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Abstract. To be able to process historical documents, it is often
required to first binarize the image (background and foreground sepa-
ration) before applying the processing itself. Historical documents are
challenging to binarize because of the numerous degradations they suf-
fer such as bleed-through, illuminations, background degradations or ink
drops. We present in this paper a new approach to tackle this task by a
combination of two neural networks. Recently, the DIBCO binarization
competition has seen a growing interest in the use of supervised meth-
ods to binarize challenging images. Inspired by the winner of the DIBCO
17 competition, which uses a fully convolutional neural network (FCN),
we propose a combination of two FCNs to obtain better performance.
While the two FCNs have the same architecture, they are trained on dif-
ferent representations of the input image. The first one uses downscaled
image to capture the global context and the object locations. The second
one works on patches of native resolution to help defining precisely the
boundaries of the characters by capturing the local context. The final
prediction is obtained by combining the results of the two FCNs. We
show in the experiments that this strategy provides better results and
outperforms the winner of the DIBCO17 competition.

Keywords: Historical documents - Binarization -
Fully convolutional neural network

1 Introduction

Image binarization is the task of transforming an input image, whether in
grayscale or color, into the binary space (0 or 1 values). The binary values rep-
resent whether a pixel belongs to the background or to the foreground (e.g. text
pixels for textual documents). This type of image processing technique arises
from the need to preprocess the information to simplify the next processing
steps. These next processing steps can be for example text line detection [16],
word spotting [9] or writer identification [11]. By first performing a binarization,
one can expect an improvement of the pipeline because the image is easier to
process. However, the binary image must be of highest quality so the next step is
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not penalized. For example, if all pixels from a text character, are considered by
the binarization algorithm as background, then the binary image will not con-
tains this character. As a result, the required information can be missing from
the input image thus resulting very likely in an error.

Obtaining good results in the context of historical documents can be tough
because of the numerous degradations they suffer from. Historical documents are
often very challenging since they can contain ink drops, bleed-through, stains,
various illumination, etc. Nowadays, a huge number of techniques based on
machine learning arises to handle this kind of documents. Machine learning
approaches often equal or outperform classical methods thanks to their general-
ization capabilities. In this case, the binarization task is seen has a pixel labelling
task called semantic segmentation. Semantic segmentation is the task of assign-
ing a class probability for each pixel in an image (i.e. probability to be a text
pixel for instance). The winner Ilin et al., of the last DIBCO17 competition [22]
on binarization, is a machine learning based method. It uses a special architec-
ture of fully convolutional neural networks (FCN) [15] called U-net [23] which
provide a high performance pixel labeling with only few labeled data. In this
paper, we demonstrate on the DIBCO17 dataset that we can further improve
the performance on the binarization task by combining the prediction of two
FCNs.

The paper is organized as follow: in Sect.2 we present the related work on
binarization and fully convolutional neural networks. In Sect. 3, the proposed
approach is described, then in Sect. 4, experiments are performed to demonstrate
the effectiveness of our approach. Finally, conclusions and future work are drawn
in Sect. 5.

2 Related Work

2.1 Binarization

The binary version of an image is obtain by thresholding the color or grayscale
image. Generally, there are mainly two different kind of thresholding algorithms:
local and global thresholding. Global thresholding approaches compute a single
threshold for the whole image. In the context of historical documents global
thresholding approaches such as Otsu [20] often has a suboptimal performance
compared to local approaches. This is due to the fact that degradations can
occur locally in an image such as illuminations, shadows or geometric deforma-
tions. On the other hand, local thresholding approaches are capable of adapting
the binarization based on the local information of the image. However, they are
often slower than global thresholding algorithm because of their need to com-
pute statistics for each pixels to gather context from neighboring pixels. Local
thresholding is usually done by using a small part of the image where statistics
are computed to find the right threshold such as in Niblack et al. [18], Sauvola
et al. [24] and Wolf et al. [27]. Other approaches such as Almeida et al. [4] employ
bilateral filters on RGB images before applying the Otsu algorithm. Methods,
such as Gatos et al. [8] and [28], use an estimation of the background and/or
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foreground to perform the binarization. Recently, the trend in binarization algo-
rithm is to use machine learning approaches to perform the binarization. All
these approaches mainly use convolutional neural networks (CNN) [14] such as
the work of Pastor-Pellicer et al. [21]. The work of Calvo et al. [6] uses convolu-
tional auto encoders to filter out the background and only keep the text pixels.
Recently, Afzal et al. [3] and Westphal et al. [26] showed that recurrent neural
networks can also be used to binarize patches. Tensmeyer et al. [25] used a fully
convolutional neural network to perform the binarization. The next subsection
will provide more details on fully convolutional neural networks as it is used in
our proposed method.

