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Abstract. Colours are everywhere. They embody a significant part of
human visual perception. In this paper, we explore the paradigm of hal-
lucinating colours from a given gray-scale image. The problem of colour-
ization has been dealt in previous literature but mostly in a supervised
manner involving user-interference. With the emergence of Deep Learn-
ing methods numerous tasks related to computer vision and pattern
recognition have been automatized and carried in an end-to-end fash-
ion due to the availability of large data-sets and high-power computing
systems. We investigate and build upon the recent success of Conditional
Generative Adversarial Networks (cGANs) for Image-to-Image transla-
tions. In addition to using the training scheme in the basic cGAN, we
propose an encoder-decoder generator network which utilizes the class-
specific cross-entropy loss as well as the perceptual loss in addition to the
original objective function of cGAN. We train our model on a large-scale
dataset and present illustrative qualitative and quantitative analysis of
our results. Our results vividly display the versatility and the proficiency
of our methods through life-like colourization outcomes.

Keywords: Colourization · Generative Adversarial Networks ·
Image Reconstruction

1 Introduction

Colours enhance the information as well as the expressiveness of an image. Colour
images contain more visual information than a gray-scale image and is useful for
extracting information for high-level tasks. Humans have the ability to manually
fill gray-scale images with colours taking into consideration the contextual cues.
This clearly indicates that black-and-white images contain some latent informa-
tion sufficient for the task of colourization. The modelling of this latent informa-
tion to generate chrominance values of pixels of a target gray-scale image is called
colourization. Image colourization is a daunting problem because a colour image
consists of multi-dimensional data according to defined colour-spaces whereas a
gray-scale image is just single-dimensional. The main obstacle is that different
colour compositions can lead to a single gray level but the reverse is not true.
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For example, multiple shades of blue are possible for the sky, leaves of trees attain
colours according to seasons, different colours of a pocket billiards (pool) ball.
The aim of the colourization process is not to hallucinate the exact colour of an
object (See Fig. 1), but to transfer colours plausible enough to fool the human
mind. Image colourization is a widely used technique in commercial applica-
tions and a hot researched topic in the academia world due to its application in
heritage preservation, image stylization and image processing.

In the last few years, Convolutional Neural Networks (CNNs) have emerged as
compelling new state-of-the-art learning frameworks forComputerVision andPat-
tern Recognition [1,6] applications. With the recent advent of Generative Adver-
sarial Networks (GANs) [4], the problem of transferring colours have also been
explored in the context ofGANsusingDeepConvolutionalNeuralNetworks [8,13].
The proposed method involves utilizing conditional Generative Adversarial Net-
works (cGANs) modelled as an image-to-image translation framework.

The main contribution of this paper is proposing a variant of Conditional-
GANs which tries to learn a functional mapping from input grayscale image to
output colourized image by minimizing the adversarial loss, per pixel loss, classi-
fication loss and the high-level perceptual loss. The proposed model is validated
using an elaborate qualitative and quantitative comparison with existing meth-
ods. A detailed ablation study which demonstrates the efficiency and potential
of our model over baselines is also presented.

The rest of this paper is arranged as Sect. 2 describes previous works
described in literature. Section 3 describes our proposed Perceptual-cGAN.
Section 4 demonstrates a detailed qualitative and quantitative analysis of images
colourized by our proposed system along with ablation studies of different objec-
tive functions. The final Sect. 5 consists of concluding remarks.

Fig. 1. The process of image colourization focuses on hallucinating realistic colours.

2 Related Work

The problem of colourization has been studied extensively by numerous
researchers due to its importance in real-world applications. Methods involv-
ing user-assisted scribble inputs were the primary methods explored for the
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daunting problem of assigning colours to a one-dimensional gray-scale image.
Levin et al. [10] used user-based scribble annotations for video-colourization
which propagated colours in the spatial and temporal dimensions ensuring con-
sistency to produce colourized films. This method relied on neighbouring smooth-
ness by optimization through a quadratic cost function. Shapiro [17] proposed
a framework where the geometry and the structure of the luminance input was
considered on top of user-assisted information for colourization by solving a par-
tial differential equation. Noda et al. [14] formulates the colourization problem
into a maximum a posteriori (MAP) framework using Markov Random Field
(MRF) as a prior.

User-involved methods achieve satisfying results but they are severely time-
consuming, needs manual labour and the efficacy is dependent on the accuracy of
the user interaction. In order to alleviate these problems, researchers resorted to
example-based or reference-based image colourization. Example-based methods
require a reference image from the user for the transfer of colours from a source
image to a target gray-scale image. Reinhard et al. [15] used simple statistical
analysis to establish mapping functions that impose a source image’s colour
characteristics onto a target image. Welsh et al. [23] proposed to transfer only
chrominance values to a target image from a source by matching the luminance
and textural information. The luminance values of the target image are kept
intact. The success of example-based methods rely heavily on the selection of an
appropriate user-determined reference image. Hence it faces a limitation as there
is no standard criterion for choosing an example image and hence depends on the
user skill. Also the reference image may have different illumination conditions
resulting in anomalous colour transfer.

