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Abstract. This paper introduces a novel method for the representation
of images that is semantic by nature, addressing the question of com-
putation intelligibility in computer vision tasks. More specifically, our
proposition is to introduce what we call a semantic bottleneck in the
processing pipeline, which is a crossing point in which the representation
of the image is entirely expressed with natural language, while retaining
the efficiency of numerical representations. We show that our approach
is able to generate semantic representations that give state-of-the-art
results on semantic content-based image retrieval and also perform very
well on image classification tasks. Intelligibility is evaluated through user
centered experiments for failure detection.

1 Introduction

Image-to-text tasks have made tremendous progress since the advent of deep
learning approaches (see e.g., [1]). The work presented in this paper builds
on these new types of image-to-text functions to evaluate the capacity of tex-
tual representations to semantically and fully encode the visual content of
images for demanding applications, in order to allow the prediction function
to host a semantic bottleneck somewhere in its processing pipeline (Fig. 1). The
main objective of a semantic bottleneck is to play the role of an explanation
of the prediction process since it offers the opportunity to examine meaning-
fully on what ground will further predictions be made, and potentially decide
to reject them either using human common sense knowledge and experience,
or automatically through dedicated algorithms. Such an explainable seman-
tic bottleneck instantiates a good tradeoff between prediction accuracy and
interpretability [2].

Reliably evaluating the quality of an explanation is not straightforward [2–5].
In this work, we propose to evaluate the explainability power of the semantic
bottleneck by measuring its capacity to detect failure of the prediction func-
tion, either through an automated detector as [6], or through human judgment.
Our proposal to generate the surrogate semantic representation is to associate a
global and generic textual image description (caption) and a visual quiz in the
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a man that is on a tennis court 
with a racquet

q1: can you see his racquet? 
q2: what color is it?      
q3: can you see the ball?              
q4: is the ball yellow?                   
q5: is he about to serve the ball?                   
q6: is it day time?
q7: is it indoors?                 
q8: is the picture bright?                   
q9: any other people?                   
q10: can you see the net?

a1: yes          
a2: not sure, but it 's a wilson racket 
a3: yes it 's in his hand
a4: yes
a5: maybe                   
a6: i don't think so               
a7: can't tell                 
a8: yes                   
a9: no                   
a10: no 
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Fig. 1. Semantic bottleneck approach: images are replaced by purely but rich textual
representations, for tasks such as multi-label classification or image retrieval.

form of a small list of questions and answers that are expected to refine contex-
tually the generic caption. The production of this representation is adapted to
the vision task and learned from annotated data.

The main contributions of this paper are: (i) The design of two processing
chains for content-based image retrieval and multi-label classification hosting
a semantic bottleneck; (ii) An original scheme to select sequentially a list of
questions and answers to form a semantic visual quiz; (iii) A global fusion app-
roach jointly exploiting the various components of the semantic representation
for image retrieval or multi-label classification; (iv) A complete evaluation on the
MS-COCO database exploiting Visual Dialog annotations [1] showing that it is
possible to enforce a semantic bottleneck with only 5% of performance loss on
multi-label classification, but a 10% performance gain for image retrieval, when
compared to image feature-based approaches; (v) An evaluation of the seman-
tic bottleneck explanation capacity as a way to detect failure in the prediction
process and improve its accuracy by rejection.

2 Related Works

Extracting Semantic Information From Images. The representation of images
with semantic attributes has received a lot of attention in the recent literature.
However, with the exception of the DAP model [7], which is not performing
very well, such models produce vector representations that are not intelligible
at all. In contrast, image captioning [8,9] is by nature producing intelligible
representations and can be used to index images. As an illustration, Gordo et al.
[10] addressed the task of retrieving images that share the same semantics as
the query image using captions. Despite the success of such recent methods, it
has been observed [11] that such approaches produce captions that are similar
when they contain one common object, despite their differences in other aspects.
Addressing this issue, [12] proposed a contrastive learning method for image
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captioning encouraging distinctiveness, while maintaining the overall quality of
the generated captions. Another way to enrich the caption is to generate a set of
questions/answers such as proposed in the Visual Dialog framework [1,13,14].
This is what we propose to do by learning how to build dialogs complementary
to image captions.

