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Abstract. While recent progress in pose recognition has been impres-
sive, there remains ample margin for improvement, particularly in chal-
lenging scenarios such as low resolution images. In this paper, we consider
the problem of recognizing pose from tiny images of people, down to 24px
high. This is relevant when interpreting people at a distance, which is
important in applications such as autonomous driving and surveillance
in crowds. Addressing this challenge, which has received little attention
so far, can inspire modifications of traditional deep learning approaches
that are likely to be applicable well beyond the case of pose recognition.

Given the intrinsic ambiguity of recovering a person’s pose from a
small image, we propose to predict a posterior probability over pose
configurations. In order to do so we: (1) define a new neural network
architecture that explicitly expresses uncertainty; (2) train the network
by explicitly minimizing a novel loss function based on the data log-
likelihood; and (3) estimate posterior probability maps for all joints as a
semi-dense sub-pixel Gaussian mixture model. We asses our method on
downsampled versions of popular pose recognition benchmarks as well as
on an additional newly-introduced testing dataset. Compared to state-
of-the-art techniques, we show far superior performance at low resolution
for both deterministic and probabilistic pose prediction.

1 Introduction

Interpreting images of people is an important problem in many applications
of image understanding, and, as such, has received significant attention since
the early days of computer vision research [7–9,30]. Deep learning has dra-
matically improved the performance of generic object detection and segmen-
tation by methods such as Faster/Mask R-CNN [11,25], which, when applied
to interpreting people in images, achieve good performance. However, models
specialized for human pose recognition still perform better than such generic
approaches [3,5,19], justifying research dedicated to this problem.

In this paper, we consider the problem of pose recognition, i.e. identifying in
an image the location of landmark points of the human body, such as shoulders,
wrists and hips. However, we do so in a setting that has not received much
attention before, namely very small images of people (Fig. 1). Most approaches
to pose recognition assume in fact that input images have a relatively large

c© Springer Nature Switzerland AG 2019
C. V. Jawahar et al. (Eds.): ACCV 2018, LNCS 11363, pp. 558–574, 2019.
https://doi.org/10.1007/978-3-030-20893-6_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20893-6_35&domain=pdf
https://doi.org/10.1007/978-3-030-20893-6_35


Tiny People Pose 559

14px

27
px

18px

38
px

Fig. 1. Human pose estimation at a distance. Given a small low-resolution patch of an
image (detected by [13]), the proposed method estimates the joint probability distri-
bution of all body parts, despite individual pixels’ noise and ambiguities. Image taken
from the Tiny People dataset

resolution, such that the apparent height of a person is in the order of a few
hundred pixels. We consider instead the case in which a person’s height is an
order of magnitude smaller, down to 24 pixels high. These tiny people are very
important in applications such as surveillance and autonomous driving, where
understanding the action or intention of people at a distance can be critical.

Besides the interest in applications, the tiny people problem offers unique
technical challenges which inspire significant modifications of traditional deep
learning approaches to structured prediction, most of which extend well beyond
the case of pose recognition.

First, since there are intrinsic limitations to how much information can be
extracted from small images, one should not expect to always be able to infer
pose with the same degree of certainty as in the high-resolution case. Instead, we
start from the outset with the goal of estimating a probability distribution over
possible poses, making this distribution as tight as possible given an observed
image. Doing so requires to develop a network architecture that can explicitly
express uncertainty, both in the training as well as the testing stage.

Our second contribution is revisiting the standard “sliding window” approach
for human pose estimation, in which keypoint locations are found as maxima in a
dense heat map [5,19], which can be interpreted as performing a sliding window
search of body parts over all image locations. However, for small images of people
the resulting heat maps may have fairly low resolution. Rather than artificially
increasing the resolution of the image, we consider an alternative probabilistic
approach where a low resolution feature map is used to generate a dense field
of Gaussian blobs, resulting in a rich continuous mixture model which naturally
allows sub-pixel accuracy in joint prediction without significantly increasing the
computational burden.
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The output of the method is a distribution over possible body joint config-
urations, estimated from a small image of a person. We assess the method on
two standard benchmarks after reducing their resolution to approximate people
seen at a distance. However, this approach cannot match exactly the statistics
of people actually imaged at a distance. For this reason, we introduce a new
specialized benchmark, Tiny People, containing small people instances that we
manually collected and annotated. While this dataset is smaller than the other
standard benchmarks that we also use for assessment, we show that it is statisti-
cally sufficiently large to reliably rank algorithms and thus to provide additional
verification of the validity of our approach.