2.2 Fully Convolutional Neural Networks

Usually, convolutional neural networks are composed of a series of convolutional
layers followed by fully connected layers at the end. The use of the fully connected
layers forces the input to be of a fixed size. Fully convolutional neural network
originates from Long et al. [15] where the fully connected layers are replaced by
upsampling and convolutional layers. One big advantage of this architecture is
that it can process images of arbitrary sizes by using only convolutional layers
and has very less weights in comparison. Generally, FCNs can be divided in
two parts: the encoder part and the decoder part. The encoder part takes the
input image and compresses it into a dense representation where the number of
feature maps is high and the size is reduced. The decoder part has to decode
the dense representation and upsample it to retrieve the original size. Therefore,
a fully convolutional neural network outputs an image of the same size as the
input. Also, it allows to perform semantic segmentation on full images which
was not possible due to the complexity of the fully connected layers. Semantic
segmentation is used in various areas such as baseline detection [7] or road line
detection for autonomous driving [5].

Our approach combines the state of the art U-net with the module Squeeze
and Excite (module SE) from Hu et al. [12] as it has shown to improve the
performance of residual networks. Inspired from Griining et al. [10] we use their
architecture, called ARU-net, which has an attention mechanism to capture the
information at different scales before performing the final classification. The
proposed method does not only perform the binarization at patch level but also
at the full image level to take advantage of the differences between these two
scales. Results from the DIBCO17 competition indicate that combining local
and global thresholding has better performances than using only one of those.
Therefore, we decided to combine the outputs of two FCNs: one for a labeling
with local context by using patches and one for a labeling with global context
by using full resized images.

Our contribution to this paper is as follows:

1. We propose a new binarization method that combines the strength to suppress
the weaknesses of two networks that work on different scales to produce state
of the art results.
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2. We show that these two networks alone have lower performances compared
to their combination.

3. The effect of horizontal flipping as a data augmentation technique is studied
in the context of binarization with FCNs and its interest shown.

3 Proposed Approach

An overview of the proposed approach can be found in Fig. 1. The method has
two branches where each contains a neural network, more precisely two fully
convolutional neural networks. The upper branch works on image patches with-
out any rescaling. Then, the image is reconstructed from the patches by using a
sliding window where only the center of each patch is kept for the final predic-
tion. The centers of the patches are extracted to avoid border effects since the
pixels that are close to the patch borders do not have a complete context to per-
form the prediction. The lower branch makes predictions on the whole rescaled
image and labels all its pixels in one step. Then, the prediction is upsampled
to retrieve the original image size. Finally, predictions from both branches are
thresholded using a global threshold and combined using the pixel wise logical
AND operator. Identical neural networks are employed for the two branches.
The architecture is described in the next subsection.

: N k A—Predicti - —Reconstruct | preiction
Local : image Network A
Patches prediction
ogical | Final
Input }AND Prediction
image
Downsize _— Prediction
~N b - B —Predicti B | _Upsampling” |Network B
Global
prediction

Fig. 1. Overview of the proposed approach.

3.1 The ARU-net

For the pixel labeling, we use a modified version of the ARU-net architecture
of Griining et al. [10] for both the local (patches) and global (full image) label-
ing. This architecture has been proven to provide better results on text base-
lines detection than a classical U-net with only a few addition of weights in the
network. An overview of the ARU-net architecture can be seen in Fig.2. It is
composed of two neural networks: an Attention Network (AN) and a RU-net
which is a U-net which has residual connections within its blocks. The U-net
architecture will be described in Sect.3.3 and the residual connections in 3.4.
The ARU-net works by using the input image I plus n different scales S, of
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the input image. For simplicity in the notations, we state that Sy is I. The S,
scales are the successive downsampling of I by a factor of f, using average pool-
ing. Therefore, the image size S5%#¢ = Swidth x Gheight yelatively to I*i4h and
Ihei9ht of [ is computed by Eq. 1. Similarly, S?¢9" is computed using the same
equation but with 1?9 instead of Jwidth,

S;Lm'dth _ Iwidth/fn (1)

where f™ denotes the scaling factor.

