′′Y1

(0) = −1, see Part (a). So for the characteristic
functions themselves

lim
n→∞F√n(X̄−μX)/Std(X)(u) = e−u2/2,

and we recognize the above limit as the characteristic function of the N(0, 1)

random quantity, see Part (b).
The above proof glosses over the issue of whether indeed convergence of

characteristic functions implies convergence of c.d.f.s of the corresponding random
quantities. The relevant Continuity Theorem can be found in any of the mathemat-
ical probability theory textbooks listed in the Bibliographical Comments at the end
of this volume.

Chapter 5

Problem 1. Consider a random signal

X(t) =
n∑

k=0

Ak cos
(

2πkfk(t +�k)
)
,

where A0,�1, . . . , An,�n are independent random variables of finite variance,
and �1, . . . , �n are independent, independent of As and uniformly distributed
on the time interval [0, P = 1/f0]. Is this signal stationary? Find its mean, and
autocorrelation functions.

Solution The mean value of the signal (we use the independence conditions)

EX(t) = E
(
A1 cos 2πf0(t +�1)

)
+ . . .+ E

(
An cos 2πnf0(t +�n)

)

= EA1 ·
∫ P

0
cos 2πf0(t + θ1)

dθ1

P
+ . . .+ EAn ·

∫ P

0
cos 2πnf0(t + θn)

dθn

P
= 0.

The mean value doesn’t depend on time t ; thus the first requirement of stationarity
is satisfied.
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The autocorrelation function

γX(t, t + τ) = E[X(t)X(t + τ)]

= E

(
n∑

i=1

Ai cos(2πif0(t +�i)) ·
n∑

k=1

Ak cos(2πkf0(t + τ +�k))

)

=
n∑

i=1

n∑
k=1

E(AiAk) · E
(

cos(2πif0(t +�i)) · cos(2πkf0(t + τ +�k))
)

=
n∑

i=1

EA2
i

2
cos (2πif0τ),

because all the cross-terms are zero. The autocorrelation function is thus depending
only on τ (and not on t), so that the second condition of stationarity is also satisfied.

Problem 2. Consider a random signal

X(t) = A1 cos 2πf0(t +�0),

where A1,�0, are independent random variables, and �0 is uniformly distributed
on the time interval [0, P/3 = 1/(3f0)]. Is this signal stationary? Is the signal
Y (t) = X(t)− EX(t) stationary. Find its mean, and autocorrelation functions.

Solution The mean value of the signal

EX(t) = E
(
A cos 2πf0(t +�)

)
= EA ·

∫ P/3

0
cos(2πf0(t + θ))

dθ

P/3

= 3EA

2π
sin(2πf0(t + θ))

∣∣∣P/3

θ=0
= 3EA

2π

(
sin(2πf0(t + P/3))− sin(2πf0t)

)
.

Since

sin p − sin q = 2 cos
p + q

2
sin

p − q

2
,

we finally get

EX(t) = EA
3
√

3

2π
cos
(

2πf0t + π

3

)
,

which clearly depends on t in an essential way. Thus the signal is not stationary.
The signal Y (t) = X(t) − EX(t) has obviously mean zero. Its autocorrelation

function
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γY (t, s) = E[X(t)X(s)] − EX(t)EX(s)

= EA2
∫ P/3

0
cos 2πf0(t + θ) cos 2πf0(s + θ)

3

P
dθ − EX(t)EX(s),

with EX(t) already calculated above. Since cos α cos β = [cos (α + β) +
cos (α − β)]/2, the integral in the first term is

cos 2πf0(t − s)+ 3

4π

(
sin(2πf0(t + s + 2

3f0
))− sin(2πf0(t + s))

)
.

Now, γY (t, s) can be easily calculated. Simplify the expression (and plot the
ACF) before you decide the stationarity issue for Y (t).

Problem 8. Show that if X1, X2, . . . , Xn, are independent, exponentially distributed
random quantities with identical p.d.f.s e−x, x ≥ 0, then their sum Yn = X1+X2+
· · ·+Xn has the p.d.f. e−yyn−1/(n−1)!, y ≥ 0. Use the technique of characteristic
functions (Fourier transforms) from Chap. 3. The random quantity Yn is said to have
the Gamma probability distribution with parameter n. Thus the Gamma distribution
with parameter 1 is just the standard exponential distribution, see Example 4.1.4.
Produce plots of Gamma p.d.f.s with parameters n = 2, 5, 20, and 50. Comment on
what you observe as n increases.