On both standard benchmarks and Tiny People, we compare our method
against state-of-the-art pose recognition methods. Even after carefully tuning
them to the low resolution settings in different ways, we show consistently better
performance in low resolution pose recognition.

For measuring performance, we consider both traditional error metrics such
as average landmark regression error, as well as the model surprise, namely the
log-likelihood of the ground-truth labels under the posterior distribution pre-
dicted by the model. The latter allows us to properly asses the quality of the
probabilistic predictions. In fact, the ability of our model to express a meaning-
ful probability prediction sets it apart from models that share some superficial
technical similarity, such as [21], which lack this capability.

2 Related Work

Human Pose Estimation. The problem of estimating position of human body
parts has been extensively studied before. Early methods such as the Pictorial
Structures (PS) of Fischler and Elschlager [9] or the Deformable Part Models of
Felzenswalb et al. [8] explicitly decomposed people into parts, but with the cur-
rent generation of models based on deep learning the concept of parts remains
implicit. Among these, Toshev and Szegedy [30] use a CNN in an iterative man-
ner to regress human keypoint position (xi, yi) directly, using a L2 loss in their
training. Thompson et al. [28,29] adapt the FCN [18] to predict a heat map for
each keypoint independently, where the keypoint position is found as position of
a maximal value in the corresponding heat map - this approach has become the
standard representation for human pose estimation (see Sect. 3.1).

With the aim of improving the network architecture by having multiple down-
sample/up-sample stages, Newell et al. [19] introduced their Stacked Hourglass
model, which is able to capture relationships at multiple scales. More recently,
Chu et al. [5] extended Hourglass with context attention, improving its accuracy
by 1 percent point on the standard MPII Human Pose dataset [1] and thus
achieving the state-of-the-art result in a single person recognition.

Methods for pose estimation of multiple people can be divided into two
subgroups: top-down and bottom-up. Top-down methods first detect bounding
boxes of individual people and in a second stage a single human pose is inferred
from the cropped region. Pishchulin et al. [24] use a model based on Pictorial
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Structures. He et al. [11] introduced Mask R-CNN for object segmentation, which
is also applied to human pose estimation by predicting an individual heat map for
each keypoint. Papandreou et al. [21] employ a Faster R-CNN [25] with ResNet-
101 backbone [12] as a person detector, and a separate ResNet-101 network to
process the detected bounding box to infer a 3-dimensional “heat-map” for each
keypoint. The heat map predicts whether given pixel is close to the keypoint as
a binary classification, and a 2-dimensional vector encoding the distance of the
current pixel to the keypoint. The final keypoint position is then given by taking
an average of the 2-dimensional vector for all pixels classified positively by the
binary classifier.

Bottom-up methods detect individual keypoints first and then associate these
parts with human instances. Insafutdinov et al. [14] formulate the problem of
associating detected parts to human instances as a linear program over a fully-
connected graph, which is an NP-hard problem. More recently, Cao et al. [3]
introduced Part Affinity Fields, where part confidence maps together with 2D
vector fields that encode position and orientation of human limbs allow greedy
inference of the associations, thus making the method run in real time.

Small Objects Recognition. Several authors have focused on the task of small
object recognition in a classification setting. Efros et al. [7] use an optical-flow
motion descriptor to recognize actions of people in sports videos using a k-nearest
neighbor search in a annotated people action database. Park and Ramanan [22]
used low-resolution people images as feature vectors for nearest neighbor search
in a database of synthetically morphed trained images to infer human pose in
video sequences.