Transferring Information From Other Domains. Producing semantic description
of images in natural languages is barely possible without transferring semantic
information – expressed as semantic attributes, natural language expressions,
dictionaries, etc.– from auxiliary datasets containing such information to novel
images. This is exactly what Visual Question Answering models can do, the
VQA challenge offering important resources, in the form of semantic images,
questions, or possible answers. Research on VQA has been very active during the
last two years. [15] proposed an approach relying on Recurrent Neural Network
using Long Short Term Memory (LSTM). In their approach, both the image
(CNN features) and the question are fed into the LSTM to answer a question
about an image. Once the question is encoded, the answers can be generated by
the LSTM. [16] study the problem of using VQA knowledge to improve image-
caption ranking. [17], motivated by the goal of developing a model based on
grounded regions, introduces a novel dataset that extends previous approaches
and proposes an attention-based model to perform this task. On their side,
[18] proposed a model receiving the answers as input and predicts whether or
not an image-question-answer triplet is correct. Finally, [19] proposes another
VQA method combining an internal representation of the image content with
the information extracted from general knowledge bases, trying to make the
answering of more complex questions possible.

Producing Intelligible Representations. The ubiquitousness of deep neural net-
works in modern processing chains, their structural complexity and their opac-
ity have motivated the need of bringing some kind of intelligibility in the pre-
diction process to better understand and control its behavior. The vocabulary
and concepts connected to intelligibility issues are not clearly settled. (explana-
tion, justification, transparency, etc.) Several recent papers have tried to clarify
those expressions [2–5,20–23] and separate the various approaches in two goals:
build interpretable models and/or provide justification of the prediction. [24]
for instance, described an interpretable proxy (a decision tree) able to explain
the logic of each prediction of a pretrained convolutional neural networks. The
generation of explanations as an auxiliary justification has been addressed in
the form of a visual representation of informative features in the input space,
usually heat maps or saliency maps [25–27], as textual descriptions [28], or both
[29]. A large body of studies [30–33] have been interested in visually revealing
the role of deep network layers or units. Our semantic bottleneck approach fuses
those two trends: it provides a directly interpretable representation, which can
be used as a justification of the prediction, and it forces the prediction process
itself to be interpretable in some way, since it causally relies on an intermediate
semantic representation.
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Evaluating Explanations. The question of clearly evaluating the quality or usabil-
ity of explanations remains an active problem. [25] described a human-centered
experimental evaluation assessing the predictive capacity of the visual explana-
tion. [27] proposed to quantify explanation quality by measuring two desirable
features: continuity and selectivity of the input dimensions involved in the expla-
nation representation. [34,35] described geometric metrics to assess the quality
of the visual explanation with respect to landmarks or objects in the image. [36]
questioned the stability of saliency based visual explanations by showing that a
simple constant shift may lead to uninterpretable representations. In our work,
we take a dual approach: rather than evaluating the capacity of the explanation
to be used as a surrogate or a justification of an ideal predictive process, we
evaluate its quality as an ability of detecting bad behavior, i.e. detect potential
wrong predictions.

Generating Distinctive Questions. If the generation of questions about text cor-
pora has been extensively studied (see e.g., [37]), the generation of questions
about images has driven less attention. We can, however, mention the interest-
ing work of [38] where discriminative questions are produced to disambiguate
pairs of images, or [39] which introduced the novel task (and dataset) of visual
question generation. We can also mention the recent work of Das et al. [40]
which bears similarity with our approach but differs in the separation between
the question generator and semantic representation encoder, and is not applied
to the same tasks. Our work builds on the observation made by [41,42] – ques-
tions that are asked about an image provide information regarding the image
and can help to acquire relevant information about an image – and proposes
to use automatically generated discriminative questions as cues for representing
images.
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Fig. 2. Functional diagrams of the various components of the global algorithm.
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3 Approach

This paper proposes a method allowing to turn raw images into rich seman-
tic representations—a semantic bottleneck—which can be used alone (without
using the image itself) to compare images or classify them. At the heart of this
image encoder is a process for generating an ordered set of questions related to
the image content, which are used, jointly with the answers to these questions,
as an image substitute. Questions are generated sequentially, each question (as
well as its answer) inducing the next questions to be asked. Such a set of ques-
tions/answers should semantically represent the visual information of images
and be useful for disambiguating image representations in retrieval and clas-
sification task. Answering the question is done with a VQA model, used as an
oracle, playing the role of a fine-grained information extractor. Furthermore, this
sequence of Q/A is designed to be complementary to an image caption which
is also automatically generated. We can use the analogy of human reasoning,
starting with the image caption as a starting point and asking question to an
oracle to get iteratively more information on the image. The proposed visual
dialog allows to enrich image caption representations and leads to a stronger
semantic representation. Finally, captions and visual dialogs are combined and
turned into a compact representation that can be used easily to compare images
(for retrieval task) or to infer class labels (classification tasks).