Solution The characteristic function (see, Chap. 3) for each of Xi’s is

FX(u) = EejuX =
∫ ∞

0
ejuxe−x dx = 1

1− ju
.

In view of the independence of Xi’s the characteristic function of Yn is necessarily
the n-th power of the common characteristic function of Xi’s:

FYn(u) = Eeju(X1+...+Xn) = EejuX1 · . . . · EejuXn = 1

(1− ju)n
.

So it suffices to verify that the characteristic function of the p.d.f. fn(u) =
e−yyn−1/(n − 1)!, y ≥ 0 is also of the form (1 − ju)−n. Indeed, integrating by
parts, we obtain

∫ ∞

0
ejuye−y yn−1

(n− 1)! dy = e(ju−1)y

ju− 1
· yn−1

(n− 1)!
∣∣∣∞
y=0
+ 1

1− ju

∫ ∞

0
e(ju−1)y yn−2

(n− 2)! dy.

The first term on the right side is zero so that we get the recursive formula

Ffn(u) = 1

1− ju
Ffn−1(u),

which gives the desired result since Ff1(u) = FX(u) = (1− ju)−1.



310 Solutions to Selected Problems and Exercises

Chapter 6

Problem 5. A stationary signal X(t) has the autocorrelation function

γX(τ) = 16e−5|τ | cos 20πτ + 8 cos 10πτ

(a) Find the variance of the signal
(b) Find the power spectrum density of this signal
(c) Find the value of the spectral density at zero frequency

Solution

(a)

σ 2 = γX(0) = 16+ 8 = 24

(b) Let us denote the operation of Fourier transform by F . Then, writing, perhaps,
a little informally,

SX(f ) =
∫ ∞

−∞
γX(τ)e−j2πf τ dτ = (FγX)(f )

= F
(

16e−5|τ | · cos (20πτ)+ 8 cos (10πτ)
)
(f )

= 16 ·
(
F(e−5|τ |) ∗ F(cos(20πτ))

)
(f )+ 8 · F(cos (10πτ))(f ).

But

F(e−5|τ |)(f ) = 2 · 5
52 + (2πf )2

= 10

25+ (2πf )2
,

and

F(cos 20πτ)(f ) = δ(f + 10)+ δ(f − 10)

2
,

so that
(
F(e−5|τ |) ∗ F(cos (20πτ))

)
(f )

=
∫ ∞

−∞
10

25+ (2πf )2
∗ δ(f − s + 10)+ δ(f − s − 10)

2
ds
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= 5

[∫ ∞

−∞
δ(s − (f + 10))

25+ (2πf )2 ds +
∫ ∞

−∞
δ(s − (f − 10))

25+ (2πf )2 ds

]

= 5

[
1

25+ 4π2(f + 10)2 +
1

25+ 4π2(f − 10)2

]
,

because we know that
∫

δ(f − f0)X(f ) df = X(f0). Since F(cos 10πτ)(f ) =
δ(f + 5)/2+ δ(f − 5)/2,

SX(f ) = 80

25+ 4π2(f + 10)2
+ 80

25+ 4π2(f − 10)2
+4δ(f +5)+4δ(f −5).

Another way to proceed would be to write e−5|τ | · cos (20πτ) as e−5τ ·
(ej (20πτ) − e−j (20πτ))/2, for τ > 0 (similarly for negative τ ’s), and do the
integration directly in terms of just exponential functions (but it was more fun
to do convolutions with the Dirac-delta impulses, wasn’t it?).

(c)

SX(0) = 80

25+ 4π2100
+ 80

25+ 4π2100
+ 4δ(5)+ 4δ(−5) = 160

25+ 400π2 .

Problem 9. Verify positive-definiteness (see, Remark 5.2.1) of autocorrelation
functions of stationary signals directly from their definition.

Solution Let N be an arbitrary positive integer, t1, . . . , tN ∈ R, and z1, . . . , zN ∈ C.
Then, in view of stationarity of X(t),

N∑
n=1

N∑
k=1

γ (tn − tk)znz
∗
k =

N∑
n=1

N∑
k=1

E[X∗(t)X(t + (tn − tk)]znz
∗
k

=
N∑

n=1

N∑
k=1

E[X∗(t + tk)X(t + tn)]znz
∗
k = E

N∑
n=1

N∑
k=1

(zkX(t + tk))
∗ · (znX(t + tn))

= E

∣∣∣∣∣
N∑

n=1

znX(t + tn)

∣∣∣∣∣
2

≥ 0.