Inspirational to our work, Hu and Ramanan [13] focused on detecting tiny
human faces and proposed a cascade of face detectors to detect human faces of
a wide range of scales, starting with faces of 20px in height. Their task however
is a region binary classification problem (i.e. telling if a bounding box contains
or not a face), whereas in our work we infer 16 keypoint positions within the
region of a similar size.

Modeling Uncertainty. Probabilistic models have recently started to be
applied in the context of deep learning as well. Gal and Ghahramani [10] stud-
ied a relationship between Dropout [27] and Gaussian processes. Kendall and
Cipolla [15] estimate uncertainty in 6-DOF camera pose estimation by Monte
Carlo sampling. Novotny et al. [20] explicitly model uncertainty as one of the
network outputs in the task of 3D geometry prediction from videos in an unsu-
pervised setup. Most recently, Kendall and Gal [16] model both aleatoric and
epistemic uncertainty within one model for dense semantic segmentation, and
Rupprecht et al. [26] introduced a meta-loss that allows a model to learn multiple
hypotheses, but do not specify how to select the best one.
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3 Method

We formulate pose estimation as the problem of learning a function Φ mapping
an image x ∈ R

H×W×3 to a set of K-landmark locations u1, . . . ,uK ∈ R
2,

corresponding to different body landmarks, such as the left hip, the right ankle,
and so on.

We begin by discussing the typical formulation of pose estimation (Sect. 3.1)
and then introduce our probabilistic formulation (Sect. 3.2), which is able to
model uncertainties arising from estimating human pose from a low resolution
image.

source image σ[Sk](v) v + Δx
k(v) v + Δy

k(v)

σx
k(v) σy

k(v) pGMM
k (u) pGMM

k (u) over image

Fig. 2. The method emits a continuous Gaussian distribution pGMM
k (u) for each key-

point k (left elbow shown above) by estimating Gaussian Mixture Model parameters
using a coarse 16 × 16 feature map v ∈ Ωd generated over the whole image. Note
that the resulting distribution has in principle infinite resolution, given only by the
sampling step, and that it can also express multiple modes (second but smaller mode
in the location of the right elbow in the above example)

3.1 Standard Formulation

The standard approach to implement a pose detector with a neural network
is to express the landmark locations as maxima of a corresponding number of
heat maps. To this end, let Φ : RH×W×3 → R

H
δ × W

δ ×K where K is the num-
ber of body landmarks and δ ≥ 1 a downsampling factor (used for efficiency).
Then a landmark’s location is obtained as uk = argmarxu∈Ωδ

Sk(u;Φx), where
Ωδ = {1, 2, . . . ,H/δ} × {1, 2, . . . ,W/δ} is the downscaled version of the image
domain and we extracted the k-th heat map Sk(u;Φx) = [Φ(x)](u,k) from the
deep network’s output. We implicitly assume that all landmarks coordinate are
expressed relatively to that coordinate frame.
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During training, the heat maps must be fitted to ground-truth data so that
they strongly respond to the correct location of the landmarks. Very often this
is done by direct L2 regression of a manually-defined heat map shape. That is,
if u∗

k is the ground truth location of a landmark, one minimizes the loss

L1(Φ) =
∑

k

∑

u∈Ωδ

w(u − u∗
k) (Sk(u;Φx) − g(u − u∗

k))2 (1)

where g is a Gaussian-like kernel and w a weighting function which encourages
g to be fitted well around its maximum (as otherwise the minimization would
be dominated by the part of the domain far away from the peak, which occupy
the majority of the image area).

Note that, while this method can successfully learn heat maps with maxima
at the desired location, the choice of loss (1) and the Gaussian-like kernel g
parameters is purely heuristic. Furthermore, the heat map does not convey any
information beyond the location of its maximum. In the next section, we remedy
this situation by introducing a probabilistic model instead, where heat maps
become probability densities.