Consequently, our model is composed of two main components: (i) a dis-
criminative visual question generator (ii) an encoding block taking Q/A and
captions as inputs and producing an image representation. These two blocks,
trained end-to-end, rely on two oracles: (i) an image caption generator which
visually describes images with natural language sentences. (ii) a visual question
answering model capable of answering free-from questions related to images. We
call these last 2 parts of the model oracles as they are trained independently of
the main tasks and used as external knowledge base.

3.1 Vector Space Embedding, Encoders, Decoders

The core objective of our approach is to generate semantic expressions in natural
language (questions, answers or captions) that could represent images compactly
and informatively. We define the various natural language elements as sequences
of words from a fixed vocabulary of words and punctuation {w0, . . . , wnw

}, where
w0 has the special meaning of marking the end of all phrases as a “full stop”.
The space of all possible sequences in natural language is denoted by P. Any
caption (c), question (q) or answer (a) belongs to the same set P.

Most of learning based algorithms exploit vector space representations as
inner states, or in the optimized criterion. A first issue is therefore to make
possible the embedding of natural language expressions, and also images, into
a vector space. For simplicity of design, we made all the necessary embeddings
belong to a S-dimensional real valued vector space. Typically, to give an order of
magnitude, we took S = 512 in our experiments. We therefore define semantic
encoders as mappings from P to R

S , and semantic decoders or generators as
mappings from the vector space R

S to P.
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Image Encoder. The first element to be encoded is the source image I ∈ I. The
encoder (denoted as fI) is a mapping fI : I → R

S , provided by last FC layer (fc7)
of a VGG-VeryDeep-19 network [43] (pre-trained on Imagenet [44]) followed by a
non-linear projection (fully connected layer + tanh non-linearity unit) reducing
the dimensionality of the fc7 features (4096-d) to S. The parameters of the non-
linear projection, denoted as wI , are the only parameters of this embedding that
have to be learned, the parameters of the VGG-VeryDeep-19 being considered as
fixed. We write fI(I;wI) to make apparent the dependency on the parameters
wI , when needed.

Natural Language Encoder. This encoder maps any set of words and punctua-
tion s ∈ P (captions, questions, answers) to the embedding space R

S . We will
use 3 different natural language encoders in the global algorithm, for captions,
questions and answers, all sharing the same structure and the same weights.
We hence refer to them using the same notation (fp). The encoder uses a stan-
dard Long Short Term Memory network (LSTM) [45]. Used as an encoder, the
LSTM is simply a first order dynamic model: yt = LSTMp(yt−1, pt) where yt is
the concatenation of the long-term cell state and the short-term memory, and
pt is the current input at time t. Given a natural language sequence of words
p = {pt}t=1:Tp

, its encoding fp(p) is equal to the memory state yt after iterating
on the LSTM Tp times and receiving the word pt at each iteration. Denoting
wp the set of weights of the LSTM model, the natural language embedding is
therefore defined as: yTp

= fp(p;wp) with the initial memory cell y0 = 0.
In practice, instead of using words by their index in a large dictionary, we

encode the words in a compact vector space, as in the word2vec framework [46].
We found it better since synonyms can have similar encodings. More precisely,
this local encoding is realized as a linear mapping ww2vec, where ww2vec is a
matrix of size nw2vec ×nw and each original word is encoded as a one-hot vector
of size nw, the size of the vocabulary. The size of the word embedding nw2vec was
200 in our experiments. This local word embedding simply substitutes ww2vec.pt
to pt in the LSTM input.

Semantic Decoder. The semantic decoder is responsible for taking an embedded
vector s ∈ R

S and producing a sequence of words in natural language belonging
to P. It is denoted by fs. All the semantic decoders we exploit have the struc-
ture of an LSTM network. Several semantic decoders will be used for questions,
answers and captions in the overall algorithm, but with distinct weights and dif-
ferent inputs. These LSTMs have an output predicting word indexes according
to a softmax classification network: pt+1 = Softmax(yt) which is re-injected as
input of the LSTM at each iteration.