In recent years, the use of Deep Learning methods have emerged as prominent
methods for the task of Pattern Recognition, even outperforming human ability
[5]. They have shown promising results in colourization by directly mapping gray-
scale target images to output colors by learning to combine low level features and
high-level cues. Cheng et al. [2] proposed the first deep learning framework using
low-level features from patch, intermediate DAISY features [20] and a high-level
semantic features as output to a neural network ensemble. Zhang et al. [25] pro-
posed an automatic colourization process by posing it as a multinomial classifi-
cation task for ab values. They observed that in natural images the distribution
of ab values were desaturated and used class re-balancing for obtaining accu-
rate chromatic components. A joint end-to-end method using two parallel CNNs
and incorporation of local and global priors was proposed by Iizuka [7]. The
potential of GANs in learning expressive features trained under an unsupervised
scheme propelled researchers to use GANs for the task of colourization. Isola
et al. [8] explored the idea of Conditional-GANs in an image-to-image frame-
work by learning a loss function for mapping input to output images.

3 Proposed Method

In this section, we describe our proposed algorithm along with the architecture
of the Convolutional Neural Networks employed for our method. We explore the
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situation of GANs in a conditional setting [8,13] where the objective function of
the generator is constrained on the conditional information and consequentially
generates the output. The addition of this conditional variables enhanced the
stability of the original GAN frame-work proposed by Goodfellow et al. [4].
Our proposed method builds upon the cGAN by incorporating adjunct losses.
In addition to the adversarial loss and the per-pixel constraint, we add the
perceptual loss and the classification loss in our objective function. We explain
in detail about the loss functions and the networks used.

3.1 Loss Function

Conditional-GANs [8] try to learn a mapping from the input image I to output
J . In this case, the generator not only aspires to win the mini-max game by
fooling the discriminator but also has to be as close as possible with the ground
truth. The per-pixel loss is utilized for this constraint. While the discriminator
network of the cGAN remains the same when compared to the original GAN,
the objective function of the Generator networks are different. The objective
function of cGAN [8] is

LcGAN = minGmaxD EI[log(1 − D(G(I)))] + EI,J[log D(J)] (1)

Here I represents the input image, J represents the coloured image, G rep-
resents the Generator and D represents the Discriminator. Isola et al. [8] estab-
lished through their work that L1 is better due to their less blurring effect and
also helps in reducing artifacts that are introduced by using only cGAN. Our
proposed model Colourization using Perceptual Generator Adversarial Network
(CuPGAN), builds up on this cGAN with incorporated additive perceptual loss
and classification loss. Traditional loss functions that operate at per-pixel level
are found to be limited in their attempt to capture the contextual and the per-
ceptual features. Recent researches have demonstrated the competence of loss
functions based on the difference of high-level feature in generating compelling
visual performance [9]. However, in many cases they fail to preserve the low-level
colour and texture information [24]. Therefore, we incorporate both the percep-
tual loss and the per-pixel loss for preservation of both the high-level and the
low-level features. The high-level features are extracted from VGGNet model [19]
trained on the ImageNet dataset [3]. Like [7], we add an additional classification
loss that helps our model to guide the training of the high-level features.

For input gray-scale image I and colourized image J , the perceptual loss
between I and J in this case is defined as:

Lper =
1

C,H,W

C∑

c=1

W∑

w=1

H∑

h=1

‖Vi(G(Ic,w,h)) − Vi(Jc,w,h)‖2 (2)

where Vi represents a non-linear transformation by the ith layer of the VGGNet,
G represents the transformation function of the generator and (C,W,H) are
the channels, width and height respectively. The LL1 loss between I and J is
defined as:
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LL1 =
C∑

c=1

W∑

w=1

H∑

h=1

‖G(I) − J̃‖ (3)

Here, J̃ represents J in CIELAB color space. The difference between G(I) and
J is fundamentally the difference of their ab values.

The final objective function of the proposed generator network is

LCuPGAN = Ladv + λ1LL1 + λ2Lclass + λ3Lper (4)

Here Ladv is the adversarial loss, LL1 is the content-based per-pixel loss,
Lclass is the classification loss and Lper is the perceptual loss and λ1, λ2, λ3 are
positive constants.