3.2 Probabilistic Formulation

It is possible to explicitly turn a heath map in posterior probability over possible
locations of a certain landmark, for example by means of the softmax operator
σ[·]:

pk(u|Φx) = σ[Sk](u) =
expSk(u;Φx)∑
v∈Ω Sk(v;Φx)

The joint probability of combined landmark locations can then be written as the
product:

p(u1, . . . ,uK |Φx) =
∏

k

pk(vk|Φx).

With this definition, loss (1) is replaced by the model likelihood, i.e. the
probability of the observations (u∗

1, . . . ,u
∗
K) under the model:

L2(Φ) = −
∑

k

log pk(u∗
k|Φx). (2)

This is a simple but powerful change because it allows the model to properly
represent uncertainty in a landmark’s location.

In order to efficiently encode high-resolution pose information, we consider a
further extension of this architecture. We assume in particular that the feature
map has fairly low resolution, so that it is efficient to compute. We also assume
that the network estimates at each location v ∈ Ωδ a displacement Δk(v;Φx) ∈
R

2 and a covariance matrix Σk(v;Φx) ∈ S
2
+. In this manner, each feature map

location emits a Gaussian distribution over possible landmark locations. This
results in the mixture model:

p̂k(u|Φx) =
∑

v∈Ωd

N (u|v + Δk(v;Φx), Σk(v;Φx)) · pk(v|Φx). (3)
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Table 1. Comparison of models’ accuracy on the MPII Human Pose validation set
with decreasing person height (PCKh @ 0.5)

Method Input dimension 256px 128px 96px 64px 48px 32px 24px

HG [19] 256 × 256 83.5 81.3 80.2 72.4 59.4 32.8 14.1

HG-DOWNUP [19] 256 × 256 75.7 78.3 78.6 76.2 68.7 41.0 20.0

HG-64 [19] 64 × 64 77.6 77.5 76.7 74.3 65.9 45.2 18.9

Part Affinity Fields [3] 256 × 256 65.6 65.8 65.1 61.8 57.1 50.3 31.3

Our model 64 × 64 81.5 81.3 80.5 79.7 75.0 61.8 48.0

A key advantage of this model is that, while the summation is carried over a
discrete (and coarse) domain, the resulting distribution pGMM

k is continuous and
thus has, in principle, infinite resolution. This can be interpreted as a probabilis-
tic method to perform sub-pixel interpolation.

This probabilistic model is learned by maximizing the posterior log-
probability of the ground-truth observations. Hence, given a training dataset(
xi,u

(i)
1 , . . . ,u(i)

K

)
, one optimizes the loss

L3(Φ) = − 1
N

n∑

i=1

log
∏

k

p̂
(i)
k (u(i)

k |Φxi), (4)

where xi denotes the image and u(i)
1 , . . . ,u(i)

K denote the keypoint annotations
for the i-th image. The loss (4) is differentiable w.r.t. Δ

(i)
k , Σ

(i)
k and S

(i)
k , so it

can be minimized using standard gradient descent algorithms.
In our model, Φ is a fully convolutional neural network [18], which takes an

input image x and outputs a 5-dimensional feature tensor for each keypoint k –
the Gaussian mixture weights Sk(v) and 4 Gaussian distribution parameters –
means in x, y direction Δk(v) and a diagonal covariance matrix Σk(v) for every
v in the feature map Ωd (see Fig. 2). We build on the Spatial ConvNet [23]
architecture which is based on the popular VGG16 [4], by taking its first 8
convolutional layers and changing the input dimension to 64 × 64 pixels, which
results in the output feature map resolution of 16 × 16 × 5K.