Formally, we can write the semantic decoder as a sequence of words generated
by an underlying LSTM first order dynamic process with observations pt as
yt = LSTMs(yt−1, pt). At time t the input receives the word generated at the
previous state pt, and predicts the next word of the sentence pt+1. When the word
w0 meaning “full stop” is generated at time Ts, it ends the generation. The global
decoding is therefore a sequence of words of length Ts−1: fs(s;w) = {pt}t=1:Ts−1



Semantic Bottleneck 701

with the initial state of the LSTM being the embedded vector to decode (y0 = s)
and the first input being null (p0 = 0). The symbol w refers to the learned weights
of the LSTM and the softmax weights, and is different for each type of textual
data that will be generated (captions, questions and answers).

3.2 Captioning Model

The visual captioning part of the model is used as an external source of knowl-
edge, and is learned in a separate phase. It takes an image (I) and produces a
sentence in natural language describing the image. We used an approach inspired
by the winner of the COCO-2015 Image Captioning challenge [8]. This approach,
trainable end-to-end, combines a CNN image embedder with a LSTM-based Sen-
tence Generator (Fig. 2(b)). More formally, it combines an image encoder and
a semantic decoder, such are described previously, which can be written as:
c(I) = fs(fI(I;wI);wcg) where wcg is the specific set of learned weights of the
decoder. This caption model acts as an oracle, providing semantic information
for the Visual Discriminative Question Selection component, and to the Semantic
Representation Encoder.

3.3 Visual Question Answering Model

The VQA model is the second of the two components of our model used as
oracles to provide additional information on images. Its role is to answer inde-
pendent free-form questions about an image. It receives questions (Q) in natural
language and an image (I) and provides answers in natural language (a(Q, I)).
Our problem is slightly different from standard VQA because the VQA model
now has to answer questions sequentially from a dialog. It means that the ques-
tion Qk can be based on the answer of the previous questions Qk−1 and answers
a(Qk−1, I). We first present the formulation of a standard VQA and then show
how to extend it so it can answer questions from a dialog.

Inspired by [47], our VQA model combines two encoders and one decoder of
those described previously (Fig. 2-a):

a(Q, I) = fs(fI(I;wIqa) � fp(Q;wpqa);wqa) (1)

The fusion between image and question embeddings is done by an element wise
product (�) between the two embeddings, as proposed by [47].

We now consider the case where questions are extracted from a dialog by
extending Eq. (1), where k represents the k-th step of the dialog. We intro-
duce another term hk in the element-wise product to encode the history of the
dialog as:

ak(Qk, I) = fs(fI(I;wIqa) � fp(Qk;wpqa) � hk;wqa) (2)

The history hk is simply computed as the mean of the previously asked ques-
tions/answers, and encoded using fp. This state integrates past questions and is
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expected to help the answering process. We tried other schemes to summarize
history (concatenation, LSTM) without clear performance increase.

We prefer the VQA model to the Visual Dialog model [1], as this latter
is optimized for the task of image guessing, while we want to fine-tune the
question/answer sequence for different tasks (multi-label prediction and image
retrieval).

3.4 Discriminative Question Generation

This part of the model is responsible for taking an image and a caption – which
is considered as the basic semantic representation of the image – and produces
a sequence of questions/answers that are complementary to the caption for a
specific task (multi-label classification or retrieval).

The caption describing the image is generated using the captioning model
presented in Sect. 3.2, and denoted c(I) ∈ P. This caption is encoded with
fp(c(I);wp) ∈ R

S . Image and caption embeddings are then combined by an
element-wise product fp(c(I)) � fI(I) used as an initial encoded representation
of the image.

This representation is then updated iteratively by asking and answering ques-
tion, one by one, hence iteratively proposing a list of discriminative questions.
Again, we use a LSTM network (Fig. 2-c), but instead of providing a word at
each iteration as for fs(s;w) we inject a question/answer [q̃k, ãk] pair encoded in
a vector space from the natural language question/answer [Qk, Ak] using fp,
with initial memory y0 = fI(I) � fp(c(I)) and initial input q̃0 = ã0 = 0:
yk = LSTMq(yk−1, [q̃k, ãk]) The actual questions are then decoded from the
inner LSTM memory yk and fed to the VQA model to obtain the answer using
Eq. (2): Qk+1 = fs(yk;wsq), and, Ak+1 = ak+1(Qk+1, I)

Using this iterative process, we generate, for each image, a sequence of
questions-answers refining the initial caption: fq(I;wq) = {Qk, Ak}k=1:K where
wq is the set of weights of the underlying LSTM network of the previous equa-
tion, and K is an arbitrary number of questions.