3.2 Generator Network

The generator network in the proposed architecture follows a similar architecture
like U-Net [16]. The U-Net was originally proposed for bio-medical image seg-
mentation. The architecture of U-Net consists of a contracting path which acts
as an encoder and expanding path which acts as a decoder. The skip connections
are present to avoid any information and content loss due to convolutions. The
success of U-Net propelled the utilization of U-Net architecture in many works
[8]. The elaborate generator network along with the feature map dimensions
and the convolutional kernel sizes is shown in Fig. 2. In the encoding process,
the input feature map is reduced in height and width by a factor of 2 at every
level. In the decoding process, the feature maps are enlarged in height and width
by a factor of 2. At every decoding level, there is a step of feature-fusion from the
opposite contracting path. The final transposed convolutional layer obtained are
the ab values which when concatenated with the L (luminance) channel, gives
us a colourized version of the input gray-scale image. The feature vector at the
point of deflection of the encoding and the decoding path is processed through
two fully-connected layers to obtain the vector for the classification loss. All the
layers use the ReLU activation function except for the last transpose convolu-
tional layer which uses the hyperbolic tangent (tanh) function.

3.3 Discriminator Network

The discriminator network used for the proposed method consists of four convo-
lutional layers with kernel size 5 × 5 and stride length 2 × 2 followed by 2 fully-
connected (FC) layers. The final FC-layer uses a Sigmoid activation to classify
the image as real or fake. Figure 3 shows the architecture of the discriminator
network used for the proposed CuPGAN.
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Fig. 2. Network architecture of the proposed Generator network.
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Fig. 3. Network architecture of our Discriminator Network

4 Experimental Results

4.1 Experimental Settings

All the training images are converted from RGB into the CIELAB colour space.
Only the L channel of images are fed into the network and the network tries
to estimate the chromatic components ab. The values of the luminance and the
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chrominance components are normalized between [−1, 1]. The training images
are re-sized to 256 × 256 in all cases. Every convolutional transpose layer in
the decoder part of the generator network has a dropout with probability 0.5.
Each layer in both the discriminator and the generator is followed by a batch-
normalization layer. We use the Places365-Standard dataset [26] which contains
about 1.8 million images. We filter the images that are grayscale and also those
that have negligible colour variations which reduces our training dataset to 1.6
million images. For our experiments, we empirically set λ1 = 100, λ2 = 10 and
λ3 = 1 as the weights of the per-pixel, classification and perceptual loss respec-
tively. We use the relu1 2 layer of the VGGNet for computing the perceptual
loss. The proposed system is implemented in Tensorflow. We train our network
using the Adagrad optimizer with a learning rate of 10−4 and a batch-size of
16. Under these settings, the model is trained for 20 epochs on a system with
NVIDIA TitanX Graphics Processing unit (GPU).

4.2 Quantitative Evaluations

We evaluate our proposed algorithm on different metrics and compare it with
the existing state-of-the art colourization methods [7,25]. The metrics used for
comparison are Peak Signal to Noise Ratio (PSNR) [12], Structural Similar-
ity Index Measure (SSIM) [21], Mean Squared Error (MSE), Universal Quality
Index (UQI) [22] and Visual Information Fidelity (VIF) [18]. We carry out our
quantitative comparison on the test dataset of Places365. It contains multiple
images of the 365 different classes used in the training dataset. The quantita-
tive evaluations are shown in Table 1. The proposed method CuPGAN performs
better in all metrics except for the VIF and UQI where it shows competitive
performance on the Places365 test dataset [26].

Table 1. Comparative evaluation of PSNR, SSIM, MSE, UQI and VIF on Places365
dataset [26]

Method Zhang [25] Iizuka [7] CuPGAN

PSNR 25.44 27.14 28.41

SSIM 0.95 0.95 0.96

MSE 262.08 135.89 107.93

UQI 0.56 0.60 0.58

VIF 0.886 0.905 0.896

4.3 Qualitative Evaluations

We demonstrate and compare our results in a qualitative manner against the
existing methods [7,25]. Figure 4 displays the comparative qualitative results.
We observe that in the first image Zhang et al. [25] hallucinates bluish colour
for the grass while Iizuka et al. [7] produces a less saturated image compared
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Grayscale Zhang [25] Iizuka [7] CuPGAN Ground Truth

Fig. 4. Qualitative comparison on the test partition of Places365 dataset [26]. The
results display the robustness and versatility of our proposed method for colourizing
both indoor and outdoor images (Color figure online)
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to ours and the ground-truth. In the second image, both methods [7,25] tend
to over-saturate the colour of the structure while our result is closest to the
ground-truth. In the third image of the indoor scene, Zhang et al. [25] tends to
impart yellowish colour to the indoors contrasting our and Iizuka’s [25] result
and also the ground-truth. In the fourth and the last image, both methods [7,25]
tend to distort colours in the grass and the road respectively. Our method does
not demonstrate any such colour distortions. In the fifth image, our method
tends to over-estimate the grass regions near the foothills of the mountain but
displays more vibrancy as compared to [7,25]. The results of the sixth and the
seventh images are satisfactory for all methods. From what we observed, Zhang
et al. tends to over-saturate the colours of the image. The qualitative comparison
ensures that not only does our method produce images of crisp quality and of
adequate saturation, but it also tends to produce less colour distortions and
colour anomalies.