Discussion. Equation 3 might be reminiscent of the pose estimation in the wild
method [21], which also regresses a dense displacement field in order to pre-
dict landmarks. The key difference is that our formulation estimates an actual
joint probability distribution and, as shown in Eq. 4, optimizes over the label
likelihood. While this might seem a minor difference, in reality it has a major
effect. Instead of using heatmaps as a technical device to encode mere 2D posi-
tions as done in [21], our probability maps properly encode aleatoric uncertainty.
By allowing the model to predict its own uncertainty we achieve more robust
learning as well as a meaningful (verifiable) confidence score together that can
be used in applications. In Sect. 4 we demonstrate both effects empirically in
ablation studies.
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4 Experiments

This section thoroughly evaluates our method against alternatives for low-
resolution pose estimation. After discussing the learning setup (Sect. 4.1), the
method is evaluated on two standard benchmarks—since the benchmarks do not
contain small people, we scale images down in both datasets (Sect. 4.2). Addi-
tionally, we collected a new ad-hoc dataset of people seen at a distance, which
is used only for testing the model (Sect. 4.3). We also show model performance
in conjunction with a tiny people detector. An ablation study, which evaluates
the main design choices of the proposed model, is presented in Sect. 4.4.

4.1 Training Details

In order to train our model, we combined the MPII Human Pose dataset [1]
with the MS COCO dataset [17] and resized all instances of people using bilinear
interpolation so that the resulting bounding box is 64 pixels in height (while we
train the system at this resolution, we test it on much smaller images as well).

Hourglass (HG-64) [19] Part Affinity Fields [3] our model GT
48px 32px 24px 48px 32px 24px 48px 32px 24px

Fig. 3. Qualitative results on the MPII Human Pose validation set downsampled to
48, 32 and 24 pixels in height. Note that for Part Affinity Fields we only show the 12
keypoints consistent with MPII Human Pose annotation format. Note that all methods
were carefully optimized to give their best in the low-resolution setting (see text). Best
viewed zoomed in color (Color figure online)
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Fig. 4. Comparison of models’ keypoint detection accuracy (a), regression error (b)
and negative log-likelihood of the ground truth - “surprise” (c) on the MPII Human
Pose validation set with decreasing person height

Since the testing set for the MPII Human Pose dataset is not publicly avail-
able, we split the MPII training set into training and validation subsets, following
the data split published by Thompson et al. [29] and used elsewhere in the liter-
ature [2,31]. Note that because the MPII and COCO datasets slightly differ in
the number of human keypoints annotated (16 vs 18), we trained our model to
predict 16 keypoints, following the MPII Human Pose dataset format.

We trained a single model using both training subsets of MS COCO and
MPII for 80 epochs using vanilla SGD, using the learning rate 10−5 for the first
40 epochs and then dropping the rate to a half every 10 epochs. For data aug-
mentation, we only used a random scale augmentation in the range (0.7, 1.3).
In the training, we also constrain the displacement values |Δ(v;Φx)| ≤ 3 (mea-
sured in the final 16× 16 feature layer), because this makes the training process
more numerically stable - this constraint effectively ensures that the individual
elements in the feature map v ∈ Ωd do not contribute to keypoint locations
which are physically outside of their individual receptive fields.

4.2 Standard Benchmarks

We assess our approach using two popular standard human pose benchmarks,
MPII Human Pose [1] and MS COCO [17]. Images are downsampled to create
people of predefined sizes, starting from 256 pixels and going down to 24 pixels in
height, in order to evaluate the impact of resolution to pose estimation accuracy.

Baselines. We compare against two state-of-the-art methods for human pose
estimation: Stacked Hourglass (HG) [19] and Part Affinity Fields [3]. We do our
best to maximize the performance of these methods on our low-resolution data
and test three approaches: näıve, retraining, and architecture editing. The näıve
approach is to use off-the-shelf models trained by the respective authors and sim-
ply upscale the input using bilinear interpolation to the resolution expected by
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the model (256 × 256 pixels, which requires up to 8× upsampling). By compari-
son, input images to our model area always down- or up-sampled to 64×64 pixels
using the same mechanism. Since upsampling may change the image statistics,
the second approach is to retrain the Stacked Hourglass model from scratch on
the MPII dataset, using the training code and default parameters provided by
the authors, on images first downsampled to 64 × 64 pixels and then upsampled
to the expected resolution on 256 × 256 (HG-DOWNUP). The third approach
is to edit the architecture to work directly on the same low-resolution data as
ours. For Hourglass, we do so by removing the first two max-pooling layers to
natively work on 64 × 64 input patches and retrain the model using the same
protocol (HG-64). To make the comparison fair, we also include the results of
our method when only trained on the MPII dataset (MPI-TRAIN).