3.5 Semantic Representation Encoder

Our objective is to evaluate the feasibility of substituting a rich semantic rep-
resentation to an image and achieve comparable performance than an image
feature based approach, for several computer vision tasks. This representation
has to be specifically generated to the target task, to be efficient.

Once again, many modern computer vision approaches relying on a learning
phase require that data are given as fixed dimension vectors. The role of the
module described here is to encode the rich semantic representation in R

S to
feed the retrieval or the multi-label classification task.

The encoder makes use of a LSTM network where the question/answer
sequence {Qk, Ak}k=1:K is used as input, yk = LSTMe(yk−1, [q̃k, ãk]) and the
initial memory state y0 is equal to the encoded caption fp(c(I);wp) (Fig. 2(d)).
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If we is the set of weights from the underlying LSTM, the rich semantic
representation yK is encoded as: yK = fenc ([{Qk, Ak}k=1:K , c(I)] ;we).

3.6 Training the Model

The global training is divided in two phases. The first phase learns the two
so-called oracles independently: image captioning and VQA. The second phase
learns to generate the visual quiz, the image encoder and the semantic encoder
jointly for a specific task, based on information provided by the two oracles.

The parameters of the VQA, namely wIqa and wpqa for the encoders, and
wqa (Eq. 2) are learned in a supervised way on the Visual Dialog dataset [1]. The
learning criterion consists in comparing the answer words generated by the model
with those of the ground truth for each element of the sequence of questions,
and is measured by a cross entropy.

The captioning is also learned by comparing each word sequentially generated
by the algorithm to a ground truth caption, and is also measured by a cross
entropy loss.

The question/answer generator fq(I;wq) and the semantic representation
encoder fenc are learned jointly end to end. Each of the modules manages its
own loss: for the question generator, the sequence of questions is compared to
the ground truth of questions associated with each image using a cross entropy
at each iteration. The semantic encoding, however, is specifically evaluated by a
task-dependent loss: a cross entropy loss for each potential label for the multi-
label classification task, a ranking loss for the image retrieval task. When the
question generation model converges, only the task-dependent loss is kept in
order to fine-tune the question selection part.

The retrieval loss is a bit more complex than the others (cross entropy).
Basically, it is based on the assumption that ground truth captions are the most
informative image representations and that any other representation should fol-
low the same similarity ranking as captions provide. We follow the approach
proposed in [10] to define the retrieval loss as a function of triplet data q, d+ (pos-
itive pair) and d− (negative pair) to be L(q, d+, d−) = max(0,m−φ(q)Tφ(d+)+
φ(q)Tφ(d−)) where q and d+ are expected to be more similar than q and d−,
and φ is the representation function to be learned, i.e. the output of fenc, and
m is a free coefficient playing the role of a margin. The reference similarity com-
parison is computed from ground truth captions using tf-idf representations, as
suggested by [10].

4 Experiments

We validated the proposed method on 2 tasks: (i) content based image retrieval
(CBIR) based on semantics, where queries are related to the semantic content of
the images – which is more general and harder than searching for visually similar
images. We adopted the evaluation protocol proposed by Gordo et al. [10]. It uses
captions as a proxy for semantic similarity and compares tf-idf representations of
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captions, and measures the performance as the normalized discounted cumulative
gain (NDCG), which can be seen as a weighted mean average precision, the
relevance of one item with respect to the query being the dot product between
their tf-idf representations. (ii) Multi-label image classification: each image can
be assigned to different classes (labels), generally indicating the presence of the
object type represented by the label. Per-class average precision and mAP are
the performance metrics for this task.

Both series of experiments are done on the Visual Dialog dataset [1], relying
on images of MS COCO [48]. Each image is annotated with 1 caption and 1 dialog
(10 questions and answers), for a total of 1.2M questions-answers. Ground truth
Dialog has been made in order to retrieve a query image from a pool of candidate
images. A dialog should visually describe a query image and be suitable for
retrieval and classification tasks. We use the standard train split for learning
and validation split for testing, as the test set is not publicly available.