4.4 Real World Images

In order to establish the efficiency of our model we collect some images from the
internet randomly and colourize these images using all the competing methods
used in the quantitative evaluations as discussed in Sect. 4.2. Figure 5 shows the
colourization on real world images. We can observe that Zhang et al. [25] tends to
over-saturate the colour components as visible from the first and the third image.
Also, [25] produces some colour anomalies visible from the zebras (fourth image)
and the road (fifth image). Iizuka et al. [7] tends to under-saturate the images
as visible from the third and fourth image. The colourization from our proposed
method produces more visually-appealing and sharp results comparatively.

4.5 Ablation Studies

For demonstrating the effectiveness of our loss function, we train our model
using a subset of the Places365 data-set [26]. We created the subset by ran-
domly selecting 30 different classes from the complete data-set. We train our
proposed model using three different component loss functions: (1) using only
LL1 loss, (2) using only Lper and (3) using both LL1 and Lper (ours). The use
of the first loss function corresponds directly to the objective function used in
the cGAN model proposed by Isola et al. [8]. We provide both qualitative and
quantitative comparisons for validating our point. The qualitative results are
displayed in Fig. 6. The results display the effectiveness of using both LL1 and
Lper loss together over using them discretely. Table 2 displays the quantitative
comparison of using the mentioned loss functions. We can infer both qualita-
tively and quantitatively that our objective function performs better than using
only LL1 or only only Lper.
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Grayscale Zhang [25] Iizuka [7] CuPGAN

Fig. 5. Qualitative comparison on the random images from the internet
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Table 2. Evaluation of PSNR, SSIM, MSE, UQI and VIF on subset test data-set from
Places365 [26]

Method LL1 Lper Ours

PSNR 22.00 17.40 23.19

SSIM 0.88 0.63 0.91

MSE 552.42 1341.66 529.53

UQI 0.50 0.20 0.49

VIF 0.85 0.53 0.86

Grayscale LL1 Lper LL1 + Lper (ours) Ground Truth

Fig. 6. Ablation: Qualitative comparison on the subset-test partition of Places365
dataset [26]

4.6 Historic Black and White Images

We also test our model on 20th century black and white images. Due to the
type of films and cameras used in the past, we can never be perfectly sure about
the type of colours and shades that was originally there. The images used have
significant artifacts and have irregular borders which makes it an ill-posed task
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to reckon colours. In spite of all these issues, our model is able to colourize
these images producing satisfactory results. In Fig. 7 we show some examples of
colourization of these historic images and we observe visually pleasing results.

Fig. 7. Colourization of historic black and white images

Fig. 8. Visual results on the CelebA dataset [11]

4.7 Adaptability

In order to establish the adaptability of our proposed method, we train our model
on a very different dataset than the Places365 dataset [26]. We use the large-
scale CelebFaces Attributes or the CelebA dataset [11] for training. CelebA is
a large-scale dataset which contains more than 200K images with 40 attributes.
The classification loss of the generator objective is calculated using the cross-
entropy loss of the attributes. We provide a visual analysis and quantitative
evaluation of our method on this dataset as well. We use the metrics described in
Sect. 4.2. Table 3 shows the evaluation of our model on the CelebA dataset. The
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Table 3. Quantitative evaluations on the CelebA dataset [11]

Metrics CuPGAN

PSNR 25.9

SSIM 0.89

UQI 0.70

VQI 0.78

quantitative evaluations assure that our model can be employed easily to another
dataset for the process of colourization. Figure 8 demonstrates the visual results
on the CelebA dataset [11] supplements our claim of adaptability to versatile
datasets.

5 Conclusion

In this paper, we develop on the Conditional Generative Adversarial Networks
(cGANs) framework to deal with the task of image colourization by incorporating
the recently flourished perceptual loss and cross-entropy classification loss. We
train our proposed model CuPGAN in an end-to-end fashion. Quantitative and
qualitative evaluations establish the significant enhancing effects of adding the
perceptual and classification loss as compared to the vanilla Conditional-GANs.
Also, experiments conducted on standard data-sets show promising results when
compared to the standard exclusive state-of-the art image colourization methods
evaluated using five standard image quality measures like PSNR, SSIM, MSE,
UIQ and VIF. Our proposed method performs appreciably well producing clear
and crisp quality colourized pictures even in cases of images picked from the
internet and historic black and white images.
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