Results. On the MPII Human Pose dataset (see Table 1 and Fig. 3), for people
128px high our method achieves competitive accuracy to the näıve Stacked Hour-
glass (HG) model [19], even though our effective input image size is in fact 64px,
and outperforms Part Affinity Fields by a large margin. At 64px our model out-
performs Stacked Hourglass by 10 and Part Affinity Fields (PAFs) by 20 percent
points. Finally at 24px, our model has almost two times higher keypoint detec-
tion accuracy than PAFs and four times higher accuracy than Stacked Hourglass
(see Fig. 4). Note that since PAFs output keypoints in the MS COCO format,
we only evaluated the 12 keypoints which can mapped to the MPII annotations
format. Also note, that retraining or editing the Hourglass architecture for the
low resolution data does not bring a significant boost in performance for small
people (see Fig. 4).

On the MS COCO dataset (using only the 12 keypoints for all methods), our
method performs on par with Stacked Hourglass for larger people (128px), but
with decreasing people size the margin grows in favor of our method, significantly
outperforming both the Part Affinity Fields [3] and Stacked Hourglass for people
sizes smaller than 48 pixels (see Fig. 5). Compared to MPII, accuracy on MS
COCO is generally worse as the data is more challenging, particularly due to
partial occlusions.

In all experiments, the standard PCKh@0.5 metric [1] was used to measure
keypoint detection accuracy, which requires a detection to be within certain dis-
tance from the ground truth keypoint position, where the thresholding distance
is given by 50% of the head segment length.

Additionally, we calculated the L2 regression error as the distance between
the detection and the ground truth normalized by the image height, and
the negative log-likelihood of the ground truth, by taking the log-likelihood
− log p(ygt|xgt) of the probabilities for the ground truth keypoint locations pro-
duced by the model for the ground truth images. This is also known as “surprise”
and is an indication of the quality of the probabilistic output of the model. Since
the baseline models do not output probabilities, we assumed Gaussian distri-
bution of their output, where the mean is the predicted landmark location and
the variance is constant. The actual prediction variance value was calculated for
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Fig. 5. Comparison of models’ keypoint detection accuracy (a), regression error (b) and
negative log-likelihood of the ground truth (model surprise) (c) on the MS COCO
validation set with decreasing person size

each joint by comparing predictions to ground truth in the training set. In this
case, the advantage of our probabilistic model is very significant at all resolution
levels, indicating that meaningful probability maps are learned.

4.3 Tiny People

A limitation of the results in Sect. 4.2 is that images are resized synthetically.
While this is simulates well the actual application scenario which is spotting
people at a distance, we cannot guarantee that the image statistics match exactly.

For this reason, we introduce a new Tiny People dataset.1 The dataset was
collected by searching for 21 activity categories on Flickr (the category names
were taken from the MPII Human Pose dataset [1]) and manually selecting
images which contain small people. We intentionally chose manual image selec-
tion to avoid a bias towards a specific detection method, so that detection accu-
racy can also be also evaluated.

We collected 200 images with 585 people instances (see Fig. 6), where for each
person instance we annotated 14 keypoints using the open source VGG Image
Annotator tool [6]. We followed the annotation format of the MPII Human
Pose dataset (16 keypoints), but we did not annotate the lower neck and pelvis
keypoints as they cannot be realistically distinguished for small people. The
average person height in the dataset is 51 pixels, which is significantly lower
than the existing datasets (see Fig. 7).