Our approach has several hyper-parameters: the word embedding size,
LSTM state size, learning rate, m. They are obtained through cross-validation.
In this procedure, 20% of training data is considered as validation set, allowing
to choose the hyper-parameters maximizing the NDCG/mean average precision
on this so-obtained validation set. In practice, typical value for LSTM state size
(resp. embedding size) is 512 (resp. 200). The margin m is in the range [1.0–2.0].
Model parameters are initialized according to a centered Gaussian distribution
(σ = 0.02). They are optimized with the Adam solver [49] with a cross-validated
learning rate (typically of 10−4), using mini-batches of size 128. In order to avoid
over-fitting, we use dropout [50] for each layer (probability of a drop of 0.2 for
the input layers and of 0.5 for the hidden layers). Both oracles (captioning and
VQA) are fine-tuned on the tasks. Finally, while it would be interesting to aver-
age the performance on several runs, in order to evaluate the stability of the
approach, this would be prohibitive in terms of computational time. In practice,
we have observed that the performance is very stable and does not depend on
initialization.

4.1 Experiments on Semantic Image Retrieval

We now evaluate our approach on semantic content-based retrieval, where the
images sharing similar semantic content with an image query have to be returned
by the system. As described before, the retrieval loss is optimized with triplets: an
image query and two similar/dissimilar images. For triplet selection, we applied
hard negative mining by sampling images according to the loss value (larger loss
meaning higher probability to be selected). We found hard negative mining to
be useful in our experiments.

Table 1 reports the NDCG performance for 3 values of R (R = k means that
the top k images are considered for computing the NDCG), and the area under
the curve (for R between 1 and 128) on 4 different models. The visual baseline
exploits a similarity metric between image features extracted from the FC7 layer
of a VGG19 network, which is learned on the train set using the same triplet
approach as described in Sect. 3.6. I + [10] corresponds to the visual embedding
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Table 1. NDCG on semantic retrieval.
Performance/Area Under the Curve for
different values of R.

Method/R 8 32 128 AUC

fi(I) + ML (baseline) 45.8 51.7 59.3 69.7

I + [10] 47.6 55.9 62.3 72.7

{I, c(I)} + [10] 57.0 58.5 63.3 75.1

Our approach fenc(I) 59.3 61.7 67.1 79.9

Table 2. Semantic retrieval.
NDCG/AUC after removing some
components of the model.

Modality/R 8 32 128 AUC

c(I) 55.1 56.3 62.4 73.6

{Qk, Ak}1:10 generic 41.8 50.4 57.7 65.7

{Qk, Ak}1:10 task adapted 45.8 55.7 60.0 71.9

tf − idf{c(I), {Qk, Ak}1:10} 54.9 57.2 63.4 75.1

Our approach fenc(I) 59.3 61.7 67.1 79.9

Table 3. Multi-label classification performance.

Modality mAP

fi(I) (baseline) 61.1

c(I) 51.6

{Qk, Ak}1:10 49.9

fenc(I) 56.0

{I, fenc(I)} 64.2

noted (V, V) in [10]. {I, c(I)} + [10] is the joint visual and textual embedding
(V+T, V+T) with the difference that we don’t feed the ground truth captions
but the generated one, for fair comparison.

We observed that the area under the curve improves by +4.8% with our
semantic bottleneck approach compared to the image feature similarity app-
roach. We stress here that, unlike [10], we only exploit a semantic representation
and not image features.

Empirical results of Table 2 show the usefulness of our semantic encoder.
Indeed, with the same modalities (caption, questions and answers), tf −
idf{c(I), {Qk, Ak}1:10} performs 4.8% lower. Table 2 also shows the importance
of adapting the VQA oracle to the task with +6.2% gain compared to a generic
oracle not fine-tuned to the task.

4.2 Experiments on Multi-label Classification

With the MS COCO [48] dataset, each image is labeled with multi-object labels
(80 object categories), representing the presence of broad concepts such as ani-
mal, vehicle, person, etc. in the image. For the baseline approach, we used image
features provided by a VGG-VeryDeep-19 network [43] pre-trained on ImageNet
[44] with weights kept frozen up to the 4,096-dim top-layer hidden unit activations
(fc7), and fed to a final softmax layer learned on the common training set.