Chapter 7

Problem 1. The impulse response function of a linear system is h(t) = 1 − t , for
0 ≤ t ≤ 1, and 0 elsewhere.
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(a) Produce a graph of h(t).

(b) Assume that the input is the standard white noise. Find the autocovariance
function of the output.

(c) Find the power transfer function of the system, its equivalent-noise bandwidth
and half-power bandwidth.

(d) Assume that the input has the autocovariance function γX(t) = 3/(1 + 4t2).
Find the power spectrum of the output signal.

(e) Assume that the input has the autocovariance function γX(t) = exp(−4|t |).
Find the power spectrum of the output signal.

(f) Assume that the input has the autocovariance function γX(t) = 1−|t | for |t | < 1
and 0 elsewhere. Find the power spectrum of the output signal.

Solution

(a)

(b) With γX(τ) = δ(τ ), the autocovariance function of the output is

γY (τ ) =
∫ ∞

0

∫ ∞

0
γX(τ − u+ s)h(s)h(u) ds du =

=
∫ 1

0

∫ 1

0
δ(s − (u− τ))(1− s)(1− u) ds du.

As long 0 < u− τ < 1, which implies that −1 < τ < 1, the inner integral is

∫ 1

0
δ(s − (u− τ))(1− s) ds = 1− (u− τ),

and otherwise it is zero.
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So, for 0 < τ < 1,

γY (τ ) =
∫ 1

τ

(1− (u− τ))(1− u) du = 1

6
(τ − 1)2(τ + 2),

and, in view of evenness of ACF,

γY (τ ) = 1

6
(|τ | − 1)2(|τ | + 2) for − 1 < τ < 1,

for −1 < τ < 1, and it is zero outside the interval [−1, 1], see the figure above.

(c) The transfer function of the system is

H(f ) =
∫ 1

0
(1− t)e−2πjf tdt = sin2(πf )

2π2f 2 − j
2πf − sin(2πf )

4π2f 2 .

Therefore, the power transfer function is

|H(f )|2 = H(f )H ∗(f ) =
(

sin2(πf )

2π2f 2

)2

+
(

2πf − sin(2πf )

4π2f 2

)2

= −1+ cos 2πf + 2πf sin 2πf − 2π2f 2

8π4f 4 .

It is shown in the figure below.
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To find the value of the power transfer function at f = 0 one can apply
L’Hospital’s rule, differentiating numerator and denominator of |H(f )|2 three times
which yields |H(0)|2 = 1/4. Thus the equivalent noise bandwidth is

BWn = 1

2|H(0)|2
∫ 1

0
(1− t)2 dt = 2/3.

Checking the above plot of the power transfer function one finds that, approximately,
the half power bandwidth is BW1/2 = 0.553.

(d) The power spectrum of the output signal is given by

SY (f ) = SX(f )|H(f )|2,

where SX(f ) is the power spectrum of the input signal. In our case,

SX(f ) =
∫ ∞

−∞
3

1+ 4t2 · cos(2πf t) dt = 3π

2
e−π |f |.

Therefore,

SY (f ) = 3π

2
e−π |f | · −1+ cos 2πf + 2πf sin 2πf − 2π2f 2

8π4f 4 .

(e) In this case, similarly,

SX(f ) =
∫ ∞

−∞
e−4|t | · cos(2πf t) dt = 2

4+ π2f 2
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and

SY (f ) = 2

4+ π2f 2
· −1+ cos 2πf + 2πf sin 2πf − 2π2f 2

8π4f 4
.

(f) Finally, here

SX(f ) = (sin πf )2

π2f 2 ,

and

SY (f ) = (sin πf )2

π2f 2 · −1+ cos 2πf + 2πf sin 2πf − 2π2f 2

8π4f 4 .

Problem 5. Consider the circuit shown in Fig. 7.10. Assume that the input, X(t), is
the standard white noise.

(a) Find the power spectra SY (f ) and SZ(f ) of the outputs Y (t) and Z(t).
(b) Find the crosscorrelation between those two outputs,

γYZ(τ) = E
(
Z(t)Y (t + τ)

)
.

Solution

(a) Note that X(t) = Y (t)+Z(t). The impulse response function for the “Z” circuit
is

hZ(t) = 1

RC
e−t/RC,

and

Y (t) = X(t)−
∫ ∞

0
hZ(s)X(t − s) ds.

So the impulse response function for the “Y” circuit is

hY (t) = δ(t)−
∫ ∞

0

1

RC
e−s/RCδ(t − s) ds =

= δ(t)− 1

RC
e−t/RC, t ≥ 0.