All input images S,, are passed to the RU-net and the AN. The RU-net
computes the features maps F;, which will be weighted and used to perform the
pixel classification. The AN outputs the attention feature maps A,, that will be
used to weight the F,, feature maps. As we have downsampled the images for
n > 0, we need to perform the inverse operation of upsampling. Therefore, all
F, and A, feature maps are upsampled using the nearest neighbour method
to match the size of Sy. The number of different input image scales is called
Scalegeptr,. Once all feature maps and attention maps have been computed for
all the scales S,,, the attention maps A,, are concatenated and softmaxed pixel-
wise to distribute the weights along each scale giving AW,, feature maps. Then,
all the feature maps F,, are weighted by their corresponding attention maps
AW, giving WF,,. Finally, all weighted feature maps WF;, are concatenated
and a final convolutional layer performs the classification.

As said before, all S,, images are going through the same RU-net and AN.
This makes the two networks more resilient to the scale variations that can occur
between the different images. This is especially powerful when processing text
images where the text size and annotations can have different shapes and scales.

Ao 1 AWp
A L Pixel-wisel — AWq
A1 L B Softmax W

n Up n —| Concatenated

N\ T — weighted feature
RU-net ) N :WFO Cl ifyi
Up ¥ WF{ a|33| Y9 Lipregictions
ayer
Up X WFn !

Fig. 2. ARU-net architecture overview. I is the input image. S, is the scale of the
image. AN is the attention network. RU-net is the network that extracts the features
from the input image. A, is the attention map. Boxes containing Up mean that the
upsampling is done to match the size of Sy. AW, is the softmaxed attention map. W F,,
is the weighted features maps. Blue boxes are inputs, yellow are the neural networks,
red are the attention maps and green, the feature maps. (Color figure online)

I

The architecture used for the attention network will be now defined.
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3.2 Attention Network

The attention network designed in the original paper is a simple fully convo-
lutional neural network. Its architecture can be best viewed in Table1. The
attention is computed with only 4 layers and a low number of filters with the
final layer outputing one feature map. This single feature map will represent the
attention of a given scale S,,. While this network is not suitable to perform the
labelling, it has a sufficient number of filters to spot where the attention should
be focused on. This attention mechanism will specialize all attention scales to
spot one type of characteristics such as background, text or noise.

Table 1. Architecture of the Attention Network as described by Griining et al. [10]

Input ‘ #Filters ‘ Kernel size ‘ Activation

Sn

Conv2D ‘ 12 ‘ 4 ‘ Relu
MaxPooling 2 x 2

Conv2D ‘ 16 ‘ 4 ‘ Relu
MaxPooling 2 x 2

Conv2D | 32 4 Relu
MaxPooling 2 x 2

ConvaD | 1 4 Relu

The next subsection will detail the feature extractor RU-net by first describ-
ing the general principal of the U-net architecture, then the RU-net will be
explained with the addition of the SE module.

3.3 U-Net

The U-net architecture was originaly proposed by Ronneberger et al. [23] to per-
form semantic segmentation of biomedical images. An example of U-net archi-
tecture is shown in Fig. 3. It consists of a contracting path which captures the
context and an expanding path which retrieves the original image size. The con-
tracting and expanding paths are both symetrical thus the architecture can be
seen as close to the U shape (hence the name). A path consists of blocks of
convolutions followed by max pooling for the contracting path and upsampling
for the expanding path. To increase the resolution of the expanding path, skip
connections are used between symetrical blocks of both paths. Skip connections
consists in concatenating the upsampled block with the corresponding contract-
ing block. Then, a convolution layer can be applied to this concatenation to learn
to combine both contexts. Therefore, when the next upsampling is performed
it has the context of the contracting block and the context from the previous
expanding block. Moreover, the expanding path starts with a high number of



Combination of Two FCNs for Robust Binarization 515

filters which allow to take into consideration a lot of high level features. Also, it
does not use fully connected layer and contains only pixel information so the spa-
tial structure is kept. The advantage of the U-net is that it requires few images
to have a good generalization [23].