Table 3 (bottom) reports the per-class mean average precision for the visual
baseline and the various components of our model. Our fully semantic approach
fenc(I) underperforms only by 5% the baseline. This is quite encouraging as in
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our setting the image is only encoded by a caption and 10 questions/answers.
The main advantage of our model is that one can have access to the intermediate
semantic representation for inspection, and may provide an explanation of the
good or bad result (see Sect. 4.3). Figure 3 also reports the performance given by
(i) generated caption c(I) only, (ii) questions/answers {Qk, Ak}1:10 only. These
experiments shows that captions are more discriminative than questions/answers
(+1,7%), at least given the way they are generated. We also report the per-
formance obtained by combining our image representation with image features
(denoted as {I, fenc(I)}). This configuration gives the best performance (+8,2%)
and outperforms the baseline (+3.1%). As a sanity check, we also computed the
mAP when using ground truth annotations for both the captions and the VQA.
We obtained a performance of 72.2%, meaning that with good oracles it’s possi-
ble for our semantic bottleneck to obtain a performance better than with images
(61.1%).

Fig. 3. Combining captions and dialogs: query (top-left images), generated captions,
task-specific dialogs, images retrieved using the caption (first rows) and those given by
our model (second rows). Dialogs allowed to detect important complementary

Fig. 4. Adapting dialogs to tasks: query (top-left images), generated captions, generic
and task-specific dialogs, images retrieved using the caption and generic dialog (first
rows), and those given by our model (second rows).

4.3 Semantic Bottleneck Analysis

This section aims at giving some insights on (i) why the performance is improved
by combining captions and dialogs and (ii) why making the semantic bottleneck
adapted to the task improves the performance.
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Regarding the first point, we did a qualitative analysis of the outputs of the
semantic retrieval task, by comparing the relevance of the first ranked images
when adding the dialogs to the captions (see Fig. 3). The Figure gives both the
caption and the dialog automatically generated, as well as the images ranked first
accordingly to the caption (first rows) and accordingly to our model combining
the caption and the dialog. We marked in green the important complementary
information added by the dialog. The dialog was able to detect drinks as an
important feature of the image.

Table 4. Statistics of generated words after fine tuning the generators to the tasks

task/words classes playing eating wearing doing color how many in/outdoor day/night
classification 88% 19% 39% 29% 14% 42% 39% 42% 53%
retrieval 78% 14% 28% 21% 16% 85% 81% 54% 79%

Regarding the second point, we compared the quality of the retrieval with
and without adapting the dialogs to the task. Figure 4 illustrates our observa-
tions by giving both captions and dialogs automatically generated, as well as
the images ranked first accordingly to captions combined with generic dialogs
(first rows) and with task adapted dialogs (second rows). We marked in red the
questions/answers that we found not relevant to the query in the generic dialog
and in green those that have been given by the task adapted dialog to empha-
size the complementary information they bring. The dialog was able to identify
vehicles as an important feature of the image. Figure 5 illustrates the same type
of caption correction by the dialog for the multi-label classification task.

Generated captions are, in general, brief and consistent with the images (see
examples of Figs. 4, 5 and 7). Because we chose a simple sampling strategy (in
order to have a trade-off between computation and interpretation) a few cap-
tions are syntactically incorrect. We argue that this should not impact the per-
formance, as the generated captions reflect the image content. We also observed
that several questions are repeated. While question repetition is not as critical
as it is for the actual dialog generation, it can be overcome if needed by encoding
the question history (hk in Eq. (6)), for instance by explicitly penalizing repeti-
tions in the LSTM criterion, or, by exploiting a reinforcement learning approach
such as in [40].

Table 4 illustrates the effect of fine-tuning question generation by showing
the percentage of time each word in the first row occurs in a dialog, across the
two tasks (’classes’ means any of the object class names). We observed that
the generated dialogs of the classification task contain more verbs that can be
associated to the presence of object classes (eating ⇒ food classes, playing ⇒
sport classes, wearing ⇒ clothes classes). Generated dialogs for the retrieval
task contain more words characterizing the scene (in/outdoor, day/night) or
referencing specific object features (color, how many).

We also made experiments showing how the semantic bottleneck can be mod-
ified manually to make image search more interactive. Figure 6 shows an example
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where we changed 2 oracle answers (zebras becomes cows and their number is
increased by one). The 2nd row depicts the impact of this modification.

Fig. 5. Left-hand side: incorrect caption corrected by the dialog. Right-hand side:
objects missing from the captions discovered by asking relevant questions.

Fig. 6. Incrementally updating the representation.