Pose Estimation. We again compared our model to the two state-of-the-art
methods (see Fig. 8) on Tiny People. We follow the same protocol as in the
previous section with images being upsampled to 256 × 256 pixels by bilinear
interpolation for the existing methods. Our method achieves the accuracy of
almost 60% correctly localized keypoints (see Table 2), despite being trained
only on the standard datasets, which is 17 percent points higher than Stacked
Hourglass [19] and more than two times better than Part Affinity Fields [3].

1 The dataset can be downloaded at http://www.robots.ox.ac.uk/vgg/data/tiny
People/.

http://www.robots.ox.ac.uk/vgg/data/tinyPeople/
http://www.robots.ox.ac.uk/vgg/data/tinyPeople/
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Fig. 6. Sample images from the Tiny
People dataset

Fig. 7. Normalized histogram of people
heights (as given by their bounding box
annotation) in the standard datasets
and in the newly introduced Tiny Peo-
ple dataset

Table 2. Comparison of models’ accuracy on the Tiny People dataset

PCKh @ 0.5 Avg. error [px]

Stacked Hourglass [19] 43.7 6.63

Part Affinity Fields [3] 25.5 18.99

Our model 59.9 4.66

The dataset is of course much smaller than other benchmarks, but its size
is sufficient for evaluation purposes. In particular, with 585 pose instances, the
measured error standard deviation σ√

n
is 0.3px vs the error differences between

methods of > 2px, which is therefore well above significance (p-value 10−4).
Hence a dataset of this size is sufficient to reliably rank different algorithms.

The main failure mode is confusing left and right sides, which is given by
intrinsic ambiguity of human body at a small scale—when the face is not distin-
guishable and there is not enough context in the image, it is not clear whether
the person faces towards or away from the camera and it is thus not clear which
arm (leg) is left or right.

Overall, these results further support the conclusion that our model performs
better on small people than the state-of-the-art methods.

Tiny People Detection. In order to show, that the proposed pose estimation
method can be easily incorporated into an end-to-end pipeline, we adapted the
TinyFaces [13] detector for small people detection by modifying the expected
aspect ratios and scales and trained it on the MS COCO training set, where
every image was down-sampled by a factor of 4 resulting in an average person
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Hourglass PAF ours GT Hourglass PAF ours GT

Fig. 8. Qualitative results on the Tiny People dataset, comparing our method against
Hourglass (HG-64) [19] and PAF [3]. Note that all methods were carefully optimized
to give their best in the low-resolution setting (see text). Best viewed zoomed in color.
(Color figure online)

Fig. 9. Qualitative results of detection and pose estimation from the Tiny People
dataset. Best viewed zoomed in color (Color figure online)

height of ≈ 50px. After detection, patches are fed as input to our method for
pose estimation (see Fig. 1).

Using the standard OKS keypoint evaluation metric, the pipeline achieved the
average precision APOKS=0.50 of 24.5% on the four times downsampled COCO
Validation set (evaluating only the 12 keypoints outputted by our model) and
53.5% on the newly introduced Tiny People dataset (see Fig. 9).

4.4 Ablation Study

In order to assess the impact of the newly introduced probabilistic formulation,
we replace elements of our formulation with other choices common in the litera-
ture. We used the same network architecture backbone with the same input size
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Fig. 10. Comparison of different representations for tiny human pose with decreasing
person size, evaluated on the MPII Human Pose validation set - correctly detected
keypoints (a), regression error (b) and negative log-likelihood of the ground truth (c).
Keypoint detection accuracy as a function of the number of the Gaussian Mixture
Model elements (d)

of 64×64 pixels and the same training data (Sect. 4.1) to train models with four
different representations:

– Heuristic heatmaps. Dense H × H × K heat maps (H = 32, 64, 128) are
produced by adding additional de-convolution layers to the network. Pre-
defined Gaussian-like kernels are used to produce heat maps around each
keypoint location (Sect. 3.1) and a standard L2 per-pixel loss is used in the
training. This setting is analogous to stacked hourglass [19] and multi-context
attention [5].