Input
{ )
]
g E—
Qutput

2nf

n
=
S

L i c:number of input channels
: nf : number of initial filters
| =P Skip connection
Max pooling
Convolution and activation
i == Upsampling

Fig. 3. Example of a U-net architecture with a depth of 3.

Now that the U-net architecture has been described, we need to define the
blocks used to transform the U-net into a RU-net. Therefore, the next section
describes the RU-net blocks.

3.4 RU-net

A RU-net is a U-net with residual connections within each blocks. It consists of
two branches: the first one is the unactivated input, the second one is a classi-
cal chain of convolution layers followed by an activation function. The number
of convolutions with activation block defines the depth of the residual connec-
tion. The last convolution layer is activated only after the unactivated input is
summed to its unactivated output. The depth of the residual connection Resgepin
corresponds to the number of convolution layers used. Figure4(a) depicts the
general principle of a residual connection of depth Resgeptr, = 3. To the resid-
ual modules we add the Squeeze and Excitation module which help to model
an explicit relation between the feature maps (see Fig.4(b)). First, the input
feature maps are reduced to one feature by performing global average pooling.
Then, two dense layers are applied to the feature maps to model the relation
between them. Finally, the sigmoid activation is employed and its output is used
to weight the original input feature maps. Compared to the original ARU-net
architecture, we added the SE module to all residual blocks in the RU-net.
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(b) Residual module of depth 3 with
Squeeze and Excitation module.

| Output |
(a) Residual module of depth 3.

Fig. 4. Residual module of depth 3 without and with SE module.

3.5 Full Image Binarizer

The goal of the full image binarizer is to detect the objects to binarize in the
image. It means that it must find the approximate location of each object with-
out detecting noises. In our case, the objects are the characters to binarize.
Therefore, this network has the responsability to detect isolated noises such as
bleed through, background degradations or ink drops. It aims to do so by cap-
turing a large context of the image using the full image. Indeed, it is a lot easier
to detect all these degradations when we can have the context of the full image.
In fact, at a given pixel position, one may found bleed through very far from the
closest main text making it hard to detect if we can only see bleed through. In
the worst scenario, there is only bleed through in the image and the only thing
that prevents the binarizer to falsely detect it is to have a global context.

One could employ this network to perform the binarization directly, but as
it will be shown in the experiment section, this would greatly fail because of
the downscaling which requires an upscaling step to match the original image
size. In fact, this network will poorly detect the boundaries because of both the
downsampling and the upsampling operations but will be stronger than patches
to approximating the locations of characters.
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3.6 Patch Image Binarizer

The goal of the patch image binarizer is to detect precisely the characters and
especially their boundaries by using a local context on native resolution patches.
We avoid, by using patches of the unresized images, the loss of precision due to
the resizing made by the full image binarizer. However, this network can have
trouble to identify noises that require a global context such as bleed through
because of the constrained field of view on the local patch. Fortunately, these
two networks have different complementary drawbacks and advantages that we
can use by combining them to obtain a better prediction.

3.7 Prediction Combination

Before applying the predictions combination, predicted images are thresholded
with the help of an analysis of the histogram. Therefore, a global threshold value
is used to obtain for each binarizer a binary image. Then, the two predictions
are simply passed through a bit-wise AND operator to get the final prediction.
One could employ a more sofisticated mechanism to combine the predictions,
however we choose in this paper to show that even a simple operation such as
the bitwise AND operator improves the results.

4 Experiments

To verify the performance of the proposed approach, experiments are performed
on the DIBCO competition on binarization. The next section describes the
DIBCO competition and their metrics.

4.1 The DIBCO Competition

The DIBCO competition aims to evaluate the state of the art on the task of
binarization. Documents are collected from two collections: IMPACT [1] for the
printed and READ [2] for the handwritten images. We gathered training data
from all the previous DIBCO competitions which gives us 87 training images.
From those training images, 10 of them were randomly chosen for validation. The
test consists in 10 printed and 10 handwritten images with several degradations
such as bleed through, noises or holes in characters. The metrics used by the
competitions are the FMeasure, the pseudo FMeasure, the PSNR and the DRD.
The FMeasure defined by Eq. 2 is the harmonic mean between the precision and
recall.