4.4 Evaluating Failure Predictions

The potential capacity of the semantic bottleneck to detect failure in the predic-
tion process is illustrated by Fig. 7. Failure is detected when the representation
contains incorrect semantic information—the caption or dialog are wrong—or
insufficient information for further inference. We focus our evaluation on multi-
label image classification, since a clear definition of failure in the case of content
based image retrieval is complex, can be subjective (how decide if images are
completely dissimilar from the request?) and task oriented (what are retrieved
images used for?). We developed two evaluation protocols: one with humans in
the loop, judging the semantic bottleneck capacity to predict consistent labels,
and an automatic model optimized to predict success or failure for each class. We
compare our approaches to a baseline based on score prediction thresholding. In
order to evaluate the semantic bottleneck capacity, we first train our model for a
multi-label classification task and extract the generated semantic representation
(caption and dialog) and class prediction.
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Fig. 7. Predicting failure cases from the proposed semantic representation. Left-hand
side: caption and Q/A are consistent but not rich enough to predict the ’giraffe’ label.
Right-hand side: the semantic representation is incorrect leading to the inference of
erroneous labels. In such cases, the bottleneck representation can be used for debugging.

Table 5. Failure prediction statistics.

False negative False positive

#true #predicted #true #predicted

GT. 614 - 588 -

Users 308 379 213 485

Classifier 250 490 180 530

Table 6. Multi-label classification.

Label Image

mAP % mAP %

No selection 54.3 100 54.3 100

Users 84.2 96 86.1 53

Classifier 79.8 93 81.7 49

conf. thresh 66.1 93 73.5 49

Human Based Failure Prediction Study. For 1000 randomly chosen test images,
users were instructed to evaluate the capacity of the semantic bottleneck to
contain enough information to predict the correct classes. The image and the
generated semantic representation are shown to the users, which can select for
each of the 80 labels of MS-COCO 1 among 3 cases: (i) false negative. The
semantic representation missed the label (e.g. caption and dialog do not mention
about the horse in the picture). (ii) false positive. The semantic representation
hallucinates the object (e.g. seeing a car in a kitchen scene). (iii) correct. The
algorithm has succeeded to predict the label, either its absence or its presence.
Table 5 shows failure cases of the multi-label classification (614 false negative
and 588 false positive). Human subjects were able to identify half of the failures
(308/614 FN and 213/588 FP) with a precision of ≈ 60% (308/379 and 213/485).

Failure detection can also be evaluated through two other sets of experi-
ments: Label rejection: suspicious labels are rejected, others are kept. Image
rejection: when there is a suspicious label, the image is rejected. Table 6 shows
both experiments, and reads as follows: classification performance is of 54.3%
when evaluating on 100% of the test set. When user rejects 4% of the labels,
the performance goes to 84.2%. When our rejection algorithm keeps 93% of the
data, the performance improves to 79.8%, which is close to human performance.
We see a strong improvement for both our methods. Failure prediction improves
the average precision of 30% percent with 4% of deleted image in average for
each class.
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We also proposed two automatic algorithms for failure prediction. The first
one, referenced as ’classifier’ in Tables 5 and 6, is based on an independent ternary
linear classifier for each class with 3 possible outputs: correct, FN, FP. The input
is the image I concatenated with the last hidden state of the semantic repre-
sentation encoder [{Qk, Ak}k=1:K , c(I)]. The ground truth is built by comparing
the output from the multi-label classification and the true classes. The model
is optimized using a cross entropy loss. It is less accurate (can detect ≈ 41%
of false positive with ≈ 51% of precision) but has the advantage of reducing
human effort. We also show in the last row of Table 6 the performance of a sec-
ond algorithm consisting in thresholding the confidence score outputted by the
multi-label classifier for each label, and tuned to reach the same rejection rate
as the other failure detection algorithm. This confidence thresholding algorithm
gives a smaller performance increase after rejection.

5 Conclusions

In this paper we have introduced a novel method for representing images with
semantic information expressed in natural language. Our primary motivation
was to question the possibility of introducing an intelligible bottleneck in the
processing pipeline. We showed that by combining and adapting several state-of-
the-art techniques, our approach is able to generate rich textual descriptions that
can be substituted for images in two vision tasks: semantic content based image
retrieval, and multi-label classification. We quantitatively evaluated the usage
of this semantic bottleneck as a diagnosis tool to detect failure in the prediction
process, which we think contributes to a clearer metric of explainability, a key
concern to mature artificial intelligence.
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