– Normalized heuristic heatmaps. The same 32 × 32 × K heat maps as
above, but normalized at test time to create a probabilistic distribution over
the image space.

– Binary heatmaps with regression. A 16 × 16 × 3K feature map with
a binary heatmap around the each keypoint location combined with a 2-D
vector which encodes keypoint offset in every location of the feature space.
This representation can in principle produce sub-pixel accuracy because the
offset is a real-valued parameter, but it does not capture uncertainty in the
training nor the testing phase. This setting is analogous to pose estimation
in the wild [21].

– Standard probabilistic loss. Directly predicting mean and variance of
every keypoint from the whole image (see Eq. 2). This is equivalent to a
Gaussian mixture model with only one element.

The ablation results (see Table 3 and Fig. 10) demonstrate that the proposed
probabilistic representation outperforms the standard heatmap representations
by a large margin, both in terms of the keypoint detection accuracy, as well as
model surprise.

Furthermore, our continuous probabilistic distribution (inferred from a fea-
ture map of 16× 16 and using Eq. 3) performs better than simply increasing the
heat map resolution up to 128 × 128 pixels by means of deconvolutional layers.
In fact, doing so makes the accuracy slightly worse, probably due to over-fitting.

Also note that taking the standard heatmap representation and normalizing
it to create a “probability distribution” (Normalized heuristic heatmaps) reduces
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Table 3. Comparison of different representations on the MPII Human Pose validation
set with decreasing person height (PCKh @ 0.5)

Method Output dimension 128px 96px 64px 48px 32px 24px

Heuristic heatmaps (32× 32) [5,19] 32 × 32 × K 74.5 74.4 67.1 67.3 55.2 39.9

Heuristic heatmaps (64× 64) 64 × 64 × K 74.1 72.8 70.1 65.2 50.8 36.1

Heuristic heatmaps (128× 128) 128 × 128 × K 74.3 72.8 71.1 65.3 49.2 35.5

Normalized heuristic heatmaps 32 × 32 × K 74.5 74.4 67.1 67.3 55.2 39.9

Binary heatmaps [21] 16 × 16 × 3K 75.5 74.5 69.6 65.6 47.7 31.2

Our model (GMM 16× 16) 16 × 16 × 5K 81.3 80.5 79.7 75.0 61.8 48.0

GMM 8× 8 8 × 8 × 5K 75.5 73.8 72.5 65.3 50.4 36.9

GMM 4× 4 4 × 4 × 5K 71.5 69.7 69.0 61.1 47.4 35.2

GMM 1× 1 4K 54.7 52.8 52.8 46.0 35.6 28.8

the negative log-likelihood over assuming a Gaussian distribution (Heuristic
heatmaps and Binary heatmaps with regression), but it is far inferior to the
proposed approach (see Fig. 10c).

Finally, we show ablation experiments for the size of the feature map v ∈ Ωd,
i.e. the number of elements in the GMM (see Fig. 10d). The model becomes worse
as the number of components is reduced and on contrary adding more than
16 × 16 = 256 components did not improve accuracy but made the computation
slower (these lines are omitted for clarity as they overlap with the others).

5 Conclusion

We have shown that low-resolution pose recognition is significantly more ambigu-
ous than its full-resolution counterpart and that modelling uncertainty explicitly
in a deep network can significantly boosts recognition performance.

We have thoroughly validated this idea. We have tested standard benchmarks
resized to low resolution and a new benchmark of people seen at a distance. We
have conducted numerous ablation studies that emphasize the advantage of our
probabilistic approach over other common modelling choices representative of
state-of-the-art methods. We have also compared our approach to such methods
directly, after thoroughly optimizing them for the low resolution setting in three
different ways, to demonstrate that our approach is convincingly better in the
low resolution setting, showing the usefulness of the probabilistic model.

Finally, on account of the small resolution, our model runs at 250 Hz on
a single NVidia 1080Ti GPU, which is more than an order of magnitude faster
than the existing methods, and which makes it suitable for integration to existing
person detection pipelines.
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this research.
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