The Fourier transform of hY (t) will give us the transfer function

HY (f ) =
∫ ∞

0
(δ(t)− 1

RC
e−t/RC)e−2πjf t dt = 2πjRCf

1+ 2πjRCf
.
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For the standard white noise input X(t), the power spectrum of the output is equal
to the power transfer function of the system. Indeed,

SY (f ) = 1 · |HY (f )|2 = 4π2R2C2f 2

1+ 4π2R2C2f 2 .

The calculation of SX(f ) has been done before as the “Z” circuit represents the
standard RC filter.

(b)

γyz(τ ) = E(Y (t)Z(t + τ))

= E

[∫ ∞

−∞
X(t − s)hY (s) ds

∫ ∞

−∞
X(t + τ − u)hZ(u) du

]

=
∫ ∞

−∞

∫ ∞

−∞
EX(t − s)X(t + τ − u)hY (s)hZ(u) ds du

=
∫ ∞

0

∫ ∞

0
δ(τ − u+ s)(δ(s)− 1

RC
e−s/RC)

1

RC
e−u/RC du ds

=
∫ ∞

0
(δ(s)− 1

RC
e−s/RC)

1

RC
e−(τ+s)/RC ds

=
∫ ∞

0
δ(s)

1

RC
e−(τ+s)/RCds −

∫ ∞

0

1

RC
e−s/RC 1

RC
e−(τ+s)/RC ds

= 1

RC
e−τ/RC − 1

2RC
e−τ/RC = 1

2RC
e−τ/RC.

Chapter 8

Problem 2. A signal of the form x(t) = 5e−(t+2)u(t) is to be detected in the
presence of white noise with a flat power spectrum of 0.25 V 2/Hz using a matched
filter.

(a) For t0 = 2 find the value of the impulse response of the matched filter at t =
0, 2, 4.

(b) Find the maximum output signal-to-noise ratio that can be achieved if t0 = ∞.

(c) Find the detection time t0 that should be used to achieve output signal-to-noise
ratio that is equal to 95% of the maximum signal-to-noise ratio discovered in
part (b).

(d) The signal x(t) = 5e−(t+2)u(t) is combined with white noise having a power
spectrum of 2 V 2/Hz. Find the value of RC such that the signal/noise at the
output of the RC filter is maximal at t = 0.01 s.
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Solution

(a) The impulse response function for the matched filter is of the form

h(s) = 5 exp[−(t0 − s + 2)] · u(t0 − s) = 5e−(4−s)u(2− s),

where t0 is the detection time and u(t) is the usual unit step function. Therefore,

h(0) = 5e−4, h(2) = 5e−2, h(4) = 0.

(b) The maximum signal-to-noise ration at detection time t0 is

S
N max

(t0) =
∫∞

0 x2(t0 − s) ds

N0
=
∫ t0

0 25e−2(t0−s+2) ds

0.25
= 50e−4(1− e−2t0).

So

S
N max

(t0 = 0) = 50e−4.

(c) The sought detection time t0 can thus be found by solving numerically the
equation

50e−4(1− e−2t0) = 0.95 · 50e−4,

which yields, approximately, t0 = − log 0.05/2 ≈ 1.5.

Chapter 9

Problem 1. A zero-mean Gaussian random signal has the autocovariance function
of the form

γX(τ) = e−0.1|τ | cos 2πτ .

Plot it. Find the power spectrum SX(f ). Write the covariance matrix for the signal
sampled at four time instants separated by 0.5 s. Finds its inverse (numerically; use
any of the familiar computing platforms, such as Mathematica, Matlab, etc.).

Solution We will use Mathematica to produce plots and do symbolic calculations
although it is fairly easy to calculate SX(f ) by direct integration. The plot of γX(τ)

is below.
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The power spectrum SX(f ) is the Fourier Transform of the ACF, so

In[1]:= GX[t_] := Exp[- Abs[t]]*Cos[2*Pi*t];

In[2]:= FourierTransform [GX[t], t, 2*Pi*f]

Out[2]=

Note that the Fourier Transform in Mathematica is defined as a function of the
angular velocity variable ω = 2πf ; hence the above substitution. The plot of the
power spectrum is shown below.
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Problem 3. Find the joint p.d.f. of the signal from Problem 1 at t1 = 1, t2 =
1.5, t3 = 2, and t4 = 2.5. Write the integral formula for

P(−2 ≤ X(1) ≤ 2,−1 ≤ X(1.5) ≤ 4,−1 ≤ X(2) ≤ 1, 0 ≤ X(2.5) ≤ 3).

Evaluate the above probability numerically.