2 X Precision x Recall
FM = 2
Precision + Recall (2)

The pseudo FMeasure [19] is the weighted FMeasure by considering some
pixels more important than others. It uses, similarly to the FMeasure, the Pseudo
Recall and Pseudo Precision and take into consideration the distance to the
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contour of the ground truth. The PSNR, defined in Eq.3, measures the pixel
similarity between two images. The higher the value, the closer two images are
from each others. Here C' is the difference between foreground and background
pixels, n the number of pixels in the image, y; is the i-th pixel of the ground
truth image and ¢; is the i-th pixel of the predicted binary image.

2

PSNR =10 x log(4 o7

) 3)

where MSE is defined by Eq. 4

n

MSE = %Z (yi — 9:)* (4)

i=1

The Distance Reciprocal Distortion Metric or DRD [17], defined by Eq. 5,
conveys the visual distortion as an human would see these distortions for binary
images. It is defined in Eq. 5 where S is the number of wrongly classified pixels,
NUBN is the number of ground truth blocks of 8 x 8 which have at least one
white and one black pixel. It uses, for each element in S, the DRD), Eq. 6 which
computes the distortion of a given pixel using a normalized weight matrix Wi,
of size 5 x 5. The ground truth block used to compute the distortion is centered
around the k-th pixel at position (z,y) of the prediction y. The distortion is then
the weighted sum of all pixels from the ground truth block that differs from the
center pixels from y.

S, DRD,

DRD = Ao (5)

DRDy =Y > |y(i,) = §(w,9)| x Wim (i, ) (6)

i=—2j=—2

4.2 Training Configuration

For the patch generation, random crops of fixed size are extracted from original
images. T'wo patch sizes have been used for the experimentations: 512 x 512 and
1024 x 1024. Regarding full images, they are resized to have their maximum side
to a maximum side MS. If the image maximum side 9% = max(Iwidth, [height)
is inferior to M S then the image is not resized. In other words, only images that
are large, are resized while the others are left intact. Since the ARU-net requires
the image to be divisible by a power of d and d = 2 in our case, we fixed
MS = 1024 = 2'°, Remarkably, border padding is applied to images to rescaled
images to make their size equal to M S x M .S by adding zeros. This technique
simplifies the U-net architecture as images will have the same size and therefore
avoid the cropping of skip connections to fit the decoder size. This operation is
summarized by Eq.7. The RMSprop optimizer is used with an initial learning
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rate of 0.001 which is exponentially decayed over time by a factor k=0.03. The
loss function used to optimize the networks is the cross-entropy. Filters of size 3
are used for the U-net and filters of size 4 for the AN. A Resgepen, = 3 is used in
combination with Scalegeper, = 5 for the ARU-net and the RU-net has a depth
of 5 with an initial number of filters equal to 8. We train each network until
convergence is reached.

I {I | if [mar < M S @

I52¢ % MS/ITST  else

side

4.3 Data Augmentation

To improve the performances of both our networks, we make use of data aug-
mentation. Online data augmentation is performed to provide a large amount
of different images. Data augmentation aims to add variability in the data by
generally introducing noises or linear transforms. Online data augmentation pro-
duces augmented images during the training. The interest of doing it in an online
way is that it is unlikely that we will submit twice the exact same image to the
network. Also, to make our networks more resilient to bleed through, we decided
to use the original images with synthetic bleed through using DocCreator [13].
This software allows to apply several different degradations such as holes, 3D
deformations, bleed through or phantom characters. In our experiments, we only
used the bleed through augmentation with a varying intensity scale v € [0.2;0.5].
An example of synthetic bleed through image is provided in Fig. 5. Patches and
image are then augmented using random rotations with an angle 6 € [—180; 180]°
and they can be horizontally flipped with Gaussian or salt and pepper noises.

0¥ I8i0
~"',v0'dn,1 omaﬂ‘&(’lﬁ el
nlp a0 dolog: b8 Bjligevia

Fig. 5. Example of synthetic bleed through.

4.4 The Effect of Horizontal Flipping

We investigate the effect of horizontal flipping as one could think that it could
confuse the network by having all the characters backwards compared to the
bleed through. When there is no bleed through and the text does not have a
lot more higher intensity than the background, if the image is horizontally flip
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it can be considered as a realistic bleed through. A small experiment has been
conducted to verify whether the use of the transform confuses or not a neural
network. To do so, patch binarizer has been trained for 50 epochs with and
without horizontal flipping. Figure 6 shows the loss value after each epoch for
the two strategies.