Solution Again, we use Mathematica to carry out all the numerical calculations.
First, we calculate the relevant covariance matrix

In[3]:= CovGX = N[{{GX[0], GX[0.5], GX[1], GX[1.5]},
{GX[0.5], GX[0], GX[0.5], GX[1]},
{GX[1], GX[0.5], GX[0], GX[0.5]},
{GX[1.5], GX[1], GX[0.5], GX[0]}}] // MatrixForm

Out[3]=

Its determinant, and its inverse are:

In[4]:=Det [CovGX]
Out[4]= 0.25258

In[5]:= ICovGX = Inverse[CovGX] // MatrixForm
Out[5]=

Thus the corresponding 4D Gaussian p.d.f. is

In[6]:= f[x1, x2, x3, x4]= (1/((2*Pi)^2

*Sqrt[Det[CovGX]])) *
Exp[-(1/2)*
Transpose[{{x1},{x2},{x3},{x4}}]. ICovGX.

{x1,x2,x3,x4}]
Out[6]= 0.05 * E^( -0.79 x1^2 - 1.08 x2^2
- 0.96 x2 x3 -1.08 x3^2 + x1 (-0.96 x2
+ 8.92*10^-17 x3 + 8.33*10^-17 x4) +
2.43*10^-16 x2 x4 - 0.96 x3 x4 - 0.79 x4^2
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Note the quadratic form in four variables, x1, x2, x3, x4, in the exponent.
The calculations of the sought probability requires evaluation of the 4D integral,

P
(
− 2 ≤ X(1) ≤ 2,−1 ≤ X(1.5) ≤ 4,−1 ≤ X(2) ≤ 1, 0 ≤ X(2.5) ≤ 3

)
=

∫ 2

−2

∫ 4

−1

∫ 1

−1

∫ 3

0
f (x1, x2, x3, x4) dx1 dx2 dx3 dx4,

which can be done only numerically:

In[7]:= NIntegrate[ f[x1, x2, x3, x4],
{x1, -2, 2}, {x2, -1, 4}, {x3, -1, 1},
{x4, 0, 3}]

Out[7]= {0.298126}

Problem 4. Show that if a 2D Gaussian random vector �Y = (Y1, Y2) has uncor-
related components Y1, Y2, then those components are statistically independent
random quantities.

Solution Recall the p.d.f. of a general zero-mean 2D Gaussian random vector
(Y1, Y2) (see, (8.2.9)):

f�Y(y1, y2) = 1

2πσ1σ2

√
1− ρ2

· exp

[
− 1

2(1− ρ2)

(
y2

1

σ 2
1

− 2ρ
y1y2

σ1σ2
+ y2

2

σ 2
2

)]
.

If the two components are uncorrelated, then ρ = 0, and the formula takes the
following simplified shape,

f�Y(y1, y2) = 1

2πσ1σ2
· exp

[
−1

2

(
y2

1

σ 2
1

+ y2
2

σ 2
2

)]
,

and it factors into the product of the marginal densities of the two components of
random vector �Y :

f�Y(y1, y2) = 1√
2πσ1

exp

[
−1

2

(
y2

1

σ 2
1

)]
· 1√

2πσ2
exp

[
−1

2

(
y2

2

σ 2
2

)]
,

= fY1(y1) · fY2(y2),

which proves the statistical independence of Y1 and Y2.
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Chapter 10

Problem 8. Verify that the additivity property (10.3.7) of any function forces its
linear form (10.3.8).

Solution Our assumption is that a function C(v) satisfies the functional equation

C(v + w) = C(v)+ C(w) (S.9.1)

for any real numbers v,w. We will also assume that is it continuous although the
proof is also possible (but harder) under a weaker assumption of measurability.
Taking v = 0, w = 0, gives

C(0) = C(0)+ C(0) = 2C(0),

which implies that C(0) = 0. Furthermore, taking w = −v, we get

C(0) = C(v)+ C(−v) = 0,

so that C(v) is necessarily an odd function.
Now, iterating (S.9.1) n times we get that, for any real number v

C(nv) = n · C(v)

and choosing v = 1/n, we see that C(1) = nC(1/n) for any positive integer n.
Replacing n by m in the last equality and combining it with the preceding equality
with v = 1/m, we get that, for any positive integers n,m,

C
( n

m

)
= n

m
· C(1).

Finally, since any real number can be approximated by the rational numbers of the
form n/m, and since C was assumed to be continuous, we get that for any real
number

C(v) = v · C(1),

that is, C(v) is necessarily a linear function.
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