Loss value

0
01 23 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

Epochs

—— Training loss no flipping --4#---Validation loss no flipping
—— Training loss flipping ------Validation loss flipping

Fig. 6. The importance of horizontal flipping. Continuous lines represent training loss
values and dashed lines, validation loss values.

Surprisingly, horizontal flipping is helping the network figuring out what the
bleed through is. This can be explained by the fact that the text orientation does
not matter so much but rather the relative pixel intensities between the main
text and the bleed through. Usually, we can detect the bleed through by using
only the text orientation (backwards characters) when there is only one kind of
text. However, when we use random rotations, the text can be downward which
makes it difficult for the network to distinguish downward from backward. Since
all augmentation methods are independently performed on the image, we can
also have both rotations and horizontal flips. Figures 7 and 8 show the differences
between a downward text and backward text. For instance, Fig. 7 shows that is
it not the text orientation that allows to distinguish the main text but only
the pixels intensities. This is respected since we usually found ink of the same
intensity in both recto and verso images. When the bleed through is present, the
ink is overshadowed by the paper, thus making the bleed through lighter than
the main text pixels.
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Fig. 7. Example of image flipped horizontally.

Fig. 8. Example of image rotated at 180°.

The only thing that remains to detect bleed through are the relative pixel
intensities between the bleed through and the text pixels. The use of horizontal
flipping improves the training because it helps the network learn this concept.

4.5 Results

Results of the experiments can be found in Table2. One can see that not all
methods improve the results compared to the state of the art. Those methods
are the patch only with a patch size of 512 and the full image binarizer. While
we know that the winner of DIBCO17 used patches, we do not know what size
they used. However, when combining these two methods, we could obtain better
results since they are complementary. To verify whether the patch context size
influences the performance or not, we used patches of size 1024. The results
shows that we obtained slightly better results but not for all metrics. Only the
pseudo FMeasure did not improved, meaning that the errors made were more far
from the ground truth (noises for example). When we combined the patches of
size 1024 with the full image binarizer, we obtained again an improvement for all
the metrics except for the pseudo FMeasure. Even if bigger patches improve the
performances, using the full image binarizer, still helps to correct some mistakes
even when using a simple combination of the prediction such as the logical AND
operator.
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Table 2. Results of our approach compared to the winner of DIBCO17.

DIBCO17 Test Set  |[FMeasure|Pseudo FMeasure| PSNR [DRD

Winner DIBCO17 91.04 92.86 18.28 | 3.4
Patch only 512 88.36 89.21 16.97 | 5.07
Patch only 1024 91.87 91.68 18.24 | 2.89

Image only 86.29 87.16 17.48 | 4.22
Combined patches 512 | 91.44 93.05 18.519| 2.94
Combined patches 1024| 92.12 92.49 18.516|2.64

4.6 Discussions

While the proposed approach outperforms the winning method of DIBCO17, it
has the drawback of using two networks instead of one. Experiments showed that
using big patches improves the results of the neural network. It suggests that
if we could process images in their natural resolution it could further improve
the state of the art. However, the results of the single neural network are still
behind the combination of the two. Moreover, using the full rescaled image adds
only little time, compared to the patch based network. Generally, most of the
time used to compute the image prediction comes from the patch binarizer and
not from the full image binarizer. The reason is simple: we need to label every
pixel of the image at its original resolution with the patch binarizer in order to
retrieve the prediction of the full image. For the full image binarizer, we have a
lot less pixels to label because we predict on the downscaled images and upscale
them after to obtain a prediction of the original size image. When using the big
patches, the number of images to label is equal to m + 1 where m is the number
of patches to label the whole image. Therefore, we can affirm that our approach
adds only little execution time compared to other patch based methods when m
is large (e.g. when processing large images).

5 Conclusion

We proposed in this paper a new robust method to binarize handwritten and
printed document images. It consists in two fully convolutional neural networks
with distincts objectives. The first one works on a reduced scale of the image
and is precise to detect while the second woks globally. We show that these
two networks alone are not capable of achieving better results. However, with a
simple combination of the strength and weaknesses of the two FCNs, we were
able to produce binarizations of very high quality. We showed that the proposed
approach produces state of the art results on the DIBCO17 competition. While
this technique works well, we still train the two networks independently. In future
work, we plan on finding ways to add global image context to the patch binarizer
so it can be trained end-to-end with a single neural network.
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